xref: /openbmc/linux/drivers/base/memory.c (revision 0edbfea5)
1 /*
2  * Memory subsystem support
3  *
4  * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
5  *            Dave Hansen <haveblue@us.ibm.com>
6  *
7  * This file provides the necessary infrastructure to represent
8  * a SPARSEMEM-memory-model system's physical memory in /sysfs.
9  * All arch-independent code that assumes MEMORY_HOTPLUG requires
10  * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
11  */
12 
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/topology.h>
16 #include <linux/capability.h>
17 #include <linux/device.h>
18 #include <linux/memory.h>
19 #include <linux/memory_hotplug.h>
20 #include <linux/mm.h>
21 #include <linux/mutex.h>
22 #include <linux/stat.h>
23 #include <linux/slab.h>
24 
25 #include <linux/atomic.h>
26 #include <asm/uaccess.h>
27 
28 static DEFINE_MUTEX(mem_sysfs_mutex);
29 
30 #define MEMORY_CLASS_NAME	"memory"
31 
32 #define to_memory_block(dev) container_of(dev, struct memory_block, dev)
33 
34 static int sections_per_block;
35 
36 static inline int base_memory_block_id(int section_nr)
37 {
38 	return section_nr / sections_per_block;
39 }
40 
41 static int memory_subsys_online(struct device *dev);
42 static int memory_subsys_offline(struct device *dev);
43 
44 static struct bus_type memory_subsys = {
45 	.name = MEMORY_CLASS_NAME,
46 	.dev_name = MEMORY_CLASS_NAME,
47 	.online = memory_subsys_online,
48 	.offline = memory_subsys_offline,
49 };
50 
51 static BLOCKING_NOTIFIER_HEAD(memory_chain);
52 
53 int register_memory_notifier(struct notifier_block *nb)
54 {
55 	return blocking_notifier_chain_register(&memory_chain, nb);
56 }
57 EXPORT_SYMBOL(register_memory_notifier);
58 
59 void unregister_memory_notifier(struct notifier_block *nb)
60 {
61 	blocking_notifier_chain_unregister(&memory_chain, nb);
62 }
63 EXPORT_SYMBOL(unregister_memory_notifier);
64 
65 static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);
66 
67 int register_memory_isolate_notifier(struct notifier_block *nb)
68 {
69 	return atomic_notifier_chain_register(&memory_isolate_chain, nb);
70 }
71 EXPORT_SYMBOL(register_memory_isolate_notifier);
72 
73 void unregister_memory_isolate_notifier(struct notifier_block *nb)
74 {
75 	atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
76 }
77 EXPORT_SYMBOL(unregister_memory_isolate_notifier);
78 
79 static void memory_block_release(struct device *dev)
80 {
81 	struct memory_block *mem = to_memory_block(dev);
82 
83 	kfree(mem);
84 }
85 
86 unsigned long __weak memory_block_size_bytes(void)
87 {
88 	return MIN_MEMORY_BLOCK_SIZE;
89 }
90 
91 static unsigned long get_memory_block_size(void)
92 {
93 	unsigned long block_sz;
94 
95 	block_sz = memory_block_size_bytes();
96 
97 	/* Validate blk_sz is a power of 2 and not less than section size */
98 	if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
99 		WARN_ON(1);
100 		block_sz = MIN_MEMORY_BLOCK_SIZE;
101 	}
102 
103 	return block_sz;
104 }
105 
106 /*
107  * use this as the physical section index that this memsection
108  * uses.
109  */
110 
111 static ssize_t show_mem_start_phys_index(struct device *dev,
112 			struct device_attribute *attr, char *buf)
113 {
114 	struct memory_block *mem = to_memory_block(dev);
115 	unsigned long phys_index;
116 
117 	phys_index = mem->start_section_nr / sections_per_block;
118 	return sprintf(buf, "%08lx\n", phys_index);
119 }
120 
121 /*
122  * Show whether the section of memory is likely to be hot-removable
123  */
124 static ssize_t show_mem_removable(struct device *dev,
125 			struct device_attribute *attr, char *buf)
126 {
127 	unsigned long i, pfn;
128 	int ret = 1;
129 	struct memory_block *mem = to_memory_block(dev);
130 
131 	for (i = 0; i < sections_per_block; i++) {
132 		if (!present_section_nr(mem->start_section_nr + i))
133 			continue;
134 		pfn = section_nr_to_pfn(mem->start_section_nr + i);
135 		ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
136 	}
137 
138 	return sprintf(buf, "%d\n", ret);
139 }
140 
141 /*
142  * online, offline, going offline, etc.
143  */
144 static ssize_t show_mem_state(struct device *dev,
145 			struct device_attribute *attr, char *buf)
146 {
147 	struct memory_block *mem = to_memory_block(dev);
148 	ssize_t len = 0;
149 
150 	/*
151 	 * We can probably put these states in a nice little array
152 	 * so that they're not open-coded
153 	 */
154 	switch (mem->state) {
155 	case MEM_ONLINE:
156 		len = sprintf(buf, "online\n");
157 		break;
158 	case MEM_OFFLINE:
159 		len = sprintf(buf, "offline\n");
160 		break;
161 	case MEM_GOING_OFFLINE:
162 		len = sprintf(buf, "going-offline\n");
163 		break;
164 	default:
165 		len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
166 				mem->state);
167 		WARN_ON(1);
168 		break;
169 	}
170 
171 	return len;
172 }
173 
174 int memory_notify(unsigned long val, void *v)
175 {
176 	return blocking_notifier_call_chain(&memory_chain, val, v);
177 }
178 
179 int memory_isolate_notify(unsigned long val, void *v)
180 {
181 	return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
182 }
183 
184 /*
185  * The probe routines leave the pages reserved, just as the bootmem code does.
186  * Make sure they're still that way.
187  */
188 static bool pages_correctly_reserved(unsigned long start_pfn)
189 {
190 	int i, j;
191 	struct page *page;
192 	unsigned long pfn = start_pfn;
193 
194 	/*
195 	 * memmap between sections is not contiguous except with
196 	 * SPARSEMEM_VMEMMAP. We lookup the page once per section
197 	 * and assume memmap is contiguous within each section
198 	 */
199 	for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) {
200 		if (WARN_ON_ONCE(!pfn_valid(pfn)))
201 			return false;
202 		page = pfn_to_page(pfn);
203 
204 		for (j = 0; j < PAGES_PER_SECTION; j++) {
205 			if (PageReserved(page + j))
206 				continue;
207 
208 			printk(KERN_WARNING "section number %ld page number %d "
209 				"not reserved, was it already online?\n",
210 				pfn_to_section_nr(pfn), j);
211 
212 			return false;
213 		}
214 	}
215 
216 	return true;
217 }
218 
219 /*
220  * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
221  * OK to have direct references to sparsemem variables in here.
222  * Must already be protected by mem_hotplug_begin().
223  */
224 static int
225 memory_block_action(unsigned long phys_index, unsigned long action, int online_type)
226 {
227 	unsigned long start_pfn;
228 	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
229 	struct page *first_page;
230 	int ret;
231 
232 	start_pfn = section_nr_to_pfn(phys_index);
233 	first_page = pfn_to_page(start_pfn);
234 
235 	switch (action) {
236 	case MEM_ONLINE:
237 		if (!pages_correctly_reserved(start_pfn))
238 			return -EBUSY;
239 
240 		ret = online_pages(start_pfn, nr_pages, online_type);
241 		break;
242 	case MEM_OFFLINE:
243 		ret = offline_pages(start_pfn, nr_pages);
244 		break;
245 	default:
246 		WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
247 		     "%ld\n", __func__, phys_index, action, action);
248 		ret = -EINVAL;
249 	}
250 
251 	return ret;
252 }
253 
254 int memory_block_change_state(struct memory_block *mem,
255 		unsigned long to_state, unsigned long from_state_req)
256 {
257 	int ret = 0;
258 
259 	if (mem->state != from_state_req)
260 		return -EINVAL;
261 
262 	if (to_state == MEM_OFFLINE)
263 		mem->state = MEM_GOING_OFFLINE;
264 
265 	ret = memory_block_action(mem->start_section_nr, to_state,
266 				mem->online_type);
267 
268 	mem->state = ret ? from_state_req : to_state;
269 
270 	return ret;
271 }
272 
273 /* The device lock serializes operations on memory_subsys_[online|offline] */
274 static int memory_subsys_online(struct device *dev)
275 {
276 	struct memory_block *mem = to_memory_block(dev);
277 	int ret;
278 
279 	if (mem->state == MEM_ONLINE)
280 		return 0;
281 
282 	/*
283 	 * If we are called from store_mem_state(), online_type will be
284 	 * set >= 0 Otherwise we were called from the device online
285 	 * attribute and need to set the online_type.
286 	 */
287 	if (mem->online_type < 0)
288 		mem->online_type = MMOP_ONLINE_KEEP;
289 
290 	/* Already under protection of mem_hotplug_begin() */
291 	ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
292 
293 	/* clear online_type */
294 	mem->online_type = -1;
295 
296 	return ret;
297 }
298 
299 static int memory_subsys_offline(struct device *dev)
300 {
301 	struct memory_block *mem = to_memory_block(dev);
302 
303 	if (mem->state == MEM_OFFLINE)
304 		return 0;
305 
306 	/* Can't offline block with non-present sections */
307 	if (mem->section_count != sections_per_block)
308 		return -EINVAL;
309 
310 	return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
311 }
312 
313 static ssize_t
314 store_mem_state(struct device *dev,
315 		struct device_attribute *attr, const char *buf, size_t count)
316 {
317 	struct memory_block *mem = to_memory_block(dev);
318 	int ret, online_type;
319 
320 	ret = lock_device_hotplug_sysfs();
321 	if (ret)
322 		return ret;
323 
324 	if (sysfs_streq(buf, "online_kernel"))
325 		online_type = MMOP_ONLINE_KERNEL;
326 	else if (sysfs_streq(buf, "online_movable"))
327 		online_type = MMOP_ONLINE_MOVABLE;
328 	else if (sysfs_streq(buf, "online"))
329 		online_type = MMOP_ONLINE_KEEP;
330 	else if (sysfs_streq(buf, "offline"))
331 		online_type = MMOP_OFFLINE;
332 	else {
333 		ret = -EINVAL;
334 		goto err;
335 	}
336 
337 	/*
338 	 * Memory hotplug needs to hold mem_hotplug_begin() for probe to find
339 	 * the correct memory block to online before doing device_online(dev),
340 	 * which will take dev->mutex.  Take the lock early to prevent an
341 	 * inversion, memory_subsys_online() callbacks will be implemented by
342 	 * assuming it's already protected.
343 	 */
344 	mem_hotplug_begin();
345 
346 	switch (online_type) {
347 	case MMOP_ONLINE_KERNEL:
348 	case MMOP_ONLINE_MOVABLE:
349 	case MMOP_ONLINE_KEEP:
350 		mem->online_type = online_type;
351 		ret = device_online(&mem->dev);
352 		break;
353 	case MMOP_OFFLINE:
354 		ret = device_offline(&mem->dev);
355 		break;
356 	default:
357 		ret = -EINVAL; /* should never happen */
358 	}
359 
360 	mem_hotplug_done();
361 err:
362 	unlock_device_hotplug();
363 
364 	if (ret)
365 		return ret;
366 	return count;
367 }
368 
369 /*
370  * phys_device is a bad name for this.  What I really want
371  * is a way to differentiate between memory ranges that
372  * are part of physical devices that constitute
373  * a complete removable unit or fru.
374  * i.e. do these ranges belong to the same physical device,
375  * s.t. if I offline all of these sections I can then
376  * remove the physical device?
377  */
378 static ssize_t show_phys_device(struct device *dev,
379 				struct device_attribute *attr, char *buf)
380 {
381 	struct memory_block *mem = to_memory_block(dev);
382 	return sprintf(buf, "%d\n", mem->phys_device);
383 }
384 
385 #ifdef CONFIG_MEMORY_HOTREMOVE
386 static ssize_t show_valid_zones(struct device *dev,
387 				struct device_attribute *attr, char *buf)
388 {
389 	struct memory_block *mem = to_memory_block(dev);
390 	unsigned long start_pfn, end_pfn;
391 	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
392 	struct page *first_page;
393 	struct zone *zone;
394 
395 	start_pfn = section_nr_to_pfn(mem->start_section_nr);
396 	end_pfn = start_pfn + nr_pages;
397 	first_page = pfn_to_page(start_pfn);
398 
399 	/* The block contains more than one zone can not be offlined. */
400 	if (!test_pages_in_a_zone(start_pfn, end_pfn))
401 		return sprintf(buf, "none\n");
402 
403 	zone = page_zone(first_page);
404 
405 	if (zone_idx(zone) == ZONE_MOVABLE - 1) {
406 		/*The mem block is the last memoryblock of this zone.*/
407 		if (end_pfn == zone_end_pfn(zone))
408 			return sprintf(buf, "%s %s\n",
409 					zone->name, (zone + 1)->name);
410 	}
411 
412 	if (zone_idx(zone) == ZONE_MOVABLE) {
413 		/*The mem block is the first memoryblock of ZONE_MOVABLE.*/
414 		if (start_pfn == zone->zone_start_pfn)
415 			return sprintf(buf, "%s %s\n",
416 					zone->name, (zone - 1)->name);
417 	}
418 
419 	return sprintf(buf, "%s\n", zone->name);
420 }
421 static DEVICE_ATTR(valid_zones, 0444, show_valid_zones, NULL);
422 #endif
423 
424 static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
425 static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state);
426 static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL);
427 static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL);
428 
429 /*
430  * Block size attribute stuff
431  */
432 static ssize_t
433 print_block_size(struct device *dev, struct device_attribute *attr,
434 		 char *buf)
435 {
436 	return sprintf(buf, "%lx\n", get_memory_block_size());
437 }
438 
439 static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL);
440 
441 /*
442  * Memory auto online policy.
443  */
444 
445 static ssize_t
446 show_auto_online_blocks(struct device *dev, struct device_attribute *attr,
447 			char *buf)
448 {
449 	if (memhp_auto_online)
450 		return sprintf(buf, "online\n");
451 	else
452 		return sprintf(buf, "offline\n");
453 }
454 
455 static ssize_t
456 store_auto_online_blocks(struct device *dev, struct device_attribute *attr,
457 			 const char *buf, size_t count)
458 {
459 	if (sysfs_streq(buf, "online"))
460 		memhp_auto_online = true;
461 	else if (sysfs_streq(buf, "offline"))
462 		memhp_auto_online = false;
463 	else
464 		return -EINVAL;
465 
466 	return count;
467 }
468 
469 static DEVICE_ATTR(auto_online_blocks, 0644, show_auto_online_blocks,
470 		   store_auto_online_blocks);
471 
472 /*
473  * Some architectures will have custom drivers to do this, and
474  * will not need to do it from userspace.  The fake hot-add code
475  * as well as ppc64 will do all of their discovery in userspace
476  * and will require this interface.
477  */
478 #ifdef CONFIG_ARCH_MEMORY_PROBE
479 static ssize_t
480 memory_probe_store(struct device *dev, struct device_attribute *attr,
481 		   const char *buf, size_t count)
482 {
483 	u64 phys_addr;
484 	int nid, ret;
485 	unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
486 
487 	ret = kstrtoull(buf, 0, &phys_addr);
488 	if (ret)
489 		return ret;
490 
491 	if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
492 		return -EINVAL;
493 
494 	nid = memory_add_physaddr_to_nid(phys_addr);
495 	ret = add_memory(nid, phys_addr,
496 			 MIN_MEMORY_BLOCK_SIZE * sections_per_block);
497 
498 	if (ret)
499 		goto out;
500 
501 	ret = count;
502 out:
503 	return ret;
504 }
505 
506 static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
507 #endif
508 
509 #ifdef CONFIG_MEMORY_FAILURE
510 /*
511  * Support for offlining pages of memory
512  */
513 
514 /* Soft offline a page */
515 static ssize_t
516 store_soft_offline_page(struct device *dev,
517 			struct device_attribute *attr,
518 			const char *buf, size_t count)
519 {
520 	int ret;
521 	u64 pfn;
522 	if (!capable(CAP_SYS_ADMIN))
523 		return -EPERM;
524 	if (kstrtoull(buf, 0, &pfn) < 0)
525 		return -EINVAL;
526 	pfn >>= PAGE_SHIFT;
527 	if (!pfn_valid(pfn))
528 		return -ENXIO;
529 	ret = soft_offline_page(pfn_to_page(pfn), 0);
530 	return ret == 0 ? count : ret;
531 }
532 
533 /* Forcibly offline a page, including killing processes. */
534 static ssize_t
535 store_hard_offline_page(struct device *dev,
536 			struct device_attribute *attr,
537 			const char *buf, size_t count)
538 {
539 	int ret;
540 	u64 pfn;
541 	if (!capable(CAP_SYS_ADMIN))
542 		return -EPERM;
543 	if (kstrtoull(buf, 0, &pfn) < 0)
544 		return -EINVAL;
545 	pfn >>= PAGE_SHIFT;
546 	ret = memory_failure(pfn, 0, 0);
547 	return ret ? ret : count;
548 }
549 
550 static DEVICE_ATTR(soft_offline_page, S_IWUSR, NULL, store_soft_offline_page);
551 static DEVICE_ATTR(hard_offline_page, S_IWUSR, NULL, store_hard_offline_page);
552 #endif
553 
554 /*
555  * Note that phys_device is optional.  It is here to allow for
556  * differentiation between which *physical* devices each
557  * section belongs to...
558  */
559 int __weak arch_get_memory_phys_device(unsigned long start_pfn)
560 {
561 	return 0;
562 }
563 
564 /*
565  * A reference for the returned object is held and the reference for the
566  * hinted object is released.
567  */
568 struct memory_block *find_memory_block_hinted(struct mem_section *section,
569 					      struct memory_block *hint)
570 {
571 	int block_id = base_memory_block_id(__section_nr(section));
572 	struct device *hintdev = hint ? &hint->dev : NULL;
573 	struct device *dev;
574 
575 	dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev);
576 	if (hint)
577 		put_device(&hint->dev);
578 	if (!dev)
579 		return NULL;
580 	return to_memory_block(dev);
581 }
582 
583 /*
584  * For now, we have a linear search to go find the appropriate
585  * memory_block corresponding to a particular phys_index. If
586  * this gets to be a real problem, we can always use a radix
587  * tree or something here.
588  *
589  * This could be made generic for all device subsystems.
590  */
591 struct memory_block *find_memory_block(struct mem_section *section)
592 {
593 	return find_memory_block_hinted(section, NULL);
594 }
595 
596 static struct attribute *memory_memblk_attrs[] = {
597 	&dev_attr_phys_index.attr,
598 	&dev_attr_state.attr,
599 	&dev_attr_phys_device.attr,
600 	&dev_attr_removable.attr,
601 #ifdef CONFIG_MEMORY_HOTREMOVE
602 	&dev_attr_valid_zones.attr,
603 #endif
604 	NULL
605 };
606 
607 static struct attribute_group memory_memblk_attr_group = {
608 	.attrs = memory_memblk_attrs,
609 };
610 
611 static const struct attribute_group *memory_memblk_attr_groups[] = {
612 	&memory_memblk_attr_group,
613 	NULL,
614 };
615 
616 /*
617  * register_memory - Setup a sysfs device for a memory block
618  */
619 static
620 int register_memory(struct memory_block *memory)
621 {
622 	memory->dev.bus = &memory_subsys;
623 	memory->dev.id = memory->start_section_nr / sections_per_block;
624 	memory->dev.release = memory_block_release;
625 	memory->dev.groups = memory_memblk_attr_groups;
626 	memory->dev.offline = memory->state == MEM_OFFLINE;
627 
628 	return device_register(&memory->dev);
629 }
630 
631 static int init_memory_block(struct memory_block **memory,
632 			     struct mem_section *section, unsigned long state)
633 {
634 	struct memory_block *mem;
635 	unsigned long start_pfn;
636 	int scn_nr;
637 	int ret = 0;
638 
639 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
640 	if (!mem)
641 		return -ENOMEM;
642 
643 	scn_nr = __section_nr(section);
644 	mem->start_section_nr =
645 			base_memory_block_id(scn_nr) * sections_per_block;
646 	mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
647 	mem->state = state;
648 	start_pfn = section_nr_to_pfn(mem->start_section_nr);
649 	mem->phys_device = arch_get_memory_phys_device(start_pfn);
650 
651 	ret = register_memory(mem);
652 
653 	*memory = mem;
654 	return ret;
655 }
656 
657 static int add_memory_block(int base_section_nr)
658 {
659 	struct memory_block *mem;
660 	int i, ret, section_count = 0, section_nr;
661 
662 	for (i = base_section_nr;
663 	     (i < base_section_nr + sections_per_block) && i < NR_MEM_SECTIONS;
664 	     i++) {
665 		if (!present_section_nr(i))
666 			continue;
667 		if (section_count == 0)
668 			section_nr = i;
669 		section_count++;
670 	}
671 
672 	if (section_count == 0)
673 		return 0;
674 	ret = init_memory_block(&mem, __nr_to_section(section_nr), MEM_ONLINE);
675 	if (ret)
676 		return ret;
677 	mem->section_count = section_count;
678 	return 0;
679 }
680 
681 static bool is_zone_device_section(struct mem_section *ms)
682 {
683 	struct page *page;
684 
685 	page = sparse_decode_mem_map(ms->section_mem_map, __section_nr(ms));
686 	return is_zone_device_page(page);
687 }
688 
689 /*
690  * need an interface for the VM to add new memory regions,
691  * but without onlining it.
692  */
693 int register_new_memory(int nid, struct mem_section *section)
694 {
695 	int ret = 0;
696 	struct memory_block *mem;
697 
698 	if (is_zone_device_section(section))
699 		return 0;
700 
701 	mutex_lock(&mem_sysfs_mutex);
702 
703 	mem = find_memory_block(section);
704 	if (mem) {
705 		mem->section_count++;
706 		put_device(&mem->dev);
707 	} else {
708 		ret = init_memory_block(&mem, section, MEM_OFFLINE);
709 		if (ret)
710 			goto out;
711 		mem->section_count++;
712 	}
713 
714 	if (mem->section_count == sections_per_block)
715 		ret = register_mem_sect_under_node(mem, nid);
716 out:
717 	mutex_unlock(&mem_sysfs_mutex);
718 	return ret;
719 }
720 
721 #ifdef CONFIG_MEMORY_HOTREMOVE
722 static void
723 unregister_memory(struct memory_block *memory)
724 {
725 	BUG_ON(memory->dev.bus != &memory_subsys);
726 
727 	/* drop the ref. we got in remove_memory_block() */
728 	put_device(&memory->dev);
729 	device_unregister(&memory->dev);
730 }
731 
732 static int remove_memory_section(unsigned long node_id,
733 			       struct mem_section *section, int phys_device)
734 {
735 	struct memory_block *mem;
736 
737 	if (is_zone_device_section(section))
738 		return 0;
739 
740 	mutex_lock(&mem_sysfs_mutex);
741 	mem = find_memory_block(section);
742 	unregister_mem_sect_under_nodes(mem, __section_nr(section));
743 
744 	mem->section_count--;
745 	if (mem->section_count == 0)
746 		unregister_memory(mem);
747 	else
748 		put_device(&mem->dev);
749 
750 	mutex_unlock(&mem_sysfs_mutex);
751 	return 0;
752 }
753 
754 int unregister_memory_section(struct mem_section *section)
755 {
756 	if (!present_section(section))
757 		return -EINVAL;
758 
759 	return remove_memory_section(0, section, 0);
760 }
761 #endif /* CONFIG_MEMORY_HOTREMOVE */
762 
763 /* return true if the memory block is offlined, otherwise, return false */
764 bool is_memblock_offlined(struct memory_block *mem)
765 {
766 	return mem->state == MEM_OFFLINE;
767 }
768 
769 static struct attribute *memory_root_attrs[] = {
770 #ifdef CONFIG_ARCH_MEMORY_PROBE
771 	&dev_attr_probe.attr,
772 #endif
773 
774 #ifdef CONFIG_MEMORY_FAILURE
775 	&dev_attr_soft_offline_page.attr,
776 	&dev_attr_hard_offline_page.attr,
777 #endif
778 
779 	&dev_attr_block_size_bytes.attr,
780 	&dev_attr_auto_online_blocks.attr,
781 	NULL
782 };
783 
784 static struct attribute_group memory_root_attr_group = {
785 	.attrs = memory_root_attrs,
786 };
787 
788 static const struct attribute_group *memory_root_attr_groups[] = {
789 	&memory_root_attr_group,
790 	NULL,
791 };
792 
793 /*
794  * Initialize the sysfs support for memory devices...
795  */
796 int __init memory_dev_init(void)
797 {
798 	unsigned int i;
799 	int ret;
800 	int err;
801 	unsigned long block_sz;
802 
803 	ret = subsys_system_register(&memory_subsys, memory_root_attr_groups);
804 	if (ret)
805 		goto out;
806 
807 	block_sz = get_memory_block_size();
808 	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
809 
810 	/*
811 	 * Create entries for memory sections that were found
812 	 * during boot and have been initialized
813 	 */
814 	mutex_lock(&mem_sysfs_mutex);
815 	for (i = 0; i < NR_MEM_SECTIONS; i += sections_per_block) {
816 		err = add_memory_block(i);
817 		if (!ret)
818 			ret = err;
819 	}
820 	mutex_unlock(&mem_sysfs_mutex);
821 
822 out:
823 	if (ret)
824 		printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
825 	return ret;
826 }
827