xref: /openbmc/linux/drivers/base/memory.c (revision c4ee0af3)
1 /*
2  * Memory subsystem support
3  *
4  * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
5  *            Dave Hansen <haveblue@us.ibm.com>
6  *
7  * This file provides the necessary infrastructure to represent
8  * a SPARSEMEM-memory-model system's physical memory in /sysfs.
9  * All arch-independent code that assumes MEMORY_HOTPLUG requires
10  * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
11  */
12 
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/topology.h>
16 #include <linux/capability.h>
17 #include <linux/device.h>
18 #include <linux/memory.h>
19 #include <linux/memory_hotplug.h>
20 #include <linux/mm.h>
21 #include <linux/mutex.h>
22 #include <linux/stat.h>
23 #include <linux/slab.h>
24 
25 #include <linux/atomic.h>
26 #include <asm/uaccess.h>
27 
28 static DEFINE_MUTEX(mem_sysfs_mutex);
29 
30 #define MEMORY_CLASS_NAME	"memory"
31 
32 #define to_memory_block(dev) container_of(dev, struct memory_block, dev)
33 
34 static int sections_per_block;
35 
36 static inline int base_memory_block_id(int section_nr)
37 {
38 	return section_nr / sections_per_block;
39 }
40 
41 static int memory_subsys_online(struct device *dev);
42 static int memory_subsys_offline(struct device *dev);
43 
44 static struct bus_type memory_subsys = {
45 	.name = MEMORY_CLASS_NAME,
46 	.dev_name = MEMORY_CLASS_NAME,
47 	.online = memory_subsys_online,
48 	.offline = memory_subsys_offline,
49 };
50 
51 static BLOCKING_NOTIFIER_HEAD(memory_chain);
52 
53 int register_memory_notifier(struct notifier_block *nb)
54 {
55         return blocking_notifier_chain_register(&memory_chain, nb);
56 }
57 EXPORT_SYMBOL(register_memory_notifier);
58 
59 void unregister_memory_notifier(struct notifier_block *nb)
60 {
61         blocking_notifier_chain_unregister(&memory_chain, nb);
62 }
63 EXPORT_SYMBOL(unregister_memory_notifier);
64 
65 static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);
66 
67 int register_memory_isolate_notifier(struct notifier_block *nb)
68 {
69 	return atomic_notifier_chain_register(&memory_isolate_chain, nb);
70 }
71 EXPORT_SYMBOL(register_memory_isolate_notifier);
72 
73 void unregister_memory_isolate_notifier(struct notifier_block *nb)
74 {
75 	atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
76 }
77 EXPORT_SYMBOL(unregister_memory_isolate_notifier);
78 
79 static void memory_block_release(struct device *dev)
80 {
81 	struct memory_block *mem = to_memory_block(dev);
82 
83 	kfree(mem);
84 }
85 
86 unsigned long __weak memory_block_size_bytes(void)
87 {
88 	return MIN_MEMORY_BLOCK_SIZE;
89 }
90 
91 static unsigned long get_memory_block_size(void)
92 {
93 	unsigned long block_sz;
94 
95 	block_sz = memory_block_size_bytes();
96 
97 	/* Validate blk_sz is a power of 2 and not less than section size */
98 	if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
99 		WARN_ON(1);
100 		block_sz = MIN_MEMORY_BLOCK_SIZE;
101 	}
102 
103 	return block_sz;
104 }
105 
106 /*
107  * use this as the physical section index that this memsection
108  * uses.
109  */
110 
111 static ssize_t show_mem_start_phys_index(struct device *dev,
112 			struct device_attribute *attr, char *buf)
113 {
114 	struct memory_block *mem = to_memory_block(dev);
115 	unsigned long phys_index;
116 
117 	phys_index = mem->start_section_nr / sections_per_block;
118 	return sprintf(buf, "%08lx\n", phys_index);
119 }
120 
121 static ssize_t show_mem_end_phys_index(struct device *dev,
122 			struct device_attribute *attr, char *buf)
123 {
124 	struct memory_block *mem = to_memory_block(dev);
125 	unsigned long phys_index;
126 
127 	phys_index = mem->end_section_nr / sections_per_block;
128 	return sprintf(buf, "%08lx\n", phys_index);
129 }
130 
131 /*
132  * Show whether the section of memory is likely to be hot-removable
133  */
134 static ssize_t show_mem_removable(struct device *dev,
135 			struct device_attribute *attr, char *buf)
136 {
137 	unsigned long i, pfn;
138 	int ret = 1;
139 	struct memory_block *mem = to_memory_block(dev);
140 
141 	for (i = 0; i < sections_per_block; i++) {
142 		if (!present_section_nr(mem->start_section_nr + i))
143 			continue;
144 		pfn = section_nr_to_pfn(mem->start_section_nr + i);
145 		ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
146 	}
147 
148 	return sprintf(buf, "%d\n", ret);
149 }
150 
151 /*
152  * online, offline, going offline, etc.
153  */
154 static ssize_t show_mem_state(struct device *dev,
155 			struct device_attribute *attr, char *buf)
156 {
157 	struct memory_block *mem = to_memory_block(dev);
158 	ssize_t len = 0;
159 
160 	/*
161 	 * We can probably put these states in a nice little array
162 	 * so that they're not open-coded
163 	 */
164 	switch (mem->state) {
165 		case MEM_ONLINE:
166 			len = sprintf(buf, "online\n");
167 			break;
168 		case MEM_OFFLINE:
169 			len = sprintf(buf, "offline\n");
170 			break;
171 		case MEM_GOING_OFFLINE:
172 			len = sprintf(buf, "going-offline\n");
173 			break;
174 		default:
175 			len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
176 					mem->state);
177 			WARN_ON(1);
178 			break;
179 	}
180 
181 	return len;
182 }
183 
184 int memory_notify(unsigned long val, void *v)
185 {
186 	return blocking_notifier_call_chain(&memory_chain, val, v);
187 }
188 
189 int memory_isolate_notify(unsigned long val, void *v)
190 {
191 	return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
192 }
193 
194 /*
195  * The probe routines leave the pages reserved, just as the bootmem code does.
196  * Make sure they're still that way.
197  */
198 static bool pages_correctly_reserved(unsigned long start_pfn)
199 {
200 	int i, j;
201 	struct page *page;
202 	unsigned long pfn = start_pfn;
203 
204 	/*
205 	 * memmap between sections is not contiguous except with
206 	 * SPARSEMEM_VMEMMAP. We lookup the page once per section
207 	 * and assume memmap is contiguous within each section
208 	 */
209 	for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) {
210 		if (WARN_ON_ONCE(!pfn_valid(pfn)))
211 			return false;
212 		page = pfn_to_page(pfn);
213 
214 		for (j = 0; j < PAGES_PER_SECTION; j++) {
215 			if (PageReserved(page + j))
216 				continue;
217 
218 			printk(KERN_WARNING "section number %ld page number %d "
219 				"not reserved, was it already online?\n",
220 				pfn_to_section_nr(pfn), j);
221 
222 			return false;
223 		}
224 	}
225 
226 	return true;
227 }
228 
229 /*
230  * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
231  * OK to have direct references to sparsemem variables in here.
232  */
233 static int
234 memory_block_action(unsigned long phys_index, unsigned long action, int online_type)
235 {
236 	unsigned long start_pfn;
237 	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
238 	struct page *first_page;
239 	int ret;
240 
241 	first_page = pfn_to_page(phys_index << PFN_SECTION_SHIFT);
242 	start_pfn = page_to_pfn(first_page);
243 
244 	switch (action) {
245 		case MEM_ONLINE:
246 			if (!pages_correctly_reserved(start_pfn))
247 				return -EBUSY;
248 
249 			ret = online_pages(start_pfn, nr_pages, online_type);
250 			break;
251 		case MEM_OFFLINE:
252 			ret = offline_pages(start_pfn, nr_pages);
253 			break;
254 		default:
255 			WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
256 			     "%ld\n", __func__, phys_index, action, action);
257 			ret = -EINVAL;
258 	}
259 
260 	return ret;
261 }
262 
263 static int memory_block_change_state(struct memory_block *mem,
264 		unsigned long to_state, unsigned long from_state_req)
265 {
266 	int ret = 0;
267 
268 	if (mem->state != from_state_req)
269 		return -EINVAL;
270 
271 	if (to_state == MEM_OFFLINE)
272 		mem->state = MEM_GOING_OFFLINE;
273 
274 	ret = memory_block_action(mem->start_section_nr, to_state,
275 				mem->online_type);
276 
277 	mem->state = ret ? from_state_req : to_state;
278 
279 	return ret;
280 }
281 
282 /* The device lock serializes operations on memory_subsys_[online|offline] */
283 static int memory_subsys_online(struct device *dev)
284 {
285 	struct memory_block *mem = to_memory_block(dev);
286 	int ret;
287 
288 	if (mem->state == MEM_ONLINE)
289 		return 0;
290 
291 	/*
292 	 * If we are called from store_mem_state(), online_type will be
293 	 * set >= 0 Otherwise we were called from the device online
294 	 * attribute and need to set the online_type.
295 	 */
296 	if (mem->online_type < 0)
297 		mem->online_type = ONLINE_KEEP;
298 
299 	ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
300 
301 	/* clear online_type */
302 	mem->online_type = -1;
303 
304 	return ret;
305 }
306 
307 static int memory_subsys_offline(struct device *dev)
308 {
309 	struct memory_block *mem = to_memory_block(dev);
310 
311 	if (mem->state == MEM_OFFLINE)
312 		return 0;
313 
314 	return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
315 }
316 
317 static ssize_t
318 store_mem_state(struct device *dev,
319 		struct device_attribute *attr, const char *buf, size_t count)
320 {
321 	struct memory_block *mem = to_memory_block(dev);
322 	int ret, online_type;
323 
324 	ret = lock_device_hotplug_sysfs();
325 	if (ret)
326 		return ret;
327 
328 	if (!strncmp(buf, "online_kernel", min_t(int, count, 13)))
329 		online_type = ONLINE_KERNEL;
330 	else if (!strncmp(buf, "online_movable", min_t(int, count, 14)))
331 		online_type = ONLINE_MOVABLE;
332 	else if (!strncmp(buf, "online", min_t(int, count, 6)))
333 		online_type = ONLINE_KEEP;
334 	else if (!strncmp(buf, "offline", min_t(int, count, 7)))
335 		online_type = -1;
336 	else {
337 		ret = -EINVAL;
338 		goto err;
339 	}
340 
341 	switch (online_type) {
342 	case ONLINE_KERNEL:
343 	case ONLINE_MOVABLE:
344 	case ONLINE_KEEP:
345 		/*
346 		 * mem->online_type is not protected so there can be a
347 		 * race here.  However, when racing online, the first
348 		 * will succeed and the second will just return as the
349 		 * block will already be online.  The online type
350 		 * could be either one, but that is expected.
351 		 */
352 		mem->online_type = online_type;
353 		ret = device_online(&mem->dev);
354 		break;
355 	case -1:
356 		ret = device_offline(&mem->dev);
357 		break;
358 	default:
359 		ret = -EINVAL; /* should never happen */
360 	}
361 
362 err:
363 	unlock_device_hotplug();
364 
365 	if (ret)
366 		return ret;
367 	return count;
368 }
369 
370 /*
371  * phys_device is a bad name for this.  What I really want
372  * is a way to differentiate between memory ranges that
373  * are part of physical devices that constitute
374  * a complete removable unit or fru.
375  * i.e. do these ranges belong to the same physical device,
376  * s.t. if I offline all of these sections I can then
377  * remove the physical device?
378  */
379 static ssize_t show_phys_device(struct device *dev,
380 				struct device_attribute *attr, char *buf)
381 {
382 	struct memory_block *mem = to_memory_block(dev);
383 	return sprintf(buf, "%d\n", mem->phys_device);
384 }
385 
386 static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
387 static DEVICE_ATTR(end_phys_index, 0444, show_mem_end_phys_index, NULL);
388 static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state);
389 static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL);
390 static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL);
391 
392 /*
393  * Block size attribute stuff
394  */
395 static ssize_t
396 print_block_size(struct device *dev, struct device_attribute *attr,
397 		 char *buf)
398 {
399 	return sprintf(buf, "%lx\n", get_memory_block_size());
400 }
401 
402 static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL);
403 
404 /*
405  * Some architectures will have custom drivers to do this, and
406  * will not need to do it from userspace.  The fake hot-add code
407  * as well as ppc64 will do all of their discovery in userspace
408  * and will require this interface.
409  */
410 #ifdef CONFIG_ARCH_MEMORY_PROBE
411 static ssize_t
412 memory_probe_store(struct device *dev, struct device_attribute *attr,
413 		   const char *buf, size_t count)
414 {
415 	u64 phys_addr;
416 	int nid;
417 	int i, ret;
418 	unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
419 
420 	phys_addr = simple_strtoull(buf, NULL, 0);
421 
422 	if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
423 		return -EINVAL;
424 
425 	for (i = 0; i < sections_per_block; i++) {
426 		nid = memory_add_physaddr_to_nid(phys_addr);
427 		ret = add_memory(nid, phys_addr,
428 				 PAGES_PER_SECTION << PAGE_SHIFT);
429 		if (ret)
430 			goto out;
431 
432 		phys_addr += MIN_MEMORY_BLOCK_SIZE;
433 	}
434 
435 	ret = count;
436 out:
437 	return ret;
438 }
439 
440 static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
441 #endif
442 
443 #ifdef CONFIG_MEMORY_FAILURE
444 /*
445  * Support for offlining pages of memory
446  */
447 
448 /* Soft offline a page */
449 static ssize_t
450 store_soft_offline_page(struct device *dev,
451 			struct device_attribute *attr,
452 			const char *buf, size_t count)
453 {
454 	int ret;
455 	u64 pfn;
456 	if (!capable(CAP_SYS_ADMIN))
457 		return -EPERM;
458 	if (kstrtoull(buf, 0, &pfn) < 0)
459 		return -EINVAL;
460 	pfn >>= PAGE_SHIFT;
461 	if (!pfn_valid(pfn))
462 		return -ENXIO;
463 	ret = soft_offline_page(pfn_to_page(pfn), 0);
464 	return ret == 0 ? count : ret;
465 }
466 
467 /* Forcibly offline a page, including killing processes. */
468 static ssize_t
469 store_hard_offline_page(struct device *dev,
470 			struct device_attribute *attr,
471 			const char *buf, size_t count)
472 {
473 	int ret;
474 	u64 pfn;
475 	if (!capable(CAP_SYS_ADMIN))
476 		return -EPERM;
477 	if (kstrtoull(buf, 0, &pfn) < 0)
478 		return -EINVAL;
479 	pfn >>= PAGE_SHIFT;
480 	ret = memory_failure(pfn, 0, 0);
481 	return ret ? ret : count;
482 }
483 
484 static DEVICE_ATTR(soft_offline_page, S_IWUSR, NULL, store_soft_offline_page);
485 static DEVICE_ATTR(hard_offline_page, S_IWUSR, NULL, store_hard_offline_page);
486 #endif
487 
488 /*
489  * Note that phys_device is optional.  It is here to allow for
490  * differentiation between which *physical* devices each
491  * section belongs to...
492  */
493 int __weak arch_get_memory_phys_device(unsigned long start_pfn)
494 {
495 	return 0;
496 }
497 
498 /*
499  * A reference for the returned object is held and the reference for the
500  * hinted object is released.
501  */
502 struct memory_block *find_memory_block_hinted(struct mem_section *section,
503 					      struct memory_block *hint)
504 {
505 	int block_id = base_memory_block_id(__section_nr(section));
506 	struct device *hintdev = hint ? &hint->dev : NULL;
507 	struct device *dev;
508 
509 	dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev);
510 	if (hint)
511 		put_device(&hint->dev);
512 	if (!dev)
513 		return NULL;
514 	return to_memory_block(dev);
515 }
516 
517 /*
518  * For now, we have a linear search to go find the appropriate
519  * memory_block corresponding to a particular phys_index. If
520  * this gets to be a real problem, we can always use a radix
521  * tree or something here.
522  *
523  * This could be made generic for all device subsystems.
524  */
525 struct memory_block *find_memory_block(struct mem_section *section)
526 {
527 	return find_memory_block_hinted(section, NULL);
528 }
529 
530 static struct attribute *memory_memblk_attrs[] = {
531 	&dev_attr_phys_index.attr,
532 	&dev_attr_end_phys_index.attr,
533 	&dev_attr_state.attr,
534 	&dev_attr_phys_device.attr,
535 	&dev_attr_removable.attr,
536 	NULL
537 };
538 
539 static struct attribute_group memory_memblk_attr_group = {
540 	.attrs = memory_memblk_attrs,
541 };
542 
543 static const struct attribute_group *memory_memblk_attr_groups[] = {
544 	&memory_memblk_attr_group,
545 	NULL,
546 };
547 
548 /*
549  * register_memory - Setup a sysfs device for a memory block
550  */
551 static
552 int register_memory(struct memory_block *memory)
553 {
554 	memory->dev.bus = &memory_subsys;
555 	memory->dev.id = memory->start_section_nr / sections_per_block;
556 	memory->dev.release = memory_block_release;
557 	memory->dev.groups = memory_memblk_attr_groups;
558 	memory->dev.offline = memory->state == MEM_OFFLINE;
559 
560 	return device_register(&memory->dev);
561 }
562 
563 static int init_memory_block(struct memory_block **memory,
564 			     struct mem_section *section, unsigned long state)
565 {
566 	struct memory_block *mem;
567 	unsigned long start_pfn;
568 	int scn_nr;
569 	int ret = 0;
570 
571 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
572 	if (!mem)
573 		return -ENOMEM;
574 
575 	scn_nr = __section_nr(section);
576 	mem->start_section_nr =
577 			base_memory_block_id(scn_nr) * sections_per_block;
578 	mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
579 	mem->state = state;
580 	mem->section_count++;
581 	start_pfn = section_nr_to_pfn(mem->start_section_nr);
582 	mem->phys_device = arch_get_memory_phys_device(start_pfn);
583 
584 	ret = register_memory(mem);
585 
586 	*memory = mem;
587 	return ret;
588 }
589 
590 static int add_memory_block(int base_section_nr)
591 {
592 	struct memory_block *mem;
593 	int i, ret, section_count = 0, section_nr;
594 
595 	for (i = base_section_nr;
596 	     (i < base_section_nr + sections_per_block) && i < NR_MEM_SECTIONS;
597 	     i++) {
598 		if (!present_section_nr(i))
599 			continue;
600 		if (section_count == 0)
601 			section_nr = i;
602 		section_count++;
603 	}
604 
605 	if (section_count == 0)
606 		return 0;
607 	ret = init_memory_block(&mem, __nr_to_section(section_nr), MEM_ONLINE);
608 	if (ret)
609 		return ret;
610 	mem->section_count = section_count;
611 	return 0;
612 }
613 
614 
615 /*
616  * need an interface for the VM to add new memory regions,
617  * but without onlining it.
618  */
619 int register_new_memory(int nid, struct mem_section *section)
620 {
621 	int ret = 0;
622 	struct memory_block *mem;
623 
624 	mutex_lock(&mem_sysfs_mutex);
625 
626 	mem = find_memory_block(section);
627 	if (mem) {
628 		mem->section_count++;
629 		put_device(&mem->dev);
630 	} else {
631 		ret = init_memory_block(&mem, section, MEM_OFFLINE);
632 		if (ret)
633 			goto out;
634 	}
635 
636 	if (mem->section_count == sections_per_block)
637 		ret = register_mem_sect_under_node(mem, nid);
638 out:
639 	mutex_unlock(&mem_sysfs_mutex);
640 	return ret;
641 }
642 
643 #ifdef CONFIG_MEMORY_HOTREMOVE
644 static void
645 unregister_memory(struct memory_block *memory)
646 {
647 	BUG_ON(memory->dev.bus != &memory_subsys);
648 
649 	/* drop the ref. we got in remove_memory_block() */
650 	put_device(&memory->dev);
651 	device_unregister(&memory->dev);
652 }
653 
654 static int remove_memory_block(unsigned long node_id,
655 			       struct mem_section *section, int phys_device)
656 {
657 	struct memory_block *mem;
658 
659 	mutex_lock(&mem_sysfs_mutex);
660 	mem = find_memory_block(section);
661 	unregister_mem_sect_under_nodes(mem, __section_nr(section));
662 
663 	mem->section_count--;
664 	if (mem->section_count == 0)
665 		unregister_memory(mem);
666 	else
667 		put_device(&mem->dev);
668 
669 	mutex_unlock(&mem_sysfs_mutex);
670 	return 0;
671 }
672 
673 int unregister_memory_section(struct mem_section *section)
674 {
675 	if (!present_section(section))
676 		return -EINVAL;
677 
678 	return remove_memory_block(0, section, 0);
679 }
680 #endif /* CONFIG_MEMORY_HOTREMOVE */
681 
682 /* return true if the memory block is offlined, otherwise, return false */
683 bool is_memblock_offlined(struct memory_block *mem)
684 {
685 	return mem->state == MEM_OFFLINE;
686 }
687 
688 static struct attribute *memory_root_attrs[] = {
689 #ifdef CONFIG_ARCH_MEMORY_PROBE
690 	&dev_attr_probe.attr,
691 #endif
692 
693 #ifdef CONFIG_MEMORY_FAILURE
694 	&dev_attr_soft_offline_page.attr,
695 	&dev_attr_hard_offline_page.attr,
696 #endif
697 
698 	&dev_attr_block_size_bytes.attr,
699 	NULL
700 };
701 
702 static struct attribute_group memory_root_attr_group = {
703 	.attrs = memory_root_attrs,
704 };
705 
706 static const struct attribute_group *memory_root_attr_groups[] = {
707 	&memory_root_attr_group,
708 	NULL,
709 };
710 
711 /*
712  * Initialize the sysfs support for memory devices...
713  */
714 int __init memory_dev_init(void)
715 {
716 	unsigned int i;
717 	int ret;
718 	int err;
719 	unsigned long block_sz;
720 
721 	ret = subsys_system_register(&memory_subsys, memory_root_attr_groups);
722 	if (ret)
723 		goto out;
724 
725 	block_sz = get_memory_block_size();
726 	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
727 
728 	/*
729 	 * Create entries for memory sections that were found
730 	 * during boot and have been initialized
731 	 */
732 	mutex_lock(&mem_sysfs_mutex);
733 	for (i = 0; i < NR_MEM_SECTIONS; i += sections_per_block) {
734 		err = add_memory_block(i);
735 		if (!ret)
736 			ret = err;
737 	}
738 	mutex_unlock(&mem_sysfs_mutex);
739 
740 out:
741 	if (ret)
742 		printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
743 	return ret;
744 }
745