1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * main.c - Multi purpose firmware loading support 4 * 5 * Copyright (c) 2003 Manuel Estrada Sainz 6 * 7 * Please see Documentation/firmware_class/ for more information. 8 * 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/capability.h> 14 #include <linux/device.h> 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/timer.h> 18 #include <linux/vmalloc.h> 19 #include <linux/interrupt.h> 20 #include <linux/bitops.h> 21 #include <linux/mutex.h> 22 #include <linux/workqueue.h> 23 #include <linux/highmem.h> 24 #include <linux/firmware.h> 25 #include <linux/slab.h> 26 #include <linux/sched.h> 27 #include <linux/file.h> 28 #include <linux/list.h> 29 #include <linux/fs.h> 30 #include <linux/async.h> 31 #include <linux/pm.h> 32 #include <linux/suspend.h> 33 #include <linux/syscore_ops.h> 34 #include <linux/reboot.h> 35 #include <linux/security.h> 36 #include <linux/xz.h> 37 38 #include <generated/utsrelease.h> 39 40 #include "../base.h" 41 #include "firmware.h" 42 #include "fallback.h" 43 44 MODULE_AUTHOR("Manuel Estrada Sainz"); 45 MODULE_DESCRIPTION("Multi purpose firmware loading support"); 46 MODULE_LICENSE("GPL"); 47 48 struct firmware_cache { 49 /* firmware_buf instance will be added into the below list */ 50 spinlock_t lock; 51 struct list_head head; 52 int state; 53 54 #ifdef CONFIG_PM_SLEEP 55 /* 56 * Names of firmware images which have been cached successfully 57 * will be added into the below list so that device uncache 58 * helper can trace which firmware images have been cached 59 * before. 60 */ 61 spinlock_t name_lock; 62 struct list_head fw_names; 63 64 struct delayed_work work; 65 66 struct notifier_block pm_notify; 67 #endif 68 }; 69 70 struct fw_cache_entry { 71 struct list_head list; 72 const char *name; 73 }; 74 75 struct fw_name_devm { 76 unsigned long magic; 77 const char *name; 78 }; 79 80 static inline struct fw_priv *to_fw_priv(struct kref *ref) 81 { 82 return container_of(ref, struct fw_priv, ref); 83 } 84 85 #define FW_LOADER_NO_CACHE 0 86 #define FW_LOADER_START_CACHE 1 87 88 /* fw_lock could be moved to 'struct fw_sysfs' but since it is just 89 * guarding for corner cases a global lock should be OK */ 90 DEFINE_MUTEX(fw_lock); 91 92 static struct firmware_cache fw_cache; 93 94 /* Builtin firmware support */ 95 96 #ifdef CONFIG_FW_LOADER 97 98 extern struct builtin_fw __start_builtin_fw[]; 99 extern struct builtin_fw __end_builtin_fw[]; 100 101 static void fw_copy_to_prealloc_buf(struct firmware *fw, 102 void *buf, size_t size) 103 { 104 if (!buf || size < fw->size) 105 return; 106 memcpy(buf, fw->data, fw->size); 107 } 108 109 static bool fw_get_builtin_firmware(struct firmware *fw, const char *name, 110 void *buf, size_t size) 111 { 112 struct builtin_fw *b_fw; 113 114 for (b_fw = __start_builtin_fw; b_fw != __end_builtin_fw; b_fw++) { 115 if (strcmp(name, b_fw->name) == 0) { 116 fw->size = b_fw->size; 117 fw->data = b_fw->data; 118 fw_copy_to_prealloc_buf(fw, buf, size); 119 120 return true; 121 } 122 } 123 124 return false; 125 } 126 127 static bool fw_is_builtin_firmware(const struct firmware *fw) 128 { 129 struct builtin_fw *b_fw; 130 131 for (b_fw = __start_builtin_fw; b_fw != __end_builtin_fw; b_fw++) 132 if (fw->data == b_fw->data) 133 return true; 134 135 return false; 136 } 137 138 #else /* Module case - no builtin firmware support */ 139 140 static inline bool fw_get_builtin_firmware(struct firmware *fw, 141 const char *name, void *buf, 142 size_t size) 143 { 144 return false; 145 } 146 147 static inline bool fw_is_builtin_firmware(const struct firmware *fw) 148 { 149 return false; 150 } 151 #endif 152 153 static void fw_state_init(struct fw_priv *fw_priv) 154 { 155 struct fw_state *fw_st = &fw_priv->fw_st; 156 157 init_completion(&fw_st->completion); 158 fw_st->status = FW_STATUS_UNKNOWN; 159 } 160 161 static inline int fw_state_wait(struct fw_priv *fw_priv) 162 { 163 return __fw_state_wait_common(fw_priv, MAX_SCHEDULE_TIMEOUT); 164 } 165 166 static int fw_cache_piggyback_on_request(const char *name); 167 168 static struct fw_priv *__allocate_fw_priv(const char *fw_name, 169 struct firmware_cache *fwc, 170 void *dbuf, size_t size) 171 { 172 struct fw_priv *fw_priv; 173 174 fw_priv = kzalloc(sizeof(*fw_priv), GFP_ATOMIC); 175 if (!fw_priv) 176 return NULL; 177 178 fw_priv->fw_name = kstrdup_const(fw_name, GFP_ATOMIC); 179 if (!fw_priv->fw_name) { 180 kfree(fw_priv); 181 return NULL; 182 } 183 184 kref_init(&fw_priv->ref); 185 fw_priv->fwc = fwc; 186 fw_priv->data = dbuf; 187 fw_priv->allocated_size = size; 188 fw_state_init(fw_priv); 189 #ifdef CONFIG_FW_LOADER_USER_HELPER 190 INIT_LIST_HEAD(&fw_priv->pending_list); 191 #endif 192 193 pr_debug("%s: fw-%s fw_priv=%p\n", __func__, fw_name, fw_priv); 194 195 return fw_priv; 196 } 197 198 static struct fw_priv *__lookup_fw_priv(const char *fw_name) 199 { 200 struct fw_priv *tmp; 201 struct firmware_cache *fwc = &fw_cache; 202 203 list_for_each_entry(tmp, &fwc->head, list) 204 if (!strcmp(tmp->fw_name, fw_name)) 205 return tmp; 206 return NULL; 207 } 208 209 /* Returns 1 for batching firmware requests with the same name */ 210 static int alloc_lookup_fw_priv(const char *fw_name, 211 struct firmware_cache *fwc, 212 struct fw_priv **fw_priv, void *dbuf, 213 size_t size, enum fw_opt opt_flags) 214 { 215 struct fw_priv *tmp; 216 217 spin_lock(&fwc->lock); 218 if (!(opt_flags & FW_OPT_NOCACHE)) { 219 tmp = __lookup_fw_priv(fw_name); 220 if (tmp) { 221 kref_get(&tmp->ref); 222 spin_unlock(&fwc->lock); 223 *fw_priv = tmp; 224 pr_debug("batched request - sharing the same struct fw_priv and lookup for multiple requests\n"); 225 return 1; 226 } 227 } 228 229 tmp = __allocate_fw_priv(fw_name, fwc, dbuf, size); 230 if (tmp) { 231 INIT_LIST_HEAD(&tmp->list); 232 if (!(opt_flags & FW_OPT_NOCACHE)) 233 list_add(&tmp->list, &fwc->head); 234 } 235 spin_unlock(&fwc->lock); 236 237 *fw_priv = tmp; 238 239 return tmp ? 0 : -ENOMEM; 240 } 241 242 static void __free_fw_priv(struct kref *ref) 243 __releases(&fwc->lock) 244 { 245 struct fw_priv *fw_priv = to_fw_priv(ref); 246 struct firmware_cache *fwc = fw_priv->fwc; 247 248 pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n", 249 __func__, fw_priv->fw_name, fw_priv, fw_priv->data, 250 (unsigned int)fw_priv->size); 251 252 list_del(&fw_priv->list); 253 spin_unlock(&fwc->lock); 254 255 fw_free_paged_buf(fw_priv); /* free leftover pages */ 256 if (!fw_priv->allocated_size) 257 vfree(fw_priv->data); 258 kfree_const(fw_priv->fw_name); 259 kfree(fw_priv); 260 } 261 262 static void free_fw_priv(struct fw_priv *fw_priv) 263 { 264 struct firmware_cache *fwc = fw_priv->fwc; 265 spin_lock(&fwc->lock); 266 if (!kref_put(&fw_priv->ref, __free_fw_priv)) 267 spin_unlock(&fwc->lock); 268 } 269 270 #ifdef CONFIG_FW_LOADER_PAGED_BUF 271 void fw_free_paged_buf(struct fw_priv *fw_priv) 272 { 273 int i; 274 275 if (!fw_priv->pages) 276 return; 277 278 for (i = 0; i < fw_priv->nr_pages; i++) 279 __free_page(fw_priv->pages[i]); 280 kvfree(fw_priv->pages); 281 fw_priv->pages = NULL; 282 fw_priv->page_array_size = 0; 283 fw_priv->nr_pages = 0; 284 } 285 286 int fw_grow_paged_buf(struct fw_priv *fw_priv, int pages_needed) 287 { 288 /* If the array of pages is too small, grow it */ 289 if (fw_priv->page_array_size < pages_needed) { 290 int new_array_size = max(pages_needed, 291 fw_priv->page_array_size * 2); 292 struct page **new_pages; 293 294 new_pages = kvmalloc_array(new_array_size, sizeof(void *), 295 GFP_KERNEL); 296 if (!new_pages) 297 return -ENOMEM; 298 memcpy(new_pages, fw_priv->pages, 299 fw_priv->page_array_size * sizeof(void *)); 300 memset(&new_pages[fw_priv->page_array_size], 0, sizeof(void *) * 301 (new_array_size - fw_priv->page_array_size)); 302 kvfree(fw_priv->pages); 303 fw_priv->pages = new_pages; 304 fw_priv->page_array_size = new_array_size; 305 } 306 307 while (fw_priv->nr_pages < pages_needed) { 308 fw_priv->pages[fw_priv->nr_pages] = 309 alloc_page(GFP_KERNEL | __GFP_HIGHMEM); 310 311 if (!fw_priv->pages[fw_priv->nr_pages]) 312 return -ENOMEM; 313 fw_priv->nr_pages++; 314 } 315 316 return 0; 317 } 318 319 int fw_map_paged_buf(struct fw_priv *fw_priv) 320 { 321 /* one pages buffer should be mapped/unmapped only once */ 322 if (!fw_priv->pages) 323 return 0; 324 325 vunmap(fw_priv->data); 326 fw_priv->data = vmap(fw_priv->pages, fw_priv->nr_pages, 0, 327 PAGE_KERNEL_RO); 328 if (!fw_priv->data) 329 return -ENOMEM; 330 331 /* page table is no longer needed after mapping, let's free */ 332 kvfree(fw_priv->pages); 333 fw_priv->pages = NULL; 334 335 return 0; 336 } 337 #endif 338 339 /* 340 * XZ-compressed firmware support 341 */ 342 #ifdef CONFIG_FW_LOADER_COMPRESS 343 /* show an error and return the standard error code */ 344 static int fw_decompress_xz_error(struct device *dev, enum xz_ret xz_ret) 345 { 346 if (xz_ret != XZ_STREAM_END) { 347 dev_warn(dev, "xz decompression failed (xz_ret=%d)\n", xz_ret); 348 return xz_ret == XZ_MEM_ERROR ? -ENOMEM : -EINVAL; 349 } 350 return 0; 351 } 352 353 /* single-shot decompression onto the pre-allocated buffer */ 354 static int fw_decompress_xz_single(struct device *dev, struct fw_priv *fw_priv, 355 size_t in_size, const void *in_buffer) 356 { 357 struct xz_dec *xz_dec; 358 struct xz_buf xz_buf; 359 enum xz_ret xz_ret; 360 361 xz_dec = xz_dec_init(XZ_SINGLE, (u32)-1); 362 if (!xz_dec) 363 return -ENOMEM; 364 365 xz_buf.in_size = in_size; 366 xz_buf.in = in_buffer; 367 xz_buf.in_pos = 0; 368 xz_buf.out_size = fw_priv->allocated_size; 369 xz_buf.out = fw_priv->data; 370 xz_buf.out_pos = 0; 371 372 xz_ret = xz_dec_run(xz_dec, &xz_buf); 373 xz_dec_end(xz_dec); 374 375 fw_priv->size = xz_buf.out_pos; 376 return fw_decompress_xz_error(dev, xz_ret); 377 } 378 379 /* decompression on paged buffer and map it */ 380 static int fw_decompress_xz_pages(struct device *dev, struct fw_priv *fw_priv, 381 size_t in_size, const void *in_buffer) 382 { 383 struct xz_dec *xz_dec; 384 struct xz_buf xz_buf; 385 enum xz_ret xz_ret; 386 struct page *page; 387 int err = 0; 388 389 xz_dec = xz_dec_init(XZ_DYNALLOC, (u32)-1); 390 if (!xz_dec) 391 return -ENOMEM; 392 393 xz_buf.in_size = in_size; 394 xz_buf.in = in_buffer; 395 xz_buf.in_pos = 0; 396 397 fw_priv->is_paged_buf = true; 398 fw_priv->size = 0; 399 do { 400 if (fw_grow_paged_buf(fw_priv, fw_priv->nr_pages + 1)) { 401 err = -ENOMEM; 402 goto out; 403 } 404 405 /* decompress onto the new allocated page */ 406 page = fw_priv->pages[fw_priv->nr_pages - 1]; 407 xz_buf.out = kmap(page); 408 xz_buf.out_pos = 0; 409 xz_buf.out_size = PAGE_SIZE; 410 xz_ret = xz_dec_run(xz_dec, &xz_buf); 411 kunmap(page); 412 fw_priv->size += xz_buf.out_pos; 413 /* partial decompression means either end or error */ 414 if (xz_buf.out_pos != PAGE_SIZE) 415 break; 416 } while (xz_ret == XZ_OK); 417 418 err = fw_decompress_xz_error(dev, xz_ret); 419 if (!err) 420 err = fw_map_paged_buf(fw_priv); 421 422 out: 423 xz_dec_end(xz_dec); 424 return err; 425 } 426 427 static int fw_decompress_xz(struct device *dev, struct fw_priv *fw_priv, 428 size_t in_size, const void *in_buffer) 429 { 430 /* if the buffer is pre-allocated, we can perform in single-shot mode */ 431 if (fw_priv->data) 432 return fw_decompress_xz_single(dev, fw_priv, in_size, in_buffer); 433 else 434 return fw_decompress_xz_pages(dev, fw_priv, in_size, in_buffer); 435 } 436 #endif /* CONFIG_FW_LOADER_COMPRESS */ 437 438 /* direct firmware loading support */ 439 static char fw_path_para[256]; 440 static const char * const fw_path[] = { 441 fw_path_para, 442 "/lib/firmware/updates/" UTS_RELEASE, 443 "/lib/firmware/updates", 444 "/lib/firmware/" UTS_RELEASE, 445 "/lib/firmware" 446 }; 447 448 /* 449 * Typical usage is that passing 'firmware_class.path=$CUSTOMIZED_PATH' 450 * from kernel command line because firmware_class is generally built in 451 * kernel instead of module. 452 */ 453 module_param_string(path, fw_path_para, sizeof(fw_path_para), 0644); 454 MODULE_PARM_DESC(path, "customized firmware image search path with a higher priority than default path"); 455 456 static int 457 fw_get_filesystem_firmware(struct device *device, struct fw_priv *fw_priv, 458 const char *suffix, 459 int (*decompress)(struct device *dev, 460 struct fw_priv *fw_priv, 461 size_t in_size, 462 const void *in_buffer)) 463 { 464 loff_t size; 465 int i, len; 466 int rc = -ENOENT; 467 char *path; 468 enum kernel_read_file_id id = READING_FIRMWARE; 469 size_t msize = INT_MAX; 470 void *buffer = NULL; 471 472 /* Already populated data member means we're loading into a buffer */ 473 if (!decompress && fw_priv->data) { 474 buffer = fw_priv->data; 475 id = READING_FIRMWARE_PREALLOC_BUFFER; 476 msize = fw_priv->allocated_size; 477 } 478 479 path = __getname(); 480 if (!path) 481 return -ENOMEM; 482 483 for (i = 0; i < ARRAY_SIZE(fw_path); i++) { 484 /* skip the unset customized path */ 485 if (!fw_path[i][0]) 486 continue; 487 488 len = snprintf(path, PATH_MAX, "%s/%s%s", 489 fw_path[i], fw_priv->fw_name, suffix); 490 if (len >= PATH_MAX) { 491 rc = -ENAMETOOLONG; 492 break; 493 } 494 495 fw_priv->size = 0; 496 rc = kernel_read_file_from_path(path, &buffer, &size, 497 msize, id); 498 if (rc) { 499 if (rc != -ENOENT) 500 dev_warn(device, "loading %s failed with error %d\n", 501 path, rc); 502 else 503 dev_dbg(device, "loading %s failed for no such file or directory.\n", 504 path); 505 continue; 506 } 507 if (decompress) { 508 dev_dbg(device, "f/w decompressing %s\n", 509 fw_priv->fw_name); 510 rc = decompress(device, fw_priv, size, buffer); 511 /* discard the superfluous original content */ 512 vfree(buffer); 513 buffer = NULL; 514 if (rc) { 515 fw_free_paged_buf(fw_priv); 516 continue; 517 } 518 } else { 519 dev_dbg(device, "direct-loading %s\n", 520 fw_priv->fw_name); 521 if (!fw_priv->data) 522 fw_priv->data = buffer; 523 fw_priv->size = size; 524 } 525 fw_state_done(fw_priv); 526 break; 527 } 528 __putname(path); 529 530 return rc; 531 } 532 533 /* firmware holds the ownership of pages */ 534 static void firmware_free_data(const struct firmware *fw) 535 { 536 /* Loaded directly? */ 537 if (!fw->priv) { 538 vfree(fw->data); 539 return; 540 } 541 free_fw_priv(fw->priv); 542 } 543 544 /* store the pages buffer info firmware from buf */ 545 static void fw_set_page_data(struct fw_priv *fw_priv, struct firmware *fw) 546 { 547 fw->priv = fw_priv; 548 #ifdef CONFIG_FW_LOADER_USER_HELPER 549 fw->pages = fw_priv->pages; 550 #endif 551 fw->size = fw_priv->size; 552 fw->data = fw_priv->data; 553 554 pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n", 555 __func__, fw_priv->fw_name, fw_priv, fw_priv->data, 556 (unsigned int)fw_priv->size); 557 } 558 559 #ifdef CONFIG_PM_SLEEP 560 static void fw_name_devm_release(struct device *dev, void *res) 561 { 562 struct fw_name_devm *fwn = res; 563 564 if (fwn->magic == (unsigned long)&fw_cache) 565 pr_debug("%s: fw_name-%s devm-%p released\n", 566 __func__, fwn->name, res); 567 kfree_const(fwn->name); 568 } 569 570 static int fw_devm_match(struct device *dev, void *res, 571 void *match_data) 572 { 573 struct fw_name_devm *fwn = res; 574 575 return (fwn->magic == (unsigned long)&fw_cache) && 576 !strcmp(fwn->name, match_data); 577 } 578 579 static struct fw_name_devm *fw_find_devm_name(struct device *dev, 580 const char *name) 581 { 582 struct fw_name_devm *fwn; 583 584 fwn = devres_find(dev, fw_name_devm_release, 585 fw_devm_match, (void *)name); 586 return fwn; 587 } 588 589 static bool fw_cache_is_setup(struct device *dev, const char *name) 590 { 591 struct fw_name_devm *fwn; 592 593 fwn = fw_find_devm_name(dev, name); 594 if (fwn) 595 return true; 596 597 return false; 598 } 599 600 /* add firmware name into devres list */ 601 static int fw_add_devm_name(struct device *dev, const char *name) 602 { 603 struct fw_name_devm *fwn; 604 605 if (fw_cache_is_setup(dev, name)) 606 return 0; 607 608 fwn = devres_alloc(fw_name_devm_release, sizeof(struct fw_name_devm), 609 GFP_KERNEL); 610 if (!fwn) 611 return -ENOMEM; 612 fwn->name = kstrdup_const(name, GFP_KERNEL); 613 if (!fwn->name) { 614 devres_free(fwn); 615 return -ENOMEM; 616 } 617 618 fwn->magic = (unsigned long)&fw_cache; 619 devres_add(dev, fwn); 620 621 return 0; 622 } 623 #else 624 static bool fw_cache_is_setup(struct device *dev, const char *name) 625 { 626 return false; 627 } 628 629 static int fw_add_devm_name(struct device *dev, const char *name) 630 { 631 return 0; 632 } 633 #endif 634 635 int assign_fw(struct firmware *fw, struct device *device, 636 enum fw_opt opt_flags) 637 { 638 struct fw_priv *fw_priv = fw->priv; 639 int ret; 640 641 mutex_lock(&fw_lock); 642 if (!fw_priv->size || fw_state_is_aborted(fw_priv)) { 643 mutex_unlock(&fw_lock); 644 return -ENOENT; 645 } 646 647 /* 648 * add firmware name into devres list so that we can auto cache 649 * and uncache firmware for device. 650 * 651 * device may has been deleted already, but the problem 652 * should be fixed in devres or driver core. 653 */ 654 /* don't cache firmware handled without uevent */ 655 if (device && (opt_flags & FW_OPT_UEVENT) && 656 !(opt_flags & FW_OPT_NOCACHE)) { 657 ret = fw_add_devm_name(device, fw_priv->fw_name); 658 if (ret) { 659 mutex_unlock(&fw_lock); 660 return ret; 661 } 662 } 663 664 /* 665 * After caching firmware image is started, let it piggyback 666 * on request firmware. 667 */ 668 if (!(opt_flags & FW_OPT_NOCACHE) && 669 fw_priv->fwc->state == FW_LOADER_START_CACHE) { 670 if (fw_cache_piggyback_on_request(fw_priv->fw_name)) 671 kref_get(&fw_priv->ref); 672 } 673 674 /* pass the pages buffer to driver at the last minute */ 675 fw_set_page_data(fw_priv, fw); 676 mutex_unlock(&fw_lock); 677 return 0; 678 } 679 680 /* prepare firmware and firmware_buf structs; 681 * return 0 if a firmware is already assigned, 1 if need to load one, 682 * or a negative error code 683 */ 684 static int 685 _request_firmware_prepare(struct firmware **firmware_p, const char *name, 686 struct device *device, void *dbuf, size_t size, 687 enum fw_opt opt_flags) 688 { 689 struct firmware *firmware; 690 struct fw_priv *fw_priv; 691 int ret; 692 693 *firmware_p = firmware = kzalloc(sizeof(*firmware), GFP_KERNEL); 694 if (!firmware) { 695 dev_err(device, "%s: kmalloc(struct firmware) failed\n", 696 __func__); 697 return -ENOMEM; 698 } 699 700 if (fw_get_builtin_firmware(firmware, name, dbuf, size)) { 701 dev_dbg(device, "using built-in %s\n", name); 702 return 0; /* assigned */ 703 } 704 705 ret = alloc_lookup_fw_priv(name, &fw_cache, &fw_priv, dbuf, size, 706 opt_flags); 707 708 /* 709 * bind with 'priv' now to avoid warning in failure path 710 * of requesting firmware. 711 */ 712 firmware->priv = fw_priv; 713 714 if (ret > 0) { 715 ret = fw_state_wait(fw_priv); 716 if (!ret) { 717 fw_set_page_data(fw_priv, firmware); 718 return 0; /* assigned */ 719 } 720 } 721 722 if (ret < 0) 723 return ret; 724 return 1; /* need to load */ 725 } 726 727 /* 728 * Batched requests need only one wake, we need to do this step last due to the 729 * fallback mechanism. The buf is protected with kref_get(), and it won't be 730 * released until the last user calls release_firmware(). 731 * 732 * Failed batched requests are possible as well, in such cases we just share 733 * the struct fw_priv and won't release it until all requests are woken 734 * and have gone through this same path. 735 */ 736 static void fw_abort_batch_reqs(struct firmware *fw) 737 { 738 struct fw_priv *fw_priv; 739 740 /* Loaded directly? */ 741 if (!fw || !fw->priv) 742 return; 743 744 fw_priv = fw->priv; 745 if (!fw_state_is_aborted(fw_priv)) 746 fw_state_aborted(fw_priv); 747 } 748 749 /* called from request_firmware() and request_firmware_work_func() */ 750 static int 751 _request_firmware(const struct firmware **firmware_p, const char *name, 752 struct device *device, void *buf, size_t size, 753 enum fw_opt opt_flags) 754 { 755 struct firmware *fw = NULL; 756 int ret; 757 758 if (!firmware_p) 759 return -EINVAL; 760 761 if (!name || name[0] == '\0') { 762 ret = -EINVAL; 763 goto out; 764 } 765 766 ret = _request_firmware_prepare(&fw, name, device, buf, size, 767 opt_flags); 768 if (ret <= 0) /* error or already assigned */ 769 goto out; 770 771 ret = fw_get_filesystem_firmware(device, fw->priv, "", NULL); 772 #ifdef CONFIG_FW_LOADER_COMPRESS 773 if (ret == -ENOENT) 774 ret = fw_get_filesystem_firmware(device, fw->priv, ".xz", 775 fw_decompress_xz); 776 #endif 777 778 if (ret) { 779 if (!(opt_flags & FW_OPT_NO_WARN)) 780 dev_warn(device, 781 "Direct firmware load for %s failed with error %d\n", 782 name, ret); 783 ret = firmware_fallback_sysfs(fw, name, device, opt_flags, ret); 784 } else 785 ret = assign_fw(fw, device, opt_flags); 786 787 out: 788 if (ret < 0) { 789 fw_abort_batch_reqs(fw); 790 release_firmware(fw); 791 fw = NULL; 792 } 793 794 *firmware_p = fw; 795 return ret; 796 } 797 798 /** 799 * request_firmware() - send firmware request and wait for it 800 * @firmware_p: pointer to firmware image 801 * @name: name of firmware file 802 * @device: device for which firmware is being loaded 803 * 804 * @firmware_p will be used to return a firmware image by the name 805 * of @name for device @device. 806 * 807 * Should be called from user context where sleeping is allowed. 808 * 809 * @name will be used as $FIRMWARE in the uevent environment and 810 * should be distinctive enough not to be confused with any other 811 * firmware image for this or any other device. 812 * 813 * Caller must hold the reference count of @device. 814 * 815 * The function can be called safely inside device's suspend and 816 * resume callback. 817 **/ 818 int 819 request_firmware(const struct firmware **firmware_p, const char *name, 820 struct device *device) 821 { 822 int ret; 823 824 /* Need to pin this module until return */ 825 __module_get(THIS_MODULE); 826 ret = _request_firmware(firmware_p, name, device, NULL, 0, 827 FW_OPT_UEVENT); 828 module_put(THIS_MODULE); 829 return ret; 830 } 831 EXPORT_SYMBOL(request_firmware); 832 833 /** 834 * firmware_request_nowarn() - request for an optional fw module 835 * @firmware: pointer to firmware image 836 * @name: name of firmware file 837 * @device: device for which firmware is being loaded 838 * 839 * This function is similar in behaviour to request_firmware(), except 840 * it doesn't produce warning messages when the file is not found. 841 * The sysfs fallback mechanism is enabled if direct filesystem lookup fails, 842 * however, however failures to find the firmware file with it are still 843 * suppressed. It is therefore up to the driver to check for the return value 844 * of this call and to decide when to inform the users of errors. 845 **/ 846 int firmware_request_nowarn(const struct firmware **firmware, const char *name, 847 struct device *device) 848 { 849 int ret; 850 851 /* Need to pin this module until return */ 852 __module_get(THIS_MODULE); 853 ret = _request_firmware(firmware, name, device, NULL, 0, 854 FW_OPT_UEVENT | FW_OPT_NO_WARN); 855 module_put(THIS_MODULE); 856 return ret; 857 } 858 EXPORT_SYMBOL_GPL(firmware_request_nowarn); 859 860 /** 861 * request_firmware_direct() - load firmware directly without usermode helper 862 * @firmware_p: pointer to firmware image 863 * @name: name of firmware file 864 * @device: device for which firmware is being loaded 865 * 866 * This function works pretty much like request_firmware(), but this doesn't 867 * fall back to usermode helper even if the firmware couldn't be loaded 868 * directly from fs. Hence it's useful for loading optional firmwares, which 869 * aren't always present, without extra long timeouts of udev. 870 **/ 871 int request_firmware_direct(const struct firmware **firmware_p, 872 const char *name, struct device *device) 873 { 874 int ret; 875 876 __module_get(THIS_MODULE); 877 ret = _request_firmware(firmware_p, name, device, NULL, 0, 878 FW_OPT_UEVENT | FW_OPT_NO_WARN | 879 FW_OPT_NOFALLBACK); 880 module_put(THIS_MODULE); 881 return ret; 882 } 883 EXPORT_SYMBOL_GPL(request_firmware_direct); 884 885 /** 886 * firmware_request_cache() - cache firmware for suspend so resume can use it 887 * @name: name of firmware file 888 * @device: device for which firmware should be cached for 889 * 890 * There are some devices with an optimization that enables the device to not 891 * require loading firmware on system reboot. This optimization may still 892 * require the firmware present on resume from suspend. This routine can be 893 * used to ensure the firmware is present on resume from suspend in these 894 * situations. This helper is not compatible with drivers which use 895 * request_firmware_into_buf() or request_firmware_nowait() with no uevent set. 896 **/ 897 int firmware_request_cache(struct device *device, const char *name) 898 { 899 int ret; 900 901 mutex_lock(&fw_lock); 902 ret = fw_add_devm_name(device, name); 903 mutex_unlock(&fw_lock); 904 905 return ret; 906 } 907 EXPORT_SYMBOL_GPL(firmware_request_cache); 908 909 /** 910 * request_firmware_into_buf() - load firmware into a previously allocated buffer 911 * @firmware_p: pointer to firmware image 912 * @name: name of firmware file 913 * @device: device for which firmware is being loaded and DMA region allocated 914 * @buf: address of buffer to load firmware into 915 * @size: size of buffer 916 * 917 * This function works pretty much like request_firmware(), but it doesn't 918 * allocate a buffer to hold the firmware data. Instead, the firmware 919 * is loaded directly into the buffer pointed to by @buf and the @firmware_p 920 * data member is pointed at @buf. 921 * 922 * This function doesn't cache firmware either. 923 */ 924 int 925 request_firmware_into_buf(const struct firmware **firmware_p, const char *name, 926 struct device *device, void *buf, size_t size) 927 { 928 int ret; 929 930 if (fw_cache_is_setup(device, name)) 931 return -EOPNOTSUPP; 932 933 __module_get(THIS_MODULE); 934 ret = _request_firmware(firmware_p, name, device, buf, size, 935 FW_OPT_UEVENT | FW_OPT_NOCACHE); 936 module_put(THIS_MODULE); 937 return ret; 938 } 939 EXPORT_SYMBOL(request_firmware_into_buf); 940 941 /** 942 * release_firmware() - release the resource associated with a firmware image 943 * @fw: firmware resource to release 944 **/ 945 void release_firmware(const struct firmware *fw) 946 { 947 if (fw) { 948 if (!fw_is_builtin_firmware(fw)) 949 firmware_free_data(fw); 950 kfree(fw); 951 } 952 } 953 EXPORT_SYMBOL(release_firmware); 954 955 /* Async support */ 956 struct firmware_work { 957 struct work_struct work; 958 struct module *module; 959 const char *name; 960 struct device *device; 961 void *context; 962 void (*cont)(const struct firmware *fw, void *context); 963 enum fw_opt opt_flags; 964 }; 965 966 static void request_firmware_work_func(struct work_struct *work) 967 { 968 struct firmware_work *fw_work; 969 const struct firmware *fw; 970 971 fw_work = container_of(work, struct firmware_work, work); 972 973 _request_firmware(&fw, fw_work->name, fw_work->device, NULL, 0, 974 fw_work->opt_flags); 975 fw_work->cont(fw, fw_work->context); 976 put_device(fw_work->device); /* taken in request_firmware_nowait() */ 977 978 module_put(fw_work->module); 979 kfree_const(fw_work->name); 980 kfree(fw_work); 981 } 982 983 /** 984 * request_firmware_nowait() - asynchronous version of request_firmware 985 * @module: module requesting the firmware 986 * @uevent: sends uevent to copy the firmware image if this flag 987 * is non-zero else the firmware copy must be done manually. 988 * @name: name of firmware file 989 * @device: device for which firmware is being loaded 990 * @gfp: allocation flags 991 * @context: will be passed over to @cont, and 992 * @fw may be %NULL if firmware request fails. 993 * @cont: function will be called asynchronously when the firmware 994 * request is over. 995 * 996 * Caller must hold the reference count of @device. 997 * 998 * Asynchronous variant of request_firmware() for user contexts: 999 * - sleep for as small periods as possible since it may 1000 * increase kernel boot time of built-in device drivers 1001 * requesting firmware in their ->probe() methods, if 1002 * @gfp is GFP_KERNEL. 1003 * 1004 * - can't sleep at all if @gfp is GFP_ATOMIC. 1005 **/ 1006 int 1007 request_firmware_nowait( 1008 struct module *module, bool uevent, 1009 const char *name, struct device *device, gfp_t gfp, void *context, 1010 void (*cont)(const struct firmware *fw, void *context)) 1011 { 1012 struct firmware_work *fw_work; 1013 1014 fw_work = kzalloc(sizeof(struct firmware_work), gfp); 1015 if (!fw_work) 1016 return -ENOMEM; 1017 1018 fw_work->module = module; 1019 fw_work->name = kstrdup_const(name, gfp); 1020 if (!fw_work->name) { 1021 kfree(fw_work); 1022 return -ENOMEM; 1023 } 1024 fw_work->device = device; 1025 fw_work->context = context; 1026 fw_work->cont = cont; 1027 fw_work->opt_flags = FW_OPT_NOWAIT | 1028 (uevent ? FW_OPT_UEVENT : FW_OPT_USERHELPER); 1029 1030 if (!uevent && fw_cache_is_setup(device, name)) { 1031 kfree_const(fw_work->name); 1032 kfree(fw_work); 1033 return -EOPNOTSUPP; 1034 } 1035 1036 if (!try_module_get(module)) { 1037 kfree_const(fw_work->name); 1038 kfree(fw_work); 1039 return -EFAULT; 1040 } 1041 1042 get_device(fw_work->device); 1043 INIT_WORK(&fw_work->work, request_firmware_work_func); 1044 schedule_work(&fw_work->work); 1045 return 0; 1046 } 1047 EXPORT_SYMBOL(request_firmware_nowait); 1048 1049 #ifdef CONFIG_PM_SLEEP 1050 static ASYNC_DOMAIN_EXCLUSIVE(fw_cache_domain); 1051 1052 /** 1053 * cache_firmware() - cache one firmware image in kernel memory space 1054 * @fw_name: the firmware image name 1055 * 1056 * Cache firmware in kernel memory so that drivers can use it when 1057 * system isn't ready for them to request firmware image from userspace. 1058 * Once it returns successfully, driver can use request_firmware or its 1059 * nowait version to get the cached firmware without any interacting 1060 * with userspace 1061 * 1062 * Return 0 if the firmware image has been cached successfully 1063 * Return !0 otherwise 1064 * 1065 */ 1066 static int cache_firmware(const char *fw_name) 1067 { 1068 int ret; 1069 const struct firmware *fw; 1070 1071 pr_debug("%s: %s\n", __func__, fw_name); 1072 1073 ret = request_firmware(&fw, fw_name, NULL); 1074 if (!ret) 1075 kfree(fw); 1076 1077 pr_debug("%s: %s ret=%d\n", __func__, fw_name, ret); 1078 1079 return ret; 1080 } 1081 1082 static struct fw_priv *lookup_fw_priv(const char *fw_name) 1083 { 1084 struct fw_priv *tmp; 1085 struct firmware_cache *fwc = &fw_cache; 1086 1087 spin_lock(&fwc->lock); 1088 tmp = __lookup_fw_priv(fw_name); 1089 spin_unlock(&fwc->lock); 1090 1091 return tmp; 1092 } 1093 1094 /** 1095 * uncache_firmware() - remove one cached firmware image 1096 * @fw_name: the firmware image name 1097 * 1098 * Uncache one firmware image which has been cached successfully 1099 * before. 1100 * 1101 * Return 0 if the firmware cache has been removed successfully 1102 * Return !0 otherwise 1103 * 1104 */ 1105 static int uncache_firmware(const char *fw_name) 1106 { 1107 struct fw_priv *fw_priv; 1108 struct firmware fw; 1109 1110 pr_debug("%s: %s\n", __func__, fw_name); 1111 1112 if (fw_get_builtin_firmware(&fw, fw_name, NULL, 0)) 1113 return 0; 1114 1115 fw_priv = lookup_fw_priv(fw_name); 1116 if (fw_priv) { 1117 free_fw_priv(fw_priv); 1118 return 0; 1119 } 1120 1121 return -EINVAL; 1122 } 1123 1124 static struct fw_cache_entry *alloc_fw_cache_entry(const char *name) 1125 { 1126 struct fw_cache_entry *fce; 1127 1128 fce = kzalloc(sizeof(*fce), GFP_ATOMIC); 1129 if (!fce) 1130 goto exit; 1131 1132 fce->name = kstrdup_const(name, GFP_ATOMIC); 1133 if (!fce->name) { 1134 kfree(fce); 1135 fce = NULL; 1136 goto exit; 1137 } 1138 exit: 1139 return fce; 1140 } 1141 1142 static int __fw_entry_found(const char *name) 1143 { 1144 struct firmware_cache *fwc = &fw_cache; 1145 struct fw_cache_entry *fce; 1146 1147 list_for_each_entry(fce, &fwc->fw_names, list) { 1148 if (!strcmp(fce->name, name)) 1149 return 1; 1150 } 1151 return 0; 1152 } 1153 1154 static int fw_cache_piggyback_on_request(const char *name) 1155 { 1156 struct firmware_cache *fwc = &fw_cache; 1157 struct fw_cache_entry *fce; 1158 int ret = 0; 1159 1160 spin_lock(&fwc->name_lock); 1161 if (__fw_entry_found(name)) 1162 goto found; 1163 1164 fce = alloc_fw_cache_entry(name); 1165 if (fce) { 1166 ret = 1; 1167 list_add(&fce->list, &fwc->fw_names); 1168 pr_debug("%s: fw: %s\n", __func__, name); 1169 } 1170 found: 1171 spin_unlock(&fwc->name_lock); 1172 return ret; 1173 } 1174 1175 static void free_fw_cache_entry(struct fw_cache_entry *fce) 1176 { 1177 kfree_const(fce->name); 1178 kfree(fce); 1179 } 1180 1181 static void __async_dev_cache_fw_image(void *fw_entry, 1182 async_cookie_t cookie) 1183 { 1184 struct fw_cache_entry *fce = fw_entry; 1185 struct firmware_cache *fwc = &fw_cache; 1186 int ret; 1187 1188 ret = cache_firmware(fce->name); 1189 if (ret) { 1190 spin_lock(&fwc->name_lock); 1191 list_del(&fce->list); 1192 spin_unlock(&fwc->name_lock); 1193 1194 free_fw_cache_entry(fce); 1195 } 1196 } 1197 1198 /* called with dev->devres_lock held */ 1199 static void dev_create_fw_entry(struct device *dev, void *res, 1200 void *data) 1201 { 1202 struct fw_name_devm *fwn = res; 1203 const char *fw_name = fwn->name; 1204 struct list_head *head = data; 1205 struct fw_cache_entry *fce; 1206 1207 fce = alloc_fw_cache_entry(fw_name); 1208 if (fce) 1209 list_add(&fce->list, head); 1210 } 1211 1212 static int devm_name_match(struct device *dev, void *res, 1213 void *match_data) 1214 { 1215 struct fw_name_devm *fwn = res; 1216 return (fwn->magic == (unsigned long)match_data); 1217 } 1218 1219 static void dev_cache_fw_image(struct device *dev, void *data) 1220 { 1221 LIST_HEAD(todo); 1222 struct fw_cache_entry *fce; 1223 struct fw_cache_entry *fce_next; 1224 struct firmware_cache *fwc = &fw_cache; 1225 1226 devres_for_each_res(dev, fw_name_devm_release, 1227 devm_name_match, &fw_cache, 1228 dev_create_fw_entry, &todo); 1229 1230 list_for_each_entry_safe(fce, fce_next, &todo, list) { 1231 list_del(&fce->list); 1232 1233 spin_lock(&fwc->name_lock); 1234 /* only one cache entry for one firmware */ 1235 if (!__fw_entry_found(fce->name)) { 1236 list_add(&fce->list, &fwc->fw_names); 1237 } else { 1238 free_fw_cache_entry(fce); 1239 fce = NULL; 1240 } 1241 spin_unlock(&fwc->name_lock); 1242 1243 if (fce) 1244 async_schedule_domain(__async_dev_cache_fw_image, 1245 (void *)fce, 1246 &fw_cache_domain); 1247 } 1248 } 1249 1250 static void __device_uncache_fw_images(void) 1251 { 1252 struct firmware_cache *fwc = &fw_cache; 1253 struct fw_cache_entry *fce; 1254 1255 spin_lock(&fwc->name_lock); 1256 while (!list_empty(&fwc->fw_names)) { 1257 fce = list_entry(fwc->fw_names.next, 1258 struct fw_cache_entry, list); 1259 list_del(&fce->list); 1260 spin_unlock(&fwc->name_lock); 1261 1262 uncache_firmware(fce->name); 1263 free_fw_cache_entry(fce); 1264 1265 spin_lock(&fwc->name_lock); 1266 } 1267 spin_unlock(&fwc->name_lock); 1268 } 1269 1270 /** 1271 * device_cache_fw_images() - cache devices' firmware 1272 * 1273 * If one device called request_firmware or its nowait version 1274 * successfully before, the firmware names are recored into the 1275 * device's devres link list, so device_cache_fw_images can call 1276 * cache_firmware() to cache these firmwares for the device, 1277 * then the device driver can load its firmwares easily at 1278 * time when system is not ready to complete loading firmware. 1279 */ 1280 static void device_cache_fw_images(void) 1281 { 1282 struct firmware_cache *fwc = &fw_cache; 1283 DEFINE_WAIT(wait); 1284 1285 pr_debug("%s\n", __func__); 1286 1287 /* cancel uncache work */ 1288 cancel_delayed_work_sync(&fwc->work); 1289 1290 fw_fallback_set_cache_timeout(); 1291 1292 mutex_lock(&fw_lock); 1293 fwc->state = FW_LOADER_START_CACHE; 1294 dpm_for_each_dev(NULL, dev_cache_fw_image); 1295 mutex_unlock(&fw_lock); 1296 1297 /* wait for completion of caching firmware for all devices */ 1298 async_synchronize_full_domain(&fw_cache_domain); 1299 1300 fw_fallback_set_default_timeout(); 1301 } 1302 1303 /** 1304 * device_uncache_fw_images() - uncache devices' firmware 1305 * 1306 * uncache all firmwares which have been cached successfully 1307 * by device_uncache_fw_images earlier 1308 */ 1309 static void device_uncache_fw_images(void) 1310 { 1311 pr_debug("%s\n", __func__); 1312 __device_uncache_fw_images(); 1313 } 1314 1315 static void device_uncache_fw_images_work(struct work_struct *work) 1316 { 1317 device_uncache_fw_images(); 1318 } 1319 1320 /** 1321 * device_uncache_fw_images_delay() - uncache devices firmwares 1322 * @delay: number of milliseconds to delay uncache device firmwares 1323 * 1324 * uncache all devices's firmwares which has been cached successfully 1325 * by device_cache_fw_images after @delay milliseconds. 1326 */ 1327 static void device_uncache_fw_images_delay(unsigned long delay) 1328 { 1329 queue_delayed_work(system_power_efficient_wq, &fw_cache.work, 1330 msecs_to_jiffies(delay)); 1331 } 1332 1333 static int fw_pm_notify(struct notifier_block *notify_block, 1334 unsigned long mode, void *unused) 1335 { 1336 switch (mode) { 1337 case PM_HIBERNATION_PREPARE: 1338 case PM_SUSPEND_PREPARE: 1339 case PM_RESTORE_PREPARE: 1340 /* 1341 * kill pending fallback requests with a custom fallback 1342 * to avoid stalling suspend. 1343 */ 1344 kill_pending_fw_fallback_reqs(true); 1345 device_cache_fw_images(); 1346 break; 1347 1348 case PM_POST_SUSPEND: 1349 case PM_POST_HIBERNATION: 1350 case PM_POST_RESTORE: 1351 /* 1352 * In case that system sleep failed and syscore_suspend is 1353 * not called. 1354 */ 1355 mutex_lock(&fw_lock); 1356 fw_cache.state = FW_LOADER_NO_CACHE; 1357 mutex_unlock(&fw_lock); 1358 1359 device_uncache_fw_images_delay(10 * MSEC_PER_SEC); 1360 break; 1361 } 1362 1363 return 0; 1364 } 1365 1366 /* stop caching firmware once syscore_suspend is reached */ 1367 static int fw_suspend(void) 1368 { 1369 fw_cache.state = FW_LOADER_NO_CACHE; 1370 return 0; 1371 } 1372 1373 static struct syscore_ops fw_syscore_ops = { 1374 .suspend = fw_suspend, 1375 }; 1376 1377 static int __init register_fw_pm_ops(void) 1378 { 1379 int ret; 1380 1381 spin_lock_init(&fw_cache.name_lock); 1382 INIT_LIST_HEAD(&fw_cache.fw_names); 1383 1384 INIT_DELAYED_WORK(&fw_cache.work, 1385 device_uncache_fw_images_work); 1386 1387 fw_cache.pm_notify.notifier_call = fw_pm_notify; 1388 ret = register_pm_notifier(&fw_cache.pm_notify); 1389 if (ret) 1390 return ret; 1391 1392 register_syscore_ops(&fw_syscore_ops); 1393 1394 return ret; 1395 } 1396 1397 static inline void unregister_fw_pm_ops(void) 1398 { 1399 unregister_syscore_ops(&fw_syscore_ops); 1400 unregister_pm_notifier(&fw_cache.pm_notify); 1401 } 1402 #else 1403 static int fw_cache_piggyback_on_request(const char *name) 1404 { 1405 return 0; 1406 } 1407 static inline int register_fw_pm_ops(void) 1408 { 1409 return 0; 1410 } 1411 static inline void unregister_fw_pm_ops(void) 1412 { 1413 } 1414 #endif 1415 1416 static void __init fw_cache_init(void) 1417 { 1418 spin_lock_init(&fw_cache.lock); 1419 INIT_LIST_HEAD(&fw_cache.head); 1420 fw_cache.state = FW_LOADER_NO_CACHE; 1421 } 1422 1423 static int fw_shutdown_notify(struct notifier_block *unused1, 1424 unsigned long unused2, void *unused3) 1425 { 1426 /* 1427 * Kill all pending fallback requests to avoid both stalling shutdown, 1428 * and avoid a deadlock with the usermode_lock. 1429 */ 1430 kill_pending_fw_fallback_reqs(false); 1431 1432 return NOTIFY_DONE; 1433 } 1434 1435 static struct notifier_block fw_shutdown_nb = { 1436 .notifier_call = fw_shutdown_notify, 1437 }; 1438 1439 static int __init firmware_class_init(void) 1440 { 1441 int ret; 1442 1443 /* No need to unfold these on exit */ 1444 fw_cache_init(); 1445 1446 ret = register_fw_pm_ops(); 1447 if (ret) 1448 return ret; 1449 1450 ret = register_reboot_notifier(&fw_shutdown_nb); 1451 if (ret) 1452 goto out; 1453 1454 return register_sysfs_loader(); 1455 1456 out: 1457 unregister_fw_pm_ops(); 1458 return ret; 1459 } 1460 1461 static void __exit firmware_class_exit(void) 1462 { 1463 unregister_fw_pm_ops(); 1464 unregister_reboot_notifier(&fw_shutdown_nb); 1465 unregister_sysfs_loader(); 1466 } 1467 1468 fs_initcall(firmware_class_init); 1469 module_exit(firmware_class_exit); 1470