1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory subsystem support 4 * 5 * Written by Matt Tolentino <matthew.e.tolentino@intel.com> 6 * Dave Hansen <haveblue@us.ibm.com> 7 * 8 * This file provides the necessary infrastructure to represent 9 * a SPARSEMEM-memory-model system's physical memory in /sysfs. 10 * All arch-independent code that assumes MEMORY_HOTPLUG requires 11 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c. 12 */ 13 14 #include <linux/module.h> 15 #include <linux/init.h> 16 #include <linux/topology.h> 17 #include <linux/capability.h> 18 #include <linux/device.h> 19 #include <linux/memory.h> 20 #include <linux/memory_hotplug.h> 21 #include <linux/mm.h> 22 #include <linux/stat.h> 23 #include <linux/slab.h> 24 #include <linux/xarray.h> 25 26 #include <linux/atomic.h> 27 #include <linux/uaccess.h> 28 29 #define MEMORY_CLASS_NAME "memory" 30 31 static const char *const online_type_to_str[] = { 32 [MMOP_OFFLINE] = "offline", 33 [MMOP_ONLINE] = "online", 34 [MMOP_ONLINE_KERNEL] = "online_kernel", 35 [MMOP_ONLINE_MOVABLE] = "online_movable", 36 }; 37 38 int mhp_online_type_from_str(const char *str) 39 { 40 int i; 41 42 for (i = 0; i < ARRAY_SIZE(online_type_to_str); i++) { 43 if (sysfs_streq(str, online_type_to_str[i])) 44 return i; 45 } 46 return -EINVAL; 47 } 48 49 #define to_memory_block(dev) container_of(dev, struct memory_block, dev) 50 51 static int sections_per_block; 52 53 static inline unsigned long memory_block_id(unsigned long section_nr) 54 { 55 return section_nr / sections_per_block; 56 } 57 58 static inline unsigned long pfn_to_block_id(unsigned long pfn) 59 { 60 return memory_block_id(pfn_to_section_nr(pfn)); 61 } 62 63 static inline unsigned long phys_to_block_id(unsigned long phys) 64 { 65 return pfn_to_block_id(PFN_DOWN(phys)); 66 } 67 68 static int memory_subsys_online(struct device *dev); 69 static int memory_subsys_offline(struct device *dev); 70 71 static struct bus_type memory_subsys = { 72 .name = MEMORY_CLASS_NAME, 73 .dev_name = MEMORY_CLASS_NAME, 74 .online = memory_subsys_online, 75 .offline = memory_subsys_offline, 76 }; 77 78 /* 79 * Memory blocks are cached in a local radix tree to avoid 80 * a costly linear search for the corresponding device on 81 * the subsystem bus. 82 */ 83 static DEFINE_XARRAY(memory_blocks); 84 85 /* 86 * Memory groups, indexed by memory group id (mgid). 87 */ 88 static DEFINE_XARRAY_FLAGS(memory_groups, XA_FLAGS_ALLOC); 89 #define MEMORY_GROUP_MARK_DYNAMIC XA_MARK_1 90 91 static BLOCKING_NOTIFIER_HEAD(memory_chain); 92 93 int register_memory_notifier(struct notifier_block *nb) 94 { 95 return blocking_notifier_chain_register(&memory_chain, nb); 96 } 97 EXPORT_SYMBOL(register_memory_notifier); 98 99 void unregister_memory_notifier(struct notifier_block *nb) 100 { 101 blocking_notifier_chain_unregister(&memory_chain, nb); 102 } 103 EXPORT_SYMBOL(unregister_memory_notifier); 104 105 static void memory_block_release(struct device *dev) 106 { 107 struct memory_block *mem = to_memory_block(dev); 108 /* Verify that the altmap is freed */ 109 WARN_ON(mem->altmap); 110 kfree(mem); 111 } 112 113 unsigned long __weak memory_block_size_bytes(void) 114 { 115 return MIN_MEMORY_BLOCK_SIZE; 116 } 117 EXPORT_SYMBOL_GPL(memory_block_size_bytes); 118 119 /* Show the memory block ID, relative to the memory block size */ 120 static ssize_t phys_index_show(struct device *dev, 121 struct device_attribute *attr, char *buf) 122 { 123 struct memory_block *mem = to_memory_block(dev); 124 125 return sysfs_emit(buf, "%08lx\n", memory_block_id(mem->start_section_nr)); 126 } 127 128 /* 129 * Legacy interface that we cannot remove. Always indicate "removable" 130 * with CONFIG_MEMORY_HOTREMOVE - bad heuristic. 131 */ 132 static ssize_t removable_show(struct device *dev, struct device_attribute *attr, 133 char *buf) 134 { 135 return sysfs_emit(buf, "%d\n", (int)IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)); 136 } 137 138 /* 139 * online, offline, going offline, etc. 140 */ 141 static ssize_t state_show(struct device *dev, struct device_attribute *attr, 142 char *buf) 143 { 144 struct memory_block *mem = to_memory_block(dev); 145 const char *output; 146 147 /* 148 * We can probably put these states in a nice little array 149 * so that they're not open-coded 150 */ 151 switch (mem->state) { 152 case MEM_ONLINE: 153 output = "online"; 154 break; 155 case MEM_OFFLINE: 156 output = "offline"; 157 break; 158 case MEM_GOING_OFFLINE: 159 output = "going-offline"; 160 break; 161 default: 162 WARN_ON(1); 163 return sysfs_emit(buf, "ERROR-UNKNOWN-%ld\n", mem->state); 164 } 165 166 return sysfs_emit(buf, "%s\n", output); 167 } 168 169 int memory_notify(unsigned long val, void *v) 170 { 171 return blocking_notifier_call_chain(&memory_chain, val, v); 172 } 173 174 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 175 static unsigned long memblk_nr_poison(struct memory_block *mem); 176 #else 177 static inline unsigned long memblk_nr_poison(struct memory_block *mem) 178 { 179 return 0; 180 } 181 #endif 182 183 static int memory_block_online(struct memory_block *mem) 184 { 185 unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr); 186 unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block; 187 unsigned long nr_vmemmap_pages = 0; 188 struct zone *zone; 189 int ret; 190 191 if (memblk_nr_poison(mem)) 192 return -EHWPOISON; 193 194 zone = zone_for_pfn_range(mem->online_type, mem->nid, mem->group, 195 start_pfn, nr_pages); 196 197 /* 198 * Although vmemmap pages have a different lifecycle than the pages 199 * they describe (they remain until the memory is unplugged), doing 200 * their initialization and accounting at memory onlining/offlining 201 * stage helps to keep accounting easier to follow - e.g vmemmaps 202 * belong to the same zone as the memory they backed. 203 */ 204 if (mem->altmap) 205 nr_vmemmap_pages = mem->altmap->free; 206 207 if (nr_vmemmap_pages) { 208 ret = mhp_init_memmap_on_memory(start_pfn, nr_vmemmap_pages, zone); 209 if (ret) 210 return ret; 211 } 212 213 ret = online_pages(start_pfn + nr_vmemmap_pages, 214 nr_pages - nr_vmemmap_pages, zone, mem->group); 215 if (ret) { 216 if (nr_vmemmap_pages) 217 mhp_deinit_memmap_on_memory(start_pfn, nr_vmemmap_pages); 218 return ret; 219 } 220 221 /* 222 * Account once onlining succeeded. If the zone was unpopulated, it is 223 * now already properly populated. 224 */ 225 if (nr_vmemmap_pages) 226 adjust_present_page_count(pfn_to_page(start_pfn), mem->group, 227 nr_vmemmap_pages); 228 229 mem->zone = zone; 230 return ret; 231 } 232 233 static int memory_block_offline(struct memory_block *mem) 234 { 235 unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr); 236 unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block; 237 unsigned long nr_vmemmap_pages = 0; 238 int ret; 239 240 if (!mem->zone) 241 return -EINVAL; 242 243 /* 244 * Unaccount before offlining, such that unpopulated zone and kthreads 245 * can properly be torn down in offline_pages(). 246 */ 247 if (mem->altmap) 248 nr_vmemmap_pages = mem->altmap->free; 249 250 if (nr_vmemmap_pages) 251 adjust_present_page_count(pfn_to_page(start_pfn), mem->group, 252 -nr_vmemmap_pages); 253 254 ret = offline_pages(start_pfn + nr_vmemmap_pages, 255 nr_pages - nr_vmemmap_pages, mem->zone, mem->group); 256 if (ret) { 257 /* offline_pages() failed. Account back. */ 258 if (nr_vmemmap_pages) 259 adjust_present_page_count(pfn_to_page(start_pfn), 260 mem->group, nr_vmemmap_pages); 261 return ret; 262 } 263 264 if (nr_vmemmap_pages) 265 mhp_deinit_memmap_on_memory(start_pfn, nr_vmemmap_pages); 266 267 mem->zone = NULL; 268 return ret; 269 } 270 271 /* 272 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is 273 * OK to have direct references to sparsemem variables in here. 274 */ 275 static int 276 memory_block_action(struct memory_block *mem, unsigned long action) 277 { 278 int ret; 279 280 switch (action) { 281 case MEM_ONLINE: 282 ret = memory_block_online(mem); 283 break; 284 case MEM_OFFLINE: 285 ret = memory_block_offline(mem); 286 break; 287 default: 288 WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: " 289 "%ld\n", __func__, mem->start_section_nr, action, action); 290 ret = -EINVAL; 291 } 292 293 return ret; 294 } 295 296 static int memory_block_change_state(struct memory_block *mem, 297 unsigned long to_state, unsigned long from_state_req) 298 { 299 int ret = 0; 300 301 if (mem->state != from_state_req) 302 return -EINVAL; 303 304 if (to_state == MEM_OFFLINE) 305 mem->state = MEM_GOING_OFFLINE; 306 307 ret = memory_block_action(mem, to_state); 308 mem->state = ret ? from_state_req : to_state; 309 310 return ret; 311 } 312 313 /* The device lock serializes operations on memory_subsys_[online|offline] */ 314 static int memory_subsys_online(struct device *dev) 315 { 316 struct memory_block *mem = to_memory_block(dev); 317 int ret; 318 319 if (mem->state == MEM_ONLINE) 320 return 0; 321 322 /* 323 * When called via device_online() without configuring the online_type, 324 * we want to default to MMOP_ONLINE. 325 */ 326 if (mem->online_type == MMOP_OFFLINE) 327 mem->online_type = MMOP_ONLINE; 328 329 ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE); 330 mem->online_type = MMOP_OFFLINE; 331 332 return ret; 333 } 334 335 static int memory_subsys_offline(struct device *dev) 336 { 337 struct memory_block *mem = to_memory_block(dev); 338 339 if (mem->state == MEM_OFFLINE) 340 return 0; 341 342 return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE); 343 } 344 345 static ssize_t state_store(struct device *dev, struct device_attribute *attr, 346 const char *buf, size_t count) 347 { 348 const int online_type = mhp_online_type_from_str(buf); 349 struct memory_block *mem = to_memory_block(dev); 350 int ret; 351 352 if (online_type < 0) 353 return -EINVAL; 354 355 ret = lock_device_hotplug_sysfs(); 356 if (ret) 357 return ret; 358 359 switch (online_type) { 360 case MMOP_ONLINE_KERNEL: 361 case MMOP_ONLINE_MOVABLE: 362 case MMOP_ONLINE: 363 /* mem->online_type is protected by device_hotplug_lock */ 364 mem->online_type = online_type; 365 ret = device_online(&mem->dev); 366 break; 367 case MMOP_OFFLINE: 368 ret = device_offline(&mem->dev); 369 break; 370 default: 371 ret = -EINVAL; /* should never happen */ 372 } 373 374 unlock_device_hotplug(); 375 376 if (ret < 0) 377 return ret; 378 if (ret) 379 return -EINVAL; 380 381 return count; 382 } 383 384 /* 385 * Legacy interface that we cannot remove: s390x exposes the storage increment 386 * covered by a memory block, allowing for identifying which memory blocks 387 * comprise a storage increment. Since a memory block spans complete 388 * storage increments nowadays, this interface is basically unused. Other 389 * archs never exposed != 0. 390 */ 391 static ssize_t phys_device_show(struct device *dev, 392 struct device_attribute *attr, char *buf) 393 { 394 struct memory_block *mem = to_memory_block(dev); 395 unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr); 396 397 return sysfs_emit(buf, "%d\n", 398 arch_get_memory_phys_device(start_pfn)); 399 } 400 401 #ifdef CONFIG_MEMORY_HOTREMOVE 402 static int print_allowed_zone(char *buf, int len, int nid, 403 struct memory_group *group, 404 unsigned long start_pfn, unsigned long nr_pages, 405 int online_type, struct zone *default_zone) 406 { 407 struct zone *zone; 408 409 zone = zone_for_pfn_range(online_type, nid, group, start_pfn, nr_pages); 410 if (zone == default_zone) 411 return 0; 412 413 return sysfs_emit_at(buf, len, " %s", zone->name); 414 } 415 416 static ssize_t valid_zones_show(struct device *dev, 417 struct device_attribute *attr, char *buf) 418 { 419 struct memory_block *mem = to_memory_block(dev); 420 unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr); 421 unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block; 422 struct memory_group *group = mem->group; 423 struct zone *default_zone; 424 int nid = mem->nid; 425 int len = 0; 426 427 /* 428 * Check the existing zone. Make sure that we do that only on the 429 * online nodes otherwise the page_zone is not reliable 430 */ 431 if (mem->state == MEM_ONLINE) { 432 /* 433 * If !mem->zone, the memory block spans multiple zones and 434 * cannot get offlined. 435 */ 436 default_zone = mem->zone; 437 if (!default_zone) 438 return sysfs_emit(buf, "%s\n", "none"); 439 len += sysfs_emit_at(buf, len, "%s", default_zone->name); 440 goto out; 441 } 442 443 default_zone = zone_for_pfn_range(MMOP_ONLINE, nid, group, 444 start_pfn, nr_pages); 445 446 len += sysfs_emit_at(buf, len, "%s", default_zone->name); 447 len += print_allowed_zone(buf, len, nid, group, start_pfn, nr_pages, 448 MMOP_ONLINE_KERNEL, default_zone); 449 len += print_allowed_zone(buf, len, nid, group, start_pfn, nr_pages, 450 MMOP_ONLINE_MOVABLE, default_zone); 451 out: 452 len += sysfs_emit_at(buf, len, "\n"); 453 return len; 454 } 455 static DEVICE_ATTR_RO(valid_zones); 456 #endif 457 458 static DEVICE_ATTR_RO(phys_index); 459 static DEVICE_ATTR_RW(state); 460 static DEVICE_ATTR_RO(phys_device); 461 static DEVICE_ATTR_RO(removable); 462 463 /* 464 * Show the memory block size (shared by all memory blocks). 465 */ 466 static ssize_t block_size_bytes_show(struct device *dev, 467 struct device_attribute *attr, char *buf) 468 { 469 return sysfs_emit(buf, "%lx\n", memory_block_size_bytes()); 470 } 471 472 static DEVICE_ATTR_RO(block_size_bytes); 473 474 /* 475 * Memory auto online policy. 476 */ 477 478 static ssize_t auto_online_blocks_show(struct device *dev, 479 struct device_attribute *attr, char *buf) 480 { 481 return sysfs_emit(buf, "%s\n", 482 online_type_to_str[mhp_default_online_type]); 483 } 484 485 static ssize_t auto_online_blocks_store(struct device *dev, 486 struct device_attribute *attr, 487 const char *buf, size_t count) 488 { 489 const int online_type = mhp_online_type_from_str(buf); 490 491 if (online_type < 0) 492 return -EINVAL; 493 494 mhp_default_online_type = online_type; 495 return count; 496 } 497 498 static DEVICE_ATTR_RW(auto_online_blocks); 499 500 /* 501 * Some architectures will have custom drivers to do this, and 502 * will not need to do it from userspace. The fake hot-add code 503 * as well as ppc64 will do all of their discovery in userspace 504 * and will require this interface. 505 */ 506 #ifdef CONFIG_ARCH_MEMORY_PROBE 507 static ssize_t probe_store(struct device *dev, struct device_attribute *attr, 508 const char *buf, size_t count) 509 { 510 u64 phys_addr; 511 int nid, ret; 512 unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block; 513 514 ret = kstrtoull(buf, 0, &phys_addr); 515 if (ret) 516 return ret; 517 518 if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1)) 519 return -EINVAL; 520 521 ret = lock_device_hotplug_sysfs(); 522 if (ret) 523 return ret; 524 525 nid = memory_add_physaddr_to_nid(phys_addr); 526 ret = __add_memory(nid, phys_addr, 527 MIN_MEMORY_BLOCK_SIZE * sections_per_block, 528 MHP_NONE); 529 530 if (ret) 531 goto out; 532 533 ret = count; 534 out: 535 unlock_device_hotplug(); 536 return ret; 537 } 538 539 static DEVICE_ATTR_WO(probe); 540 #endif 541 542 #ifdef CONFIG_MEMORY_FAILURE 543 /* 544 * Support for offlining pages of memory 545 */ 546 547 /* Soft offline a page */ 548 static ssize_t soft_offline_page_store(struct device *dev, 549 struct device_attribute *attr, 550 const char *buf, size_t count) 551 { 552 int ret; 553 u64 pfn; 554 if (!capable(CAP_SYS_ADMIN)) 555 return -EPERM; 556 if (kstrtoull(buf, 0, &pfn) < 0) 557 return -EINVAL; 558 pfn >>= PAGE_SHIFT; 559 ret = soft_offline_page(pfn, 0); 560 return ret == 0 ? count : ret; 561 } 562 563 /* Forcibly offline a page, including killing processes. */ 564 static ssize_t hard_offline_page_store(struct device *dev, 565 struct device_attribute *attr, 566 const char *buf, size_t count) 567 { 568 int ret; 569 u64 pfn; 570 if (!capable(CAP_SYS_ADMIN)) 571 return -EPERM; 572 if (kstrtoull(buf, 0, &pfn) < 0) 573 return -EINVAL; 574 pfn >>= PAGE_SHIFT; 575 ret = memory_failure(pfn, MF_SW_SIMULATED); 576 if (ret == -EOPNOTSUPP) 577 ret = 0; 578 return ret ? ret : count; 579 } 580 581 static DEVICE_ATTR_WO(soft_offline_page); 582 static DEVICE_ATTR_WO(hard_offline_page); 583 #endif 584 585 /* See phys_device_show(). */ 586 int __weak arch_get_memory_phys_device(unsigned long start_pfn) 587 { 588 return 0; 589 } 590 591 /* 592 * A reference for the returned memory block device is acquired. 593 * 594 * Called under device_hotplug_lock. 595 */ 596 static struct memory_block *find_memory_block_by_id(unsigned long block_id) 597 { 598 struct memory_block *mem; 599 600 mem = xa_load(&memory_blocks, block_id); 601 if (mem) 602 get_device(&mem->dev); 603 return mem; 604 } 605 606 /* 607 * Called under device_hotplug_lock. 608 */ 609 struct memory_block *find_memory_block(unsigned long section_nr) 610 { 611 unsigned long block_id = memory_block_id(section_nr); 612 613 return find_memory_block_by_id(block_id); 614 } 615 616 static struct attribute *memory_memblk_attrs[] = { 617 &dev_attr_phys_index.attr, 618 &dev_attr_state.attr, 619 &dev_attr_phys_device.attr, 620 &dev_attr_removable.attr, 621 #ifdef CONFIG_MEMORY_HOTREMOVE 622 &dev_attr_valid_zones.attr, 623 #endif 624 NULL 625 }; 626 627 static const struct attribute_group memory_memblk_attr_group = { 628 .attrs = memory_memblk_attrs, 629 }; 630 631 static const struct attribute_group *memory_memblk_attr_groups[] = { 632 &memory_memblk_attr_group, 633 NULL, 634 }; 635 636 static int __add_memory_block(struct memory_block *memory) 637 { 638 int ret; 639 640 memory->dev.bus = &memory_subsys; 641 memory->dev.id = memory->start_section_nr / sections_per_block; 642 memory->dev.release = memory_block_release; 643 memory->dev.groups = memory_memblk_attr_groups; 644 memory->dev.offline = memory->state == MEM_OFFLINE; 645 646 ret = device_register(&memory->dev); 647 if (ret) { 648 put_device(&memory->dev); 649 return ret; 650 } 651 ret = xa_err(xa_store(&memory_blocks, memory->dev.id, memory, 652 GFP_KERNEL)); 653 if (ret) 654 device_unregister(&memory->dev); 655 656 return ret; 657 } 658 659 static struct zone *early_node_zone_for_memory_block(struct memory_block *mem, 660 int nid) 661 { 662 const unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr); 663 const unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block; 664 struct zone *zone, *matching_zone = NULL; 665 pg_data_t *pgdat = NODE_DATA(nid); 666 int i; 667 668 /* 669 * This logic only works for early memory, when the applicable zones 670 * already span the memory block. We don't expect overlapping zones on 671 * a single node for early memory. So if we're told that some PFNs 672 * of a node fall into this memory block, we can assume that all node 673 * zones that intersect with the memory block are actually applicable. 674 * No need to look at the memmap. 675 */ 676 for (i = 0; i < MAX_NR_ZONES; i++) { 677 zone = pgdat->node_zones + i; 678 if (!populated_zone(zone)) 679 continue; 680 if (!zone_intersects(zone, start_pfn, nr_pages)) 681 continue; 682 if (!matching_zone) { 683 matching_zone = zone; 684 continue; 685 } 686 /* Spans multiple zones ... */ 687 matching_zone = NULL; 688 break; 689 } 690 return matching_zone; 691 } 692 693 #ifdef CONFIG_NUMA 694 /** 695 * memory_block_add_nid() - Indicate that system RAM falling into this memory 696 * block device (partially) belongs to the given node. 697 * @mem: The memory block device. 698 * @nid: The node id. 699 * @context: The memory initialization context. 700 * 701 * Indicate that system RAM falling into this memory block (partially) belongs 702 * to the given node. If the context indicates ("early") that we are adding the 703 * node during node device subsystem initialization, this will also properly 704 * set/adjust mem->zone based on the zone ranges of the given node. 705 */ 706 void memory_block_add_nid(struct memory_block *mem, int nid, 707 enum meminit_context context) 708 { 709 if (context == MEMINIT_EARLY && mem->nid != nid) { 710 /* 711 * For early memory we have to determine the zone when setting 712 * the node id and handle multiple nodes spanning a single 713 * memory block by indicate via zone == NULL that we're not 714 * dealing with a single zone. So if we're setting the node id 715 * the first time, determine if there is a single zone. If we're 716 * setting the node id a second time to a different node, 717 * invalidate the single detected zone. 718 */ 719 if (mem->nid == NUMA_NO_NODE) 720 mem->zone = early_node_zone_for_memory_block(mem, nid); 721 else 722 mem->zone = NULL; 723 } 724 725 /* 726 * If this memory block spans multiple nodes, we only indicate 727 * the last processed node. If we span multiple nodes (not applicable 728 * to hotplugged memory), zone == NULL will prohibit memory offlining 729 * and consequently unplug. 730 */ 731 mem->nid = nid; 732 } 733 #endif 734 735 static int add_memory_block(unsigned long block_id, unsigned long state, 736 struct vmem_altmap *altmap, 737 struct memory_group *group) 738 { 739 struct memory_block *mem; 740 int ret = 0; 741 742 mem = find_memory_block_by_id(block_id); 743 if (mem) { 744 put_device(&mem->dev); 745 return -EEXIST; 746 } 747 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 748 if (!mem) 749 return -ENOMEM; 750 751 mem->start_section_nr = block_id * sections_per_block; 752 mem->state = state; 753 mem->nid = NUMA_NO_NODE; 754 mem->altmap = altmap; 755 INIT_LIST_HEAD(&mem->group_next); 756 757 #ifndef CONFIG_NUMA 758 if (state == MEM_ONLINE) 759 /* 760 * MEM_ONLINE at this point implies early memory. With NUMA, 761 * we'll determine the zone when setting the node id via 762 * memory_block_add_nid(). Memory hotplug updated the zone 763 * manually when memory onlining/offlining succeeds. 764 */ 765 mem->zone = early_node_zone_for_memory_block(mem, NUMA_NO_NODE); 766 #endif /* CONFIG_NUMA */ 767 768 ret = __add_memory_block(mem); 769 if (ret) 770 return ret; 771 772 if (group) { 773 mem->group = group; 774 list_add(&mem->group_next, &group->memory_blocks); 775 } 776 777 return 0; 778 } 779 780 static int __init add_boot_memory_block(unsigned long base_section_nr) 781 { 782 int section_count = 0; 783 unsigned long nr; 784 785 for (nr = base_section_nr; nr < base_section_nr + sections_per_block; 786 nr++) 787 if (present_section_nr(nr)) 788 section_count++; 789 790 if (section_count == 0) 791 return 0; 792 return add_memory_block(memory_block_id(base_section_nr), 793 MEM_ONLINE, NULL, NULL); 794 } 795 796 static int add_hotplug_memory_block(unsigned long block_id, 797 struct vmem_altmap *altmap, 798 struct memory_group *group) 799 { 800 return add_memory_block(block_id, MEM_OFFLINE, altmap, group); 801 } 802 803 static void remove_memory_block(struct memory_block *memory) 804 { 805 if (WARN_ON_ONCE(memory->dev.bus != &memory_subsys)) 806 return; 807 808 WARN_ON(xa_erase(&memory_blocks, memory->dev.id) == NULL); 809 810 if (memory->group) { 811 list_del(&memory->group_next); 812 memory->group = NULL; 813 } 814 815 /* drop the ref. we got via find_memory_block() */ 816 put_device(&memory->dev); 817 device_unregister(&memory->dev); 818 } 819 820 /* 821 * Create memory block devices for the given memory area. Start and size 822 * have to be aligned to memory block granularity. Memory block devices 823 * will be initialized as offline. 824 * 825 * Called under device_hotplug_lock. 826 */ 827 int create_memory_block_devices(unsigned long start, unsigned long size, 828 struct vmem_altmap *altmap, 829 struct memory_group *group) 830 { 831 const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start)); 832 unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size)); 833 struct memory_block *mem; 834 unsigned long block_id; 835 int ret = 0; 836 837 if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) || 838 !IS_ALIGNED(size, memory_block_size_bytes()))) 839 return -EINVAL; 840 841 for (block_id = start_block_id; block_id != end_block_id; block_id++) { 842 ret = add_hotplug_memory_block(block_id, altmap, group); 843 if (ret) 844 break; 845 } 846 if (ret) { 847 end_block_id = block_id; 848 for (block_id = start_block_id; block_id != end_block_id; 849 block_id++) { 850 mem = find_memory_block_by_id(block_id); 851 if (WARN_ON_ONCE(!mem)) 852 continue; 853 remove_memory_block(mem); 854 } 855 } 856 return ret; 857 } 858 859 /* 860 * Remove memory block devices for the given memory area. Start and size 861 * have to be aligned to memory block granularity. Memory block devices 862 * have to be offline. 863 * 864 * Called under device_hotplug_lock. 865 */ 866 void remove_memory_block_devices(unsigned long start, unsigned long size) 867 { 868 const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start)); 869 const unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size)); 870 struct memory_block *mem; 871 unsigned long block_id; 872 873 if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) || 874 !IS_ALIGNED(size, memory_block_size_bytes()))) 875 return; 876 877 for (block_id = start_block_id; block_id != end_block_id; block_id++) { 878 mem = find_memory_block_by_id(block_id); 879 if (WARN_ON_ONCE(!mem)) 880 continue; 881 num_poisoned_pages_sub(-1UL, memblk_nr_poison(mem)); 882 unregister_memory_block_under_nodes(mem); 883 remove_memory_block(mem); 884 } 885 } 886 887 static struct attribute *memory_root_attrs[] = { 888 #ifdef CONFIG_ARCH_MEMORY_PROBE 889 &dev_attr_probe.attr, 890 #endif 891 892 #ifdef CONFIG_MEMORY_FAILURE 893 &dev_attr_soft_offline_page.attr, 894 &dev_attr_hard_offline_page.attr, 895 #endif 896 897 &dev_attr_block_size_bytes.attr, 898 &dev_attr_auto_online_blocks.attr, 899 NULL 900 }; 901 902 static const struct attribute_group memory_root_attr_group = { 903 .attrs = memory_root_attrs, 904 }; 905 906 static const struct attribute_group *memory_root_attr_groups[] = { 907 &memory_root_attr_group, 908 NULL, 909 }; 910 911 /* 912 * Initialize the sysfs support for memory devices. At the time this function 913 * is called, we cannot have concurrent creation/deletion of memory block 914 * devices, the device_hotplug_lock is not needed. 915 */ 916 void __init memory_dev_init(void) 917 { 918 int ret; 919 unsigned long block_sz, nr; 920 921 /* Validate the configured memory block size */ 922 block_sz = memory_block_size_bytes(); 923 if (!is_power_of_2(block_sz) || block_sz < MIN_MEMORY_BLOCK_SIZE) 924 panic("Memory block size not suitable: 0x%lx\n", block_sz); 925 sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE; 926 927 ret = subsys_system_register(&memory_subsys, memory_root_attr_groups); 928 if (ret) 929 panic("%s() failed to register subsystem: %d\n", __func__, ret); 930 931 /* 932 * Create entries for memory sections that were found 933 * during boot and have been initialized 934 */ 935 for (nr = 0; nr <= __highest_present_section_nr; 936 nr += sections_per_block) { 937 ret = add_boot_memory_block(nr); 938 if (ret) 939 panic("%s() failed to add memory block: %d\n", __func__, 940 ret); 941 } 942 } 943 944 /** 945 * walk_memory_blocks - walk through all present memory blocks overlapped 946 * by the range [start, start + size) 947 * 948 * @start: start address of the memory range 949 * @size: size of the memory range 950 * @arg: argument passed to func 951 * @func: callback for each memory section walked 952 * 953 * This function walks through all present memory blocks overlapped by the 954 * range [start, start + size), calling func on each memory block. 955 * 956 * In case func() returns an error, walking is aborted and the error is 957 * returned. 958 * 959 * Called under device_hotplug_lock. 960 */ 961 int walk_memory_blocks(unsigned long start, unsigned long size, 962 void *arg, walk_memory_blocks_func_t func) 963 { 964 const unsigned long start_block_id = phys_to_block_id(start); 965 const unsigned long end_block_id = phys_to_block_id(start + size - 1); 966 struct memory_block *mem; 967 unsigned long block_id; 968 int ret = 0; 969 970 if (!size) 971 return 0; 972 973 for (block_id = start_block_id; block_id <= end_block_id; block_id++) { 974 mem = find_memory_block_by_id(block_id); 975 if (!mem) 976 continue; 977 978 ret = func(mem, arg); 979 put_device(&mem->dev); 980 if (ret) 981 break; 982 } 983 return ret; 984 } 985 986 struct for_each_memory_block_cb_data { 987 walk_memory_blocks_func_t func; 988 void *arg; 989 }; 990 991 static int for_each_memory_block_cb(struct device *dev, void *data) 992 { 993 struct memory_block *mem = to_memory_block(dev); 994 struct for_each_memory_block_cb_data *cb_data = data; 995 996 return cb_data->func(mem, cb_data->arg); 997 } 998 999 /** 1000 * for_each_memory_block - walk through all present memory blocks 1001 * 1002 * @arg: argument passed to func 1003 * @func: callback for each memory block walked 1004 * 1005 * This function walks through all present memory blocks, calling func on 1006 * each memory block. 1007 * 1008 * In case func() returns an error, walking is aborted and the error is 1009 * returned. 1010 */ 1011 int for_each_memory_block(void *arg, walk_memory_blocks_func_t func) 1012 { 1013 struct for_each_memory_block_cb_data cb_data = { 1014 .func = func, 1015 .arg = arg, 1016 }; 1017 1018 return bus_for_each_dev(&memory_subsys, NULL, &cb_data, 1019 for_each_memory_block_cb); 1020 } 1021 1022 /* 1023 * This is an internal helper to unify allocation and initialization of 1024 * memory groups. Note that the passed memory group will be copied to a 1025 * dynamically allocated memory group. After this call, the passed 1026 * memory group should no longer be used. 1027 */ 1028 static int memory_group_register(struct memory_group group) 1029 { 1030 struct memory_group *new_group; 1031 uint32_t mgid; 1032 int ret; 1033 1034 if (!node_possible(group.nid)) 1035 return -EINVAL; 1036 1037 new_group = kzalloc(sizeof(group), GFP_KERNEL); 1038 if (!new_group) 1039 return -ENOMEM; 1040 *new_group = group; 1041 INIT_LIST_HEAD(&new_group->memory_blocks); 1042 1043 ret = xa_alloc(&memory_groups, &mgid, new_group, xa_limit_31b, 1044 GFP_KERNEL); 1045 if (ret) { 1046 kfree(new_group); 1047 return ret; 1048 } else if (group.is_dynamic) { 1049 xa_set_mark(&memory_groups, mgid, MEMORY_GROUP_MARK_DYNAMIC); 1050 } 1051 return mgid; 1052 } 1053 1054 /** 1055 * memory_group_register_static() - Register a static memory group. 1056 * @nid: The node id. 1057 * @max_pages: The maximum number of pages we'll have in this static memory 1058 * group. 1059 * 1060 * Register a new static memory group and return the memory group id. 1061 * All memory in the group belongs to a single unit, such as a DIMM. All 1062 * memory belonging to a static memory group is added in one go to be removed 1063 * in one go -- it's static. 1064 * 1065 * Returns an error if out of memory, if the node id is invalid, if no new 1066 * memory groups can be registered, or if max_pages is invalid (0). Otherwise, 1067 * returns the new memory group id. 1068 */ 1069 int memory_group_register_static(int nid, unsigned long max_pages) 1070 { 1071 struct memory_group group = { 1072 .nid = nid, 1073 .s = { 1074 .max_pages = max_pages, 1075 }, 1076 }; 1077 1078 if (!max_pages) 1079 return -EINVAL; 1080 return memory_group_register(group); 1081 } 1082 EXPORT_SYMBOL_GPL(memory_group_register_static); 1083 1084 /** 1085 * memory_group_register_dynamic() - Register a dynamic memory group. 1086 * @nid: The node id. 1087 * @unit_pages: Unit in pages in which is memory added/removed in this dynamic 1088 * memory group. 1089 * 1090 * Register a new dynamic memory group and return the memory group id. 1091 * Memory within a dynamic memory group is added/removed dynamically 1092 * in unit_pages. 1093 * 1094 * Returns an error if out of memory, if the node id is invalid, if no new 1095 * memory groups can be registered, or if unit_pages is invalid (0, not a 1096 * power of two, smaller than a single memory block). Otherwise, returns the 1097 * new memory group id. 1098 */ 1099 int memory_group_register_dynamic(int nid, unsigned long unit_pages) 1100 { 1101 struct memory_group group = { 1102 .nid = nid, 1103 .is_dynamic = true, 1104 .d = { 1105 .unit_pages = unit_pages, 1106 }, 1107 }; 1108 1109 if (!unit_pages || !is_power_of_2(unit_pages) || 1110 unit_pages < PHYS_PFN(memory_block_size_bytes())) 1111 return -EINVAL; 1112 return memory_group_register(group); 1113 } 1114 EXPORT_SYMBOL_GPL(memory_group_register_dynamic); 1115 1116 /** 1117 * memory_group_unregister() - Unregister a memory group. 1118 * @mgid: the memory group id 1119 * 1120 * Unregister a memory group. If any memory block still belongs to this 1121 * memory group, unregistering will fail. 1122 * 1123 * Returns -EINVAL if the memory group id is invalid, returns -EBUSY if some 1124 * memory blocks still belong to this memory group and returns 0 if 1125 * unregistering succeeded. 1126 */ 1127 int memory_group_unregister(int mgid) 1128 { 1129 struct memory_group *group; 1130 1131 if (mgid < 0) 1132 return -EINVAL; 1133 1134 group = xa_load(&memory_groups, mgid); 1135 if (!group) 1136 return -EINVAL; 1137 if (!list_empty(&group->memory_blocks)) 1138 return -EBUSY; 1139 xa_erase(&memory_groups, mgid); 1140 kfree(group); 1141 return 0; 1142 } 1143 EXPORT_SYMBOL_GPL(memory_group_unregister); 1144 1145 /* 1146 * This is an internal helper only to be used in core memory hotplug code to 1147 * lookup a memory group. We don't care about locking, as we don't expect a 1148 * memory group to get unregistered while adding memory to it -- because 1149 * the group and the memory is managed by the same driver. 1150 */ 1151 struct memory_group *memory_group_find_by_id(int mgid) 1152 { 1153 return xa_load(&memory_groups, mgid); 1154 } 1155 1156 /* 1157 * This is an internal helper only to be used in core memory hotplug code to 1158 * walk all dynamic memory groups excluding a given memory group, either 1159 * belonging to a specific node, or belonging to any node. 1160 */ 1161 int walk_dynamic_memory_groups(int nid, walk_memory_groups_func_t func, 1162 struct memory_group *excluded, void *arg) 1163 { 1164 struct memory_group *group; 1165 unsigned long index; 1166 int ret = 0; 1167 1168 xa_for_each_marked(&memory_groups, index, group, 1169 MEMORY_GROUP_MARK_DYNAMIC) { 1170 if (group == excluded) 1171 continue; 1172 #ifdef CONFIG_NUMA 1173 if (nid != NUMA_NO_NODE && group->nid != nid) 1174 continue; 1175 #endif /* CONFIG_NUMA */ 1176 ret = func(group, arg); 1177 if (ret) 1178 break; 1179 } 1180 return ret; 1181 } 1182 1183 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 1184 void memblk_nr_poison_inc(unsigned long pfn) 1185 { 1186 const unsigned long block_id = pfn_to_block_id(pfn); 1187 struct memory_block *mem = find_memory_block_by_id(block_id); 1188 1189 if (mem) 1190 atomic_long_inc(&mem->nr_hwpoison); 1191 } 1192 1193 void memblk_nr_poison_sub(unsigned long pfn, long i) 1194 { 1195 const unsigned long block_id = pfn_to_block_id(pfn); 1196 struct memory_block *mem = find_memory_block_by_id(block_id); 1197 1198 if (mem) 1199 atomic_long_sub(i, &mem->nr_hwpoison); 1200 } 1201 1202 static unsigned long memblk_nr_poison(struct memory_block *mem) 1203 { 1204 return atomic_long_read(&mem->nr_hwpoison); 1205 } 1206 #endif 1207