1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * main.c - Multi purpose firmware loading support 4 * 5 * Copyright (c) 2003 Manuel Estrada Sainz 6 * 7 * Please see Documentation/driver-api/firmware/ for more information. 8 * 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/capability.h> 14 #include <linux/device.h> 15 #include <linux/kernel_read_file.h> 16 #include <linux/module.h> 17 #include <linux/init.h> 18 #include <linux/initrd.h> 19 #include <linux/timer.h> 20 #include <linux/vmalloc.h> 21 #include <linux/interrupt.h> 22 #include <linux/bitops.h> 23 #include <linux/mutex.h> 24 #include <linux/workqueue.h> 25 #include <linux/highmem.h> 26 #include <linux/firmware.h> 27 #include <linux/slab.h> 28 #include <linux/sched.h> 29 #include <linux/file.h> 30 #include <linux/list.h> 31 #include <linux/fs.h> 32 #include <linux/async.h> 33 #include <linux/pm.h> 34 #include <linux/suspend.h> 35 #include <linux/syscore_ops.h> 36 #include <linux/reboot.h> 37 #include <linux/security.h> 38 #include <linux/xz.h> 39 40 #include <generated/utsrelease.h> 41 42 #include "../base.h" 43 #include "firmware.h" 44 #include "fallback.h" 45 46 MODULE_AUTHOR("Manuel Estrada Sainz"); 47 MODULE_DESCRIPTION("Multi purpose firmware loading support"); 48 MODULE_LICENSE("GPL"); 49 50 struct firmware_cache { 51 /* firmware_buf instance will be added into the below list */ 52 spinlock_t lock; 53 struct list_head head; 54 int state; 55 56 #ifdef CONFIG_FW_CACHE 57 /* 58 * Names of firmware images which have been cached successfully 59 * will be added into the below list so that device uncache 60 * helper can trace which firmware images have been cached 61 * before. 62 */ 63 spinlock_t name_lock; 64 struct list_head fw_names; 65 66 struct delayed_work work; 67 68 struct notifier_block pm_notify; 69 #endif 70 }; 71 72 struct fw_cache_entry { 73 struct list_head list; 74 const char *name; 75 }; 76 77 struct fw_name_devm { 78 unsigned long magic; 79 const char *name; 80 }; 81 82 static inline struct fw_priv *to_fw_priv(struct kref *ref) 83 { 84 return container_of(ref, struct fw_priv, ref); 85 } 86 87 #define FW_LOADER_NO_CACHE 0 88 #define FW_LOADER_START_CACHE 1 89 90 /* fw_lock could be moved to 'struct fw_sysfs' but since it is just 91 * guarding for corner cases a global lock should be OK */ 92 DEFINE_MUTEX(fw_lock); 93 94 static struct firmware_cache fw_cache; 95 96 /* Builtin firmware support */ 97 98 #ifdef CONFIG_FW_LOADER 99 100 extern struct builtin_fw __start_builtin_fw[]; 101 extern struct builtin_fw __end_builtin_fw[]; 102 103 static void fw_copy_to_prealloc_buf(struct firmware *fw, 104 void *buf, size_t size) 105 { 106 if (!buf || size < fw->size) 107 return; 108 memcpy(buf, fw->data, fw->size); 109 } 110 111 static bool fw_get_builtin_firmware(struct firmware *fw, const char *name, 112 void *buf, size_t size) 113 { 114 struct builtin_fw *b_fw; 115 116 for (b_fw = __start_builtin_fw; b_fw != __end_builtin_fw; b_fw++) { 117 if (strcmp(name, b_fw->name) == 0) { 118 fw->size = b_fw->size; 119 fw->data = b_fw->data; 120 fw_copy_to_prealloc_buf(fw, buf, size); 121 122 return true; 123 } 124 } 125 126 return false; 127 } 128 129 static bool fw_is_builtin_firmware(const struct firmware *fw) 130 { 131 struct builtin_fw *b_fw; 132 133 for (b_fw = __start_builtin_fw; b_fw != __end_builtin_fw; b_fw++) 134 if (fw->data == b_fw->data) 135 return true; 136 137 return false; 138 } 139 140 #else /* Module case - no builtin firmware support */ 141 142 static inline bool fw_get_builtin_firmware(struct firmware *fw, 143 const char *name, void *buf, 144 size_t size) 145 { 146 return false; 147 } 148 149 static inline bool fw_is_builtin_firmware(const struct firmware *fw) 150 { 151 return false; 152 } 153 #endif 154 155 static void fw_state_init(struct fw_priv *fw_priv) 156 { 157 struct fw_state *fw_st = &fw_priv->fw_st; 158 159 init_completion(&fw_st->completion); 160 fw_st->status = FW_STATUS_UNKNOWN; 161 } 162 163 static inline int fw_state_wait(struct fw_priv *fw_priv) 164 { 165 return __fw_state_wait_common(fw_priv, MAX_SCHEDULE_TIMEOUT); 166 } 167 168 static int fw_cache_piggyback_on_request(const char *name); 169 170 static struct fw_priv *__allocate_fw_priv(const char *fw_name, 171 struct firmware_cache *fwc, 172 void *dbuf, 173 size_t size, 174 size_t offset, 175 u32 opt_flags) 176 { 177 struct fw_priv *fw_priv; 178 179 /* For a partial read, the buffer must be preallocated. */ 180 if ((opt_flags & FW_OPT_PARTIAL) && !dbuf) 181 return NULL; 182 183 /* Only partial reads are allowed to use an offset. */ 184 if (offset != 0 && !(opt_flags & FW_OPT_PARTIAL)) 185 return NULL; 186 187 fw_priv = kzalloc(sizeof(*fw_priv), GFP_ATOMIC); 188 if (!fw_priv) 189 return NULL; 190 191 fw_priv->fw_name = kstrdup_const(fw_name, GFP_ATOMIC); 192 if (!fw_priv->fw_name) { 193 kfree(fw_priv); 194 return NULL; 195 } 196 197 kref_init(&fw_priv->ref); 198 fw_priv->fwc = fwc; 199 fw_priv->data = dbuf; 200 fw_priv->allocated_size = size; 201 fw_priv->offset = offset; 202 fw_priv->opt_flags = opt_flags; 203 fw_state_init(fw_priv); 204 #ifdef CONFIG_FW_LOADER_USER_HELPER 205 INIT_LIST_HEAD(&fw_priv->pending_list); 206 #endif 207 208 pr_debug("%s: fw-%s fw_priv=%p\n", __func__, fw_name, fw_priv); 209 210 return fw_priv; 211 } 212 213 static struct fw_priv *__lookup_fw_priv(const char *fw_name) 214 { 215 struct fw_priv *tmp; 216 struct firmware_cache *fwc = &fw_cache; 217 218 list_for_each_entry(tmp, &fwc->head, list) 219 if (!strcmp(tmp->fw_name, fw_name)) 220 return tmp; 221 return NULL; 222 } 223 224 /* Returns 1 for batching firmware requests with the same name */ 225 static int alloc_lookup_fw_priv(const char *fw_name, 226 struct firmware_cache *fwc, 227 struct fw_priv **fw_priv, 228 void *dbuf, 229 size_t size, 230 size_t offset, 231 u32 opt_flags) 232 { 233 struct fw_priv *tmp; 234 235 spin_lock(&fwc->lock); 236 /* 237 * Do not merge requests that are marked to be non-cached or 238 * are performing partial reads. 239 */ 240 if (!(opt_flags & (FW_OPT_NOCACHE | FW_OPT_PARTIAL))) { 241 tmp = __lookup_fw_priv(fw_name); 242 if (tmp) { 243 kref_get(&tmp->ref); 244 spin_unlock(&fwc->lock); 245 *fw_priv = tmp; 246 pr_debug("batched request - sharing the same struct fw_priv and lookup for multiple requests\n"); 247 return 1; 248 } 249 } 250 251 tmp = __allocate_fw_priv(fw_name, fwc, dbuf, size, offset, opt_flags); 252 if (tmp) { 253 INIT_LIST_HEAD(&tmp->list); 254 if (!(opt_flags & FW_OPT_NOCACHE)) 255 list_add(&tmp->list, &fwc->head); 256 } 257 spin_unlock(&fwc->lock); 258 259 *fw_priv = tmp; 260 261 return tmp ? 0 : -ENOMEM; 262 } 263 264 static void __free_fw_priv(struct kref *ref) 265 __releases(&fwc->lock) 266 { 267 struct fw_priv *fw_priv = to_fw_priv(ref); 268 struct firmware_cache *fwc = fw_priv->fwc; 269 270 pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n", 271 __func__, fw_priv->fw_name, fw_priv, fw_priv->data, 272 (unsigned int)fw_priv->size); 273 274 list_del(&fw_priv->list); 275 spin_unlock(&fwc->lock); 276 277 if (fw_is_paged_buf(fw_priv)) 278 fw_free_paged_buf(fw_priv); 279 else if (!fw_priv->allocated_size) 280 vfree(fw_priv->data); 281 282 kfree_const(fw_priv->fw_name); 283 kfree(fw_priv); 284 } 285 286 static void free_fw_priv(struct fw_priv *fw_priv) 287 { 288 struct firmware_cache *fwc = fw_priv->fwc; 289 spin_lock(&fwc->lock); 290 if (!kref_put(&fw_priv->ref, __free_fw_priv)) 291 spin_unlock(&fwc->lock); 292 } 293 294 #ifdef CONFIG_FW_LOADER_PAGED_BUF 295 bool fw_is_paged_buf(struct fw_priv *fw_priv) 296 { 297 return fw_priv->is_paged_buf; 298 } 299 300 void fw_free_paged_buf(struct fw_priv *fw_priv) 301 { 302 int i; 303 304 if (!fw_priv->pages) 305 return; 306 307 vunmap(fw_priv->data); 308 309 for (i = 0; i < fw_priv->nr_pages; i++) 310 __free_page(fw_priv->pages[i]); 311 kvfree(fw_priv->pages); 312 fw_priv->pages = NULL; 313 fw_priv->page_array_size = 0; 314 fw_priv->nr_pages = 0; 315 } 316 317 int fw_grow_paged_buf(struct fw_priv *fw_priv, int pages_needed) 318 { 319 /* If the array of pages is too small, grow it */ 320 if (fw_priv->page_array_size < pages_needed) { 321 int new_array_size = max(pages_needed, 322 fw_priv->page_array_size * 2); 323 struct page **new_pages; 324 325 new_pages = kvmalloc_array(new_array_size, sizeof(void *), 326 GFP_KERNEL); 327 if (!new_pages) 328 return -ENOMEM; 329 memcpy(new_pages, fw_priv->pages, 330 fw_priv->page_array_size * sizeof(void *)); 331 memset(&new_pages[fw_priv->page_array_size], 0, sizeof(void *) * 332 (new_array_size - fw_priv->page_array_size)); 333 kvfree(fw_priv->pages); 334 fw_priv->pages = new_pages; 335 fw_priv->page_array_size = new_array_size; 336 } 337 338 while (fw_priv->nr_pages < pages_needed) { 339 fw_priv->pages[fw_priv->nr_pages] = 340 alloc_page(GFP_KERNEL | __GFP_HIGHMEM); 341 342 if (!fw_priv->pages[fw_priv->nr_pages]) 343 return -ENOMEM; 344 fw_priv->nr_pages++; 345 } 346 347 return 0; 348 } 349 350 int fw_map_paged_buf(struct fw_priv *fw_priv) 351 { 352 /* one pages buffer should be mapped/unmapped only once */ 353 if (!fw_priv->pages) 354 return 0; 355 356 vunmap(fw_priv->data); 357 fw_priv->data = vmap(fw_priv->pages, fw_priv->nr_pages, 0, 358 PAGE_KERNEL_RO); 359 if (!fw_priv->data) 360 return -ENOMEM; 361 362 return 0; 363 } 364 #endif 365 366 /* 367 * XZ-compressed firmware support 368 */ 369 #ifdef CONFIG_FW_LOADER_COMPRESS 370 /* show an error and return the standard error code */ 371 static int fw_decompress_xz_error(struct device *dev, enum xz_ret xz_ret) 372 { 373 if (xz_ret != XZ_STREAM_END) { 374 dev_warn(dev, "xz decompression failed (xz_ret=%d)\n", xz_ret); 375 return xz_ret == XZ_MEM_ERROR ? -ENOMEM : -EINVAL; 376 } 377 return 0; 378 } 379 380 /* single-shot decompression onto the pre-allocated buffer */ 381 static int fw_decompress_xz_single(struct device *dev, struct fw_priv *fw_priv, 382 size_t in_size, const void *in_buffer) 383 { 384 struct xz_dec *xz_dec; 385 struct xz_buf xz_buf; 386 enum xz_ret xz_ret; 387 388 xz_dec = xz_dec_init(XZ_SINGLE, (u32)-1); 389 if (!xz_dec) 390 return -ENOMEM; 391 392 xz_buf.in_size = in_size; 393 xz_buf.in = in_buffer; 394 xz_buf.in_pos = 0; 395 xz_buf.out_size = fw_priv->allocated_size; 396 xz_buf.out = fw_priv->data; 397 xz_buf.out_pos = 0; 398 399 xz_ret = xz_dec_run(xz_dec, &xz_buf); 400 xz_dec_end(xz_dec); 401 402 fw_priv->size = xz_buf.out_pos; 403 return fw_decompress_xz_error(dev, xz_ret); 404 } 405 406 /* decompression on paged buffer and map it */ 407 static int fw_decompress_xz_pages(struct device *dev, struct fw_priv *fw_priv, 408 size_t in_size, const void *in_buffer) 409 { 410 struct xz_dec *xz_dec; 411 struct xz_buf xz_buf; 412 enum xz_ret xz_ret; 413 struct page *page; 414 int err = 0; 415 416 xz_dec = xz_dec_init(XZ_DYNALLOC, (u32)-1); 417 if (!xz_dec) 418 return -ENOMEM; 419 420 xz_buf.in_size = in_size; 421 xz_buf.in = in_buffer; 422 xz_buf.in_pos = 0; 423 424 fw_priv->is_paged_buf = true; 425 fw_priv->size = 0; 426 do { 427 if (fw_grow_paged_buf(fw_priv, fw_priv->nr_pages + 1)) { 428 err = -ENOMEM; 429 goto out; 430 } 431 432 /* decompress onto the new allocated page */ 433 page = fw_priv->pages[fw_priv->nr_pages - 1]; 434 xz_buf.out = kmap(page); 435 xz_buf.out_pos = 0; 436 xz_buf.out_size = PAGE_SIZE; 437 xz_ret = xz_dec_run(xz_dec, &xz_buf); 438 kunmap(page); 439 fw_priv->size += xz_buf.out_pos; 440 /* partial decompression means either end or error */ 441 if (xz_buf.out_pos != PAGE_SIZE) 442 break; 443 } while (xz_ret == XZ_OK); 444 445 err = fw_decompress_xz_error(dev, xz_ret); 446 if (!err) 447 err = fw_map_paged_buf(fw_priv); 448 449 out: 450 xz_dec_end(xz_dec); 451 return err; 452 } 453 454 static int fw_decompress_xz(struct device *dev, struct fw_priv *fw_priv, 455 size_t in_size, const void *in_buffer) 456 { 457 /* if the buffer is pre-allocated, we can perform in single-shot mode */ 458 if (fw_priv->data) 459 return fw_decompress_xz_single(dev, fw_priv, in_size, in_buffer); 460 else 461 return fw_decompress_xz_pages(dev, fw_priv, in_size, in_buffer); 462 } 463 #endif /* CONFIG_FW_LOADER_COMPRESS */ 464 465 /* direct firmware loading support */ 466 static char fw_path_para[256]; 467 static const char * const fw_path[] = { 468 fw_path_para, 469 "/lib/firmware/updates/" UTS_RELEASE, 470 "/lib/firmware/updates", 471 "/lib/firmware/" UTS_RELEASE, 472 "/lib/firmware" 473 }; 474 475 /* 476 * Typical usage is that passing 'firmware_class.path=$CUSTOMIZED_PATH' 477 * from kernel command line because firmware_class is generally built in 478 * kernel instead of module. 479 */ 480 module_param_string(path, fw_path_para, sizeof(fw_path_para), 0644); 481 MODULE_PARM_DESC(path, "customized firmware image search path with a higher priority than default path"); 482 483 static int 484 fw_get_filesystem_firmware(struct device *device, struct fw_priv *fw_priv, 485 const char *suffix, 486 int (*decompress)(struct device *dev, 487 struct fw_priv *fw_priv, 488 size_t in_size, 489 const void *in_buffer)) 490 { 491 size_t size; 492 int i, len; 493 int rc = -ENOENT; 494 char *path; 495 size_t msize = INT_MAX; 496 void *buffer = NULL; 497 498 /* Already populated data member means we're loading into a buffer */ 499 if (!decompress && fw_priv->data) { 500 buffer = fw_priv->data; 501 msize = fw_priv->allocated_size; 502 } 503 504 path = __getname(); 505 if (!path) 506 return -ENOMEM; 507 508 wait_for_initramfs(); 509 for (i = 0; i < ARRAY_SIZE(fw_path); i++) { 510 size_t file_size = 0; 511 size_t *file_size_ptr = NULL; 512 513 /* skip the unset customized path */ 514 if (!fw_path[i][0]) 515 continue; 516 517 len = snprintf(path, PATH_MAX, "%s/%s%s", 518 fw_path[i], fw_priv->fw_name, suffix); 519 if (len >= PATH_MAX) { 520 rc = -ENAMETOOLONG; 521 break; 522 } 523 524 fw_priv->size = 0; 525 526 /* 527 * The total file size is only examined when doing a partial 528 * read; the "full read" case needs to fail if the whole 529 * firmware was not completely loaded. 530 */ 531 if ((fw_priv->opt_flags & FW_OPT_PARTIAL) && buffer) 532 file_size_ptr = &file_size; 533 534 /* load firmware files from the mount namespace of init */ 535 rc = kernel_read_file_from_path_initns(path, fw_priv->offset, 536 &buffer, msize, 537 file_size_ptr, 538 READING_FIRMWARE); 539 if (rc < 0) { 540 if (rc != -ENOENT) 541 dev_warn(device, "loading %s failed with error %d\n", 542 path, rc); 543 else 544 dev_dbg(device, "loading %s failed for no such file or directory.\n", 545 path); 546 continue; 547 } 548 size = rc; 549 rc = 0; 550 551 dev_dbg(device, "Loading firmware from %s\n", path); 552 if (decompress) { 553 dev_dbg(device, "f/w decompressing %s\n", 554 fw_priv->fw_name); 555 rc = decompress(device, fw_priv, size, buffer); 556 /* discard the superfluous original content */ 557 vfree(buffer); 558 buffer = NULL; 559 if (rc) { 560 fw_free_paged_buf(fw_priv); 561 continue; 562 } 563 } else { 564 dev_dbg(device, "direct-loading %s\n", 565 fw_priv->fw_name); 566 if (!fw_priv->data) 567 fw_priv->data = buffer; 568 fw_priv->size = size; 569 } 570 fw_state_done(fw_priv); 571 break; 572 } 573 __putname(path); 574 575 return rc; 576 } 577 578 /* firmware holds the ownership of pages */ 579 static void firmware_free_data(const struct firmware *fw) 580 { 581 /* Loaded directly? */ 582 if (!fw->priv) { 583 vfree(fw->data); 584 return; 585 } 586 free_fw_priv(fw->priv); 587 } 588 589 /* store the pages buffer info firmware from buf */ 590 static void fw_set_page_data(struct fw_priv *fw_priv, struct firmware *fw) 591 { 592 fw->priv = fw_priv; 593 fw->size = fw_priv->size; 594 fw->data = fw_priv->data; 595 596 pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n", 597 __func__, fw_priv->fw_name, fw_priv, fw_priv->data, 598 (unsigned int)fw_priv->size); 599 } 600 601 #ifdef CONFIG_FW_CACHE 602 static void fw_name_devm_release(struct device *dev, void *res) 603 { 604 struct fw_name_devm *fwn = res; 605 606 if (fwn->magic == (unsigned long)&fw_cache) 607 pr_debug("%s: fw_name-%s devm-%p released\n", 608 __func__, fwn->name, res); 609 kfree_const(fwn->name); 610 } 611 612 static int fw_devm_match(struct device *dev, void *res, 613 void *match_data) 614 { 615 struct fw_name_devm *fwn = res; 616 617 return (fwn->magic == (unsigned long)&fw_cache) && 618 !strcmp(fwn->name, match_data); 619 } 620 621 static struct fw_name_devm *fw_find_devm_name(struct device *dev, 622 const char *name) 623 { 624 struct fw_name_devm *fwn; 625 626 fwn = devres_find(dev, fw_name_devm_release, 627 fw_devm_match, (void *)name); 628 return fwn; 629 } 630 631 static bool fw_cache_is_setup(struct device *dev, const char *name) 632 { 633 struct fw_name_devm *fwn; 634 635 fwn = fw_find_devm_name(dev, name); 636 if (fwn) 637 return true; 638 639 return false; 640 } 641 642 /* add firmware name into devres list */ 643 static int fw_add_devm_name(struct device *dev, const char *name) 644 { 645 struct fw_name_devm *fwn; 646 647 if (fw_cache_is_setup(dev, name)) 648 return 0; 649 650 fwn = devres_alloc(fw_name_devm_release, sizeof(struct fw_name_devm), 651 GFP_KERNEL); 652 if (!fwn) 653 return -ENOMEM; 654 fwn->name = kstrdup_const(name, GFP_KERNEL); 655 if (!fwn->name) { 656 devres_free(fwn); 657 return -ENOMEM; 658 } 659 660 fwn->magic = (unsigned long)&fw_cache; 661 devres_add(dev, fwn); 662 663 return 0; 664 } 665 #else 666 static bool fw_cache_is_setup(struct device *dev, const char *name) 667 { 668 return false; 669 } 670 671 static int fw_add_devm_name(struct device *dev, const char *name) 672 { 673 return 0; 674 } 675 #endif 676 677 int assign_fw(struct firmware *fw, struct device *device) 678 { 679 struct fw_priv *fw_priv = fw->priv; 680 int ret; 681 682 mutex_lock(&fw_lock); 683 if (!fw_priv->size || fw_state_is_aborted(fw_priv)) { 684 mutex_unlock(&fw_lock); 685 return -ENOENT; 686 } 687 688 /* 689 * add firmware name into devres list so that we can auto cache 690 * and uncache firmware for device. 691 * 692 * device may has been deleted already, but the problem 693 * should be fixed in devres or driver core. 694 */ 695 /* don't cache firmware handled without uevent */ 696 if (device && (fw_priv->opt_flags & FW_OPT_UEVENT) && 697 !(fw_priv->opt_flags & FW_OPT_NOCACHE)) { 698 ret = fw_add_devm_name(device, fw_priv->fw_name); 699 if (ret) { 700 mutex_unlock(&fw_lock); 701 return ret; 702 } 703 } 704 705 /* 706 * After caching firmware image is started, let it piggyback 707 * on request firmware. 708 */ 709 if (!(fw_priv->opt_flags & FW_OPT_NOCACHE) && 710 fw_priv->fwc->state == FW_LOADER_START_CACHE) { 711 if (fw_cache_piggyback_on_request(fw_priv->fw_name)) 712 kref_get(&fw_priv->ref); 713 } 714 715 /* pass the pages buffer to driver at the last minute */ 716 fw_set_page_data(fw_priv, fw); 717 mutex_unlock(&fw_lock); 718 return 0; 719 } 720 721 /* prepare firmware and firmware_buf structs; 722 * return 0 if a firmware is already assigned, 1 if need to load one, 723 * or a negative error code 724 */ 725 static int 726 _request_firmware_prepare(struct firmware **firmware_p, const char *name, 727 struct device *device, void *dbuf, size_t size, 728 size_t offset, u32 opt_flags) 729 { 730 struct firmware *firmware; 731 struct fw_priv *fw_priv; 732 int ret; 733 734 *firmware_p = firmware = kzalloc(sizeof(*firmware), GFP_KERNEL); 735 if (!firmware) { 736 dev_err(device, "%s: kmalloc(struct firmware) failed\n", 737 __func__); 738 return -ENOMEM; 739 } 740 741 if (fw_get_builtin_firmware(firmware, name, dbuf, size)) { 742 dev_dbg(device, "using built-in %s\n", name); 743 return 0; /* assigned */ 744 } 745 746 ret = alloc_lookup_fw_priv(name, &fw_cache, &fw_priv, dbuf, size, 747 offset, opt_flags); 748 749 /* 750 * bind with 'priv' now to avoid warning in failure path 751 * of requesting firmware. 752 */ 753 firmware->priv = fw_priv; 754 755 if (ret > 0) { 756 ret = fw_state_wait(fw_priv); 757 if (!ret) { 758 fw_set_page_data(fw_priv, firmware); 759 return 0; /* assigned */ 760 } 761 } 762 763 if (ret < 0) 764 return ret; 765 return 1; /* need to load */ 766 } 767 768 /* 769 * Batched requests need only one wake, we need to do this step last due to the 770 * fallback mechanism. The buf is protected with kref_get(), and it won't be 771 * released until the last user calls release_firmware(). 772 * 773 * Failed batched requests are possible as well, in such cases we just share 774 * the struct fw_priv and won't release it until all requests are woken 775 * and have gone through this same path. 776 */ 777 static void fw_abort_batch_reqs(struct firmware *fw) 778 { 779 struct fw_priv *fw_priv; 780 781 /* Loaded directly? */ 782 if (!fw || !fw->priv) 783 return; 784 785 fw_priv = fw->priv; 786 mutex_lock(&fw_lock); 787 if (!fw_state_is_aborted(fw_priv)) 788 fw_state_aborted(fw_priv); 789 mutex_unlock(&fw_lock); 790 } 791 792 /* called from request_firmware() and request_firmware_work_func() */ 793 static int 794 _request_firmware(const struct firmware **firmware_p, const char *name, 795 struct device *device, void *buf, size_t size, 796 size_t offset, u32 opt_flags) 797 { 798 struct firmware *fw = NULL; 799 bool nondirect = false; 800 int ret; 801 802 if (!firmware_p) 803 return -EINVAL; 804 805 if (!name || name[0] == '\0') { 806 ret = -EINVAL; 807 goto out; 808 } 809 810 ret = _request_firmware_prepare(&fw, name, device, buf, size, 811 offset, opt_flags); 812 if (ret <= 0) /* error or already assigned */ 813 goto out; 814 815 ret = fw_get_filesystem_firmware(device, fw->priv, "", NULL); 816 817 /* Only full reads can support decompression, platform, and sysfs. */ 818 if (!(opt_flags & FW_OPT_PARTIAL)) 819 nondirect = true; 820 821 #ifdef CONFIG_FW_LOADER_COMPRESS 822 if (ret == -ENOENT && nondirect) 823 ret = fw_get_filesystem_firmware(device, fw->priv, ".xz", 824 fw_decompress_xz); 825 #endif 826 if (ret == -ENOENT && nondirect) 827 ret = firmware_fallback_platform(fw->priv); 828 829 if (ret) { 830 if (!(opt_flags & FW_OPT_NO_WARN)) 831 dev_warn(device, 832 "Direct firmware load for %s failed with error %d\n", 833 name, ret); 834 if (nondirect) 835 ret = firmware_fallback_sysfs(fw, name, device, 836 opt_flags, ret); 837 } else 838 ret = assign_fw(fw, device); 839 840 out: 841 if (ret < 0) { 842 fw_abort_batch_reqs(fw); 843 release_firmware(fw); 844 fw = NULL; 845 } 846 847 *firmware_p = fw; 848 return ret; 849 } 850 851 /** 852 * request_firmware() - send firmware request and wait for it 853 * @firmware_p: pointer to firmware image 854 * @name: name of firmware file 855 * @device: device for which firmware is being loaded 856 * 857 * @firmware_p will be used to return a firmware image by the name 858 * of @name for device @device. 859 * 860 * Should be called from user context where sleeping is allowed. 861 * 862 * @name will be used as $FIRMWARE in the uevent environment and 863 * should be distinctive enough not to be confused with any other 864 * firmware image for this or any other device. 865 * 866 * Caller must hold the reference count of @device. 867 * 868 * The function can be called safely inside device's suspend and 869 * resume callback. 870 **/ 871 int 872 request_firmware(const struct firmware **firmware_p, const char *name, 873 struct device *device) 874 { 875 int ret; 876 877 /* Need to pin this module until return */ 878 __module_get(THIS_MODULE); 879 ret = _request_firmware(firmware_p, name, device, NULL, 0, 0, 880 FW_OPT_UEVENT); 881 module_put(THIS_MODULE); 882 return ret; 883 } 884 EXPORT_SYMBOL(request_firmware); 885 886 /** 887 * firmware_request_nowarn() - request for an optional fw module 888 * @firmware: pointer to firmware image 889 * @name: name of firmware file 890 * @device: device for which firmware is being loaded 891 * 892 * This function is similar in behaviour to request_firmware(), except it 893 * doesn't produce warning messages when the file is not found. The sysfs 894 * fallback mechanism is enabled if direct filesystem lookup fails. However, 895 * failures to find the firmware file with it are still suppressed. It is 896 * therefore up to the driver to check for the return value of this call and to 897 * decide when to inform the users of errors. 898 **/ 899 int firmware_request_nowarn(const struct firmware **firmware, const char *name, 900 struct device *device) 901 { 902 int ret; 903 904 /* Need to pin this module until return */ 905 __module_get(THIS_MODULE); 906 ret = _request_firmware(firmware, name, device, NULL, 0, 0, 907 FW_OPT_UEVENT | FW_OPT_NO_WARN); 908 module_put(THIS_MODULE); 909 return ret; 910 } 911 EXPORT_SYMBOL_GPL(firmware_request_nowarn); 912 913 /** 914 * request_firmware_direct() - load firmware directly without usermode helper 915 * @firmware_p: pointer to firmware image 916 * @name: name of firmware file 917 * @device: device for which firmware is being loaded 918 * 919 * This function works pretty much like request_firmware(), but this doesn't 920 * fall back to usermode helper even if the firmware couldn't be loaded 921 * directly from fs. Hence it's useful for loading optional firmwares, which 922 * aren't always present, without extra long timeouts of udev. 923 **/ 924 int request_firmware_direct(const struct firmware **firmware_p, 925 const char *name, struct device *device) 926 { 927 int ret; 928 929 __module_get(THIS_MODULE); 930 ret = _request_firmware(firmware_p, name, device, NULL, 0, 0, 931 FW_OPT_UEVENT | FW_OPT_NO_WARN | 932 FW_OPT_NOFALLBACK_SYSFS); 933 module_put(THIS_MODULE); 934 return ret; 935 } 936 EXPORT_SYMBOL_GPL(request_firmware_direct); 937 938 /** 939 * firmware_request_platform() - request firmware with platform-fw fallback 940 * @firmware: pointer to firmware image 941 * @name: name of firmware file 942 * @device: device for which firmware is being loaded 943 * 944 * This function is similar in behaviour to request_firmware, except that if 945 * direct filesystem lookup fails, it will fallback to looking for a copy of the 946 * requested firmware embedded in the platform's main (e.g. UEFI) firmware. 947 **/ 948 int firmware_request_platform(const struct firmware **firmware, 949 const char *name, struct device *device) 950 { 951 int ret; 952 953 /* Need to pin this module until return */ 954 __module_get(THIS_MODULE); 955 ret = _request_firmware(firmware, name, device, NULL, 0, 0, 956 FW_OPT_UEVENT | FW_OPT_FALLBACK_PLATFORM); 957 module_put(THIS_MODULE); 958 return ret; 959 } 960 EXPORT_SYMBOL_GPL(firmware_request_platform); 961 962 /** 963 * firmware_request_cache() - cache firmware for suspend so resume can use it 964 * @name: name of firmware file 965 * @device: device for which firmware should be cached for 966 * 967 * There are some devices with an optimization that enables the device to not 968 * require loading firmware on system reboot. This optimization may still 969 * require the firmware present on resume from suspend. This routine can be 970 * used to ensure the firmware is present on resume from suspend in these 971 * situations. This helper is not compatible with drivers which use 972 * request_firmware_into_buf() or request_firmware_nowait() with no uevent set. 973 **/ 974 int firmware_request_cache(struct device *device, const char *name) 975 { 976 int ret; 977 978 mutex_lock(&fw_lock); 979 ret = fw_add_devm_name(device, name); 980 mutex_unlock(&fw_lock); 981 982 return ret; 983 } 984 EXPORT_SYMBOL_GPL(firmware_request_cache); 985 986 /** 987 * request_firmware_into_buf() - load firmware into a previously allocated buffer 988 * @firmware_p: pointer to firmware image 989 * @name: name of firmware file 990 * @device: device for which firmware is being loaded and DMA region allocated 991 * @buf: address of buffer to load firmware into 992 * @size: size of buffer 993 * 994 * This function works pretty much like request_firmware(), but it doesn't 995 * allocate a buffer to hold the firmware data. Instead, the firmware 996 * is loaded directly into the buffer pointed to by @buf and the @firmware_p 997 * data member is pointed at @buf. 998 * 999 * This function doesn't cache firmware either. 1000 */ 1001 int 1002 request_firmware_into_buf(const struct firmware **firmware_p, const char *name, 1003 struct device *device, void *buf, size_t size) 1004 { 1005 int ret; 1006 1007 if (fw_cache_is_setup(device, name)) 1008 return -EOPNOTSUPP; 1009 1010 __module_get(THIS_MODULE); 1011 ret = _request_firmware(firmware_p, name, device, buf, size, 0, 1012 FW_OPT_UEVENT | FW_OPT_NOCACHE); 1013 module_put(THIS_MODULE); 1014 return ret; 1015 } 1016 EXPORT_SYMBOL(request_firmware_into_buf); 1017 1018 /** 1019 * request_partial_firmware_into_buf() - load partial firmware into a previously allocated buffer 1020 * @firmware_p: pointer to firmware image 1021 * @name: name of firmware file 1022 * @device: device for which firmware is being loaded and DMA region allocated 1023 * @buf: address of buffer to load firmware into 1024 * @size: size of buffer 1025 * @offset: offset into file to read 1026 * 1027 * This function works pretty much like request_firmware_into_buf except 1028 * it allows a partial read of the file. 1029 */ 1030 int 1031 request_partial_firmware_into_buf(const struct firmware **firmware_p, 1032 const char *name, struct device *device, 1033 void *buf, size_t size, size_t offset) 1034 { 1035 int ret; 1036 1037 if (fw_cache_is_setup(device, name)) 1038 return -EOPNOTSUPP; 1039 1040 __module_get(THIS_MODULE); 1041 ret = _request_firmware(firmware_p, name, device, buf, size, offset, 1042 FW_OPT_UEVENT | FW_OPT_NOCACHE | 1043 FW_OPT_PARTIAL); 1044 module_put(THIS_MODULE); 1045 return ret; 1046 } 1047 EXPORT_SYMBOL(request_partial_firmware_into_buf); 1048 1049 /** 1050 * release_firmware() - release the resource associated with a firmware image 1051 * @fw: firmware resource to release 1052 **/ 1053 void release_firmware(const struct firmware *fw) 1054 { 1055 if (fw) { 1056 if (!fw_is_builtin_firmware(fw)) 1057 firmware_free_data(fw); 1058 kfree(fw); 1059 } 1060 } 1061 EXPORT_SYMBOL(release_firmware); 1062 1063 /* Async support */ 1064 struct firmware_work { 1065 struct work_struct work; 1066 struct module *module; 1067 const char *name; 1068 struct device *device; 1069 void *context; 1070 void (*cont)(const struct firmware *fw, void *context); 1071 u32 opt_flags; 1072 }; 1073 1074 static void request_firmware_work_func(struct work_struct *work) 1075 { 1076 struct firmware_work *fw_work; 1077 const struct firmware *fw; 1078 1079 fw_work = container_of(work, struct firmware_work, work); 1080 1081 _request_firmware(&fw, fw_work->name, fw_work->device, NULL, 0, 0, 1082 fw_work->opt_flags); 1083 fw_work->cont(fw, fw_work->context); 1084 put_device(fw_work->device); /* taken in request_firmware_nowait() */ 1085 1086 module_put(fw_work->module); 1087 kfree_const(fw_work->name); 1088 kfree(fw_work); 1089 } 1090 1091 /** 1092 * request_firmware_nowait() - asynchronous version of request_firmware 1093 * @module: module requesting the firmware 1094 * @uevent: sends uevent to copy the firmware image if this flag 1095 * is non-zero else the firmware copy must be done manually. 1096 * @name: name of firmware file 1097 * @device: device for which firmware is being loaded 1098 * @gfp: allocation flags 1099 * @context: will be passed over to @cont, and 1100 * @fw may be %NULL if firmware request fails. 1101 * @cont: function will be called asynchronously when the firmware 1102 * request is over. 1103 * 1104 * Caller must hold the reference count of @device. 1105 * 1106 * Asynchronous variant of request_firmware() for user contexts: 1107 * - sleep for as small periods as possible since it may 1108 * increase kernel boot time of built-in device drivers 1109 * requesting firmware in their ->probe() methods, if 1110 * @gfp is GFP_KERNEL. 1111 * 1112 * - can't sleep at all if @gfp is GFP_ATOMIC. 1113 **/ 1114 int 1115 request_firmware_nowait( 1116 struct module *module, bool uevent, 1117 const char *name, struct device *device, gfp_t gfp, void *context, 1118 void (*cont)(const struct firmware *fw, void *context)) 1119 { 1120 struct firmware_work *fw_work; 1121 1122 fw_work = kzalloc(sizeof(struct firmware_work), gfp); 1123 if (!fw_work) 1124 return -ENOMEM; 1125 1126 fw_work->module = module; 1127 fw_work->name = kstrdup_const(name, gfp); 1128 if (!fw_work->name) { 1129 kfree(fw_work); 1130 return -ENOMEM; 1131 } 1132 fw_work->device = device; 1133 fw_work->context = context; 1134 fw_work->cont = cont; 1135 fw_work->opt_flags = FW_OPT_NOWAIT | 1136 (uevent ? FW_OPT_UEVENT : FW_OPT_USERHELPER); 1137 1138 if (!uevent && fw_cache_is_setup(device, name)) { 1139 kfree_const(fw_work->name); 1140 kfree(fw_work); 1141 return -EOPNOTSUPP; 1142 } 1143 1144 if (!try_module_get(module)) { 1145 kfree_const(fw_work->name); 1146 kfree(fw_work); 1147 return -EFAULT; 1148 } 1149 1150 get_device(fw_work->device); 1151 INIT_WORK(&fw_work->work, request_firmware_work_func); 1152 schedule_work(&fw_work->work); 1153 return 0; 1154 } 1155 EXPORT_SYMBOL(request_firmware_nowait); 1156 1157 #ifdef CONFIG_FW_CACHE 1158 static ASYNC_DOMAIN_EXCLUSIVE(fw_cache_domain); 1159 1160 /** 1161 * cache_firmware() - cache one firmware image in kernel memory space 1162 * @fw_name: the firmware image name 1163 * 1164 * Cache firmware in kernel memory so that drivers can use it when 1165 * system isn't ready for them to request firmware image from userspace. 1166 * Once it returns successfully, driver can use request_firmware or its 1167 * nowait version to get the cached firmware without any interacting 1168 * with userspace 1169 * 1170 * Return 0 if the firmware image has been cached successfully 1171 * Return !0 otherwise 1172 * 1173 */ 1174 static int cache_firmware(const char *fw_name) 1175 { 1176 int ret; 1177 const struct firmware *fw; 1178 1179 pr_debug("%s: %s\n", __func__, fw_name); 1180 1181 ret = request_firmware(&fw, fw_name, NULL); 1182 if (!ret) 1183 kfree(fw); 1184 1185 pr_debug("%s: %s ret=%d\n", __func__, fw_name, ret); 1186 1187 return ret; 1188 } 1189 1190 static struct fw_priv *lookup_fw_priv(const char *fw_name) 1191 { 1192 struct fw_priv *tmp; 1193 struct firmware_cache *fwc = &fw_cache; 1194 1195 spin_lock(&fwc->lock); 1196 tmp = __lookup_fw_priv(fw_name); 1197 spin_unlock(&fwc->lock); 1198 1199 return tmp; 1200 } 1201 1202 /** 1203 * uncache_firmware() - remove one cached firmware image 1204 * @fw_name: the firmware image name 1205 * 1206 * Uncache one firmware image which has been cached successfully 1207 * before. 1208 * 1209 * Return 0 if the firmware cache has been removed successfully 1210 * Return !0 otherwise 1211 * 1212 */ 1213 static int uncache_firmware(const char *fw_name) 1214 { 1215 struct fw_priv *fw_priv; 1216 struct firmware fw; 1217 1218 pr_debug("%s: %s\n", __func__, fw_name); 1219 1220 if (fw_get_builtin_firmware(&fw, fw_name, NULL, 0)) 1221 return 0; 1222 1223 fw_priv = lookup_fw_priv(fw_name); 1224 if (fw_priv) { 1225 free_fw_priv(fw_priv); 1226 return 0; 1227 } 1228 1229 return -EINVAL; 1230 } 1231 1232 static struct fw_cache_entry *alloc_fw_cache_entry(const char *name) 1233 { 1234 struct fw_cache_entry *fce; 1235 1236 fce = kzalloc(sizeof(*fce), GFP_ATOMIC); 1237 if (!fce) 1238 goto exit; 1239 1240 fce->name = kstrdup_const(name, GFP_ATOMIC); 1241 if (!fce->name) { 1242 kfree(fce); 1243 fce = NULL; 1244 goto exit; 1245 } 1246 exit: 1247 return fce; 1248 } 1249 1250 static int __fw_entry_found(const char *name) 1251 { 1252 struct firmware_cache *fwc = &fw_cache; 1253 struct fw_cache_entry *fce; 1254 1255 list_for_each_entry(fce, &fwc->fw_names, list) { 1256 if (!strcmp(fce->name, name)) 1257 return 1; 1258 } 1259 return 0; 1260 } 1261 1262 static int fw_cache_piggyback_on_request(const char *name) 1263 { 1264 struct firmware_cache *fwc = &fw_cache; 1265 struct fw_cache_entry *fce; 1266 int ret = 0; 1267 1268 spin_lock(&fwc->name_lock); 1269 if (__fw_entry_found(name)) 1270 goto found; 1271 1272 fce = alloc_fw_cache_entry(name); 1273 if (fce) { 1274 ret = 1; 1275 list_add(&fce->list, &fwc->fw_names); 1276 pr_debug("%s: fw: %s\n", __func__, name); 1277 } 1278 found: 1279 spin_unlock(&fwc->name_lock); 1280 return ret; 1281 } 1282 1283 static void free_fw_cache_entry(struct fw_cache_entry *fce) 1284 { 1285 kfree_const(fce->name); 1286 kfree(fce); 1287 } 1288 1289 static void __async_dev_cache_fw_image(void *fw_entry, 1290 async_cookie_t cookie) 1291 { 1292 struct fw_cache_entry *fce = fw_entry; 1293 struct firmware_cache *fwc = &fw_cache; 1294 int ret; 1295 1296 ret = cache_firmware(fce->name); 1297 if (ret) { 1298 spin_lock(&fwc->name_lock); 1299 list_del(&fce->list); 1300 spin_unlock(&fwc->name_lock); 1301 1302 free_fw_cache_entry(fce); 1303 } 1304 } 1305 1306 /* called with dev->devres_lock held */ 1307 static void dev_create_fw_entry(struct device *dev, void *res, 1308 void *data) 1309 { 1310 struct fw_name_devm *fwn = res; 1311 const char *fw_name = fwn->name; 1312 struct list_head *head = data; 1313 struct fw_cache_entry *fce; 1314 1315 fce = alloc_fw_cache_entry(fw_name); 1316 if (fce) 1317 list_add(&fce->list, head); 1318 } 1319 1320 static int devm_name_match(struct device *dev, void *res, 1321 void *match_data) 1322 { 1323 struct fw_name_devm *fwn = res; 1324 return (fwn->magic == (unsigned long)match_data); 1325 } 1326 1327 static void dev_cache_fw_image(struct device *dev, void *data) 1328 { 1329 LIST_HEAD(todo); 1330 struct fw_cache_entry *fce; 1331 struct fw_cache_entry *fce_next; 1332 struct firmware_cache *fwc = &fw_cache; 1333 1334 devres_for_each_res(dev, fw_name_devm_release, 1335 devm_name_match, &fw_cache, 1336 dev_create_fw_entry, &todo); 1337 1338 list_for_each_entry_safe(fce, fce_next, &todo, list) { 1339 list_del(&fce->list); 1340 1341 spin_lock(&fwc->name_lock); 1342 /* only one cache entry for one firmware */ 1343 if (!__fw_entry_found(fce->name)) { 1344 list_add(&fce->list, &fwc->fw_names); 1345 } else { 1346 free_fw_cache_entry(fce); 1347 fce = NULL; 1348 } 1349 spin_unlock(&fwc->name_lock); 1350 1351 if (fce) 1352 async_schedule_domain(__async_dev_cache_fw_image, 1353 (void *)fce, 1354 &fw_cache_domain); 1355 } 1356 } 1357 1358 static void __device_uncache_fw_images(void) 1359 { 1360 struct firmware_cache *fwc = &fw_cache; 1361 struct fw_cache_entry *fce; 1362 1363 spin_lock(&fwc->name_lock); 1364 while (!list_empty(&fwc->fw_names)) { 1365 fce = list_entry(fwc->fw_names.next, 1366 struct fw_cache_entry, list); 1367 list_del(&fce->list); 1368 spin_unlock(&fwc->name_lock); 1369 1370 uncache_firmware(fce->name); 1371 free_fw_cache_entry(fce); 1372 1373 spin_lock(&fwc->name_lock); 1374 } 1375 spin_unlock(&fwc->name_lock); 1376 } 1377 1378 /** 1379 * device_cache_fw_images() - cache devices' firmware 1380 * 1381 * If one device called request_firmware or its nowait version 1382 * successfully before, the firmware names are recored into the 1383 * device's devres link list, so device_cache_fw_images can call 1384 * cache_firmware() to cache these firmwares for the device, 1385 * then the device driver can load its firmwares easily at 1386 * time when system is not ready to complete loading firmware. 1387 */ 1388 static void device_cache_fw_images(void) 1389 { 1390 struct firmware_cache *fwc = &fw_cache; 1391 DEFINE_WAIT(wait); 1392 1393 pr_debug("%s\n", __func__); 1394 1395 /* cancel uncache work */ 1396 cancel_delayed_work_sync(&fwc->work); 1397 1398 fw_fallback_set_cache_timeout(); 1399 1400 mutex_lock(&fw_lock); 1401 fwc->state = FW_LOADER_START_CACHE; 1402 dpm_for_each_dev(NULL, dev_cache_fw_image); 1403 mutex_unlock(&fw_lock); 1404 1405 /* wait for completion of caching firmware for all devices */ 1406 async_synchronize_full_domain(&fw_cache_domain); 1407 1408 fw_fallback_set_default_timeout(); 1409 } 1410 1411 /** 1412 * device_uncache_fw_images() - uncache devices' firmware 1413 * 1414 * uncache all firmwares which have been cached successfully 1415 * by device_uncache_fw_images earlier 1416 */ 1417 static void device_uncache_fw_images(void) 1418 { 1419 pr_debug("%s\n", __func__); 1420 __device_uncache_fw_images(); 1421 } 1422 1423 static void device_uncache_fw_images_work(struct work_struct *work) 1424 { 1425 device_uncache_fw_images(); 1426 } 1427 1428 /** 1429 * device_uncache_fw_images_delay() - uncache devices firmwares 1430 * @delay: number of milliseconds to delay uncache device firmwares 1431 * 1432 * uncache all devices's firmwares which has been cached successfully 1433 * by device_cache_fw_images after @delay milliseconds. 1434 */ 1435 static void device_uncache_fw_images_delay(unsigned long delay) 1436 { 1437 queue_delayed_work(system_power_efficient_wq, &fw_cache.work, 1438 msecs_to_jiffies(delay)); 1439 } 1440 1441 static int fw_pm_notify(struct notifier_block *notify_block, 1442 unsigned long mode, void *unused) 1443 { 1444 switch (mode) { 1445 case PM_HIBERNATION_PREPARE: 1446 case PM_SUSPEND_PREPARE: 1447 case PM_RESTORE_PREPARE: 1448 /* 1449 * kill pending fallback requests with a custom fallback 1450 * to avoid stalling suspend. 1451 */ 1452 kill_pending_fw_fallback_reqs(true); 1453 device_cache_fw_images(); 1454 break; 1455 1456 case PM_POST_SUSPEND: 1457 case PM_POST_HIBERNATION: 1458 case PM_POST_RESTORE: 1459 /* 1460 * In case that system sleep failed and syscore_suspend is 1461 * not called. 1462 */ 1463 mutex_lock(&fw_lock); 1464 fw_cache.state = FW_LOADER_NO_CACHE; 1465 mutex_unlock(&fw_lock); 1466 1467 device_uncache_fw_images_delay(10 * MSEC_PER_SEC); 1468 break; 1469 } 1470 1471 return 0; 1472 } 1473 1474 /* stop caching firmware once syscore_suspend is reached */ 1475 static int fw_suspend(void) 1476 { 1477 fw_cache.state = FW_LOADER_NO_CACHE; 1478 return 0; 1479 } 1480 1481 static struct syscore_ops fw_syscore_ops = { 1482 .suspend = fw_suspend, 1483 }; 1484 1485 static int __init register_fw_pm_ops(void) 1486 { 1487 int ret; 1488 1489 spin_lock_init(&fw_cache.name_lock); 1490 INIT_LIST_HEAD(&fw_cache.fw_names); 1491 1492 INIT_DELAYED_WORK(&fw_cache.work, 1493 device_uncache_fw_images_work); 1494 1495 fw_cache.pm_notify.notifier_call = fw_pm_notify; 1496 ret = register_pm_notifier(&fw_cache.pm_notify); 1497 if (ret) 1498 return ret; 1499 1500 register_syscore_ops(&fw_syscore_ops); 1501 1502 return ret; 1503 } 1504 1505 static inline void unregister_fw_pm_ops(void) 1506 { 1507 unregister_syscore_ops(&fw_syscore_ops); 1508 unregister_pm_notifier(&fw_cache.pm_notify); 1509 } 1510 #else 1511 static int fw_cache_piggyback_on_request(const char *name) 1512 { 1513 return 0; 1514 } 1515 static inline int register_fw_pm_ops(void) 1516 { 1517 return 0; 1518 } 1519 static inline void unregister_fw_pm_ops(void) 1520 { 1521 } 1522 #endif 1523 1524 static void __init fw_cache_init(void) 1525 { 1526 spin_lock_init(&fw_cache.lock); 1527 INIT_LIST_HEAD(&fw_cache.head); 1528 fw_cache.state = FW_LOADER_NO_CACHE; 1529 } 1530 1531 static int fw_shutdown_notify(struct notifier_block *unused1, 1532 unsigned long unused2, void *unused3) 1533 { 1534 /* 1535 * Kill all pending fallback requests to avoid both stalling shutdown, 1536 * and avoid a deadlock with the usermode_lock. 1537 */ 1538 kill_pending_fw_fallback_reqs(false); 1539 1540 return NOTIFY_DONE; 1541 } 1542 1543 static struct notifier_block fw_shutdown_nb = { 1544 .notifier_call = fw_shutdown_notify, 1545 }; 1546 1547 static int __init firmware_class_init(void) 1548 { 1549 int ret; 1550 1551 /* No need to unfold these on exit */ 1552 fw_cache_init(); 1553 1554 ret = register_fw_pm_ops(); 1555 if (ret) 1556 return ret; 1557 1558 ret = register_reboot_notifier(&fw_shutdown_nb); 1559 if (ret) 1560 goto out; 1561 1562 return register_sysfs_loader(); 1563 1564 out: 1565 unregister_fw_pm_ops(); 1566 return ret; 1567 } 1568 1569 static void __exit firmware_class_exit(void) 1570 { 1571 unregister_fw_pm_ops(); 1572 unregister_reboot_notifier(&fw_shutdown_nb); 1573 unregister_sysfs_loader(); 1574 } 1575 1576 fs_initcall(firmware_class_init); 1577 module_exit(firmware_class_exit); 1578