1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * main.c - Multi purpose firmware loading support 4 * 5 * Copyright (c) 2003 Manuel Estrada Sainz 6 * 7 * Please see Documentation/driver-api/firmware/ for more information. 8 * 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/capability.h> 14 #include <linux/device.h> 15 #include <linux/kernel_read_file.h> 16 #include <linux/module.h> 17 #include <linux/init.h> 18 #include <linux/initrd.h> 19 #include <linux/timer.h> 20 #include <linux/vmalloc.h> 21 #include <linux/interrupt.h> 22 #include <linux/bitops.h> 23 #include <linux/mutex.h> 24 #include <linux/workqueue.h> 25 #include <linux/highmem.h> 26 #include <linux/firmware.h> 27 #include <linux/slab.h> 28 #include <linux/sched.h> 29 #include <linux/file.h> 30 #include <linux/list.h> 31 #include <linux/fs.h> 32 #include <linux/async.h> 33 #include <linux/pm.h> 34 #include <linux/suspend.h> 35 #include <linux/syscore_ops.h> 36 #include <linux/reboot.h> 37 #include <linux/security.h> 38 #include <linux/zstd.h> 39 #include <linux/xz.h> 40 41 #include <generated/utsrelease.h> 42 43 #include "../base.h" 44 #include "firmware.h" 45 #include "fallback.h" 46 47 MODULE_AUTHOR("Manuel Estrada Sainz"); 48 MODULE_DESCRIPTION("Multi purpose firmware loading support"); 49 MODULE_LICENSE("GPL"); 50 51 struct firmware_cache { 52 /* firmware_buf instance will be added into the below list */ 53 spinlock_t lock; 54 struct list_head head; 55 int state; 56 57 #ifdef CONFIG_FW_CACHE 58 /* 59 * Names of firmware images which have been cached successfully 60 * will be added into the below list so that device uncache 61 * helper can trace which firmware images have been cached 62 * before. 63 */ 64 spinlock_t name_lock; 65 struct list_head fw_names; 66 67 struct delayed_work work; 68 69 struct notifier_block pm_notify; 70 #endif 71 }; 72 73 struct fw_cache_entry { 74 struct list_head list; 75 const char *name; 76 }; 77 78 struct fw_name_devm { 79 unsigned long magic; 80 const char *name; 81 }; 82 83 static inline struct fw_priv *to_fw_priv(struct kref *ref) 84 { 85 return container_of(ref, struct fw_priv, ref); 86 } 87 88 #define FW_LOADER_NO_CACHE 0 89 #define FW_LOADER_START_CACHE 1 90 91 /* fw_lock could be moved to 'struct fw_sysfs' but since it is just 92 * guarding for corner cases a global lock should be OK */ 93 DEFINE_MUTEX(fw_lock); 94 95 struct firmware_cache fw_cache; 96 97 void fw_state_init(struct fw_priv *fw_priv) 98 { 99 struct fw_state *fw_st = &fw_priv->fw_st; 100 101 init_completion(&fw_st->completion); 102 fw_st->status = FW_STATUS_UNKNOWN; 103 } 104 105 static inline int fw_state_wait(struct fw_priv *fw_priv) 106 { 107 return __fw_state_wait_common(fw_priv, MAX_SCHEDULE_TIMEOUT); 108 } 109 110 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv); 111 112 static struct fw_priv *__allocate_fw_priv(const char *fw_name, 113 struct firmware_cache *fwc, 114 void *dbuf, 115 size_t size, 116 size_t offset, 117 u32 opt_flags) 118 { 119 struct fw_priv *fw_priv; 120 121 /* For a partial read, the buffer must be preallocated. */ 122 if ((opt_flags & FW_OPT_PARTIAL) && !dbuf) 123 return NULL; 124 125 /* Only partial reads are allowed to use an offset. */ 126 if (offset != 0 && !(opt_flags & FW_OPT_PARTIAL)) 127 return NULL; 128 129 fw_priv = kzalloc(sizeof(*fw_priv), GFP_ATOMIC); 130 if (!fw_priv) 131 return NULL; 132 133 fw_priv->fw_name = kstrdup_const(fw_name, GFP_ATOMIC); 134 if (!fw_priv->fw_name) { 135 kfree(fw_priv); 136 return NULL; 137 } 138 139 kref_init(&fw_priv->ref); 140 fw_priv->fwc = fwc; 141 fw_priv->data = dbuf; 142 fw_priv->allocated_size = size; 143 fw_priv->offset = offset; 144 fw_priv->opt_flags = opt_flags; 145 fw_state_init(fw_priv); 146 #ifdef CONFIG_FW_LOADER_USER_HELPER 147 INIT_LIST_HEAD(&fw_priv->pending_list); 148 #endif 149 150 pr_debug("%s: fw-%s fw_priv=%p\n", __func__, fw_name, fw_priv); 151 152 return fw_priv; 153 } 154 155 static struct fw_priv *__lookup_fw_priv(const char *fw_name) 156 { 157 struct fw_priv *tmp; 158 struct firmware_cache *fwc = &fw_cache; 159 160 list_for_each_entry(tmp, &fwc->head, list) 161 if (!strcmp(tmp->fw_name, fw_name)) 162 return tmp; 163 return NULL; 164 } 165 166 /* Returns 1 for batching firmware requests with the same name */ 167 int alloc_lookup_fw_priv(const char *fw_name, struct firmware_cache *fwc, 168 struct fw_priv **fw_priv, void *dbuf, size_t size, 169 size_t offset, u32 opt_flags) 170 { 171 struct fw_priv *tmp; 172 173 spin_lock(&fwc->lock); 174 /* 175 * Do not merge requests that are marked to be non-cached or 176 * are performing partial reads. 177 */ 178 if (!(opt_flags & (FW_OPT_NOCACHE | FW_OPT_PARTIAL))) { 179 tmp = __lookup_fw_priv(fw_name); 180 if (tmp) { 181 kref_get(&tmp->ref); 182 spin_unlock(&fwc->lock); 183 *fw_priv = tmp; 184 pr_debug("batched request - sharing the same struct fw_priv and lookup for multiple requests\n"); 185 return 1; 186 } 187 } 188 189 tmp = __allocate_fw_priv(fw_name, fwc, dbuf, size, offset, opt_flags); 190 if (tmp) { 191 INIT_LIST_HEAD(&tmp->list); 192 if (!(opt_flags & FW_OPT_NOCACHE)) 193 list_add(&tmp->list, &fwc->head); 194 } 195 spin_unlock(&fwc->lock); 196 197 *fw_priv = tmp; 198 199 return tmp ? 0 : -ENOMEM; 200 } 201 202 static void __free_fw_priv(struct kref *ref) 203 __releases(&fwc->lock) 204 { 205 struct fw_priv *fw_priv = to_fw_priv(ref); 206 struct firmware_cache *fwc = fw_priv->fwc; 207 208 pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n", 209 __func__, fw_priv->fw_name, fw_priv, fw_priv->data, 210 (unsigned int)fw_priv->size); 211 212 list_del(&fw_priv->list); 213 spin_unlock(&fwc->lock); 214 215 if (fw_is_paged_buf(fw_priv)) 216 fw_free_paged_buf(fw_priv); 217 else if (!fw_priv->allocated_size) 218 vfree(fw_priv->data); 219 220 kfree_const(fw_priv->fw_name); 221 kfree(fw_priv); 222 } 223 224 void free_fw_priv(struct fw_priv *fw_priv) 225 { 226 struct firmware_cache *fwc = fw_priv->fwc; 227 spin_lock(&fwc->lock); 228 if (!kref_put(&fw_priv->ref, __free_fw_priv)) 229 spin_unlock(&fwc->lock); 230 } 231 232 #ifdef CONFIG_FW_LOADER_PAGED_BUF 233 bool fw_is_paged_buf(struct fw_priv *fw_priv) 234 { 235 return fw_priv->is_paged_buf; 236 } 237 238 void fw_free_paged_buf(struct fw_priv *fw_priv) 239 { 240 int i; 241 242 if (!fw_priv->pages) 243 return; 244 245 vunmap(fw_priv->data); 246 247 for (i = 0; i < fw_priv->nr_pages; i++) 248 __free_page(fw_priv->pages[i]); 249 kvfree(fw_priv->pages); 250 fw_priv->pages = NULL; 251 fw_priv->page_array_size = 0; 252 fw_priv->nr_pages = 0; 253 fw_priv->data = NULL; 254 fw_priv->size = 0; 255 } 256 257 int fw_grow_paged_buf(struct fw_priv *fw_priv, int pages_needed) 258 { 259 /* If the array of pages is too small, grow it */ 260 if (fw_priv->page_array_size < pages_needed) { 261 int new_array_size = max(pages_needed, 262 fw_priv->page_array_size * 2); 263 struct page **new_pages; 264 265 new_pages = kvmalloc_array(new_array_size, sizeof(void *), 266 GFP_KERNEL); 267 if (!new_pages) 268 return -ENOMEM; 269 memcpy(new_pages, fw_priv->pages, 270 fw_priv->page_array_size * sizeof(void *)); 271 memset(&new_pages[fw_priv->page_array_size], 0, sizeof(void *) * 272 (new_array_size - fw_priv->page_array_size)); 273 kvfree(fw_priv->pages); 274 fw_priv->pages = new_pages; 275 fw_priv->page_array_size = new_array_size; 276 } 277 278 while (fw_priv->nr_pages < pages_needed) { 279 fw_priv->pages[fw_priv->nr_pages] = 280 alloc_page(GFP_KERNEL | __GFP_HIGHMEM); 281 282 if (!fw_priv->pages[fw_priv->nr_pages]) 283 return -ENOMEM; 284 fw_priv->nr_pages++; 285 } 286 287 return 0; 288 } 289 290 int fw_map_paged_buf(struct fw_priv *fw_priv) 291 { 292 /* one pages buffer should be mapped/unmapped only once */ 293 if (!fw_priv->pages) 294 return 0; 295 296 vunmap(fw_priv->data); 297 fw_priv->data = vmap(fw_priv->pages, fw_priv->nr_pages, 0, 298 PAGE_KERNEL_RO); 299 if (!fw_priv->data) 300 return -ENOMEM; 301 302 return 0; 303 } 304 #endif 305 306 /* 307 * ZSTD-compressed firmware support 308 */ 309 #ifdef CONFIG_FW_LOADER_COMPRESS_ZSTD 310 static int fw_decompress_zstd(struct device *dev, struct fw_priv *fw_priv, 311 size_t in_size, const void *in_buffer) 312 { 313 size_t len, out_size, workspace_size; 314 void *workspace, *out_buf; 315 zstd_dctx *ctx; 316 int err; 317 318 if (fw_priv->allocated_size) { 319 out_size = fw_priv->allocated_size; 320 out_buf = fw_priv->data; 321 } else { 322 zstd_frame_header params; 323 324 if (zstd_get_frame_header(¶ms, in_buffer, in_size) || 325 params.frameContentSize == ZSTD_CONTENTSIZE_UNKNOWN) { 326 dev_dbg(dev, "%s: invalid zstd header\n", __func__); 327 return -EINVAL; 328 } 329 out_size = params.frameContentSize; 330 out_buf = vzalloc(out_size); 331 if (!out_buf) 332 return -ENOMEM; 333 } 334 335 workspace_size = zstd_dctx_workspace_bound(); 336 workspace = kvzalloc(workspace_size, GFP_KERNEL); 337 if (!workspace) { 338 err = -ENOMEM; 339 goto error; 340 } 341 342 ctx = zstd_init_dctx(workspace, workspace_size); 343 if (!ctx) { 344 dev_dbg(dev, "%s: failed to initialize context\n", __func__); 345 err = -EINVAL; 346 goto error; 347 } 348 349 len = zstd_decompress_dctx(ctx, out_buf, out_size, in_buffer, in_size); 350 if (zstd_is_error(len)) { 351 dev_dbg(dev, "%s: failed to decompress: %d\n", __func__, 352 zstd_get_error_code(len)); 353 err = -EINVAL; 354 goto error; 355 } 356 357 if (!fw_priv->allocated_size) 358 fw_priv->data = out_buf; 359 fw_priv->size = len; 360 err = 0; 361 362 error: 363 kvfree(workspace); 364 if (err && !fw_priv->allocated_size) 365 vfree(out_buf); 366 return err; 367 } 368 #endif /* CONFIG_FW_LOADER_COMPRESS_ZSTD */ 369 370 /* 371 * XZ-compressed firmware support 372 */ 373 #ifdef CONFIG_FW_LOADER_COMPRESS_XZ 374 /* show an error and return the standard error code */ 375 static int fw_decompress_xz_error(struct device *dev, enum xz_ret xz_ret) 376 { 377 if (xz_ret != XZ_STREAM_END) { 378 dev_warn(dev, "xz decompression failed (xz_ret=%d)\n", xz_ret); 379 return xz_ret == XZ_MEM_ERROR ? -ENOMEM : -EINVAL; 380 } 381 return 0; 382 } 383 384 /* single-shot decompression onto the pre-allocated buffer */ 385 static int fw_decompress_xz_single(struct device *dev, struct fw_priv *fw_priv, 386 size_t in_size, const void *in_buffer) 387 { 388 struct xz_dec *xz_dec; 389 struct xz_buf xz_buf; 390 enum xz_ret xz_ret; 391 392 xz_dec = xz_dec_init(XZ_SINGLE, (u32)-1); 393 if (!xz_dec) 394 return -ENOMEM; 395 396 xz_buf.in_size = in_size; 397 xz_buf.in = in_buffer; 398 xz_buf.in_pos = 0; 399 xz_buf.out_size = fw_priv->allocated_size; 400 xz_buf.out = fw_priv->data; 401 xz_buf.out_pos = 0; 402 403 xz_ret = xz_dec_run(xz_dec, &xz_buf); 404 xz_dec_end(xz_dec); 405 406 fw_priv->size = xz_buf.out_pos; 407 return fw_decompress_xz_error(dev, xz_ret); 408 } 409 410 /* decompression on paged buffer and map it */ 411 static int fw_decompress_xz_pages(struct device *dev, struct fw_priv *fw_priv, 412 size_t in_size, const void *in_buffer) 413 { 414 struct xz_dec *xz_dec; 415 struct xz_buf xz_buf; 416 enum xz_ret xz_ret; 417 struct page *page; 418 int err = 0; 419 420 xz_dec = xz_dec_init(XZ_DYNALLOC, (u32)-1); 421 if (!xz_dec) 422 return -ENOMEM; 423 424 xz_buf.in_size = in_size; 425 xz_buf.in = in_buffer; 426 xz_buf.in_pos = 0; 427 428 fw_priv->is_paged_buf = true; 429 fw_priv->size = 0; 430 do { 431 if (fw_grow_paged_buf(fw_priv, fw_priv->nr_pages + 1)) { 432 err = -ENOMEM; 433 goto out; 434 } 435 436 /* decompress onto the new allocated page */ 437 page = fw_priv->pages[fw_priv->nr_pages - 1]; 438 xz_buf.out = kmap_local_page(page); 439 xz_buf.out_pos = 0; 440 xz_buf.out_size = PAGE_SIZE; 441 xz_ret = xz_dec_run(xz_dec, &xz_buf); 442 kunmap_local(xz_buf.out); 443 fw_priv->size += xz_buf.out_pos; 444 /* partial decompression means either end or error */ 445 if (xz_buf.out_pos != PAGE_SIZE) 446 break; 447 } while (xz_ret == XZ_OK); 448 449 err = fw_decompress_xz_error(dev, xz_ret); 450 if (!err) 451 err = fw_map_paged_buf(fw_priv); 452 453 out: 454 xz_dec_end(xz_dec); 455 return err; 456 } 457 458 static int fw_decompress_xz(struct device *dev, struct fw_priv *fw_priv, 459 size_t in_size, const void *in_buffer) 460 { 461 /* if the buffer is pre-allocated, we can perform in single-shot mode */ 462 if (fw_priv->data) 463 return fw_decompress_xz_single(dev, fw_priv, in_size, in_buffer); 464 else 465 return fw_decompress_xz_pages(dev, fw_priv, in_size, in_buffer); 466 } 467 #endif /* CONFIG_FW_LOADER_COMPRESS_XZ */ 468 469 /* direct firmware loading support */ 470 static char fw_path_para[256]; 471 static const char * const fw_path[] = { 472 fw_path_para, 473 "/lib/firmware/updates/" UTS_RELEASE, 474 "/lib/firmware/updates", 475 "/lib/firmware/" UTS_RELEASE, 476 "/lib/firmware" 477 }; 478 479 /* 480 * Typical usage is that passing 'firmware_class.path=$CUSTOMIZED_PATH' 481 * from kernel command line because firmware_class is generally built in 482 * kernel instead of module. 483 */ 484 module_param_string(path, fw_path_para, sizeof(fw_path_para), 0644); 485 MODULE_PARM_DESC(path, "customized firmware image search path with a higher priority than default path"); 486 487 static int 488 fw_get_filesystem_firmware(struct device *device, struct fw_priv *fw_priv, 489 const char *suffix, 490 int (*decompress)(struct device *dev, 491 struct fw_priv *fw_priv, 492 size_t in_size, 493 const void *in_buffer)) 494 { 495 size_t size; 496 int i, len; 497 int rc = -ENOENT; 498 char *path; 499 size_t msize = INT_MAX; 500 void *buffer = NULL; 501 502 /* Already populated data member means we're loading into a buffer */ 503 if (!decompress && fw_priv->data) { 504 buffer = fw_priv->data; 505 msize = fw_priv->allocated_size; 506 } 507 508 path = __getname(); 509 if (!path) 510 return -ENOMEM; 511 512 wait_for_initramfs(); 513 for (i = 0; i < ARRAY_SIZE(fw_path); i++) { 514 size_t file_size = 0; 515 size_t *file_size_ptr = NULL; 516 517 /* skip the unset customized path */ 518 if (!fw_path[i][0]) 519 continue; 520 521 len = snprintf(path, PATH_MAX, "%s/%s%s", 522 fw_path[i], fw_priv->fw_name, suffix); 523 if (len >= PATH_MAX) { 524 rc = -ENAMETOOLONG; 525 break; 526 } 527 528 fw_priv->size = 0; 529 530 /* 531 * The total file size is only examined when doing a partial 532 * read; the "full read" case needs to fail if the whole 533 * firmware was not completely loaded. 534 */ 535 if ((fw_priv->opt_flags & FW_OPT_PARTIAL) && buffer) 536 file_size_ptr = &file_size; 537 538 /* load firmware files from the mount namespace of init */ 539 rc = kernel_read_file_from_path_initns(path, fw_priv->offset, 540 &buffer, msize, 541 file_size_ptr, 542 READING_FIRMWARE); 543 if (rc < 0) { 544 if (rc != -ENOENT) 545 dev_warn(device, "loading %s failed with error %d\n", 546 path, rc); 547 else 548 dev_dbg(device, "loading %s failed for no such file or directory.\n", 549 path); 550 continue; 551 } 552 size = rc; 553 rc = 0; 554 555 dev_dbg(device, "Loading firmware from %s\n", path); 556 if (decompress) { 557 dev_dbg(device, "f/w decompressing %s\n", 558 fw_priv->fw_name); 559 rc = decompress(device, fw_priv, size, buffer); 560 /* discard the superfluous original content */ 561 vfree(buffer); 562 buffer = NULL; 563 if (rc) { 564 fw_free_paged_buf(fw_priv); 565 continue; 566 } 567 } else { 568 dev_dbg(device, "direct-loading %s\n", 569 fw_priv->fw_name); 570 if (!fw_priv->data) 571 fw_priv->data = buffer; 572 fw_priv->size = size; 573 } 574 fw_state_done(fw_priv); 575 break; 576 } 577 __putname(path); 578 579 return rc; 580 } 581 582 /* firmware holds the ownership of pages */ 583 static void firmware_free_data(const struct firmware *fw) 584 { 585 /* Loaded directly? */ 586 if (!fw->priv) { 587 vfree(fw->data); 588 return; 589 } 590 free_fw_priv(fw->priv); 591 } 592 593 /* store the pages buffer info firmware from buf */ 594 static void fw_set_page_data(struct fw_priv *fw_priv, struct firmware *fw) 595 { 596 fw->priv = fw_priv; 597 fw->size = fw_priv->size; 598 fw->data = fw_priv->data; 599 600 pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n", 601 __func__, fw_priv->fw_name, fw_priv, fw_priv->data, 602 (unsigned int)fw_priv->size); 603 } 604 605 #ifdef CONFIG_FW_CACHE 606 static void fw_name_devm_release(struct device *dev, void *res) 607 { 608 struct fw_name_devm *fwn = res; 609 610 if (fwn->magic == (unsigned long)&fw_cache) 611 pr_debug("%s: fw_name-%s devm-%p released\n", 612 __func__, fwn->name, res); 613 kfree_const(fwn->name); 614 } 615 616 static int fw_devm_match(struct device *dev, void *res, 617 void *match_data) 618 { 619 struct fw_name_devm *fwn = res; 620 621 return (fwn->magic == (unsigned long)&fw_cache) && 622 !strcmp(fwn->name, match_data); 623 } 624 625 static struct fw_name_devm *fw_find_devm_name(struct device *dev, 626 const char *name) 627 { 628 struct fw_name_devm *fwn; 629 630 fwn = devres_find(dev, fw_name_devm_release, 631 fw_devm_match, (void *)name); 632 return fwn; 633 } 634 635 static bool fw_cache_is_setup(struct device *dev, const char *name) 636 { 637 struct fw_name_devm *fwn; 638 639 fwn = fw_find_devm_name(dev, name); 640 if (fwn) 641 return true; 642 643 return false; 644 } 645 646 /* add firmware name into devres list */ 647 static int fw_add_devm_name(struct device *dev, const char *name) 648 { 649 struct fw_name_devm *fwn; 650 651 if (fw_cache_is_setup(dev, name)) 652 return 0; 653 654 fwn = devres_alloc(fw_name_devm_release, sizeof(struct fw_name_devm), 655 GFP_KERNEL); 656 if (!fwn) 657 return -ENOMEM; 658 fwn->name = kstrdup_const(name, GFP_KERNEL); 659 if (!fwn->name) { 660 devres_free(fwn); 661 return -ENOMEM; 662 } 663 664 fwn->magic = (unsigned long)&fw_cache; 665 devres_add(dev, fwn); 666 667 return 0; 668 } 669 #else 670 static bool fw_cache_is_setup(struct device *dev, const char *name) 671 { 672 return false; 673 } 674 675 static int fw_add_devm_name(struct device *dev, const char *name) 676 { 677 return 0; 678 } 679 #endif 680 681 int assign_fw(struct firmware *fw, struct device *device) 682 { 683 struct fw_priv *fw_priv = fw->priv; 684 int ret; 685 686 mutex_lock(&fw_lock); 687 if (!fw_priv->size || fw_state_is_aborted(fw_priv)) { 688 mutex_unlock(&fw_lock); 689 return -ENOENT; 690 } 691 692 /* 693 * add firmware name into devres list so that we can auto cache 694 * and uncache firmware for device. 695 * 696 * device may has been deleted already, but the problem 697 * should be fixed in devres or driver core. 698 */ 699 /* don't cache firmware handled without uevent */ 700 if (device && (fw_priv->opt_flags & FW_OPT_UEVENT) && 701 !(fw_priv->opt_flags & FW_OPT_NOCACHE)) { 702 ret = fw_add_devm_name(device, fw_priv->fw_name); 703 if (ret) { 704 mutex_unlock(&fw_lock); 705 return ret; 706 } 707 } 708 709 /* 710 * After caching firmware image is started, let it piggyback 711 * on request firmware. 712 */ 713 if (!(fw_priv->opt_flags & FW_OPT_NOCACHE) && 714 fw_priv->fwc->state == FW_LOADER_START_CACHE) 715 fw_cache_piggyback_on_request(fw_priv); 716 717 /* pass the pages buffer to driver at the last minute */ 718 fw_set_page_data(fw_priv, fw); 719 mutex_unlock(&fw_lock); 720 return 0; 721 } 722 723 /* prepare firmware and firmware_buf structs; 724 * return 0 if a firmware is already assigned, 1 if need to load one, 725 * or a negative error code 726 */ 727 static int 728 _request_firmware_prepare(struct firmware **firmware_p, const char *name, 729 struct device *device, void *dbuf, size_t size, 730 size_t offset, u32 opt_flags) 731 { 732 struct firmware *firmware; 733 struct fw_priv *fw_priv; 734 int ret; 735 736 *firmware_p = firmware = kzalloc(sizeof(*firmware), GFP_KERNEL); 737 if (!firmware) { 738 dev_err(device, "%s: kmalloc(struct firmware) failed\n", 739 __func__); 740 return -ENOMEM; 741 } 742 743 if (firmware_request_builtin_buf(firmware, name, dbuf, size)) { 744 dev_dbg(device, "using built-in %s\n", name); 745 return 0; /* assigned */ 746 } 747 748 ret = alloc_lookup_fw_priv(name, &fw_cache, &fw_priv, dbuf, size, 749 offset, opt_flags); 750 751 /* 752 * bind with 'priv' now to avoid warning in failure path 753 * of requesting firmware. 754 */ 755 firmware->priv = fw_priv; 756 757 if (ret > 0) { 758 ret = fw_state_wait(fw_priv); 759 if (!ret) { 760 fw_set_page_data(fw_priv, firmware); 761 return 0; /* assigned */ 762 } 763 } 764 765 if (ret < 0) 766 return ret; 767 return 1; /* need to load */ 768 } 769 770 /* 771 * Batched requests need only one wake, we need to do this step last due to the 772 * fallback mechanism. The buf is protected with kref_get(), and it won't be 773 * released until the last user calls release_firmware(). 774 * 775 * Failed batched requests are possible as well, in such cases we just share 776 * the struct fw_priv and won't release it until all requests are woken 777 * and have gone through this same path. 778 */ 779 static void fw_abort_batch_reqs(struct firmware *fw) 780 { 781 struct fw_priv *fw_priv; 782 783 /* Loaded directly? */ 784 if (!fw || !fw->priv) 785 return; 786 787 fw_priv = fw->priv; 788 mutex_lock(&fw_lock); 789 if (!fw_state_is_aborted(fw_priv)) 790 fw_state_aborted(fw_priv); 791 mutex_unlock(&fw_lock); 792 } 793 794 /* called from request_firmware() and request_firmware_work_func() */ 795 static int 796 _request_firmware(const struct firmware **firmware_p, const char *name, 797 struct device *device, void *buf, size_t size, 798 size_t offset, u32 opt_flags) 799 { 800 struct firmware *fw = NULL; 801 struct cred *kern_cred = NULL; 802 const struct cred *old_cred; 803 bool nondirect = false; 804 int ret; 805 806 if (!firmware_p) 807 return -EINVAL; 808 809 if (!name || name[0] == '\0') { 810 ret = -EINVAL; 811 goto out; 812 } 813 814 ret = _request_firmware_prepare(&fw, name, device, buf, size, 815 offset, opt_flags); 816 if (ret <= 0) /* error or already assigned */ 817 goto out; 818 819 /* 820 * We are about to try to access the firmware file. Because we may have been 821 * called by a driver when serving an unrelated request from userland, we use 822 * the kernel credentials to read the file. 823 */ 824 kern_cred = prepare_kernel_cred(NULL); 825 if (!kern_cred) { 826 ret = -ENOMEM; 827 goto out; 828 } 829 old_cred = override_creds(kern_cred); 830 831 ret = fw_get_filesystem_firmware(device, fw->priv, "", NULL); 832 833 /* Only full reads can support decompression, platform, and sysfs. */ 834 if (!(opt_flags & FW_OPT_PARTIAL)) 835 nondirect = true; 836 837 #ifdef CONFIG_FW_LOADER_COMPRESS_ZSTD 838 if (ret == -ENOENT && nondirect) 839 ret = fw_get_filesystem_firmware(device, fw->priv, ".zst", 840 fw_decompress_zstd); 841 #endif 842 #ifdef CONFIG_FW_LOADER_COMPRESS_XZ 843 if (ret == -ENOENT && nondirect) 844 ret = fw_get_filesystem_firmware(device, fw->priv, ".xz", 845 fw_decompress_xz); 846 #endif 847 if (ret == -ENOENT && nondirect) 848 ret = firmware_fallback_platform(fw->priv); 849 850 if (ret) { 851 if (!(opt_flags & FW_OPT_NO_WARN)) 852 dev_warn(device, 853 "Direct firmware load for %s failed with error %d\n", 854 name, ret); 855 if (nondirect) 856 ret = firmware_fallback_sysfs(fw, name, device, 857 opt_flags, ret); 858 } else 859 ret = assign_fw(fw, device); 860 861 revert_creds(old_cred); 862 put_cred(kern_cred); 863 864 out: 865 if (ret < 0) { 866 fw_abort_batch_reqs(fw); 867 release_firmware(fw); 868 fw = NULL; 869 } 870 871 *firmware_p = fw; 872 return ret; 873 } 874 875 /** 876 * request_firmware() - send firmware request and wait for it 877 * @firmware_p: pointer to firmware image 878 * @name: name of firmware file 879 * @device: device for which firmware is being loaded 880 * 881 * @firmware_p will be used to return a firmware image by the name 882 * of @name for device @device. 883 * 884 * Should be called from user context where sleeping is allowed. 885 * 886 * @name will be used as $FIRMWARE in the uevent environment and 887 * should be distinctive enough not to be confused with any other 888 * firmware image for this or any other device. 889 * 890 * Caller must hold the reference count of @device. 891 * 892 * The function can be called safely inside device's suspend and 893 * resume callback. 894 **/ 895 int 896 request_firmware(const struct firmware **firmware_p, const char *name, 897 struct device *device) 898 { 899 int ret; 900 901 /* Need to pin this module until return */ 902 __module_get(THIS_MODULE); 903 ret = _request_firmware(firmware_p, name, device, NULL, 0, 0, 904 FW_OPT_UEVENT); 905 module_put(THIS_MODULE); 906 return ret; 907 } 908 EXPORT_SYMBOL(request_firmware); 909 910 /** 911 * firmware_request_nowarn() - request for an optional fw module 912 * @firmware: pointer to firmware image 913 * @name: name of firmware file 914 * @device: device for which firmware is being loaded 915 * 916 * This function is similar in behaviour to request_firmware(), except it 917 * doesn't produce warning messages when the file is not found. The sysfs 918 * fallback mechanism is enabled if direct filesystem lookup fails. However, 919 * failures to find the firmware file with it are still suppressed. It is 920 * therefore up to the driver to check for the return value of this call and to 921 * decide when to inform the users of errors. 922 **/ 923 int firmware_request_nowarn(const struct firmware **firmware, const char *name, 924 struct device *device) 925 { 926 int ret; 927 928 /* Need to pin this module until return */ 929 __module_get(THIS_MODULE); 930 ret = _request_firmware(firmware, name, device, NULL, 0, 0, 931 FW_OPT_UEVENT | FW_OPT_NO_WARN); 932 module_put(THIS_MODULE); 933 return ret; 934 } 935 EXPORT_SYMBOL_GPL(firmware_request_nowarn); 936 937 /** 938 * request_firmware_direct() - load firmware directly without usermode helper 939 * @firmware_p: pointer to firmware image 940 * @name: name of firmware file 941 * @device: device for which firmware is being loaded 942 * 943 * This function works pretty much like request_firmware(), but this doesn't 944 * fall back to usermode helper even if the firmware couldn't be loaded 945 * directly from fs. Hence it's useful for loading optional firmwares, which 946 * aren't always present, without extra long timeouts of udev. 947 **/ 948 int request_firmware_direct(const struct firmware **firmware_p, 949 const char *name, struct device *device) 950 { 951 int ret; 952 953 __module_get(THIS_MODULE); 954 ret = _request_firmware(firmware_p, name, device, NULL, 0, 0, 955 FW_OPT_UEVENT | FW_OPT_NO_WARN | 956 FW_OPT_NOFALLBACK_SYSFS); 957 module_put(THIS_MODULE); 958 return ret; 959 } 960 EXPORT_SYMBOL_GPL(request_firmware_direct); 961 962 /** 963 * firmware_request_platform() - request firmware with platform-fw fallback 964 * @firmware: pointer to firmware image 965 * @name: name of firmware file 966 * @device: device for which firmware is being loaded 967 * 968 * This function is similar in behaviour to request_firmware, except that if 969 * direct filesystem lookup fails, it will fallback to looking for a copy of the 970 * requested firmware embedded in the platform's main (e.g. UEFI) firmware. 971 **/ 972 int firmware_request_platform(const struct firmware **firmware, 973 const char *name, struct device *device) 974 { 975 int ret; 976 977 /* Need to pin this module until return */ 978 __module_get(THIS_MODULE); 979 ret = _request_firmware(firmware, name, device, NULL, 0, 0, 980 FW_OPT_UEVENT | FW_OPT_FALLBACK_PLATFORM); 981 module_put(THIS_MODULE); 982 return ret; 983 } 984 EXPORT_SYMBOL_GPL(firmware_request_platform); 985 986 /** 987 * firmware_request_cache() - cache firmware for suspend so resume can use it 988 * @name: name of firmware file 989 * @device: device for which firmware should be cached for 990 * 991 * There are some devices with an optimization that enables the device to not 992 * require loading firmware on system reboot. This optimization may still 993 * require the firmware present on resume from suspend. This routine can be 994 * used to ensure the firmware is present on resume from suspend in these 995 * situations. This helper is not compatible with drivers which use 996 * request_firmware_into_buf() or request_firmware_nowait() with no uevent set. 997 **/ 998 int firmware_request_cache(struct device *device, const char *name) 999 { 1000 int ret; 1001 1002 mutex_lock(&fw_lock); 1003 ret = fw_add_devm_name(device, name); 1004 mutex_unlock(&fw_lock); 1005 1006 return ret; 1007 } 1008 EXPORT_SYMBOL_GPL(firmware_request_cache); 1009 1010 /** 1011 * request_firmware_into_buf() - load firmware into a previously allocated buffer 1012 * @firmware_p: pointer to firmware image 1013 * @name: name of firmware file 1014 * @device: device for which firmware is being loaded and DMA region allocated 1015 * @buf: address of buffer to load firmware into 1016 * @size: size of buffer 1017 * 1018 * This function works pretty much like request_firmware(), but it doesn't 1019 * allocate a buffer to hold the firmware data. Instead, the firmware 1020 * is loaded directly into the buffer pointed to by @buf and the @firmware_p 1021 * data member is pointed at @buf. 1022 * 1023 * This function doesn't cache firmware either. 1024 */ 1025 int 1026 request_firmware_into_buf(const struct firmware **firmware_p, const char *name, 1027 struct device *device, void *buf, size_t size) 1028 { 1029 int ret; 1030 1031 if (fw_cache_is_setup(device, name)) 1032 return -EOPNOTSUPP; 1033 1034 __module_get(THIS_MODULE); 1035 ret = _request_firmware(firmware_p, name, device, buf, size, 0, 1036 FW_OPT_UEVENT | FW_OPT_NOCACHE); 1037 module_put(THIS_MODULE); 1038 return ret; 1039 } 1040 EXPORT_SYMBOL(request_firmware_into_buf); 1041 1042 /** 1043 * request_partial_firmware_into_buf() - load partial firmware into a previously allocated buffer 1044 * @firmware_p: pointer to firmware image 1045 * @name: name of firmware file 1046 * @device: device for which firmware is being loaded and DMA region allocated 1047 * @buf: address of buffer to load firmware into 1048 * @size: size of buffer 1049 * @offset: offset into file to read 1050 * 1051 * This function works pretty much like request_firmware_into_buf except 1052 * it allows a partial read of the file. 1053 */ 1054 int 1055 request_partial_firmware_into_buf(const struct firmware **firmware_p, 1056 const char *name, struct device *device, 1057 void *buf, size_t size, size_t offset) 1058 { 1059 int ret; 1060 1061 if (fw_cache_is_setup(device, name)) 1062 return -EOPNOTSUPP; 1063 1064 __module_get(THIS_MODULE); 1065 ret = _request_firmware(firmware_p, name, device, buf, size, offset, 1066 FW_OPT_UEVENT | FW_OPT_NOCACHE | 1067 FW_OPT_PARTIAL); 1068 module_put(THIS_MODULE); 1069 return ret; 1070 } 1071 EXPORT_SYMBOL(request_partial_firmware_into_buf); 1072 1073 /** 1074 * release_firmware() - release the resource associated with a firmware image 1075 * @fw: firmware resource to release 1076 **/ 1077 void release_firmware(const struct firmware *fw) 1078 { 1079 if (fw) { 1080 if (!firmware_is_builtin(fw)) 1081 firmware_free_data(fw); 1082 kfree(fw); 1083 } 1084 } 1085 EXPORT_SYMBOL(release_firmware); 1086 1087 /* Async support */ 1088 struct firmware_work { 1089 struct work_struct work; 1090 struct module *module; 1091 const char *name; 1092 struct device *device; 1093 void *context; 1094 void (*cont)(const struct firmware *fw, void *context); 1095 u32 opt_flags; 1096 }; 1097 1098 static void request_firmware_work_func(struct work_struct *work) 1099 { 1100 struct firmware_work *fw_work; 1101 const struct firmware *fw; 1102 1103 fw_work = container_of(work, struct firmware_work, work); 1104 1105 _request_firmware(&fw, fw_work->name, fw_work->device, NULL, 0, 0, 1106 fw_work->opt_flags); 1107 fw_work->cont(fw, fw_work->context); 1108 put_device(fw_work->device); /* taken in request_firmware_nowait() */ 1109 1110 module_put(fw_work->module); 1111 kfree_const(fw_work->name); 1112 kfree(fw_work); 1113 } 1114 1115 /** 1116 * request_firmware_nowait() - asynchronous version of request_firmware 1117 * @module: module requesting the firmware 1118 * @uevent: sends uevent to copy the firmware image if this flag 1119 * is non-zero else the firmware copy must be done manually. 1120 * @name: name of firmware file 1121 * @device: device for which firmware is being loaded 1122 * @gfp: allocation flags 1123 * @context: will be passed over to @cont, and 1124 * @fw may be %NULL if firmware request fails. 1125 * @cont: function will be called asynchronously when the firmware 1126 * request is over. 1127 * 1128 * Caller must hold the reference count of @device. 1129 * 1130 * Asynchronous variant of request_firmware() for user contexts: 1131 * - sleep for as small periods as possible since it may 1132 * increase kernel boot time of built-in device drivers 1133 * requesting firmware in their ->probe() methods, if 1134 * @gfp is GFP_KERNEL. 1135 * 1136 * - can't sleep at all if @gfp is GFP_ATOMIC. 1137 **/ 1138 int 1139 request_firmware_nowait( 1140 struct module *module, bool uevent, 1141 const char *name, struct device *device, gfp_t gfp, void *context, 1142 void (*cont)(const struct firmware *fw, void *context)) 1143 { 1144 struct firmware_work *fw_work; 1145 1146 fw_work = kzalloc(sizeof(struct firmware_work), gfp); 1147 if (!fw_work) 1148 return -ENOMEM; 1149 1150 fw_work->module = module; 1151 fw_work->name = kstrdup_const(name, gfp); 1152 if (!fw_work->name) { 1153 kfree(fw_work); 1154 return -ENOMEM; 1155 } 1156 fw_work->device = device; 1157 fw_work->context = context; 1158 fw_work->cont = cont; 1159 fw_work->opt_flags = FW_OPT_NOWAIT | 1160 (uevent ? FW_OPT_UEVENT : FW_OPT_USERHELPER); 1161 1162 if (!uevent && fw_cache_is_setup(device, name)) { 1163 kfree_const(fw_work->name); 1164 kfree(fw_work); 1165 return -EOPNOTSUPP; 1166 } 1167 1168 if (!try_module_get(module)) { 1169 kfree_const(fw_work->name); 1170 kfree(fw_work); 1171 return -EFAULT; 1172 } 1173 1174 get_device(fw_work->device); 1175 INIT_WORK(&fw_work->work, request_firmware_work_func); 1176 schedule_work(&fw_work->work); 1177 return 0; 1178 } 1179 EXPORT_SYMBOL(request_firmware_nowait); 1180 1181 #ifdef CONFIG_FW_CACHE 1182 static ASYNC_DOMAIN_EXCLUSIVE(fw_cache_domain); 1183 1184 /** 1185 * cache_firmware() - cache one firmware image in kernel memory space 1186 * @fw_name: the firmware image name 1187 * 1188 * Cache firmware in kernel memory so that drivers can use it when 1189 * system isn't ready for them to request firmware image from userspace. 1190 * Once it returns successfully, driver can use request_firmware or its 1191 * nowait version to get the cached firmware without any interacting 1192 * with userspace 1193 * 1194 * Return 0 if the firmware image has been cached successfully 1195 * Return !0 otherwise 1196 * 1197 */ 1198 static int cache_firmware(const char *fw_name) 1199 { 1200 int ret; 1201 const struct firmware *fw; 1202 1203 pr_debug("%s: %s\n", __func__, fw_name); 1204 1205 ret = request_firmware(&fw, fw_name, NULL); 1206 if (!ret) 1207 kfree(fw); 1208 1209 pr_debug("%s: %s ret=%d\n", __func__, fw_name, ret); 1210 1211 return ret; 1212 } 1213 1214 static struct fw_priv *lookup_fw_priv(const char *fw_name) 1215 { 1216 struct fw_priv *tmp; 1217 struct firmware_cache *fwc = &fw_cache; 1218 1219 spin_lock(&fwc->lock); 1220 tmp = __lookup_fw_priv(fw_name); 1221 spin_unlock(&fwc->lock); 1222 1223 return tmp; 1224 } 1225 1226 /** 1227 * uncache_firmware() - remove one cached firmware image 1228 * @fw_name: the firmware image name 1229 * 1230 * Uncache one firmware image which has been cached successfully 1231 * before. 1232 * 1233 * Return 0 if the firmware cache has been removed successfully 1234 * Return !0 otherwise 1235 * 1236 */ 1237 static int uncache_firmware(const char *fw_name) 1238 { 1239 struct fw_priv *fw_priv; 1240 struct firmware fw; 1241 1242 pr_debug("%s: %s\n", __func__, fw_name); 1243 1244 if (firmware_request_builtin(&fw, fw_name)) 1245 return 0; 1246 1247 fw_priv = lookup_fw_priv(fw_name); 1248 if (fw_priv) { 1249 free_fw_priv(fw_priv); 1250 return 0; 1251 } 1252 1253 return -EINVAL; 1254 } 1255 1256 static struct fw_cache_entry *alloc_fw_cache_entry(const char *name) 1257 { 1258 struct fw_cache_entry *fce; 1259 1260 fce = kzalloc(sizeof(*fce), GFP_ATOMIC); 1261 if (!fce) 1262 goto exit; 1263 1264 fce->name = kstrdup_const(name, GFP_ATOMIC); 1265 if (!fce->name) { 1266 kfree(fce); 1267 fce = NULL; 1268 goto exit; 1269 } 1270 exit: 1271 return fce; 1272 } 1273 1274 static int __fw_entry_found(const char *name) 1275 { 1276 struct firmware_cache *fwc = &fw_cache; 1277 struct fw_cache_entry *fce; 1278 1279 list_for_each_entry(fce, &fwc->fw_names, list) { 1280 if (!strcmp(fce->name, name)) 1281 return 1; 1282 } 1283 return 0; 1284 } 1285 1286 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv) 1287 { 1288 const char *name = fw_priv->fw_name; 1289 struct firmware_cache *fwc = fw_priv->fwc; 1290 struct fw_cache_entry *fce; 1291 1292 spin_lock(&fwc->name_lock); 1293 if (__fw_entry_found(name)) 1294 goto found; 1295 1296 fce = alloc_fw_cache_entry(name); 1297 if (fce) { 1298 list_add(&fce->list, &fwc->fw_names); 1299 kref_get(&fw_priv->ref); 1300 pr_debug("%s: fw: %s\n", __func__, name); 1301 } 1302 found: 1303 spin_unlock(&fwc->name_lock); 1304 } 1305 1306 static void free_fw_cache_entry(struct fw_cache_entry *fce) 1307 { 1308 kfree_const(fce->name); 1309 kfree(fce); 1310 } 1311 1312 static void __async_dev_cache_fw_image(void *fw_entry, 1313 async_cookie_t cookie) 1314 { 1315 struct fw_cache_entry *fce = fw_entry; 1316 struct firmware_cache *fwc = &fw_cache; 1317 int ret; 1318 1319 ret = cache_firmware(fce->name); 1320 if (ret) { 1321 spin_lock(&fwc->name_lock); 1322 list_del(&fce->list); 1323 spin_unlock(&fwc->name_lock); 1324 1325 free_fw_cache_entry(fce); 1326 } 1327 } 1328 1329 /* called with dev->devres_lock held */ 1330 static void dev_create_fw_entry(struct device *dev, void *res, 1331 void *data) 1332 { 1333 struct fw_name_devm *fwn = res; 1334 const char *fw_name = fwn->name; 1335 struct list_head *head = data; 1336 struct fw_cache_entry *fce; 1337 1338 fce = alloc_fw_cache_entry(fw_name); 1339 if (fce) 1340 list_add(&fce->list, head); 1341 } 1342 1343 static int devm_name_match(struct device *dev, void *res, 1344 void *match_data) 1345 { 1346 struct fw_name_devm *fwn = res; 1347 return (fwn->magic == (unsigned long)match_data); 1348 } 1349 1350 static void dev_cache_fw_image(struct device *dev, void *data) 1351 { 1352 LIST_HEAD(todo); 1353 struct fw_cache_entry *fce; 1354 struct fw_cache_entry *fce_next; 1355 struct firmware_cache *fwc = &fw_cache; 1356 1357 devres_for_each_res(dev, fw_name_devm_release, 1358 devm_name_match, &fw_cache, 1359 dev_create_fw_entry, &todo); 1360 1361 list_for_each_entry_safe(fce, fce_next, &todo, list) { 1362 list_del(&fce->list); 1363 1364 spin_lock(&fwc->name_lock); 1365 /* only one cache entry for one firmware */ 1366 if (!__fw_entry_found(fce->name)) { 1367 list_add(&fce->list, &fwc->fw_names); 1368 } else { 1369 free_fw_cache_entry(fce); 1370 fce = NULL; 1371 } 1372 spin_unlock(&fwc->name_lock); 1373 1374 if (fce) 1375 async_schedule_domain(__async_dev_cache_fw_image, 1376 (void *)fce, 1377 &fw_cache_domain); 1378 } 1379 } 1380 1381 static void __device_uncache_fw_images(void) 1382 { 1383 struct firmware_cache *fwc = &fw_cache; 1384 struct fw_cache_entry *fce; 1385 1386 spin_lock(&fwc->name_lock); 1387 while (!list_empty(&fwc->fw_names)) { 1388 fce = list_entry(fwc->fw_names.next, 1389 struct fw_cache_entry, list); 1390 list_del(&fce->list); 1391 spin_unlock(&fwc->name_lock); 1392 1393 uncache_firmware(fce->name); 1394 free_fw_cache_entry(fce); 1395 1396 spin_lock(&fwc->name_lock); 1397 } 1398 spin_unlock(&fwc->name_lock); 1399 } 1400 1401 /** 1402 * device_cache_fw_images() - cache devices' firmware 1403 * 1404 * If one device called request_firmware or its nowait version 1405 * successfully before, the firmware names are recored into the 1406 * device's devres link list, so device_cache_fw_images can call 1407 * cache_firmware() to cache these firmwares for the device, 1408 * then the device driver can load its firmwares easily at 1409 * time when system is not ready to complete loading firmware. 1410 */ 1411 static void device_cache_fw_images(void) 1412 { 1413 struct firmware_cache *fwc = &fw_cache; 1414 DEFINE_WAIT(wait); 1415 1416 pr_debug("%s\n", __func__); 1417 1418 /* cancel uncache work */ 1419 cancel_delayed_work_sync(&fwc->work); 1420 1421 fw_fallback_set_cache_timeout(); 1422 1423 mutex_lock(&fw_lock); 1424 fwc->state = FW_LOADER_START_CACHE; 1425 dpm_for_each_dev(NULL, dev_cache_fw_image); 1426 mutex_unlock(&fw_lock); 1427 1428 /* wait for completion of caching firmware for all devices */ 1429 async_synchronize_full_domain(&fw_cache_domain); 1430 1431 fw_fallback_set_default_timeout(); 1432 } 1433 1434 /** 1435 * device_uncache_fw_images() - uncache devices' firmware 1436 * 1437 * uncache all firmwares which have been cached successfully 1438 * by device_uncache_fw_images earlier 1439 */ 1440 static void device_uncache_fw_images(void) 1441 { 1442 pr_debug("%s\n", __func__); 1443 __device_uncache_fw_images(); 1444 } 1445 1446 static void device_uncache_fw_images_work(struct work_struct *work) 1447 { 1448 device_uncache_fw_images(); 1449 } 1450 1451 /** 1452 * device_uncache_fw_images_delay() - uncache devices firmwares 1453 * @delay: number of milliseconds to delay uncache device firmwares 1454 * 1455 * uncache all devices's firmwares which has been cached successfully 1456 * by device_cache_fw_images after @delay milliseconds. 1457 */ 1458 static void device_uncache_fw_images_delay(unsigned long delay) 1459 { 1460 queue_delayed_work(system_power_efficient_wq, &fw_cache.work, 1461 msecs_to_jiffies(delay)); 1462 } 1463 1464 static int fw_pm_notify(struct notifier_block *notify_block, 1465 unsigned long mode, void *unused) 1466 { 1467 switch (mode) { 1468 case PM_HIBERNATION_PREPARE: 1469 case PM_SUSPEND_PREPARE: 1470 case PM_RESTORE_PREPARE: 1471 /* 1472 * kill pending fallback requests with a custom fallback 1473 * to avoid stalling suspend. 1474 */ 1475 kill_pending_fw_fallback_reqs(true); 1476 device_cache_fw_images(); 1477 break; 1478 1479 case PM_POST_SUSPEND: 1480 case PM_POST_HIBERNATION: 1481 case PM_POST_RESTORE: 1482 /* 1483 * In case that system sleep failed and syscore_suspend is 1484 * not called. 1485 */ 1486 mutex_lock(&fw_lock); 1487 fw_cache.state = FW_LOADER_NO_CACHE; 1488 mutex_unlock(&fw_lock); 1489 1490 device_uncache_fw_images_delay(10 * MSEC_PER_SEC); 1491 break; 1492 } 1493 1494 return 0; 1495 } 1496 1497 /* stop caching firmware once syscore_suspend is reached */ 1498 static int fw_suspend(void) 1499 { 1500 fw_cache.state = FW_LOADER_NO_CACHE; 1501 return 0; 1502 } 1503 1504 static struct syscore_ops fw_syscore_ops = { 1505 .suspend = fw_suspend, 1506 }; 1507 1508 static int __init register_fw_pm_ops(void) 1509 { 1510 int ret; 1511 1512 spin_lock_init(&fw_cache.name_lock); 1513 INIT_LIST_HEAD(&fw_cache.fw_names); 1514 1515 INIT_DELAYED_WORK(&fw_cache.work, 1516 device_uncache_fw_images_work); 1517 1518 fw_cache.pm_notify.notifier_call = fw_pm_notify; 1519 ret = register_pm_notifier(&fw_cache.pm_notify); 1520 if (ret) 1521 return ret; 1522 1523 register_syscore_ops(&fw_syscore_ops); 1524 1525 return ret; 1526 } 1527 1528 static inline void unregister_fw_pm_ops(void) 1529 { 1530 unregister_syscore_ops(&fw_syscore_ops); 1531 unregister_pm_notifier(&fw_cache.pm_notify); 1532 } 1533 #else 1534 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv) 1535 { 1536 } 1537 static inline int register_fw_pm_ops(void) 1538 { 1539 return 0; 1540 } 1541 static inline void unregister_fw_pm_ops(void) 1542 { 1543 } 1544 #endif 1545 1546 static void __init fw_cache_init(void) 1547 { 1548 spin_lock_init(&fw_cache.lock); 1549 INIT_LIST_HEAD(&fw_cache.head); 1550 fw_cache.state = FW_LOADER_NO_CACHE; 1551 } 1552 1553 static int fw_shutdown_notify(struct notifier_block *unused1, 1554 unsigned long unused2, void *unused3) 1555 { 1556 /* 1557 * Kill all pending fallback requests to avoid both stalling shutdown, 1558 * and avoid a deadlock with the usermode_lock. 1559 */ 1560 kill_pending_fw_fallback_reqs(false); 1561 1562 return NOTIFY_DONE; 1563 } 1564 1565 static struct notifier_block fw_shutdown_nb = { 1566 .notifier_call = fw_shutdown_notify, 1567 }; 1568 1569 static int __init firmware_class_init(void) 1570 { 1571 int ret; 1572 1573 /* No need to unfold these on exit */ 1574 fw_cache_init(); 1575 1576 ret = register_fw_pm_ops(); 1577 if (ret) 1578 return ret; 1579 1580 ret = register_reboot_notifier(&fw_shutdown_nb); 1581 if (ret) 1582 goto out; 1583 1584 return register_sysfs_loader(); 1585 1586 out: 1587 unregister_fw_pm_ops(); 1588 return ret; 1589 } 1590 1591 static void __exit firmware_class_exit(void) 1592 { 1593 unregister_fw_pm_ops(); 1594 unregister_reboot_notifier(&fw_shutdown_nb); 1595 unregister_sysfs_loader(); 1596 } 1597 1598 fs_initcall(firmware_class_init); 1599 module_exit(firmware_class_exit); 1600