xref: /openbmc/linux/drivers/base/memory.c (revision fa840ba4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory subsystem support
4  *
5  * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
6  *            Dave Hansen <haveblue@us.ibm.com>
7  *
8  * This file provides the necessary infrastructure to represent
9  * a SPARSEMEM-memory-model system's physical memory in /sysfs.
10  * All arch-independent code that assumes MEMORY_HOTPLUG requires
11  * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
12  */
13 
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/topology.h>
17 #include <linux/capability.h>
18 #include <linux/device.h>
19 #include <linux/memory.h>
20 #include <linux/memory_hotplug.h>
21 #include <linux/mm.h>
22 #include <linux/stat.h>
23 #include <linux/slab.h>
24 #include <linux/xarray.h>
25 
26 #include <linux/atomic.h>
27 #include <linux/uaccess.h>
28 
29 #define MEMORY_CLASS_NAME	"memory"
30 
31 static const char *const online_type_to_str[] = {
32 	[MMOP_OFFLINE] = "offline",
33 	[MMOP_ONLINE] = "online",
34 	[MMOP_ONLINE_KERNEL] = "online_kernel",
35 	[MMOP_ONLINE_MOVABLE] = "online_movable",
36 };
37 
38 int mhp_online_type_from_str(const char *str)
39 {
40 	int i;
41 
42 	for (i = 0; i < ARRAY_SIZE(online_type_to_str); i++) {
43 		if (sysfs_streq(str, online_type_to_str[i]))
44 			return i;
45 	}
46 	return -EINVAL;
47 }
48 
49 #define to_memory_block(dev) container_of(dev, struct memory_block, dev)
50 
51 static int sections_per_block;
52 
53 static inline unsigned long memory_block_id(unsigned long section_nr)
54 {
55 	return section_nr / sections_per_block;
56 }
57 
58 static inline unsigned long pfn_to_block_id(unsigned long pfn)
59 {
60 	return memory_block_id(pfn_to_section_nr(pfn));
61 }
62 
63 static inline unsigned long phys_to_block_id(unsigned long phys)
64 {
65 	return pfn_to_block_id(PFN_DOWN(phys));
66 }
67 
68 static int memory_subsys_online(struct device *dev);
69 static int memory_subsys_offline(struct device *dev);
70 
71 static struct bus_type memory_subsys = {
72 	.name = MEMORY_CLASS_NAME,
73 	.dev_name = MEMORY_CLASS_NAME,
74 	.online = memory_subsys_online,
75 	.offline = memory_subsys_offline,
76 };
77 
78 /*
79  * Memory blocks are cached in a local radix tree to avoid
80  * a costly linear search for the corresponding device on
81  * the subsystem bus.
82  */
83 static DEFINE_XARRAY(memory_blocks);
84 
85 /*
86  * Memory groups, indexed by memory group id (mgid).
87  */
88 static DEFINE_XARRAY_FLAGS(memory_groups, XA_FLAGS_ALLOC);
89 #define MEMORY_GROUP_MARK_DYNAMIC	XA_MARK_1
90 
91 static BLOCKING_NOTIFIER_HEAD(memory_chain);
92 
93 int register_memory_notifier(struct notifier_block *nb)
94 {
95 	return blocking_notifier_chain_register(&memory_chain, nb);
96 }
97 EXPORT_SYMBOL(register_memory_notifier);
98 
99 void unregister_memory_notifier(struct notifier_block *nb)
100 {
101 	blocking_notifier_chain_unregister(&memory_chain, nb);
102 }
103 EXPORT_SYMBOL(unregister_memory_notifier);
104 
105 static void memory_block_release(struct device *dev)
106 {
107 	struct memory_block *mem = to_memory_block(dev);
108 	/* Verify that the altmap is freed */
109 	WARN_ON(mem->altmap);
110 	kfree(mem);
111 }
112 
113 unsigned long __weak memory_block_size_bytes(void)
114 {
115 	return MIN_MEMORY_BLOCK_SIZE;
116 }
117 EXPORT_SYMBOL_GPL(memory_block_size_bytes);
118 
119 /* Show the memory block ID, relative to the memory block size */
120 static ssize_t phys_index_show(struct device *dev,
121 			       struct device_attribute *attr, char *buf)
122 {
123 	struct memory_block *mem = to_memory_block(dev);
124 
125 	return sysfs_emit(buf, "%08lx\n", memory_block_id(mem->start_section_nr));
126 }
127 
128 /*
129  * Legacy interface that we cannot remove. Always indicate "removable"
130  * with CONFIG_MEMORY_HOTREMOVE - bad heuristic.
131  */
132 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
133 			      char *buf)
134 {
135 	return sysfs_emit(buf, "%d\n", (int)IS_ENABLED(CONFIG_MEMORY_HOTREMOVE));
136 }
137 
138 /*
139  * online, offline, going offline, etc.
140  */
141 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
142 			  char *buf)
143 {
144 	struct memory_block *mem = to_memory_block(dev);
145 	const char *output;
146 
147 	/*
148 	 * We can probably put these states in a nice little array
149 	 * so that they're not open-coded
150 	 */
151 	switch (mem->state) {
152 	case MEM_ONLINE:
153 		output = "online";
154 		break;
155 	case MEM_OFFLINE:
156 		output = "offline";
157 		break;
158 	case MEM_GOING_OFFLINE:
159 		output = "going-offline";
160 		break;
161 	default:
162 		WARN_ON(1);
163 		return sysfs_emit(buf, "ERROR-UNKNOWN-%ld\n", mem->state);
164 	}
165 
166 	return sysfs_emit(buf, "%s\n", output);
167 }
168 
169 int memory_notify(unsigned long val, void *v)
170 {
171 	return blocking_notifier_call_chain(&memory_chain, val, v);
172 }
173 
174 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
175 static unsigned long memblk_nr_poison(struct memory_block *mem);
176 #else
177 static inline unsigned long memblk_nr_poison(struct memory_block *mem)
178 {
179 	return 0;
180 }
181 #endif
182 
183 /*
184  * Must acquire mem_hotplug_lock in write mode.
185  */
186 static int memory_block_online(struct memory_block *mem)
187 {
188 	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
189 	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
190 	unsigned long nr_vmemmap_pages = 0;
191 	struct zone *zone;
192 	int ret;
193 
194 	if (memblk_nr_poison(mem))
195 		return -EHWPOISON;
196 
197 	zone = zone_for_pfn_range(mem->online_type, mem->nid, mem->group,
198 				  start_pfn, nr_pages);
199 
200 	/*
201 	 * Although vmemmap pages have a different lifecycle than the pages
202 	 * they describe (they remain until the memory is unplugged), doing
203 	 * their initialization and accounting at memory onlining/offlining
204 	 * stage helps to keep accounting easier to follow - e.g vmemmaps
205 	 * belong to the same zone as the memory they backed.
206 	 */
207 	if (mem->altmap)
208 		nr_vmemmap_pages = mem->altmap->free;
209 
210 	mem_hotplug_begin();
211 	if (nr_vmemmap_pages) {
212 		ret = mhp_init_memmap_on_memory(start_pfn, nr_vmemmap_pages, zone);
213 		if (ret)
214 			goto out;
215 	}
216 
217 	ret = online_pages(start_pfn + nr_vmemmap_pages,
218 			   nr_pages - nr_vmemmap_pages, zone, mem->group);
219 	if (ret) {
220 		if (nr_vmemmap_pages)
221 			mhp_deinit_memmap_on_memory(start_pfn, nr_vmemmap_pages);
222 		goto out;
223 	}
224 
225 	/*
226 	 * Account once onlining succeeded. If the zone was unpopulated, it is
227 	 * now already properly populated.
228 	 */
229 	if (nr_vmemmap_pages)
230 		adjust_present_page_count(pfn_to_page(start_pfn), mem->group,
231 					  nr_vmemmap_pages);
232 
233 	mem->zone = zone;
234 out:
235 	mem_hotplug_done();
236 	return ret;
237 }
238 
239 /*
240  * Must acquire mem_hotplug_lock in write mode.
241  */
242 static int memory_block_offline(struct memory_block *mem)
243 {
244 	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
245 	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
246 	unsigned long nr_vmemmap_pages = 0;
247 	int ret;
248 
249 	if (!mem->zone)
250 		return -EINVAL;
251 
252 	/*
253 	 * Unaccount before offlining, such that unpopulated zone and kthreads
254 	 * can properly be torn down in offline_pages().
255 	 */
256 	if (mem->altmap)
257 		nr_vmemmap_pages = mem->altmap->free;
258 
259 	mem_hotplug_begin();
260 	if (nr_vmemmap_pages)
261 		adjust_present_page_count(pfn_to_page(start_pfn), mem->group,
262 					  -nr_vmemmap_pages);
263 
264 	ret = offline_pages(start_pfn + nr_vmemmap_pages,
265 			    nr_pages - nr_vmemmap_pages, mem->zone, mem->group);
266 	if (ret) {
267 		/* offline_pages() failed. Account back. */
268 		if (nr_vmemmap_pages)
269 			adjust_present_page_count(pfn_to_page(start_pfn),
270 						  mem->group, nr_vmemmap_pages);
271 		goto out;
272 	}
273 
274 	if (nr_vmemmap_pages)
275 		mhp_deinit_memmap_on_memory(start_pfn, nr_vmemmap_pages);
276 
277 	mem->zone = NULL;
278 out:
279 	mem_hotplug_done();
280 	return ret;
281 }
282 
283 /*
284  * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
285  * OK to have direct references to sparsemem variables in here.
286  */
287 static int
288 memory_block_action(struct memory_block *mem, unsigned long action)
289 {
290 	int ret;
291 
292 	switch (action) {
293 	case MEM_ONLINE:
294 		ret = memory_block_online(mem);
295 		break;
296 	case MEM_OFFLINE:
297 		ret = memory_block_offline(mem);
298 		break;
299 	default:
300 		WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
301 		     "%ld\n", __func__, mem->start_section_nr, action, action);
302 		ret = -EINVAL;
303 	}
304 
305 	return ret;
306 }
307 
308 static int memory_block_change_state(struct memory_block *mem,
309 		unsigned long to_state, unsigned long from_state_req)
310 {
311 	int ret = 0;
312 
313 	if (mem->state != from_state_req)
314 		return -EINVAL;
315 
316 	if (to_state == MEM_OFFLINE)
317 		mem->state = MEM_GOING_OFFLINE;
318 
319 	ret = memory_block_action(mem, to_state);
320 	mem->state = ret ? from_state_req : to_state;
321 
322 	return ret;
323 }
324 
325 /* The device lock serializes operations on memory_subsys_[online|offline] */
326 static int memory_subsys_online(struct device *dev)
327 {
328 	struct memory_block *mem = to_memory_block(dev);
329 	int ret;
330 
331 	if (mem->state == MEM_ONLINE)
332 		return 0;
333 
334 	/*
335 	 * When called via device_online() without configuring the online_type,
336 	 * we want to default to MMOP_ONLINE.
337 	 */
338 	if (mem->online_type == MMOP_OFFLINE)
339 		mem->online_type = MMOP_ONLINE;
340 
341 	ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
342 	mem->online_type = MMOP_OFFLINE;
343 
344 	return ret;
345 }
346 
347 static int memory_subsys_offline(struct device *dev)
348 {
349 	struct memory_block *mem = to_memory_block(dev);
350 
351 	if (mem->state == MEM_OFFLINE)
352 		return 0;
353 
354 	return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
355 }
356 
357 static ssize_t state_store(struct device *dev, struct device_attribute *attr,
358 			   const char *buf, size_t count)
359 {
360 	const int online_type = mhp_online_type_from_str(buf);
361 	struct memory_block *mem = to_memory_block(dev);
362 	int ret;
363 
364 	if (online_type < 0)
365 		return -EINVAL;
366 
367 	ret = lock_device_hotplug_sysfs();
368 	if (ret)
369 		return ret;
370 
371 	switch (online_type) {
372 	case MMOP_ONLINE_KERNEL:
373 	case MMOP_ONLINE_MOVABLE:
374 	case MMOP_ONLINE:
375 		/* mem->online_type is protected by device_hotplug_lock */
376 		mem->online_type = online_type;
377 		ret = device_online(&mem->dev);
378 		break;
379 	case MMOP_OFFLINE:
380 		ret = device_offline(&mem->dev);
381 		break;
382 	default:
383 		ret = -EINVAL; /* should never happen */
384 	}
385 
386 	unlock_device_hotplug();
387 
388 	if (ret < 0)
389 		return ret;
390 	if (ret)
391 		return -EINVAL;
392 
393 	return count;
394 }
395 
396 /*
397  * Legacy interface that we cannot remove: s390x exposes the storage increment
398  * covered by a memory block, allowing for identifying which memory blocks
399  * comprise a storage increment. Since a memory block spans complete
400  * storage increments nowadays, this interface is basically unused. Other
401  * archs never exposed != 0.
402  */
403 static ssize_t phys_device_show(struct device *dev,
404 				struct device_attribute *attr, char *buf)
405 {
406 	struct memory_block *mem = to_memory_block(dev);
407 	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
408 
409 	return sysfs_emit(buf, "%d\n",
410 			  arch_get_memory_phys_device(start_pfn));
411 }
412 
413 #ifdef CONFIG_MEMORY_HOTREMOVE
414 static int print_allowed_zone(char *buf, int len, int nid,
415 			      struct memory_group *group,
416 			      unsigned long start_pfn, unsigned long nr_pages,
417 			      int online_type, struct zone *default_zone)
418 {
419 	struct zone *zone;
420 
421 	zone = zone_for_pfn_range(online_type, nid, group, start_pfn, nr_pages);
422 	if (zone == default_zone)
423 		return 0;
424 
425 	return sysfs_emit_at(buf, len, " %s", zone->name);
426 }
427 
428 static ssize_t valid_zones_show(struct device *dev,
429 				struct device_attribute *attr, char *buf)
430 {
431 	struct memory_block *mem = to_memory_block(dev);
432 	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
433 	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
434 	struct memory_group *group = mem->group;
435 	struct zone *default_zone;
436 	int nid = mem->nid;
437 	int len = 0;
438 
439 	/*
440 	 * Check the existing zone. Make sure that we do that only on the
441 	 * online nodes otherwise the page_zone is not reliable
442 	 */
443 	if (mem->state == MEM_ONLINE) {
444 		/*
445 		 * If !mem->zone, the memory block spans multiple zones and
446 		 * cannot get offlined.
447 		 */
448 		default_zone = mem->zone;
449 		if (!default_zone)
450 			return sysfs_emit(buf, "%s\n", "none");
451 		len += sysfs_emit_at(buf, len, "%s", default_zone->name);
452 		goto out;
453 	}
454 
455 	default_zone = zone_for_pfn_range(MMOP_ONLINE, nid, group,
456 					  start_pfn, nr_pages);
457 
458 	len += sysfs_emit_at(buf, len, "%s", default_zone->name);
459 	len += print_allowed_zone(buf, len, nid, group, start_pfn, nr_pages,
460 				  MMOP_ONLINE_KERNEL, default_zone);
461 	len += print_allowed_zone(buf, len, nid, group, start_pfn, nr_pages,
462 				  MMOP_ONLINE_MOVABLE, default_zone);
463 out:
464 	len += sysfs_emit_at(buf, len, "\n");
465 	return len;
466 }
467 static DEVICE_ATTR_RO(valid_zones);
468 #endif
469 
470 static DEVICE_ATTR_RO(phys_index);
471 static DEVICE_ATTR_RW(state);
472 static DEVICE_ATTR_RO(phys_device);
473 static DEVICE_ATTR_RO(removable);
474 
475 /*
476  * Show the memory block size (shared by all memory blocks).
477  */
478 static ssize_t block_size_bytes_show(struct device *dev,
479 				     struct device_attribute *attr, char *buf)
480 {
481 	return sysfs_emit(buf, "%lx\n", memory_block_size_bytes());
482 }
483 
484 static DEVICE_ATTR_RO(block_size_bytes);
485 
486 /*
487  * Memory auto online policy.
488  */
489 
490 static ssize_t auto_online_blocks_show(struct device *dev,
491 				       struct device_attribute *attr, char *buf)
492 {
493 	return sysfs_emit(buf, "%s\n",
494 			  online_type_to_str[mhp_default_online_type]);
495 }
496 
497 static ssize_t auto_online_blocks_store(struct device *dev,
498 					struct device_attribute *attr,
499 					const char *buf, size_t count)
500 {
501 	const int online_type = mhp_online_type_from_str(buf);
502 
503 	if (online_type < 0)
504 		return -EINVAL;
505 
506 	mhp_default_online_type = online_type;
507 	return count;
508 }
509 
510 static DEVICE_ATTR_RW(auto_online_blocks);
511 
512 #ifdef CONFIG_CRASH_HOTPLUG
513 #include <linux/kexec.h>
514 static ssize_t crash_hotplug_show(struct device *dev,
515 				       struct device_attribute *attr, char *buf)
516 {
517 	return sysfs_emit(buf, "%d\n", crash_hotplug_memory_support());
518 }
519 static DEVICE_ATTR_RO(crash_hotplug);
520 #endif
521 
522 /*
523  * Some architectures will have custom drivers to do this, and
524  * will not need to do it from userspace.  The fake hot-add code
525  * as well as ppc64 will do all of their discovery in userspace
526  * and will require this interface.
527  */
528 #ifdef CONFIG_ARCH_MEMORY_PROBE
529 static ssize_t probe_store(struct device *dev, struct device_attribute *attr,
530 			   const char *buf, size_t count)
531 {
532 	u64 phys_addr;
533 	int nid, ret;
534 	unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
535 
536 	ret = kstrtoull(buf, 0, &phys_addr);
537 	if (ret)
538 		return ret;
539 
540 	if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
541 		return -EINVAL;
542 
543 	ret = lock_device_hotplug_sysfs();
544 	if (ret)
545 		return ret;
546 
547 	nid = memory_add_physaddr_to_nid(phys_addr);
548 	ret = __add_memory(nid, phys_addr,
549 			   MIN_MEMORY_BLOCK_SIZE * sections_per_block,
550 			   MHP_NONE);
551 
552 	if (ret)
553 		goto out;
554 
555 	ret = count;
556 out:
557 	unlock_device_hotplug();
558 	return ret;
559 }
560 
561 static DEVICE_ATTR_WO(probe);
562 #endif
563 
564 #ifdef CONFIG_MEMORY_FAILURE
565 /*
566  * Support for offlining pages of memory
567  */
568 
569 /* Soft offline a page */
570 static ssize_t soft_offline_page_store(struct device *dev,
571 				       struct device_attribute *attr,
572 				       const char *buf, size_t count)
573 {
574 	int ret;
575 	u64 pfn;
576 	if (!capable(CAP_SYS_ADMIN))
577 		return -EPERM;
578 	if (kstrtoull(buf, 0, &pfn) < 0)
579 		return -EINVAL;
580 	pfn >>= PAGE_SHIFT;
581 	ret = soft_offline_page(pfn, 0);
582 	return ret == 0 ? count : ret;
583 }
584 
585 /* Forcibly offline a page, including killing processes. */
586 static ssize_t hard_offline_page_store(struct device *dev,
587 				       struct device_attribute *attr,
588 				       const char *buf, size_t count)
589 {
590 	int ret;
591 	u64 pfn;
592 	if (!capable(CAP_SYS_ADMIN))
593 		return -EPERM;
594 	if (kstrtoull(buf, 0, &pfn) < 0)
595 		return -EINVAL;
596 	pfn >>= PAGE_SHIFT;
597 	ret = memory_failure(pfn, MF_SW_SIMULATED);
598 	if (ret == -EOPNOTSUPP)
599 		ret = 0;
600 	return ret ? ret : count;
601 }
602 
603 static DEVICE_ATTR_WO(soft_offline_page);
604 static DEVICE_ATTR_WO(hard_offline_page);
605 #endif
606 
607 /* See phys_device_show(). */
608 int __weak arch_get_memory_phys_device(unsigned long start_pfn)
609 {
610 	return 0;
611 }
612 
613 /*
614  * A reference for the returned memory block device is acquired.
615  *
616  * Called under device_hotplug_lock.
617  */
618 static struct memory_block *find_memory_block_by_id(unsigned long block_id)
619 {
620 	struct memory_block *mem;
621 
622 	mem = xa_load(&memory_blocks, block_id);
623 	if (mem)
624 		get_device(&mem->dev);
625 	return mem;
626 }
627 
628 /*
629  * Called under device_hotplug_lock.
630  */
631 struct memory_block *find_memory_block(unsigned long section_nr)
632 {
633 	unsigned long block_id = memory_block_id(section_nr);
634 
635 	return find_memory_block_by_id(block_id);
636 }
637 
638 static struct attribute *memory_memblk_attrs[] = {
639 	&dev_attr_phys_index.attr,
640 	&dev_attr_state.attr,
641 	&dev_attr_phys_device.attr,
642 	&dev_attr_removable.attr,
643 #ifdef CONFIG_MEMORY_HOTREMOVE
644 	&dev_attr_valid_zones.attr,
645 #endif
646 	NULL
647 };
648 
649 static const struct attribute_group memory_memblk_attr_group = {
650 	.attrs = memory_memblk_attrs,
651 };
652 
653 static const struct attribute_group *memory_memblk_attr_groups[] = {
654 	&memory_memblk_attr_group,
655 	NULL,
656 };
657 
658 static int __add_memory_block(struct memory_block *memory)
659 {
660 	int ret;
661 
662 	memory->dev.bus = &memory_subsys;
663 	memory->dev.id = memory->start_section_nr / sections_per_block;
664 	memory->dev.release = memory_block_release;
665 	memory->dev.groups = memory_memblk_attr_groups;
666 	memory->dev.offline = memory->state == MEM_OFFLINE;
667 
668 	ret = device_register(&memory->dev);
669 	if (ret) {
670 		put_device(&memory->dev);
671 		return ret;
672 	}
673 	ret = xa_err(xa_store(&memory_blocks, memory->dev.id, memory,
674 			      GFP_KERNEL));
675 	if (ret)
676 		device_unregister(&memory->dev);
677 
678 	return ret;
679 }
680 
681 static struct zone *early_node_zone_for_memory_block(struct memory_block *mem,
682 						     int nid)
683 {
684 	const unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
685 	const unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
686 	struct zone *zone, *matching_zone = NULL;
687 	pg_data_t *pgdat = NODE_DATA(nid);
688 	int i;
689 
690 	/*
691 	 * This logic only works for early memory, when the applicable zones
692 	 * already span the memory block. We don't expect overlapping zones on
693 	 * a single node for early memory. So if we're told that some PFNs
694 	 * of a node fall into this memory block, we can assume that all node
695 	 * zones that intersect with the memory block are actually applicable.
696 	 * No need to look at the memmap.
697 	 */
698 	for (i = 0; i < MAX_NR_ZONES; i++) {
699 		zone = pgdat->node_zones + i;
700 		if (!populated_zone(zone))
701 			continue;
702 		if (!zone_intersects(zone, start_pfn, nr_pages))
703 			continue;
704 		if (!matching_zone) {
705 			matching_zone = zone;
706 			continue;
707 		}
708 		/* Spans multiple zones ... */
709 		matching_zone = NULL;
710 		break;
711 	}
712 	return matching_zone;
713 }
714 
715 #ifdef CONFIG_NUMA
716 /**
717  * memory_block_add_nid() - Indicate that system RAM falling into this memory
718  *			    block device (partially) belongs to the given node.
719  * @mem: The memory block device.
720  * @nid: The node id.
721  * @context: The memory initialization context.
722  *
723  * Indicate that system RAM falling into this memory block (partially) belongs
724  * to the given node. If the context indicates ("early") that we are adding the
725  * node during node device subsystem initialization, this will also properly
726  * set/adjust mem->zone based on the zone ranges of the given node.
727  */
728 void memory_block_add_nid(struct memory_block *mem, int nid,
729 			  enum meminit_context context)
730 {
731 	if (context == MEMINIT_EARLY && mem->nid != nid) {
732 		/*
733 		 * For early memory we have to determine the zone when setting
734 		 * the node id and handle multiple nodes spanning a single
735 		 * memory block by indicate via zone == NULL that we're not
736 		 * dealing with a single zone. So if we're setting the node id
737 		 * the first time, determine if there is a single zone. If we're
738 		 * setting the node id a second time to a different node,
739 		 * invalidate the single detected zone.
740 		 */
741 		if (mem->nid == NUMA_NO_NODE)
742 			mem->zone = early_node_zone_for_memory_block(mem, nid);
743 		else
744 			mem->zone = NULL;
745 	}
746 
747 	/*
748 	 * If this memory block spans multiple nodes, we only indicate
749 	 * the last processed node. If we span multiple nodes (not applicable
750 	 * to hotplugged memory), zone == NULL will prohibit memory offlining
751 	 * and consequently unplug.
752 	 */
753 	mem->nid = nid;
754 }
755 #endif
756 
757 static int add_memory_block(unsigned long block_id, unsigned long state,
758 			    struct vmem_altmap *altmap,
759 			    struct memory_group *group)
760 {
761 	struct memory_block *mem;
762 	int ret = 0;
763 
764 	mem = find_memory_block_by_id(block_id);
765 	if (mem) {
766 		put_device(&mem->dev);
767 		return -EEXIST;
768 	}
769 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
770 	if (!mem)
771 		return -ENOMEM;
772 
773 	mem->start_section_nr = block_id * sections_per_block;
774 	mem->state = state;
775 	mem->nid = NUMA_NO_NODE;
776 	mem->altmap = altmap;
777 	INIT_LIST_HEAD(&mem->group_next);
778 
779 #ifndef CONFIG_NUMA
780 	if (state == MEM_ONLINE)
781 		/*
782 		 * MEM_ONLINE at this point implies early memory. With NUMA,
783 		 * we'll determine the zone when setting the node id via
784 		 * memory_block_add_nid(). Memory hotplug updated the zone
785 		 * manually when memory onlining/offlining succeeds.
786 		 */
787 		mem->zone = early_node_zone_for_memory_block(mem, NUMA_NO_NODE);
788 #endif /* CONFIG_NUMA */
789 
790 	ret = __add_memory_block(mem);
791 	if (ret)
792 		return ret;
793 
794 	if (group) {
795 		mem->group = group;
796 		list_add(&mem->group_next, &group->memory_blocks);
797 	}
798 
799 	return 0;
800 }
801 
802 static int __init add_boot_memory_block(unsigned long base_section_nr)
803 {
804 	int section_count = 0;
805 	unsigned long nr;
806 
807 	for (nr = base_section_nr; nr < base_section_nr + sections_per_block;
808 	     nr++)
809 		if (present_section_nr(nr))
810 			section_count++;
811 
812 	if (section_count == 0)
813 		return 0;
814 	return add_memory_block(memory_block_id(base_section_nr),
815 				MEM_ONLINE, NULL,  NULL);
816 }
817 
818 static int add_hotplug_memory_block(unsigned long block_id,
819 				    struct vmem_altmap *altmap,
820 				    struct memory_group *group)
821 {
822 	return add_memory_block(block_id, MEM_OFFLINE, altmap, group);
823 }
824 
825 static void remove_memory_block(struct memory_block *memory)
826 {
827 	if (WARN_ON_ONCE(memory->dev.bus != &memory_subsys))
828 		return;
829 
830 	WARN_ON(xa_erase(&memory_blocks, memory->dev.id) == NULL);
831 
832 	if (memory->group) {
833 		list_del(&memory->group_next);
834 		memory->group = NULL;
835 	}
836 
837 	/* drop the ref. we got via find_memory_block() */
838 	put_device(&memory->dev);
839 	device_unregister(&memory->dev);
840 }
841 
842 /*
843  * Create memory block devices for the given memory area. Start and size
844  * have to be aligned to memory block granularity. Memory block devices
845  * will be initialized as offline.
846  *
847  * Called under device_hotplug_lock.
848  */
849 int create_memory_block_devices(unsigned long start, unsigned long size,
850 				struct vmem_altmap *altmap,
851 				struct memory_group *group)
852 {
853 	const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start));
854 	unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size));
855 	struct memory_block *mem;
856 	unsigned long block_id;
857 	int ret = 0;
858 
859 	if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) ||
860 			 !IS_ALIGNED(size, memory_block_size_bytes())))
861 		return -EINVAL;
862 
863 	for (block_id = start_block_id; block_id != end_block_id; block_id++) {
864 		ret = add_hotplug_memory_block(block_id, altmap, group);
865 		if (ret)
866 			break;
867 	}
868 	if (ret) {
869 		end_block_id = block_id;
870 		for (block_id = start_block_id; block_id != end_block_id;
871 		     block_id++) {
872 			mem = find_memory_block_by_id(block_id);
873 			if (WARN_ON_ONCE(!mem))
874 				continue;
875 			remove_memory_block(mem);
876 		}
877 	}
878 	return ret;
879 }
880 
881 /*
882  * Remove memory block devices for the given memory area. Start and size
883  * have to be aligned to memory block granularity. Memory block devices
884  * have to be offline.
885  *
886  * Called under device_hotplug_lock.
887  */
888 void remove_memory_block_devices(unsigned long start, unsigned long size)
889 {
890 	const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start));
891 	const unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size));
892 	struct memory_block *mem;
893 	unsigned long block_id;
894 
895 	if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) ||
896 			 !IS_ALIGNED(size, memory_block_size_bytes())))
897 		return;
898 
899 	for (block_id = start_block_id; block_id != end_block_id; block_id++) {
900 		mem = find_memory_block_by_id(block_id);
901 		if (WARN_ON_ONCE(!mem))
902 			continue;
903 		num_poisoned_pages_sub(-1UL, memblk_nr_poison(mem));
904 		unregister_memory_block_under_nodes(mem);
905 		remove_memory_block(mem);
906 	}
907 }
908 
909 static struct attribute *memory_root_attrs[] = {
910 #ifdef CONFIG_ARCH_MEMORY_PROBE
911 	&dev_attr_probe.attr,
912 #endif
913 
914 #ifdef CONFIG_MEMORY_FAILURE
915 	&dev_attr_soft_offline_page.attr,
916 	&dev_attr_hard_offline_page.attr,
917 #endif
918 
919 	&dev_attr_block_size_bytes.attr,
920 	&dev_attr_auto_online_blocks.attr,
921 #ifdef CONFIG_CRASH_HOTPLUG
922 	&dev_attr_crash_hotplug.attr,
923 #endif
924 	NULL
925 };
926 
927 static const struct attribute_group memory_root_attr_group = {
928 	.attrs = memory_root_attrs,
929 };
930 
931 static const struct attribute_group *memory_root_attr_groups[] = {
932 	&memory_root_attr_group,
933 	NULL,
934 };
935 
936 /*
937  * Initialize the sysfs support for memory devices. At the time this function
938  * is called, we cannot have concurrent creation/deletion of memory block
939  * devices, the device_hotplug_lock is not needed.
940  */
941 void __init memory_dev_init(void)
942 {
943 	int ret;
944 	unsigned long block_sz, nr;
945 
946 	/* Validate the configured memory block size */
947 	block_sz = memory_block_size_bytes();
948 	if (!is_power_of_2(block_sz) || block_sz < MIN_MEMORY_BLOCK_SIZE)
949 		panic("Memory block size not suitable: 0x%lx\n", block_sz);
950 	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
951 
952 	ret = subsys_system_register(&memory_subsys, memory_root_attr_groups);
953 	if (ret)
954 		panic("%s() failed to register subsystem: %d\n", __func__, ret);
955 
956 	/*
957 	 * Create entries for memory sections that were found
958 	 * during boot and have been initialized
959 	 */
960 	for (nr = 0; nr <= __highest_present_section_nr;
961 	     nr += sections_per_block) {
962 		ret = add_boot_memory_block(nr);
963 		if (ret)
964 			panic("%s() failed to add memory block: %d\n", __func__,
965 			      ret);
966 	}
967 }
968 
969 /**
970  * walk_memory_blocks - walk through all present memory blocks overlapped
971  *			by the range [start, start + size)
972  *
973  * @start: start address of the memory range
974  * @size: size of the memory range
975  * @arg: argument passed to func
976  * @func: callback for each memory section walked
977  *
978  * This function walks through all present memory blocks overlapped by the
979  * range [start, start + size), calling func on each memory block.
980  *
981  * In case func() returns an error, walking is aborted and the error is
982  * returned.
983  *
984  * Called under device_hotplug_lock.
985  */
986 int walk_memory_blocks(unsigned long start, unsigned long size,
987 		       void *arg, walk_memory_blocks_func_t func)
988 {
989 	const unsigned long start_block_id = phys_to_block_id(start);
990 	const unsigned long end_block_id = phys_to_block_id(start + size - 1);
991 	struct memory_block *mem;
992 	unsigned long block_id;
993 	int ret = 0;
994 
995 	if (!size)
996 		return 0;
997 
998 	for (block_id = start_block_id; block_id <= end_block_id; block_id++) {
999 		mem = find_memory_block_by_id(block_id);
1000 		if (!mem)
1001 			continue;
1002 
1003 		ret = func(mem, arg);
1004 		put_device(&mem->dev);
1005 		if (ret)
1006 			break;
1007 	}
1008 	return ret;
1009 }
1010 
1011 struct for_each_memory_block_cb_data {
1012 	walk_memory_blocks_func_t func;
1013 	void *arg;
1014 };
1015 
1016 static int for_each_memory_block_cb(struct device *dev, void *data)
1017 {
1018 	struct memory_block *mem = to_memory_block(dev);
1019 	struct for_each_memory_block_cb_data *cb_data = data;
1020 
1021 	return cb_data->func(mem, cb_data->arg);
1022 }
1023 
1024 /**
1025  * for_each_memory_block - walk through all present memory blocks
1026  *
1027  * @arg: argument passed to func
1028  * @func: callback for each memory block walked
1029  *
1030  * This function walks through all present memory blocks, calling func on
1031  * each memory block.
1032  *
1033  * In case func() returns an error, walking is aborted and the error is
1034  * returned.
1035  */
1036 int for_each_memory_block(void *arg, walk_memory_blocks_func_t func)
1037 {
1038 	struct for_each_memory_block_cb_data cb_data = {
1039 		.func = func,
1040 		.arg = arg,
1041 	};
1042 
1043 	return bus_for_each_dev(&memory_subsys, NULL, &cb_data,
1044 				for_each_memory_block_cb);
1045 }
1046 
1047 /*
1048  * This is an internal helper to unify allocation and initialization of
1049  * memory groups. Note that the passed memory group will be copied to a
1050  * dynamically allocated memory group. After this call, the passed
1051  * memory group should no longer be used.
1052  */
1053 static int memory_group_register(struct memory_group group)
1054 {
1055 	struct memory_group *new_group;
1056 	uint32_t mgid;
1057 	int ret;
1058 
1059 	if (!node_possible(group.nid))
1060 		return -EINVAL;
1061 
1062 	new_group = kzalloc(sizeof(group), GFP_KERNEL);
1063 	if (!new_group)
1064 		return -ENOMEM;
1065 	*new_group = group;
1066 	INIT_LIST_HEAD(&new_group->memory_blocks);
1067 
1068 	ret = xa_alloc(&memory_groups, &mgid, new_group, xa_limit_31b,
1069 		       GFP_KERNEL);
1070 	if (ret) {
1071 		kfree(new_group);
1072 		return ret;
1073 	} else if (group.is_dynamic) {
1074 		xa_set_mark(&memory_groups, mgid, MEMORY_GROUP_MARK_DYNAMIC);
1075 	}
1076 	return mgid;
1077 }
1078 
1079 /**
1080  * memory_group_register_static() - Register a static memory group.
1081  * @nid: The node id.
1082  * @max_pages: The maximum number of pages we'll have in this static memory
1083  *	       group.
1084  *
1085  * Register a new static memory group and return the memory group id.
1086  * All memory in the group belongs to a single unit, such as a DIMM. All
1087  * memory belonging to a static memory group is added in one go to be removed
1088  * in one go -- it's static.
1089  *
1090  * Returns an error if out of memory, if the node id is invalid, if no new
1091  * memory groups can be registered, or if max_pages is invalid (0). Otherwise,
1092  * returns the new memory group id.
1093  */
1094 int memory_group_register_static(int nid, unsigned long max_pages)
1095 {
1096 	struct memory_group group = {
1097 		.nid = nid,
1098 		.s = {
1099 			.max_pages = max_pages,
1100 		},
1101 	};
1102 
1103 	if (!max_pages)
1104 		return -EINVAL;
1105 	return memory_group_register(group);
1106 }
1107 EXPORT_SYMBOL_GPL(memory_group_register_static);
1108 
1109 /**
1110  * memory_group_register_dynamic() - Register a dynamic memory group.
1111  * @nid: The node id.
1112  * @unit_pages: Unit in pages in which is memory added/removed in this dynamic
1113  *		memory group.
1114  *
1115  * Register a new dynamic memory group and return the memory group id.
1116  * Memory within a dynamic memory group is added/removed dynamically
1117  * in unit_pages.
1118  *
1119  * Returns an error if out of memory, if the node id is invalid, if no new
1120  * memory groups can be registered, or if unit_pages is invalid (0, not a
1121  * power of two, smaller than a single memory block). Otherwise, returns the
1122  * new memory group id.
1123  */
1124 int memory_group_register_dynamic(int nid, unsigned long unit_pages)
1125 {
1126 	struct memory_group group = {
1127 		.nid = nid,
1128 		.is_dynamic = true,
1129 		.d = {
1130 			.unit_pages = unit_pages,
1131 		},
1132 	};
1133 
1134 	if (!unit_pages || !is_power_of_2(unit_pages) ||
1135 	    unit_pages < PHYS_PFN(memory_block_size_bytes()))
1136 		return -EINVAL;
1137 	return memory_group_register(group);
1138 }
1139 EXPORT_SYMBOL_GPL(memory_group_register_dynamic);
1140 
1141 /**
1142  * memory_group_unregister() - Unregister a memory group.
1143  * @mgid: the memory group id
1144  *
1145  * Unregister a memory group. If any memory block still belongs to this
1146  * memory group, unregistering will fail.
1147  *
1148  * Returns -EINVAL if the memory group id is invalid, returns -EBUSY if some
1149  * memory blocks still belong to this memory group and returns 0 if
1150  * unregistering succeeded.
1151  */
1152 int memory_group_unregister(int mgid)
1153 {
1154 	struct memory_group *group;
1155 
1156 	if (mgid < 0)
1157 		return -EINVAL;
1158 
1159 	group = xa_load(&memory_groups, mgid);
1160 	if (!group)
1161 		return -EINVAL;
1162 	if (!list_empty(&group->memory_blocks))
1163 		return -EBUSY;
1164 	xa_erase(&memory_groups, mgid);
1165 	kfree(group);
1166 	return 0;
1167 }
1168 EXPORT_SYMBOL_GPL(memory_group_unregister);
1169 
1170 /*
1171  * This is an internal helper only to be used in core memory hotplug code to
1172  * lookup a memory group. We don't care about locking, as we don't expect a
1173  * memory group to get unregistered while adding memory to it -- because
1174  * the group and the memory is managed by the same driver.
1175  */
1176 struct memory_group *memory_group_find_by_id(int mgid)
1177 {
1178 	return xa_load(&memory_groups, mgid);
1179 }
1180 
1181 /*
1182  * This is an internal helper only to be used in core memory hotplug code to
1183  * walk all dynamic memory groups excluding a given memory group, either
1184  * belonging to a specific node, or belonging to any node.
1185  */
1186 int walk_dynamic_memory_groups(int nid, walk_memory_groups_func_t func,
1187 			       struct memory_group *excluded, void *arg)
1188 {
1189 	struct memory_group *group;
1190 	unsigned long index;
1191 	int ret = 0;
1192 
1193 	xa_for_each_marked(&memory_groups, index, group,
1194 			   MEMORY_GROUP_MARK_DYNAMIC) {
1195 		if (group == excluded)
1196 			continue;
1197 #ifdef CONFIG_NUMA
1198 		if (nid != NUMA_NO_NODE && group->nid != nid)
1199 			continue;
1200 #endif /* CONFIG_NUMA */
1201 		ret = func(group, arg);
1202 		if (ret)
1203 			break;
1204 	}
1205 	return ret;
1206 }
1207 
1208 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
1209 void memblk_nr_poison_inc(unsigned long pfn)
1210 {
1211 	const unsigned long block_id = pfn_to_block_id(pfn);
1212 	struct memory_block *mem = find_memory_block_by_id(block_id);
1213 
1214 	if (mem)
1215 		atomic_long_inc(&mem->nr_hwpoison);
1216 }
1217 
1218 void memblk_nr_poison_sub(unsigned long pfn, long i)
1219 {
1220 	const unsigned long block_id = pfn_to_block_id(pfn);
1221 	struct memory_block *mem = find_memory_block_by_id(block_id);
1222 
1223 	if (mem)
1224 		atomic_long_sub(i, &mem->nr_hwpoison);
1225 }
1226 
1227 static unsigned long memblk_nr_poison(struct memory_block *mem)
1228 {
1229 	return atomic_long_read(&mem->nr_hwpoison);
1230 }
1231 #endif
1232