xref: /openbmc/linux/drivers/base/memory.c (revision df0e68c1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory subsystem support
4  *
5  * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
6  *            Dave Hansen <haveblue@us.ibm.com>
7  *
8  * This file provides the necessary infrastructure to represent
9  * a SPARSEMEM-memory-model system's physical memory in /sysfs.
10  * All arch-independent code that assumes MEMORY_HOTPLUG requires
11  * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
12  */
13 
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/topology.h>
17 #include <linux/capability.h>
18 #include <linux/device.h>
19 #include <linux/memory.h>
20 #include <linux/memory_hotplug.h>
21 #include <linux/mm.h>
22 #include <linux/stat.h>
23 #include <linux/slab.h>
24 #include <linux/xarray.h>
25 
26 #include <linux/atomic.h>
27 #include <linux/uaccess.h>
28 
29 #define MEMORY_CLASS_NAME	"memory"
30 
31 static const char *const online_type_to_str[] = {
32 	[MMOP_OFFLINE] = "offline",
33 	[MMOP_ONLINE] = "online",
34 	[MMOP_ONLINE_KERNEL] = "online_kernel",
35 	[MMOP_ONLINE_MOVABLE] = "online_movable",
36 };
37 
38 int mhp_online_type_from_str(const char *str)
39 {
40 	int i;
41 
42 	for (i = 0; i < ARRAY_SIZE(online_type_to_str); i++) {
43 		if (sysfs_streq(str, online_type_to_str[i]))
44 			return i;
45 	}
46 	return -EINVAL;
47 }
48 
49 #define to_memory_block(dev) container_of(dev, struct memory_block, dev)
50 
51 static int sections_per_block;
52 
53 static inline unsigned long memory_block_id(unsigned long section_nr)
54 {
55 	return section_nr / sections_per_block;
56 }
57 
58 static inline unsigned long pfn_to_block_id(unsigned long pfn)
59 {
60 	return memory_block_id(pfn_to_section_nr(pfn));
61 }
62 
63 static inline unsigned long phys_to_block_id(unsigned long phys)
64 {
65 	return pfn_to_block_id(PFN_DOWN(phys));
66 }
67 
68 static int memory_subsys_online(struct device *dev);
69 static int memory_subsys_offline(struct device *dev);
70 
71 static struct bus_type memory_subsys = {
72 	.name = MEMORY_CLASS_NAME,
73 	.dev_name = MEMORY_CLASS_NAME,
74 	.online = memory_subsys_online,
75 	.offline = memory_subsys_offline,
76 };
77 
78 /*
79  * Memory blocks are cached in a local radix tree to avoid
80  * a costly linear search for the corresponding device on
81  * the subsystem bus.
82  */
83 static DEFINE_XARRAY(memory_blocks);
84 
85 /*
86  * Memory groups, indexed by memory group id (mgid).
87  */
88 static DEFINE_XARRAY_FLAGS(memory_groups, XA_FLAGS_ALLOC);
89 #define MEMORY_GROUP_MARK_DYNAMIC	XA_MARK_1
90 
91 static BLOCKING_NOTIFIER_HEAD(memory_chain);
92 
93 int register_memory_notifier(struct notifier_block *nb)
94 {
95 	return blocking_notifier_chain_register(&memory_chain, nb);
96 }
97 EXPORT_SYMBOL(register_memory_notifier);
98 
99 void unregister_memory_notifier(struct notifier_block *nb)
100 {
101 	blocking_notifier_chain_unregister(&memory_chain, nb);
102 }
103 EXPORT_SYMBOL(unregister_memory_notifier);
104 
105 static void memory_block_release(struct device *dev)
106 {
107 	struct memory_block *mem = to_memory_block(dev);
108 
109 	kfree(mem);
110 }
111 
112 unsigned long __weak memory_block_size_bytes(void)
113 {
114 	return MIN_MEMORY_BLOCK_SIZE;
115 }
116 EXPORT_SYMBOL_GPL(memory_block_size_bytes);
117 
118 /*
119  * Show the first physical section index (number) of this memory block.
120  */
121 static ssize_t phys_index_show(struct device *dev,
122 			       struct device_attribute *attr, char *buf)
123 {
124 	struct memory_block *mem = to_memory_block(dev);
125 	unsigned long phys_index;
126 
127 	phys_index = mem->start_section_nr / sections_per_block;
128 
129 	return sysfs_emit(buf, "%08lx\n", phys_index);
130 }
131 
132 /*
133  * Legacy interface that we cannot remove. Always indicate "removable"
134  * with CONFIG_MEMORY_HOTREMOVE - bad heuristic.
135  */
136 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
137 			      char *buf)
138 {
139 	return sysfs_emit(buf, "%d\n", (int)IS_ENABLED(CONFIG_MEMORY_HOTREMOVE));
140 }
141 
142 /*
143  * online, offline, going offline, etc.
144  */
145 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
146 			  char *buf)
147 {
148 	struct memory_block *mem = to_memory_block(dev);
149 	const char *output;
150 
151 	/*
152 	 * We can probably put these states in a nice little array
153 	 * so that they're not open-coded
154 	 */
155 	switch (mem->state) {
156 	case MEM_ONLINE:
157 		output = "online";
158 		break;
159 	case MEM_OFFLINE:
160 		output = "offline";
161 		break;
162 	case MEM_GOING_OFFLINE:
163 		output = "going-offline";
164 		break;
165 	default:
166 		WARN_ON(1);
167 		return sysfs_emit(buf, "ERROR-UNKNOWN-%ld\n", mem->state);
168 	}
169 
170 	return sysfs_emit(buf, "%s\n", output);
171 }
172 
173 int memory_notify(unsigned long val, void *v)
174 {
175 	return blocking_notifier_call_chain(&memory_chain, val, v);
176 }
177 
178 static int memory_block_online(struct memory_block *mem)
179 {
180 	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
181 	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
182 	unsigned long nr_vmemmap_pages = mem->nr_vmemmap_pages;
183 	struct zone *zone;
184 	int ret;
185 
186 	zone = zone_for_pfn_range(mem->online_type, mem->nid, mem->group,
187 				  start_pfn, nr_pages);
188 
189 	/*
190 	 * Although vmemmap pages have a different lifecycle than the pages
191 	 * they describe (they remain until the memory is unplugged), doing
192 	 * their initialization and accounting at memory onlining/offlining
193 	 * stage helps to keep accounting easier to follow - e.g vmemmaps
194 	 * belong to the same zone as the memory they backed.
195 	 */
196 	if (nr_vmemmap_pages) {
197 		ret = mhp_init_memmap_on_memory(start_pfn, nr_vmemmap_pages, zone);
198 		if (ret)
199 			return ret;
200 	}
201 
202 	ret = online_pages(start_pfn + nr_vmemmap_pages,
203 			   nr_pages - nr_vmemmap_pages, zone, mem->group);
204 	if (ret) {
205 		if (nr_vmemmap_pages)
206 			mhp_deinit_memmap_on_memory(start_pfn, nr_vmemmap_pages);
207 		return ret;
208 	}
209 
210 	/*
211 	 * Account once onlining succeeded. If the zone was unpopulated, it is
212 	 * now already properly populated.
213 	 */
214 	if (nr_vmemmap_pages)
215 		adjust_present_page_count(pfn_to_page(start_pfn), mem->group,
216 					  nr_vmemmap_pages);
217 
218 	return ret;
219 }
220 
221 static int memory_block_offline(struct memory_block *mem)
222 {
223 	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
224 	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
225 	unsigned long nr_vmemmap_pages = mem->nr_vmemmap_pages;
226 	int ret;
227 
228 	/*
229 	 * Unaccount before offlining, such that unpopulated zone and kthreads
230 	 * can properly be torn down in offline_pages().
231 	 */
232 	if (nr_vmemmap_pages)
233 		adjust_present_page_count(pfn_to_page(start_pfn), mem->group,
234 					  -nr_vmemmap_pages);
235 
236 	ret = offline_pages(start_pfn + nr_vmemmap_pages,
237 			    nr_pages - nr_vmemmap_pages, mem->group);
238 	if (ret) {
239 		/* offline_pages() failed. Account back. */
240 		if (nr_vmemmap_pages)
241 			adjust_present_page_count(pfn_to_page(start_pfn),
242 						  mem->group, nr_vmemmap_pages);
243 		return ret;
244 	}
245 
246 	if (nr_vmemmap_pages)
247 		mhp_deinit_memmap_on_memory(start_pfn, nr_vmemmap_pages);
248 
249 	return ret;
250 }
251 
252 /*
253  * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
254  * OK to have direct references to sparsemem variables in here.
255  */
256 static int
257 memory_block_action(struct memory_block *mem, unsigned long action)
258 {
259 	int ret;
260 
261 	switch (action) {
262 	case MEM_ONLINE:
263 		ret = memory_block_online(mem);
264 		break;
265 	case MEM_OFFLINE:
266 		ret = memory_block_offline(mem);
267 		break;
268 	default:
269 		WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
270 		     "%ld\n", __func__, mem->start_section_nr, action, action);
271 		ret = -EINVAL;
272 	}
273 
274 	return ret;
275 }
276 
277 static int memory_block_change_state(struct memory_block *mem,
278 		unsigned long to_state, unsigned long from_state_req)
279 {
280 	int ret = 0;
281 
282 	if (mem->state != from_state_req)
283 		return -EINVAL;
284 
285 	if (to_state == MEM_OFFLINE)
286 		mem->state = MEM_GOING_OFFLINE;
287 
288 	ret = memory_block_action(mem, to_state);
289 	mem->state = ret ? from_state_req : to_state;
290 
291 	return ret;
292 }
293 
294 /* The device lock serializes operations on memory_subsys_[online|offline] */
295 static int memory_subsys_online(struct device *dev)
296 {
297 	struct memory_block *mem = to_memory_block(dev);
298 	int ret;
299 
300 	if (mem->state == MEM_ONLINE)
301 		return 0;
302 
303 	/*
304 	 * When called via device_online() without configuring the online_type,
305 	 * we want to default to MMOP_ONLINE.
306 	 */
307 	if (mem->online_type == MMOP_OFFLINE)
308 		mem->online_type = MMOP_ONLINE;
309 
310 	ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
311 	mem->online_type = MMOP_OFFLINE;
312 
313 	return ret;
314 }
315 
316 static int memory_subsys_offline(struct device *dev)
317 {
318 	struct memory_block *mem = to_memory_block(dev);
319 
320 	if (mem->state == MEM_OFFLINE)
321 		return 0;
322 
323 	return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
324 }
325 
326 static ssize_t state_store(struct device *dev, struct device_attribute *attr,
327 			   const char *buf, size_t count)
328 {
329 	const int online_type = mhp_online_type_from_str(buf);
330 	struct memory_block *mem = to_memory_block(dev);
331 	int ret;
332 
333 	if (online_type < 0)
334 		return -EINVAL;
335 
336 	ret = lock_device_hotplug_sysfs();
337 	if (ret)
338 		return ret;
339 
340 	switch (online_type) {
341 	case MMOP_ONLINE_KERNEL:
342 	case MMOP_ONLINE_MOVABLE:
343 	case MMOP_ONLINE:
344 		/* mem->online_type is protected by device_hotplug_lock */
345 		mem->online_type = online_type;
346 		ret = device_online(&mem->dev);
347 		break;
348 	case MMOP_OFFLINE:
349 		ret = device_offline(&mem->dev);
350 		break;
351 	default:
352 		ret = -EINVAL; /* should never happen */
353 	}
354 
355 	unlock_device_hotplug();
356 
357 	if (ret < 0)
358 		return ret;
359 	if (ret)
360 		return -EINVAL;
361 
362 	return count;
363 }
364 
365 /*
366  * Legacy interface that we cannot remove: s390x exposes the storage increment
367  * covered by a memory block, allowing for identifying which memory blocks
368  * comprise a storage increment. Since a memory block spans complete
369  * storage increments nowadays, this interface is basically unused. Other
370  * archs never exposed != 0.
371  */
372 static ssize_t phys_device_show(struct device *dev,
373 				struct device_attribute *attr, char *buf)
374 {
375 	struct memory_block *mem = to_memory_block(dev);
376 	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
377 
378 	return sysfs_emit(buf, "%d\n",
379 			  arch_get_memory_phys_device(start_pfn));
380 }
381 
382 #ifdef CONFIG_MEMORY_HOTREMOVE
383 static int print_allowed_zone(char *buf, int len, int nid,
384 			      struct memory_group *group,
385 			      unsigned long start_pfn, unsigned long nr_pages,
386 			      int online_type, struct zone *default_zone)
387 {
388 	struct zone *zone;
389 
390 	zone = zone_for_pfn_range(online_type, nid, group, start_pfn, nr_pages);
391 	if (zone == default_zone)
392 		return 0;
393 
394 	return sysfs_emit_at(buf, len, " %s", zone->name);
395 }
396 
397 static ssize_t valid_zones_show(struct device *dev,
398 				struct device_attribute *attr, char *buf)
399 {
400 	struct memory_block *mem = to_memory_block(dev);
401 	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
402 	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
403 	struct memory_group *group = mem->group;
404 	struct zone *default_zone;
405 	int nid = mem->nid;
406 	int len = 0;
407 
408 	/*
409 	 * Check the existing zone. Make sure that we do that only on the
410 	 * online nodes otherwise the page_zone is not reliable
411 	 */
412 	if (mem->state == MEM_ONLINE) {
413 		/*
414 		 * The block contains more than one zone can not be offlined.
415 		 * This can happen e.g. for ZONE_DMA and ZONE_DMA32
416 		 */
417 		default_zone = test_pages_in_a_zone(start_pfn,
418 						    start_pfn + nr_pages);
419 		if (!default_zone)
420 			return sysfs_emit(buf, "%s\n", "none");
421 		len += sysfs_emit_at(buf, len, "%s", default_zone->name);
422 		goto out;
423 	}
424 
425 	default_zone = zone_for_pfn_range(MMOP_ONLINE, nid, group,
426 					  start_pfn, nr_pages);
427 
428 	len += sysfs_emit_at(buf, len, "%s", default_zone->name);
429 	len += print_allowed_zone(buf, len, nid, group, start_pfn, nr_pages,
430 				  MMOP_ONLINE_KERNEL, default_zone);
431 	len += print_allowed_zone(buf, len, nid, group, start_pfn, nr_pages,
432 				  MMOP_ONLINE_MOVABLE, default_zone);
433 out:
434 	len += sysfs_emit_at(buf, len, "\n");
435 	return len;
436 }
437 static DEVICE_ATTR_RO(valid_zones);
438 #endif
439 
440 static DEVICE_ATTR_RO(phys_index);
441 static DEVICE_ATTR_RW(state);
442 static DEVICE_ATTR_RO(phys_device);
443 static DEVICE_ATTR_RO(removable);
444 
445 /*
446  * Show the memory block size (shared by all memory blocks).
447  */
448 static ssize_t block_size_bytes_show(struct device *dev,
449 				     struct device_attribute *attr, char *buf)
450 {
451 	return sysfs_emit(buf, "%lx\n", memory_block_size_bytes());
452 }
453 
454 static DEVICE_ATTR_RO(block_size_bytes);
455 
456 /*
457  * Memory auto online policy.
458  */
459 
460 static ssize_t auto_online_blocks_show(struct device *dev,
461 				       struct device_attribute *attr, char *buf)
462 {
463 	return sysfs_emit(buf, "%s\n",
464 			  online_type_to_str[mhp_default_online_type]);
465 }
466 
467 static ssize_t auto_online_blocks_store(struct device *dev,
468 					struct device_attribute *attr,
469 					const char *buf, size_t count)
470 {
471 	const int online_type = mhp_online_type_from_str(buf);
472 
473 	if (online_type < 0)
474 		return -EINVAL;
475 
476 	mhp_default_online_type = online_type;
477 	return count;
478 }
479 
480 static DEVICE_ATTR_RW(auto_online_blocks);
481 
482 /*
483  * Some architectures will have custom drivers to do this, and
484  * will not need to do it from userspace.  The fake hot-add code
485  * as well as ppc64 will do all of their discovery in userspace
486  * and will require this interface.
487  */
488 #ifdef CONFIG_ARCH_MEMORY_PROBE
489 static ssize_t probe_store(struct device *dev, struct device_attribute *attr,
490 			   const char *buf, size_t count)
491 {
492 	u64 phys_addr;
493 	int nid, ret;
494 	unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
495 
496 	ret = kstrtoull(buf, 0, &phys_addr);
497 	if (ret)
498 		return ret;
499 
500 	if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
501 		return -EINVAL;
502 
503 	ret = lock_device_hotplug_sysfs();
504 	if (ret)
505 		return ret;
506 
507 	nid = memory_add_physaddr_to_nid(phys_addr);
508 	ret = __add_memory(nid, phys_addr,
509 			   MIN_MEMORY_BLOCK_SIZE * sections_per_block,
510 			   MHP_NONE);
511 
512 	if (ret)
513 		goto out;
514 
515 	ret = count;
516 out:
517 	unlock_device_hotplug();
518 	return ret;
519 }
520 
521 static DEVICE_ATTR_WO(probe);
522 #endif
523 
524 #ifdef CONFIG_MEMORY_FAILURE
525 /*
526  * Support for offlining pages of memory
527  */
528 
529 /* Soft offline a page */
530 static ssize_t soft_offline_page_store(struct device *dev,
531 				       struct device_attribute *attr,
532 				       const char *buf, size_t count)
533 {
534 	int ret;
535 	u64 pfn;
536 	if (!capable(CAP_SYS_ADMIN))
537 		return -EPERM;
538 	if (kstrtoull(buf, 0, &pfn) < 0)
539 		return -EINVAL;
540 	pfn >>= PAGE_SHIFT;
541 	ret = soft_offline_page(pfn, 0);
542 	return ret == 0 ? count : ret;
543 }
544 
545 /* Forcibly offline a page, including killing processes. */
546 static ssize_t hard_offline_page_store(struct device *dev,
547 				       struct device_attribute *attr,
548 				       const char *buf, size_t count)
549 {
550 	int ret;
551 	u64 pfn;
552 	if (!capable(CAP_SYS_ADMIN))
553 		return -EPERM;
554 	if (kstrtoull(buf, 0, &pfn) < 0)
555 		return -EINVAL;
556 	pfn >>= PAGE_SHIFT;
557 	ret = memory_failure(pfn, 0);
558 	return ret ? ret : count;
559 }
560 
561 static DEVICE_ATTR_WO(soft_offline_page);
562 static DEVICE_ATTR_WO(hard_offline_page);
563 #endif
564 
565 /* See phys_device_show(). */
566 int __weak arch_get_memory_phys_device(unsigned long start_pfn)
567 {
568 	return 0;
569 }
570 
571 /*
572  * A reference for the returned memory block device is acquired.
573  *
574  * Called under device_hotplug_lock.
575  */
576 static struct memory_block *find_memory_block_by_id(unsigned long block_id)
577 {
578 	struct memory_block *mem;
579 
580 	mem = xa_load(&memory_blocks, block_id);
581 	if (mem)
582 		get_device(&mem->dev);
583 	return mem;
584 }
585 
586 /*
587  * Called under device_hotplug_lock.
588  */
589 struct memory_block *find_memory_block(unsigned long section_nr)
590 {
591 	unsigned long block_id = memory_block_id(section_nr);
592 
593 	return find_memory_block_by_id(block_id);
594 }
595 
596 static struct attribute *memory_memblk_attrs[] = {
597 	&dev_attr_phys_index.attr,
598 	&dev_attr_state.attr,
599 	&dev_attr_phys_device.attr,
600 	&dev_attr_removable.attr,
601 #ifdef CONFIG_MEMORY_HOTREMOVE
602 	&dev_attr_valid_zones.attr,
603 #endif
604 	NULL
605 };
606 
607 static const struct attribute_group memory_memblk_attr_group = {
608 	.attrs = memory_memblk_attrs,
609 };
610 
611 static const struct attribute_group *memory_memblk_attr_groups[] = {
612 	&memory_memblk_attr_group,
613 	NULL,
614 };
615 
616 /*
617  * register_memory - Setup a sysfs device for a memory block
618  */
619 static
620 int register_memory(struct memory_block *memory)
621 {
622 	int ret;
623 
624 	memory->dev.bus = &memory_subsys;
625 	memory->dev.id = memory->start_section_nr / sections_per_block;
626 	memory->dev.release = memory_block_release;
627 	memory->dev.groups = memory_memblk_attr_groups;
628 	memory->dev.offline = memory->state == MEM_OFFLINE;
629 
630 	ret = device_register(&memory->dev);
631 	if (ret) {
632 		put_device(&memory->dev);
633 		return ret;
634 	}
635 	ret = xa_err(xa_store(&memory_blocks, memory->dev.id, memory,
636 			      GFP_KERNEL));
637 	if (ret) {
638 		put_device(&memory->dev);
639 		device_unregister(&memory->dev);
640 	}
641 	return ret;
642 }
643 
644 static int init_memory_block(unsigned long block_id, unsigned long state,
645 			     unsigned long nr_vmemmap_pages,
646 			     struct memory_group *group)
647 {
648 	struct memory_block *mem;
649 	int ret = 0;
650 
651 	mem = find_memory_block_by_id(block_id);
652 	if (mem) {
653 		put_device(&mem->dev);
654 		return -EEXIST;
655 	}
656 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
657 	if (!mem)
658 		return -ENOMEM;
659 
660 	mem->start_section_nr = block_id * sections_per_block;
661 	mem->state = state;
662 	mem->nid = NUMA_NO_NODE;
663 	mem->nr_vmemmap_pages = nr_vmemmap_pages;
664 	INIT_LIST_HEAD(&mem->group_next);
665 
666 	if (group) {
667 		mem->group = group;
668 		list_add(&mem->group_next, &group->memory_blocks);
669 	}
670 
671 	ret = register_memory(mem);
672 
673 	return ret;
674 }
675 
676 static int add_memory_block(unsigned long base_section_nr)
677 {
678 	int section_count = 0;
679 	unsigned long nr;
680 
681 	for (nr = base_section_nr; nr < base_section_nr + sections_per_block;
682 	     nr++)
683 		if (present_section_nr(nr))
684 			section_count++;
685 
686 	if (section_count == 0)
687 		return 0;
688 	return init_memory_block(memory_block_id(base_section_nr),
689 				 MEM_ONLINE, 0,  NULL);
690 }
691 
692 static void unregister_memory(struct memory_block *memory)
693 {
694 	if (WARN_ON_ONCE(memory->dev.bus != &memory_subsys))
695 		return;
696 
697 	WARN_ON(xa_erase(&memory_blocks, memory->dev.id) == NULL);
698 
699 	if (memory->group) {
700 		list_del(&memory->group_next);
701 		memory->group = NULL;
702 	}
703 
704 	/* drop the ref. we got via find_memory_block() */
705 	put_device(&memory->dev);
706 	device_unregister(&memory->dev);
707 }
708 
709 /*
710  * Create memory block devices for the given memory area. Start and size
711  * have to be aligned to memory block granularity. Memory block devices
712  * will be initialized as offline.
713  *
714  * Called under device_hotplug_lock.
715  */
716 int create_memory_block_devices(unsigned long start, unsigned long size,
717 				unsigned long vmemmap_pages,
718 				struct memory_group *group)
719 {
720 	const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start));
721 	unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size));
722 	struct memory_block *mem;
723 	unsigned long block_id;
724 	int ret = 0;
725 
726 	if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) ||
727 			 !IS_ALIGNED(size, memory_block_size_bytes())))
728 		return -EINVAL;
729 
730 	for (block_id = start_block_id; block_id != end_block_id; block_id++) {
731 		ret = init_memory_block(block_id, MEM_OFFLINE, vmemmap_pages,
732 					group);
733 		if (ret)
734 			break;
735 	}
736 	if (ret) {
737 		end_block_id = block_id;
738 		for (block_id = start_block_id; block_id != end_block_id;
739 		     block_id++) {
740 			mem = find_memory_block_by_id(block_id);
741 			if (WARN_ON_ONCE(!mem))
742 				continue;
743 			unregister_memory(mem);
744 		}
745 	}
746 	return ret;
747 }
748 
749 /*
750  * Remove memory block devices for the given memory area. Start and size
751  * have to be aligned to memory block granularity. Memory block devices
752  * have to be offline.
753  *
754  * Called under device_hotplug_lock.
755  */
756 void remove_memory_block_devices(unsigned long start, unsigned long size)
757 {
758 	const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start));
759 	const unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size));
760 	struct memory_block *mem;
761 	unsigned long block_id;
762 
763 	if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) ||
764 			 !IS_ALIGNED(size, memory_block_size_bytes())))
765 		return;
766 
767 	for (block_id = start_block_id; block_id != end_block_id; block_id++) {
768 		mem = find_memory_block_by_id(block_id);
769 		if (WARN_ON_ONCE(!mem))
770 			continue;
771 		unregister_memory_block_under_nodes(mem);
772 		unregister_memory(mem);
773 	}
774 }
775 
776 /* return true if the memory block is offlined, otherwise, return false */
777 bool is_memblock_offlined(struct memory_block *mem)
778 {
779 	return mem->state == MEM_OFFLINE;
780 }
781 
782 static struct attribute *memory_root_attrs[] = {
783 #ifdef CONFIG_ARCH_MEMORY_PROBE
784 	&dev_attr_probe.attr,
785 #endif
786 
787 #ifdef CONFIG_MEMORY_FAILURE
788 	&dev_attr_soft_offline_page.attr,
789 	&dev_attr_hard_offline_page.attr,
790 #endif
791 
792 	&dev_attr_block_size_bytes.attr,
793 	&dev_attr_auto_online_blocks.attr,
794 	NULL
795 };
796 
797 static const struct attribute_group memory_root_attr_group = {
798 	.attrs = memory_root_attrs,
799 };
800 
801 static const struct attribute_group *memory_root_attr_groups[] = {
802 	&memory_root_attr_group,
803 	NULL,
804 };
805 
806 /*
807  * Initialize the sysfs support for memory devices. At the time this function
808  * is called, we cannot have concurrent creation/deletion of memory block
809  * devices, the device_hotplug_lock is not needed.
810  */
811 void __init memory_dev_init(void)
812 {
813 	int ret;
814 	unsigned long block_sz, nr;
815 
816 	/* Validate the configured memory block size */
817 	block_sz = memory_block_size_bytes();
818 	if (!is_power_of_2(block_sz) || block_sz < MIN_MEMORY_BLOCK_SIZE)
819 		panic("Memory block size not suitable: 0x%lx\n", block_sz);
820 	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
821 
822 	ret = subsys_system_register(&memory_subsys, memory_root_attr_groups);
823 	if (ret)
824 		panic("%s() failed to register subsystem: %d\n", __func__, ret);
825 
826 	/*
827 	 * Create entries for memory sections that were found
828 	 * during boot and have been initialized
829 	 */
830 	for (nr = 0; nr <= __highest_present_section_nr;
831 	     nr += sections_per_block) {
832 		ret = add_memory_block(nr);
833 		if (ret)
834 			panic("%s() failed to add memory block: %d\n", __func__,
835 			      ret);
836 	}
837 }
838 
839 /**
840  * walk_memory_blocks - walk through all present memory blocks overlapped
841  *			by the range [start, start + size)
842  *
843  * @start: start address of the memory range
844  * @size: size of the memory range
845  * @arg: argument passed to func
846  * @func: callback for each memory section walked
847  *
848  * This function walks through all present memory blocks overlapped by the
849  * range [start, start + size), calling func on each memory block.
850  *
851  * In case func() returns an error, walking is aborted and the error is
852  * returned.
853  *
854  * Called under device_hotplug_lock.
855  */
856 int walk_memory_blocks(unsigned long start, unsigned long size,
857 		       void *arg, walk_memory_blocks_func_t func)
858 {
859 	const unsigned long start_block_id = phys_to_block_id(start);
860 	const unsigned long end_block_id = phys_to_block_id(start + size - 1);
861 	struct memory_block *mem;
862 	unsigned long block_id;
863 	int ret = 0;
864 
865 	if (!size)
866 		return 0;
867 
868 	for (block_id = start_block_id; block_id <= end_block_id; block_id++) {
869 		mem = find_memory_block_by_id(block_id);
870 		if (!mem)
871 			continue;
872 
873 		ret = func(mem, arg);
874 		put_device(&mem->dev);
875 		if (ret)
876 			break;
877 	}
878 	return ret;
879 }
880 
881 struct for_each_memory_block_cb_data {
882 	walk_memory_blocks_func_t func;
883 	void *arg;
884 };
885 
886 static int for_each_memory_block_cb(struct device *dev, void *data)
887 {
888 	struct memory_block *mem = to_memory_block(dev);
889 	struct for_each_memory_block_cb_data *cb_data = data;
890 
891 	return cb_data->func(mem, cb_data->arg);
892 }
893 
894 /**
895  * for_each_memory_block - walk through all present memory blocks
896  *
897  * @arg: argument passed to func
898  * @func: callback for each memory block walked
899  *
900  * This function walks through all present memory blocks, calling func on
901  * each memory block.
902  *
903  * In case func() returns an error, walking is aborted and the error is
904  * returned.
905  */
906 int for_each_memory_block(void *arg, walk_memory_blocks_func_t func)
907 {
908 	struct for_each_memory_block_cb_data cb_data = {
909 		.func = func,
910 		.arg = arg,
911 	};
912 
913 	return bus_for_each_dev(&memory_subsys, NULL, &cb_data,
914 				for_each_memory_block_cb);
915 }
916 
917 /*
918  * This is an internal helper to unify allocation and initialization of
919  * memory groups. Note that the passed memory group will be copied to a
920  * dynamically allocated memory group. After this call, the passed
921  * memory group should no longer be used.
922  */
923 static int memory_group_register(struct memory_group group)
924 {
925 	struct memory_group *new_group;
926 	uint32_t mgid;
927 	int ret;
928 
929 	if (!node_possible(group.nid))
930 		return -EINVAL;
931 
932 	new_group = kzalloc(sizeof(group), GFP_KERNEL);
933 	if (!new_group)
934 		return -ENOMEM;
935 	*new_group = group;
936 	INIT_LIST_HEAD(&new_group->memory_blocks);
937 
938 	ret = xa_alloc(&memory_groups, &mgid, new_group, xa_limit_31b,
939 		       GFP_KERNEL);
940 	if (ret) {
941 		kfree(new_group);
942 		return ret;
943 	} else if (group.is_dynamic) {
944 		xa_set_mark(&memory_groups, mgid, MEMORY_GROUP_MARK_DYNAMIC);
945 	}
946 	return mgid;
947 }
948 
949 /**
950  * memory_group_register_static() - Register a static memory group.
951  * @nid: The node id.
952  * @max_pages: The maximum number of pages we'll have in this static memory
953  *	       group.
954  *
955  * Register a new static memory group and return the memory group id.
956  * All memory in the group belongs to a single unit, such as a DIMM. All
957  * memory belonging to a static memory group is added in one go to be removed
958  * in one go -- it's static.
959  *
960  * Returns an error if out of memory, if the node id is invalid, if no new
961  * memory groups can be registered, or if max_pages is invalid (0). Otherwise,
962  * returns the new memory group id.
963  */
964 int memory_group_register_static(int nid, unsigned long max_pages)
965 {
966 	struct memory_group group = {
967 		.nid = nid,
968 		.s = {
969 			.max_pages = max_pages,
970 		},
971 	};
972 
973 	if (!max_pages)
974 		return -EINVAL;
975 	return memory_group_register(group);
976 }
977 EXPORT_SYMBOL_GPL(memory_group_register_static);
978 
979 /**
980  * memory_group_register_dynamic() - Register a dynamic memory group.
981  * @nid: The node id.
982  * @unit_pages: Unit in pages in which is memory added/removed in this dynamic
983  *		memory group.
984  *
985  * Register a new dynamic memory group and return the memory group id.
986  * Memory within a dynamic memory group is added/removed dynamically
987  * in unit_pages.
988  *
989  * Returns an error if out of memory, if the node id is invalid, if no new
990  * memory groups can be registered, or if unit_pages is invalid (0, not a
991  * power of two, smaller than a single memory block). Otherwise, returns the
992  * new memory group id.
993  */
994 int memory_group_register_dynamic(int nid, unsigned long unit_pages)
995 {
996 	struct memory_group group = {
997 		.nid = nid,
998 		.is_dynamic = true,
999 		.d = {
1000 			.unit_pages = unit_pages,
1001 		},
1002 	};
1003 
1004 	if (!unit_pages || !is_power_of_2(unit_pages) ||
1005 	    unit_pages < PHYS_PFN(memory_block_size_bytes()))
1006 		return -EINVAL;
1007 	return memory_group_register(group);
1008 }
1009 EXPORT_SYMBOL_GPL(memory_group_register_dynamic);
1010 
1011 /**
1012  * memory_group_unregister() - Unregister a memory group.
1013  * @mgid: the memory group id
1014  *
1015  * Unregister a memory group. If any memory block still belongs to this
1016  * memory group, unregistering will fail.
1017  *
1018  * Returns -EINVAL if the memory group id is invalid, returns -EBUSY if some
1019  * memory blocks still belong to this memory group and returns 0 if
1020  * unregistering succeeded.
1021  */
1022 int memory_group_unregister(int mgid)
1023 {
1024 	struct memory_group *group;
1025 
1026 	if (mgid < 0)
1027 		return -EINVAL;
1028 
1029 	group = xa_load(&memory_groups, mgid);
1030 	if (!group)
1031 		return -EINVAL;
1032 	if (!list_empty(&group->memory_blocks))
1033 		return -EBUSY;
1034 	xa_erase(&memory_groups, mgid);
1035 	kfree(group);
1036 	return 0;
1037 }
1038 EXPORT_SYMBOL_GPL(memory_group_unregister);
1039 
1040 /*
1041  * This is an internal helper only to be used in core memory hotplug code to
1042  * lookup a memory group. We don't care about locking, as we don't expect a
1043  * memory group to get unregistered while adding memory to it -- because
1044  * the group and the memory is managed by the same driver.
1045  */
1046 struct memory_group *memory_group_find_by_id(int mgid)
1047 {
1048 	return xa_load(&memory_groups, mgid);
1049 }
1050 
1051 /*
1052  * This is an internal helper only to be used in core memory hotplug code to
1053  * walk all dynamic memory groups excluding a given memory group, either
1054  * belonging to a specific node, or belonging to any node.
1055  */
1056 int walk_dynamic_memory_groups(int nid, walk_memory_groups_func_t func,
1057 			       struct memory_group *excluded, void *arg)
1058 {
1059 	struct memory_group *group;
1060 	unsigned long index;
1061 	int ret = 0;
1062 
1063 	xa_for_each_marked(&memory_groups, index, group,
1064 			   MEMORY_GROUP_MARK_DYNAMIC) {
1065 		if (group == excluded)
1066 			continue;
1067 #ifdef CONFIG_NUMA
1068 		if (nid != NUMA_NO_NODE && group->nid != nid)
1069 			continue;
1070 #endif /* CONFIG_NUMA */
1071 		ret = func(group, arg);
1072 		if (ret)
1073 			break;
1074 	}
1075 	return ret;
1076 }
1077