xref: /openbmc/linux/drivers/base/memory.c (revision 7b6d864b)
1 /*
2  * Memory subsystem support
3  *
4  * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
5  *            Dave Hansen <haveblue@us.ibm.com>
6  *
7  * This file provides the necessary infrastructure to represent
8  * a SPARSEMEM-memory-model system's physical memory in /sysfs.
9  * All arch-independent code that assumes MEMORY_HOTPLUG requires
10  * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
11  */
12 
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/topology.h>
16 #include <linux/capability.h>
17 #include <linux/device.h>
18 #include <linux/memory.h>
19 #include <linux/kobject.h>
20 #include <linux/memory_hotplug.h>
21 #include <linux/mm.h>
22 #include <linux/mutex.h>
23 #include <linux/stat.h>
24 #include <linux/slab.h>
25 
26 #include <linux/atomic.h>
27 #include <asm/uaccess.h>
28 
29 static DEFINE_MUTEX(mem_sysfs_mutex);
30 
31 #define MEMORY_CLASS_NAME	"memory"
32 
33 static int sections_per_block;
34 
35 static inline int base_memory_block_id(int section_nr)
36 {
37 	return section_nr / sections_per_block;
38 }
39 
40 static int memory_subsys_online(struct device *dev);
41 static int memory_subsys_offline(struct device *dev);
42 
43 static struct bus_type memory_subsys = {
44 	.name = MEMORY_CLASS_NAME,
45 	.dev_name = MEMORY_CLASS_NAME,
46 	.online = memory_subsys_online,
47 	.offline = memory_subsys_offline,
48 };
49 
50 static BLOCKING_NOTIFIER_HEAD(memory_chain);
51 
52 int register_memory_notifier(struct notifier_block *nb)
53 {
54         return blocking_notifier_chain_register(&memory_chain, nb);
55 }
56 EXPORT_SYMBOL(register_memory_notifier);
57 
58 void unregister_memory_notifier(struct notifier_block *nb)
59 {
60         blocking_notifier_chain_unregister(&memory_chain, nb);
61 }
62 EXPORT_SYMBOL(unregister_memory_notifier);
63 
64 static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);
65 
66 int register_memory_isolate_notifier(struct notifier_block *nb)
67 {
68 	return atomic_notifier_chain_register(&memory_isolate_chain, nb);
69 }
70 EXPORT_SYMBOL(register_memory_isolate_notifier);
71 
72 void unregister_memory_isolate_notifier(struct notifier_block *nb)
73 {
74 	atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
75 }
76 EXPORT_SYMBOL(unregister_memory_isolate_notifier);
77 
78 static void memory_block_release(struct device *dev)
79 {
80 	struct memory_block *mem = container_of(dev, struct memory_block, dev);
81 
82 	kfree(mem);
83 }
84 
85 unsigned long __weak memory_block_size_bytes(void)
86 {
87 	return MIN_MEMORY_BLOCK_SIZE;
88 }
89 
90 static unsigned long get_memory_block_size(void)
91 {
92 	unsigned long block_sz;
93 
94 	block_sz = memory_block_size_bytes();
95 
96 	/* Validate blk_sz is a power of 2 and not less than section size */
97 	if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
98 		WARN_ON(1);
99 		block_sz = MIN_MEMORY_BLOCK_SIZE;
100 	}
101 
102 	return block_sz;
103 }
104 
105 /*
106  * use this as the physical section index that this memsection
107  * uses.
108  */
109 
110 static ssize_t show_mem_start_phys_index(struct device *dev,
111 			struct device_attribute *attr, char *buf)
112 {
113 	struct memory_block *mem =
114 		container_of(dev, struct memory_block, dev);
115 	unsigned long phys_index;
116 
117 	phys_index = mem->start_section_nr / sections_per_block;
118 	return sprintf(buf, "%08lx\n", phys_index);
119 }
120 
121 static ssize_t show_mem_end_phys_index(struct device *dev,
122 			struct device_attribute *attr, char *buf)
123 {
124 	struct memory_block *mem =
125 		container_of(dev, struct memory_block, dev);
126 	unsigned long phys_index;
127 
128 	phys_index = mem->end_section_nr / sections_per_block;
129 	return sprintf(buf, "%08lx\n", phys_index);
130 }
131 
132 /*
133  * Show whether the section of memory is likely to be hot-removable
134  */
135 static ssize_t show_mem_removable(struct device *dev,
136 			struct device_attribute *attr, char *buf)
137 {
138 	unsigned long i, pfn;
139 	int ret = 1;
140 	struct memory_block *mem =
141 		container_of(dev, struct memory_block, dev);
142 
143 	for (i = 0; i < sections_per_block; i++) {
144 		pfn = section_nr_to_pfn(mem->start_section_nr + i);
145 		ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
146 	}
147 
148 	return sprintf(buf, "%d\n", ret);
149 }
150 
151 /*
152  * online, offline, going offline, etc.
153  */
154 static ssize_t show_mem_state(struct device *dev,
155 			struct device_attribute *attr, char *buf)
156 {
157 	struct memory_block *mem =
158 		container_of(dev, struct memory_block, dev);
159 	ssize_t len = 0;
160 
161 	/*
162 	 * We can probably put these states in a nice little array
163 	 * so that they're not open-coded
164 	 */
165 	switch (mem->state) {
166 		case MEM_ONLINE:
167 			len = sprintf(buf, "online\n");
168 			break;
169 		case MEM_OFFLINE:
170 			len = sprintf(buf, "offline\n");
171 			break;
172 		case MEM_GOING_OFFLINE:
173 			len = sprintf(buf, "going-offline\n");
174 			break;
175 		default:
176 			len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
177 					mem->state);
178 			WARN_ON(1);
179 			break;
180 	}
181 
182 	return len;
183 }
184 
185 int memory_notify(unsigned long val, void *v)
186 {
187 	return blocking_notifier_call_chain(&memory_chain, val, v);
188 }
189 
190 int memory_isolate_notify(unsigned long val, void *v)
191 {
192 	return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
193 }
194 
195 /*
196  * The probe routines leave the pages reserved, just as the bootmem code does.
197  * Make sure they're still that way.
198  */
199 static bool pages_correctly_reserved(unsigned long start_pfn)
200 {
201 	int i, j;
202 	struct page *page;
203 	unsigned long pfn = start_pfn;
204 
205 	/*
206 	 * memmap between sections is not contiguous except with
207 	 * SPARSEMEM_VMEMMAP. We lookup the page once per section
208 	 * and assume memmap is contiguous within each section
209 	 */
210 	for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) {
211 		if (WARN_ON_ONCE(!pfn_valid(pfn)))
212 			return false;
213 		page = pfn_to_page(pfn);
214 
215 		for (j = 0; j < PAGES_PER_SECTION; j++) {
216 			if (PageReserved(page + j))
217 				continue;
218 
219 			printk(KERN_WARNING "section number %ld page number %d "
220 				"not reserved, was it already online?\n",
221 				pfn_to_section_nr(pfn), j);
222 
223 			return false;
224 		}
225 	}
226 
227 	return true;
228 }
229 
230 /*
231  * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
232  * OK to have direct references to sparsemem variables in here.
233  */
234 static int
235 memory_block_action(unsigned long phys_index, unsigned long action, int online_type)
236 {
237 	unsigned long start_pfn;
238 	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
239 	struct page *first_page;
240 	int ret;
241 
242 	first_page = pfn_to_page(phys_index << PFN_SECTION_SHIFT);
243 	start_pfn = page_to_pfn(first_page);
244 
245 	switch (action) {
246 		case MEM_ONLINE:
247 			if (!pages_correctly_reserved(start_pfn))
248 				return -EBUSY;
249 
250 			ret = online_pages(start_pfn, nr_pages, online_type);
251 			break;
252 		case MEM_OFFLINE:
253 			ret = offline_pages(start_pfn, nr_pages);
254 			break;
255 		default:
256 			WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
257 			     "%ld\n", __func__, phys_index, action, action);
258 			ret = -EINVAL;
259 	}
260 
261 	return ret;
262 }
263 
264 static int __memory_block_change_state(struct memory_block *mem,
265 		unsigned long to_state, unsigned long from_state_req,
266 		int online_type)
267 {
268 	int ret = 0;
269 
270 	if (mem->state != from_state_req)
271 		return -EINVAL;
272 
273 	if (to_state == MEM_OFFLINE)
274 		mem->state = MEM_GOING_OFFLINE;
275 
276 	ret = memory_block_action(mem->start_section_nr, to_state, online_type);
277 	mem->state = ret ? from_state_req : to_state;
278 	return ret;
279 }
280 
281 static int memory_subsys_online(struct device *dev)
282 {
283 	struct memory_block *mem = container_of(dev, struct memory_block, dev);
284 	int ret;
285 
286 	mutex_lock(&mem->state_mutex);
287 
288 	ret = mem->state == MEM_ONLINE ? 0 :
289 		__memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE,
290 					    ONLINE_KEEP);
291 
292 	mutex_unlock(&mem->state_mutex);
293 	return ret;
294 }
295 
296 static int memory_subsys_offline(struct device *dev)
297 {
298 	struct memory_block *mem = container_of(dev, struct memory_block, dev);
299 	int ret;
300 
301 	mutex_lock(&mem->state_mutex);
302 
303 	ret = mem->state == MEM_OFFLINE ? 0 :
304 		__memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE, -1);
305 
306 	mutex_unlock(&mem->state_mutex);
307 	return ret;
308 }
309 
310 static int __memory_block_change_state_uevent(struct memory_block *mem,
311 		unsigned long to_state, unsigned long from_state_req,
312 		int online_type)
313 {
314 	int ret = __memory_block_change_state(mem, to_state, from_state_req,
315 					      online_type);
316 	if (!ret) {
317 		switch (mem->state) {
318 		case MEM_OFFLINE:
319 			kobject_uevent(&mem->dev.kobj, KOBJ_OFFLINE);
320 			break;
321 		case MEM_ONLINE:
322 			kobject_uevent(&mem->dev.kobj, KOBJ_ONLINE);
323 			break;
324 		default:
325 			break;
326 		}
327 	}
328 	return ret;
329 }
330 
331 static int memory_block_change_state(struct memory_block *mem,
332 		unsigned long to_state, unsigned long from_state_req,
333 		int online_type)
334 {
335 	int ret;
336 
337 	mutex_lock(&mem->state_mutex);
338 	ret = __memory_block_change_state_uevent(mem, to_state, from_state_req,
339 						 online_type);
340 	mutex_unlock(&mem->state_mutex);
341 
342 	return ret;
343 }
344 static ssize_t
345 store_mem_state(struct device *dev,
346 		struct device_attribute *attr, const char *buf, size_t count)
347 {
348 	struct memory_block *mem;
349 	bool offline;
350 	int ret = -EINVAL;
351 
352 	mem = container_of(dev, struct memory_block, dev);
353 
354 	lock_device_hotplug();
355 
356 	if (!strncmp(buf, "online_kernel", min_t(int, count, 13))) {
357 		offline = false;
358 		ret = memory_block_change_state(mem, MEM_ONLINE,
359 						MEM_OFFLINE, ONLINE_KERNEL);
360 	} else if (!strncmp(buf, "online_movable", min_t(int, count, 14))) {
361 		offline = false;
362 		ret = memory_block_change_state(mem, MEM_ONLINE,
363 						MEM_OFFLINE, ONLINE_MOVABLE);
364 	} else if (!strncmp(buf, "online", min_t(int, count, 6))) {
365 		offline = false;
366 		ret = memory_block_change_state(mem, MEM_ONLINE,
367 						MEM_OFFLINE, ONLINE_KEEP);
368 	} else if(!strncmp(buf, "offline", min_t(int, count, 7))) {
369 		offline = true;
370 		ret = memory_block_change_state(mem, MEM_OFFLINE,
371 						MEM_ONLINE, -1);
372 	}
373 	if (!ret)
374 		dev->offline = offline;
375 
376 	unlock_device_hotplug();
377 
378 	if (ret)
379 		return ret;
380 	return count;
381 }
382 
383 /*
384  * phys_device is a bad name for this.  What I really want
385  * is a way to differentiate between memory ranges that
386  * are part of physical devices that constitute
387  * a complete removable unit or fru.
388  * i.e. do these ranges belong to the same physical device,
389  * s.t. if I offline all of these sections I can then
390  * remove the physical device?
391  */
392 static ssize_t show_phys_device(struct device *dev,
393 				struct device_attribute *attr, char *buf)
394 {
395 	struct memory_block *mem =
396 		container_of(dev, struct memory_block, dev);
397 	return sprintf(buf, "%d\n", mem->phys_device);
398 }
399 
400 static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
401 static DEVICE_ATTR(end_phys_index, 0444, show_mem_end_phys_index, NULL);
402 static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state);
403 static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL);
404 static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL);
405 
406 /*
407  * Block size attribute stuff
408  */
409 static ssize_t
410 print_block_size(struct device *dev, struct device_attribute *attr,
411 		 char *buf)
412 {
413 	return sprintf(buf, "%lx\n", get_memory_block_size());
414 }
415 
416 static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL);
417 
418 /*
419  * Some architectures will have custom drivers to do this, and
420  * will not need to do it from userspace.  The fake hot-add code
421  * as well as ppc64 will do all of their discovery in userspace
422  * and will require this interface.
423  */
424 #ifdef CONFIG_ARCH_MEMORY_PROBE
425 static ssize_t
426 memory_probe_store(struct device *dev, struct device_attribute *attr,
427 		   const char *buf, size_t count)
428 {
429 	u64 phys_addr;
430 	int nid;
431 	int i, ret;
432 	unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
433 
434 	phys_addr = simple_strtoull(buf, NULL, 0);
435 
436 	if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
437 		return -EINVAL;
438 
439 	for (i = 0; i < sections_per_block; i++) {
440 		nid = memory_add_physaddr_to_nid(phys_addr);
441 		ret = add_memory(nid, phys_addr,
442 				 PAGES_PER_SECTION << PAGE_SHIFT);
443 		if (ret)
444 			goto out;
445 
446 		phys_addr += MIN_MEMORY_BLOCK_SIZE;
447 	}
448 
449 	ret = count;
450 out:
451 	return ret;
452 }
453 
454 static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
455 #endif
456 
457 #ifdef CONFIG_MEMORY_FAILURE
458 /*
459  * Support for offlining pages of memory
460  */
461 
462 /* Soft offline a page */
463 static ssize_t
464 store_soft_offline_page(struct device *dev,
465 			struct device_attribute *attr,
466 			const char *buf, size_t count)
467 {
468 	int ret;
469 	u64 pfn;
470 	if (!capable(CAP_SYS_ADMIN))
471 		return -EPERM;
472 	if (strict_strtoull(buf, 0, &pfn) < 0)
473 		return -EINVAL;
474 	pfn >>= PAGE_SHIFT;
475 	if (!pfn_valid(pfn))
476 		return -ENXIO;
477 	ret = soft_offline_page(pfn_to_page(pfn), 0);
478 	return ret == 0 ? count : ret;
479 }
480 
481 /* Forcibly offline a page, including killing processes. */
482 static ssize_t
483 store_hard_offline_page(struct device *dev,
484 			struct device_attribute *attr,
485 			const char *buf, size_t count)
486 {
487 	int ret;
488 	u64 pfn;
489 	if (!capable(CAP_SYS_ADMIN))
490 		return -EPERM;
491 	if (strict_strtoull(buf, 0, &pfn) < 0)
492 		return -EINVAL;
493 	pfn >>= PAGE_SHIFT;
494 	ret = memory_failure(pfn, 0, 0);
495 	return ret ? ret : count;
496 }
497 
498 static DEVICE_ATTR(soft_offline_page, S_IWUSR, NULL, store_soft_offline_page);
499 static DEVICE_ATTR(hard_offline_page, S_IWUSR, NULL, store_hard_offline_page);
500 #endif
501 
502 /*
503  * Note that phys_device is optional.  It is here to allow for
504  * differentiation between which *physical* devices each
505  * section belongs to...
506  */
507 int __weak arch_get_memory_phys_device(unsigned long start_pfn)
508 {
509 	return 0;
510 }
511 
512 /*
513  * A reference for the returned object is held and the reference for the
514  * hinted object is released.
515  */
516 struct memory_block *find_memory_block_hinted(struct mem_section *section,
517 					      struct memory_block *hint)
518 {
519 	int block_id = base_memory_block_id(__section_nr(section));
520 	struct device *hintdev = hint ? &hint->dev : NULL;
521 	struct device *dev;
522 
523 	dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev);
524 	if (hint)
525 		put_device(&hint->dev);
526 	if (!dev)
527 		return NULL;
528 	return container_of(dev, struct memory_block, dev);
529 }
530 
531 /*
532  * For now, we have a linear search to go find the appropriate
533  * memory_block corresponding to a particular phys_index. If
534  * this gets to be a real problem, we can always use a radix
535  * tree or something here.
536  *
537  * This could be made generic for all device subsystems.
538  */
539 struct memory_block *find_memory_block(struct mem_section *section)
540 {
541 	return find_memory_block_hinted(section, NULL);
542 }
543 
544 static struct attribute *memory_memblk_attrs[] = {
545 	&dev_attr_phys_index.attr,
546 	&dev_attr_end_phys_index.attr,
547 	&dev_attr_state.attr,
548 	&dev_attr_phys_device.attr,
549 	&dev_attr_removable.attr,
550 	NULL
551 };
552 
553 static struct attribute_group memory_memblk_attr_group = {
554 	.attrs = memory_memblk_attrs,
555 };
556 
557 static const struct attribute_group *memory_memblk_attr_groups[] = {
558 	&memory_memblk_attr_group,
559 	NULL,
560 };
561 
562 /*
563  * register_memory - Setup a sysfs device for a memory block
564  */
565 static
566 int register_memory(struct memory_block *memory)
567 {
568 	int error;
569 
570 	memory->dev.bus = &memory_subsys;
571 	memory->dev.id = memory->start_section_nr / sections_per_block;
572 	memory->dev.release = memory_block_release;
573 	memory->dev.groups = memory_memblk_attr_groups;
574 	memory->dev.offline = memory->state == MEM_OFFLINE;
575 
576 	error = device_register(&memory->dev);
577 	return error;
578 }
579 
580 static int init_memory_block(struct memory_block **memory,
581 			     struct mem_section *section, unsigned long state)
582 {
583 	struct memory_block *mem;
584 	unsigned long start_pfn;
585 	int scn_nr;
586 	int ret = 0;
587 
588 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
589 	if (!mem)
590 		return -ENOMEM;
591 
592 	scn_nr = __section_nr(section);
593 	mem->start_section_nr =
594 			base_memory_block_id(scn_nr) * sections_per_block;
595 	mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
596 	mem->state = state;
597 	mem->section_count++;
598 	mutex_init(&mem->state_mutex);
599 	start_pfn = section_nr_to_pfn(mem->start_section_nr);
600 	mem->phys_device = arch_get_memory_phys_device(start_pfn);
601 
602 	ret = register_memory(mem);
603 
604 	*memory = mem;
605 	return ret;
606 }
607 
608 static int add_memory_section(int nid, struct mem_section *section,
609 			struct memory_block **mem_p,
610 			unsigned long state, enum mem_add_context context)
611 {
612 	struct memory_block *mem = NULL;
613 	int scn_nr = __section_nr(section);
614 	int ret = 0;
615 
616 	mutex_lock(&mem_sysfs_mutex);
617 
618 	if (context == BOOT) {
619 		/* same memory block ? */
620 		if (mem_p && *mem_p)
621 			if (scn_nr >= (*mem_p)->start_section_nr &&
622 			    scn_nr <= (*mem_p)->end_section_nr) {
623 				mem = *mem_p;
624 				kobject_get(&mem->dev.kobj);
625 			}
626 	} else
627 		mem = find_memory_block(section);
628 
629 	if (mem) {
630 		mem->section_count++;
631 		kobject_put(&mem->dev.kobj);
632 	} else {
633 		ret = init_memory_block(&mem, section, state);
634 		/* store memory_block pointer for next loop */
635 		if (!ret && context == BOOT)
636 			if (mem_p)
637 				*mem_p = mem;
638 	}
639 
640 	if (!ret) {
641 		if (context == HOTPLUG &&
642 		    mem->section_count == sections_per_block)
643 			ret = register_mem_sect_under_node(mem, nid);
644 	}
645 
646 	mutex_unlock(&mem_sysfs_mutex);
647 	return ret;
648 }
649 
650 /*
651  * need an interface for the VM to add new memory regions,
652  * but without onlining it.
653  */
654 int register_new_memory(int nid, struct mem_section *section)
655 {
656 	return add_memory_section(nid, section, NULL, MEM_OFFLINE, HOTPLUG);
657 }
658 
659 #ifdef CONFIG_MEMORY_HOTREMOVE
660 static void
661 unregister_memory(struct memory_block *memory)
662 {
663 	BUG_ON(memory->dev.bus != &memory_subsys);
664 
665 	/* drop the ref. we got in remove_memory_block() */
666 	kobject_put(&memory->dev.kobj);
667 	device_unregister(&memory->dev);
668 }
669 
670 static int remove_memory_block(unsigned long node_id,
671 			       struct mem_section *section, int phys_device)
672 {
673 	struct memory_block *mem;
674 
675 	mutex_lock(&mem_sysfs_mutex);
676 	mem = find_memory_block(section);
677 	unregister_mem_sect_under_nodes(mem, __section_nr(section));
678 
679 	mem->section_count--;
680 	if (mem->section_count == 0)
681 		unregister_memory(mem);
682 	else
683 		kobject_put(&mem->dev.kobj);
684 
685 	mutex_unlock(&mem_sysfs_mutex);
686 	return 0;
687 }
688 
689 int unregister_memory_section(struct mem_section *section)
690 {
691 	if (!present_section(section))
692 		return -EINVAL;
693 
694 	return remove_memory_block(0, section, 0);
695 }
696 #endif /* CONFIG_MEMORY_HOTREMOVE */
697 
698 /* return true if the memory block is offlined, otherwise, return false */
699 bool is_memblock_offlined(struct memory_block *mem)
700 {
701 	return mem->state == MEM_OFFLINE;
702 }
703 
704 static struct attribute *memory_root_attrs[] = {
705 #ifdef CONFIG_ARCH_MEMORY_PROBE
706 	&dev_attr_probe.attr,
707 #endif
708 
709 #ifdef CONFIG_MEMORY_FAILURE
710 	&dev_attr_soft_offline_page.attr,
711 	&dev_attr_hard_offline_page.attr,
712 #endif
713 
714 	&dev_attr_block_size_bytes.attr,
715 	NULL
716 };
717 
718 static struct attribute_group memory_root_attr_group = {
719 	.attrs = memory_root_attrs,
720 };
721 
722 static const struct attribute_group *memory_root_attr_groups[] = {
723 	&memory_root_attr_group,
724 	NULL,
725 };
726 
727 /*
728  * Initialize the sysfs support for memory devices...
729  */
730 int __init memory_dev_init(void)
731 {
732 	unsigned int i;
733 	int ret;
734 	int err;
735 	unsigned long block_sz;
736 	struct memory_block *mem = NULL;
737 
738 	ret = subsys_system_register(&memory_subsys, memory_root_attr_groups);
739 	if (ret)
740 		goto out;
741 
742 	block_sz = get_memory_block_size();
743 	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
744 
745 	/*
746 	 * Create entries for memory sections that were found
747 	 * during boot and have been initialized
748 	 */
749 	for (i = 0; i < NR_MEM_SECTIONS; i++) {
750 		if (!present_section_nr(i))
751 			continue;
752 		/* don't need to reuse memory_block if only one per block */
753 		err = add_memory_section(0, __nr_to_section(i),
754 				 (sections_per_block == 1) ? NULL : &mem,
755 					 MEM_ONLINE,
756 					 BOOT);
757 		if (!ret)
758 			ret = err;
759 	}
760 
761 out:
762 	if (ret)
763 		printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
764 	return ret;
765 }
766