xref: /openbmc/linux/drivers/base/memory.c (revision 565d76cb)
1 /*
2  * drivers/base/memory.c - basic Memory class support
3  *
4  * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
5  *            Dave Hansen <haveblue@us.ibm.com>
6  *
7  * This file provides the necessary infrastructure to represent
8  * a SPARSEMEM-memory-model system's physical memory in /sysfs.
9  * All arch-independent code that assumes MEMORY_HOTPLUG requires
10  * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
11  */
12 
13 #include <linux/sysdev.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/topology.h>
17 #include <linux/capability.h>
18 #include <linux/device.h>
19 #include <linux/memory.h>
20 #include <linux/kobject.h>
21 #include <linux/memory_hotplug.h>
22 #include <linux/mm.h>
23 #include <linux/mutex.h>
24 #include <linux/stat.h>
25 #include <linux/slab.h>
26 
27 #include <asm/atomic.h>
28 #include <asm/uaccess.h>
29 
30 static DEFINE_MUTEX(mem_sysfs_mutex);
31 
32 #define MEMORY_CLASS_NAME	"memory"
33 #define MIN_MEMORY_BLOCK_SIZE	(1 << SECTION_SIZE_BITS)
34 
35 static int sections_per_block;
36 
37 static inline int base_memory_block_id(int section_nr)
38 {
39 	return section_nr / sections_per_block;
40 }
41 
42 static struct sysdev_class memory_sysdev_class = {
43 	.name = MEMORY_CLASS_NAME,
44 };
45 
46 static const char *memory_uevent_name(struct kset *kset, struct kobject *kobj)
47 {
48 	return MEMORY_CLASS_NAME;
49 }
50 
51 static int memory_uevent(struct kset *kset, struct kobject *obj, struct kobj_uevent_env *env)
52 {
53 	int retval = 0;
54 
55 	return retval;
56 }
57 
58 static const struct kset_uevent_ops memory_uevent_ops = {
59 	.name		= memory_uevent_name,
60 	.uevent		= memory_uevent,
61 };
62 
63 static BLOCKING_NOTIFIER_HEAD(memory_chain);
64 
65 int register_memory_notifier(struct notifier_block *nb)
66 {
67         return blocking_notifier_chain_register(&memory_chain, nb);
68 }
69 EXPORT_SYMBOL(register_memory_notifier);
70 
71 void unregister_memory_notifier(struct notifier_block *nb)
72 {
73         blocking_notifier_chain_unregister(&memory_chain, nb);
74 }
75 EXPORT_SYMBOL(unregister_memory_notifier);
76 
77 static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);
78 
79 int register_memory_isolate_notifier(struct notifier_block *nb)
80 {
81 	return atomic_notifier_chain_register(&memory_isolate_chain, nb);
82 }
83 EXPORT_SYMBOL(register_memory_isolate_notifier);
84 
85 void unregister_memory_isolate_notifier(struct notifier_block *nb)
86 {
87 	atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
88 }
89 EXPORT_SYMBOL(unregister_memory_isolate_notifier);
90 
91 /*
92  * register_memory - Setup a sysfs device for a memory block
93  */
94 static
95 int register_memory(struct memory_block *memory)
96 {
97 	int error;
98 
99 	memory->sysdev.cls = &memory_sysdev_class;
100 	memory->sysdev.id = memory->start_section_nr / sections_per_block;
101 
102 	error = sysdev_register(&memory->sysdev);
103 	return error;
104 }
105 
106 static void
107 unregister_memory(struct memory_block *memory)
108 {
109 	BUG_ON(memory->sysdev.cls != &memory_sysdev_class);
110 
111 	/* drop the ref. we got in remove_memory_block() */
112 	kobject_put(&memory->sysdev.kobj);
113 	sysdev_unregister(&memory->sysdev);
114 }
115 
116 unsigned long __weak memory_block_size_bytes(void)
117 {
118 	return MIN_MEMORY_BLOCK_SIZE;
119 }
120 
121 static unsigned long get_memory_block_size(void)
122 {
123 	unsigned long block_sz;
124 
125 	block_sz = memory_block_size_bytes();
126 
127 	/* Validate blk_sz is a power of 2 and not less than section size */
128 	if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
129 		WARN_ON(1);
130 		block_sz = MIN_MEMORY_BLOCK_SIZE;
131 	}
132 
133 	return block_sz;
134 }
135 
136 /*
137  * use this as the physical section index that this memsection
138  * uses.
139  */
140 
141 static ssize_t show_mem_start_phys_index(struct sys_device *dev,
142 			struct sysdev_attribute *attr, char *buf)
143 {
144 	struct memory_block *mem =
145 		container_of(dev, struct memory_block, sysdev);
146 	unsigned long phys_index;
147 
148 	phys_index = mem->start_section_nr / sections_per_block;
149 	return sprintf(buf, "%08lx\n", phys_index);
150 }
151 
152 static ssize_t show_mem_end_phys_index(struct sys_device *dev,
153 			struct sysdev_attribute *attr, char *buf)
154 {
155 	struct memory_block *mem =
156 		container_of(dev, struct memory_block, sysdev);
157 	unsigned long phys_index;
158 
159 	phys_index = mem->end_section_nr / sections_per_block;
160 	return sprintf(buf, "%08lx\n", phys_index);
161 }
162 
163 /*
164  * Show whether the section of memory is likely to be hot-removable
165  */
166 static ssize_t show_mem_removable(struct sys_device *dev,
167 			struct sysdev_attribute *attr, char *buf)
168 {
169 	unsigned long i, pfn;
170 	int ret = 1;
171 	struct memory_block *mem =
172 		container_of(dev, struct memory_block, sysdev);
173 
174 	for (i = 0; i < sections_per_block; i++) {
175 		pfn = section_nr_to_pfn(mem->start_section_nr + i);
176 		ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
177 	}
178 
179 	return sprintf(buf, "%d\n", ret);
180 }
181 
182 /*
183  * online, offline, going offline, etc.
184  */
185 static ssize_t show_mem_state(struct sys_device *dev,
186 			struct sysdev_attribute *attr, char *buf)
187 {
188 	struct memory_block *mem =
189 		container_of(dev, struct memory_block, sysdev);
190 	ssize_t len = 0;
191 
192 	/*
193 	 * We can probably put these states in a nice little array
194 	 * so that they're not open-coded
195 	 */
196 	switch (mem->state) {
197 		case MEM_ONLINE:
198 			len = sprintf(buf, "online\n");
199 			break;
200 		case MEM_OFFLINE:
201 			len = sprintf(buf, "offline\n");
202 			break;
203 		case MEM_GOING_OFFLINE:
204 			len = sprintf(buf, "going-offline\n");
205 			break;
206 		default:
207 			len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
208 					mem->state);
209 			WARN_ON(1);
210 			break;
211 	}
212 
213 	return len;
214 }
215 
216 int memory_notify(unsigned long val, void *v)
217 {
218 	return blocking_notifier_call_chain(&memory_chain, val, v);
219 }
220 
221 int memory_isolate_notify(unsigned long val, void *v)
222 {
223 	return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
224 }
225 
226 /*
227  * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
228  * OK to have direct references to sparsemem variables in here.
229  */
230 static int
231 memory_section_action(unsigned long phys_index, unsigned long action)
232 {
233 	int i;
234 	unsigned long start_pfn, start_paddr;
235 	struct page *first_page;
236 	int ret;
237 
238 	first_page = pfn_to_page(phys_index << PFN_SECTION_SHIFT);
239 
240 	/*
241 	 * The probe routines leave the pages reserved, just
242 	 * as the bootmem code does.  Make sure they're still
243 	 * that way.
244 	 */
245 	if (action == MEM_ONLINE) {
246 		for (i = 0; i < PAGES_PER_SECTION; i++) {
247 			if (PageReserved(first_page+i))
248 				continue;
249 
250 			printk(KERN_WARNING "section number %ld page number %d "
251 				"not reserved, was it already online?\n",
252 				phys_index, i);
253 			return -EBUSY;
254 		}
255 	}
256 
257 	switch (action) {
258 		case MEM_ONLINE:
259 			start_pfn = page_to_pfn(first_page);
260 			ret = online_pages(start_pfn, PAGES_PER_SECTION);
261 			break;
262 		case MEM_OFFLINE:
263 			start_paddr = page_to_pfn(first_page) << PAGE_SHIFT;
264 			ret = remove_memory(start_paddr,
265 					    PAGES_PER_SECTION << PAGE_SHIFT);
266 			break;
267 		default:
268 			WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
269 			     "%ld\n", __func__, phys_index, action, action);
270 			ret = -EINVAL;
271 	}
272 
273 	return ret;
274 }
275 
276 static int memory_block_change_state(struct memory_block *mem,
277 		unsigned long to_state, unsigned long from_state_req)
278 {
279 	int i, ret = 0;
280 
281 	mutex_lock(&mem->state_mutex);
282 
283 	if (mem->state != from_state_req) {
284 		ret = -EINVAL;
285 		goto out;
286 	}
287 
288 	if (to_state == MEM_OFFLINE)
289 		mem->state = MEM_GOING_OFFLINE;
290 
291 	for (i = 0; i < sections_per_block; i++) {
292 		ret = memory_section_action(mem->start_section_nr + i,
293 					    to_state);
294 		if (ret)
295 			break;
296 	}
297 
298 	if (ret) {
299 		for (i = 0; i < sections_per_block; i++)
300 			memory_section_action(mem->start_section_nr + i,
301 					      from_state_req);
302 
303 		mem->state = from_state_req;
304 	} else
305 		mem->state = to_state;
306 
307 out:
308 	mutex_unlock(&mem->state_mutex);
309 	return ret;
310 }
311 
312 static ssize_t
313 store_mem_state(struct sys_device *dev,
314 		struct sysdev_attribute *attr, const char *buf, size_t count)
315 {
316 	struct memory_block *mem;
317 	int ret = -EINVAL;
318 
319 	mem = container_of(dev, struct memory_block, sysdev);
320 
321 	if (!strncmp(buf, "online", min((int)count, 6)))
322 		ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
323 	else if(!strncmp(buf, "offline", min((int)count, 7)))
324 		ret = memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
325 
326 	if (ret)
327 		return ret;
328 	return count;
329 }
330 
331 /*
332  * phys_device is a bad name for this.  What I really want
333  * is a way to differentiate between memory ranges that
334  * are part of physical devices that constitute
335  * a complete removable unit or fru.
336  * i.e. do these ranges belong to the same physical device,
337  * s.t. if I offline all of these sections I can then
338  * remove the physical device?
339  */
340 static ssize_t show_phys_device(struct sys_device *dev,
341 				struct sysdev_attribute *attr, char *buf)
342 {
343 	struct memory_block *mem =
344 		container_of(dev, struct memory_block, sysdev);
345 	return sprintf(buf, "%d\n", mem->phys_device);
346 }
347 
348 static SYSDEV_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
349 static SYSDEV_ATTR(end_phys_index, 0444, show_mem_end_phys_index, NULL);
350 static SYSDEV_ATTR(state, 0644, show_mem_state, store_mem_state);
351 static SYSDEV_ATTR(phys_device, 0444, show_phys_device, NULL);
352 static SYSDEV_ATTR(removable, 0444, show_mem_removable, NULL);
353 
354 #define mem_create_simple_file(mem, attr_name)	\
355 	sysdev_create_file(&mem->sysdev, &attr_##attr_name)
356 #define mem_remove_simple_file(mem, attr_name)	\
357 	sysdev_remove_file(&mem->sysdev, &attr_##attr_name)
358 
359 /*
360  * Block size attribute stuff
361  */
362 static ssize_t
363 print_block_size(struct sysdev_class *class, struct sysdev_class_attribute *attr,
364 		 char *buf)
365 {
366 	return sprintf(buf, "%lx\n", get_memory_block_size());
367 }
368 
369 static SYSDEV_CLASS_ATTR(block_size_bytes, 0444, print_block_size, NULL);
370 
371 static int block_size_init(void)
372 {
373 	return sysfs_create_file(&memory_sysdev_class.kset.kobj,
374 				&attr_block_size_bytes.attr);
375 }
376 
377 /*
378  * Some architectures will have custom drivers to do this, and
379  * will not need to do it from userspace.  The fake hot-add code
380  * as well as ppc64 will do all of their discovery in userspace
381  * and will require this interface.
382  */
383 #ifdef CONFIG_ARCH_MEMORY_PROBE
384 static ssize_t
385 memory_probe_store(struct class *class, struct class_attribute *attr,
386 		   const char *buf, size_t count)
387 {
388 	u64 phys_addr;
389 	int nid;
390 	int i, ret;
391 
392 	phys_addr = simple_strtoull(buf, NULL, 0);
393 
394 	for (i = 0; i < sections_per_block; i++) {
395 		nid = memory_add_physaddr_to_nid(phys_addr);
396 		ret = add_memory(nid, phys_addr,
397 				 PAGES_PER_SECTION << PAGE_SHIFT);
398 		if (ret)
399 			break;
400 
401 		phys_addr += MIN_MEMORY_BLOCK_SIZE;
402 	}
403 
404 	if (ret)
405 		count = ret;
406 
407 	return count;
408 }
409 static CLASS_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
410 
411 static int memory_probe_init(void)
412 {
413 	return sysfs_create_file(&memory_sysdev_class.kset.kobj,
414 				&class_attr_probe.attr);
415 }
416 #else
417 static inline int memory_probe_init(void)
418 {
419 	return 0;
420 }
421 #endif
422 
423 #ifdef CONFIG_MEMORY_FAILURE
424 /*
425  * Support for offlining pages of memory
426  */
427 
428 /* Soft offline a page */
429 static ssize_t
430 store_soft_offline_page(struct class *class,
431 			struct class_attribute *attr,
432 			const char *buf, size_t count)
433 {
434 	int ret;
435 	u64 pfn;
436 	if (!capable(CAP_SYS_ADMIN))
437 		return -EPERM;
438 	if (strict_strtoull(buf, 0, &pfn) < 0)
439 		return -EINVAL;
440 	pfn >>= PAGE_SHIFT;
441 	if (!pfn_valid(pfn))
442 		return -ENXIO;
443 	ret = soft_offline_page(pfn_to_page(pfn), 0);
444 	return ret == 0 ? count : ret;
445 }
446 
447 /* Forcibly offline a page, including killing processes. */
448 static ssize_t
449 store_hard_offline_page(struct class *class,
450 			struct class_attribute *attr,
451 			const char *buf, size_t count)
452 {
453 	int ret;
454 	u64 pfn;
455 	if (!capable(CAP_SYS_ADMIN))
456 		return -EPERM;
457 	if (strict_strtoull(buf, 0, &pfn) < 0)
458 		return -EINVAL;
459 	pfn >>= PAGE_SHIFT;
460 	ret = __memory_failure(pfn, 0, 0);
461 	return ret ? ret : count;
462 }
463 
464 static CLASS_ATTR(soft_offline_page, 0644, NULL, store_soft_offline_page);
465 static CLASS_ATTR(hard_offline_page, 0644, NULL, store_hard_offline_page);
466 
467 static __init int memory_fail_init(void)
468 {
469 	int err;
470 
471 	err = sysfs_create_file(&memory_sysdev_class.kset.kobj,
472 				&class_attr_soft_offline_page.attr);
473 	if (!err)
474 		err = sysfs_create_file(&memory_sysdev_class.kset.kobj,
475 				&class_attr_hard_offline_page.attr);
476 	return err;
477 }
478 #else
479 static inline int memory_fail_init(void)
480 {
481 	return 0;
482 }
483 #endif
484 
485 /*
486  * Note that phys_device is optional.  It is here to allow for
487  * differentiation between which *physical* devices each
488  * section belongs to...
489  */
490 int __weak arch_get_memory_phys_device(unsigned long start_pfn)
491 {
492 	return 0;
493 }
494 
495 struct memory_block *find_memory_block_hinted(struct mem_section *section,
496 					      struct memory_block *hint)
497 {
498 	struct kobject *kobj;
499 	struct sys_device *sysdev;
500 	struct memory_block *mem;
501 	char name[sizeof(MEMORY_CLASS_NAME) + 9 + 1];
502 	int block_id = base_memory_block_id(__section_nr(section));
503 
504 	kobj = hint ? &hint->sysdev.kobj : NULL;
505 
506 	/*
507 	 * This only works because we know that section == sysdev->id
508 	 * slightly redundant with sysdev_register()
509 	 */
510 	sprintf(&name[0], "%s%d", MEMORY_CLASS_NAME, block_id);
511 
512 	kobj = kset_find_obj_hinted(&memory_sysdev_class.kset, name, kobj);
513 	if (!kobj)
514 		return NULL;
515 
516 	sysdev = container_of(kobj, struct sys_device, kobj);
517 	mem = container_of(sysdev, struct memory_block, sysdev);
518 
519 	return mem;
520 }
521 
522 /*
523  * For now, we have a linear search to go find the appropriate
524  * memory_block corresponding to a particular phys_index. If
525  * this gets to be a real problem, we can always use a radix
526  * tree or something here.
527  *
528  * This could be made generic for all sysdev classes.
529  */
530 struct memory_block *find_memory_block(struct mem_section *section)
531 {
532 	return find_memory_block_hinted(section, NULL);
533 }
534 
535 static int init_memory_block(struct memory_block **memory,
536 			     struct mem_section *section, unsigned long state)
537 {
538 	struct memory_block *mem;
539 	unsigned long start_pfn;
540 	int scn_nr;
541 	int ret = 0;
542 
543 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
544 	if (!mem)
545 		return -ENOMEM;
546 
547 	scn_nr = __section_nr(section);
548 	mem->start_section_nr =
549 			base_memory_block_id(scn_nr) * sections_per_block;
550 	mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
551 	mem->state = state;
552 	mem->section_count++;
553 	mutex_init(&mem->state_mutex);
554 	start_pfn = section_nr_to_pfn(mem->start_section_nr);
555 	mem->phys_device = arch_get_memory_phys_device(start_pfn);
556 
557 	ret = register_memory(mem);
558 	if (!ret)
559 		ret = mem_create_simple_file(mem, phys_index);
560 	if (!ret)
561 		ret = mem_create_simple_file(mem, end_phys_index);
562 	if (!ret)
563 		ret = mem_create_simple_file(mem, state);
564 	if (!ret)
565 		ret = mem_create_simple_file(mem, phys_device);
566 	if (!ret)
567 		ret = mem_create_simple_file(mem, removable);
568 
569 	*memory = mem;
570 	return ret;
571 }
572 
573 static int add_memory_section(int nid, struct mem_section *section,
574 			unsigned long state, enum mem_add_context context)
575 {
576 	struct memory_block *mem;
577 	int ret = 0;
578 
579 	mutex_lock(&mem_sysfs_mutex);
580 
581 	mem = find_memory_block(section);
582 	if (mem) {
583 		mem->section_count++;
584 		kobject_put(&mem->sysdev.kobj);
585 	} else
586 		ret = init_memory_block(&mem, section, state);
587 
588 	if (!ret) {
589 		if (context == HOTPLUG &&
590 		    mem->section_count == sections_per_block)
591 			ret = register_mem_sect_under_node(mem, nid);
592 	}
593 
594 	mutex_unlock(&mem_sysfs_mutex);
595 	return ret;
596 }
597 
598 int remove_memory_block(unsigned long node_id, struct mem_section *section,
599 		int phys_device)
600 {
601 	struct memory_block *mem;
602 
603 	mutex_lock(&mem_sysfs_mutex);
604 	mem = find_memory_block(section);
605 	unregister_mem_sect_under_nodes(mem, __section_nr(section));
606 
607 	mem->section_count--;
608 	if (mem->section_count == 0) {
609 		mem_remove_simple_file(mem, phys_index);
610 		mem_remove_simple_file(mem, end_phys_index);
611 		mem_remove_simple_file(mem, state);
612 		mem_remove_simple_file(mem, phys_device);
613 		mem_remove_simple_file(mem, removable);
614 		unregister_memory(mem);
615 		kfree(mem);
616 	} else
617 		kobject_put(&mem->sysdev.kobj);
618 
619 	mutex_unlock(&mem_sysfs_mutex);
620 	return 0;
621 }
622 
623 /*
624  * need an interface for the VM to add new memory regions,
625  * but without onlining it.
626  */
627 int register_new_memory(int nid, struct mem_section *section)
628 {
629 	return add_memory_section(nid, section, MEM_OFFLINE, HOTPLUG);
630 }
631 
632 int unregister_memory_section(struct mem_section *section)
633 {
634 	if (!present_section(section))
635 		return -EINVAL;
636 
637 	return remove_memory_block(0, section, 0);
638 }
639 
640 /*
641  * Initialize the sysfs support for memory devices...
642  */
643 int __init memory_dev_init(void)
644 {
645 	unsigned int i;
646 	int ret;
647 	int err;
648 	unsigned long block_sz;
649 
650 	memory_sysdev_class.kset.uevent_ops = &memory_uevent_ops;
651 	ret = sysdev_class_register(&memory_sysdev_class);
652 	if (ret)
653 		goto out;
654 
655 	block_sz = get_memory_block_size();
656 	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
657 
658 	/*
659 	 * Create entries for memory sections that were found
660 	 * during boot and have been initialized
661 	 */
662 	for (i = 0; i < NR_MEM_SECTIONS; i++) {
663 		if (!present_section_nr(i))
664 			continue;
665 		err = add_memory_section(0, __nr_to_section(i), MEM_ONLINE,
666 					 BOOT);
667 		if (!ret)
668 			ret = err;
669 	}
670 
671 	err = memory_probe_init();
672 	if (!ret)
673 		ret = err;
674 	err = memory_fail_init();
675 	if (!ret)
676 		ret = err;
677 	err = block_size_init();
678 	if (!ret)
679 		ret = err;
680 out:
681 	if (ret)
682 		printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
683 	return ret;
684 }
685