xref: /openbmc/linux/drivers/base/memory.c (revision 7fe2f639)
1 /*
2  * drivers/base/memory.c - basic Memory class support
3  *
4  * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
5  *            Dave Hansen <haveblue@us.ibm.com>
6  *
7  * This file provides the necessary infrastructure to represent
8  * a SPARSEMEM-memory-model system's physical memory in /sysfs.
9  * All arch-independent code that assumes MEMORY_HOTPLUG requires
10  * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
11  */
12 
13 #include <linux/sysdev.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/topology.h>
17 #include <linux/capability.h>
18 #include <linux/device.h>
19 #include <linux/memory.h>
20 #include <linux/kobject.h>
21 #include <linux/memory_hotplug.h>
22 #include <linux/mm.h>
23 #include <linux/mutex.h>
24 #include <linux/stat.h>
25 #include <linux/slab.h>
26 
27 #include <asm/atomic.h>
28 #include <asm/uaccess.h>
29 
30 static DEFINE_MUTEX(mem_sysfs_mutex);
31 
32 #define MEMORY_CLASS_NAME	"memory"
33 
34 static int sections_per_block;
35 
36 static inline int base_memory_block_id(int section_nr)
37 {
38 	return section_nr / sections_per_block;
39 }
40 
41 static struct sysdev_class memory_sysdev_class = {
42 	.name = MEMORY_CLASS_NAME,
43 };
44 
45 static const char *memory_uevent_name(struct kset *kset, struct kobject *kobj)
46 {
47 	return MEMORY_CLASS_NAME;
48 }
49 
50 static int memory_uevent(struct kset *kset, struct kobject *obj,
51 			struct kobj_uevent_env *env)
52 {
53 	int retval = 0;
54 
55 	return retval;
56 }
57 
58 static const struct kset_uevent_ops memory_uevent_ops = {
59 	.name		= memory_uevent_name,
60 	.uevent		= memory_uevent,
61 };
62 
63 static BLOCKING_NOTIFIER_HEAD(memory_chain);
64 
65 int register_memory_notifier(struct notifier_block *nb)
66 {
67         return blocking_notifier_chain_register(&memory_chain, nb);
68 }
69 EXPORT_SYMBOL(register_memory_notifier);
70 
71 void unregister_memory_notifier(struct notifier_block *nb)
72 {
73         blocking_notifier_chain_unregister(&memory_chain, nb);
74 }
75 EXPORT_SYMBOL(unregister_memory_notifier);
76 
77 static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);
78 
79 int register_memory_isolate_notifier(struct notifier_block *nb)
80 {
81 	return atomic_notifier_chain_register(&memory_isolate_chain, nb);
82 }
83 EXPORT_SYMBOL(register_memory_isolate_notifier);
84 
85 void unregister_memory_isolate_notifier(struct notifier_block *nb)
86 {
87 	atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
88 }
89 EXPORT_SYMBOL(unregister_memory_isolate_notifier);
90 
91 /*
92  * register_memory - Setup a sysfs device for a memory block
93  */
94 static
95 int register_memory(struct memory_block *memory)
96 {
97 	int error;
98 
99 	memory->sysdev.cls = &memory_sysdev_class;
100 	memory->sysdev.id = memory->start_section_nr / sections_per_block;
101 
102 	error = sysdev_register(&memory->sysdev);
103 	return error;
104 }
105 
106 static void
107 unregister_memory(struct memory_block *memory)
108 {
109 	BUG_ON(memory->sysdev.cls != &memory_sysdev_class);
110 
111 	/* drop the ref. we got in remove_memory_block() */
112 	kobject_put(&memory->sysdev.kobj);
113 	sysdev_unregister(&memory->sysdev);
114 }
115 
116 unsigned long __weak memory_block_size_bytes(void)
117 {
118 	return MIN_MEMORY_BLOCK_SIZE;
119 }
120 
121 static unsigned long get_memory_block_size(void)
122 {
123 	unsigned long block_sz;
124 
125 	block_sz = memory_block_size_bytes();
126 
127 	/* Validate blk_sz is a power of 2 and not less than section size */
128 	if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
129 		WARN_ON(1);
130 		block_sz = MIN_MEMORY_BLOCK_SIZE;
131 	}
132 
133 	return block_sz;
134 }
135 
136 /*
137  * use this as the physical section index that this memsection
138  * uses.
139  */
140 
141 static ssize_t show_mem_start_phys_index(struct sys_device *dev,
142 			struct sysdev_attribute *attr, char *buf)
143 {
144 	struct memory_block *mem =
145 		container_of(dev, struct memory_block, sysdev);
146 	unsigned long phys_index;
147 
148 	phys_index = mem->start_section_nr / sections_per_block;
149 	return sprintf(buf, "%08lx\n", phys_index);
150 }
151 
152 static ssize_t show_mem_end_phys_index(struct sys_device *dev,
153 			struct sysdev_attribute *attr, char *buf)
154 {
155 	struct memory_block *mem =
156 		container_of(dev, struct memory_block, sysdev);
157 	unsigned long phys_index;
158 
159 	phys_index = mem->end_section_nr / sections_per_block;
160 	return sprintf(buf, "%08lx\n", phys_index);
161 }
162 
163 /*
164  * Show whether the section of memory is likely to be hot-removable
165  */
166 static ssize_t show_mem_removable(struct sys_device *dev,
167 			struct sysdev_attribute *attr, char *buf)
168 {
169 	unsigned long i, pfn;
170 	int ret = 1;
171 	struct memory_block *mem =
172 		container_of(dev, struct memory_block, sysdev);
173 
174 	for (i = 0; i < sections_per_block; i++) {
175 		pfn = section_nr_to_pfn(mem->start_section_nr + i);
176 		ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
177 	}
178 
179 	return sprintf(buf, "%d\n", ret);
180 }
181 
182 /*
183  * online, offline, going offline, etc.
184  */
185 static ssize_t show_mem_state(struct sys_device *dev,
186 			struct sysdev_attribute *attr, char *buf)
187 {
188 	struct memory_block *mem =
189 		container_of(dev, struct memory_block, sysdev);
190 	ssize_t len = 0;
191 
192 	/*
193 	 * We can probably put these states in a nice little array
194 	 * so that they're not open-coded
195 	 */
196 	switch (mem->state) {
197 		case MEM_ONLINE:
198 			len = sprintf(buf, "online\n");
199 			break;
200 		case MEM_OFFLINE:
201 			len = sprintf(buf, "offline\n");
202 			break;
203 		case MEM_GOING_OFFLINE:
204 			len = sprintf(buf, "going-offline\n");
205 			break;
206 		default:
207 			len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
208 					mem->state);
209 			WARN_ON(1);
210 			break;
211 	}
212 
213 	return len;
214 }
215 
216 int memory_notify(unsigned long val, void *v)
217 {
218 	return blocking_notifier_call_chain(&memory_chain, val, v);
219 }
220 
221 int memory_isolate_notify(unsigned long val, void *v)
222 {
223 	return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
224 }
225 
226 /*
227  * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
228  * OK to have direct references to sparsemem variables in here.
229  */
230 static int
231 memory_block_action(unsigned long phys_index, unsigned long action)
232 {
233 	int i;
234 	unsigned long start_pfn, start_paddr;
235 	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
236 	struct page *first_page;
237 	int ret;
238 
239 	first_page = pfn_to_page(phys_index << PFN_SECTION_SHIFT);
240 
241 	/*
242 	 * The probe routines leave the pages reserved, just
243 	 * as the bootmem code does.  Make sure they're still
244 	 * that way.
245 	 */
246 	if (action == MEM_ONLINE) {
247 		for (i = 0; i < nr_pages; i++) {
248 			if (PageReserved(first_page+i))
249 				continue;
250 
251 			printk(KERN_WARNING "section number %ld page number %d "
252 				"not reserved, was it already online?\n",
253 				phys_index, i);
254 			return -EBUSY;
255 		}
256 	}
257 
258 	switch (action) {
259 		case MEM_ONLINE:
260 			start_pfn = page_to_pfn(first_page);
261 			ret = online_pages(start_pfn, nr_pages);
262 			break;
263 		case MEM_OFFLINE:
264 			start_paddr = page_to_pfn(first_page) << PAGE_SHIFT;
265 			ret = remove_memory(start_paddr,
266 					    nr_pages << PAGE_SHIFT);
267 			break;
268 		default:
269 			WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
270 			     "%ld\n", __func__, phys_index, action, action);
271 			ret = -EINVAL;
272 	}
273 
274 	return ret;
275 }
276 
277 static int memory_block_change_state(struct memory_block *mem,
278 		unsigned long to_state, unsigned long from_state_req)
279 {
280 	int ret = 0;
281 
282 	mutex_lock(&mem->state_mutex);
283 
284 	if (mem->state != from_state_req) {
285 		ret = -EINVAL;
286 		goto out;
287 	}
288 
289 	if (to_state == MEM_OFFLINE)
290 		mem->state = MEM_GOING_OFFLINE;
291 
292 	ret = memory_block_action(mem->start_section_nr, to_state);
293 
294 	if (ret)
295 		mem->state = from_state_req;
296 	else
297 		mem->state = to_state;
298 
299 out:
300 	mutex_unlock(&mem->state_mutex);
301 	return ret;
302 }
303 
304 static ssize_t
305 store_mem_state(struct sys_device *dev,
306 		struct sysdev_attribute *attr, const char *buf, size_t count)
307 {
308 	struct memory_block *mem;
309 	int ret = -EINVAL;
310 
311 	mem = container_of(dev, struct memory_block, sysdev);
312 
313 	if (!strncmp(buf, "online", min((int)count, 6)))
314 		ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
315 	else if(!strncmp(buf, "offline", min((int)count, 7)))
316 		ret = memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
317 
318 	if (ret)
319 		return ret;
320 	return count;
321 }
322 
323 /*
324  * phys_device is a bad name for this.  What I really want
325  * is a way to differentiate between memory ranges that
326  * are part of physical devices that constitute
327  * a complete removable unit or fru.
328  * i.e. do these ranges belong to the same physical device,
329  * s.t. if I offline all of these sections I can then
330  * remove the physical device?
331  */
332 static ssize_t show_phys_device(struct sys_device *dev,
333 				struct sysdev_attribute *attr, char *buf)
334 {
335 	struct memory_block *mem =
336 		container_of(dev, struct memory_block, sysdev);
337 	return sprintf(buf, "%d\n", mem->phys_device);
338 }
339 
340 static SYSDEV_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
341 static SYSDEV_ATTR(end_phys_index, 0444, show_mem_end_phys_index, NULL);
342 static SYSDEV_ATTR(state, 0644, show_mem_state, store_mem_state);
343 static SYSDEV_ATTR(phys_device, 0444, show_phys_device, NULL);
344 static SYSDEV_ATTR(removable, 0444, show_mem_removable, NULL);
345 
346 #define mem_create_simple_file(mem, attr_name)	\
347 	sysdev_create_file(&mem->sysdev, &attr_##attr_name)
348 #define mem_remove_simple_file(mem, attr_name)	\
349 	sysdev_remove_file(&mem->sysdev, &attr_##attr_name)
350 
351 /*
352  * Block size attribute stuff
353  */
354 static ssize_t
355 print_block_size(struct sysdev_class *class, struct sysdev_class_attribute *attr,
356 		 char *buf)
357 {
358 	return sprintf(buf, "%lx\n", get_memory_block_size());
359 }
360 
361 static SYSDEV_CLASS_ATTR(block_size_bytes, 0444, print_block_size, NULL);
362 
363 static int block_size_init(void)
364 {
365 	return sysfs_create_file(&memory_sysdev_class.kset.kobj,
366 				&attr_block_size_bytes.attr);
367 }
368 
369 /*
370  * Some architectures will have custom drivers to do this, and
371  * will not need to do it from userspace.  The fake hot-add code
372  * as well as ppc64 will do all of their discovery in userspace
373  * and will require this interface.
374  */
375 #ifdef CONFIG_ARCH_MEMORY_PROBE
376 static ssize_t
377 memory_probe_store(struct class *class, struct class_attribute *attr,
378 		   const char *buf, size_t count)
379 {
380 	u64 phys_addr;
381 	int nid;
382 	int i, ret;
383 
384 	phys_addr = simple_strtoull(buf, NULL, 0);
385 
386 	for (i = 0; i < sections_per_block; i++) {
387 		nid = memory_add_physaddr_to_nid(phys_addr);
388 		ret = add_memory(nid, phys_addr,
389 				 PAGES_PER_SECTION << PAGE_SHIFT);
390 		if (ret)
391 			goto out;
392 
393 		phys_addr += MIN_MEMORY_BLOCK_SIZE;
394 	}
395 
396 	ret = count;
397 out:
398 	return ret;
399 }
400 static CLASS_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
401 
402 static int memory_probe_init(void)
403 {
404 	return sysfs_create_file(&memory_sysdev_class.kset.kobj,
405 				&class_attr_probe.attr);
406 }
407 #else
408 static inline int memory_probe_init(void)
409 {
410 	return 0;
411 }
412 #endif
413 
414 #ifdef CONFIG_MEMORY_FAILURE
415 /*
416  * Support for offlining pages of memory
417  */
418 
419 /* Soft offline a page */
420 static ssize_t
421 store_soft_offline_page(struct class *class,
422 			struct class_attribute *attr,
423 			const char *buf, size_t count)
424 {
425 	int ret;
426 	u64 pfn;
427 	if (!capable(CAP_SYS_ADMIN))
428 		return -EPERM;
429 	if (strict_strtoull(buf, 0, &pfn) < 0)
430 		return -EINVAL;
431 	pfn >>= PAGE_SHIFT;
432 	if (!pfn_valid(pfn))
433 		return -ENXIO;
434 	ret = soft_offline_page(pfn_to_page(pfn), 0);
435 	return ret == 0 ? count : ret;
436 }
437 
438 /* Forcibly offline a page, including killing processes. */
439 static ssize_t
440 store_hard_offline_page(struct class *class,
441 			struct class_attribute *attr,
442 			const char *buf, size_t count)
443 {
444 	int ret;
445 	u64 pfn;
446 	if (!capable(CAP_SYS_ADMIN))
447 		return -EPERM;
448 	if (strict_strtoull(buf, 0, &pfn) < 0)
449 		return -EINVAL;
450 	pfn >>= PAGE_SHIFT;
451 	ret = __memory_failure(pfn, 0, 0);
452 	return ret ? ret : count;
453 }
454 
455 static CLASS_ATTR(soft_offline_page, 0644, NULL, store_soft_offline_page);
456 static CLASS_ATTR(hard_offline_page, 0644, NULL, store_hard_offline_page);
457 
458 static __init int memory_fail_init(void)
459 {
460 	int err;
461 
462 	err = sysfs_create_file(&memory_sysdev_class.kset.kobj,
463 				&class_attr_soft_offline_page.attr);
464 	if (!err)
465 		err = sysfs_create_file(&memory_sysdev_class.kset.kobj,
466 				&class_attr_hard_offline_page.attr);
467 	return err;
468 }
469 #else
470 static inline int memory_fail_init(void)
471 {
472 	return 0;
473 }
474 #endif
475 
476 /*
477  * Note that phys_device is optional.  It is here to allow for
478  * differentiation between which *physical* devices each
479  * section belongs to...
480  */
481 int __weak arch_get_memory_phys_device(unsigned long start_pfn)
482 {
483 	return 0;
484 }
485 
486 struct memory_block *find_memory_block_hinted(struct mem_section *section,
487 					      struct memory_block *hint)
488 {
489 	struct kobject *kobj;
490 	struct sys_device *sysdev;
491 	struct memory_block *mem;
492 	char name[sizeof(MEMORY_CLASS_NAME) + 9 + 1];
493 	int block_id = base_memory_block_id(__section_nr(section));
494 
495 	kobj = hint ? &hint->sysdev.kobj : NULL;
496 
497 	/*
498 	 * This only works because we know that section == sysdev->id
499 	 * slightly redundant with sysdev_register()
500 	 */
501 	sprintf(&name[0], "%s%d", MEMORY_CLASS_NAME, block_id);
502 
503 	kobj = kset_find_obj_hinted(&memory_sysdev_class.kset, name, kobj);
504 	if (!kobj)
505 		return NULL;
506 
507 	sysdev = container_of(kobj, struct sys_device, kobj);
508 	mem = container_of(sysdev, struct memory_block, sysdev);
509 
510 	return mem;
511 }
512 
513 /*
514  * For now, we have a linear search to go find the appropriate
515  * memory_block corresponding to a particular phys_index. If
516  * this gets to be a real problem, we can always use a radix
517  * tree or something here.
518  *
519  * This could be made generic for all sysdev classes.
520  */
521 struct memory_block *find_memory_block(struct mem_section *section)
522 {
523 	return find_memory_block_hinted(section, NULL);
524 }
525 
526 static int init_memory_block(struct memory_block **memory,
527 			     struct mem_section *section, unsigned long state)
528 {
529 	struct memory_block *mem;
530 	unsigned long start_pfn;
531 	int scn_nr;
532 	int ret = 0;
533 
534 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
535 	if (!mem)
536 		return -ENOMEM;
537 
538 	scn_nr = __section_nr(section);
539 	mem->start_section_nr =
540 			base_memory_block_id(scn_nr) * sections_per_block;
541 	mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
542 	mem->state = state;
543 	mem->section_count++;
544 	mutex_init(&mem->state_mutex);
545 	start_pfn = section_nr_to_pfn(mem->start_section_nr);
546 	mem->phys_device = arch_get_memory_phys_device(start_pfn);
547 
548 	ret = register_memory(mem);
549 	if (!ret)
550 		ret = mem_create_simple_file(mem, phys_index);
551 	if (!ret)
552 		ret = mem_create_simple_file(mem, end_phys_index);
553 	if (!ret)
554 		ret = mem_create_simple_file(mem, state);
555 	if (!ret)
556 		ret = mem_create_simple_file(mem, phys_device);
557 	if (!ret)
558 		ret = mem_create_simple_file(mem, removable);
559 
560 	*memory = mem;
561 	return ret;
562 }
563 
564 static int add_memory_section(int nid, struct mem_section *section,
565 			unsigned long state, enum mem_add_context context)
566 {
567 	struct memory_block *mem;
568 	int ret = 0;
569 
570 	mutex_lock(&mem_sysfs_mutex);
571 
572 	mem = find_memory_block(section);
573 	if (mem) {
574 		mem->section_count++;
575 		kobject_put(&mem->sysdev.kobj);
576 	} else
577 		ret = init_memory_block(&mem, section, state);
578 
579 	if (!ret) {
580 		if (context == HOTPLUG &&
581 		    mem->section_count == sections_per_block)
582 			ret = register_mem_sect_under_node(mem, nid);
583 	}
584 
585 	mutex_unlock(&mem_sysfs_mutex);
586 	return ret;
587 }
588 
589 int remove_memory_block(unsigned long node_id, struct mem_section *section,
590 		int phys_device)
591 {
592 	struct memory_block *mem;
593 
594 	mutex_lock(&mem_sysfs_mutex);
595 	mem = find_memory_block(section);
596 	unregister_mem_sect_under_nodes(mem, __section_nr(section));
597 
598 	mem->section_count--;
599 	if (mem->section_count == 0) {
600 		mem_remove_simple_file(mem, phys_index);
601 		mem_remove_simple_file(mem, end_phys_index);
602 		mem_remove_simple_file(mem, state);
603 		mem_remove_simple_file(mem, phys_device);
604 		mem_remove_simple_file(mem, removable);
605 		unregister_memory(mem);
606 		kfree(mem);
607 	} else
608 		kobject_put(&mem->sysdev.kobj);
609 
610 	mutex_unlock(&mem_sysfs_mutex);
611 	return 0;
612 }
613 
614 /*
615  * need an interface for the VM to add new memory regions,
616  * but without onlining it.
617  */
618 int register_new_memory(int nid, struct mem_section *section)
619 {
620 	return add_memory_section(nid, section, MEM_OFFLINE, HOTPLUG);
621 }
622 
623 int unregister_memory_section(struct mem_section *section)
624 {
625 	if (!present_section(section))
626 		return -EINVAL;
627 
628 	return remove_memory_block(0, section, 0);
629 }
630 
631 /*
632  * Initialize the sysfs support for memory devices...
633  */
634 int __init memory_dev_init(void)
635 {
636 	unsigned int i;
637 	int ret;
638 	int err;
639 	unsigned long block_sz;
640 
641 	memory_sysdev_class.kset.uevent_ops = &memory_uevent_ops;
642 	ret = sysdev_class_register(&memory_sysdev_class);
643 	if (ret)
644 		goto out;
645 
646 	block_sz = get_memory_block_size();
647 	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
648 
649 	/*
650 	 * Create entries for memory sections that were found
651 	 * during boot and have been initialized
652 	 */
653 	for (i = 0; i < NR_MEM_SECTIONS; i++) {
654 		if (!present_section_nr(i))
655 			continue;
656 		err = add_memory_section(0, __nr_to_section(i), MEM_ONLINE,
657 					 BOOT);
658 		if (!ret)
659 			ret = err;
660 	}
661 
662 	err = memory_probe_init();
663 	if (!ret)
664 		ret = err;
665 	err = memory_fail_init();
666 	if (!ret)
667 		ret = err;
668 	err = block_size_init();
669 	if (!ret)
670 		ret = err;
671 out:
672 	if (ret)
673 		printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
674 	return ret;
675 }
676