xref: /openbmc/linux/drivers/base/memory.c (revision d2999e1b)
1 /*
2  * Memory subsystem support
3  *
4  * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
5  *            Dave Hansen <haveblue@us.ibm.com>
6  *
7  * This file provides the necessary infrastructure to represent
8  * a SPARSEMEM-memory-model system's physical memory in /sysfs.
9  * All arch-independent code that assumes MEMORY_HOTPLUG requires
10  * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
11  */
12 
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/topology.h>
16 #include <linux/capability.h>
17 #include <linux/device.h>
18 #include <linux/memory.h>
19 #include <linux/memory_hotplug.h>
20 #include <linux/mm.h>
21 #include <linux/mutex.h>
22 #include <linux/stat.h>
23 #include <linux/slab.h>
24 
25 #include <linux/atomic.h>
26 #include <asm/uaccess.h>
27 
28 static DEFINE_MUTEX(mem_sysfs_mutex);
29 
30 #define MEMORY_CLASS_NAME	"memory"
31 
32 #define to_memory_block(dev) container_of(dev, struct memory_block, dev)
33 
34 static int sections_per_block;
35 
36 static inline int base_memory_block_id(int section_nr)
37 {
38 	return section_nr / sections_per_block;
39 }
40 
41 static int memory_subsys_online(struct device *dev);
42 static int memory_subsys_offline(struct device *dev);
43 
44 static struct bus_type memory_subsys = {
45 	.name = MEMORY_CLASS_NAME,
46 	.dev_name = MEMORY_CLASS_NAME,
47 	.online = memory_subsys_online,
48 	.offline = memory_subsys_offline,
49 };
50 
51 static BLOCKING_NOTIFIER_HEAD(memory_chain);
52 
53 int register_memory_notifier(struct notifier_block *nb)
54 {
55         return blocking_notifier_chain_register(&memory_chain, nb);
56 }
57 EXPORT_SYMBOL(register_memory_notifier);
58 
59 void unregister_memory_notifier(struct notifier_block *nb)
60 {
61         blocking_notifier_chain_unregister(&memory_chain, nb);
62 }
63 EXPORT_SYMBOL(unregister_memory_notifier);
64 
65 static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);
66 
67 int register_memory_isolate_notifier(struct notifier_block *nb)
68 {
69 	return atomic_notifier_chain_register(&memory_isolate_chain, nb);
70 }
71 EXPORT_SYMBOL(register_memory_isolate_notifier);
72 
73 void unregister_memory_isolate_notifier(struct notifier_block *nb)
74 {
75 	atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
76 }
77 EXPORT_SYMBOL(unregister_memory_isolate_notifier);
78 
79 static void memory_block_release(struct device *dev)
80 {
81 	struct memory_block *mem = to_memory_block(dev);
82 
83 	kfree(mem);
84 }
85 
86 unsigned long __weak memory_block_size_bytes(void)
87 {
88 	return MIN_MEMORY_BLOCK_SIZE;
89 }
90 
91 static unsigned long get_memory_block_size(void)
92 {
93 	unsigned long block_sz;
94 
95 	block_sz = memory_block_size_bytes();
96 
97 	/* Validate blk_sz is a power of 2 and not less than section size */
98 	if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
99 		WARN_ON(1);
100 		block_sz = MIN_MEMORY_BLOCK_SIZE;
101 	}
102 
103 	return block_sz;
104 }
105 
106 /*
107  * use this as the physical section index that this memsection
108  * uses.
109  */
110 
111 static ssize_t show_mem_start_phys_index(struct device *dev,
112 			struct device_attribute *attr, char *buf)
113 {
114 	struct memory_block *mem = to_memory_block(dev);
115 	unsigned long phys_index;
116 
117 	phys_index = mem->start_section_nr / sections_per_block;
118 	return sprintf(buf, "%08lx\n", phys_index);
119 }
120 
121 /*
122  * Show whether the section of memory is likely to be hot-removable
123  */
124 static ssize_t show_mem_removable(struct device *dev,
125 			struct device_attribute *attr, char *buf)
126 {
127 	unsigned long i, pfn;
128 	int ret = 1;
129 	struct memory_block *mem = to_memory_block(dev);
130 
131 	for (i = 0; i < sections_per_block; i++) {
132 		if (!present_section_nr(mem->start_section_nr + i))
133 			continue;
134 		pfn = section_nr_to_pfn(mem->start_section_nr + i);
135 		ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
136 	}
137 
138 	return sprintf(buf, "%d\n", ret);
139 }
140 
141 /*
142  * online, offline, going offline, etc.
143  */
144 static ssize_t show_mem_state(struct device *dev,
145 			struct device_attribute *attr, char *buf)
146 {
147 	struct memory_block *mem = to_memory_block(dev);
148 	ssize_t len = 0;
149 
150 	/*
151 	 * We can probably put these states in a nice little array
152 	 * so that they're not open-coded
153 	 */
154 	switch (mem->state) {
155 		case MEM_ONLINE:
156 			len = sprintf(buf, "online\n");
157 			break;
158 		case MEM_OFFLINE:
159 			len = sprintf(buf, "offline\n");
160 			break;
161 		case MEM_GOING_OFFLINE:
162 			len = sprintf(buf, "going-offline\n");
163 			break;
164 		default:
165 			len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
166 					mem->state);
167 			WARN_ON(1);
168 			break;
169 	}
170 
171 	return len;
172 }
173 
174 int memory_notify(unsigned long val, void *v)
175 {
176 	return blocking_notifier_call_chain(&memory_chain, val, v);
177 }
178 
179 int memory_isolate_notify(unsigned long val, void *v)
180 {
181 	return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
182 }
183 
184 /*
185  * The probe routines leave the pages reserved, just as the bootmem code does.
186  * Make sure they're still that way.
187  */
188 static bool pages_correctly_reserved(unsigned long start_pfn)
189 {
190 	int i, j;
191 	struct page *page;
192 	unsigned long pfn = start_pfn;
193 
194 	/*
195 	 * memmap between sections is not contiguous except with
196 	 * SPARSEMEM_VMEMMAP. We lookup the page once per section
197 	 * and assume memmap is contiguous within each section
198 	 */
199 	for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) {
200 		if (WARN_ON_ONCE(!pfn_valid(pfn)))
201 			return false;
202 		page = pfn_to_page(pfn);
203 
204 		for (j = 0; j < PAGES_PER_SECTION; j++) {
205 			if (PageReserved(page + j))
206 				continue;
207 
208 			printk(KERN_WARNING "section number %ld page number %d "
209 				"not reserved, was it already online?\n",
210 				pfn_to_section_nr(pfn), j);
211 
212 			return false;
213 		}
214 	}
215 
216 	return true;
217 }
218 
219 /*
220  * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
221  * OK to have direct references to sparsemem variables in here.
222  */
223 static int
224 memory_block_action(unsigned long phys_index, unsigned long action, int online_type)
225 {
226 	unsigned long start_pfn;
227 	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
228 	struct page *first_page;
229 	int ret;
230 
231 	first_page = pfn_to_page(phys_index << PFN_SECTION_SHIFT);
232 	start_pfn = page_to_pfn(first_page);
233 
234 	switch (action) {
235 		case MEM_ONLINE:
236 			if (!pages_correctly_reserved(start_pfn))
237 				return -EBUSY;
238 
239 			ret = online_pages(start_pfn, nr_pages, online_type);
240 			break;
241 		case MEM_OFFLINE:
242 			ret = offline_pages(start_pfn, nr_pages);
243 			break;
244 		default:
245 			WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
246 			     "%ld\n", __func__, phys_index, action, action);
247 			ret = -EINVAL;
248 	}
249 
250 	return ret;
251 }
252 
253 static int memory_block_change_state(struct memory_block *mem,
254 		unsigned long to_state, unsigned long from_state_req)
255 {
256 	int ret = 0;
257 
258 	if (mem->state != from_state_req)
259 		return -EINVAL;
260 
261 	if (to_state == MEM_OFFLINE)
262 		mem->state = MEM_GOING_OFFLINE;
263 
264 	ret = memory_block_action(mem->start_section_nr, to_state,
265 				mem->online_type);
266 
267 	mem->state = ret ? from_state_req : to_state;
268 
269 	return ret;
270 }
271 
272 /* The device lock serializes operations on memory_subsys_[online|offline] */
273 static int memory_subsys_online(struct device *dev)
274 {
275 	struct memory_block *mem = to_memory_block(dev);
276 	int ret;
277 
278 	if (mem->state == MEM_ONLINE)
279 		return 0;
280 
281 	/*
282 	 * If we are called from store_mem_state(), online_type will be
283 	 * set >= 0 Otherwise we were called from the device online
284 	 * attribute and need to set the online_type.
285 	 */
286 	if (mem->online_type < 0)
287 		mem->online_type = ONLINE_KEEP;
288 
289 	ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
290 
291 	/* clear online_type */
292 	mem->online_type = -1;
293 
294 	return ret;
295 }
296 
297 static int memory_subsys_offline(struct device *dev)
298 {
299 	struct memory_block *mem = to_memory_block(dev);
300 
301 	if (mem->state == MEM_OFFLINE)
302 		return 0;
303 
304 	return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
305 }
306 
307 static ssize_t
308 store_mem_state(struct device *dev,
309 		struct device_attribute *attr, const char *buf, size_t count)
310 {
311 	struct memory_block *mem = to_memory_block(dev);
312 	int ret, online_type;
313 
314 	ret = lock_device_hotplug_sysfs();
315 	if (ret)
316 		return ret;
317 
318 	if (!strncmp(buf, "online_kernel", min_t(int, count, 13)))
319 		online_type = ONLINE_KERNEL;
320 	else if (!strncmp(buf, "online_movable", min_t(int, count, 14)))
321 		online_type = ONLINE_MOVABLE;
322 	else if (!strncmp(buf, "online", min_t(int, count, 6)))
323 		online_type = ONLINE_KEEP;
324 	else if (!strncmp(buf, "offline", min_t(int, count, 7)))
325 		online_type = -1;
326 	else {
327 		ret = -EINVAL;
328 		goto err;
329 	}
330 
331 	switch (online_type) {
332 	case ONLINE_KERNEL:
333 	case ONLINE_MOVABLE:
334 	case ONLINE_KEEP:
335 		/*
336 		 * mem->online_type is not protected so there can be a
337 		 * race here.  However, when racing online, the first
338 		 * will succeed and the second will just return as the
339 		 * block will already be online.  The online type
340 		 * could be either one, but that is expected.
341 		 */
342 		mem->online_type = online_type;
343 		ret = device_online(&mem->dev);
344 		break;
345 	case -1:
346 		ret = device_offline(&mem->dev);
347 		break;
348 	default:
349 		ret = -EINVAL; /* should never happen */
350 	}
351 
352 err:
353 	unlock_device_hotplug();
354 
355 	if (ret)
356 		return ret;
357 	return count;
358 }
359 
360 /*
361  * phys_device is a bad name for this.  What I really want
362  * is a way to differentiate between memory ranges that
363  * are part of physical devices that constitute
364  * a complete removable unit or fru.
365  * i.e. do these ranges belong to the same physical device,
366  * s.t. if I offline all of these sections I can then
367  * remove the physical device?
368  */
369 static ssize_t show_phys_device(struct device *dev,
370 				struct device_attribute *attr, char *buf)
371 {
372 	struct memory_block *mem = to_memory_block(dev);
373 	return sprintf(buf, "%d\n", mem->phys_device);
374 }
375 
376 static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
377 static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state);
378 static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL);
379 static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL);
380 
381 /*
382  * Block size attribute stuff
383  */
384 static ssize_t
385 print_block_size(struct device *dev, struct device_attribute *attr,
386 		 char *buf)
387 {
388 	return sprintf(buf, "%lx\n", get_memory_block_size());
389 }
390 
391 static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL);
392 
393 /*
394  * Some architectures will have custom drivers to do this, and
395  * will not need to do it from userspace.  The fake hot-add code
396  * as well as ppc64 will do all of their discovery in userspace
397  * and will require this interface.
398  */
399 #ifdef CONFIG_ARCH_MEMORY_PROBE
400 static ssize_t
401 memory_probe_store(struct device *dev, struct device_attribute *attr,
402 		   const char *buf, size_t count)
403 {
404 	u64 phys_addr;
405 	int nid;
406 	int i, ret;
407 	unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
408 
409 	phys_addr = simple_strtoull(buf, NULL, 0);
410 
411 	if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
412 		return -EINVAL;
413 
414 	for (i = 0; i < sections_per_block; i++) {
415 		nid = memory_add_physaddr_to_nid(phys_addr);
416 		ret = add_memory(nid, phys_addr,
417 				 PAGES_PER_SECTION << PAGE_SHIFT);
418 		if (ret)
419 			goto out;
420 
421 		phys_addr += MIN_MEMORY_BLOCK_SIZE;
422 	}
423 
424 	ret = count;
425 out:
426 	return ret;
427 }
428 
429 static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
430 #endif
431 
432 #ifdef CONFIG_MEMORY_FAILURE
433 /*
434  * Support for offlining pages of memory
435  */
436 
437 /* Soft offline a page */
438 static ssize_t
439 store_soft_offline_page(struct device *dev,
440 			struct device_attribute *attr,
441 			const char *buf, size_t count)
442 {
443 	int ret;
444 	u64 pfn;
445 	if (!capable(CAP_SYS_ADMIN))
446 		return -EPERM;
447 	if (kstrtoull(buf, 0, &pfn) < 0)
448 		return -EINVAL;
449 	pfn >>= PAGE_SHIFT;
450 	if (!pfn_valid(pfn))
451 		return -ENXIO;
452 	ret = soft_offline_page(pfn_to_page(pfn), 0);
453 	return ret == 0 ? count : ret;
454 }
455 
456 /* Forcibly offline a page, including killing processes. */
457 static ssize_t
458 store_hard_offline_page(struct device *dev,
459 			struct device_attribute *attr,
460 			const char *buf, size_t count)
461 {
462 	int ret;
463 	u64 pfn;
464 	if (!capable(CAP_SYS_ADMIN))
465 		return -EPERM;
466 	if (kstrtoull(buf, 0, &pfn) < 0)
467 		return -EINVAL;
468 	pfn >>= PAGE_SHIFT;
469 	ret = memory_failure(pfn, 0, 0);
470 	return ret ? ret : count;
471 }
472 
473 static DEVICE_ATTR(soft_offline_page, S_IWUSR, NULL, store_soft_offline_page);
474 static DEVICE_ATTR(hard_offline_page, S_IWUSR, NULL, store_hard_offline_page);
475 #endif
476 
477 /*
478  * Note that phys_device is optional.  It is here to allow for
479  * differentiation between which *physical* devices each
480  * section belongs to...
481  */
482 int __weak arch_get_memory_phys_device(unsigned long start_pfn)
483 {
484 	return 0;
485 }
486 
487 /*
488  * A reference for the returned object is held and the reference for the
489  * hinted object is released.
490  */
491 struct memory_block *find_memory_block_hinted(struct mem_section *section,
492 					      struct memory_block *hint)
493 {
494 	int block_id = base_memory_block_id(__section_nr(section));
495 	struct device *hintdev = hint ? &hint->dev : NULL;
496 	struct device *dev;
497 
498 	dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev);
499 	if (hint)
500 		put_device(&hint->dev);
501 	if (!dev)
502 		return NULL;
503 	return to_memory_block(dev);
504 }
505 
506 /*
507  * For now, we have a linear search to go find the appropriate
508  * memory_block corresponding to a particular phys_index. If
509  * this gets to be a real problem, we can always use a radix
510  * tree or something here.
511  *
512  * This could be made generic for all device subsystems.
513  */
514 struct memory_block *find_memory_block(struct mem_section *section)
515 {
516 	return find_memory_block_hinted(section, NULL);
517 }
518 
519 static struct attribute *memory_memblk_attrs[] = {
520 	&dev_attr_phys_index.attr,
521 	&dev_attr_state.attr,
522 	&dev_attr_phys_device.attr,
523 	&dev_attr_removable.attr,
524 	NULL
525 };
526 
527 static struct attribute_group memory_memblk_attr_group = {
528 	.attrs = memory_memblk_attrs,
529 };
530 
531 static const struct attribute_group *memory_memblk_attr_groups[] = {
532 	&memory_memblk_attr_group,
533 	NULL,
534 };
535 
536 /*
537  * register_memory - Setup a sysfs device for a memory block
538  */
539 static
540 int register_memory(struct memory_block *memory)
541 {
542 	memory->dev.bus = &memory_subsys;
543 	memory->dev.id = memory->start_section_nr / sections_per_block;
544 	memory->dev.release = memory_block_release;
545 	memory->dev.groups = memory_memblk_attr_groups;
546 	memory->dev.offline = memory->state == MEM_OFFLINE;
547 
548 	return device_register(&memory->dev);
549 }
550 
551 static int init_memory_block(struct memory_block **memory,
552 			     struct mem_section *section, unsigned long state)
553 {
554 	struct memory_block *mem;
555 	unsigned long start_pfn;
556 	int scn_nr;
557 	int ret = 0;
558 
559 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
560 	if (!mem)
561 		return -ENOMEM;
562 
563 	scn_nr = __section_nr(section);
564 	mem->start_section_nr =
565 			base_memory_block_id(scn_nr) * sections_per_block;
566 	mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
567 	mem->state = state;
568 	mem->section_count++;
569 	start_pfn = section_nr_to_pfn(mem->start_section_nr);
570 	mem->phys_device = arch_get_memory_phys_device(start_pfn);
571 
572 	ret = register_memory(mem);
573 
574 	*memory = mem;
575 	return ret;
576 }
577 
578 static int add_memory_block(int base_section_nr)
579 {
580 	struct memory_block *mem;
581 	int i, ret, section_count = 0, section_nr;
582 
583 	for (i = base_section_nr;
584 	     (i < base_section_nr + sections_per_block) && i < NR_MEM_SECTIONS;
585 	     i++) {
586 		if (!present_section_nr(i))
587 			continue;
588 		if (section_count == 0)
589 			section_nr = i;
590 		section_count++;
591 	}
592 
593 	if (section_count == 0)
594 		return 0;
595 	ret = init_memory_block(&mem, __nr_to_section(section_nr), MEM_ONLINE);
596 	if (ret)
597 		return ret;
598 	mem->section_count = section_count;
599 	return 0;
600 }
601 
602 
603 /*
604  * need an interface for the VM to add new memory regions,
605  * but without onlining it.
606  */
607 int register_new_memory(int nid, struct mem_section *section)
608 {
609 	int ret = 0;
610 	struct memory_block *mem;
611 
612 	mutex_lock(&mem_sysfs_mutex);
613 
614 	mem = find_memory_block(section);
615 	if (mem) {
616 		mem->section_count++;
617 		put_device(&mem->dev);
618 	} else {
619 		ret = init_memory_block(&mem, section, MEM_OFFLINE);
620 		if (ret)
621 			goto out;
622 	}
623 
624 	if (mem->section_count == sections_per_block)
625 		ret = register_mem_sect_under_node(mem, nid);
626 out:
627 	mutex_unlock(&mem_sysfs_mutex);
628 	return ret;
629 }
630 
631 #ifdef CONFIG_MEMORY_HOTREMOVE
632 static void
633 unregister_memory(struct memory_block *memory)
634 {
635 	BUG_ON(memory->dev.bus != &memory_subsys);
636 
637 	/* drop the ref. we got in remove_memory_block() */
638 	put_device(&memory->dev);
639 	device_unregister(&memory->dev);
640 }
641 
642 static int remove_memory_block(unsigned long node_id,
643 			       struct mem_section *section, int phys_device)
644 {
645 	struct memory_block *mem;
646 
647 	mutex_lock(&mem_sysfs_mutex);
648 	mem = find_memory_block(section);
649 	unregister_mem_sect_under_nodes(mem, __section_nr(section));
650 
651 	mem->section_count--;
652 	if (mem->section_count == 0)
653 		unregister_memory(mem);
654 	else
655 		put_device(&mem->dev);
656 
657 	mutex_unlock(&mem_sysfs_mutex);
658 	return 0;
659 }
660 
661 int unregister_memory_section(struct mem_section *section)
662 {
663 	if (!present_section(section))
664 		return -EINVAL;
665 
666 	return remove_memory_block(0, section, 0);
667 }
668 #endif /* CONFIG_MEMORY_HOTREMOVE */
669 
670 /* return true if the memory block is offlined, otherwise, return false */
671 bool is_memblock_offlined(struct memory_block *mem)
672 {
673 	return mem->state == MEM_OFFLINE;
674 }
675 
676 static struct attribute *memory_root_attrs[] = {
677 #ifdef CONFIG_ARCH_MEMORY_PROBE
678 	&dev_attr_probe.attr,
679 #endif
680 
681 #ifdef CONFIG_MEMORY_FAILURE
682 	&dev_attr_soft_offline_page.attr,
683 	&dev_attr_hard_offline_page.attr,
684 #endif
685 
686 	&dev_attr_block_size_bytes.attr,
687 	NULL
688 };
689 
690 static struct attribute_group memory_root_attr_group = {
691 	.attrs = memory_root_attrs,
692 };
693 
694 static const struct attribute_group *memory_root_attr_groups[] = {
695 	&memory_root_attr_group,
696 	NULL,
697 };
698 
699 /*
700  * Initialize the sysfs support for memory devices...
701  */
702 int __init memory_dev_init(void)
703 {
704 	unsigned int i;
705 	int ret;
706 	int err;
707 	unsigned long block_sz;
708 
709 	ret = subsys_system_register(&memory_subsys, memory_root_attr_groups);
710 	if (ret)
711 		goto out;
712 
713 	block_sz = get_memory_block_size();
714 	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
715 
716 	/*
717 	 * Create entries for memory sections that were found
718 	 * during boot and have been initialized
719 	 */
720 	mutex_lock(&mem_sysfs_mutex);
721 	for (i = 0; i < NR_MEM_SECTIONS; i += sections_per_block) {
722 		err = add_memory_block(i);
723 		if (!ret)
724 			ret = err;
725 	}
726 	mutex_unlock(&mem_sysfs_mutex);
727 
728 out:
729 	if (ret)
730 		printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
731 	return ret;
732 }
733