xref: /openbmc/linux/drivers/base/memory.c (revision 39b6f3aa)
1 /*
2  * Memory subsystem support
3  *
4  * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
5  *            Dave Hansen <haveblue@us.ibm.com>
6  *
7  * This file provides the necessary infrastructure to represent
8  * a SPARSEMEM-memory-model system's physical memory in /sysfs.
9  * All arch-independent code that assumes MEMORY_HOTPLUG requires
10  * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
11  */
12 
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/topology.h>
16 #include <linux/capability.h>
17 #include <linux/device.h>
18 #include <linux/memory.h>
19 #include <linux/kobject.h>
20 #include <linux/memory_hotplug.h>
21 #include <linux/mm.h>
22 #include <linux/mutex.h>
23 #include <linux/stat.h>
24 #include <linux/slab.h>
25 
26 #include <linux/atomic.h>
27 #include <asm/uaccess.h>
28 
29 static DEFINE_MUTEX(mem_sysfs_mutex);
30 
31 #define MEMORY_CLASS_NAME	"memory"
32 
33 static int sections_per_block;
34 
35 static inline int base_memory_block_id(int section_nr)
36 {
37 	return section_nr / sections_per_block;
38 }
39 
40 static struct bus_type memory_subsys = {
41 	.name = MEMORY_CLASS_NAME,
42 	.dev_name = MEMORY_CLASS_NAME,
43 };
44 
45 static BLOCKING_NOTIFIER_HEAD(memory_chain);
46 
47 int register_memory_notifier(struct notifier_block *nb)
48 {
49         return blocking_notifier_chain_register(&memory_chain, nb);
50 }
51 EXPORT_SYMBOL(register_memory_notifier);
52 
53 void unregister_memory_notifier(struct notifier_block *nb)
54 {
55         blocking_notifier_chain_unregister(&memory_chain, nb);
56 }
57 EXPORT_SYMBOL(unregister_memory_notifier);
58 
59 static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);
60 
61 int register_memory_isolate_notifier(struct notifier_block *nb)
62 {
63 	return atomic_notifier_chain_register(&memory_isolate_chain, nb);
64 }
65 EXPORT_SYMBOL(register_memory_isolate_notifier);
66 
67 void unregister_memory_isolate_notifier(struct notifier_block *nb)
68 {
69 	atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
70 }
71 EXPORT_SYMBOL(unregister_memory_isolate_notifier);
72 
73 static void memory_block_release(struct device *dev)
74 {
75 	struct memory_block *mem = container_of(dev, struct memory_block, dev);
76 
77 	kfree(mem);
78 }
79 
80 /*
81  * register_memory - Setup a sysfs device for a memory block
82  */
83 static
84 int register_memory(struct memory_block *memory)
85 {
86 	int error;
87 
88 	memory->dev.bus = &memory_subsys;
89 	memory->dev.id = memory->start_section_nr / sections_per_block;
90 	memory->dev.release = memory_block_release;
91 
92 	error = device_register(&memory->dev);
93 	return error;
94 }
95 
96 unsigned long __weak memory_block_size_bytes(void)
97 {
98 	return MIN_MEMORY_BLOCK_SIZE;
99 }
100 
101 static unsigned long get_memory_block_size(void)
102 {
103 	unsigned long block_sz;
104 
105 	block_sz = memory_block_size_bytes();
106 
107 	/* Validate blk_sz is a power of 2 and not less than section size */
108 	if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
109 		WARN_ON(1);
110 		block_sz = MIN_MEMORY_BLOCK_SIZE;
111 	}
112 
113 	return block_sz;
114 }
115 
116 /*
117  * use this as the physical section index that this memsection
118  * uses.
119  */
120 
121 static ssize_t show_mem_start_phys_index(struct device *dev,
122 			struct device_attribute *attr, char *buf)
123 {
124 	struct memory_block *mem =
125 		container_of(dev, struct memory_block, dev);
126 	unsigned long phys_index;
127 
128 	phys_index = mem->start_section_nr / sections_per_block;
129 	return sprintf(buf, "%08lx\n", phys_index);
130 }
131 
132 static ssize_t show_mem_end_phys_index(struct device *dev,
133 			struct device_attribute *attr, char *buf)
134 {
135 	struct memory_block *mem =
136 		container_of(dev, struct memory_block, dev);
137 	unsigned long phys_index;
138 
139 	phys_index = mem->end_section_nr / sections_per_block;
140 	return sprintf(buf, "%08lx\n", phys_index);
141 }
142 
143 /*
144  * Show whether the section of memory is likely to be hot-removable
145  */
146 static ssize_t show_mem_removable(struct device *dev,
147 			struct device_attribute *attr, char *buf)
148 {
149 	unsigned long i, pfn;
150 	int ret = 1;
151 	struct memory_block *mem =
152 		container_of(dev, struct memory_block, dev);
153 
154 	for (i = 0; i < sections_per_block; i++) {
155 		pfn = section_nr_to_pfn(mem->start_section_nr + i);
156 		ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
157 	}
158 
159 	return sprintf(buf, "%d\n", ret);
160 }
161 
162 /*
163  * online, offline, going offline, etc.
164  */
165 static ssize_t show_mem_state(struct device *dev,
166 			struct device_attribute *attr, char *buf)
167 {
168 	struct memory_block *mem =
169 		container_of(dev, struct memory_block, dev);
170 	ssize_t len = 0;
171 
172 	/*
173 	 * We can probably put these states in a nice little array
174 	 * so that they're not open-coded
175 	 */
176 	switch (mem->state) {
177 		case MEM_ONLINE:
178 			len = sprintf(buf, "online\n");
179 			break;
180 		case MEM_OFFLINE:
181 			len = sprintf(buf, "offline\n");
182 			break;
183 		case MEM_GOING_OFFLINE:
184 			len = sprintf(buf, "going-offline\n");
185 			break;
186 		default:
187 			len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
188 					mem->state);
189 			WARN_ON(1);
190 			break;
191 	}
192 
193 	return len;
194 }
195 
196 int memory_notify(unsigned long val, void *v)
197 {
198 	return blocking_notifier_call_chain(&memory_chain, val, v);
199 }
200 
201 int memory_isolate_notify(unsigned long val, void *v)
202 {
203 	return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
204 }
205 
206 /*
207  * The probe routines leave the pages reserved, just as the bootmem code does.
208  * Make sure they're still that way.
209  */
210 static bool pages_correctly_reserved(unsigned long start_pfn)
211 {
212 	int i, j;
213 	struct page *page;
214 	unsigned long pfn = start_pfn;
215 
216 	/*
217 	 * memmap between sections is not contiguous except with
218 	 * SPARSEMEM_VMEMMAP. We lookup the page once per section
219 	 * and assume memmap is contiguous within each section
220 	 */
221 	for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) {
222 		if (WARN_ON_ONCE(!pfn_valid(pfn)))
223 			return false;
224 		page = pfn_to_page(pfn);
225 
226 		for (j = 0; j < PAGES_PER_SECTION; j++) {
227 			if (PageReserved(page + j))
228 				continue;
229 
230 			printk(KERN_WARNING "section number %ld page number %d "
231 				"not reserved, was it already online?\n",
232 				pfn_to_section_nr(pfn), j);
233 
234 			return false;
235 		}
236 	}
237 
238 	return true;
239 }
240 
241 /*
242  * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
243  * OK to have direct references to sparsemem variables in here.
244  */
245 static int
246 memory_block_action(unsigned long phys_index, unsigned long action, int online_type)
247 {
248 	unsigned long start_pfn;
249 	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
250 	struct page *first_page;
251 	int ret;
252 
253 	first_page = pfn_to_page(phys_index << PFN_SECTION_SHIFT);
254 	start_pfn = page_to_pfn(first_page);
255 
256 	switch (action) {
257 		case MEM_ONLINE:
258 			if (!pages_correctly_reserved(start_pfn))
259 				return -EBUSY;
260 
261 			ret = online_pages(start_pfn, nr_pages, online_type);
262 			break;
263 		case MEM_OFFLINE:
264 			ret = offline_pages(start_pfn, nr_pages);
265 			break;
266 		default:
267 			WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
268 			     "%ld\n", __func__, phys_index, action, action);
269 			ret = -EINVAL;
270 	}
271 
272 	return ret;
273 }
274 
275 static int __memory_block_change_state(struct memory_block *mem,
276 		unsigned long to_state, unsigned long from_state_req,
277 		int online_type)
278 {
279 	int ret = 0;
280 
281 	if (mem->state != from_state_req) {
282 		ret = -EINVAL;
283 		goto out;
284 	}
285 
286 	if (to_state == MEM_OFFLINE)
287 		mem->state = MEM_GOING_OFFLINE;
288 
289 	ret = memory_block_action(mem->start_section_nr, to_state, online_type);
290 
291 	if (ret) {
292 		mem->state = from_state_req;
293 		goto out;
294 	}
295 
296 	mem->state = to_state;
297 	switch (mem->state) {
298 	case MEM_OFFLINE:
299 		kobject_uevent(&mem->dev.kobj, KOBJ_OFFLINE);
300 		break;
301 	case MEM_ONLINE:
302 		kobject_uevent(&mem->dev.kobj, KOBJ_ONLINE);
303 		break;
304 	default:
305 		break;
306 	}
307 out:
308 	return ret;
309 }
310 
311 static int memory_block_change_state(struct memory_block *mem,
312 		unsigned long to_state, unsigned long from_state_req,
313 		int online_type)
314 {
315 	int ret;
316 
317 	mutex_lock(&mem->state_mutex);
318 	ret = __memory_block_change_state(mem, to_state, from_state_req,
319 					  online_type);
320 	mutex_unlock(&mem->state_mutex);
321 
322 	return ret;
323 }
324 static ssize_t
325 store_mem_state(struct device *dev,
326 		struct device_attribute *attr, const char *buf, size_t count)
327 {
328 	struct memory_block *mem;
329 	int ret = -EINVAL;
330 
331 	mem = container_of(dev, struct memory_block, dev);
332 
333 	if (!strncmp(buf, "online_kernel", min_t(int, count, 13)))
334 		ret = memory_block_change_state(mem, MEM_ONLINE,
335 						MEM_OFFLINE, ONLINE_KERNEL);
336 	else if (!strncmp(buf, "online_movable", min_t(int, count, 14)))
337 		ret = memory_block_change_state(mem, MEM_ONLINE,
338 						MEM_OFFLINE, ONLINE_MOVABLE);
339 	else if (!strncmp(buf, "online", min_t(int, count, 6)))
340 		ret = memory_block_change_state(mem, MEM_ONLINE,
341 						MEM_OFFLINE, ONLINE_KEEP);
342 	else if(!strncmp(buf, "offline", min_t(int, count, 7)))
343 		ret = memory_block_change_state(mem, MEM_OFFLINE,
344 						MEM_ONLINE, -1);
345 
346 	if (ret)
347 		return ret;
348 	return count;
349 }
350 
351 /*
352  * phys_device is a bad name for this.  What I really want
353  * is a way to differentiate between memory ranges that
354  * are part of physical devices that constitute
355  * a complete removable unit or fru.
356  * i.e. do these ranges belong to the same physical device,
357  * s.t. if I offline all of these sections I can then
358  * remove the physical device?
359  */
360 static ssize_t show_phys_device(struct device *dev,
361 				struct device_attribute *attr, char *buf)
362 {
363 	struct memory_block *mem =
364 		container_of(dev, struct memory_block, dev);
365 	return sprintf(buf, "%d\n", mem->phys_device);
366 }
367 
368 static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
369 static DEVICE_ATTR(end_phys_index, 0444, show_mem_end_phys_index, NULL);
370 static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state);
371 static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL);
372 static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL);
373 
374 #define mem_create_simple_file(mem, attr_name)	\
375 	device_create_file(&mem->dev, &dev_attr_##attr_name)
376 #define mem_remove_simple_file(mem, attr_name)	\
377 	device_remove_file(&mem->dev, &dev_attr_##attr_name)
378 
379 /*
380  * Block size attribute stuff
381  */
382 static ssize_t
383 print_block_size(struct device *dev, struct device_attribute *attr,
384 		 char *buf)
385 {
386 	return sprintf(buf, "%lx\n", get_memory_block_size());
387 }
388 
389 static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL);
390 
391 static int block_size_init(void)
392 {
393 	return device_create_file(memory_subsys.dev_root,
394 				  &dev_attr_block_size_bytes);
395 }
396 
397 /*
398  * Some architectures will have custom drivers to do this, and
399  * will not need to do it from userspace.  The fake hot-add code
400  * as well as ppc64 will do all of their discovery in userspace
401  * and will require this interface.
402  */
403 #ifdef CONFIG_ARCH_MEMORY_PROBE
404 static ssize_t
405 memory_probe_store(struct device *dev, struct device_attribute *attr,
406 		   const char *buf, size_t count)
407 {
408 	u64 phys_addr;
409 	int nid;
410 	int i, ret;
411 	unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
412 
413 	phys_addr = simple_strtoull(buf, NULL, 0);
414 
415 	if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
416 		return -EINVAL;
417 
418 	for (i = 0; i < sections_per_block; i++) {
419 		nid = memory_add_physaddr_to_nid(phys_addr);
420 		ret = add_memory(nid, phys_addr,
421 				 PAGES_PER_SECTION << PAGE_SHIFT);
422 		if (ret)
423 			goto out;
424 
425 		phys_addr += MIN_MEMORY_BLOCK_SIZE;
426 	}
427 
428 	ret = count;
429 out:
430 	return ret;
431 }
432 static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
433 
434 static int memory_probe_init(void)
435 {
436 	return device_create_file(memory_subsys.dev_root, &dev_attr_probe);
437 }
438 #else
439 static inline int memory_probe_init(void)
440 {
441 	return 0;
442 }
443 #endif
444 
445 #ifdef CONFIG_MEMORY_FAILURE
446 /*
447  * Support for offlining pages of memory
448  */
449 
450 /* Soft offline a page */
451 static ssize_t
452 store_soft_offline_page(struct device *dev,
453 			struct device_attribute *attr,
454 			const char *buf, size_t count)
455 {
456 	int ret;
457 	u64 pfn;
458 	if (!capable(CAP_SYS_ADMIN))
459 		return -EPERM;
460 	if (strict_strtoull(buf, 0, &pfn) < 0)
461 		return -EINVAL;
462 	pfn >>= PAGE_SHIFT;
463 	if (!pfn_valid(pfn))
464 		return -ENXIO;
465 	ret = soft_offline_page(pfn_to_page(pfn), 0);
466 	return ret == 0 ? count : ret;
467 }
468 
469 /* Forcibly offline a page, including killing processes. */
470 static ssize_t
471 store_hard_offline_page(struct device *dev,
472 			struct device_attribute *attr,
473 			const char *buf, size_t count)
474 {
475 	int ret;
476 	u64 pfn;
477 	if (!capable(CAP_SYS_ADMIN))
478 		return -EPERM;
479 	if (strict_strtoull(buf, 0, &pfn) < 0)
480 		return -EINVAL;
481 	pfn >>= PAGE_SHIFT;
482 	ret = memory_failure(pfn, 0, 0);
483 	return ret ? ret : count;
484 }
485 
486 static DEVICE_ATTR(soft_offline_page, S_IWUSR, NULL, store_soft_offline_page);
487 static DEVICE_ATTR(hard_offline_page, S_IWUSR, NULL, store_hard_offline_page);
488 
489 static __init int memory_fail_init(void)
490 {
491 	int err;
492 
493 	err = device_create_file(memory_subsys.dev_root,
494 				&dev_attr_soft_offline_page);
495 	if (!err)
496 		err = device_create_file(memory_subsys.dev_root,
497 				&dev_attr_hard_offline_page);
498 	return err;
499 }
500 #else
501 static inline int memory_fail_init(void)
502 {
503 	return 0;
504 }
505 #endif
506 
507 /*
508  * Note that phys_device is optional.  It is here to allow for
509  * differentiation between which *physical* devices each
510  * section belongs to...
511  */
512 int __weak arch_get_memory_phys_device(unsigned long start_pfn)
513 {
514 	return 0;
515 }
516 
517 /*
518  * A reference for the returned object is held and the reference for the
519  * hinted object is released.
520  */
521 struct memory_block *find_memory_block_hinted(struct mem_section *section,
522 					      struct memory_block *hint)
523 {
524 	int block_id = base_memory_block_id(__section_nr(section));
525 	struct device *hintdev = hint ? &hint->dev : NULL;
526 	struct device *dev;
527 
528 	dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev);
529 	if (hint)
530 		put_device(&hint->dev);
531 	if (!dev)
532 		return NULL;
533 	return container_of(dev, struct memory_block, dev);
534 }
535 
536 /*
537  * For now, we have a linear search to go find the appropriate
538  * memory_block corresponding to a particular phys_index. If
539  * this gets to be a real problem, we can always use a radix
540  * tree or something here.
541  *
542  * This could be made generic for all device subsystems.
543  */
544 struct memory_block *find_memory_block(struct mem_section *section)
545 {
546 	return find_memory_block_hinted(section, NULL);
547 }
548 
549 static int init_memory_block(struct memory_block **memory,
550 			     struct mem_section *section, unsigned long state)
551 {
552 	struct memory_block *mem;
553 	unsigned long start_pfn;
554 	int scn_nr;
555 	int ret = 0;
556 
557 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
558 	if (!mem)
559 		return -ENOMEM;
560 
561 	scn_nr = __section_nr(section);
562 	mem->start_section_nr =
563 			base_memory_block_id(scn_nr) * sections_per_block;
564 	mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
565 	mem->state = state;
566 	mem->section_count++;
567 	mutex_init(&mem->state_mutex);
568 	start_pfn = section_nr_to_pfn(mem->start_section_nr);
569 	mem->phys_device = arch_get_memory_phys_device(start_pfn);
570 
571 	ret = register_memory(mem);
572 	if (!ret)
573 		ret = mem_create_simple_file(mem, phys_index);
574 	if (!ret)
575 		ret = mem_create_simple_file(mem, end_phys_index);
576 	if (!ret)
577 		ret = mem_create_simple_file(mem, state);
578 	if (!ret)
579 		ret = mem_create_simple_file(mem, phys_device);
580 	if (!ret)
581 		ret = mem_create_simple_file(mem, removable);
582 
583 	*memory = mem;
584 	return ret;
585 }
586 
587 static int add_memory_section(int nid, struct mem_section *section,
588 			struct memory_block **mem_p,
589 			unsigned long state, enum mem_add_context context)
590 {
591 	struct memory_block *mem = NULL;
592 	int scn_nr = __section_nr(section);
593 	int ret = 0;
594 
595 	mutex_lock(&mem_sysfs_mutex);
596 
597 	if (context == BOOT) {
598 		/* same memory block ? */
599 		if (mem_p && *mem_p)
600 			if (scn_nr >= (*mem_p)->start_section_nr &&
601 			    scn_nr <= (*mem_p)->end_section_nr) {
602 				mem = *mem_p;
603 				kobject_get(&mem->dev.kobj);
604 			}
605 	} else
606 		mem = find_memory_block(section);
607 
608 	if (mem) {
609 		mem->section_count++;
610 		kobject_put(&mem->dev.kobj);
611 	} else {
612 		ret = init_memory_block(&mem, section, state);
613 		/* store memory_block pointer for next loop */
614 		if (!ret && context == BOOT)
615 			if (mem_p)
616 				*mem_p = mem;
617 	}
618 
619 	if (!ret) {
620 		if (context == HOTPLUG &&
621 		    mem->section_count == sections_per_block)
622 			ret = register_mem_sect_under_node(mem, nid);
623 	}
624 
625 	mutex_unlock(&mem_sysfs_mutex);
626 	return ret;
627 }
628 
629 /*
630  * need an interface for the VM to add new memory regions,
631  * but without onlining it.
632  */
633 int register_new_memory(int nid, struct mem_section *section)
634 {
635 	return add_memory_section(nid, section, NULL, MEM_OFFLINE, HOTPLUG);
636 }
637 
638 #ifdef CONFIG_MEMORY_HOTREMOVE
639 static void
640 unregister_memory(struct memory_block *memory)
641 {
642 	BUG_ON(memory->dev.bus != &memory_subsys);
643 
644 	/* drop the ref. we got in remove_memory_block() */
645 	kobject_put(&memory->dev.kobj);
646 	device_unregister(&memory->dev);
647 }
648 
649 static int remove_memory_block(unsigned long node_id,
650 			       struct mem_section *section, int phys_device)
651 {
652 	struct memory_block *mem;
653 
654 	mutex_lock(&mem_sysfs_mutex);
655 	mem = find_memory_block(section);
656 	unregister_mem_sect_under_nodes(mem, __section_nr(section));
657 
658 	mem->section_count--;
659 	if (mem->section_count == 0) {
660 		mem_remove_simple_file(mem, phys_index);
661 		mem_remove_simple_file(mem, end_phys_index);
662 		mem_remove_simple_file(mem, state);
663 		mem_remove_simple_file(mem, phys_device);
664 		mem_remove_simple_file(mem, removable);
665 		unregister_memory(mem);
666 	} else
667 		kobject_put(&mem->dev.kobj);
668 
669 	mutex_unlock(&mem_sysfs_mutex);
670 	return 0;
671 }
672 
673 int unregister_memory_section(struct mem_section *section)
674 {
675 	if (!present_section(section))
676 		return -EINVAL;
677 
678 	return remove_memory_block(0, section, 0);
679 }
680 #endif /* CONFIG_MEMORY_HOTREMOVE */
681 
682 /*
683  * offline one memory block. If the memory block has been offlined, do nothing.
684  */
685 int offline_memory_block(struct memory_block *mem)
686 {
687 	int ret = 0;
688 
689 	mutex_lock(&mem->state_mutex);
690 	if (mem->state != MEM_OFFLINE)
691 		ret = __memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE, -1);
692 	mutex_unlock(&mem->state_mutex);
693 
694 	return ret;
695 }
696 
697 /* return true if the memory block is offlined, otherwise, return false */
698 bool is_memblock_offlined(struct memory_block *mem)
699 {
700 	return mem->state == MEM_OFFLINE;
701 }
702 
703 /*
704  * Initialize the sysfs support for memory devices...
705  */
706 int __init memory_dev_init(void)
707 {
708 	unsigned int i;
709 	int ret;
710 	int err;
711 	unsigned long block_sz;
712 	struct memory_block *mem = NULL;
713 
714 	ret = subsys_system_register(&memory_subsys, NULL);
715 	if (ret)
716 		goto out;
717 
718 	block_sz = get_memory_block_size();
719 	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
720 
721 	/*
722 	 * Create entries for memory sections that were found
723 	 * during boot and have been initialized
724 	 */
725 	for (i = 0; i < NR_MEM_SECTIONS; i++) {
726 		if (!present_section_nr(i))
727 			continue;
728 		/* don't need to reuse memory_block if only one per block */
729 		err = add_memory_section(0, __nr_to_section(i),
730 				 (sections_per_block == 1) ? NULL : &mem,
731 					 MEM_ONLINE,
732 					 BOOT);
733 		if (!ret)
734 			ret = err;
735 	}
736 
737 	err = memory_probe_init();
738 	if (!ret)
739 		ret = err;
740 	err = memory_fail_init();
741 	if (!ret)
742 		ret = err;
743 	err = block_size_init();
744 	if (!ret)
745 		ret = err;
746 out:
747 	if (ret)
748 		printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
749 	return ret;
750 }
751