1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * main.c - Multi purpose firmware loading support 4 * 5 * Copyright (c) 2003 Manuel Estrada Sainz 6 * 7 * Please see Documentation/driver-api/firmware/ for more information. 8 * 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/capability.h> 14 #include <linux/device.h> 15 #include <linux/kernel_read_file.h> 16 #include <linux/module.h> 17 #include <linux/init.h> 18 #include <linux/initrd.h> 19 #include <linux/timer.h> 20 #include <linux/vmalloc.h> 21 #include <linux/interrupt.h> 22 #include <linux/bitops.h> 23 #include <linux/mutex.h> 24 #include <linux/workqueue.h> 25 #include <linux/highmem.h> 26 #include <linux/firmware.h> 27 #include <linux/slab.h> 28 #include <linux/sched.h> 29 #include <linux/file.h> 30 #include <linux/list.h> 31 #include <linux/fs.h> 32 #include <linux/async.h> 33 #include <linux/pm.h> 34 #include <linux/suspend.h> 35 #include <linux/syscore_ops.h> 36 #include <linux/reboot.h> 37 #include <linux/security.h> 38 #include <linux/xz.h> 39 40 #include <generated/utsrelease.h> 41 42 #include "../base.h" 43 #include "firmware.h" 44 #include "fallback.h" 45 46 MODULE_AUTHOR("Manuel Estrada Sainz"); 47 MODULE_DESCRIPTION("Multi purpose firmware loading support"); 48 MODULE_LICENSE("GPL"); 49 50 struct firmware_cache { 51 /* firmware_buf instance will be added into the below list */ 52 spinlock_t lock; 53 struct list_head head; 54 int state; 55 56 #ifdef CONFIG_FW_CACHE 57 /* 58 * Names of firmware images which have been cached successfully 59 * will be added into the below list so that device uncache 60 * helper can trace which firmware images have been cached 61 * before. 62 */ 63 spinlock_t name_lock; 64 struct list_head fw_names; 65 66 struct delayed_work work; 67 68 struct notifier_block pm_notify; 69 #endif 70 }; 71 72 struct fw_cache_entry { 73 struct list_head list; 74 const char *name; 75 }; 76 77 struct fw_name_devm { 78 unsigned long magic; 79 const char *name; 80 }; 81 82 static inline struct fw_priv *to_fw_priv(struct kref *ref) 83 { 84 return container_of(ref, struct fw_priv, ref); 85 } 86 87 #define FW_LOADER_NO_CACHE 0 88 #define FW_LOADER_START_CACHE 1 89 90 /* fw_lock could be moved to 'struct fw_sysfs' but since it is just 91 * guarding for corner cases a global lock should be OK */ 92 DEFINE_MUTEX(fw_lock); 93 94 static struct firmware_cache fw_cache; 95 96 static void fw_state_init(struct fw_priv *fw_priv) 97 { 98 struct fw_state *fw_st = &fw_priv->fw_st; 99 100 init_completion(&fw_st->completion); 101 fw_st->status = FW_STATUS_UNKNOWN; 102 } 103 104 static inline int fw_state_wait(struct fw_priv *fw_priv) 105 { 106 return __fw_state_wait_common(fw_priv, MAX_SCHEDULE_TIMEOUT); 107 } 108 109 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv); 110 111 static struct fw_priv *__allocate_fw_priv(const char *fw_name, 112 struct firmware_cache *fwc, 113 void *dbuf, 114 size_t size, 115 size_t offset, 116 u32 opt_flags) 117 { 118 struct fw_priv *fw_priv; 119 120 /* For a partial read, the buffer must be preallocated. */ 121 if ((opt_flags & FW_OPT_PARTIAL) && !dbuf) 122 return NULL; 123 124 /* Only partial reads are allowed to use an offset. */ 125 if (offset != 0 && !(opt_flags & FW_OPT_PARTIAL)) 126 return NULL; 127 128 fw_priv = kzalloc(sizeof(*fw_priv), GFP_ATOMIC); 129 if (!fw_priv) 130 return NULL; 131 132 fw_priv->fw_name = kstrdup_const(fw_name, GFP_ATOMIC); 133 if (!fw_priv->fw_name) { 134 kfree(fw_priv); 135 return NULL; 136 } 137 138 kref_init(&fw_priv->ref); 139 fw_priv->fwc = fwc; 140 fw_priv->data = dbuf; 141 fw_priv->allocated_size = size; 142 fw_priv->offset = offset; 143 fw_priv->opt_flags = opt_flags; 144 fw_state_init(fw_priv); 145 #ifdef CONFIG_FW_LOADER_USER_HELPER 146 INIT_LIST_HEAD(&fw_priv->pending_list); 147 #endif 148 149 pr_debug("%s: fw-%s fw_priv=%p\n", __func__, fw_name, fw_priv); 150 151 return fw_priv; 152 } 153 154 static struct fw_priv *__lookup_fw_priv(const char *fw_name) 155 { 156 struct fw_priv *tmp; 157 struct firmware_cache *fwc = &fw_cache; 158 159 list_for_each_entry(tmp, &fwc->head, list) 160 if (!strcmp(tmp->fw_name, fw_name)) 161 return tmp; 162 return NULL; 163 } 164 165 /* Returns 1 for batching firmware requests with the same name */ 166 static int alloc_lookup_fw_priv(const char *fw_name, 167 struct firmware_cache *fwc, 168 struct fw_priv **fw_priv, 169 void *dbuf, 170 size_t size, 171 size_t offset, 172 u32 opt_flags) 173 { 174 struct fw_priv *tmp; 175 176 spin_lock(&fwc->lock); 177 /* 178 * Do not merge requests that are marked to be non-cached or 179 * are performing partial reads. 180 */ 181 if (!(opt_flags & (FW_OPT_NOCACHE | FW_OPT_PARTIAL))) { 182 tmp = __lookup_fw_priv(fw_name); 183 if (tmp) { 184 kref_get(&tmp->ref); 185 spin_unlock(&fwc->lock); 186 *fw_priv = tmp; 187 pr_debug("batched request - sharing the same struct fw_priv and lookup for multiple requests\n"); 188 return 1; 189 } 190 } 191 192 tmp = __allocate_fw_priv(fw_name, fwc, dbuf, size, offset, opt_flags); 193 if (tmp) { 194 INIT_LIST_HEAD(&tmp->list); 195 if (!(opt_flags & FW_OPT_NOCACHE)) 196 list_add(&tmp->list, &fwc->head); 197 } 198 spin_unlock(&fwc->lock); 199 200 *fw_priv = tmp; 201 202 return tmp ? 0 : -ENOMEM; 203 } 204 205 static void __free_fw_priv(struct kref *ref) 206 __releases(&fwc->lock) 207 { 208 struct fw_priv *fw_priv = to_fw_priv(ref); 209 struct firmware_cache *fwc = fw_priv->fwc; 210 211 pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n", 212 __func__, fw_priv->fw_name, fw_priv, fw_priv->data, 213 (unsigned int)fw_priv->size); 214 215 list_del(&fw_priv->list); 216 spin_unlock(&fwc->lock); 217 218 if (fw_is_paged_buf(fw_priv)) 219 fw_free_paged_buf(fw_priv); 220 else if (!fw_priv->allocated_size) 221 vfree(fw_priv->data); 222 223 kfree_const(fw_priv->fw_name); 224 kfree(fw_priv); 225 } 226 227 static void free_fw_priv(struct fw_priv *fw_priv) 228 { 229 struct firmware_cache *fwc = fw_priv->fwc; 230 spin_lock(&fwc->lock); 231 if (!kref_put(&fw_priv->ref, __free_fw_priv)) 232 spin_unlock(&fwc->lock); 233 } 234 235 #ifdef CONFIG_FW_LOADER_PAGED_BUF 236 bool fw_is_paged_buf(struct fw_priv *fw_priv) 237 { 238 return fw_priv->is_paged_buf; 239 } 240 241 void fw_free_paged_buf(struct fw_priv *fw_priv) 242 { 243 int i; 244 245 if (!fw_priv->pages) 246 return; 247 248 vunmap(fw_priv->data); 249 250 for (i = 0; i < fw_priv->nr_pages; i++) 251 __free_page(fw_priv->pages[i]); 252 kvfree(fw_priv->pages); 253 fw_priv->pages = NULL; 254 fw_priv->page_array_size = 0; 255 fw_priv->nr_pages = 0; 256 } 257 258 int fw_grow_paged_buf(struct fw_priv *fw_priv, int pages_needed) 259 { 260 /* If the array of pages is too small, grow it */ 261 if (fw_priv->page_array_size < pages_needed) { 262 int new_array_size = max(pages_needed, 263 fw_priv->page_array_size * 2); 264 struct page **new_pages; 265 266 new_pages = kvmalloc_array(new_array_size, sizeof(void *), 267 GFP_KERNEL); 268 if (!new_pages) 269 return -ENOMEM; 270 memcpy(new_pages, fw_priv->pages, 271 fw_priv->page_array_size * sizeof(void *)); 272 memset(&new_pages[fw_priv->page_array_size], 0, sizeof(void *) * 273 (new_array_size - fw_priv->page_array_size)); 274 kvfree(fw_priv->pages); 275 fw_priv->pages = new_pages; 276 fw_priv->page_array_size = new_array_size; 277 } 278 279 while (fw_priv->nr_pages < pages_needed) { 280 fw_priv->pages[fw_priv->nr_pages] = 281 alloc_page(GFP_KERNEL | __GFP_HIGHMEM); 282 283 if (!fw_priv->pages[fw_priv->nr_pages]) 284 return -ENOMEM; 285 fw_priv->nr_pages++; 286 } 287 288 return 0; 289 } 290 291 int fw_map_paged_buf(struct fw_priv *fw_priv) 292 { 293 /* one pages buffer should be mapped/unmapped only once */ 294 if (!fw_priv->pages) 295 return 0; 296 297 vunmap(fw_priv->data); 298 fw_priv->data = vmap(fw_priv->pages, fw_priv->nr_pages, 0, 299 PAGE_KERNEL_RO); 300 if (!fw_priv->data) 301 return -ENOMEM; 302 303 return 0; 304 } 305 #endif 306 307 /* 308 * XZ-compressed firmware support 309 */ 310 #ifdef CONFIG_FW_LOADER_COMPRESS 311 /* show an error and return the standard error code */ 312 static int fw_decompress_xz_error(struct device *dev, enum xz_ret xz_ret) 313 { 314 if (xz_ret != XZ_STREAM_END) { 315 dev_warn(dev, "xz decompression failed (xz_ret=%d)\n", xz_ret); 316 return xz_ret == XZ_MEM_ERROR ? -ENOMEM : -EINVAL; 317 } 318 return 0; 319 } 320 321 /* single-shot decompression onto the pre-allocated buffer */ 322 static int fw_decompress_xz_single(struct device *dev, struct fw_priv *fw_priv, 323 size_t in_size, const void *in_buffer) 324 { 325 struct xz_dec *xz_dec; 326 struct xz_buf xz_buf; 327 enum xz_ret xz_ret; 328 329 xz_dec = xz_dec_init(XZ_SINGLE, (u32)-1); 330 if (!xz_dec) 331 return -ENOMEM; 332 333 xz_buf.in_size = in_size; 334 xz_buf.in = in_buffer; 335 xz_buf.in_pos = 0; 336 xz_buf.out_size = fw_priv->allocated_size; 337 xz_buf.out = fw_priv->data; 338 xz_buf.out_pos = 0; 339 340 xz_ret = xz_dec_run(xz_dec, &xz_buf); 341 xz_dec_end(xz_dec); 342 343 fw_priv->size = xz_buf.out_pos; 344 return fw_decompress_xz_error(dev, xz_ret); 345 } 346 347 /* decompression on paged buffer and map it */ 348 static int fw_decompress_xz_pages(struct device *dev, struct fw_priv *fw_priv, 349 size_t in_size, const void *in_buffer) 350 { 351 struct xz_dec *xz_dec; 352 struct xz_buf xz_buf; 353 enum xz_ret xz_ret; 354 struct page *page; 355 int err = 0; 356 357 xz_dec = xz_dec_init(XZ_DYNALLOC, (u32)-1); 358 if (!xz_dec) 359 return -ENOMEM; 360 361 xz_buf.in_size = in_size; 362 xz_buf.in = in_buffer; 363 xz_buf.in_pos = 0; 364 365 fw_priv->is_paged_buf = true; 366 fw_priv->size = 0; 367 do { 368 if (fw_grow_paged_buf(fw_priv, fw_priv->nr_pages + 1)) { 369 err = -ENOMEM; 370 goto out; 371 } 372 373 /* decompress onto the new allocated page */ 374 page = fw_priv->pages[fw_priv->nr_pages - 1]; 375 xz_buf.out = kmap(page); 376 xz_buf.out_pos = 0; 377 xz_buf.out_size = PAGE_SIZE; 378 xz_ret = xz_dec_run(xz_dec, &xz_buf); 379 kunmap(page); 380 fw_priv->size += xz_buf.out_pos; 381 /* partial decompression means either end or error */ 382 if (xz_buf.out_pos != PAGE_SIZE) 383 break; 384 } while (xz_ret == XZ_OK); 385 386 err = fw_decompress_xz_error(dev, xz_ret); 387 if (!err) 388 err = fw_map_paged_buf(fw_priv); 389 390 out: 391 xz_dec_end(xz_dec); 392 return err; 393 } 394 395 static int fw_decompress_xz(struct device *dev, struct fw_priv *fw_priv, 396 size_t in_size, const void *in_buffer) 397 { 398 /* if the buffer is pre-allocated, we can perform in single-shot mode */ 399 if (fw_priv->data) 400 return fw_decompress_xz_single(dev, fw_priv, in_size, in_buffer); 401 else 402 return fw_decompress_xz_pages(dev, fw_priv, in_size, in_buffer); 403 } 404 #endif /* CONFIG_FW_LOADER_COMPRESS */ 405 406 /* direct firmware loading support */ 407 static char fw_path_para[256]; 408 static const char * const fw_path[] = { 409 fw_path_para, 410 "/lib/firmware/updates/" UTS_RELEASE, 411 "/lib/firmware/updates", 412 "/lib/firmware/" UTS_RELEASE, 413 "/lib/firmware" 414 }; 415 416 /* 417 * Typical usage is that passing 'firmware_class.path=$CUSTOMIZED_PATH' 418 * from kernel command line because firmware_class is generally built in 419 * kernel instead of module. 420 */ 421 module_param_string(path, fw_path_para, sizeof(fw_path_para), 0644); 422 MODULE_PARM_DESC(path, "customized firmware image search path with a higher priority than default path"); 423 424 static int 425 fw_get_filesystem_firmware(struct device *device, struct fw_priv *fw_priv, 426 const char *suffix, 427 int (*decompress)(struct device *dev, 428 struct fw_priv *fw_priv, 429 size_t in_size, 430 const void *in_buffer)) 431 { 432 size_t size; 433 int i, len; 434 int rc = -ENOENT; 435 char *path; 436 size_t msize = INT_MAX; 437 void *buffer = NULL; 438 439 /* Already populated data member means we're loading into a buffer */ 440 if (!decompress && fw_priv->data) { 441 buffer = fw_priv->data; 442 msize = fw_priv->allocated_size; 443 } 444 445 path = __getname(); 446 if (!path) 447 return -ENOMEM; 448 449 wait_for_initramfs(); 450 for (i = 0; i < ARRAY_SIZE(fw_path); i++) { 451 size_t file_size = 0; 452 size_t *file_size_ptr = NULL; 453 454 /* skip the unset customized path */ 455 if (!fw_path[i][0]) 456 continue; 457 458 len = snprintf(path, PATH_MAX, "%s/%s%s", 459 fw_path[i], fw_priv->fw_name, suffix); 460 if (len >= PATH_MAX) { 461 rc = -ENAMETOOLONG; 462 break; 463 } 464 465 fw_priv->size = 0; 466 467 /* 468 * The total file size is only examined when doing a partial 469 * read; the "full read" case needs to fail if the whole 470 * firmware was not completely loaded. 471 */ 472 if ((fw_priv->opt_flags & FW_OPT_PARTIAL) && buffer) 473 file_size_ptr = &file_size; 474 475 /* load firmware files from the mount namespace of init */ 476 rc = kernel_read_file_from_path_initns(path, fw_priv->offset, 477 &buffer, msize, 478 file_size_ptr, 479 READING_FIRMWARE); 480 if (rc < 0) { 481 if (rc != -ENOENT) 482 dev_warn(device, "loading %s failed with error %d\n", 483 path, rc); 484 else 485 dev_dbg(device, "loading %s failed for no such file or directory.\n", 486 path); 487 continue; 488 } 489 size = rc; 490 rc = 0; 491 492 dev_dbg(device, "Loading firmware from %s\n", path); 493 if (decompress) { 494 dev_dbg(device, "f/w decompressing %s\n", 495 fw_priv->fw_name); 496 rc = decompress(device, fw_priv, size, buffer); 497 /* discard the superfluous original content */ 498 vfree(buffer); 499 buffer = NULL; 500 if (rc) { 501 fw_free_paged_buf(fw_priv); 502 continue; 503 } 504 } else { 505 dev_dbg(device, "direct-loading %s\n", 506 fw_priv->fw_name); 507 if (!fw_priv->data) 508 fw_priv->data = buffer; 509 fw_priv->size = size; 510 } 511 fw_state_done(fw_priv); 512 break; 513 } 514 __putname(path); 515 516 return rc; 517 } 518 519 /* firmware holds the ownership of pages */ 520 static void firmware_free_data(const struct firmware *fw) 521 { 522 /* Loaded directly? */ 523 if (!fw->priv) { 524 vfree(fw->data); 525 return; 526 } 527 free_fw_priv(fw->priv); 528 } 529 530 /* store the pages buffer info firmware from buf */ 531 static void fw_set_page_data(struct fw_priv *fw_priv, struct firmware *fw) 532 { 533 fw->priv = fw_priv; 534 fw->size = fw_priv->size; 535 fw->data = fw_priv->data; 536 537 pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n", 538 __func__, fw_priv->fw_name, fw_priv, fw_priv->data, 539 (unsigned int)fw_priv->size); 540 } 541 542 #ifdef CONFIG_FW_CACHE 543 static void fw_name_devm_release(struct device *dev, void *res) 544 { 545 struct fw_name_devm *fwn = res; 546 547 if (fwn->magic == (unsigned long)&fw_cache) 548 pr_debug("%s: fw_name-%s devm-%p released\n", 549 __func__, fwn->name, res); 550 kfree_const(fwn->name); 551 } 552 553 static int fw_devm_match(struct device *dev, void *res, 554 void *match_data) 555 { 556 struct fw_name_devm *fwn = res; 557 558 return (fwn->magic == (unsigned long)&fw_cache) && 559 !strcmp(fwn->name, match_data); 560 } 561 562 static struct fw_name_devm *fw_find_devm_name(struct device *dev, 563 const char *name) 564 { 565 struct fw_name_devm *fwn; 566 567 fwn = devres_find(dev, fw_name_devm_release, 568 fw_devm_match, (void *)name); 569 return fwn; 570 } 571 572 static bool fw_cache_is_setup(struct device *dev, const char *name) 573 { 574 struct fw_name_devm *fwn; 575 576 fwn = fw_find_devm_name(dev, name); 577 if (fwn) 578 return true; 579 580 return false; 581 } 582 583 /* add firmware name into devres list */ 584 static int fw_add_devm_name(struct device *dev, const char *name) 585 { 586 struct fw_name_devm *fwn; 587 588 if (fw_cache_is_setup(dev, name)) 589 return 0; 590 591 fwn = devres_alloc(fw_name_devm_release, sizeof(struct fw_name_devm), 592 GFP_KERNEL); 593 if (!fwn) 594 return -ENOMEM; 595 fwn->name = kstrdup_const(name, GFP_KERNEL); 596 if (!fwn->name) { 597 devres_free(fwn); 598 return -ENOMEM; 599 } 600 601 fwn->magic = (unsigned long)&fw_cache; 602 devres_add(dev, fwn); 603 604 return 0; 605 } 606 #else 607 static bool fw_cache_is_setup(struct device *dev, const char *name) 608 { 609 return false; 610 } 611 612 static int fw_add_devm_name(struct device *dev, const char *name) 613 { 614 return 0; 615 } 616 #endif 617 618 int assign_fw(struct firmware *fw, struct device *device) 619 { 620 struct fw_priv *fw_priv = fw->priv; 621 int ret; 622 623 mutex_lock(&fw_lock); 624 if (!fw_priv->size || fw_state_is_aborted(fw_priv)) { 625 mutex_unlock(&fw_lock); 626 return -ENOENT; 627 } 628 629 /* 630 * add firmware name into devres list so that we can auto cache 631 * and uncache firmware for device. 632 * 633 * device may has been deleted already, but the problem 634 * should be fixed in devres or driver core. 635 */ 636 /* don't cache firmware handled without uevent */ 637 if (device && (fw_priv->opt_flags & FW_OPT_UEVENT) && 638 !(fw_priv->opt_flags & FW_OPT_NOCACHE)) { 639 ret = fw_add_devm_name(device, fw_priv->fw_name); 640 if (ret) { 641 mutex_unlock(&fw_lock); 642 return ret; 643 } 644 } 645 646 /* 647 * After caching firmware image is started, let it piggyback 648 * on request firmware. 649 */ 650 if (!(fw_priv->opt_flags & FW_OPT_NOCACHE) && 651 fw_priv->fwc->state == FW_LOADER_START_CACHE) 652 fw_cache_piggyback_on_request(fw_priv); 653 654 /* pass the pages buffer to driver at the last minute */ 655 fw_set_page_data(fw_priv, fw); 656 mutex_unlock(&fw_lock); 657 return 0; 658 } 659 660 /* prepare firmware and firmware_buf structs; 661 * return 0 if a firmware is already assigned, 1 if need to load one, 662 * or a negative error code 663 */ 664 static int 665 _request_firmware_prepare(struct firmware **firmware_p, const char *name, 666 struct device *device, void *dbuf, size_t size, 667 size_t offset, u32 opt_flags) 668 { 669 struct firmware *firmware; 670 struct fw_priv *fw_priv; 671 int ret; 672 673 *firmware_p = firmware = kzalloc(sizeof(*firmware), GFP_KERNEL); 674 if (!firmware) { 675 dev_err(device, "%s: kmalloc(struct firmware) failed\n", 676 __func__); 677 return -ENOMEM; 678 } 679 680 if (firmware_request_builtin_buf(firmware, name, dbuf, size)) { 681 dev_dbg(device, "using built-in %s\n", name); 682 return 0; /* assigned */ 683 } 684 685 ret = alloc_lookup_fw_priv(name, &fw_cache, &fw_priv, dbuf, size, 686 offset, opt_flags); 687 688 /* 689 * bind with 'priv' now to avoid warning in failure path 690 * of requesting firmware. 691 */ 692 firmware->priv = fw_priv; 693 694 if (ret > 0) { 695 ret = fw_state_wait(fw_priv); 696 if (!ret) { 697 fw_set_page_data(fw_priv, firmware); 698 return 0; /* assigned */ 699 } 700 } 701 702 if (ret < 0) 703 return ret; 704 return 1; /* need to load */ 705 } 706 707 /* 708 * Batched requests need only one wake, we need to do this step last due to the 709 * fallback mechanism. The buf is protected with kref_get(), and it won't be 710 * released until the last user calls release_firmware(). 711 * 712 * Failed batched requests are possible as well, in such cases we just share 713 * the struct fw_priv and won't release it until all requests are woken 714 * and have gone through this same path. 715 */ 716 static void fw_abort_batch_reqs(struct firmware *fw) 717 { 718 struct fw_priv *fw_priv; 719 720 /* Loaded directly? */ 721 if (!fw || !fw->priv) 722 return; 723 724 fw_priv = fw->priv; 725 mutex_lock(&fw_lock); 726 if (!fw_state_is_aborted(fw_priv)) 727 fw_state_aborted(fw_priv); 728 mutex_unlock(&fw_lock); 729 } 730 731 /* called from request_firmware() and request_firmware_work_func() */ 732 static int 733 _request_firmware(const struct firmware **firmware_p, const char *name, 734 struct device *device, void *buf, size_t size, 735 size_t offset, u32 opt_flags) 736 { 737 struct firmware *fw = NULL; 738 bool nondirect = false; 739 int ret; 740 741 if (!firmware_p) 742 return -EINVAL; 743 744 if (!name || name[0] == '\0') { 745 ret = -EINVAL; 746 goto out; 747 } 748 749 ret = _request_firmware_prepare(&fw, name, device, buf, size, 750 offset, opt_flags); 751 if (ret <= 0) /* error or already assigned */ 752 goto out; 753 754 ret = fw_get_filesystem_firmware(device, fw->priv, "", NULL); 755 756 /* Only full reads can support decompression, platform, and sysfs. */ 757 if (!(opt_flags & FW_OPT_PARTIAL)) 758 nondirect = true; 759 760 #ifdef CONFIG_FW_LOADER_COMPRESS 761 if (ret == -ENOENT && nondirect) 762 ret = fw_get_filesystem_firmware(device, fw->priv, ".xz", 763 fw_decompress_xz); 764 #endif 765 if (ret == -ENOENT && nondirect) 766 ret = firmware_fallback_platform(fw->priv); 767 768 if (ret) { 769 if (!(opt_flags & FW_OPT_NO_WARN)) 770 dev_warn(device, 771 "Direct firmware load for %s failed with error %d\n", 772 name, ret); 773 if (nondirect) 774 ret = firmware_fallback_sysfs(fw, name, device, 775 opt_flags, ret); 776 } else 777 ret = assign_fw(fw, device); 778 779 out: 780 if (ret < 0) { 781 fw_abort_batch_reqs(fw); 782 release_firmware(fw); 783 fw = NULL; 784 } 785 786 *firmware_p = fw; 787 return ret; 788 } 789 790 /** 791 * request_firmware() - send firmware request and wait for it 792 * @firmware_p: pointer to firmware image 793 * @name: name of firmware file 794 * @device: device for which firmware is being loaded 795 * 796 * @firmware_p will be used to return a firmware image by the name 797 * of @name for device @device. 798 * 799 * Should be called from user context where sleeping is allowed. 800 * 801 * @name will be used as $FIRMWARE in the uevent environment and 802 * should be distinctive enough not to be confused with any other 803 * firmware image for this or any other device. 804 * 805 * Caller must hold the reference count of @device. 806 * 807 * The function can be called safely inside device's suspend and 808 * resume callback. 809 **/ 810 int 811 request_firmware(const struct firmware **firmware_p, const char *name, 812 struct device *device) 813 { 814 int ret; 815 816 /* Need to pin this module until return */ 817 __module_get(THIS_MODULE); 818 ret = _request_firmware(firmware_p, name, device, NULL, 0, 0, 819 FW_OPT_UEVENT); 820 module_put(THIS_MODULE); 821 return ret; 822 } 823 EXPORT_SYMBOL(request_firmware); 824 825 /** 826 * firmware_request_nowarn() - request for an optional fw module 827 * @firmware: pointer to firmware image 828 * @name: name of firmware file 829 * @device: device for which firmware is being loaded 830 * 831 * This function is similar in behaviour to request_firmware(), except it 832 * doesn't produce warning messages when the file is not found. The sysfs 833 * fallback mechanism is enabled if direct filesystem lookup fails. However, 834 * failures to find the firmware file with it are still suppressed. It is 835 * therefore up to the driver to check for the return value of this call and to 836 * decide when to inform the users of errors. 837 **/ 838 int firmware_request_nowarn(const struct firmware **firmware, const char *name, 839 struct device *device) 840 { 841 int ret; 842 843 /* Need to pin this module until return */ 844 __module_get(THIS_MODULE); 845 ret = _request_firmware(firmware, name, device, NULL, 0, 0, 846 FW_OPT_UEVENT | FW_OPT_NO_WARN); 847 module_put(THIS_MODULE); 848 return ret; 849 } 850 EXPORT_SYMBOL_GPL(firmware_request_nowarn); 851 852 /** 853 * request_firmware_direct() - load firmware directly without usermode helper 854 * @firmware_p: pointer to firmware image 855 * @name: name of firmware file 856 * @device: device for which firmware is being loaded 857 * 858 * This function works pretty much like request_firmware(), but this doesn't 859 * fall back to usermode helper even if the firmware couldn't be loaded 860 * directly from fs. Hence it's useful for loading optional firmwares, which 861 * aren't always present, without extra long timeouts of udev. 862 **/ 863 int request_firmware_direct(const struct firmware **firmware_p, 864 const char *name, struct device *device) 865 { 866 int ret; 867 868 __module_get(THIS_MODULE); 869 ret = _request_firmware(firmware_p, name, device, NULL, 0, 0, 870 FW_OPT_UEVENT | FW_OPT_NO_WARN | 871 FW_OPT_NOFALLBACK_SYSFS); 872 module_put(THIS_MODULE); 873 return ret; 874 } 875 EXPORT_SYMBOL_GPL(request_firmware_direct); 876 877 /** 878 * firmware_request_platform() - request firmware with platform-fw fallback 879 * @firmware: pointer to firmware image 880 * @name: name of firmware file 881 * @device: device for which firmware is being loaded 882 * 883 * This function is similar in behaviour to request_firmware, except that if 884 * direct filesystem lookup fails, it will fallback to looking for a copy of the 885 * requested firmware embedded in the platform's main (e.g. UEFI) firmware. 886 **/ 887 int firmware_request_platform(const struct firmware **firmware, 888 const char *name, struct device *device) 889 { 890 int ret; 891 892 /* Need to pin this module until return */ 893 __module_get(THIS_MODULE); 894 ret = _request_firmware(firmware, name, device, NULL, 0, 0, 895 FW_OPT_UEVENT | FW_OPT_FALLBACK_PLATFORM); 896 module_put(THIS_MODULE); 897 return ret; 898 } 899 EXPORT_SYMBOL_GPL(firmware_request_platform); 900 901 /** 902 * firmware_request_cache() - cache firmware for suspend so resume can use it 903 * @name: name of firmware file 904 * @device: device for which firmware should be cached for 905 * 906 * There are some devices with an optimization that enables the device to not 907 * require loading firmware on system reboot. This optimization may still 908 * require the firmware present on resume from suspend. This routine can be 909 * used to ensure the firmware is present on resume from suspend in these 910 * situations. This helper is not compatible with drivers which use 911 * request_firmware_into_buf() or request_firmware_nowait() with no uevent set. 912 **/ 913 int firmware_request_cache(struct device *device, const char *name) 914 { 915 int ret; 916 917 mutex_lock(&fw_lock); 918 ret = fw_add_devm_name(device, name); 919 mutex_unlock(&fw_lock); 920 921 return ret; 922 } 923 EXPORT_SYMBOL_GPL(firmware_request_cache); 924 925 /** 926 * request_firmware_into_buf() - load firmware into a previously allocated buffer 927 * @firmware_p: pointer to firmware image 928 * @name: name of firmware file 929 * @device: device for which firmware is being loaded and DMA region allocated 930 * @buf: address of buffer to load firmware into 931 * @size: size of buffer 932 * 933 * This function works pretty much like request_firmware(), but it doesn't 934 * allocate a buffer to hold the firmware data. Instead, the firmware 935 * is loaded directly into the buffer pointed to by @buf and the @firmware_p 936 * data member is pointed at @buf. 937 * 938 * This function doesn't cache firmware either. 939 */ 940 int 941 request_firmware_into_buf(const struct firmware **firmware_p, const char *name, 942 struct device *device, void *buf, size_t size) 943 { 944 int ret; 945 946 if (fw_cache_is_setup(device, name)) 947 return -EOPNOTSUPP; 948 949 __module_get(THIS_MODULE); 950 ret = _request_firmware(firmware_p, name, device, buf, size, 0, 951 FW_OPT_UEVENT | FW_OPT_NOCACHE); 952 module_put(THIS_MODULE); 953 return ret; 954 } 955 EXPORT_SYMBOL(request_firmware_into_buf); 956 957 /** 958 * request_partial_firmware_into_buf() - load partial firmware into a previously allocated buffer 959 * @firmware_p: pointer to firmware image 960 * @name: name of firmware file 961 * @device: device for which firmware is being loaded and DMA region allocated 962 * @buf: address of buffer to load firmware into 963 * @size: size of buffer 964 * @offset: offset into file to read 965 * 966 * This function works pretty much like request_firmware_into_buf except 967 * it allows a partial read of the file. 968 */ 969 int 970 request_partial_firmware_into_buf(const struct firmware **firmware_p, 971 const char *name, struct device *device, 972 void *buf, size_t size, size_t offset) 973 { 974 int ret; 975 976 if (fw_cache_is_setup(device, name)) 977 return -EOPNOTSUPP; 978 979 __module_get(THIS_MODULE); 980 ret = _request_firmware(firmware_p, name, device, buf, size, offset, 981 FW_OPT_UEVENT | FW_OPT_NOCACHE | 982 FW_OPT_PARTIAL); 983 module_put(THIS_MODULE); 984 return ret; 985 } 986 EXPORT_SYMBOL(request_partial_firmware_into_buf); 987 988 /** 989 * release_firmware() - release the resource associated with a firmware image 990 * @fw: firmware resource to release 991 **/ 992 void release_firmware(const struct firmware *fw) 993 { 994 if (fw) { 995 if (!firmware_is_builtin(fw)) 996 firmware_free_data(fw); 997 kfree(fw); 998 } 999 } 1000 EXPORT_SYMBOL(release_firmware); 1001 1002 /* Async support */ 1003 struct firmware_work { 1004 struct work_struct work; 1005 struct module *module; 1006 const char *name; 1007 struct device *device; 1008 void *context; 1009 void (*cont)(const struct firmware *fw, void *context); 1010 u32 opt_flags; 1011 }; 1012 1013 static void request_firmware_work_func(struct work_struct *work) 1014 { 1015 struct firmware_work *fw_work; 1016 const struct firmware *fw; 1017 1018 fw_work = container_of(work, struct firmware_work, work); 1019 1020 _request_firmware(&fw, fw_work->name, fw_work->device, NULL, 0, 0, 1021 fw_work->opt_flags); 1022 fw_work->cont(fw, fw_work->context); 1023 put_device(fw_work->device); /* taken in request_firmware_nowait() */ 1024 1025 module_put(fw_work->module); 1026 kfree_const(fw_work->name); 1027 kfree(fw_work); 1028 } 1029 1030 /** 1031 * request_firmware_nowait() - asynchronous version of request_firmware 1032 * @module: module requesting the firmware 1033 * @uevent: sends uevent to copy the firmware image if this flag 1034 * is non-zero else the firmware copy must be done manually. 1035 * @name: name of firmware file 1036 * @device: device for which firmware is being loaded 1037 * @gfp: allocation flags 1038 * @context: will be passed over to @cont, and 1039 * @fw may be %NULL if firmware request fails. 1040 * @cont: function will be called asynchronously when the firmware 1041 * request is over. 1042 * 1043 * Caller must hold the reference count of @device. 1044 * 1045 * Asynchronous variant of request_firmware() for user contexts: 1046 * - sleep for as small periods as possible since it may 1047 * increase kernel boot time of built-in device drivers 1048 * requesting firmware in their ->probe() methods, if 1049 * @gfp is GFP_KERNEL. 1050 * 1051 * - can't sleep at all if @gfp is GFP_ATOMIC. 1052 **/ 1053 int 1054 request_firmware_nowait( 1055 struct module *module, bool uevent, 1056 const char *name, struct device *device, gfp_t gfp, void *context, 1057 void (*cont)(const struct firmware *fw, void *context)) 1058 { 1059 struct firmware_work *fw_work; 1060 1061 fw_work = kzalloc(sizeof(struct firmware_work), gfp); 1062 if (!fw_work) 1063 return -ENOMEM; 1064 1065 fw_work->module = module; 1066 fw_work->name = kstrdup_const(name, gfp); 1067 if (!fw_work->name) { 1068 kfree(fw_work); 1069 return -ENOMEM; 1070 } 1071 fw_work->device = device; 1072 fw_work->context = context; 1073 fw_work->cont = cont; 1074 fw_work->opt_flags = FW_OPT_NOWAIT | 1075 (uevent ? FW_OPT_UEVENT : FW_OPT_USERHELPER); 1076 1077 if (!uevent && fw_cache_is_setup(device, name)) { 1078 kfree_const(fw_work->name); 1079 kfree(fw_work); 1080 return -EOPNOTSUPP; 1081 } 1082 1083 if (!try_module_get(module)) { 1084 kfree_const(fw_work->name); 1085 kfree(fw_work); 1086 return -EFAULT; 1087 } 1088 1089 get_device(fw_work->device); 1090 INIT_WORK(&fw_work->work, request_firmware_work_func); 1091 schedule_work(&fw_work->work); 1092 return 0; 1093 } 1094 EXPORT_SYMBOL(request_firmware_nowait); 1095 1096 #ifdef CONFIG_FW_CACHE 1097 static ASYNC_DOMAIN_EXCLUSIVE(fw_cache_domain); 1098 1099 /** 1100 * cache_firmware() - cache one firmware image in kernel memory space 1101 * @fw_name: the firmware image name 1102 * 1103 * Cache firmware in kernel memory so that drivers can use it when 1104 * system isn't ready for them to request firmware image from userspace. 1105 * Once it returns successfully, driver can use request_firmware or its 1106 * nowait version to get the cached firmware without any interacting 1107 * with userspace 1108 * 1109 * Return 0 if the firmware image has been cached successfully 1110 * Return !0 otherwise 1111 * 1112 */ 1113 static int cache_firmware(const char *fw_name) 1114 { 1115 int ret; 1116 const struct firmware *fw; 1117 1118 pr_debug("%s: %s\n", __func__, fw_name); 1119 1120 ret = request_firmware(&fw, fw_name, NULL); 1121 if (!ret) 1122 kfree(fw); 1123 1124 pr_debug("%s: %s ret=%d\n", __func__, fw_name, ret); 1125 1126 return ret; 1127 } 1128 1129 static struct fw_priv *lookup_fw_priv(const char *fw_name) 1130 { 1131 struct fw_priv *tmp; 1132 struct firmware_cache *fwc = &fw_cache; 1133 1134 spin_lock(&fwc->lock); 1135 tmp = __lookup_fw_priv(fw_name); 1136 spin_unlock(&fwc->lock); 1137 1138 return tmp; 1139 } 1140 1141 /** 1142 * uncache_firmware() - remove one cached firmware image 1143 * @fw_name: the firmware image name 1144 * 1145 * Uncache one firmware image which has been cached successfully 1146 * before. 1147 * 1148 * Return 0 if the firmware cache has been removed successfully 1149 * Return !0 otherwise 1150 * 1151 */ 1152 static int uncache_firmware(const char *fw_name) 1153 { 1154 struct fw_priv *fw_priv; 1155 struct firmware fw; 1156 1157 pr_debug("%s: %s\n", __func__, fw_name); 1158 1159 if (firmware_request_builtin(&fw, fw_name)) 1160 return 0; 1161 1162 fw_priv = lookup_fw_priv(fw_name); 1163 if (fw_priv) { 1164 free_fw_priv(fw_priv); 1165 return 0; 1166 } 1167 1168 return -EINVAL; 1169 } 1170 1171 static struct fw_cache_entry *alloc_fw_cache_entry(const char *name) 1172 { 1173 struct fw_cache_entry *fce; 1174 1175 fce = kzalloc(sizeof(*fce), GFP_ATOMIC); 1176 if (!fce) 1177 goto exit; 1178 1179 fce->name = kstrdup_const(name, GFP_ATOMIC); 1180 if (!fce->name) { 1181 kfree(fce); 1182 fce = NULL; 1183 goto exit; 1184 } 1185 exit: 1186 return fce; 1187 } 1188 1189 static int __fw_entry_found(const char *name) 1190 { 1191 struct firmware_cache *fwc = &fw_cache; 1192 struct fw_cache_entry *fce; 1193 1194 list_for_each_entry(fce, &fwc->fw_names, list) { 1195 if (!strcmp(fce->name, name)) 1196 return 1; 1197 } 1198 return 0; 1199 } 1200 1201 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv) 1202 { 1203 const char *name = fw_priv->fw_name; 1204 struct firmware_cache *fwc = fw_priv->fwc; 1205 struct fw_cache_entry *fce; 1206 1207 spin_lock(&fwc->name_lock); 1208 if (__fw_entry_found(name)) 1209 goto found; 1210 1211 fce = alloc_fw_cache_entry(name); 1212 if (fce) { 1213 list_add(&fce->list, &fwc->fw_names); 1214 kref_get(&fw_priv->ref); 1215 pr_debug("%s: fw: %s\n", __func__, name); 1216 } 1217 found: 1218 spin_unlock(&fwc->name_lock); 1219 } 1220 1221 static void free_fw_cache_entry(struct fw_cache_entry *fce) 1222 { 1223 kfree_const(fce->name); 1224 kfree(fce); 1225 } 1226 1227 static void __async_dev_cache_fw_image(void *fw_entry, 1228 async_cookie_t cookie) 1229 { 1230 struct fw_cache_entry *fce = fw_entry; 1231 struct firmware_cache *fwc = &fw_cache; 1232 int ret; 1233 1234 ret = cache_firmware(fce->name); 1235 if (ret) { 1236 spin_lock(&fwc->name_lock); 1237 list_del(&fce->list); 1238 spin_unlock(&fwc->name_lock); 1239 1240 free_fw_cache_entry(fce); 1241 } 1242 } 1243 1244 /* called with dev->devres_lock held */ 1245 static void dev_create_fw_entry(struct device *dev, void *res, 1246 void *data) 1247 { 1248 struct fw_name_devm *fwn = res; 1249 const char *fw_name = fwn->name; 1250 struct list_head *head = data; 1251 struct fw_cache_entry *fce; 1252 1253 fce = alloc_fw_cache_entry(fw_name); 1254 if (fce) 1255 list_add(&fce->list, head); 1256 } 1257 1258 static int devm_name_match(struct device *dev, void *res, 1259 void *match_data) 1260 { 1261 struct fw_name_devm *fwn = res; 1262 return (fwn->magic == (unsigned long)match_data); 1263 } 1264 1265 static void dev_cache_fw_image(struct device *dev, void *data) 1266 { 1267 LIST_HEAD(todo); 1268 struct fw_cache_entry *fce; 1269 struct fw_cache_entry *fce_next; 1270 struct firmware_cache *fwc = &fw_cache; 1271 1272 devres_for_each_res(dev, fw_name_devm_release, 1273 devm_name_match, &fw_cache, 1274 dev_create_fw_entry, &todo); 1275 1276 list_for_each_entry_safe(fce, fce_next, &todo, list) { 1277 list_del(&fce->list); 1278 1279 spin_lock(&fwc->name_lock); 1280 /* only one cache entry for one firmware */ 1281 if (!__fw_entry_found(fce->name)) { 1282 list_add(&fce->list, &fwc->fw_names); 1283 } else { 1284 free_fw_cache_entry(fce); 1285 fce = NULL; 1286 } 1287 spin_unlock(&fwc->name_lock); 1288 1289 if (fce) 1290 async_schedule_domain(__async_dev_cache_fw_image, 1291 (void *)fce, 1292 &fw_cache_domain); 1293 } 1294 } 1295 1296 static void __device_uncache_fw_images(void) 1297 { 1298 struct firmware_cache *fwc = &fw_cache; 1299 struct fw_cache_entry *fce; 1300 1301 spin_lock(&fwc->name_lock); 1302 while (!list_empty(&fwc->fw_names)) { 1303 fce = list_entry(fwc->fw_names.next, 1304 struct fw_cache_entry, list); 1305 list_del(&fce->list); 1306 spin_unlock(&fwc->name_lock); 1307 1308 uncache_firmware(fce->name); 1309 free_fw_cache_entry(fce); 1310 1311 spin_lock(&fwc->name_lock); 1312 } 1313 spin_unlock(&fwc->name_lock); 1314 } 1315 1316 /** 1317 * device_cache_fw_images() - cache devices' firmware 1318 * 1319 * If one device called request_firmware or its nowait version 1320 * successfully before, the firmware names are recored into the 1321 * device's devres link list, so device_cache_fw_images can call 1322 * cache_firmware() to cache these firmwares for the device, 1323 * then the device driver can load its firmwares easily at 1324 * time when system is not ready to complete loading firmware. 1325 */ 1326 static void device_cache_fw_images(void) 1327 { 1328 struct firmware_cache *fwc = &fw_cache; 1329 DEFINE_WAIT(wait); 1330 1331 pr_debug("%s\n", __func__); 1332 1333 /* cancel uncache work */ 1334 cancel_delayed_work_sync(&fwc->work); 1335 1336 fw_fallback_set_cache_timeout(); 1337 1338 mutex_lock(&fw_lock); 1339 fwc->state = FW_LOADER_START_CACHE; 1340 dpm_for_each_dev(NULL, dev_cache_fw_image); 1341 mutex_unlock(&fw_lock); 1342 1343 /* wait for completion of caching firmware for all devices */ 1344 async_synchronize_full_domain(&fw_cache_domain); 1345 1346 fw_fallback_set_default_timeout(); 1347 } 1348 1349 /** 1350 * device_uncache_fw_images() - uncache devices' firmware 1351 * 1352 * uncache all firmwares which have been cached successfully 1353 * by device_uncache_fw_images earlier 1354 */ 1355 static void device_uncache_fw_images(void) 1356 { 1357 pr_debug("%s\n", __func__); 1358 __device_uncache_fw_images(); 1359 } 1360 1361 static void device_uncache_fw_images_work(struct work_struct *work) 1362 { 1363 device_uncache_fw_images(); 1364 } 1365 1366 /** 1367 * device_uncache_fw_images_delay() - uncache devices firmwares 1368 * @delay: number of milliseconds to delay uncache device firmwares 1369 * 1370 * uncache all devices's firmwares which has been cached successfully 1371 * by device_cache_fw_images after @delay milliseconds. 1372 */ 1373 static void device_uncache_fw_images_delay(unsigned long delay) 1374 { 1375 queue_delayed_work(system_power_efficient_wq, &fw_cache.work, 1376 msecs_to_jiffies(delay)); 1377 } 1378 1379 static int fw_pm_notify(struct notifier_block *notify_block, 1380 unsigned long mode, void *unused) 1381 { 1382 switch (mode) { 1383 case PM_HIBERNATION_PREPARE: 1384 case PM_SUSPEND_PREPARE: 1385 case PM_RESTORE_PREPARE: 1386 /* 1387 * kill pending fallback requests with a custom fallback 1388 * to avoid stalling suspend. 1389 */ 1390 kill_pending_fw_fallback_reqs(true); 1391 device_cache_fw_images(); 1392 break; 1393 1394 case PM_POST_SUSPEND: 1395 case PM_POST_HIBERNATION: 1396 case PM_POST_RESTORE: 1397 /* 1398 * In case that system sleep failed and syscore_suspend is 1399 * not called. 1400 */ 1401 mutex_lock(&fw_lock); 1402 fw_cache.state = FW_LOADER_NO_CACHE; 1403 mutex_unlock(&fw_lock); 1404 1405 device_uncache_fw_images_delay(10 * MSEC_PER_SEC); 1406 break; 1407 } 1408 1409 return 0; 1410 } 1411 1412 /* stop caching firmware once syscore_suspend is reached */ 1413 static int fw_suspend(void) 1414 { 1415 fw_cache.state = FW_LOADER_NO_CACHE; 1416 return 0; 1417 } 1418 1419 static struct syscore_ops fw_syscore_ops = { 1420 .suspend = fw_suspend, 1421 }; 1422 1423 static int __init register_fw_pm_ops(void) 1424 { 1425 int ret; 1426 1427 spin_lock_init(&fw_cache.name_lock); 1428 INIT_LIST_HEAD(&fw_cache.fw_names); 1429 1430 INIT_DELAYED_WORK(&fw_cache.work, 1431 device_uncache_fw_images_work); 1432 1433 fw_cache.pm_notify.notifier_call = fw_pm_notify; 1434 ret = register_pm_notifier(&fw_cache.pm_notify); 1435 if (ret) 1436 return ret; 1437 1438 register_syscore_ops(&fw_syscore_ops); 1439 1440 return ret; 1441 } 1442 1443 static inline void unregister_fw_pm_ops(void) 1444 { 1445 unregister_syscore_ops(&fw_syscore_ops); 1446 unregister_pm_notifier(&fw_cache.pm_notify); 1447 } 1448 #else 1449 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv) 1450 { 1451 } 1452 static inline int register_fw_pm_ops(void) 1453 { 1454 return 0; 1455 } 1456 static inline void unregister_fw_pm_ops(void) 1457 { 1458 } 1459 #endif 1460 1461 static void __init fw_cache_init(void) 1462 { 1463 spin_lock_init(&fw_cache.lock); 1464 INIT_LIST_HEAD(&fw_cache.head); 1465 fw_cache.state = FW_LOADER_NO_CACHE; 1466 } 1467 1468 static int fw_shutdown_notify(struct notifier_block *unused1, 1469 unsigned long unused2, void *unused3) 1470 { 1471 /* 1472 * Kill all pending fallback requests to avoid both stalling shutdown, 1473 * and avoid a deadlock with the usermode_lock. 1474 */ 1475 kill_pending_fw_fallback_reqs(false); 1476 1477 return NOTIFY_DONE; 1478 } 1479 1480 static struct notifier_block fw_shutdown_nb = { 1481 .notifier_call = fw_shutdown_notify, 1482 }; 1483 1484 static int __init firmware_class_init(void) 1485 { 1486 int ret; 1487 1488 /* No need to unfold these on exit */ 1489 fw_cache_init(); 1490 1491 ret = register_fw_pm_ops(); 1492 if (ret) 1493 return ret; 1494 1495 ret = register_reboot_notifier(&fw_shutdown_nb); 1496 if (ret) 1497 goto out; 1498 1499 return register_sysfs_loader(); 1500 1501 out: 1502 unregister_fw_pm_ops(); 1503 return ret; 1504 } 1505 1506 static void __exit firmware_class_exit(void) 1507 { 1508 unregister_fw_pm_ops(); 1509 unregister_reboot_notifier(&fw_shutdown_nb); 1510 unregister_sysfs_loader(); 1511 } 1512 1513 fs_initcall(firmware_class_init); 1514 module_exit(firmware_class_exit); 1515