xref: /openbmc/linux/drivers/base/memory.c (revision 63dc02bd)
1 /*
2  * Memory subsystem support
3  *
4  * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
5  *            Dave Hansen <haveblue@us.ibm.com>
6  *
7  * This file provides the necessary infrastructure to represent
8  * a SPARSEMEM-memory-model system's physical memory in /sysfs.
9  * All arch-independent code that assumes MEMORY_HOTPLUG requires
10  * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
11  */
12 
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/topology.h>
16 #include <linux/capability.h>
17 #include <linux/device.h>
18 #include <linux/memory.h>
19 #include <linux/kobject.h>
20 #include <linux/memory_hotplug.h>
21 #include <linux/mm.h>
22 #include <linux/mutex.h>
23 #include <linux/stat.h>
24 #include <linux/slab.h>
25 
26 #include <linux/atomic.h>
27 #include <asm/uaccess.h>
28 
29 static DEFINE_MUTEX(mem_sysfs_mutex);
30 
31 #define MEMORY_CLASS_NAME	"memory"
32 
33 static int sections_per_block;
34 
35 static inline int base_memory_block_id(int section_nr)
36 {
37 	return section_nr / sections_per_block;
38 }
39 
40 static struct bus_type memory_subsys = {
41 	.name = MEMORY_CLASS_NAME,
42 	.dev_name = MEMORY_CLASS_NAME,
43 };
44 
45 static BLOCKING_NOTIFIER_HEAD(memory_chain);
46 
47 int register_memory_notifier(struct notifier_block *nb)
48 {
49         return blocking_notifier_chain_register(&memory_chain, nb);
50 }
51 EXPORT_SYMBOL(register_memory_notifier);
52 
53 void unregister_memory_notifier(struct notifier_block *nb)
54 {
55         blocking_notifier_chain_unregister(&memory_chain, nb);
56 }
57 EXPORT_SYMBOL(unregister_memory_notifier);
58 
59 static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);
60 
61 int register_memory_isolate_notifier(struct notifier_block *nb)
62 {
63 	return atomic_notifier_chain_register(&memory_isolate_chain, nb);
64 }
65 EXPORT_SYMBOL(register_memory_isolate_notifier);
66 
67 void unregister_memory_isolate_notifier(struct notifier_block *nb)
68 {
69 	atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
70 }
71 EXPORT_SYMBOL(unregister_memory_isolate_notifier);
72 
73 /*
74  * register_memory - Setup a sysfs device for a memory block
75  */
76 static
77 int register_memory(struct memory_block *memory)
78 {
79 	int error;
80 
81 	memory->dev.bus = &memory_subsys;
82 	memory->dev.id = memory->start_section_nr / sections_per_block;
83 
84 	error = device_register(&memory->dev);
85 	return error;
86 }
87 
88 static void
89 unregister_memory(struct memory_block *memory)
90 {
91 	BUG_ON(memory->dev.bus != &memory_subsys);
92 
93 	/* drop the ref. we got in remove_memory_block() */
94 	kobject_put(&memory->dev.kobj);
95 	device_unregister(&memory->dev);
96 }
97 
98 unsigned long __weak memory_block_size_bytes(void)
99 {
100 	return MIN_MEMORY_BLOCK_SIZE;
101 }
102 
103 static unsigned long get_memory_block_size(void)
104 {
105 	unsigned long block_sz;
106 
107 	block_sz = memory_block_size_bytes();
108 
109 	/* Validate blk_sz is a power of 2 and not less than section size */
110 	if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
111 		WARN_ON(1);
112 		block_sz = MIN_MEMORY_BLOCK_SIZE;
113 	}
114 
115 	return block_sz;
116 }
117 
118 /*
119  * use this as the physical section index that this memsection
120  * uses.
121  */
122 
123 static ssize_t show_mem_start_phys_index(struct device *dev,
124 			struct device_attribute *attr, char *buf)
125 {
126 	struct memory_block *mem =
127 		container_of(dev, struct memory_block, dev);
128 	unsigned long phys_index;
129 
130 	phys_index = mem->start_section_nr / sections_per_block;
131 	return sprintf(buf, "%08lx\n", phys_index);
132 }
133 
134 static ssize_t show_mem_end_phys_index(struct device *dev,
135 			struct device_attribute *attr, char *buf)
136 {
137 	struct memory_block *mem =
138 		container_of(dev, struct memory_block, dev);
139 	unsigned long phys_index;
140 
141 	phys_index = mem->end_section_nr / sections_per_block;
142 	return sprintf(buf, "%08lx\n", phys_index);
143 }
144 
145 /*
146  * Show whether the section of memory is likely to be hot-removable
147  */
148 static ssize_t show_mem_removable(struct device *dev,
149 			struct device_attribute *attr, char *buf)
150 {
151 	unsigned long i, pfn;
152 	int ret = 1;
153 	struct memory_block *mem =
154 		container_of(dev, struct memory_block, dev);
155 
156 	for (i = 0; i < sections_per_block; i++) {
157 		pfn = section_nr_to_pfn(mem->start_section_nr + i);
158 		ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
159 	}
160 
161 	return sprintf(buf, "%d\n", ret);
162 }
163 
164 /*
165  * online, offline, going offline, etc.
166  */
167 static ssize_t show_mem_state(struct device *dev,
168 			struct device_attribute *attr, char *buf)
169 {
170 	struct memory_block *mem =
171 		container_of(dev, struct memory_block, dev);
172 	ssize_t len = 0;
173 
174 	/*
175 	 * We can probably put these states in a nice little array
176 	 * so that they're not open-coded
177 	 */
178 	switch (mem->state) {
179 		case MEM_ONLINE:
180 			len = sprintf(buf, "online\n");
181 			break;
182 		case MEM_OFFLINE:
183 			len = sprintf(buf, "offline\n");
184 			break;
185 		case MEM_GOING_OFFLINE:
186 			len = sprintf(buf, "going-offline\n");
187 			break;
188 		default:
189 			len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
190 					mem->state);
191 			WARN_ON(1);
192 			break;
193 	}
194 
195 	return len;
196 }
197 
198 int memory_notify(unsigned long val, void *v)
199 {
200 	return blocking_notifier_call_chain(&memory_chain, val, v);
201 }
202 
203 int memory_isolate_notify(unsigned long val, void *v)
204 {
205 	return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
206 }
207 
208 /*
209  * The probe routines leave the pages reserved, just as the bootmem code does.
210  * Make sure they're still that way.
211  */
212 static bool pages_correctly_reserved(unsigned long start_pfn,
213 					unsigned long nr_pages)
214 {
215 	int i, j;
216 	struct page *page;
217 	unsigned long pfn = start_pfn;
218 
219 	/*
220 	 * memmap between sections is not contiguous except with
221 	 * SPARSEMEM_VMEMMAP. We lookup the page once per section
222 	 * and assume memmap is contiguous within each section
223 	 */
224 	for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) {
225 		if (WARN_ON_ONCE(!pfn_valid(pfn)))
226 			return false;
227 		page = pfn_to_page(pfn);
228 
229 		for (j = 0; j < PAGES_PER_SECTION; j++) {
230 			if (PageReserved(page + j))
231 				continue;
232 
233 			printk(KERN_WARNING "section number %ld page number %d "
234 				"not reserved, was it already online?\n",
235 				pfn_to_section_nr(pfn), j);
236 
237 			return false;
238 		}
239 	}
240 
241 	return true;
242 }
243 
244 /*
245  * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
246  * OK to have direct references to sparsemem variables in here.
247  */
248 static int
249 memory_block_action(unsigned long phys_index, unsigned long action)
250 {
251 	unsigned long start_pfn, start_paddr;
252 	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
253 	struct page *first_page;
254 	int ret;
255 
256 	first_page = pfn_to_page(phys_index << PFN_SECTION_SHIFT);
257 
258 	switch (action) {
259 		case MEM_ONLINE:
260 			start_pfn = page_to_pfn(first_page);
261 
262 			if (!pages_correctly_reserved(start_pfn, nr_pages))
263 				return -EBUSY;
264 
265 			ret = online_pages(start_pfn, nr_pages);
266 			break;
267 		case MEM_OFFLINE:
268 			start_paddr = page_to_pfn(first_page) << PAGE_SHIFT;
269 			ret = remove_memory(start_paddr,
270 					    nr_pages << PAGE_SHIFT);
271 			break;
272 		default:
273 			WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
274 			     "%ld\n", __func__, phys_index, action, action);
275 			ret = -EINVAL;
276 	}
277 
278 	return ret;
279 }
280 
281 static int memory_block_change_state(struct memory_block *mem,
282 		unsigned long to_state, unsigned long from_state_req)
283 {
284 	int ret = 0;
285 
286 	mutex_lock(&mem->state_mutex);
287 
288 	if (mem->state != from_state_req) {
289 		ret = -EINVAL;
290 		goto out;
291 	}
292 
293 	if (to_state == MEM_OFFLINE)
294 		mem->state = MEM_GOING_OFFLINE;
295 
296 	ret = memory_block_action(mem->start_section_nr, to_state);
297 
298 	if (ret) {
299 		mem->state = from_state_req;
300 		goto out;
301 	}
302 
303 	mem->state = to_state;
304 	switch (mem->state) {
305 	case MEM_OFFLINE:
306 		kobject_uevent(&mem->dev.kobj, KOBJ_OFFLINE);
307 		break;
308 	case MEM_ONLINE:
309 		kobject_uevent(&mem->dev.kobj, KOBJ_ONLINE);
310 		break;
311 	default:
312 		break;
313 	}
314 out:
315 	mutex_unlock(&mem->state_mutex);
316 	return ret;
317 }
318 
319 static ssize_t
320 store_mem_state(struct device *dev,
321 		struct device_attribute *attr, const char *buf, size_t count)
322 {
323 	struct memory_block *mem;
324 	int ret = -EINVAL;
325 
326 	mem = container_of(dev, struct memory_block, dev);
327 
328 	if (!strncmp(buf, "online", min((int)count, 6)))
329 		ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
330 	else if(!strncmp(buf, "offline", min((int)count, 7)))
331 		ret = memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
332 
333 	if (ret)
334 		return ret;
335 	return count;
336 }
337 
338 /*
339  * phys_device is a bad name for this.  What I really want
340  * is a way to differentiate between memory ranges that
341  * are part of physical devices that constitute
342  * a complete removable unit or fru.
343  * i.e. do these ranges belong to the same physical device,
344  * s.t. if I offline all of these sections I can then
345  * remove the physical device?
346  */
347 static ssize_t show_phys_device(struct device *dev,
348 				struct device_attribute *attr, char *buf)
349 {
350 	struct memory_block *mem =
351 		container_of(dev, struct memory_block, dev);
352 	return sprintf(buf, "%d\n", mem->phys_device);
353 }
354 
355 static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
356 static DEVICE_ATTR(end_phys_index, 0444, show_mem_end_phys_index, NULL);
357 static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state);
358 static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL);
359 static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL);
360 
361 #define mem_create_simple_file(mem, attr_name)	\
362 	device_create_file(&mem->dev, &dev_attr_##attr_name)
363 #define mem_remove_simple_file(mem, attr_name)	\
364 	device_remove_file(&mem->dev, &dev_attr_##attr_name)
365 
366 /*
367  * Block size attribute stuff
368  */
369 static ssize_t
370 print_block_size(struct device *dev, struct device_attribute *attr,
371 		 char *buf)
372 {
373 	return sprintf(buf, "%lx\n", get_memory_block_size());
374 }
375 
376 static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL);
377 
378 static int block_size_init(void)
379 {
380 	return device_create_file(memory_subsys.dev_root,
381 				  &dev_attr_block_size_bytes);
382 }
383 
384 /*
385  * Some architectures will have custom drivers to do this, and
386  * will not need to do it from userspace.  The fake hot-add code
387  * as well as ppc64 will do all of their discovery in userspace
388  * and will require this interface.
389  */
390 #ifdef CONFIG_ARCH_MEMORY_PROBE
391 static ssize_t
392 memory_probe_store(struct device *dev, struct device_attribute *attr,
393 		   const char *buf, size_t count)
394 {
395 	u64 phys_addr;
396 	int nid;
397 	int i, ret;
398 	unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
399 
400 	phys_addr = simple_strtoull(buf, NULL, 0);
401 
402 	if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
403 		return -EINVAL;
404 
405 	for (i = 0; i < sections_per_block; i++) {
406 		nid = memory_add_physaddr_to_nid(phys_addr);
407 		ret = add_memory(nid, phys_addr,
408 				 PAGES_PER_SECTION << PAGE_SHIFT);
409 		if (ret)
410 			goto out;
411 
412 		phys_addr += MIN_MEMORY_BLOCK_SIZE;
413 	}
414 
415 	ret = count;
416 out:
417 	return ret;
418 }
419 static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
420 
421 static int memory_probe_init(void)
422 {
423 	return device_create_file(memory_subsys.dev_root, &dev_attr_probe);
424 }
425 #else
426 static inline int memory_probe_init(void)
427 {
428 	return 0;
429 }
430 #endif
431 
432 #ifdef CONFIG_MEMORY_FAILURE
433 /*
434  * Support for offlining pages of memory
435  */
436 
437 /* Soft offline a page */
438 static ssize_t
439 store_soft_offline_page(struct device *dev,
440 			struct device_attribute *attr,
441 			const char *buf, size_t count)
442 {
443 	int ret;
444 	u64 pfn;
445 	if (!capable(CAP_SYS_ADMIN))
446 		return -EPERM;
447 	if (strict_strtoull(buf, 0, &pfn) < 0)
448 		return -EINVAL;
449 	pfn >>= PAGE_SHIFT;
450 	if (!pfn_valid(pfn))
451 		return -ENXIO;
452 	ret = soft_offline_page(pfn_to_page(pfn), 0);
453 	return ret == 0 ? count : ret;
454 }
455 
456 /* Forcibly offline a page, including killing processes. */
457 static ssize_t
458 store_hard_offline_page(struct device *dev,
459 			struct device_attribute *attr,
460 			const char *buf, size_t count)
461 {
462 	int ret;
463 	u64 pfn;
464 	if (!capable(CAP_SYS_ADMIN))
465 		return -EPERM;
466 	if (strict_strtoull(buf, 0, &pfn) < 0)
467 		return -EINVAL;
468 	pfn >>= PAGE_SHIFT;
469 	ret = memory_failure(pfn, 0, 0);
470 	return ret ? ret : count;
471 }
472 
473 static DEVICE_ATTR(soft_offline_page, 0644, NULL, store_soft_offline_page);
474 static DEVICE_ATTR(hard_offline_page, 0644, NULL, store_hard_offline_page);
475 
476 static __init int memory_fail_init(void)
477 {
478 	int err;
479 
480 	err = device_create_file(memory_subsys.dev_root,
481 				&dev_attr_soft_offline_page);
482 	if (!err)
483 		err = device_create_file(memory_subsys.dev_root,
484 				&dev_attr_hard_offline_page);
485 	return err;
486 }
487 #else
488 static inline int memory_fail_init(void)
489 {
490 	return 0;
491 }
492 #endif
493 
494 /*
495  * Note that phys_device is optional.  It is here to allow for
496  * differentiation between which *physical* devices each
497  * section belongs to...
498  */
499 int __weak arch_get_memory_phys_device(unsigned long start_pfn)
500 {
501 	return 0;
502 }
503 
504 /*
505  * A reference for the returned object is held and the reference for the
506  * hinted object is released.
507  */
508 struct memory_block *find_memory_block_hinted(struct mem_section *section,
509 					      struct memory_block *hint)
510 {
511 	int block_id = base_memory_block_id(__section_nr(section));
512 	struct device *hintdev = hint ? &hint->dev : NULL;
513 	struct device *dev;
514 
515 	dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev);
516 	if (hint)
517 		put_device(&hint->dev);
518 	if (!dev)
519 		return NULL;
520 	return container_of(dev, struct memory_block, dev);
521 }
522 
523 /*
524  * For now, we have a linear search to go find the appropriate
525  * memory_block corresponding to a particular phys_index. If
526  * this gets to be a real problem, we can always use a radix
527  * tree or something here.
528  *
529  * This could be made generic for all device subsystems.
530  */
531 struct memory_block *find_memory_block(struct mem_section *section)
532 {
533 	return find_memory_block_hinted(section, NULL);
534 }
535 
536 static int init_memory_block(struct memory_block **memory,
537 			     struct mem_section *section, unsigned long state)
538 {
539 	struct memory_block *mem;
540 	unsigned long start_pfn;
541 	int scn_nr;
542 	int ret = 0;
543 
544 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
545 	if (!mem)
546 		return -ENOMEM;
547 
548 	scn_nr = __section_nr(section);
549 	mem->start_section_nr =
550 			base_memory_block_id(scn_nr) * sections_per_block;
551 	mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
552 	mem->state = state;
553 	mem->section_count++;
554 	mutex_init(&mem->state_mutex);
555 	start_pfn = section_nr_to_pfn(mem->start_section_nr);
556 	mem->phys_device = arch_get_memory_phys_device(start_pfn);
557 
558 	ret = register_memory(mem);
559 	if (!ret)
560 		ret = mem_create_simple_file(mem, phys_index);
561 	if (!ret)
562 		ret = mem_create_simple_file(mem, end_phys_index);
563 	if (!ret)
564 		ret = mem_create_simple_file(mem, state);
565 	if (!ret)
566 		ret = mem_create_simple_file(mem, phys_device);
567 	if (!ret)
568 		ret = mem_create_simple_file(mem, removable);
569 
570 	*memory = mem;
571 	return ret;
572 }
573 
574 static int add_memory_section(int nid, struct mem_section *section,
575 			struct memory_block **mem_p,
576 			unsigned long state, enum mem_add_context context)
577 {
578 	struct memory_block *mem = NULL;
579 	int scn_nr = __section_nr(section);
580 	int ret = 0;
581 
582 	mutex_lock(&mem_sysfs_mutex);
583 
584 	if (context == BOOT) {
585 		/* same memory block ? */
586 		if (mem_p && *mem_p)
587 			if (scn_nr >= (*mem_p)->start_section_nr &&
588 			    scn_nr <= (*mem_p)->end_section_nr) {
589 				mem = *mem_p;
590 				kobject_get(&mem->dev.kobj);
591 			}
592 	} else
593 		mem = find_memory_block(section);
594 
595 	if (mem) {
596 		mem->section_count++;
597 		kobject_put(&mem->dev.kobj);
598 	} else {
599 		ret = init_memory_block(&mem, section, state);
600 		/* store memory_block pointer for next loop */
601 		if (!ret && context == BOOT)
602 			if (mem_p)
603 				*mem_p = mem;
604 	}
605 
606 	if (!ret) {
607 		if (context == HOTPLUG &&
608 		    mem->section_count == sections_per_block)
609 			ret = register_mem_sect_under_node(mem, nid);
610 	}
611 
612 	mutex_unlock(&mem_sysfs_mutex);
613 	return ret;
614 }
615 
616 int remove_memory_block(unsigned long node_id, struct mem_section *section,
617 		int phys_device)
618 {
619 	struct memory_block *mem;
620 
621 	mutex_lock(&mem_sysfs_mutex);
622 	mem = find_memory_block(section);
623 	unregister_mem_sect_under_nodes(mem, __section_nr(section));
624 
625 	mem->section_count--;
626 	if (mem->section_count == 0) {
627 		mem_remove_simple_file(mem, phys_index);
628 		mem_remove_simple_file(mem, end_phys_index);
629 		mem_remove_simple_file(mem, state);
630 		mem_remove_simple_file(mem, phys_device);
631 		mem_remove_simple_file(mem, removable);
632 		unregister_memory(mem);
633 		kfree(mem);
634 	} else
635 		kobject_put(&mem->dev.kobj);
636 
637 	mutex_unlock(&mem_sysfs_mutex);
638 	return 0;
639 }
640 
641 /*
642  * need an interface for the VM to add new memory regions,
643  * but without onlining it.
644  */
645 int register_new_memory(int nid, struct mem_section *section)
646 {
647 	return add_memory_section(nid, section, NULL, MEM_OFFLINE, HOTPLUG);
648 }
649 
650 int unregister_memory_section(struct mem_section *section)
651 {
652 	if (!present_section(section))
653 		return -EINVAL;
654 
655 	return remove_memory_block(0, section, 0);
656 }
657 
658 /*
659  * Initialize the sysfs support for memory devices...
660  */
661 int __init memory_dev_init(void)
662 {
663 	unsigned int i;
664 	int ret;
665 	int err;
666 	unsigned long block_sz;
667 	struct memory_block *mem = NULL;
668 
669 	ret = subsys_system_register(&memory_subsys, NULL);
670 	if (ret)
671 		goto out;
672 
673 	block_sz = get_memory_block_size();
674 	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
675 
676 	/*
677 	 * Create entries for memory sections that were found
678 	 * during boot and have been initialized
679 	 */
680 	for (i = 0; i < NR_MEM_SECTIONS; i++) {
681 		if (!present_section_nr(i))
682 			continue;
683 		/* don't need to reuse memory_block if only one per block */
684 		err = add_memory_section(0, __nr_to_section(i),
685 				 (sections_per_block == 1) ? NULL : &mem,
686 					 MEM_ONLINE,
687 					 BOOT);
688 		if (!ret)
689 			ret = err;
690 	}
691 
692 	err = memory_probe_init();
693 	if (!ret)
694 		ret = err;
695 	err = memory_fail_init();
696 	if (!ret)
697 		ret = err;
698 	err = block_size_init();
699 	if (!ret)
700 		ret = err;
701 out:
702 	if (ret)
703 		printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
704 	return ret;
705 }
706