xref: /openbmc/linux/drivers/base/memory.c (revision d83a7cb3)
1 /*
2  * Memory subsystem support
3  *
4  * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
5  *            Dave Hansen <haveblue@us.ibm.com>
6  *
7  * This file provides the necessary infrastructure to represent
8  * a SPARSEMEM-memory-model system's physical memory in /sysfs.
9  * All arch-independent code that assumes MEMORY_HOTPLUG requires
10  * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
11  */
12 
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/topology.h>
16 #include <linux/capability.h>
17 #include <linux/device.h>
18 #include <linux/memory.h>
19 #include <linux/memory_hotplug.h>
20 #include <linux/mm.h>
21 #include <linux/mutex.h>
22 #include <linux/stat.h>
23 #include <linux/slab.h>
24 
25 #include <linux/atomic.h>
26 #include <linux/uaccess.h>
27 
28 static DEFINE_MUTEX(mem_sysfs_mutex);
29 
30 #define MEMORY_CLASS_NAME	"memory"
31 
32 #define to_memory_block(dev) container_of(dev, struct memory_block, dev)
33 
34 static int sections_per_block;
35 
36 static inline int base_memory_block_id(int section_nr)
37 {
38 	return section_nr / sections_per_block;
39 }
40 
41 static int memory_subsys_online(struct device *dev);
42 static int memory_subsys_offline(struct device *dev);
43 
44 static struct bus_type memory_subsys = {
45 	.name = MEMORY_CLASS_NAME,
46 	.dev_name = MEMORY_CLASS_NAME,
47 	.online = memory_subsys_online,
48 	.offline = memory_subsys_offline,
49 };
50 
51 static BLOCKING_NOTIFIER_HEAD(memory_chain);
52 
53 int register_memory_notifier(struct notifier_block *nb)
54 {
55 	return blocking_notifier_chain_register(&memory_chain, nb);
56 }
57 EXPORT_SYMBOL(register_memory_notifier);
58 
59 void unregister_memory_notifier(struct notifier_block *nb)
60 {
61 	blocking_notifier_chain_unregister(&memory_chain, nb);
62 }
63 EXPORT_SYMBOL(unregister_memory_notifier);
64 
65 static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);
66 
67 int register_memory_isolate_notifier(struct notifier_block *nb)
68 {
69 	return atomic_notifier_chain_register(&memory_isolate_chain, nb);
70 }
71 EXPORT_SYMBOL(register_memory_isolate_notifier);
72 
73 void unregister_memory_isolate_notifier(struct notifier_block *nb)
74 {
75 	atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
76 }
77 EXPORT_SYMBOL(unregister_memory_isolate_notifier);
78 
79 static void memory_block_release(struct device *dev)
80 {
81 	struct memory_block *mem = to_memory_block(dev);
82 
83 	kfree(mem);
84 }
85 
86 unsigned long __weak memory_block_size_bytes(void)
87 {
88 	return MIN_MEMORY_BLOCK_SIZE;
89 }
90 
91 static unsigned long get_memory_block_size(void)
92 {
93 	unsigned long block_sz;
94 
95 	block_sz = memory_block_size_bytes();
96 
97 	/* Validate blk_sz is a power of 2 and not less than section size */
98 	if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
99 		WARN_ON(1);
100 		block_sz = MIN_MEMORY_BLOCK_SIZE;
101 	}
102 
103 	return block_sz;
104 }
105 
106 /*
107  * use this as the physical section index that this memsection
108  * uses.
109  */
110 
111 static ssize_t show_mem_start_phys_index(struct device *dev,
112 			struct device_attribute *attr, char *buf)
113 {
114 	struct memory_block *mem = to_memory_block(dev);
115 	unsigned long phys_index;
116 
117 	phys_index = mem->start_section_nr / sections_per_block;
118 	return sprintf(buf, "%08lx\n", phys_index);
119 }
120 
121 /*
122  * Show whether the section of memory is likely to be hot-removable
123  */
124 static ssize_t show_mem_removable(struct device *dev,
125 			struct device_attribute *attr, char *buf)
126 {
127 	unsigned long i, pfn;
128 	int ret = 1;
129 	struct memory_block *mem = to_memory_block(dev);
130 
131 	for (i = 0; i < sections_per_block; i++) {
132 		if (!present_section_nr(mem->start_section_nr + i))
133 			continue;
134 		pfn = section_nr_to_pfn(mem->start_section_nr + i);
135 		ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
136 	}
137 
138 	return sprintf(buf, "%d\n", ret);
139 }
140 
141 /*
142  * online, offline, going offline, etc.
143  */
144 static ssize_t show_mem_state(struct device *dev,
145 			struct device_attribute *attr, char *buf)
146 {
147 	struct memory_block *mem = to_memory_block(dev);
148 	ssize_t len = 0;
149 
150 	/*
151 	 * We can probably put these states in a nice little array
152 	 * so that they're not open-coded
153 	 */
154 	switch (mem->state) {
155 	case MEM_ONLINE:
156 		len = sprintf(buf, "online\n");
157 		break;
158 	case MEM_OFFLINE:
159 		len = sprintf(buf, "offline\n");
160 		break;
161 	case MEM_GOING_OFFLINE:
162 		len = sprintf(buf, "going-offline\n");
163 		break;
164 	default:
165 		len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
166 				mem->state);
167 		WARN_ON(1);
168 		break;
169 	}
170 
171 	return len;
172 }
173 
174 int memory_notify(unsigned long val, void *v)
175 {
176 	return blocking_notifier_call_chain(&memory_chain, val, v);
177 }
178 
179 int memory_isolate_notify(unsigned long val, void *v)
180 {
181 	return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
182 }
183 
184 /*
185  * The probe routines leave the pages reserved, just as the bootmem code does.
186  * Make sure they're still that way.
187  */
188 static bool pages_correctly_reserved(unsigned long start_pfn)
189 {
190 	int i, j;
191 	struct page *page;
192 	unsigned long pfn = start_pfn;
193 
194 	/*
195 	 * memmap between sections is not contiguous except with
196 	 * SPARSEMEM_VMEMMAP. We lookup the page once per section
197 	 * and assume memmap is contiguous within each section
198 	 */
199 	for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) {
200 		if (WARN_ON_ONCE(!pfn_valid(pfn)))
201 			return false;
202 		page = pfn_to_page(pfn);
203 
204 		for (j = 0; j < PAGES_PER_SECTION; j++) {
205 			if (PageReserved(page + j))
206 				continue;
207 
208 			printk(KERN_WARNING "section number %ld page number %d "
209 				"not reserved, was it already online?\n",
210 				pfn_to_section_nr(pfn), j);
211 
212 			return false;
213 		}
214 	}
215 
216 	return true;
217 }
218 
219 /*
220  * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
221  * OK to have direct references to sparsemem variables in here.
222  * Must already be protected by mem_hotplug_begin().
223  */
224 static int
225 memory_block_action(unsigned long phys_index, unsigned long action, int online_type)
226 {
227 	unsigned long start_pfn;
228 	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
229 	int ret;
230 
231 	start_pfn = section_nr_to_pfn(phys_index);
232 
233 	switch (action) {
234 	case MEM_ONLINE:
235 		if (!pages_correctly_reserved(start_pfn))
236 			return -EBUSY;
237 
238 		ret = online_pages(start_pfn, nr_pages, online_type);
239 		break;
240 	case MEM_OFFLINE:
241 		ret = offline_pages(start_pfn, nr_pages);
242 		break;
243 	default:
244 		WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
245 		     "%ld\n", __func__, phys_index, action, action);
246 		ret = -EINVAL;
247 	}
248 
249 	return ret;
250 }
251 
252 static int memory_block_change_state(struct memory_block *mem,
253 		unsigned long to_state, unsigned long from_state_req)
254 {
255 	int ret = 0;
256 
257 	if (mem->state != from_state_req)
258 		return -EINVAL;
259 
260 	if (to_state == MEM_OFFLINE)
261 		mem->state = MEM_GOING_OFFLINE;
262 
263 	ret = memory_block_action(mem->start_section_nr, to_state,
264 				mem->online_type);
265 
266 	mem->state = ret ? from_state_req : to_state;
267 
268 	return ret;
269 }
270 
271 /* The device lock serializes operations on memory_subsys_[online|offline] */
272 static int memory_subsys_online(struct device *dev)
273 {
274 	struct memory_block *mem = to_memory_block(dev);
275 	int ret;
276 
277 	if (mem->state == MEM_ONLINE)
278 		return 0;
279 
280 	/*
281 	 * If we are called from store_mem_state(), online_type will be
282 	 * set >= 0 Otherwise we were called from the device online
283 	 * attribute and need to set the online_type.
284 	 */
285 	if (mem->online_type < 0)
286 		mem->online_type = MMOP_ONLINE_KEEP;
287 
288 	/* Already under protection of mem_hotplug_begin() */
289 	ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
290 
291 	/* clear online_type */
292 	mem->online_type = -1;
293 
294 	return ret;
295 }
296 
297 static int memory_subsys_offline(struct device *dev)
298 {
299 	struct memory_block *mem = to_memory_block(dev);
300 
301 	if (mem->state == MEM_OFFLINE)
302 		return 0;
303 
304 	/* Can't offline block with non-present sections */
305 	if (mem->section_count != sections_per_block)
306 		return -EINVAL;
307 
308 	return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
309 }
310 
311 static ssize_t
312 store_mem_state(struct device *dev,
313 		struct device_attribute *attr, const char *buf, size_t count)
314 {
315 	struct memory_block *mem = to_memory_block(dev);
316 	int ret, online_type;
317 
318 	ret = lock_device_hotplug_sysfs();
319 	if (ret)
320 		return ret;
321 
322 	if (sysfs_streq(buf, "online_kernel"))
323 		online_type = MMOP_ONLINE_KERNEL;
324 	else if (sysfs_streq(buf, "online_movable"))
325 		online_type = MMOP_ONLINE_MOVABLE;
326 	else if (sysfs_streq(buf, "online"))
327 		online_type = MMOP_ONLINE_KEEP;
328 	else if (sysfs_streq(buf, "offline"))
329 		online_type = MMOP_OFFLINE;
330 	else {
331 		ret = -EINVAL;
332 		goto err;
333 	}
334 
335 	/*
336 	 * Memory hotplug needs to hold mem_hotplug_begin() for probe to find
337 	 * the correct memory block to online before doing device_online(dev),
338 	 * which will take dev->mutex.  Take the lock early to prevent an
339 	 * inversion, memory_subsys_online() callbacks will be implemented by
340 	 * assuming it's already protected.
341 	 */
342 	mem_hotplug_begin();
343 
344 	switch (online_type) {
345 	case MMOP_ONLINE_KERNEL:
346 	case MMOP_ONLINE_MOVABLE:
347 	case MMOP_ONLINE_KEEP:
348 		mem->online_type = online_type;
349 		ret = device_online(&mem->dev);
350 		break;
351 	case MMOP_OFFLINE:
352 		ret = device_offline(&mem->dev);
353 		break;
354 	default:
355 		ret = -EINVAL; /* should never happen */
356 	}
357 
358 	mem_hotplug_done();
359 err:
360 	unlock_device_hotplug();
361 
362 	if (ret < 0)
363 		return ret;
364 	if (ret)
365 		return -EINVAL;
366 
367 	return count;
368 }
369 
370 /*
371  * phys_device is a bad name for this.  What I really want
372  * is a way to differentiate between memory ranges that
373  * are part of physical devices that constitute
374  * a complete removable unit or fru.
375  * i.e. do these ranges belong to the same physical device,
376  * s.t. if I offline all of these sections I can then
377  * remove the physical device?
378  */
379 static ssize_t show_phys_device(struct device *dev,
380 				struct device_attribute *attr, char *buf)
381 {
382 	struct memory_block *mem = to_memory_block(dev);
383 	return sprintf(buf, "%d\n", mem->phys_device);
384 }
385 
386 #ifdef CONFIG_MEMORY_HOTREMOVE
387 static ssize_t show_valid_zones(struct device *dev,
388 				struct device_attribute *attr, char *buf)
389 {
390 	struct memory_block *mem = to_memory_block(dev);
391 	unsigned long start_pfn, end_pfn;
392 	unsigned long valid_start, valid_end, valid_pages;
393 	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
394 	struct zone *zone;
395 	int zone_shift = 0;
396 
397 	start_pfn = section_nr_to_pfn(mem->start_section_nr);
398 	end_pfn = start_pfn + nr_pages;
399 
400 	/* The block contains more than one zone can not be offlined. */
401 	if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start, &valid_end))
402 		return sprintf(buf, "none\n");
403 
404 	zone = page_zone(pfn_to_page(valid_start));
405 	valid_pages = valid_end - valid_start;
406 
407 	/* MMOP_ONLINE_KEEP */
408 	sprintf(buf, "%s", zone->name);
409 
410 	/* MMOP_ONLINE_KERNEL */
411 	zone_can_shift(valid_start, valid_pages, ZONE_NORMAL, &zone_shift);
412 	if (zone_shift) {
413 		strcat(buf, " ");
414 		strcat(buf, (zone + zone_shift)->name);
415 	}
416 
417 	/* MMOP_ONLINE_MOVABLE */
418 	zone_can_shift(valid_start, valid_pages, ZONE_MOVABLE, &zone_shift);
419 	if (zone_shift) {
420 		strcat(buf, " ");
421 		strcat(buf, (zone + zone_shift)->name);
422 	}
423 
424 	strcat(buf, "\n");
425 
426 	return strlen(buf);
427 }
428 static DEVICE_ATTR(valid_zones, 0444, show_valid_zones, NULL);
429 #endif
430 
431 static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
432 static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state);
433 static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL);
434 static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL);
435 
436 /*
437  * Block size attribute stuff
438  */
439 static ssize_t
440 print_block_size(struct device *dev, struct device_attribute *attr,
441 		 char *buf)
442 {
443 	return sprintf(buf, "%lx\n", get_memory_block_size());
444 }
445 
446 static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL);
447 
448 /*
449  * Memory auto online policy.
450  */
451 
452 static ssize_t
453 show_auto_online_blocks(struct device *dev, struct device_attribute *attr,
454 			char *buf)
455 {
456 	if (memhp_auto_online)
457 		return sprintf(buf, "online\n");
458 	else
459 		return sprintf(buf, "offline\n");
460 }
461 
462 static ssize_t
463 store_auto_online_blocks(struct device *dev, struct device_attribute *attr,
464 			 const char *buf, size_t count)
465 {
466 	if (sysfs_streq(buf, "online"))
467 		memhp_auto_online = true;
468 	else if (sysfs_streq(buf, "offline"))
469 		memhp_auto_online = false;
470 	else
471 		return -EINVAL;
472 
473 	return count;
474 }
475 
476 static DEVICE_ATTR(auto_online_blocks, 0644, show_auto_online_blocks,
477 		   store_auto_online_blocks);
478 
479 /*
480  * Some architectures will have custom drivers to do this, and
481  * will not need to do it from userspace.  The fake hot-add code
482  * as well as ppc64 will do all of their discovery in userspace
483  * and will require this interface.
484  */
485 #ifdef CONFIG_ARCH_MEMORY_PROBE
486 static ssize_t
487 memory_probe_store(struct device *dev, struct device_attribute *attr,
488 		   const char *buf, size_t count)
489 {
490 	u64 phys_addr;
491 	int nid, ret;
492 	unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
493 
494 	ret = kstrtoull(buf, 0, &phys_addr);
495 	if (ret)
496 		return ret;
497 
498 	if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
499 		return -EINVAL;
500 
501 	nid = memory_add_physaddr_to_nid(phys_addr);
502 	ret = add_memory(nid, phys_addr,
503 			 MIN_MEMORY_BLOCK_SIZE * sections_per_block);
504 
505 	if (ret)
506 		goto out;
507 
508 	ret = count;
509 out:
510 	return ret;
511 }
512 
513 static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
514 #endif
515 
516 #ifdef CONFIG_MEMORY_FAILURE
517 /*
518  * Support for offlining pages of memory
519  */
520 
521 /* Soft offline a page */
522 static ssize_t
523 store_soft_offline_page(struct device *dev,
524 			struct device_attribute *attr,
525 			const char *buf, size_t count)
526 {
527 	int ret;
528 	u64 pfn;
529 	if (!capable(CAP_SYS_ADMIN))
530 		return -EPERM;
531 	if (kstrtoull(buf, 0, &pfn) < 0)
532 		return -EINVAL;
533 	pfn >>= PAGE_SHIFT;
534 	if (!pfn_valid(pfn))
535 		return -ENXIO;
536 	ret = soft_offline_page(pfn_to_page(pfn), 0);
537 	return ret == 0 ? count : ret;
538 }
539 
540 /* Forcibly offline a page, including killing processes. */
541 static ssize_t
542 store_hard_offline_page(struct device *dev,
543 			struct device_attribute *attr,
544 			const char *buf, size_t count)
545 {
546 	int ret;
547 	u64 pfn;
548 	if (!capable(CAP_SYS_ADMIN))
549 		return -EPERM;
550 	if (kstrtoull(buf, 0, &pfn) < 0)
551 		return -EINVAL;
552 	pfn >>= PAGE_SHIFT;
553 	ret = memory_failure(pfn, 0, 0);
554 	return ret ? ret : count;
555 }
556 
557 static DEVICE_ATTR(soft_offline_page, S_IWUSR, NULL, store_soft_offline_page);
558 static DEVICE_ATTR(hard_offline_page, S_IWUSR, NULL, store_hard_offline_page);
559 #endif
560 
561 /*
562  * Note that phys_device is optional.  It is here to allow for
563  * differentiation between which *physical* devices each
564  * section belongs to...
565  */
566 int __weak arch_get_memory_phys_device(unsigned long start_pfn)
567 {
568 	return 0;
569 }
570 
571 /*
572  * A reference for the returned object is held and the reference for the
573  * hinted object is released.
574  */
575 struct memory_block *find_memory_block_hinted(struct mem_section *section,
576 					      struct memory_block *hint)
577 {
578 	int block_id = base_memory_block_id(__section_nr(section));
579 	struct device *hintdev = hint ? &hint->dev : NULL;
580 	struct device *dev;
581 
582 	dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev);
583 	if (hint)
584 		put_device(&hint->dev);
585 	if (!dev)
586 		return NULL;
587 	return to_memory_block(dev);
588 }
589 
590 /*
591  * For now, we have a linear search to go find the appropriate
592  * memory_block corresponding to a particular phys_index. If
593  * this gets to be a real problem, we can always use a radix
594  * tree or something here.
595  *
596  * This could be made generic for all device subsystems.
597  */
598 struct memory_block *find_memory_block(struct mem_section *section)
599 {
600 	return find_memory_block_hinted(section, NULL);
601 }
602 
603 static struct attribute *memory_memblk_attrs[] = {
604 	&dev_attr_phys_index.attr,
605 	&dev_attr_state.attr,
606 	&dev_attr_phys_device.attr,
607 	&dev_attr_removable.attr,
608 #ifdef CONFIG_MEMORY_HOTREMOVE
609 	&dev_attr_valid_zones.attr,
610 #endif
611 	NULL
612 };
613 
614 static struct attribute_group memory_memblk_attr_group = {
615 	.attrs = memory_memblk_attrs,
616 };
617 
618 static const struct attribute_group *memory_memblk_attr_groups[] = {
619 	&memory_memblk_attr_group,
620 	NULL,
621 };
622 
623 /*
624  * register_memory - Setup a sysfs device for a memory block
625  */
626 static
627 int register_memory(struct memory_block *memory)
628 {
629 	memory->dev.bus = &memory_subsys;
630 	memory->dev.id = memory->start_section_nr / sections_per_block;
631 	memory->dev.release = memory_block_release;
632 	memory->dev.groups = memory_memblk_attr_groups;
633 	memory->dev.offline = memory->state == MEM_OFFLINE;
634 
635 	return device_register(&memory->dev);
636 }
637 
638 static int init_memory_block(struct memory_block **memory,
639 			     struct mem_section *section, unsigned long state)
640 {
641 	struct memory_block *mem;
642 	unsigned long start_pfn;
643 	int scn_nr;
644 	int ret = 0;
645 
646 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
647 	if (!mem)
648 		return -ENOMEM;
649 
650 	scn_nr = __section_nr(section);
651 	mem->start_section_nr =
652 			base_memory_block_id(scn_nr) * sections_per_block;
653 	mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
654 	mem->state = state;
655 	start_pfn = section_nr_to_pfn(mem->start_section_nr);
656 	mem->phys_device = arch_get_memory_phys_device(start_pfn);
657 
658 	ret = register_memory(mem);
659 
660 	*memory = mem;
661 	return ret;
662 }
663 
664 static int add_memory_block(int base_section_nr)
665 {
666 	struct memory_block *mem;
667 	int i, ret, section_count = 0, section_nr;
668 
669 	for (i = base_section_nr;
670 	     (i < base_section_nr + sections_per_block) && i < NR_MEM_SECTIONS;
671 	     i++) {
672 		if (!present_section_nr(i))
673 			continue;
674 		if (section_count == 0)
675 			section_nr = i;
676 		section_count++;
677 	}
678 
679 	if (section_count == 0)
680 		return 0;
681 	ret = init_memory_block(&mem, __nr_to_section(section_nr), MEM_ONLINE);
682 	if (ret)
683 		return ret;
684 	mem->section_count = section_count;
685 	return 0;
686 }
687 
688 static bool is_zone_device_section(struct mem_section *ms)
689 {
690 	struct page *page;
691 
692 	page = sparse_decode_mem_map(ms->section_mem_map, __section_nr(ms));
693 	return is_zone_device_page(page);
694 }
695 
696 /*
697  * need an interface for the VM to add new memory regions,
698  * but without onlining it.
699  */
700 int register_new_memory(int nid, struct mem_section *section)
701 {
702 	int ret = 0;
703 	struct memory_block *mem;
704 
705 	if (is_zone_device_section(section))
706 		return 0;
707 
708 	mutex_lock(&mem_sysfs_mutex);
709 
710 	mem = find_memory_block(section);
711 	if (mem) {
712 		mem->section_count++;
713 		put_device(&mem->dev);
714 	} else {
715 		ret = init_memory_block(&mem, section, MEM_OFFLINE);
716 		if (ret)
717 			goto out;
718 		mem->section_count++;
719 	}
720 
721 	if (mem->section_count == sections_per_block)
722 		ret = register_mem_sect_under_node(mem, nid);
723 out:
724 	mutex_unlock(&mem_sysfs_mutex);
725 	return ret;
726 }
727 
728 #ifdef CONFIG_MEMORY_HOTREMOVE
729 static void
730 unregister_memory(struct memory_block *memory)
731 {
732 	BUG_ON(memory->dev.bus != &memory_subsys);
733 
734 	/* drop the ref. we got in remove_memory_block() */
735 	put_device(&memory->dev);
736 	device_unregister(&memory->dev);
737 }
738 
739 static int remove_memory_section(unsigned long node_id,
740 			       struct mem_section *section, int phys_device)
741 {
742 	struct memory_block *mem;
743 
744 	if (is_zone_device_section(section))
745 		return 0;
746 
747 	mutex_lock(&mem_sysfs_mutex);
748 	mem = find_memory_block(section);
749 	unregister_mem_sect_under_nodes(mem, __section_nr(section));
750 
751 	mem->section_count--;
752 	if (mem->section_count == 0)
753 		unregister_memory(mem);
754 	else
755 		put_device(&mem->dev);
756 
757 	mutex_unlock(&mem_sysfs_mutex);
758 	return 0;
759 }
760 
761 int unregister_memory_section(struct mem_section *section)
762 {
763 	if (!present_section(section))
764 		return -EINVAL;
765 
766 	return remove_memory_section(0, section, 0);
767 }
768 #endif /* CONFIG_MEMORY_HOTREMOVE */
769 
770 /* return true if the memory block is offlined, otherwise, return false */
771 bool is_memblock_offlined(struct memory_block *mem)
772 {
773 	return mem->state == MEM_OFFLINE;
774 }
775 
776 static struct attribute *memory_root_attrs[] = {
777 #ifdef CONFIG_ARCH_MEMORY_PROBE
778 	&dev_attr_probe.attr,
779 #endif
780 
781 #ifdef CONFIG_MEMORY_FAILURE
782 	&dev_attr_soft_offline_page.attr,
783 	&dev_attr_hard_offline_page.attr,
784 #endif
785 
786 	&dev_attr_block_size_bytes.attr,
787 	&dev_attr_auto_online_blocks.attr,
788 	NULL
789 };
790 
791 static struct attribute_group memory_root_attr_group = {
792 	.attrs = memory_root_attrs,
793 };
794 
795 static const struct attribute_group *memory_root_attr_groups[] = {
796 	&memory_root_attr_group,
797 	NULL,
798 };
799 
800 /*
801  * Initialize the sysfs support for memory devices...
802  */
803 int __init memory_dev_init(void)
804 {
805 	unsigned int i;
806 	int ret;
807 	int err;
808 	unsigned long block_sz;
809 
810 	ret = subsys_system_register(&memory_subsys, memory_root_attr_groups);
811 	if (ret)
812 		goto out;
813 
814 	block_sz = get_memory_block_size();
815 	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
816 
817 	/*
818 	 * Create entries for memory sections that were found
819 	 * during boot and have been initialized
820 	 */
821 	mutex_lock(&mem_sysfs_mutex);
822 	for (i = 0; i < NR_MEM_SECTIONS; i += sections_per_block) {
823 		err = add_memory_block(i);
824 		if (!ret)
825 			ret = err;
826 	}
827 	mutex_unlock(&mem_sysfs_mutex);
828 
829 out:
830 	if (ret)
831 		printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
832 	return ret;
833 }
834