1 /* 2 * Memory subsystem support 3 * 4 * Written by Matt Tolentino <matthew.e.tolentino@intel.com> 5 * Dave Hansen <haveblue@us.ibm.com> 6 * 7 * This file provides the necessary infrastructure to represent 8 * a SPARSEMEM-memory-model system's physical memory in /sysfs. 9 * All arch-independent code that assumes MEMORY_HOTPLUG requires 10 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c. 11 */ 12 13 #include <linux/module.h> 14 #include <linux/init.h> 15 #include <linux/topology.h> 16 #include <linux/capability.h> 17 #include <linux/device.h> 18 #include <linux/memory.h> 19 #include <linux/memory_hotplug.h> 20 #include <linux/mm.h> 21 #include <linux/mutex.h> 22 #include <linux/stat.h> 23 #include <linux/slab.h> 24 25 #include <linux/atomic.h> 26 #include <asm/uaccess.h> 27 28 static DEFINE_MUTEX(mem_sysfs_mutex); 29 30 #define MEMORY_CLASS_NAME "memory" 31 32 #define to_memory_block(dev) container_of(dev, struct memory_block, dev) 33 34 static int sections_per_block; 35 36 static inline int base_memory_block_id(int section_nr) 37 { 38 return section_nr / sections_per_block; 39 } 40 41 static int memory_subsys_online(struct device *dev); 42 static int memory_subsys_offline(struct device *dev); 43 44 static struct bus_type memory_subsys = { 45 .name = MEMORY_CLASS_NAME, 46 .dev_name = MEMORY_CLASS_NAME, 47 .online = memory_subsys_online, 48 .offline = memory_subsys_offline, 49 }; 50 51 static BLOCKING_NOTIFIER_HEAD(memory_chain); 52 53 int register_memory_notifier(struct notifier_block *nb) 54 { 55 return blocking_notifier_chain_register(&memory_chain, nb); 56 } 57 EXPORT_SYMBOL(register_memory_notifier); 58 59 void unregister_memory_notifier(struct notifier_block *nb) 60 { 61 blocking_notifier_chain_unregister(&memory_chain, nb); 62 } 63 EXPORT_SYMBOL(unregister_memory_notifier); 64 65 static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain); 66 67 int register_memory_isolate_notifier(struct notifier_block *nb) 68 { 69 return atomic_notifier_chain_register(&memory_isolate_chain, nb); 70 } 71 EXPORT_SYMBOL(register_memory_isolate_notifier); 72 73 void unregister_memory_isolate_notifier(struct notifier_block *nb) 74 { 75 atomic_notifier_chain_unregister(&memory_isolate_chain, nb); 76 } 77 EXPORT_SYMBOL(unregister_memory_isolate_notifier); 78 79 static void memory_block_release(struct device *dev) 80 { 81 struct memory_block *mem = to_memory_block(dev); 82 83 kfree(mem); 84 } 85 86 unsigned long __weak memory_block_size_bytes(void) 87 { 88 return MIN_MEMORY_BLOCK_SIZE; 89 } 90 91 static unsigned long get_memory_block_size(void) 92 { 93 unsigned long block_sz; 94 95 block_sz = memory_block_size_bytes(); 96 97 /* Validate blk_sz is a power of 2 and not less than section size */ 98 if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) { 99 WARN_ON(1); 100 block_sz = MIN_MEMORY_BLOCK_SIZE; 101 } 102 103 return block_sz; 104 } 105 106 /* 107 * use this as the physical section index that this memsection 108 * uses. 109 */ 110 111 static ssize_t show_mem_start_phys_index(struct device *dev, 112 struct device_attribute *attr, char *buf) 113 { 114 struct memory_block *mem = to_memory_block(dev); 115 unsigned long phys_index; 116 117 phys_index = mem->start_section_nr / sections_per_block; 118 return sprintf(buf, "%08lx\n", phys_index); 119 } 120 121 /* 122 * Show whether the section of memory is likely to be hot-removable 123 */ 124 static ssize_t show_mem_removable(struct device *dev, 125 struct device_attribute *attr, char *buf) 126 { 127 unsigned long i, pfn; 128 int ret = 1; 129 struct memory_block *mem = to_memory_block(dev); 130 131 for (i = 0; i < sections_per_block; i++) { 132 if (!present_section_nr(mem->start_section_nr + i)) 133 continue; 134 pfn = section_nr_to_pfn(mem->start_section_nr + i); 135 ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION); 136 } 137 138 return sprintf(buf, "%d\n", ret); 139 } 140 141 /* 142 * online, offline, going offline, etc. 143 */ 144 static ssize_t show_mem_state(struct device *dev, 145 struct device_attribute *attr, char *buf) 146 { 147 struct memory_block *mem = to_memory_block(dev); 148 ssize_t len = 0; 149 150 /* 151 * We can probably put these states in a nice little array 152 * so that they're not open-coded 153 */ 154 switch (mem->state) { 155 case MEM_ONLINE: 156 len = sprintf(buf, "online\n"); 157 break; 158 case MEM_OFFLINE: 159 len = sprintf(buf, "offline\n"); 160 break; 161 case MEM_GOING_OFFLINE: 162 len = sprintf(buf, "going-offline\n"); 163 break; 164 default: 165 len = sprintf(buf, "ERROR-UNKNOWN-%ld\n", 166 mem->state); 167 WARN_ON(1); 168 break; 169 } 170 171 return len; 172 } 173 174 int memory_notify(unsigned long val, void *v) 175 { 176 return blocking_notifier_call_chain(&memory_chain, val, v); 177 } 178 179 int memory_isolate_notify(unsigned long val, void *v) 180 { 181 return atomic_notifier_call_chain(&memory_isolate_chain, val, v); 182 } 183 184 /* 185 * The probe routines leave the pages reserved, just as the bootmem code does. 186 * Make sure they're still that way. 187 */ 188 static bool pages_correctly_reserved(unsigned long start_pfn) 189 { 190 int i, j; 191 struct page *page; 192 unsigned long pfn = start_pfn; 193 194 /* 195 * memmap between sections is not contiguous except with 196 * SPARSEMEM_VMEMMAP. We lookup the page once per section 197 * and assume memmap is contiguous within each section 198 */ 199 for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) { 200 if (WARN_ON_ONCE(!pfn_valid(pfn))) 201 return false; 202 page = pfn_to_page(pfn); 203 204 for (j = 0; j < PAGES_PER_SECTION; j++) { 205 if (PageReserved(page + j)) 206 continue; 207 208 printk(KERN_WARNING "section number %ld page number %d " 209 "not reserved, was it already online?\n", 210 pfn_to_section_nr(pfn), j); 211 212 return false; 213 } 214 } 215 216 return true; 217 } 218 219 /* 220 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is 221 * OK to have direct references to sparsemem variables in here. 222 */ 223 static int 224 memory_block_action(unsigned long phys_index, unsigned long action, int online_type) 225 { 226 unsigned long start_pfn; 227 unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block; 228 struct page *first_page; 229 int ret; 230 231 first_page = pfn_to_page(phys_index << PFN_SECTION_SHIFT); 232 start_pfn = page_to_pfn(first_page); 233 234 switch (action) { 235 case MEM_ONLINE: 236 if (!pages_correctly_reserved(start_pfn)) 237 return -EBUSY; 238 239 ret = online_pages(start_pfn, nr_pages, online_type); 240 break; 241 case MEM_OFFLINE: 242 ret = offline_pages(start_pfn, nr_pages); 243 break; 244 default: 245 WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: " 246 "%ld\n", __func__, phys_index, action, action); 247 ret = -EINVAL; 248 } 249 250 return ret; 251 } 252 253 static int memory_block_change_state(struct memory_block *mem, 254 unsigned long to_state, unsigned long from_state_req) 255 { 256 int ret = 0; 257 258 if (mem->state != from_state_req) 259 return -EINVAL; 260 261 if (to_state == MEM_OFFLINE) 262 mem->state = MEM_GOING_OFFLINE; 263 264 ret = memory_block_action(mem->start_section_nr, to_state, 265 mem->online_type); 266 267 mem->state = ret ? from_state_req : to_state; 268 269 return ret; 270 } 271 272 /* The device lock serializes operations on memory_subsys_[online|offline] */ 273 static int memory_subsys_online(struct device *dev) 274 { 275 struct memory_block *mem = to_memory_block(dev); 276 int ret; 277 278 if (mem->state == MEM_ONLINE) 279 return 0; 280 281 /* 282 * If we are called from store_mem_state(), online_type will be 283 * set >= 0 Otherwise we were called from the device online 284 * attribute and need to set the online_type. 285 */ 286 if (mem->online_type < 0) 287 mem->online_type = MMOP_ONLINE_KEEP; 288 289 ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE); 290 291 /* clear online_type */ 292 mem->online_type = -1; 293 294 return ret; 295 } 296 297 static int memory_subsys_offline(struct device *dev) 298 { 299 struct memory_block *mem = to_memory_block(dev); 300 301 if (mem->state == MEM_OFFLINE) 302 return 0; 303 304 return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE); 305 } 306 307 static ssize_t 308 store_mem_state(struct device *dev, 309 struct device_attribute *attr, const char *buf, size_t count) 310 { 311 struct memory_block *mem = to_memory_block(dev); 312 int ret, online_type; 313 314 ret = lock_device_hotplug_sysfs(); 315 if (ret) 316 return ret; 317 318 if (sysfs_streq(buf, "online_kernel")) 319 online_type = MMOP_ONLINE_KERNEL; 320 else if (sysfs_streq(buf, "online_movable")) 321 online_type = MMOP_ONLINE_MOVABLE; 322 else if (sysfs_streq(buf, "online")) 323 online_type = MMOP_ONLINE_KEEP; 324 else if (sysfs_streq(buf, "offline")) 325 online_type = MMOP_OFFLINE; 326 else { 327 ret = -EINVAL; 328 goto err; 329 } 330 331 switch (online_type) { 332 case MMOP_ONLINE_KERNEL: 333 case MMOP_ONLINE_MOVABLE: 334 case MMOP_ONLINE_KEEP: 335 /* 336 * mem->online_type is not protected so there can be a 337 * race here. However, when racing online, the first 338 * will succeed and the second will just return as the 339 * block will already be online. The online type 340 * could be either one, but that is expected. 341 */ 342 mem->online_type = online_type; 343 ret = device_online(&mem->dev); 344 break; 345 case MMOP_OFFLINE: 346 ret = device_offline(&mem->dev); 347 break; 348 default: 349 ret = -EINVAL; /* should never happen */ 350 } 351 352 err: 353 unlock_device_hotplug(); 354 355 if (ret) 356 return ret; 357 return count; 358 } 359 360 /* 361 * phys_device is a bad name for this. What I really want 362 * is a way to differentiate between memory ranges that 363 * are part of physical devices that constitute 364 * a complete removable unit or fru. 365 * i.e. do these ranges belong to the same physical device, 366 * s.t. if I offline all of these sections I can then 367 * remove the physical device? 368 */ 369 static ssize_t show_phys_device(struct device *dev, 370 struct device_attribute *attr, char *buf) 371 { 372 struct memory_block *mem = to_memory_block(dev); 373 return sprintf(buf, "%d\n", mem->phys_device); 374 } 375 376 #ifdef CONFIG_MEMORY_HOTREMOVE 377 static ssize_t show_valid_zones(struct device *dev, 378 struct device_attribute *attr, char *buf) 379 { 380 struct memory_block *mem = to_memory_block(dev); 381 unsigned long start_pfn, end_pfn; 382 unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block; 383 struct page *first_page; 384 struct zone *zone; 385 386 start_pfn = section_nr_to_pfn(mem->start_section_nr); 387 end_pfn = start_pfn + nr_pages; 388 first_page = pfn_to_page(start_pfn); 389 390 /* The block contains more than one zone can not be offlined. */ 391 if (!test_pages_in_a_zone(start_pfn, end_pfn)) 392 return sprintf(buf, "none\n"); 393 394 zone = page_zone(first_page); 395 396 if (zone_idx(zone) == ZONE_MOVABLE - 1) { 397 /*The mem block is the last memoryblock of this zone.*/ 398 if (end_pfn == zone_end_pfn(zone)) 399 return sprintf(buf, "%s %s\n", 400 zone->name, (zone + 1)->name); 401 } 402 403 if (zone_idx(zone) == ZONE_MOVABLE) { 404 /*The mem block is the first memoryblock of ZONE_MOVABLE.*/ 405 if (start_pfn == zone->zone_start_pfn) 406 return sprintf(buf, "%s %s\n", 407 zone->name, (zone - 1)->name); 408 } 409 410 return sprintf(buf, "%s\n", zone->name); 411 } 412 static DEVICE_ATTR(valid_zones, 0444, show_valid_zones, NULL); 413 #endif 414 415 static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL); 416 static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state); 417 static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL); 418 static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL); 419 420 /* 421 * Block size attribute stuff 422 */ 423 static ssize_t 424 print_block_size(struct device *dev, struct device_attribute *attr, 425 char *buf) 426 { 427 return sprintf(buf, "%lx\n", get_memory_block_size()); 428 } 429 430 static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL); 431 432 /* 433 * Some architectures will have custom drivers to do this, and 434 * will not need to do it from userspace. The fake hot-add code 435 * as well as ppc64 will do all of their discovery in userspace 436 * and will require this interface. 437 */ 438 #ifdef CONFIG_ARCH_MEMORY_PROBE 439 static ssize_t 440 memory_probe_store(struct device *dev, struct device_attribute *attr, 441 const char *buf, size_t count) 442 { 443 u64 phys_addr; 444 int nid; 445 int i, ret; 446 unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block; 447 448 ret = kstrtoull(buf, 0, &phys_addr); 449 if (ret) 450 return ret; 451 452 if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1)) 453 return -EINVAL; 454 455 for (i = 0; i < sections_per_block; i++) { 456 nid = memory_add_physaddr_to_nid(phys_addr); 457 ret = add_memory(nid, phys_addr, 458 PAGES_PER_SECTION << PAGE_SHIFT); 459 if (ret) 460 goto out; 461 462 phys_addr += MIN_MEMORY_BLOCK_SIZE; 463 } 464 465 ret = count; 466 out: 467 return ret; 468 } 469 470 static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store); 471 #endif 472 473 #ifdef CONFIG_MEMORY_FAILURE 474 /* 475 * Support for offlining pages of memory 476 */ 477 478 /* Soft offline a page */ 479 static ssize_t 480 store_soft_offline_page(struct device *dev, 481 struct device_attribute *attr, 482 const char *buf, size_t count) 483 { 484 int ret; 485 u64 pfn; 486 if (!capable(CAP_SYS_ADMIN)) 487 return -EPERM; 488 if (kstrtoull(buf, 0, &pfn) < 0) 489 return -EINVAL; 490 pfn >>= PAGE_SHIFT; 491 if (!pfn_valid(pfn)) 492 return -ENXIO; 493 ret = soft_offline_page(pfn_to_page(pfn), 0); 494 return ret == 0 ? count : ret; 495 } 496 497 /* Forcibly offline a page, including killing processes. */ 498 static ssize_t 499 store_hard_offline_page(struct device *dev, 500 struct device_attribute *attr, 501 const char *buf, size_t count) 502 { 503 int ret; 504 u64 pfn; 505 if (!capable(CAP_SYS_ADMIN)) 506 return -EPERM; 507 if (kstrtoull(buf, 0, &pfn) < 0) 508 return -EINVAL; 509 pfn >>= PAGE_SHIFT; 510 ret = memory_failure(pfn, 0, 0); 511 return ret ? ret : count; 512 } 513 514 static DEVICE_ATTR(soft_offline_page, S_IWUSR, NULL, store_soft_offline_page); 515 static DEVICE_ATTR(hard_offline_page, S_IWUSR, NULL, store_hard_offline_page); 516 #endif 517 518 /* 519 * Note that phys_device is optional. It is here to allow for 520 * differentiation between which *physical* devices each 521 * section belongs to... 522 */ 523 int __weak arch_get_memory_phys_device(unsigned long start_pfn) 524 { 525 return 0; 526 } 527 528 /* 529 * A reference for the returned object is held and the reference for the 530 * hinted object is released. 531 */ 532 struct memory_block *find_memory_block_hinted(struct mem_section *section, 533 struct memory_block *hint) 534 { 535 int block_id = base_memory_block_id(__section_nr(section)); 536 struct device *hintdev = hint ? &hint->dev : NULL; 537 struct device *dev; 538 539 dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev); 540 if (hint) 541 put_device(&hint->dev); 542 if (!dev) 543 return NULL; 544 return to_memory_block(dev); 545 } 546 547 /* 548 * For now, we have a linear search to go find the appropriate 549 * memory_block corresponding to a particular phys_index. If 550 * this gets to be a real problem, we can always use a radix 551 * tree or something here. 552 * 553 * This could be made generic for all device subsystems. 554 */ 555 struct memory_block *find_memory_block(struct mem_section *section) 556 { 557 return find_memory_block_hinted(section, NULL); 558 } 559 560 static struct attribute *memory_memblk_attrs[] = { 561 &dev_attr_phys_index.attr, 562 &dev_attr_state.attr, 563 &dev_attr_phys_device.attr, 564 &dev_attr_removable.attr, 565 #ifdef CONFIG_MEMORY_HOTREMOVE 566 &dev_attr_valid_zones.attr, 567 #endif 568 NULL 569 }; 570 571 static struct attribute_group memory_memblk_attr_group = { 572 .attrs = memory_memblk_attrs, 573 }; 574 575 static const struct attribute_group *memory_memblk_attr_groups[] = { 576 &memory_memblk_attr_group, 577 NULL, 578 }; 579 580 /* 581 * register_memory - Setup a sysfs device for a memory block 582 */ 583 static 584 int register_memory(struct memory_block *memory) 585 { 586 memory->dev.bus = &memory_subsys; 587 memory->dev.id = memory->start_section_nr / sections_per_block; 588 memory->dev.release = memory_block_release; 589 memory->dev.groups = memory_memblk_attr_groups; 590 memory->dev.offline = memory->state == MEM_OFFLINE; 591 592 return device_register(&memory->dev); 593 } 594 595 static int init_memory_block(struct memory_block **memory, 596 struct mem_section *section, unsigned long state) 597 { 598 struct memory_block *mem; 599 unsigned long start_pfn; 600 int scn_nr; 601 int ret = 0; 602 603 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 604 if (!mem) 605 return -ENOMEM; 606 607 scn_nr = __section_nr(section); 608 mem->start_section_nr = 609 base_memory_block_id(scn_nr) * sections_per_block; 610 mem->end_section_nr = mem->start_section_nr + sections_per_block - 1; 611 mem->state = state; 612 mem->section_count++; 613 start_pfn = section_nr_to_pfn(mem->start_section_nr); 614 mem->phys_device = arch_get_memory_phys_device(start_pfn); 615 616 ret = register_memory(mem); 617 618 *memory = mem; 619 return ret; 620 } 621 622 static int add_memory_block(int base_section_nr) 623 { 624 struct memory_block *mem; 625 int i, ret, section_count = 0, section_nr; 626 627 for (i = base_section_nr; 628 (i < base_section_nr + sections_per_block) && i < NR_MEM_SECTIONS; 629 i++) { 630 if (!present_section_nr(i)) 631 continue; 632 if (section_count == 0) 633 section_nr = i; 634 section_count++; 635 } 636 637 if (section_count == 0) 638 return 0; 639 ret = init_memory_block(&mem, __nr_to_section(section_nr), MEM_ONLINE); 640 if (ret) 641 return ret; 642 mem->section_count = section_count; 643 return 0; 644 } 645 646 647 /* 648 * need an interface for the VM to add new memory regions, 649 * but without onlining it. 650 */ 651 int register_new_memory(int nid, struct mem_section *section) 652 { 653 int ret = 0; 654 struct memory_block *mem; 655 656 mutex_lock(&mem_sysfs_mutex); 657 658 mem = find_memory_block(section); 659 if (mem) { 660 mem->section_count++; 661 put_device(&mem->dev); 662 } else { 663 ret = init_memory_block(&mem, section, MEM_OFFLINE); 664 if (ret) 665 goto out; 666 } 667 668 if (mem->section_count == sections_per_block) 669 ret = register_mem_sect_under_node(mem, nid); 670 out: 671 mutex_unlock(&mem_sysfs_mutex); 672 return ret; 673 } 674 675 #ifdef CONFIG_MEMORY_HOTREMOVE 676 static void 677 unregister_memory(struct memory_block *memory) 678 { 679 BUG_ON(memory->dev.bus != &memory_subsys); 680 681 /* drop the ref. we got in remove_memory_block() */ 682 put_device(&memory->dev); 683 device_unregister(&memory->dev); 684 } 685 686 static int remove_memory_block(unsigned long node_id, 687 struct mem_section *section, int phys_device) 688 { 689 struct memory_block *mem; 690 691 mutex_lock(&mem_sysfs_mutex); 692 mem = find_memory_block(section); 693 unregister_mem_sect_under_nodes(mem, __section_nr(section)); 694 695 mem->section_count--; 696 if (mem->section_count == 0) 697 unregister_memory(mem); 698 else 699 put_device(&mem->dev); 700 701 mutex_unlock(&mem_sysfs_mutex); 702 return 0; 703 } 704 705 int unregister_memory_section(struct mem_section *section) 706 { 707 if (!present_section(section)) 708 return -EINVAL; 709 710 return remove_memory_block(0, section, 0); 711 } 712 #endif /* CONFIG_MEMORY_HOTREMOVE */ 713 714 /* return true if the memory block is offlined, otherwise, return false */ 715 bool is_memblock_offlined(struct memory_block *mem) 716 { 717 return mem->state == MEM_OFFLINE; 718 } 719 720 static struct attribute *memory_root_attrs[] = { 721 #ifdef CONFIG_ARCH_MEMORY_PROBE 722 &dev_attr_probe.attr, 723 #endif 724 725 #ifdef CONFIG_MEMORY_FAILURE 726 &dev_attr_soft_offline_page.attr, 727 &dev_attr_hard_offline_page.attr, 728 #endif 729 730 &dev_attr_block_size_bytes.attr, 731 NULL 732 }; 733 734 static struct attribute_group memory_root_attr_group = { 735 .attrs = memory_root_attrs, 736 }; 737 738 static const struct attribute_group *memory_root_attr_groups[] = { 739 &memory_root_attr_group, 740 NULL, 741 }; 742 743 /* 744 * Initialize the sysfs support for memory devices... 745 */ 746 int __init memory_dev_init(void) 747 { 748 unsigned int i; 749 int ret; 750 int err; 751 unsigned long block_sz; 752 753 ret = subsys_system_register(&memory_subsys, memory_root_attr_groups); 754 if (ret) 755 goto out; 756 757 block_sz = get_memory_block_size(); 758 sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE; 759 760 /* 761 * Create entries for memory sections that were found 762 * during boot and have been initialized 763 */ 764 mutex_lock(&mem_sysfs_mutex); 765 for (i = 0; i < NR_MEM_SECTIONS; i += sections_per_block) { 766 err = add_memory_block(i); 767 if (!ret) 768 ret = err; 769 } 770 mutex_unlock(&mem_sysfs_mutex); 771 772 out: 773 if (ret) 774 printk(KERN_ERR "%s() failed: %d\n", __func__, ret); 775 return ret; 776 } 777