xref: /openbmc/linux/drivers/base/memory.c (revision f15cbe6f1a4b4d9df59142fc8e4abb973302cf44)
1 /*
2  * drivers/base/memory.c - basic Memory class support
3  *
4  * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
5  *            Dave Hansen <haveblue@us.ibm.com>
6  *
7  * This file provides the necessary infrastructure to represent
8  * a SPARSEMEM-memory-model system's physical memory in /sysfs.
9  * All arch-independent code that assumes MEMORY_HOTPLUG requires
10  * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
11  */
12 
13 #include <linux/sysdev.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/topology.h>
17 #include <linux/capability.h>
18 #include <linux/device.h>
19 #include <linux/memory.h>
20 #include <linux/kobject.h>
21 #include <linux/memory_hotplug.h>
22 #include <linux/mm.h>
23 #include <linux/mutex.h>
24 #include <asm/atomic.h>
25 #include <asm/uaccess.h>
26 
27 #define MEMORY_CLASS_NAME	"memory"
28 
29 static struct sysdev_class memory_sysdev_class = {
30 	.name = MEMORY_CLASS_NAME,
31 };
32 
33 static const char *memory_uevent_name(struct kset *kset, struct kobject *kobj)
34 {
35 	return MEMORY_CLASS_NAME;
36 }
37 
38 static int memory_uevent(struct kset *kset, struct kobject *obj, struct kobj_uevent_env *env)
39 {
40 	int retval = 0;
41 
42 	return retval;
43 }
44 
45 static struct kset_uevent_ops memory_uevent_ops = {
46 	.name		= memory_uevent_name,
47 	.uevent		= memory_uevent,
48 };
49 
50 static BLOCKING_NOTIFIER_HEAD(memory_chain);
51 
52 int register_memory_notifier(struct notifier_block *nb)
53 {
54         return blocking_notifier_chain_register(&memory_chain, nb);
55 }
56 EXPORT_SYMBOL(register_memory_notifier);
57 
58 void unregister_memory_notifier(struct notifier_block *nb)
59 {
60         blocking_notifier_chain_unregister(&memory_chain, nb);
61 }
62 EXPORT_SYMBOL(unregister_memory_notifier);
63 
64 /*
65  * register_memory - Setup a sysfs device for a memory block
66  */
67 static
68 int register_memory(struct memory_block *memory, struct mem_section *section)
69 {
70 	int error;
71 
72 	memory->sysdev.cls = &memory_sysdev_class;
73 	memory->sysdev.id = __section_nr(section);
74 
75 	error = sysdev_register(&memory->sysdev);
76 	return error;
77 }
78 
79 static void
80 unregister_memory(struct memory_block *memory, struct mem_section *section)
81 {
82 	BUG_ON(memory->sysdev.cls != &memory_sysdev_class);
83 	BUG_ON(memory->sysdev.id != __section_nr(section));
84 
85 	/* drop the ref. we got in remove_memory_block() */
86 	kobject_put(&memory->sysdev.kobj);
87 	sysdev_unregister(&memory->sysdev);
88 }
89 
90 /*
91  * use this as the physical section index that this memsection
92  * uses.
93  */
94 
95 static ssize_t show_mem_phys_index(struct sys_device *dev,
96 			struct sysdev_attribute *attr, char *buf)
97 {
98 	struct memory_block *mem =
99 		container_of(dev, struct memory_block, sysdev);
100 	return sprintf(buf, "%08lx\n", mem->phys_index);
101 }
102 
103 /*
104  * Show whether the section of memory is likely to be hot-removable
105  */
106 static ssize_t show_mem_removable(struct sys_device *dev,
107 			struct sysdev_attribute *attr, char *buf)
108 {
109 	unsigned long start_pfn;
110 	int ret;
111 	struct memory_block *mem =
112 		container_of(dev, struct memory_block, sysdev);
113 
114 	start_pfn = section_nr_to_pfn(mem->phys_index);
115 	ret = is_mem_section_removable(start_pfn, PAGES_PER_SECTION);
116 	return sprintf(buf, "%d\n", ret);
117 }
118 
119 /*
120  * online, offline, going offline, etc.
121  */
122 static ssize_t show_mem_state(struct sys_device *dev,
123 			struct sysdev_attribute *attr, char *buf)
124 {
125 	struct memory_block *mem =
126 		container_of(dev, struct memory_block, sysdev);
127 	ssize_t len = 0;
128 
129 	/*
130 	 * We can probably put these states in a nice little array
131 	 * so that they're not open-coded
132 	 */
133 	switch (mem->state) {
134 		case MEM_ONLINE:
135 			len = sprintf(buf, "online\n");
136 			break;
137 		case MEM_OFFLINE:
138 			len = sprintf(buf, "offline\n");
139 			break;
140 		case MEM_GOING_OFFLINE:
141 			len = sprintf(buf, "going-offline\n");
142 			break;
143 		default:
144 			len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
145 					mem->state);
146 			WARN_ON(1);
147 			break;
148 	}
149 
150 	return len;
151 }
152 
153 int memory_notify(unsigned long val, void *v)
154 {
155 	return blocking_notifier_call_chain(&memory_chain, val, v);
156 }
157 
158 /*
159  * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
160  * OK to have direct references to sparsemem variables in here.
161  */
162 static int
163 memory_block_action(struct memory_block *mem, unsigned long action)
164 {
165 	int i;
166 	unsigned long psection;
167 	unsigned long start_pfn, start_paddr;
168 	struct page *first_page;
169 	int ret;
170 	int old_state = mem->state;
171 
172 	psection = mem->phys_index;
173 	first_page = pfn_to_page(psection << PFN_SECTION_SHIFT);
174 
175 	/*
176 	 * The probe routines leave the pages reserved, just
177 	 * as the bootmem code does.  Make sure they're still
178 	 * that way.
179 	 */
180 	if (action == MEM_ONLINE) {
181 		for (i = 0; i < PAGES_PER_SECTION; i++) {
182 			if (PageReserved(first_page+i))
183 				continue;
184 
185 			printk(KERN_WARNING "section number %ld page number %d "
186 				"not reserved, was it already online? \n",
187 				psection, i);
188 			return -EBUSY;
189 		}
190 	}
191 
192 	switch (action) {
193 		case MEM_ONLINE:
194 			start_pfn = page_to_pfn(first_page);
195 			ret = online_pages(start_pfn, PAGES_PER_SECTION);
196 			break;
197 		case MEM_OFFLINE:
198 			mem->state = MEM_GOING_OFFLINE;
199 			start_paddr = page_to_pfn(first_page) << PAGE_SHIFT;
200 			ret = remove_memory(start_paddr,
201 					    PAGES_PER_SECTION << PAGE_SHIFT);
202 			if (ret) {
203 				mem->state = old_state;
204 				break;
205 			}
206 			break;
207 		default:
208 			WARN(1, KERN_WARNING "%s(%p, %ld) unknown action: %ld\n",
209 					__func__, mem, action, action);
210 			ret = -EINVAL;
211 	}
212 
213 	return ret;
214 }
215 
216 static int memory_block_change_state(struct memory_block *mem,
217 		unsigned long to_state, unsigned long from_state_req)
218 {
219 	int ret = 0;
220 	mutex_lock(&mem->state_mutex);
221 
222 	if (mem->state != from_state_req) {
223 		ret = -EINVAL;
224 		goto out;
225 	}
226 
227 	ret = memory_block_action(mem, to_state);
228 	if (!ret)
229 		mem->state = to_state;
230 
231 out:
232 	mutex_unlock(&mem->state_mutex);
233 	return ret;
234 }
235 
236 static ssize_t
237 store_mem_state(struct sys_device *dev,
238 		struct sysdev_attribute *attr, const char *buf, size_t count)
239 {
240 	struct memory_block *mem;
241 	unsigned int phys_section_nr;
242 	int ret = -EINVAL;
243 
244 	mem = container_of(dev, struct memory_block, sysdev);
245 	phys_section_nr = mem->phys_index;
246 
247 	if (!present_section_nr(phys_section_nr))
248 		goto out;
249 
250 	if (!strncmp(buf, "online", min((int)count, 6)))
251 		ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
252 	else if(!strncmp(buf, "offline", min((int)count, 7)))
253 		ret = memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
254 out:
255 	if (ret)
256 		return ret;
257 	return count;
258 }
259 
260 /*
261  * phys_device is a bad name for this.  What I really want
262  * is a way to differentiate between memory ranges that
263  * are part of physical devices that constitute
264  * a complete removable unit or fru.
265  * i.e. do these ranges belong to the same physical device,
266  * s.t. if I offline all of these sections I can then
267  * remove the physical device?
268  */
269 static ssize_t show_phys_device(struct sys_device *dev,
270 				struct sysdev_attribute *attr, char *buf)
271 {
272 	struct memory_block *mem =
273 		container_of(dev, struct memory_block, sysdev);
274 	return sprintf(buf, "%d\n", mem->phys_device);
275 }
276 
277 static SYSDEV_ATTR(phys_index, 0444, show_mem_phys_index, NULL);
278 static SYSDEV_ATTR(state, 0644, show_mem_state, store_mem_state);
279 static SYSDEV_ATTR(phys_device, 0444, show_phys_device, NULL);
280 static SYSDEV_ATTR(removable, 0444, show_mem_removable, NULL);
281 
282 #define mem_create_simple_file(mem, attr_name)	\
283 	sysdev_create_file(&mem->sysdev, &attr_##attr_name)
284 #define mem_remove_simple_file(mem, attr_name)	\
285 	sysdev_remove_file(&mem->sysdev, &attr_##attr_name)
286 
287 /*
288  * Block size attribute stuff
289  */
290 static ssize_t
291 print_block_size(struct class *class, char *buf)
292 {
293 	return sprintf(buf, "%lx\n", (unsigned long)PAGES_PER_SECTION * PAGE_SIZE);
294 }
295 
296 static CLASS_ATTR(block_size_bytes, 0444, print_block_size, NULL);
297 
298 static int block_size_init(void)
299 {
300 	return sysfs_create_file(&memory_sysdev_class.kset.kobj,
301 				&class_attr_block_size_bytes.attr);
302 }
303 
304 /*
305  * Some architectures will have custom drivers to do this, and
306  * will not need to do it from userspace.  The fake hot-add code
307  * as well as ppc64 will do all of their discovery in userspace
308  * and will require this interface.
309  */
310 #ifdef CONFIG_ARCH_MEMORY_PROBE
311 static ssize_t
312 memory_probe_store(struct class *class, const char *buf, size_t count)
313 {
314 	u64 phys_addr;
315 	int nid;
316 	int ret;
317 
318 	phys_addr = simple_strtoull(buf, NULL, 0);
319 
320 	nid = memory_add_physaddr_to_nid(phys_addr);
321 	ret = add_memory(nid, phys_addr, PAGES_PER_SECTION << PAGE_SHIFT);
322 
323 	if (ret)
324 		count = ret;
325 
326 	return count;
327 }
328 static CLASS_ATTR(probe, 0700, NULL, memory_probe_store);
329 
330 static int memory_probe_init(void)
331 {
332 	return sysfs_create_file(&memory_sysdev_class.kset.kobj,
333 				&class_attr_probe.attr);
334 }
335 #else
336 static inline int memory_probe_init(void)
337 {
338 	return 0;
339 }
340 #endif
341 
342 /*
343  * Note that phys_device is optional.  It is here to allow for
344  * differentiation between which *physical* devices each
345  * section belongs to...
346  */
347 
348 static int add_memory_block(unsigned long node_id, struct mem_section *section,
349 		     unsigned long state, int phys_device)
350 {
351 	struct memory_block *mem = kzalloc(sizeof(*mem), GFP_KERNEL);
352 	int ret = 0;
353 
354 	if (!mem)
355 		return -ENOMEM;
356 
357 	mem->phys_index = __section_nr(section);
358 	mem->state = state;
359 	mutex_init(&mem->state_mutex);
360 	mem->phys_device = phys_device;
361 
362 	ret = register_memory(mem, section);
363 	if (!ret)
364 		ret = mem_create_simple_file(mem, phys_index);
365 	if (!ret)
366 		ret = mem_create_simple_file(mem, state);
367 	if (!ret)
368 		ret = mem_create_simple_file(mem, phys_device);
369 	if (!ret)
370 		ret = mem_create_simple_file(mem, removable);
371 
372 	return ret;
373 }
374 
375 /*
376  * For now, we have a linear search to go find the appropriate
377  * memory_block corresponding to a particular phys_index. If
378  * this gets to be a real problem, we can always use a radix
379  * tree or something here.
380  *
381  * This could be made generic for all sysdev classes.
382  */
383 static struct memory_block *find_memory_block(struct mem_section *section)
384 {
385 	struct kobject *kobj;
386 	struct sys_device *sysdev;
387 	struct memory_block *mem;
388 	char name[sizeof(MEMORY_CLASS_NAME) + 9 + 1];
389 
390 	/*
391 	 * This only works because we know that section == sysdev->id
392 	 * slightly redundant with sysdev_register()
393 	 */
394 	sprintf(&name[0], "%s%d", MEMORY_CLASS_NAME, __section_nr(section));
395 
396 	kobj = kset_find_obj(&memory_sysdev_class.kset, name);
397 	if (!kobj)
398 		return NULL;
399 
400 	sysdev = container_of(kobj, struct sys_device, kobj);
401 	mem = container_of(sysdev, struct memory_block, sysdev);
402 
403 	return mem;
404 }
405 
406 int remove_memory_block(unsigned long node_id, struct mem_section *section,
407 		int phys_device)
408 {
409 	struct memory_block *mem;
410 
411 	mem = find_memory_block(section);
412 	mem_remove_simple_file(mem, phys_index);
413 	mem_remove_simple_file(mem, state);
414 	mem_remove_simple_file(mem, phys_device);
415 	mem_remove_simple_file(mem, removable);
416 	unregister_memory(mem, section);
417 
418 	return 0;
419 }
420 
421 /*
422  * need an interface for the VM to add new memory regions,
423  * but without onlining it.
424  */
425 int register_new_memory(struct mem_section *section)
426 {
427 	return add_memory_block(0, section, MEM_OFFLINE, 0);
428 }
429 
430 int unregister_memory_section(struct mem_section *section)
431 {
432 	if (!present_section(section))
433 		return -EINVAL;
434 
435 	return remove_memory_block(0, section, 0);
436 }
437 
438 /*
439  * Initialize the sysfs support for memory devices...
440  */
441 int __init memory_dev_init(void)
442 {
443 	unsigned int i;
444 	int ret;
445 	int err;
446 
447 	memory_sysdev_class.kset.uevent_ops = &memory_uevent_ops;
448 	ret = sysdev_class_register(&memory_sysdev_class);
449 	if (ret)
450 		goto out;
451 
452 	/*
453 	 * Create entries for memory sections that were found
454 	 * during boot and have been initialized
455 	 */
456 	for (i = 0; i < NR_MEM_SECTIONS; i++) {
457 		if (!present_section_nr(i))
458 			continue;
459 		err = add_memory_block(0, __nr_to_section(i), MEM_ONLINE, 0);
460 		if (!ret)
461 			ret = err;
462 	}
463 
464 	err = memory_probe_init();
465 	if (!ret)
466 		ret = err;
467 	err = block_size_init();
468 	if (!ret)
469 		ret = err;
470 out:
471 	if (ret)
472 		printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
473 	return ret;
474 }
475