xref: /openbmc/linux/drivers/base/memory.c (revision e8254a8e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory subsystem support
4  *
5  * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
6  *            Dave Hansen <haveblue@us.ibm.com>
7  *
8  * This file provides the necessary infrastructure to represent
9  * a SPARSEMEM-memory-model system's physical memory in /sysfs.
10  * All arch-independent code that assumes MEMORY_HOTPLUG requires
11  * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
12  */
13 
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/topology.h>
17 #include <linux/capability.h>
18 #include <linux/device.h>
19 #include <linux/memory.h>
20 #include <linux/memory_hotplug.h>
21 #include <linux/mm.h>
22 #include <linux/stat.h>
23 #include <linux/slab.h>
24 #include <linux/xarray.h>
25 
26 #include <linux/atomic.h>
27 #include <linux/uaccess.h>
28 
29 #define MEMORY_CLASS_NAME	"memory"
30 
31 static const char *const online_type_to_str[] = {
32 	[MMOP_OFFLINE] = "offline",
33 	[MMOP_ONLINE] = "online",
34 	[MMOP_ONLINE_KERNEL] = "online_kernel",
35 	[MMOP_ONLINE_MOVABLE] = "online_movable",
36 };
37 
38 int mhp_online_type_from_str(const char *str)
39 {
40 	int i;
41 
42 	for (i = 0; i < ARRAY_SIZE(online_type_to_str); i++) {
43 		if (sysfs_streq(str, online_type_to_str[i]))
44 			return i;
45 	}
46 	return -EINVAL;
47 }
48 
49 #define to_memory_block(dev) container_of(dev, struct memory_block, dev)
50 
51 static int sections_per_block;
52 
53 static inline unsigned long memory_block_id(unsigned long section_nr)
54 {
55 	return section_nr / sections_per_block;
56 }
57 
58 static inline unsigned long pfn_to_block_id(unsigned long pfn)
59 {
60 	return memory_block_id(pfn_to_section_nr(pfn));
61 }
62 
63 static inline unsigned long phys_to_block_id(unsigned long phys)
64 {
65 	return pfn_to_block_id(PFN_DOWN(phys));
66 }
67 
68 static int memory_subsys_online(struct device *dev);
69 static int memory_subsys_offline(struct device *dev);
70 
71 static struct bus_type memory_subsys = {
72 	.name = MEMORY_CLASS_NAME,
73 	.dev_name = MEMORY_CLASS_NAME,
74 	.online = memory_subsys_online,
75 	.offline = memory_subsys_offline,
76 };
77 
78 /*
79  * Memory blocks are cached in a local radix tree to avoid
80  * a costly linear search for the corresponding device on
81  * the subsystem bus.
82  */
83 static DEFINE_XARRAY(memory_blocks);
84 
85 /*
86  * Memory groups, indexed by memory group id (mgid).
87  */
88 static DEFINE_XARRAY_FLAGS(memory_groups, XA_FLAGS_ALLOC);
89 #define MEMORY_GROUP_MARK_DYNAMIC	XA_MARK_1
90 
91 static BLOCKING_NOTIFIER_HEAD(memory_chain);
92 
93 int register_memory_notifier(struct notifier_block *nb)
94 {
95 	return blocking_notifier_chain_register(&memory_chain, nb);
96 }
97 EXPORT_SYMBOL(register_memory_notifier);
98 
99 void unregister_memory_notifier(struct notifier_block *nb)
100 {
101 	blocking_notifier_chain_unregister(&memory_chain, nb);
102 }
103 EXPORT_SYMBOL(unregister_memory_notifier);
104 
105 static void memory_block_release(struct device *dev)
106 {
107 	struct memory_block *mem = to_memory_block(dev);
108 
109 	kfree(mem);
110 }
111 
112 unsigned long __weak memory_block_size_bytes(void)
113 {
114 	return MIN_MEMORY_BLOCK_SIZE;
115 }
116 EXPORT_SYMBOL_GPL(memory_block_size_bytes);
117 
118 /*
119  * Show the first physical section index (number) of this memory block.
120  */
121 static ssize_t phys_index_show(struct device *dev,
122 			       struct device_attribute *attr, char *buf)
123 {
124 	struct memory_block *mem = to_memory_block(dev);
125 	unsigned long phys_index;
126 
127 	phys_index = mem->start_section_nr / sections_per_block;
128 
129 	return sysfs_emit(buf, "%08lx\n", phys_index);
130 }
131 
132 /*
133  * Legacy interface that we cannot remove. Always indicate "removable"
134  * with CONFIG_MEMORY_HOTREMOVE - bad heuristic.
135  */
136 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
137 			      char *buf)
138 {
139 	return sysfs_emit(buf, "%d\n", (int)IS_ENABLED(CONFIG_MEMORY_HOTREMOVE));
140 }
141 
142 /*
143  * online, offline, going offline, etc.
144  */
145 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
146 			  char *buf)
147 {
148 	struct memory_block *mem = to_memory_block(dev);
149 	const char *output;
150 
151 	/*
152 	 * We can probably put these states in a nice little array
153 	 * so that they're not open-coded
154 	 */
155 	switch (mem->state) {
156 	case MEM_ONLINE:
157 		output = "online";
158 		break;
159 	case MEM_OFFLINE:
160 		output = "offline";
161 		break;
162 	case MEM_GOING_OFFLINE:
163 		output = "going-offline";
164 		break;
165 	default:
166 		WARN_ON(1);
167 		return sysfs_emit(buf, "ERROR-UNKNOWN-%ld\n", mem->state);
168 	}
169 
170 	return sysfs_emit(buf, "%s\n", output);
171 }
172 
173 int memory_notify(unsigned long val, void *v)
174 {
175 	return blocking_notifier_call_chain(&memory_chain, val, v);
176 }
177 
178 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
179 static unsigned long memblk_nr_poison(struct memory_block *mem);
180 #else
181 static inline unsigned long memblk_nr_poison(struct memory_block *mem)
182 {
183 	return 0;
184 }
185 #endif
186 
187 static int memory_block_online(struct memory_block *mem)
188 {
189 	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
190 	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
191 	unsigned long nr_vmemmap_pages = mem->nr_vmemmap_pages;
192 	struct zone *zone;
193 	int ret;
194 
195 	if (memblk_nr_poison(mem))
196 		return -EHWPOISON;
197 
198 	zone = zone_for_pfn_range(mem->online_type, mem->nid, mem->group,
199 				  start_pfn, nr_pages);
200 
201 	/*
202 	 * Although vmemmap pages have a different lifecycle than the pages
203 	 * they describe (they remain until the memory is unplugged), doing
204 	 * their initialization and accounting at memory onlining/offlining
205 	 * stage helps to keep accounting easier to follow - e.g vmemmaps
206 	 * belong to the same zone as the memory they backed.
207 	 */
208 	if (nr_vmemmap_pages) {
209 		ret = mhp_init_memmap_on_memory(start_pfn, nr_vmemmap_pages, zone);
210 		if (ret)
211 			return ret;
212 	}
213 
214 	ret = online_pages(start_pfn + nr_vmemmap_pages,
215 			   nr_pages - nr_vmemmap_pages, zone, mem->group);
216 	if (ret) {
217 		if (nr_vmemmap_pages)
218 			mhp_deinit_memmap_on_memory(start_pfn, nr_vmemmap_pages);
219 		return ret;
220 	}
221 
222 	/*
223 	 * Account once onlining succeeded. If the zone was unpopulated, it is
224 	 * now already properly populated.
225 	 */
226 	if (nr_vmemmap_pages)
227 		adjust_present_page_count(pfn_to_page(start_pfn), mem->group,
228 					  nr_vmemmap_pages);
229 
230 	mem->zone = zone;
231 	return ret;
232 }
233 
234 static int memory_block_offline(struct memory_block *mem)
235 {
236 	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
237 	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
238 	unsigned long nr_vmemmap_pages = mem->nr_vmemmap_pages;
239 	int ret;
240 
241 	if (!mem->zone)
242 		return -EINVAL;
243 
244 	/*
245 	 * Unaccount before offlining, such that unpopulated zone and kthreads
246 	 * can properly be torn down in offline_pages().
247 	 */
248 	if (nr_vmemmap_pages)
249 		adjust_present_page_count(pfn_to_page(start_pfn), mem->group,
250 					  -nr_vmemmap_pages);
251 
252 	ret = offline_pages(start_pfn + nr_vmemmap_pages,
253 			    nr_pages - nr_vmemmap_pages, mem->zone, mem->group);
254 	if (ret) {
255 		/* offline_pages() failed. Account back. */
256 		if (nr_vmemmap_pages)
257 			adjust_present_page_count(pfn_to_page(start_pfn),
258 						  mem->group, nr_vmemmap_pages);
259 		return ret;
260 	}
261 
262 	if (nr_vmemmap_pages)
263 		mhp_deinit_memmap_on_memory(start_pfn, nr_vmemmap_pages);
264 
265 	mem->zone = NULL;
266 	return ret;
267 }
268 
269 /*
270  * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
271  * OK to have direct references to sparsemem variables in here.
272  */
273 static int
274 memory_block_action(struct memory_block *mem, unsigned long action)
275 {
276 	int ret;
277 
278 	switch (action) {
279 	case MEM_ONLINE:
280 		ret = memory_block_online(mem);
281 		break;
282 	case MEM_OFFLINE:
283 		ret = memory_block_offline(mem);
284 		break;
285 	default:
286 		WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
287 		     "%ld\n", __func__, mem->start_section_nr, action, action);
288 		ret = -EINVAL;
289 	}
290 
291 	return ret;
292 }
293 
294 static int memory_block_change_state(struct memory_block *mem,
295 		unsigned long to_state, unsigned long from_state_req)
296 {
297 	int ret = 0;
298 
299 	if (mem->state != from_state_req)
300 		return -EINVAL;
301 
302 	if (to_state == MEM_OFFLINE)
303 		mem->state = MEM_GOING_OFFLINE;
304 
305 	ret = memory_block_action(mem, to_state);
306 	mem->state = ret ? from_state_req : to_state;
307 
308 	return ret;
309 }
310 
311 /* The device lock serializes operations on memory_subsys_[online|offline] */
312 static int memory_subsys_online(struct device *dev)
313 {
314 	struct memory_block *mem = to_memory_block(dev);
315 	int ret;
316 
317 	if (mem->state == MEM_ONLINE)
318 		return 0;
319 
320 	/*
321 	 * When called via device_online() without configuring the online_type,
322 	 * we want to default to MMOP_ONLINE.
323 	 */
324 	if (mem->online_type == MMOP_OFFLINE)
325 		mem->online_type = MMOP_ONLINE;
326 
327 	ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
328 	mem->online_type = MMOP_OFFLINE;
329 
330 	return ret;
331 }
332 
333 static int memory_subsys_offline(struct device *dev)
334 {
335 	struct memory_block *mem = to_memory_block(dev);
336 
337 	if (mem->state == MEM_OFFLINE)
338 		return 0;
339 
340 	return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
341 }
342 
343 static ssize_t state_store(struct device *dev, struct device_attribute *attr,
344 			   const char *buf, size_t count)
345 {
346 	const int online_type = mhp_online_type_from_str(buf);
347 	struct memory_block *mem = to_memory_block(dev);
348 	int ret;
349 
350 	if (online_type < 0)
351 		return -EINVAL;
352 
353 	ret = lock_device_hotplug_sysfs();
354 	if (ret)
355 		return ret;
356 
357 	switch (online_type) {
358 	case MMOP_ONLINE_KERNEL:
359 	case MMOP_ONLINE_MOVABLE:
360 	case MMOP_ONLINE:
361 		/* mem->online_type is protected by device_hotplug_lock */
362 		mem->online_type = online_type;
363 		ret = device_online(&mem->dev);
364 		break;
365 	case MMOP_OFFLINE:
366 		ret = device_offline(&mem->dev);
367 		break;
368 	default:
369 		ret = -EINVAL; /* should never happen */
370 	}
371 
372 	unlock_device_hotplug();
373 
374 	if (ret < 0)
375 		return ret;
376 	if (ret)
377 		return -EINVAL;
378 
379 	return count;
380 }
381 
382 /*
383  * Legacy interface that we cannot remove: s390x exposes the storage increment
384  * covered by a memory block, allowing for identifying which memory blocks
385  * comprise a storage increment. Since a memory block spans complete
386  * storage increments nowadays, this interface is basically unused. Other
387  * archs never exposed != 0.
388  */
389 static ssize_t phys_device_show(struct device *dev,
390 				struct device_attribute *attr, char *buf)
391 {
392 	struct memory_block *mem = to_memory_block(dev);
393 	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
394 
395 	return sysfs_emit(buf, "%d\n",
396 			  arch_get_memory_phys_device(start_pfn));
397 }
398 
399 #ifdef CONFIG_MEMORY_HOTREMOVE
400 static int print_allowed_zone(char *buf, int len, int nid,
401 			      struct memory_group *group,
402 			      unsigned long start_pfn, unsigned long nr_pages,
403 			      int online_type, struct zone *default_zone)
404 {
405 	struct zone *zone;
406 
407 	zone = zone_for_pfn_range(online_type, nid, group, start_pfn, nr_pages);
408 	if (zone == default_zone)
409 		return 0;
410 
411 	return sysfs_emit_at(buf, len, " %s", zone->name);
412 }
413 
414 static ssize_t valid_zones_show(struct device *dev,
415 				struct device_attribute *attr, char *buf)
416 {
417 	struct memory_block *mem = to_memory_block(dev);
418 	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
419 	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
420 	struct memory_group *group = mem->group;
421 	struct zone *default_zone;
422 	int nid = mem->nid;
423 	int len = 0;
424 
425 	/*
426 	 * Check the existing zone. Make sure that we do that only on the
427 	 * online nodes otherwise the page_zone is not reliable
428 	 */
429 	if (mem->state == MEM_ONLINE) {
430 		/*
431 		 * If !mem->zone, the memory block spans multiple zones and
432 		 * cannot get offlined.
433 		 */
434 		default_zone = mem->zone;
435 		if (!default_zone)
436 			return sysfs_emit(buf, "%s\n", "none");
437 		len += sysfs_emit_at(buf, len, "%s", default_zone->name);
438 		goto out;
439 	}
440 
441 	default_zone = zone_for_pfn_range(MMOP_ONLINE, nid, group,
442 					  start_pfn, nr_pages);
443 
444 	len += sysfs_emit_at(buf, len, "%s", default_zone->name);
445 	len += print_allowed_zone(buf, len, nid, group, start_pfn, nr_pages,
446 				  MMOP_ONLINE_KERNEL, default_zone);
447 	len += print_allowed_zone(buf, len, nid, group, start_pfn, nr_pages,
448 				  MMOP_ONLINE_MOVABLE, default_zone);
449 out:
450 	len += sysfs_emit_at(buf, len, "\n");
451 	return len;
452 }
453 static DEVICE_ATTR_RO(valid_zones);
454 #endif
455 
456 static DEVICE_ATTR_RO(phys_index);
457 static DEVICE_ATTR_RW(state);
458 static DEVICE_ATTR_RO(phys_device);
459 static DEVICE_ATTR_RO(removable);
460 
461 /*
462  * Show the memory block size (shared by all memory blocks).
463  */
464 static ssize_t block_size_bytes_show(struct device *dev,
465 				     struct device_attribute *attr, char *buf)
466 {
467 	return sysfs_emit(buf, "%lx\n", memory_block_size_bytes());
468 }
469 
470 static DEVICE_ATTR_RO(block_size_bytes);
471 
472 /*
473  * Memory auto online policy.
474  */
475 
476 static ssize_t auto_online_blocks_show(struct device *dev,
477 				       struct device_attribute *attr, char *buf)
478 {
479 	return sysfs_emit(buf, "%s\n",
480 			  online_type_to_str[mhp_default_online_type]);
481 }
482 
483 static ssize_t auto_online_blocks_store(struct device *dev,
484 					struct device_attribute *attr,
485 					const char *buf, size_t count)
486 {
487 	const int online_type = mhp_online_type_from_str(buf);
488 
489 	if (online_type < 0)
490 		return -EINVAL;
491 
492 	mhp_default_online_type = online_type;
493 	return count;
494 }
495 
496 static DEVICE_ATTR_RW(auto_online_blocks);
497 
498 /*
499  * Some architectures will have custom drivers to do this, and
500  * will not need to do it from userspace.  The fake hot-add code
501  * as well as ppc64 will do all of their discovery in userspace
502  * and will require this interface.
503  */
504 #ifdef CONFIG_ARCH_MEMORY_PROBE
505 static ssize_t probe_store(struct device *dev, struct device_attribute *attr,
506 			   const char *buf, size_t count)
507 {
508 	u64 phys_addr;
509 	int nid, ret;
510 	unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
511 
512 	ret = kstrtoull(buf, 0, &phys_addr);
513 	if (ret)
514 		return ret;
515 
516 	if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
517 		return -EINVAL;
518 
519 	ret = lock_device_hotplug_sysfs();
520 	if (ret)
521 		return ret;
522 
523 	nid = memory_add_physaddr_to_nid(phys_addr);
524 	ret = __add_memory(nid, phys_addr,
525 			   MIN_MEMORY_BLOCK_SIZE * sections_per_block,
526 			   MHP_NONE);
527 
528 	if (ret)
529 		goto out;
530 
531 	ret = count;
532 out:
533 	unlock_device_hotplug();
534 	return ret;
535 }
536 
537 static DEVICE_ATTR_WO(probe);
538 #endif
539 
540 #ifdef CONFIG_MEMORY_FAILURE
541 /*
542  * Support for offlining pages of memory
543  */
544 
545 /* Soft offline a page */
546 static ssize_t soft_offline_page_store(struct device *dev,
547 				       struct device_attribute *attr,
548 				       const char *buf, size_t count)
549 {
550 	int ret;
551 	u64 pfn;
552 	if (!capable(CAP_SYS_ADMIN))
553 		return -EPERM;
554 	if (kstrtoull(buf, 0, &pfn) < 0)
555 		return -EINVAL;
556 	pfn >>= PAGE_SHIFT;
557 	ret = soft_offline_page(pfn, 0);
558 	return ret == 0 ? count : ret;
559 }
560 
561 /* Forcibly offline a page, including killing processes. */
562 static ssize_t hard_offline_page_store(struct device *dev,
563 				       struct device_attribute *attr,
564 				       const char *buf, size_t count)
565 {
566 	int ret;
567 	u64 pfn;
568 	if (!capable(CAP_SYS_ADMIN))
569 		return -EPERM;
570 	if (kstrtoull(buf, 0, &pfn) < 0)
571 		return -EINVAL;
572 	pfn >>= PAGE_SHIFT;
573 	ret = memory_failure(pfn, MF_SW_SIMULATED);
574 	if (ret == -EOPNOTSUPP)
575 		ret = 0;
576 	return ret ? ret : count;
577 }
578 
579 static DEVICE_ATTR_WO(soft_offline_page);
580 static DEVICE_ATTR_WO(hard_offline_page);
581 #endif
582 
583 /* See phys_device_show(). */
584 int __weak arch_get_memory_phys_device(unsigned long start_pfn)
585 {
586 	return 0;
587 }
588 
589 /*
590  * A reference for the returned memory block device is acquired.
591  *
592  * Called under device_hotplug_lock.
593  */
594 static struct memory_block *find_memory_block_by_id(unsigned long block_id)
595 {
596 	struct memory_block *mem;
597 
598 	mem = xa_load(&memory_blocks, block_id);
599 	if (mem)
600 		get_device(&mem->dev);
601 	return mem;
602 }
603 
604 /*
605  * Called under device_hotplug_lock.
606  */
607 struct memory_block *find_memory_block(unsigned long section_nr)
608 {
609 	unsigned long block_id = memory_block_id(section_nr);
610 
611 	return find_memory_block_by_id(block_id);
612 }
613 
614 static struct attribute *memory_memblk_attrs[] = {
615 	&dev_attr_phys_index.attr,
616 	&dev_attr_state.attr,
617 	&dev_attr_phys_device.attr,
618 	&dev_attr_removable.attr,
619 #ifdef CONFIG_MEMORY_HOTREMOVE
620 	&dev_attr_valid_zones.attr,
621 #endif
622 	NULL
623 };
624 
625 static const struct attribute_group memory_memblk_attr_group = {
626 	.attrs = memory_memblk_attrs,
627 };
628 
629 static const struct attribute_group *memory_memblk_attr_groups[] = {
630 	&memory_memblk_attr_group,
631 	NULL,
632 };
633 
634 static int __add_memory_block(struct memory_block *memory)
635 {
636 	int ret;
637 
638 	memory->dev.bus = &memory_subsys;
639 	memory->dev.id = memory->start_section_nr / sections_per_block;
640 	memory->dev.release = memory_block_release;
641 	memory->dev.groups = memory_memblk_attr_groups;
642 	memory->dev.offline = memory->state == MEM_OFFLINE;
643 
644 	ret = device_register(&memory->dev);
645 	if (ret) {
646 		put_device(&memory->dev);
647 		return ret;
648 	}
649 	ret = xa_err(xa_store(&memory_blocks, memory->dev.id, memory,
650 			      GFP_KERNEL));
651 	if (ret)
652 		device_unregister(&memory->dev);
653 
654 	return ret;
655 }
656 
657 static struct zone *early_node_zone_for_memory_block(struct memory_block *mem,
658 						     int nid)
659 {
660 	const unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
661 	const unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
662 	struct zone *zone, *matching_zone = NULL;
663 	pg_data_t *pgdat = NODE_DATA(nid);
664 	int i;
665 
666 	/*
667 	 * This logic only works for early memory, when the applicable zones
668 	 * already span the memory block. We don't expect overlapping zones on
669 	 * a single node for early memory. So if we're told that some PFNs
670 	 * of a node fall into this memory block, we can assume that all node
671 	 * zones that intersect with the memory block are actually applicable.
672 	 * No need to look at the memmap.
673 	 */
674 	for (i = 0; i < MAX_NR_ZONES; i++) {
675 		zone = pgdat->node_zones + i;
676 		if (!populated_zone(zone))
677 			continue;
678 		if (!zone_intersects(zone, start_pfn, nr_pages))
679 			continue;
680 		if (!matching_zone) {
681 			matching_zone = zone;
682 			continue;
683 		}
684 		/* Spans multiple zones ... */
685 		matching_zone = NULL;
686 		break;
687 	}
688 	return matching_zone;
689 }
690 
691 #ifdef CONFIG_NUMA
692 /**
693  * memory_block_add_nid() - Indicate that system RAM falling into this memory
694  *			    block device (partially) belongs to the given node.
695  * @mem: The memory block device.
696  * @nid: The node id.
697  * @context: The memory initialization context.
698  *
699  * Indicate that system RAM falling into this memory block (partially) belongs
700  * to the given node. If the context indicates ("early") that we are adding the
701  * node during node device subsystem initialization, this will also properly
702  * set/adjust mem->zone based on the zone ranges of the given node.
703  */
704 void memory_block_add_nid(struct memory_block *mem, int nid,
705 			  enum meminit_context context)
706 {
707 	if (context == MEMINIT_EARLY && mem->nid != nid) {
708 		/*
709 		 * For early memory we have to determine the zone when setting
710 		 * the node id and handle multiple nodes spanning a single
711 		 * memory block by indicate via zone == NULL that we're not
712 		 * dealing with a single zone. So if we're setting the node id
713 		 * the first time, determine if there is a single zone. If we're
714 		 * setting the node id a second time to a different node,
715 		 * invalidate the single detected zone.
716 		 */
717 		if (mem->nid == NUMA_NO_NODE)
718 			mem->zone = early_node_zone_for_memory_block(mem, nid);
719 		else
720 			mem->zone = NULL;
721 	}
722 
723 	/*
724 	 * If this memory block spans multiple nodes, we only indicate
725 	 * the last processed node. If we span multiple nodes (not applicable
726 	 * to hotplugged memory), zone == NULL will prohibit memory offlining
727 	 * and consequently unplug.
728 	 */
729 	mem->nid = nid;
730 }
731 #endif
732 
733 static int add_memory_block(unsigned long block_id, unsigned long state,
734 			    unsigned long nr_vmemmap_pages,
735 			    struct memory_group *group)
736 {
737 	struct memory_block *mem;
738 	int ret = 0;
739 
740 	mem = find_memory_block_by_id(block_id);
741 	if (mem) {
742 		put_device(&mem->dev);
743 		return -EEXIST;
744 	}
745 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
746 	if (!mem)
747 		return -ENOMEM;
748 
749 	mem->start_section_nr = block_id * sections_per_block;
750 	mem->state = state;
751 	mem->nid = NUMA_NO_NODE;
752 	mem->nr_vmemmap_pages = nr_vmemmap_pages;
753 	INIT_LIST_HEAD(&mem->group_next);
754 
755 #ifndef CONFIG_NUMA
756 	if (state == MEM_ONLINE)
757 		/*
758 		 * MEM_ONLINE at this point implies early memory. With NUMA,
759 		 * we'll determine the zone when setting the node id via
760 		 * memory_block_add_nid(). Memory hotplug updated the zone
761 		 * manually when memory onlining/offlining succeeds.
762 		 */
763 		mem->zone = early_node_zone_for_memory_block(mem, NUMA_NO_NODE);
764 #endif /* CONFIG_NUMA */
765 
766 	ret = __add_memory_block(mem);
767 	if (ret)
768 		return ret;
769 
770 	if (group) {
771 		mem->group = group;
772 		list_add(&mem->group_next, &group->memory_blocks);
773 	}
774 
775 	return 0;
776 }
777 
778 static int __init add_boot_memory_block(unsigned long base_section_nr)
779 {
780 	int section_count = 0;
781 	unsigned long nr;
782 
783 	for (nr = base_section_nr; nr < base_section_nr + sections_per_block;
784 	     nr++)
785 		if (present_section_nr(nr))
786 			section_count++;
787 
788 	if (section_count == 0)
789 		return 0;
790 	return add_memory_block(memory_block_id(base_section_nr),
791 				MEM_ONLINE, 0,  NULL);
792 }
793 
794 static int add_hotplug_memory_block(unsigned long block_id,
795 				    unsigned long nr_vmemmap_pages,
796 				    struct memory_group *group)
797 {
798 	return add_memory_block(block_id, MEM_OFFLINE, nr_vmemmap_pages, group);
799 }
800 
801 static void remove_memory_block(struct memory_block *memory)
802 {
803 	if (WARN_ON_ONCE(memory->dev.bus != &memory_subsys))
804 		return;
805 
806 	WARN_ON(xa_erase(&memory_blocks, memory->dev.id) == NULL);
807 
808 	if (memory->group) {
809 		list_del(&memory->group_next);
810 		memory->group = NULL;
811 	}
812 
813 	/* drop the ref. we got via find_memory_block() */
814 	put_device(&memory->dev);
815 	device_unregister(&memory->dev);
816 }
817 
818 /*
819  * Create memory block devices for the given memory area. Start and size
820  * have to be aligned to memory block granularity. Memory block devices
821  * will be initialized as offline.
822  *
823  * Called under device_hotplug_lock.
824  */
825 int create_memory_block_devices(unsigned long start, unsigned long size,
826 				unsigned long vmemmap_pages,
827 				struct memory_group *group)
828 {
829 	const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start));
830 	unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size));
831 	struct memory_block *mem;
832 	unsigned long block_id;
833 	int ret = 0;
834 
835 	if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) ||
836 			 !IS_ALIGNED(size, memory_block_size_bytes())))
837 		return -EINVAL;
838 
839 	for (block_id = start_block_id; block_id != end_block_id; block_id++) {
840 		ret = add_hotplug_memory_block(block_id, vmemmap_pages, group);
841 		if (ret)
842 			break;
843 	}
844 	if (ret) {
845 		end_block_id = block_id;
846 		for (block_id = start_block_id; block_id != end_block_id;
847 		     block_id++) {
848 			mem = find_memory_block_by_id(block_id);
849 			if (WARN_ON_ONCE(!mem))
850 				continue;
851 			remove_memory_block(mem);
852 		}
853 	}
854 	return ret;
855 }
856 
857 /*
858  * Remove memory block devices for the given memory area. Start and size
859  * have to be aligned to memory block granularity. Memory block devices
860  * have to be offline.
861  *
862  * Called under device_hotplug_lock.
863  */
864 void remove_memory_block_devices(unsigned long start, unsigned long size)
865 {
866 	const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start));
867 	const unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size));
868 	struct memory_block *mem;
869 	unsigned long block_id;
870 
871 	if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) ||
872 			 !IS_ALIGNED(size, memory_block_size_bytes())))
873 		return;
874 
875 	for (block_id = start_block_id; block_id != end_block_id; block_id++) {
876 		mem = find_memory_block_by_id(block_id);
877 		if (WARN_ON_ONCE(!mem))
878 			continue;
879 		num_poisoned_pages_sub(-1UL, memblk_nr_poison(mem));
880 		unregister_memory_block_under_nodes(mem);
881 		remove_memory_block(mem);
882 	}
883 }
884 
885 static struct attribute *memory_root_attrs[] = {
886 #ifdef CONFIG_ARCH_MEMORY_PROBE
887 	&dev_attr_probe.attr,
888 #endif
889 
890 #ifdef CONFIG_MEMORY_FAILURE
891 	&dev_attr_soft_offline_page.attr,
892 	&dev_attr_hard_offline_page.attr,
893 #endif
894 
895 	&dev_attr_block_size_bytes.attr,
896 	&dev_attr_auto_online_blocks.attr,
897 	NULL
898 };
899 
900 static const struct attribute_group memory_root_attr_group = {
901 	.attrs = memory_root_attrs,
902 };
903 
904 static const struct attribute_group *memory_root_attr_groups[] = {
905 	&memory_root_attr_group,
906 	NULL,
907 };
908 
909 /*
910  * Initialize the sysfs support for memory devices. At the time this function
911  * is called, we cannot have concurrent creation/deletion of memory block
912  * devices, the device_hotplug_lock is not needed.
913  */
914 void __init memory_dev_init(void)
915 {
916 	int ret;
917 	unsigned long block_sz, nr;
918 
919 	/* Validate the configured memory block size */
920 	block_sz = memory_block_size_bytes();
921 	if (!is_power_of_2(block_sz) || block_sz < MIN_MEMORY_BLOCK_SIZE)
922 		panic("Memory block size not suitable: 0x%lx\n", block_sz);
923 	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
924 
925 	ret = subsys_system_register(&memory_subsys, memory_root_attr_groups);
926 	if (ret)
927 		panic("%s() failed to register subsystem: %d\n", __func__, ret);
928 
929 	/*
930 	 * Create entries for memory sections that were found
931 	 * during boot and have been initialized
932 	 */
933 	for (nr = 0; nr <= __highest_present_section_nr;
934 	     nr += sections_per_block) {
935 		ret = add_boot_memory_block(nr);
936 		if (ret)
937 			panic("%s() failed to add memory block: %d\n", __func__,
938 			      ret);
939 	}
940 }
941 
942 /**
943  * walk_memory_blocks - walk through all present memory blocks overlapped
944  *			by the range [start, start + size)
945  *
946  * @start: start address of the memory range
947  * @size: size of the memory range
948  * @arg: argument passed to func
949  * @func: callback for each memory section walked
950  *
951  * This function walks through all present memory blocks overlapped by the
952  * range [start, start + size), calling func on each memory block.
953  *
954  * In case func() returns an error, walking is aborted and the error is
955  * returned.
956  *
957  * Called under device_hotplug_lock.
958  */
959 int walk_memory_blocks(unsigned long start, unsigned long size,
960 		       void *arg, walk_memory_blocks_func_t func)
961 {
962 	const unsigned long start_block_id = phys_to_block_id(start);
963 	const unsigned long end_block_id = phys_to_block_id(start + size - 1);
964 	struct memory_block *mem;
965 	unsigned long block_id;
966 	int ret = 0;
967 
968 	if (!size)
969 		return 0;
970 
971 	for (block_id = start_block_id; block_id <= end_block_id; block_id++) {
972 		mem = find_memory_block_by_id(block_id);
973 		if (!mem)
974 			continue;
975 
976 		ret = func(mem, arg);
977 		put_device(&mem->dev);
978 		if (ret)
979 			break;
980 	}
981 	return ret;
982 }
983 
984 struct for_each_memory_block_cb_data {
985 	walk_memory_blocks_func_t func;
986 	void *arg;
987 };
988 
989 static int for_each_memory_block_cb(struct device *dev, void *data)
990 {
991 	struct memory_block *mem = to_memory_block(dev);
992 	struct for_each_memory_block_cb_data *cb_data = data;
993 
994 	return cb_data->func(mem, cb_data->arg);
995 }
996 
997 /**
998  * for_each_memory_block - walk through all present memory blocks
999  *
1000  * @arg: argument passed to func
1001  * @func: callback for each memory block walked
1002  *
1003  * This function walks through all present memory blocks, calling func on
1004  * each memory block.
1005  *
1006  * In case func() returns an error, walking is aborted and the error is
1007  * returned.
1008  */
1009 int for_each_memory_block(void *arg, walk_memory_blocks_func_t func)
1010 {
1011 	struct for_each_memory_block_cb_data cb_data = {
1012 		.func = func,
1013 		.arg = arg,
1014 	};
1015 
1016 	return bus_for_each_dev(&memory_subsys, NULL, &cb_data,
1017 				for_each_memory_block_cb);
1018 }
1019 
1020 /*
1021  * This is an internal helper to unify allocation and initialization of
1022  * memory groups. Note that the passed memory group will be copied to a
1023  * dynamically allocated memory group. After this call, the passed
1024  * memory group should no longer be used.
1025  */
1026 static int memory_group_register(struct memory_group group)
1027 {
1028 	struct memory_group *new_group;
1029 	uint32_t mgid;
1030 	int ret;
1031 
1032 	if (!node_possible(group.nid))
1033 		return -EINVAL;
1034 
1035 	new_group = kzalloc(sizeof(group), GFP_KERNEL);
1036 	if (!new_group)
1037 		return -ENOMEM;
1038 	*new_group = group;
1039 	INIT_LIST_HEAD(&new_group->memory_blocks);
1040 
1041 	ret = xa_alloc(&memory_groups, &mgid, new_group, xa_limit_31b,
1042 		       GFP_KERNEL);
1043 	if (ret) {
1044 		kfree(new_group);
1045 		return ret;
1046 	} else if (group.is_dynamic) {
1047 		xa_set_mark(&memory_groups, mgid, MEMORY_GROUP_MARK_DYNAMIC);
1048 	}
1049 	return mgid;
1050 }
1051 
1052 /**
1053  * memory_group_register_static() - Register a static memory group.
1054  * @nid: The node id.
1055  * @max_pages: The maximum number of pages we'll have in this static memory
1056  *	       group.
1057  *
1058  * Register a new static memory group and return the memory group id.
1059  * All memory in the group belongs to a single unit, such as a DIMM. All
1060  * memory belonging to a static memory group is added in one go to be removed
1061  * in one go -- it's static.
1062  *
1063  * Returns an error if out of memory, if the node id is invalid, if no new
1064  * memory groups can be registered, or if max_pages is invalid (0). Otherwise,
1065  * returns the new memory group id.
1066  */
1067 int memory_group_register_static(int nid, unsigned long max_pages)
1068 {
1069 	struct memory_group group = {
1070 		.nid = nid,
1071 		.s = {
1072 			.max_pages = max_pages,
1073 		},
1074 	};
1075 
1076 	if (!max_pages)
1077 		return -EINVAL;
1078 	return memory_group_register(group);
1079 }
1080 EXPORT_SYMBOL_GPL(memory_group_register_static);
1081 
1082 /**
1083  * memory_group_register_dynamic() - Register a dynamic memory group.
1084  * @nid: The node id.
1085  * @unit_pages: Unit in pages in which is memory added/removed in this dynamic
1086  *		memory group.
1087  *
1088  * Register a new dynamic memory group and return the memory group id.
1089  * Memory within a dynamic memory group is added/removed dynamically
1090  * in unit_pages.
1091  *
1092  * Returns an error if out of memory, if the node id is invalid, if no new
1093  * memory groups can be registered, or if unit_pages is invalid (0, not a
1094  * power of two, smaller than a single memory block). Otherwise, returns the
1095  * new memory group id.
1096  */
1097 int memory_group_register_dynamic(int nid, unsigned long unit_pages)
1098 {
1099 	struct memory_group group = {
1100 		.nid = nid,
1101 		.is_dynamic = true,
1102 		.d = {
1103 			.unit_pages = unit_pages,
1104 		},
1105 	};
1106 
1107 	if (!unit_pages || !is_power_of_2(unit_pages) ||
1108 	    unit_pages < PHYS_PFN(memory_block_size_bytes()))
1109 		return -EINVAL;
1110 	return memory_group_register(group);
1111 }
1112 EXPORT_SYMBOL_GPL(memory_group_register_dynamic);
1113 
1114 /**
1115  * memory_group_unregister() - Unregister a memory group.
1116  * @mgid: the memory group id
1117  *
1118  * Unregister a memory group. If any memory block still belongs to this
1119  * memory group, unregistering will fail.
1120  *
1121  * Returns -EINVAL if the memory group id is invalid, returns -EBUSY if some
1122  * memory blocks still belong to this memory group and returns 0 if
1123  * unregistering succeeded.
1124  */
1125 int memory_group_unregister(int mgid)
1126 {
1127 	struct memory_group *group;
1128 
1129 	if (mgid < 0)
1130 		return -EINVAL;
1131 
1132 	group = xa_load(&memory_groups, mgid);
1133 	if (!group)
1134 		return -EINVAL;
1135 	if (!list_empty(&group->memory_blocks))
1136 		return -EBUSY;
1137 	xa_erase(&memory_groups, mgid);
1138 	kfree(group);
1139 	return 0;
1140 }
1141 EXPORT_SYMBOL_GPL(memory_group_unregister);
1142 
1143 /*
1144  * This is an internal helper only to be used in core memory hotplug code to
1145  * lookup a memory group. We don't care about locking, as we don't expect a
1146  * memory group to get unregistered while adding memory to it -- because
1147  * the group and the memory is managed by the same driver.
1148  */
1149 struct memory_group *memory_group_find_by_id(int mgid)
1150 {
1151 	return xa_load(&memory_groups, mgid);
1152 }
1153 
1154 /*
1155  * This is an internal helper only to be used in core memory hotplug code to
1156  * walk all dynamic memory groups excluding a given memory group, either
1157  * belonging to a specific node, or belonging to any node.
1158  */
1159 int walk_dynamic_memory_groups(int nid, walk_memory_groups_func_t func,
1160 			       struct memory_group *excluded, void *arg)
1161 {
1162 	struct memory_group *group;
1163 	unsigned long index;
1164 	int ret = 0;
1165 
1166 	xa_for_each_marked(&memory_groups, index, group,
1167 			   MEMORY_GROUP_MARK_DYNAMIC) {
1168 		if (group == excluded)
1169 			continue;
1170 #ifdef CONFIG_NUMA
1171 		if (nid != NUMA_NO_NODE && group->nid != nid)
1172 			continue;
1173 #endif /* CONFIG_NUMA */
1174 		ret = func(group, arg);
1175 		if (ret)
1176 			break;
1177 	}
1178 	return ret;
1179 }
1180 
1181 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
1182 void memblk_nr_poison_inc(unsigned long pfn)
1183 {
1184 	const unsigned long block_id = pfn_to_block_id(pfn);
1185 	struct memory_block *mem = find_memory_block_by_id(block_id);
1186 
1187 	if (mem)
1188 		atomic_long_inc(&mem->nr_hwpoison);
1189 }
1190 
1191 void memblk_nr_poison_sub(unsigned long pfn, long i)
1192 {
1193 	const unsigned long block_id = pfn_to_block_id(pfn);
1194 	struct memory_block *mem = find_memory_block_by_id(block_id);
1195 
1196 	if (mem)
1197 		atomic_long_sub(i, &mem->nr_hwpoison);
1198 }
1199 
1200 static unsigned long memblk_nr_poison(struct memory_block *mem)
1201 {
1202 	return atomic_long_read(&mem->nr_hwpoison);
1203 }
1204 #endif
1205