1 /* 2 * Memory subsystem support 3 * 4 * Written by Matt Tolentino <matthew.e.tolentino@intel.com> 5 * Dave Hansen <haveblue@us.ibm.com> 6 * 7 * This file provides the necessary infrastructure to represent 8 * a SPARSEMEM-memory-model system's physical memory in /sysfs. 9 * All arch-independent code that assumes MEMORY_HOTPLUG requires 10 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c. 11 */ 12 13 #include <linux/module.h> 14 #include <linux/init.h> 15 #include <linux/topology.h> 16 #include <linux/capability.h> 17 #include <linux/device.h> 18 #include <linux/memory.h> 19 #include <linux/memory_hotplug.h> 20 #include <linux/mm.h> 21 #include <linux/mutex.h> 22 #include <linux/stat.h> 23 #include <linux/slab.h> 24 25 #include <linux/atomic.h> 26 #include <asm/uaccess.h> 27 28 static DEFINE_MUTEX(mem_sysfs_mutex); 29 30 #define MEMORY_CLASS_NAME "memory" 31 32 #define to_memory_block(dev) container_of(dev, struct memory_block, dev) 33 34 static int sections_per_block; 35 36 static inline int base_memory_block_id(int section_nr) 37 { 38 return section_nr / sections_per_block; 39 } 40 41 static int memory_subsys_online(struct device *dev); 42 static int memory_subsys_offline(struct device *dev); 43 44 static struct bus_type memory_subsys = { 45 .name = MEMORY_CLASS_NAME, 46 .dev_name = MEMORY_CLASS_NAME, 47 .online = memory_subsys_online, 48 .offline = memory_subsys_offline, 49 }; 50 51 static BLOCKING_NOTIFIER_HEAD(memory_chain); 52 53 int register_memory_notifier(struct notifier_block *nb) 54 { 55 return blocking_notifier_chain_register(&memory_chain, nb); 56 } 57 EXPORT_SYMBOL(register_memory_notifier); 58 59 void unregister_memory_notifier(struct notifier_block *nb) 60 { 61 blocking_notifier_chain_unregister(&memory_chain, nb); 62 } 63 EXPORT_SYMBOL(unregister_memory_notifier); 64 65 static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain); 66 67 int register_memory_isolate_notifier(struct notifier_block *nb) 68 { 69 return atomic_notifier_chain_register(&memory_isolate_chain, nb); 70 } 71 EXPORT_SYMBOL(register_memory_isolate_notifier); 72 73 void unregister_memory_isolate_notifier(struct notifier_block *nb) 74 { 75 atomic_notifier_chain_unregister(&memory_isolate_chain, nb); 76 } 77 EXPORT_SYMBOL(unregister_memory_isolate_notifier); 78 79 static void memory_block_release(struct device *dev) 80 { 81 struct memory_block *mem = to_memory_block(dev); 82 83 kfree(mem); 84 } 85 86 unsigned long __weak memory_block_size_bytes(void) 87 { 88 return MIN_MEMORY_BLOCK_SIZE; 89 } 90 91 static unsigned long get_memory_block_size(void) 92 { 93 unsigned long block_sz; 94 95 block_sz = memory_block_size_bytes(); 96 97 /* Validate blk_sz is a power of 2 and not less than section size */ 98 if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) { 99 WARN_ON(1); 100 block_sz = MIN_MEMORY_BLOCK_SIZE; 101 } 102 103 return block_sz; 104 } 105 106 /* 107 * use this as the physical section index that this memsection 108 * uses. 109 */ 110 111 static ssize_t show_mem_start_phys_index(struct device *dev, 112 struct device_attribute *attr, char *buf) 113 { 114 struct memory_block *mem = to_memory_block(dev); 115 unsigned long phys_index; 116 117 phys_index = mem->start_section_nr / sections_per_block; 118 return sprintf(buf, "%08lx\n", phys_index); 119 } 120 121 /* 122 * Show whether the section of memory is likely to be hot-removable 123 */ 124 static ssize_t show_mem_removable(struct device *dev, 125 struct device_attribute *attr, char *buf) 126 { 127 unsigned long i, pfn; 128 int ret = 1; 129 struct memory_block *mem = to_memory_block(dev); 130 131 for (i = 0; i < sections_per_block; i++) { 132 if (!present_section_nr(mem->start_section_nr + i)) 133 continue; 134 pfn = section_nr_to_pfn(mem->start_section_nr + i); 135 ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION); 136 } 137 138 return sprintf(buf, "%d\n", ret); 139 } 140 141 /* 142 * online, offline, going offline, etc. 143 */ 144 static ssize_t show_mem_state(struct device *dev, 145 struct device_attribute *attr, char *buf) 146 { 147 struct memory_block *mem = to_memory_block(dev); 148 ssize_t len = 0; 149 150 /* 151 * We can probably put these states in a nice little array 152 * so that they're not open-coded 153 */ 154 switch (mem->state) { 155 case MEM_ONLINE: 156 len = sprintf(buf, "online\n"); 157 break; 158 case MEM_OFFLINE: 159 len = sprintf(buf, "offline\n"); 160 break; 161 case MEM_GOING_OFFLINE: 162 len = sprintf(buf, "going-offline\n"); 163 break; 164 default: 165 len = sprintf(buf, "ERROR-UNKNOWN-%ld\n", 166 mem->state); 167 WARN_ON(1); 168 break; 169 } 170 171 return len; 172 } 173 174 int memory_notify(unsigned long val, void *v) 175 { 176 return blocking_notifier_call_chain(&memory_chain, val, v); 177 } 178 179 int memory_isolate_notify(unsigned long val, void *v) 180 { 181 return atomic_notifier_call_chain(&memory_isolate_chain, val, v); 182 } 183 184 /* 185 * The probe routines leave the pages reserved, just as the bootmem code does. 186 * Make sure they're still that way. 187 */ 188 static bool pages_correctly_reserved(unsigned long start_pfn) 189 { 190 int i, j; 191 struct page *page; 192 unsigned long pfn = start_pfn; 193 194 /* 195 * memmap between sections is not contiguous except with 196 * SPARSEMEM_VMEMMAP. We lookup the page once per section 197 * and assume memmap is contiguous within each section 198 */ 199 for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) { 200 if (WARN_ON_ONCE(!pfn_valid(pfn))) 201 return false; 202 page = pfn_to_page(pfn); 203 204 for (j = 0; j < PAGES_PER_SECTION; j++) { 205 if (PageReserved(page + j)) 206 continue; 207 208 printk(KERN_WARNING "section number %ld page number %d " 209 "not reserved, was it already online?\n", 210 pfn_to_section_nr(pfn), j); 211 212 return false; 213 } 214 } 215 216 return true; 217 } 218 219 /* 220 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is 221 * OK to have direct references to sparsemem variables in here. 222 * Must already be protected by mem_hotplug_begin(). 223 */ 224 static int 225 memory_block_action(unsigned long phys_index, unsigned long action, int online_type) 226 { 227 unsigned long start_pfn; 228 unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block; 229 struct page *first_page; 230 int ret; 231 232 start_pfn = section_nr_to_pfn(phys_index); 233 first_page = pfn_to_page(start_pfn); 234 235 switch (action) { 236 case MEM_ONLINE: 237 if (!pages_correctly_reserved(start_pfn)) 238 return -EBUSY; 239 240 ret = online_pages(start_pfn, nr_pages, online_type); 241 break; 242 case MEM_OFFLINE: 243 ret = offline_pages(start_pfn, nr_pages); 244 break; 245 default: 246 WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: " 247 "%ld\n", __func__, phys_index, action, action); 248 ret = -EINVAL; 249 } 250 251 return ret; 252 } 253 254 static int memory_block_change_state(struct memory_block *mem, 255 unsigned long to_state, unsigned long from_state_req) 256 { 257 int ret = 0; 258 259 if (mem->state != from_state_req) 260 return -EINVAL; 261 262 if (to_state == MEM_OFFLINE) 263 mem->state = MEM_GOING_OFFLINE; 264 265 ret = memory_block_action(mem->start_section_nr, to_state, 266 mem->online_type); 267 268 mem->state = ret ? from_state_req : to_state; 269 270 return ret; 271 } 272 273 /* The device lock serializes operations on memory_subsys_[online|offline] */ 274 static int memory_subsys_online(struct device *dev) 275 { 276 struct memory_block *mem = to_memory_block(dev); 277 int ret; 278 279 if (mem->state == MEM_ONLINE) 280 return 0; 281 282 /* 283 * If we are called from store_mem_state(), online_type will be 284 * set >= 0 Otherwise we were called from the device online 285 * attribute and need to set the online_type. 286 */ 287 if (mem->online_type < 0) 288 mem->online_type = MMOP_ONLINE_KEEP; 289 290 /* Already under protection of mem_hotplug_begin() */ 291 ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE); 292 293 /* clear online_type */ 294 mem->online_type = -1; 295 296 return ret; 297 } 298 299 static int memory_subsys_offline(struct device *dev) 300 { 301 struct memory_block *mem = to_memory_block(dev); 302 303 if (mem->state == MEM_OFFLINE) 304 return 0; 305 306 return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE); 307 } 308 309 static ssize_t 310 store_mem_state(struct device *dev, 311 struct device_attribute *attr, const char *buf, size_t count) 312 { 313 struct memory_block *mem = to_memory_block(dev); 314 int ret, online_type; 315 316 ret = lock_device_hotplug_sysfs(); 317 if (ret) 318 return ret; 319 320 if (sysfs_streq(buf, "online_kernel")) 321 online_type = MMOP_ONLINE_KERNEL; 322 else if (sysfs_streq(buf, "online_movable")) 323 online_type = MMOP_ONLINE_MOVABLE; 324 else if (sysfs_streq(buf, "online")) 325 online_type = MMOP_ONLINE_KEEP; 326 else if (sysfs_streq(buf, "offline")) 327 online_type = MMOP_OFFLINE; 328 else { 329 ret = -EINVAL; 330 goto err; 331 } 332 333 /* 334 * Memory hotplug needs to hold mem_hotplug_begin() for probe to find 335 * the correct memory block to online before doing device_online(dev), 336 * which will take dev->mutex. Take the lock early to prevent an 337 * inversion, memory_subsys_online() callbacks will be implemented by 338 * assuming it's already protected. 339 */ 340 mem_hotplug_begin(); 341 342 switch (online_type) { 343 case MMOP_ONLINE_KERNEL: 344 case MMOP_ONLINE_MOVABLE: 345 case MMOP_ONLINE_KEEP: 346 mem->online_type = online_type; 347 ret = device_online(&mem->dev); 348 break; 349 case MMOP_OFFLINE: 350 ret = device_offline(&mem->dev); 351 break; 352 default: 353 ret = -EINVAL; /* should never happen */ 354 } 355 356 mem_hotplug_done(); 357 err: 358 unlock_device_hotplug(); 359 360 if (ret) 361 return ret; 362 return count; 363 } 364 365 /* 366 * phys_device is a bad name for this. What I really want 367 * is a way to differentiate between memory ranges that 368 * are part of physical devices that constitute 369 * a complete removable unit or fru. 370 * i.e. do these ranges belong to the same physical device, 371 * s.t. if I offline all of these sections I can then 372 * remove the physical device? 373 */ 374 static ssize_t show_phys_device(struct device *dev, 375 struct device_attribute *attr, char *buf) 376 { 377 struct memory_block *mem = to_memory_block(dev); 378 return sprintf(buf, "%d\n", mem->phys_device); 379 } 380 381 #ifdef CONFIG_MEMORY_HOTREMOVE 382 static ssize_t show_valid_zones(struct device *dev, 383 struct device_attribute *attr, char *buf) 384 { 385 struct memory_block *mem = to_memory_block(dev); 386 unsigned long start_pfn, end_pfn; 387 unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block; 388 struct page *first_page; 389 struct zone *zone; 390 391 start_pfn = section_nr_to_pfn(mem->start_section_nr); 392 end_pfn = start_pfn + nr_pages; 393 first_page = pfn_to_page(start_pfn); 394 395 /* The block contains more than one zone can not be offlined. */ 396 if (!test_pages_in_a_zone(start_pfn, end_pfn)) 397 return sprintf(buf, "none\n"); 398 399 zone = page_zone(first_page); 400 401 if (zone_idx(zone) == ZONE_MOVABLE - 1) { 402 /*The mem block is the last memoryblock of this zone.*/ 403 if (end_pfn == zone_end_pfn(zone)) 404 return sprintf(buf, "%s %s\n", 405 zone->name, (zone + 1)->name); 406 } 407 408 if (zone_idx(zone) == ZONE_MOVABLE) { 409 /*The mem block is the first memoryblock of ZONE_MOVABLE.*/ 410 if (start_pfn == zone->zone_start_pfn) 411 return sprintf(buf, "%s %s\n", 412 zone->name, (zone - 1)->name); 413 } 414 415 return sprintf(buf, "%s\n", zone->name); 416 } 417 static DEVICE_ATTR(valid_zones, 0444, show_valid_zones, NULL); 418 #endif 419 420 static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL); 421 static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state); 422 static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL); 423 static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL); 424 425 /* 426 * Block size attribute stuff 427 */ 428 static ssize_t 429 print_block_size(struct device *dev, struct device_attribute *attr, 430 char *buf) 431 { 432 return sprintf(buf, "%lx\n", get_memory_block_size()); 433 } 434 435 static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL); 436 437 /* 438 * Some architectures will have custom drivers to do this, and 439 * will not need to do it from userspace. The fake hot-add code 440 * as well as ppc64 will do all of their discovery in userspace 441 * and will require this interface. 442 */ 443 #ifdef CONFIG_ARCH_MEMORY_PROBE 444 static ssize_t 445 memory_probe_store(struct device *dev, struct device_attribute *attr, 446 const char *buf, size_t count) 447 { 448 u64 phys_addr; 449 int nid; 450 int i, ret; 451 unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block; 452 453 ret = kstrtoull(buf, 0, &phys_addr); 454 if (ret) 455 return ret; 456 457 if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1)) 458 return -EINVAL; 459 460 for (i = 0; i < sections_per_block; i++) { 461 nid = memory_add_physaddr_to_nid(phys_addr); 462 ret = add_memory(nid, phys_addr, 463 PAGES_PER_SECTION << PAGE_SHIFT); 464 if (ret) 465 goto out; 466 467 phys_addr += MIN_MEMORY_BLOCK_SIZE; 468 } 469 470 ret = count; 471 out: 472 return ret; 473 } 474 475 static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store); 476 #endif 477 478 #ifdef CONFIG_MEMORY_FAILURE 479 /* 480 * Support for offlining pages of memory 481 */ 482 483 /* Soft offline a page */ 484 static ssize_t 485 store_soft_offline_page(struct device *dev, 486 struct device_attribute *attr, 487 const char *buf, size_t count) 488 { 489 int ret; 490 u64 pfn; 491 if (!capable(CAP_SYS_ADMIN)) 492 return -EPERM; 493 if (kstrtoull(buf, 0, &pfn) < 0) 494 return -EINVAL; 495 pfn >>= PAGE_SHIFT; 496 if (!pfn_valid(pfn)) 497 return -ENXIO; 498 ret = soft_offline_page(pfn_to_page(pfn), 0); 499 return ret == 0 ? count : ret; 500 } 501 502 /* Forcibly offline a page, including killing processes. */ 503 static ssize_t 504 store_hard_offline_page(struct device *dev, 505 struct device_attribute *attr, 506 const char *buf, size_t count) 507 { 508 int ret; 509 u64 pfn; 510 if (!capable(CAP_SYS_ADMIN)) 511 return -EPERM; 512 if (kstrtoull(buf, 0, &pfn) < 0) 513 return -EINVAL; 514 pfn >>= PAGE_SHIFT; 515 ret = memory_failure(pfn, 0, 0); 516 return ret ? ret : count; 517 } 518 519 static DEVICE_ATTR(soft_offline_page, S_IWUSR, NULL, store_soft_offline_page); 520 static DEVICE_ATTR(hard_offline_page, S_IWUSR, NULL, store_hard_offline_page); 521 #endif 522 523 /* 524 * Note that phys_device is optional. It is here to allow for 525 * differentiation between which *physical* devices each 526 * section belongs to... 527 */ 528 int __weak arch_get_memory_phys_device(unsigned long start_pfn) 529 { 530 return 0; 531 } 532 533 /* 534 * A reference for the returned object is held and the reference for the 535 * hinted object is released. 536 */ 537 struct memory_block *find_memory_block_hinted(struct mem_section *section, 538 struct memory_block *hint) 539 { 540 int block_id = base_memory_block_id(__section_nr(section)); 541 struct device *hintdev = hint ? &hint->dev : NULL; 542 struct device *dev; 543 544 dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev); 545 if (hint) 546 put_device(&hint->dev); 547 if (!dev) 548 return NULL; 549 return to_memory_block(dev); 550 } 551 552 /* 553 * For now, we have a linear search to go find the appropriate 554 * memory_block corresponding to a particular phys_index. If 555 * this gets to be a real problem, we can always use a radix 556 * tree or something here. 557 * 558 * This could be made generic for all device subsystems. 559 */ 560 struct memory_block *find_memory_block(struct mem_section *section) 561 { 562 return find_memory_block_hinted(section, NULL); 563 } 564 565 static struct attribute *memory_memblk_attrs[] = { 566 &dev_attr_phys_index.attr, 567 &dev_attr_state.attr, 568 &dev_attr_phys_device.attr, 569 &dev_attr_removable.attr, 570 #ifdef CONFIG_MEMORY_HOTREMOVE 571 &dev_attr_valid_zones.attr, 572 #endif 573 NULL 574 }; 575 576 static struct attribute_group memory_memblk_attr_group = { 577 .attrs = memory_memblk_attrs, 578 }; 579 580 static const struct attribute_group *memory_memblk_attr_groups[] = { 581 &memory_memblk_attr_group, 582 NULL, 583 }; 584 585 /* 586 * register_memory - Setup a sysfs device for a memory block 587 */ 588 static 589 int register_memory(struct memory_block *memory) 590 { 591 memory->dev.bus = &memory_subsys; 592 memory->dev.id = memory->start_section_nr / sections_per_block; 593 memory->dev.release = memory_block_release; 594 memory->dev.groups = memory_memblk_attr_groups; 595 memory->dev.offline = memory->state == MEM_OFFLINE; 596 597 return device_register(&memory->dev); 598 } 599 600 static int init_memory_block(struct memory_block **memory, 601 struct mem_section *section, unsigned long state) 602 { 603 struct memory_block *mem; 604 unsigned long start_pfn; 605 int scn_nr; 606 int ret = 0; 607 608 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 609 if (!mem) 610 return -ENOMEM; 611 612 scn_nr = __section_nr(section); 613 mem->start_section_nr = 614 base_memory_block_id(scn_nr) * sections_per_block; 615 mem->end_section_nr = mem->start_section_nr + sections_per_block - 1; 616 mem->state = state; 617 mem->section_count++; 618 start_pfn = section_nr_to_pfn(mem->start_section_nr); 619 mem->phys_device = arch_get_memory_phys_device(start_pfn); 620 621 ret = register_memory(mem); 622 623 *memory = mem; 624 return ret; 625 } 626 627 static int add_memory_block(int base_section_nr) 628 { 629 struct memory_block *mem; 630 int i, ret, section_count = 0, section_nr; 631 632 for (i = base_section_nr; 633 (i < base_section_nr + sections_per_block) && i < NR_MEM_SECTIONS; 634 i++) { 635 if (!present_section_nr(i)) 636 continue; 637 if (section_count == 0) 638 section_nr = i; 639 section_count++; 640 } 641 642 if (section_count == 0) 643 return 0; 644 ret = init_memory_block(&mem, __nr_to_section(section_nr), MEM_ONLINE); 645 if (ret) 646 return ret; 647 mem->section_count = section_count; 648 return 0; 649 } 650 651 652 /* 653 * need an interface for the VM to add new memory regions, 654 * but without onlining it. 655 */ 656 int register_new_memory(int nid, struct mem_section *section) 657 { 658 int ret = 0; 659 struct memory_block *mem; 660 661 mutex_lock(&mem_sysfs_mutex); 662 663 mem = find_memory_block(section); 664 if (mem) { 665 mem->section_count++; 666 put_device(&mem->dev); 667 } else { 668 ret = init_memory_block(&mem, section, MEM_OFFLINE); 669 if (ret) 670 goto out; 671 } 672 673 if (mem->section_count == sections_per_block) 674 ret = register_mem_sect_under_node(mem, nid); 675 out: 676 mutex_unlock(&mem_sysfs_mutex); 677 return ret; 678 } 679 680 #ifdef CONFIG_MEMORY_HOTREMOVE 681 static void 682 unregister_memory(struct memory_block *memory) 683 { 684 BUG_ON(memory->dev.bus != &memory_subsys); 685 686 /* drop the ref. we got in remove_memory_block() */ 687 put_device(&memory->dev); 688 device_unregister(&memory->dev); 689 } 690 691 static int remove_memory_block(unsigned long node_id, 692 struct mem_section *section, int phys_device) 693 { 694 struct memory_block *mem; 695 696 mutex_lock(&mem_sysfs_mutex); 697 mem = find_memory_block(section); 698 unregister_mem_sect_under_nodes(mem, __section_nr(section)); 699 700 mem->section_count--; 701 if (mem->section_count == 0) 702 unregister_memory(mem); 703 else 704 put_device(&mem->dev); 705 706 mutex_unlock(&mem_sysfs_mutex); 707 return 0; 708 } 709 710 int unregister_memory_section(struct mem_section *section) 711 { 712 if (!present_section(section)) 713 return -EINVAL; 714 715 return remove_memory_block(0, section, 0); 716 } 717 #endif /* CONFIG_MEMORY_HOTREMOVE */ 718 719 /* return true if the memory block is offlined, otherwise, return false */ 720 bool is_memblock_offlined(struct memory_block *mem) 721 { 722 return mem->state == MEM_OFFLINE; 723 } 724 725 static struct attribute *memory_root_attrs[] = { 726 #ifdef CONFIG_ARCH_MEMORY_PROBE 727 &dev_attr_probe.attr, 728 #endif 729 730 #ifdef CONFIG_MEMORY_FAILURE 731 &dev_attr_soft_offline_page.attr, 732 &dev_attr_hard_offline_page.attr, 733 #endif 734 735 &dev_attr_block_size_bytes.attr, 736 NULL 737 }; 738 739 static struct attribute_group memory_root_attr_group = { 740 .attrs = memory_root_attrs, 741 }; 742 743 static const struct attribute_group *memory_root_attr_groups[] = { 744 &memory_root_attr_group, 745 NULL, 746 }; 747 748 /* 749 * Initialize the sysfs support for memory devices... 750 */ 751 int __init memory_dev_init(void) 752 { 753 unsigned int i; 754 int ret; 755 int err; 756 unsigned long block_sz; 757 758 ret = subsys_system_register(&memory_subsys, memory_root_attr_groups); 759 if (ret) 760 goto out; 761 762 block_sz = get_memory_block_size(); 763 sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE; 764 765 /* 766 * Create entries for memory sections that were found 767 * during boot and have been initialized 768 */ 769 mutex_lock(&mem_sysfs_mutex); 770 for (i = 0; i < NR_MEM_SECTIONS; i += sections_per_block) { 771 err = add_memory_block(i); 772 if (!ret) 773 ret = err; 774 } 775 mutex_unlock(&mem_sysfs_mutex); 776 777 out: 778 if (ret) 779 printk(KERN_ERR "%s() failed: %d\n", __func__, ret); 780 return ret; 781 } 782