1 /* 2 * Memory subsystem support 3 * 4 * Written by Matt Tolentino <matthew.e.tolentino@intel.com> 5 * Dave Hansen <haveblue@us.ibm.com> 6 * 7 * This file provides the necessary infrastructure to represent 8 * a SPARSEMEM-memory-model system's physical memory in /sysfs. 9 * All arch-independent code that assumes MEMORY_HOTPLUG requires 10 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c. 11 */ 12 13 #include <linux/module.h> 14 #include <linux/init.h> 15 #include <linux/topology.h> 16 #include <linux/capability.h> 17 #include <linux/device.h> 18 #include <linux/memory.h> 19 #include <linux/memory_hotplug.h> 20 #include <linux/mm.h> 21 #include <linux/mutex.h> 22 #include <linux/stat.h> 23 #include <linux/slab.h> 24 25 #include <linux/atomic.h> 26 #include <asm/uaccess.h> 27 28 static DEFINE_MUTEX(mem_sysfs_mutex); 29 30 #define MEMORY_CLASS_NAME "memory" 31 32 #define to_memory_block(dev) container_of(dev, struct memory_block, dev) 33 34 static int sections_per_block; 35 36 static inline int base_memory_block_id(int section_nr) 37 { 38 return section_nr / sections_per_block; 39 } 40 41 static int memory_subsys_online(struct device *dev); 42 static int memory_subsys_offline(struct device *dev); 43 44 static struct bus_type memory_subsys = { 45 .name = MEMORY_CLASS_NAME, 46 .dev_name = MEMORY_CLASS_NAME, 47 .online = memory_subsys_online, 48 .offline = memory_subsys_offline, 49 }; 50 51 static BLOCKING_NOTIFIER_HEAD(memory_chain); 52 53 int register_memory_notifier(struct notifier_block *nb) 54 { 55 return blocking_notifier_chain_register(&memory_chain, nb); 56 } 57 EXPORT_SYMBOL(register_memory_notifier); 58 59 void unregister_memory_notifier(struct notifier_block *nb) 60 { 61 blocking_notifier_chain_unregister(&memory_chain, nb); 62 } 63 EXPORT_SYMBOL(unregister_memory_notifier); 64 65 static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain); 66 67 int register_memory_isolate_notifier(struct notifier_block *nb) 68 { 69 return atomic_notifier_chain_register(&memory_isolate_chain, nb); 70 } 71 EXPORT_SYMBOL(register_memory_isolate_notifier); 72 73 void unregister_memory_isolate_notifier(struct notifier_block *nb) 74 { 75 atomic_notifier_chain_unregister(&memory_isolate_chain, nb); 76 } 77 EXPORT_SYMBOL(unregister_memory_isolate_notifier); 78 79 static void memory_block_release(struct device *dev) 80 { 81 struct memory_block *mem = to_memory_block(dev); 82 83 kfree(mem); 84 } 85 86 unsigned long __weak memory_block_size_bytes(void) 87 { 88 return MIN_MEMORY_BLOCK_SIZE; 89 } 90 91 static unsigned long get_memory_block_size(void) 92 { 93 unsigned long block_sz; 94 95 block_sz = memory_block_size_bytes(); 96 97 /* Validate blk_sz is a power of 2 and not less than section size */ 98 if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) { 99 WARN_ON(1); 100 block_sz = MIN_MEMORY_BLOCK_SIZE; 101 } 102 103 return block_sz; 104 } 105 106 /* 107 * use this as the physical section index that this memsection 108 * uses. 109 */ 110 111 static ssize_t show_mem_start_phys_index(struct device *dev, 112 struct device_attribute *attr, char *buf) 113 { 114 struct memory_block *mem = to_memory_block(dev); 115 unsigned long phys_index; 116 117 phys_index = mem->start_section_nr / sections_per_block; 118 return sprintf(buf, "%08lx\n", phys_index); 119 } 120 121 /* 122 * Show whether the section of memory is likely to be hot-removable 123 */ 124 static ssize_t show_mem_removable(struct device *dev, 125 struct device_attribute *attr, char *buf) 126 { 127 unsigned long i, pfn; 128 int ret = 1; 129 struct memory_block *mem = to_memory_block(dev); 130 131 for (i = 0; i < sections_per_block; i++) { 132 if (!present_section_nr(mem->start_section_nr + i)) 133 continue; 134 pfn = section_nr_to_pfn(mem->start_section_nr + i); 135 ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION); 136 } 137 138 return sprintf(buf, "%d\n", ret); 139 } 140 141 /* 142 * online, offline, going offline, etc. 143 */ 144 static ssize_t show_mem_state(struct device *dev, 145 struct device_attribute *attr, char *buf) 146 { 147 struct memory_block *mem = to_memory_block(dev); 148 ssize_t len = 0; 149 150 /* 151 * We can probably put these states in a nice little array 152 * so that they're not open-coded 153 */ 154 switch (mem->state) { 155 case MEM_ONLINE: 156 len = sprintf(buf, "online\n"); 157 break; 158 case MEM_OFFLINE: 159 len = sprintf(buf, "offline\n"); 160 break; 161 case MEM_GOING_OFFLINE: 162 len = sprintf(buf, "going-offline\n"); 163 break; 164 default: 165 len = sprintf(buf, "ERROR-UNKNOWN-%ld\n", 166 mem->state); 167 WARN_ON(1); 168 break; 169 } 170 171 return len; 172 } 173 174 int memory_notify(unsigned long val, void *v) 175 { 176 return blocking_notifier_call_chain(&memory_chain, val, v); 177 } 178 179 int memory_isolate_notify(unsigned long val, void *v) 180 { 181 return atomic_notifier_call_chain(&memory_isolate_chain, val, v); 182 } 183 184 /* 185 * The probe routines leave the pages reserved, just as the bootmem code does. 186 * Make sure they're still that way. 187 */ 188 static bool pages_correctly_reserved(unsigned long start_pfn) 189 { 190 int i, j; 191 struct page *page; 192 unsigned long pfn = start_pfn; 193 194 /* 195 * memmap between sections is not contiguous except with 196 * SPARSEMEM_VMEMMAP. We lookup the page once per section 197 * and assume memmap is contiguous within each section 198 */ 199 for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) { 200 if (WARN_ON_ONCE(!pfn_valid(pfn))) 201 return false; 202 page = pfn_to_page(pfn); 203 204 for (j = 0; j < PAGES_PER_SECTION; j++) { 205 if (PageReserved(page + j)) 206 continue; 207 208 printk(KERN_WARNING "section number %ld page number %d " 209 "not reserved, was it already online?\n", 210 pfn_to_section_nr(pfn), j); 211 212 return false; 213 } 214 } 215 216 return true; 217 } 218 219 /* 220 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is 221 * OK to have direct references to sparsemem variables in here. 222 */ 223 static int 224 memory_block_action(unsigned long phys_index, unsigned long action, int online_type) 225 { 226 unsigned long start_pfn; 227 unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block; 228 struct page *first_page; 229 int ret; 230 231 first_page = pfn_to_page(phys_index << PFN_SECTION_SHIFT); 232 start_pfn = page_to_pfn(first_page); 233 234 switch (action) { 235 case MEM_ONLINE: 236 if (!pages_correctly_reserved(start_pfn)) 237 return -EBUSY; 238 239 ret = online_pages(start_pfn, nr_pages, online_type); 240 break; 241 case MEM_OFFLINE: 242 ret = offline_pages(start_pfn, nr_pages); 243 break; 244 default: 245 WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: " 246 "%ld\n", __func__, phys_index, action, action); 247 ret = -EINVAL; 248 } 249 250 return ret; 251 } 252 253 static int memory_block_change_state(struct memory_block *mem, 254 unsigned long to_state, unsigned long from_state_req) 255 { 256 int ret = 0; 257 258 if (mem->state != from_state_req) 259 return -EINVAL; 260 261 if (to_state == MEM_OFFLINE) 262 mem->state = MEM_GOING_OFFLINE; 263 264 ret = memory_block_action(mem->start_section_nr, to_state, 265 mem->online_type); 266 267 mem->state = ret ? from_state_req : to_state; 268 269 return ret; 270 } 271 272 /* The device lock serializes operations on memory_subsys_[online|offline] */ 273 static int memory_subsys_online(struct device *dev) 274 { 275 struct memory_block *mem = to_memory_block(dev); 276 int ret; 277 278 if (mem->state == MEM_ONLINE) 279 return 0; 280 281 /* 282 * If we are called from store_mem_state(), online_type will be 283 * set >= 0 Otherwise we were called from the device online 284 * attribute and need to set the online_type. 285 */ 286 if (mem->online_type < 0) 287 mem->online_type = MMOP_ONLINE_KEEP; 288 289 ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE); 290 291 /* clear online_type */ 292 mem->online_type = -1; 293 294 return ret; 295 } 296 297 static int memory_subsys_offline(struct device *dev) 298 { 299 struct memory_block *mem = to_memory_block(dev); 300 301 if (mem->state == MEM_OFFLINE) 302 return 0; 303 304 return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE); 305 } 306 307 static ssize_t 308 store_mem_state(struct device *dev, 309 struct device_attribute *attr, const char *buf, size_t count) 310 { 311 struct memory_block *mem = to_memory_block(dev); 312 int ret, online_type; 313 314 ret = lock_device_hotplug_sysfs(); 315 if (ret) 316 return ret; 317 318 if (sysfs_streq(buf, "online_kernel")) 319 online_type = MMOP_ONLINE_KERNEL; 320 else if (sysfs_streq(buf, "online_movable")) 321 online_type = MMOP_ONLINE_MOVABLE; 322 else if (sysfs_streq(buf, "online")) 323 online_type = MMOP_ONLINE_KEEP; 324 else if (sysfs_streq(buf, "offline")) 325 online_type = MMOP_OFFLINE; 326 else { 327 ret = -EINVAL; 328 goto err; 329 } 330 331 switch (online_type) { 332 case MMOP_ONLINE_KERNEL: 333 case MMOP_ONLINE_MOVABLE: 334 case MMOP_ONLINE_KEEP: 335 /* 336 * mem->online_type is not protected so there can be a 337 * race here. However, when racing online, the first 338 * will succeed and the second will just return as the 339 * block will already be online. The online type 340 * could be either one, but that is expected. 341 */ 342 mem->online_type = online_type; 343 ret = device_online(&mem->dev); 344 break; 345 case MMOP_OFFLINE: 346 ret = device_offline(&mem->dev); 347 break; 348 default: 349 ret = -EINVAL; /* should never happen */ 350 } 351 352 err: 353 unlock_device_hotplug(); 354 355 if (ret) 356 return ret; 357 return count; 358 } 359 360 /* 361 * phys_device is a bad name for this. What I really want 362 * is a way to differentiate between memory ranges that 363 * are part of physical devices that constitute 364 * a complete removable unit or fru. 365 * i.e. do these ranges belong to the same physical device, 366 * s.t. if I offline all of these sections I can then 367 * remove the physical device? 368 */ 369 static ssize_t show_phys_device(struct device *dev, 370 struct device_attribute *attr, char *buf) 371 { 372 struct memory_block *mem = to_memory_block(dev); 373 return sprintf(buf, "%d\n", mem->phys_device); 374 } 375 376 static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL); 377 static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state); 378 static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL); 379 static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL); 380 381 /* 382 * Block size attribute stuff 383 */ 384 static ssize_t 385 print_block_size(struct device *dev, struct device_attribute *attr, 386 char *buf) 387 { 388 return sprintf(buf, "%lx\n", get_memory_block_size()); 389 } 390 391 static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL); 392 393 /* 394 * Some architectures will have custom drivers to do this, and 395 * will not need to do it from userspace. The fake hot-add code 396 * as well as ppc64 will do all of their discovery in userspace 397 * and will require this interface. 398 */ 399 #ifdef CONFIG_ARCH_MEMORY_PROBE 400 static ssize_t 401 memory_probe_store(struct device *dev, struct device_attribute *attr, 402 const char *buf, size_t count) 403 { 404 u64 phys_addr; 405 int nid; 406 int i, ret; 407 unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block; 408 409 ret = kstrtoull(buf, 0, &phys_addr); 410 if (ret) 411 return ret; 412 413 if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1)) 414 return -EINVAL; 415 416 for (i = 0; i < sections_per_block; i++) { 417 nid = memory_add_physaddr_to_nid(phys_addr); 418 ret = add_memory(nid, phys_addr, 419 PAGES_PER_SECTION << PAGE_SHIFT); 420 if (ret) 421 goto out; 422 423 phys_addr += MIN_MEMORY_BLOCK_SIZE; 424 } 425 426 ret = count; 427 out: 428 return ret; 429 } 430 431 static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store); 432 #endif 433 434 #ifdef CONFIG_MEMORY_FAILURE 435 /* 436 * Support for offlining pages of memory 437 */ 438 439 /* Soft offline a page */ 440 static ssize_t 441 store_soft_offline_page(struct device *dev, 442 struct device_attribute *attr, 443 const char *buf, size_t count) 444 { 445 int ret; 446 u64 pfn; 447 if (!capable(CAP_SYS_ADMIN)) 448 return -EPERM; 449 if (kstrtoull(buf, 0, &pfn) < 0) 450 return -EINVAL; 451 pfn >>= PAGE_SHIFT; 452 if (!pfn_valid(pfn)) 453 return -ENXIO; 454 ret = soft_offline_page(pfn_to_page(pfn), 0); 455 return ret == 0 ? count : ret; 456 } 457 458 /* Forcibly offline a page, including killing processes. */ 459 static ssize_t 460 store_hard_offline_page(struct device *dev, 461 struct device_attribute *attr, 462 const char *buf, size_t count) 463 { 464 int ret; 465 u64 pfn; 466 if (!capable(CAP_SYS_ADMIN)) 467 return -EPERM; 468 if (kstrtoull(buf, 0, &pfn) < 0) 469 return -EINVAL; 470 pfn >>= PAGE_SHIFT; 471 ret = memory_failure(pfn, 0, 0); 472 return ret ? ret : count; 473 } 474 475 static DEVICE_ATTR(soft_offline_page, S_IWUSR, NULL, store_soft_offline_page); 476 static DEVICE_ATTR(hard_offline_page, S_IWUSR, NULL, store_hard_offline_page); 477 #endif 478 479 /* 480 * Note that phys_device is optional. It is here to allow for 481 * differentiation between which *physical* devices each 482 * section belongs to... 483 */ 484 int __weak arch_get_memory_phys_device(unsigned long start_pfn) 485 { 486 return 0; 487 } 488 489 /* 490 * A reference for the returned object is held and the reference for the 491 * hinted object is released. 492 */ 493 struct memory_block *find_memory_block_hinted(struct mem_section *section, 494 struct memory_block *hint) 495 { 496 int block_id = base_memory_block_id(__section_nr(section)); 497 struct device *hintdev = hint ? &hint->dev : NULL; 498 struct device *dev; 499 500 dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev); 501 if (hint) 502 put_device(&hint->dev); 503 if (!dev) 504 return NULL; 505 return to_memory_block(dev); 506 } 507 508 /* 509 * For now, we have a linear search to go find the appropriate 510 * memory_block corresponding to a particular phys_index. If 511 * this gets to be a real problem, we can always use a radix 512 * tree or something here. 513 * 514 * This could be made generic for all device subsystems. 515 */ 516 struct memory_block *find_memory_block(struct mem_section *section) 517 { 518 return find_memory_block_hinted(section, NULL); 519 } 520 521 static struct attribute *memory_memblk_attrs[] = { 522 &dev_attr_phys_index.attr, 523 &dev_attr_state.attr, 524 &dev_attr_phys_device.attr, 525 &dev_attr_removable.attr, 526 NULL 527 }; 528 529 static struct attribute_group memory_memblk_attr_group = { 530 .attrs = memory_memblk_attrs, 531 }; 532 533 static const struct attribute_group *memory_memblk_attr_groups[] = { 534 &memory_memblk_attr_group, 535 NULL, 536 }; 537 538 /* 539 * register_memory - Setup a sysfs device for a memory block 540 */ 541 static 542 int register_memory(struct memory_block *memory) 543 { 544 memory->dev.bus = &memory_subsys; 545 memory->dev.id = memory->start_section_nr / sections_per_block; 546 memory->dev.release = memory_block_release; 547 memory->dev.groups = memory_memblk_attr_groups; 548 memory->dev.offline = memory->state == MEM_OFFLINE; 549 550 return device_register(&memory->dev); 551 } 552 553 static int init_memory_block(struct memory_block **memory, 554 struct mem_section *section, unsigned long state) 555 { 556 struct memory_block *mem; 557 unsigned long start_pfn; 558 int scn_nr; 559 int ret = 0; 560 561 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 562 if (!mem) 563 return -ENOMEM; 564 565 scn_nr = __section_nr(section); 566 mem->start_section_nr = 567 base_memory_block_id(scn_nr) * sections_per_block; 568 mem->end_section_nr = mem->start_section_nr + sections_per_block - 1; 569 mem->state = state; 570 mem->section_count++; 571 start_pfn = section_nr_to_pfn(mem->start_section_nr); 572 mem->phys_device = arch_get_memory_phys_device(start_pfn); 573 574 ret = register_memory(mem); 575 576 *memory = mem; 577 return ret; 578 } 579 580 static int add_memory_block(int base_section_nr) 581 { 582 struct memory_block *mem; 583 int i, ret, section_count = 0, section_nr; 584 585 for (i = base_section_nr; 586 (i < base_section_nr + sections_per_block) && i < NR_MEM_SECTIONS; 587 i++) { 588 if (!present_section_nr(i)) 589 continue; 590 if (section_count == 0) 591 section_nr = i; 592 section_count++; 593 } 594 595 if (section_count == 0) 596 return 0; 597 ret = init_memory_block(&mem, __nr_to_section(section_nr), MEM_ONLINE); 598 if (ret) 599 return ret; 600 mem->section_count = section_count; 601 return 0; 602 } 603 604 605 /* 606 * need an interface for the VM to add new memory regions, 607 * but without onlining it. 608 */ 609 int register_new_memory(int nid, struct mem_section *section) 610 { 611 int ret = 0; 612 struct memory_block *mem; 613 614 mutex_lock(&mem_sysfs_mutex); 615 616 mem = find_memory_block(section); 617 if (mem) { 618 mem->section_count++; 619 put_device(&mem->dev); 620 } else { 621 ret = init_memory_block(&mem, section, MEM_OFFLINE); 622 if (ret) 623 goto out; 624 } 625 626 if (mem->section_count == sections_per_block) 627 ret = register_mem_sect_under_node(mem, nid); 628 out: 629 mutex_unlock(&mem_sysfs_mutex); 630 return ret; 631 } 632 633 #ifdef CONFIG_MEMORY_HOTREMOVE 634 static void 635 unregister_memory(struct memory_block *memory) 636 { 637 BUG_ON(memory->dev.bus != &memory_subsys); 638 639 /* drop the ref. we got in remove_memory_block() */ 640 put_device(&memory->dev); 641 device_unregister(&memory->dev); 642 } 643 644 static int remove_memory_block(unsigned long node_id, 645 struct mem_section *section, int phys_device) 646 { 647 struct memory_block *mem; 648 649 mutex_lock(&mem_sysfs_mutex); 650 mem = find_memory_block(section); 651 unregister_mem_sect_under_nodes(mem, __section_nr(section)); 652 653 mem->section_count--; 654 if (mem->section_count == 0) 655 unregister_memory(mem); 656 else 657 put_device(&mem->dev); 658 659 mutex_unlock(&mem_sysfs_mutex); 660 return 0; 661 } 662 663 int unregister_memory_section(struct mem_section *section) 664 { 665 if (!present_section(section)) 666 return -EINVAL; 667 668 return remove_memory_block(0, section, 0); 669 } 670 #endif /* CONFIG_MEMORY_HOTREMOVE */ 671 672 /* return true if the memory block is offlined, otherwise, return false */ 673 bool is_memblock_offlined(struct memory_block *mem) 674 { 675 return mem->state == MEM_OFFLINE; 676 } 677 678 static struct attribute *memory_root_attrs[] = { 679 #ifdef CONFIG_ARCH_MEMORY_PROBE 680 &dev_attr_probe.attr, 681 #endif 682 683 #ifdef CONFIG_MEMORY_FAILURE 684 &dev_attr_soft_offline_page.attr, 685 &dev_attr_hard_offline_page.attr, 686 #endif 687 688 &dev_attr_block_size_bytes.attr, 689 NULL 690 }; 691 692 static struct attribute_group memory_root_attr_group = { 693 .attrs = memory_root_attrs, 694 }; 695 696 static const struct attribute_group *memory_root_attr_groups[] = { 697 &memory_root_attr_group, 698 NULL, 699 }; 700 701 /* 702 * Initialize the sysfs support for memory devices... 703 */ 704 int __init memory_dev_init(void) 705 { 706 unsigned int i; 707 int ret; 708 int err; 709 unsigned long block_sz; 710 711 ret = subsys_system_register(&memory_subsys, memory_root_attr_groups); 712 if (ret) 713 goto out; 714 715 block_sz = get_memory_block_size(); 716 sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE; 717 718 /* 719 * Create entries for memory sections that were found 720 * during boot and have been initialized 721 */ 722 mutex_lock(&mem_sysfs_mutex); 723 for (i = 0; i < NR_MEM_SECTIONS; i += sections_per_block) { 724 err = add_memory_block(i); 725 if (!ret) 726 ret = err; 727 } 728 mutex_unlock(&mem_sysfs_mutex); 729 730 out: 731 if (ret) 732 printk(KERN_ERR "%s() failed: %d\n", __func__, ret); 733 return ret; 734 } 735