1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * main.c - Multi purpose firmware loading support 4 * 5 * Copyright (c) 2003 Manuel Estrada Sainz 6 * 7 * Please see Documentation/driver-api/firmware/ for more information. 8 * 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/capability.h> 14 #include <linux/device.h> 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/timer.h> 18 #include <linux/vmalloc.h> 19 #include <linux/interrupt.h> 20 #include <linux/bitops.h> 21 #include <linux/mutex.h> 22 #include <linux/workqueue.h> 23 #include <linux/highmem.h> 24 #include <linux/firmware.h> 25 #include <linux/slab.h> 26 #include <linux/sched.h> 27 #include <linux/file.h> 28 #include <linux/list.h> 29 #include <linux/fs.h> 30 #include <linux/async.h> 31 #include <linux/pm.h> 32 #include <linux/suspend.h> 33 #include <linux/syscore_ops.h> 34 #include <linux/reboot.h> 35 #include <linux/security.h> 36 #include <linux/xz.h> 37 38 #include <generated/utsrelease.h> 39 40 #include "../base.h" 41 #include "firmware.h" 42 #include "fallback.h" 43 44 MODULE_AUTHOR("Manuel Estrada Sainz"); 45 MODULE_DESCRIPTION("Multi purpose firmware loading support"); 46 MODULE_LICENSE("GPL"); 47 48 struct firmware_cache { 49 /* firmware_buf instance will be added into the below list */ 50 spinlock_t lock; 51 struct list_head head; 52 int state; 53 54 #ifdef CONFIG_FW_CACHE 55 /* 56 * Names of firmware images which have been cached successfully 57 * will be added into the below list so that device uncache 58 * helper can trace which firmware images have been cached 59 * before. 60 */ 61 spinlock_t name_lock; 62 struct list_head fw_names; 63 64 struct delayed_work work; 65 66 struct notifier_block pm_notify; 67 #endif 68 }; 69 70 struct fw_cache_entry { 71 struct list_head list; 72 const char *name; 73 }; 74 75 struct fw_name_devm { 76 unsigned long magic; 77 const char *name; 78 }; 79 80 static inline struct fw_priv *to_fw_priv(struct kref *ref) 81 { 82 return container_of(ref, struct fw_priv, ref); 83 } 84 85 #define FW_LOADER_NO_CACHE 0 86 #define FW_LOADER_START_CACHE 1 87 88 /* fw_lock could be moved to 'struct fw_sysfs' but since it is just 89 * guarding for corner cases a global lock should be OK */ 90 DEFINE_MUTEX(fw_lock); 91 92 static struct firmware_cache fw_cache; 93 94 /* Builtin firmware support */ 95 96 #ifdef CONFIG_FW_LOADER 97 98 extern struct builtin_fw __start_builtin_fw[]; 99 extern struct builtin_fw __end_builtin_fw[]; 100 101 static void fw_copy_to_prealloc_buf(struct firmware *fw, 102 void *buf, size_t size) 103 { 104 if (!buf || size < fw->size) 105 return; 106 memcpy(buf, fw->data, fw->size); 107 } 108 109 static bool fw_get_builtin_firmware(struct firmware *fw, const char *name, 110 void *buf, size_t size) 111 { 112 struct builtin_fw *b_fw; 113 114 for (b_fw = __start_builtin_fw; b_fw != __end_builtin_fw; b_fw++) { 115 if (strcmp(name, b_fw->name) == 0) { 116 fw->size = b_fw->size; 117 fw->data = b_fw->data; 118 fw_copy_to_prealloc_buf(fw, buf, size); 119 120 return true; 121 } 122 } 123 124 return false; 125 } 126 127 static bool fw_is_builtin_firmware(const struct firmware *fw) 128 { 129 struct builtin_fw *b_fw; 130 131 for (b_fw = __start_builtin_fw; b_fw != __end_builtin_fw; b_fw++) 132 if (fw->data == b_fw->data) 133 return true; 134 135 return false; 136 } 137 138 #else /* Module case - no builtin firmware support */ 139 140 static inline bool fw_get_builtin_firmware(struct firmware *fw, 141 const char *name, void *buf, 142 size_t size) 143 { 144 return false; 145 } 146 147 static inline bool fw_is_builtin_firmware(const struct firmware *fw) 148 { 149 return false; 150 } 151 #endif 152 153 static void fw_state_init(struct fw_priv *fw_priv) 154 { 155 struct fw_state *fw_st = &fw_priv->fw_st; 156 157 init_completion(&fw_st->completion); 158 fw_st->status = FW_STATUS_UNKNOWN; 159 } 160 161 static inline int fw_state_wait(struct fw_priv *fw_priv) 162 { 163 return __fw_state_wait_common(fw_priv, MAX_SCHEDULE_TIMEOUT); 164 } 165 166 static int fw_cache_piggyback_on_request(const char *name); 167 168 static struct fw_priv *__allocate_fw_priv(const char *fw_name, 169 struct firmware_cache *fwc, 170 void *dbuf, size_t size) 171 { 172 struct fw_priv *fw_priv; 173 174 fw_priv = kzalloc(sizeof(*fw_priv), GFP_ATOMIC); 175 if (!fw_priv) 176 return NULL; 177 178 fw_priv->fw_name = kstrdup_const(fw_name, GFP_ATOMIC); 179 if (!fw_priv->fw_name) { 180 kfree(fw_priv); 181 return NULL; 182 } 183 184 kref_init(&fw_priv->ref); 185 fw_priv->fwc = fwc; 186 fw_priv->data = dbuf; 187 fw_priv->allocated_size = size; 188 fw_state_init(fw_priv); 189 #ifdef CONFIG_FW_LOADER_USER_HELPER 190 INIT_LIST_HEAD(&fw_priv->pending_list); 191 #endif 192 193 pr_debug("%s: fw-%s fw_priv=%p\n", __func__, fw_name, fw_priv); 194 195 return fw_priv; 196 } 197 198 static struct fw_priv *__lookup_fw_priv(const char *fw_name) 199 { 200 struct fw_priv *tmp; 201 struct firmware_cache *fwc = &fw_cache; 202 203 list_for_each_entry(tmp, &fwc->head, list) 204 if (!strcmp(tmp->fw_name, fw_name)) 205 return tmp; 206 return NULL; 207 } 208 209 /* Returns 1 for batching firmware requests with the same name */ 210 static int alloc_lookup_fw_priv(const char *fw_name, 211 struct firmware_cache *fwc, 212 struct fw_priv **fw_priv, void *dbuf, 213 size_t size, enum fw_opt opt_flags) 214 { 215 struct fw_priv *tmp; 216 217 spin_lock(&fwc->lock); 218 if (!(opt_flags & FW_OPT_NOCACHE)) { 219 tmp = __lookup_fw_priv(fw_name); 220 if (tmp) { 221 kref_get(&tmp->ref); 222 spin_unlock(&fwc->lock); 223 *fw_priv = tmp; 224 pr_debug("batched request - sharing the same struct fw_priv and lookup for multiple requests\n"); 225 return 1; 226 } 227 } 228 229 tmp = __allocate_fw_priv(fw_name, fwc, dbuf, size); 230 if (tmp) { 231 INIT_LIST_HEAD(&tmp->list); 232 if (!(opt_flags & FW_OPT_NOCACHE)) 233 list_add(&tmp->list, &fwc->head); 234 } 235 spin_unlock(&fwc->lock); 236 237 *fw_priv = tmp; 238 239 return tmp ? 0 : -ENOMEM; 240 } 241 242 static void __free_fw_priv(struct kref *ref) 243 __releases(&fwc->lock) 244 { 245 struct fw_priv *fw_priv = to_fw_priv(ref); 246 struct firmware_cache *fwc = fw_priv->fwc; 247 248 pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n", 249 __func__, fw_priv->fw_name, fw_priv, fw_priv->data, 250 (unsigned int)fw_priv->size); 251 252 list_del(&fw_priv->list); 253 spin_unlock(&fwc->lock); 254 255 fw_free_paged_buf(fw_priv); /* free leftover pages */ 256 if (!fw_priv->allocated_size) 257 vfree(fw_priv->data); 258 kfree_const(fw_priv->fw_name); 259 kfree(fw_priv); 260 } 261 262 static void free_fw_priv(struct fw_priv *fw_priv) 263 { 264 struct firmware_cache *fwc = fw_priv->fwc; 265 spin_lock(&fwc->lock); 266 if (!kref_put(&fw_priv->ref, __free_fw_priv)) 267 spin_unlock(&fwc->lock); 268 } 269 270 #ifdef CONFIG_FW_LOADER_PAGED_BUF 271 void fw_free_paged_buf(struct fw_priv *fw_priv) 272 { 273 int i; 274 275 if (!fw_priv->pages) 276 return; 277 278 for (i = 0; i < fw_priv->nr_pages; i++) 279 __free_page(fw_priv->pages[i]); 280 kvfree(fw_priv->pages); 281 fw_priv->pages = NULL; 282 fw_priv->page_array_size = 0; 283 fw_priv->nr_pages = 0; 284 } 285 286 int fw_grow_paged_buf(struct fw_priv *fw_priv, int pages_needed) 287 { 288 /* If the array of pages is too small, grow it */ 289 if (fw_priv->page_array_size < pages_needed) { 290 int new_array_size = max(pages_needed, 291 fw_priv->page_array_size * 2); 292 struct page **new_pages; 293 294 new_pages = kvmalloc_array(new_array_size, sizeof(void *), 295 GFP_KERNEL); 296 if (!new_pages) 297 return -ENOMEM; 298 memcpy(new_pages, fw_priv->pages, 299 fw_priv->page_array_size * sizeof(void *)); 300 memset(&new_pages[fw_priv->page_array_size], 0, sizeof(void *) * 301 (new_array_size - fw_priv->page_array_size)); 302 kvfree(fw_priv->pages); 303 fw_priv->pages = new_pages; 304 fw_priv->page_array_size = new_array_size; 305 } 306 307 while (fw_priv->nr_pages < pages_needed) { 308 fw_priv->pages[fw_priv->nr_pages] = 309 alloc_page(GFP_KERNEL | __GFP_HIGHMEM); 310 311 if (!fw_priv->pages[fw_priv->nr_pages]) 312 return -ENOMEM; 313 fw_priv->nr_pages++; 314 } 315 316 return 0; 317 } 318 319 int fw_map_paged_buf(struct fw_priv *fw_priv) 320 { 321 /* one pages buffer should be mapped/unmapped only once */ 322 if (!fw_priv->pages) 323 return 0; 324 325 vunmap(fw_priv->data); 326 fw_priv->data = vmap(fw_priv->pages, fw_priv->nr_pages, 0, 327 PAGE_KERNEL_RO); 328 if (!fw_priv->data) 329 return -ENOMEM; 330 331 /* page table is no longer needed after mapping, let's free */ 332 kvfree(fw_priv->pages); 333 fw_priv->pages = NULL; 334 335 return 0; 336 } 337 #endif 338 339 /* 340 * XZ-compressed firmware support 341 */ 342 #ifdef CONFIG_FW_LOADER_COMPRESS 343 /* show an error and return the standard error code */ 344 static int fw_decompress_xz_error(struct device *dev, enum xz_ret xz_ret) 345 { 346 if (xz_ret != XZ_STREAM_END) { 347 dev_warn(dev, "xz decompression failed (xz_ret=%d)\n", xz_ret); 348 return xz_ret == XZ_MEM_ERROR ? -ENOMEM : -EINVAL; 349 } 350 return 0; 351 } 352 353 /* single-shot decompression onto the pre-allocated buffer */ 354 static int fw_decompress_xz_single(struct device *dev, struct fw_priv *fw_priv, 355 size_t in_size, const void *in_buffer) 356 { 357 struct xz_dec *xz_dec; 358 struct xz_buf xz_buf; 359 enum xz_ret xz_ret; 360 361 xz_dec = xz_dec_init(XZ_SINGLE, (u32)-1); 362 if (!xz_dec) 363 return -ENOMEM; 364 365 xz_buf.in_size = in_size; 366 xz_buf.in = in_buffer; 367 xz_buf.in_pos = 0; 368 xz_buf.out_size = fw_priv->allocated_size; 369 xz_buf.out = fw_priv->data; 370 xz_buf.out_pos = 0; 371 372 xz_ret = xz_dec_run(xz_dec, &xz_buf); 373 xz_dec_end(xz_dec); 374 375 fw_priv->size = xz_buf.out_pos; 376 return fw_decompress_xz_error(dev, xz_ret); 377 } 378 379 /* decompression on paged buffer and map it */ 380 static int fw_decompress_xz_pages(struct device *dev, struct fw_priv *fw_priv, 381 size_t in_size, const void *in_buffer) 382 { 383 struct xz_dec *xz_dec; 384 struct xz_buf xz_buf; 385 enum xz_ret xz_ret; 386 struct page *page; 387 int err = 0; 388 389 xz_dec = xz_dec_init(XZ_DYNALLOC, (u32)-1); 390 if (!xz_dec) 391 return -ENOMEM; 392 393 xz_buf.in_size = in_size; 394 xz_buf.in = in_buffer; 395 xz_buf.in_pos = 0; 396 397 fw_priv->is_paged_buf = true; 398 fw_priv->size = 0; 399 do { 400 if (fw_grow_paged_buf(fw_priv, fw_priv->nr_pages + 1)) { 401 err = -ENOMEM; 402 goto out; 403 } 404 405 /* decompress onto the new allocated page */ 406 page = fw_priv->pages[fw_priv->nr_pages - 1]; 407 xz_buf.out = kmap(page); 408 xz_buf.out_pos = 0; 409 xz_buf.out_size = PAGE_SIZE; 410 xz_ret = xz_dec_run(xz_dec, &xz_buf); 411 kunmap(page); 412 fw_priv->size += xz_buf.out_pos; 413 /* partial decompression means either end or error */ 414 if (xz_buf.out_pos != PAGE_SIZE) 415 break; 416 } while (xz_ret == XZ_OK); 417 418 err = fw_decompress_xz_error(dev, xz_ret); 419 if (!err) 420 err = fw_map_paged_buf(fw_priv); 421 422 out: 423 xz_dec_end(xz_dec); 424 return err; 425 } 426 427 static int fw_decompress_xz(struct device *dev, struct fw_priv *fw_priv, 428 size_t in_size, const void *in_buffer) 429 { 430 /* if the buffer is pre-allocated, we can perform in single-shot mode */ 431 if (fw_priv->data) 432 return fw_decompress_xz_single(dev, fw_priv, in_size, in_buffer); 433 else 434 return fw_decompress_xz_pages(dev, fw_priv, in_size, in_buffer); 435 } 436 #endif /* CONFIG_FW_LOADER_COMPRESS */ 437 438 /* direct firmware loading support */ 439 static char fw_path_para[256]; 440 static const char * const fw_path[] = { 441 fw_path_para, 442 "/lib/firmware/updates/" UTS_RELEASE, 443 "/lib/firmware/updates", 444 "/lib/firmware/" UTS_RELEASE, 445 "/lib/firmware" 446 }; 447 448 /* 449 * Typical usage is that passing 'firmware_class.path=$CUSTOMIZED_PATH' 450 * from kernel command line because firmware_class is generally built in 451 * kernel instead of module. 452 */ 453 module_param_string(path, fw_path_para, sizeof(fw_path_para), 0644); 454 MODULE_PARM_DESC(path, "customized firmware image search path with a higher priority than default path"); 455 456 static int 457 fw_get_filesystem_firmware(struct device *device, struct fw_priv *fw_priv, 458 const char *suffix, 459 int (*decompress)(struct device *dev, 460 struct fw_priv *fw_priv, 461 size_t in_size, 462 const void *in_buffer)) 463 { 464 loff_t size; 465 int i, len; 466 int rc = -ENOENT; 467 char *path; 468 enum kernel_read_file_id id = READING_FIRMWARE; 469 size_t msize = INT_MAX; 470 void *buffer = NULL; 471 472 /* Already populated data member means we're loading into a buffer */ 473 if (!decompress && fw_priv->data) { 474 buffer = fw_priv->data; 475 id = READING_FIRMWARE_PREALLOC_BUFFER; 476 msize = fw_priv->allocated_size; 477 } 478 479 path = __getname(); 480 if (!path) 481 return -ENOMEM; 482 483 for (i = 0; i < ARRAY_SIZE(fw_path); i++) { 484 /* skip the unset customized path */ 485 if (!fw_path[i][0]) 486 continue; 487 488 len = snprintf(path, PATH_MAX, "%s/%s%s", 489 fw_path[i], fw_priv->fw_name, suffix); 490 if (len >= PATH_MAX) { 491 rc = -ENAMETOOLONG; 492 break; 493 } 494 495 fw_priv->size = 0; 496 rc = kernel_read_file_from_path(path, &buffer, &size, 497 msize, id); 498 if (rc) { 499 if (rc != -ENOENT) 500 dev_warn(device, "loading %s failed with error %d\n", 501 path, rc); 502 else 503 dev_dbg(device, "loading %s failed for no such file or directory.\n", 504 path); 505 continue; 506 } 507 dev_dbg(device, "Loading firmware from %s\n", path); 508 if (decompress) { 509 dev_dbg(device, "f/w decompressing %s\n", 510 fw_priv->fw_name); 511 rc = decompress(device, fw_priv, size, buffer); 512 /* discard the superfluous original content */ 513 vfree(buffer); 514 buffer = NULL; 515 if (rc) { 516 fw_free_paged_buf(fw_priv); 517 continue; 518 } 519 } else { 520 dev_dbg(device, "direct-loading %s\n", 521 fw_priv->fw_name); 522 if (!fw_priv->data) 523 fw_priv->data = buffer; 524 fw_priv->size = size; 525 } 526 fw_state_done(fw_priv); 527 break; 528 } 529 __putname(path); 530 531 return rc; 532 } 533 534 /* firmware holds the ownership of pages */ 535 static void firmware_free_data(const struct firmware *fw) 536 { 537 /* Loaded directly? */ 538 if (!fw->priv) { 539 vfree(fw->data); 540 return; 541 } 542 free_fw_priv(fw->priv); 543 } 544 545 /* store the pages buffer info firmware from buf */ 546 static void fw_set_page_data(struct fw_priv *fw_priv, struct firmware *fw) 547 { 548 fw->priv = fw_priv; 549 #ifdef CONFIG_FW_LOADER_USER_HELPER 550 fw->pages = fw_priv->pages; 551 #endif 552 fw->size = fw_priv->size; 553 fw->data = fw_priv->data; 554 555 pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n", 556 __func__, fw_priv->fw_name, fw_priv, fw_priv->data, 557 (unsigned int)fw_priv->size); 558 } 559 560 #ifdef CONFIG_FW_CACHE 561 static void fw_name_devm_release(struct device *dev, void *res) 562 { 563 struct fw_name_devm *fwn = res; 564 565 if (fwn->magic == (unsigned long)&fw_cache) 566 pr_debug("%s: fw_name-%s devm-%p released\n", 567 __func__, fwn->name, res); 568 kfree_const(fwn->name); 569 } 570 571 static int fw_devm_match(struct device *dev, void *res, 572 void *match_data) 573 { 574 struct fw_name_devm *fwn = res; 575 576 return (fwn->magic == (unsigned long)&fw_cache) && 577 !strcmp(fwn->name, match_data); 578 } 579 580 static struct fw_name_devm *fw_find_devm_name(struct device *dev, 581 const char *name) 582 { 583 struct fw_name_devm *fwn; 584 585 fwn = devres_find(dev, fw_name_devm_release, 586 fw_devm_match, (void *)name); 587 return fwn; 588 } 589 590 static bool fw_cache_is_setup(struct device *dev, const char *name) 591 { 592 struct fw_name_devm *fwn; 593 594 fwn = fw_find_devm_name(dev, name); 595 if (fwn) 596 return true; 597 598 return false; 599 } 600 601 /* add firmware name into devres list */ 602 static int fw_add_devm_name(struct device *dev, const char *name) 603 { 604 struct fw_name_devm *fwn; 605 606 if (fw_cache_is_setup(dev, name)) 607 return 0; 608 609 fwn = devres_alloc(fw_name_devm_release, sizeof(struct fw_name_devm), 610 GFP_KERNEL); 611 if (!fwn) 612 return -ENOMEM; 613 fwn->name = kstrdup_const(name, GFP_KERNEL); 614 if (!fwn->name) { 615 devres_free(fwn); 616 return -ENOMEM; 617 } 618 619 fwn->magic = (unsigned long)&fw_cache; 620 devres_add(dev, fwn); 621 622 return 0; 623 } 624 #else 625 static bool fw_cache_is_setup(struct device *dev, const char *name) 626 { 627 return false; 628 } 629 630 static int fw_add_devm_name(struct device *dev, const char *name) 631 { 632 return 0; 633 } 634 #endif 635 636 int assign_fw(struct firmware *fw, struct device *device, 637 enum fw_opt opt_flags) 638 { 639 struct fw_priv *fw_priv = fw->priv; 640 int ret; 641 642 mutex_lock(&fw_lock); 643 if (!fw_priv->size || fw_state_is_aborted(fw_priv)) { 644 mutex_unlock(&fw_lock); 645 return -ENOENT; 646 } 647 648 /* 649 * add firmware name into devres list so that we can auto cache 650 * and uncache firmware for device. 651 * 652 * device may has been deleted already, but the problem 653 * should be fixed in devres or driver core. 654 */ 655 /* don't cache firmware handled without uevent */ 656 if (device && (opt_flags & FW_OPT_UEVENT) && 657 !(opt_flags & FW_OPT_NOCACHE)) { 658 ret = fw_add_devm_name(device, fw_priv->fw_name); 659 if (ret) { 660 mutex_unlock(&fw_lock); 661 return ret; 662 } 663 } 664 665 /* 666 * After caching firmware image is started, let it piggyback 667 * on request firmware. 668 */ 669 if (!(opt_flags & FW_OPT_NOCACHE) && 670 fw_priv->fwc->state == FW_LOADER_START_CACHE) { 671 if (fw_cache_piggyback_on_request(fw_priv->fw_name)) 672 kref_get(&fw_priv->ref); 673 } 674 675 /* pass the pages buffer to driver at the last minute */ 676 fw_set_page_data(fw_priv, fw); 677 mutex_unlock(&fw_lock); 678 return 0; 679 } 680 681 /* prepare firmware and firmware_buf structs; 682 * return 0 if a firmware is already assigned, 1 if need to load one, 683 * or a negative error code 684 */ 685 static int 686 _request_firmware_prepare(struct firmware **firmware_p, const char *name, 687 struct device *device, void *dbuf, size_t size, 688 enum fw_opt opt_flags) 689 { 690 struct firmware *firmware; 691 struct fw_priv *fw_priv; 692 int ret; 693 694 *firmware_p = firmware = kzalloc(sizeof(*firmware), GFP_KERNEL); 695 if (!firmware) { 696 dev_err(device, "%s: kmalloc(struct firmware) failed\n", 697 __func__); 698 return -ENOMEM; 699 } 700 701 if (fw_get_builtin_firmware(firmware, name, dbuf, size)) { 702 dev_dbg(device, "using built-in %s\n", name); 703 return 0; /* assigned */ 704 } 705 706 ret = alloc_lookup_fw_priv(name, &fw_cache, &fw_priv, dbuf, size, 707 opt_flags); 708 709 /* 710 * bind with 'priv' now to avoid warning in failure path 711 * of requesting firmware. 712 */ 713 firmware->priv = fw_priv; 714 715 if (ret > 0) { 716 ret = fw_state_wait(fw_priv); 717 if (!ret) { 718 fw_set_page_data(fw_priv, firmware); 719 return 0; /* assigned */ 720 } 721 } 722 723 if (ret < 0) 724 return ret; 725 return 1; /* need to load */ 726 } 727 728 /* 729 * Batched requests need only one wake, we need to do this step last due to the 730 * fallback mechanism. The buf is protected with kref_get(), and it won't be 731 * released until the last user calls release_firmware(). 732 * 733 * Failed batched requests are possible as well, in such cases we just share 734 * the struct fw_priv and won't release it until all requests are woken 735 * and have gone through this same path. 736 */ 737 static void fw_abort_batch_reqs(struct firmware *fw) 738 { 739 struct fw_priv *fw_priv; 740 741 /* Loaded directly? */ 742 if (!fw || !fw->priv) 743 return; 744 745 fw_priv = fw->priv; 746 if (!fw_state_is_aborted(fw_priv)) 747 fw_state_aborted(fw_priv); 748 } 749 750 /* called from request_firmware() and request_firmware_work_func() */ 751 static int 752 _request_firmware(const struct firmware **firmware_p, const char *name, 753 struct device *device, void *buf, size_t size, 754 enum fw_opt opt_flags) 755 { 756 struct firmware *fw = NULL; 757 int ret; 758 759 if (!firmware_p) 760 return -EINVAL; 761 762 if (!name || name[0] == '\0') { 763 ret = -EINVAL; 764 goto out; 765 } 766 767 ret = _request_firmware_prepare(&fw, name, device, buf, size, 768 opt_flags); 769 if (ret <= 0) /* error or already assigned */ 770 goto out; 771 772 ret = fw_get_filesystem_firmware(device, fw->priv, "", NULL); 773 #ifdef CONFIG_FW_LOADER_COMPRESS 774 if (ret == -ENOENT) 775 ret = fw_get_filesystem_firmware(device, fw->priv, ".xz", 776 fw_decompress_xz); 777 #endif 778 779 if (ret) { 780 if (!(opt_flags & FW_OPT_NO_WARN)) 781 dev_warn(device, 782 "Direct firmware load for %s failed with error %d\n", 783 name, ret); 784 ret = firmware_fallback_sysfs(fw, name, device, opt_flags, ret); 785 } else 786 ret = assign_fw(fw, device, opt_flags); 787 788 out: 789 if (ret < 0) { 790 fw_abort_batch_reqs(fw); 791 release_firmware(fw); 792 fw = NULL; 793 } 794 795 *firmware_p = fw; 796 return ret; 797 } 798 799 /** 800 * request_firmware() - send firmware request and wait for it 801 * @firmware_p: pointer to firmware image 802 * @name: name of firmware file 803 * @device: device for which firmware is being loaded 804 * 805 * @firmware_p will be used to return a firmware image by the name 806 * of @name for device @device. 807 * 808 * Should be called from user context where sleeping is allowed. 809 * 810 * @name will be used as $FIRMWARE in the uevent environment and 811 * should be distinctive enough not to be confused with any other 812 * firmware image for this or any other device. 813 * 814 * Caller must hold the reference count of @device. 815 * 816 * The function can be called safely inside device's suspend and 817 * resume callback. 818 **/ 819 int 820 request_firmware(const struct firmware **firmware_p, const char *name, 821 struct device *device) 822 { 823 int ret; 824 825 /* Need to pin this module until return */ 826 __module_get(THIS_MODULE); 827 ret = _request_firmware(firmware_p, name, device, NULL, 0, 828 FW_OPT_UEVENT); 829 module_put(THIS_MODULE); 830 return ret; 831 } 832 EXPORT_SYMBOL(request_firmware); 833 834 /** 835 * firmware_request_nowarn() - request for an optional fw module 836 * @firmware: pointer to firmware image 837 * @name: name of firmware file 838 * @device: device for which firmware is being loaded 839 * 840 * This function is similar in behaviour to request_firmware(), except 841 * it doesn't produce warning messages when the file is not found. 842 * The sysfs fallback mechanism is enabled if direct filesystem lookup fails, 843 * however, however failures to find the firmware file with it are still 844 * suppressed. It is therefore up to the driver to check for the return value 845 * of this call and to decide when to inform the users of errors. 846 **/ 847 int firmware_request_nowarn(const struct firmware **firmware, const char *name, 848 struct device *device) 849 { 850 int ret; 851 852 /* Need to pin this module until return */ 853 __module_get(THIS_MODULE); 854 ret = _request_firmware(firmware, name, device, NULL, 0, 855 FW_OPT_UEVENT | FW_OPT_NO_WARN); 856 module_put(THIS_MODULE); 857 return ret; 858 } 859 EXPORT_SYMBOL_GPL(firmware_request_nowarn); 860 861 /** 862 * request_firmware_direct() - load firmware directly without usermode helper 863 * @firmware_p: pointer to firmware image 864 * @name: name of firmware file 865 * @device: device for which firmware is being loaded 866 * 867 * This function works pretty much like request_firmware(), but this doesn't 868 * fall back to usermode helper even if the firmware couldn't be loaded 869 * directly from fs. Hence it's useful for loading optional firmwares, which 870 * aren't always present, without extra long timeouts of udev. 871 **/ 872 int request_firmware_direct(const struct firmware **firmware_p, 873 const char *name, struct device *device) 874 { 875 int ret; 876 877 __module_get(THIS_MODULE); 878 ret = _request_firmware(firmware_p, name, device, NULL, 0, 879 FW_OPT_UEVENT | FW_OPT_NO_WARN | 880 FW_OPT_NOFALLBACK_SYSFS); 881 module_put(THIS_MODULE); 882 return ret; 883 } 884 EXPORT_SYMBOL_GPL(request_firmware_direct); 885 886 /** 887 * firmware_request_cache() - cache firmware for suspend so resume can use it 888 * @name: name of firmware file 889 * @device: device for which firmware should be cached for 890 * 891 * There are some devices with an optimization that enables the device to not 892 * require loading firmware on system reboot. This optimization may still 893 * require the firmware present on resume from suspend. This routine can be 894 * used to ensure the firmware is present on resume from suspend in these 895 * situations. This helper is not compatible with drivers which use 896 * request_firmware_into_buf() or request_firmware_nowait() with no uevent set. 897 **/ 898 int firmware_request_cache(struct device *device, const char *name) 899 { 900 int ret; 901 902 mutex_lock(&fw_lock); 903 ret = fw_add_devm_name(device, name); 904 mutex_unlock(&fw_lock); 905 906 return ret; 907 } 908 EXPORT_SYMBOL_GPL(firmware_request_cache); 909 910 /** 911 * request_firmware_into_buf() - load firmware into a previously allocated buffer 912 * @firmware_p: pointer to firmware image 913 * @name: name of firmware file 914 * @device: device for which firmware is being loaded and DMA region allocated 915 * @buf: address of buffer to load firmware into 916 * @size: size of buffer 917 * 918 * This function works pretty much like request_firmware(), but it doesn't 919 * allocate a buffer to hold the firmware data. Instead, the firmware 920 * is loaded directly into the buffer pointed to by @buf and the @firmware_p 921 * data member is pointed at @buf. 922 * 923 * This function doesn't cache firmware either. 924 */ 925 int 926 request_firmware_into_buf(const struct firmware **firmware_p, const char *name, 927 struct device *device, void *buf, size_t size) 928 { 929 int ret; 930 931 if (fw_cache_is_setup(device, name)) 932 return -EOPNOTSUPP; 933 934 __module_get(THIS_MODULE); 935 ret = _request_firmware(firmware_p, name, device, buf, size, 936 FW_OPT_UEVENT | FW_OPT_NOCACHE); 937 module_put(THIS_MODULE); 938 return ret; 939 } 940 EXPORT_SYMBOL(request_firmware_into_buf); 941 942 /** 943 * release_firmware() - release the resource associated with a firmware image 944 * @fw: firmware resource to release 945 **/ 946 void release_firmware(const struct firmware *fw) 947 { 948 if (fw) { 949 if (!fw_is_builtin_firmware(fw)) 950 firmware_free_data(fw); 951 kfree(fw); 952 } 953 } 954 EXPORT_SYMBOL(release_firmware); 955 956 /* Async support */ 957 struct firmware_work { 958 struct work_struct work; 959 struct module *module; 960 const char *name; 961 struct device *device; 962 void *context; 963 void (*cont)(const struct firmware *fw, void *context); 964 enum fw_opt opt_flags; 965 }; 966 967 static void request_firmware_work_func(struct work_struct *work) 968 { 969 struct firmware_work *fw_work; 970 const struct firmware *fw; 971 972 fw_work = container_of(work, struct firmware_work, work); 973 974 _request_firmware(&fw, fw_work->name, fw_work->device, NULL, 0, 975 fw_work->opt_flags); 976 fw_work->cont(fw, fw_work->context); 977 put_device(fw_work->device); /* taken in request_firmware_nowait() */ 978 979 module_put(fw_work->module); 980 kfree_const(fw_work->name); 981 kfree(fw_work); 982 } 983 984 /** 985 * request_firmware_nowait() - asynchronous version of request_firmware 986 * @module: module requesting the firmware 987 * @uevent: sends uevent to copy the firmware image if this flag 988 * is non-zero else the firmware copy must be done manually. 989 * @name: name of firmware file 990 * @device: device for which firmware is being loaded 991 * @gfp: allocation flags 992 * @context: will be passed over to @cont, and 993 * @fw may be %NULL if firmware request fails. 994 * @cont: function will be called asynchronously when the firmware 995 * request is over. 996 * 997 * Caller must hold the reference count of @device. 998 * 999 * Asynchronous variant of request_firmware() for user contexts: 1000 * - sleep for as small periods as possible since it may 1001 * increase kernel boot time of built-in device drivers 1002 * requesting firmware in their ->probe() methods, if 1003 * @gfp is GFP_KERNEL. 1004 * 1005 * - can't sleep at all if @gfp is GFP_ATOMIC. 1006 **/ 1007 int 1008 request_firmware_nowait( 1009 struct module *module, bool uevent, 1010 const char *name, struct device *device, gfp_t gfp, void *context, 1011 void (*cont)(const struct firmware *fw, void *context)) 1012 { 1013 struct firmware_work *fw_work; 1014 1015 fw_work = kzalloc(sizeof(struct firmware_work), gfp); 1016 if (!fw_work) 1017 return -ENOMEM; 1018 1019 fw_work->module = module; 1020 fw_work->name = kstrdup_const(name, gfp); 1021 if (!fw_work->name) { 1022 kfree(fw_work); 1023 return -ENOMEM; 1024 } 1025 fw_work->device = device; 1026 fw_work->context = context; 1027 fw_work->cont = cont; 1028 fw_work->opt_flags = FW_OPT_NOWAIT | 1029 (uevent ? FW_OPT_UEVENT : FW_OPT_USERHELPER); 1030 1031 if (!uevent && fw_cache_is_setup(device, name)) { 1032 kfree_const(fw_work->name); 1033 kfree(fw_work); 1034 return -EOPNOTSUPP; 1035 } 1036 1037 if (!try_module_get(module)) { 1038 kfree_const(fw_work->name); 1039 kfree(fw_work); 1040 return -EFAULT; 1041 } 1042 1043 get_device(fw_work->device); 1044 INIT_WORK(&fw_work->work, request_firmware_work_func); 1045 schedule_work(&fw_work->work); 1046 return 0; 1047 } 1048 EXPORT_SYMBOL(request_firmware_nowait); 1049 1050 #ifdef CONFIG_FW_CACHE 1051 static ASYNC_DOMAIN_EXCLUSIVE(fw_cache_domain); 1052 1053 /** 1054 * cache_firmware() - cache one firmware image in kernel memory space 1055 * @fw_name: the firmware image name 1056 * 1057 * Cache firmware in kernel memory so that drivers can use it when 1058 * system isn't ready for them to request firmware image from userspace. 1059 * Once it returns successfully, driver can use request_firmware or its 1060 * nowait version to get the cached firmware without any interacting 1061 * with userspace 1062 * 1063 * Return 0 if the firmware image has been cached successfully 1064 * Return !0 otherwise 1065 * 1066 */ 1067 static int cache_firmware(const char *fw_name) 1068 { 1069 int ret; 1070 const struct firmware *fw; 1071 1072 pr_debug("%s: %s\n", __func__, fw_name); 1073 1074 ret = request_firmware(&fw, fw_name, NULL); 1075 if (!ret) 1076 kfree(fw); 1077 1078 pr_debug("%s: %s ret=%d\n", __func__, fw_name, ret); 1079 1080 return ret; 1081 } 1082 1083 static struct fw_priv *lookup_fw_priv(const char *fw_name) 1084 { 1085 struct fw_priv *tmp; 1086 struct firmware_cache *fwc = &fw_cache; 1087 1088 spin_lock(&fwc->lock); 1089 tmp = __lookup_fw_priv(fw_name); 1090 spin_unlock(&fwc->lock); 1091 1092 return tmp; 1093 } 1094 1095 /** 1096 * uncache_firmware() - remove one cached firmware image 1097 * @fw_name: the firmware image name 1098 * 1099 * Uncache one firmware image which has been cached successfully 1100 * before. 1101 * 1102 * Return 0 if the firmware cache has been removed successfully 1103 * Return !0 otherwise 1104 * 1105 */ 1106 static int uncache_firmware(const char *fw_name) 1107 { 1108 struct fw_priv *fw_priv; 1109 struct firmware fw; 1110 1111 pr_debug("%s: %s\n", __func__, fw_name); 1112 1113 if (fw_get_builtin_firmware(&fw, fw_name, NULL, 0)) 1114 return 0; 1115 1116 fw_priv = lookup_fw_priv(fw_name); 1117 if (fw_priv) { 1118 free_fw_priv(fw_priv); 1119 return 0; 1120 } 1121 1122 return -EINVAL; 1123 } 1124 1125 static struct fw_cache_entry *alloc_fw_cache_entry(const char *name) 1126 { 1127 struct fw_cache_entry *fce; 1128 1129 fce = kzalloc(sizeof(*fce), GFP_ATOMIC); 1130 if (!fce) 1131 goto exit; 1132 1133 fce->name = kstrdup_const(name, GFP_ATOMIC); 1134 if (!fce->name) { 1135 kfree(fce); 1136 fce = NULL; 1137 goto exit; 1138 } 1139 exit: 1140 return fce; 1141 } 1142 1143 static int __fw_entry_found(const char *name) 1144 { 1145 struct firmware_cache *fwc = &fw_cache; 1146 struct fw_cache_entry *fce; 1147 1148 list_for_each_entry(fce, &fwc->fw_names, list) { 1149 if (!strcmp(fce->name, name)) 1150 return 1; 1151 } 1152 return 0; 1153 } 1154 1155 static int fw_cache_piggyback_on_request(const char *name) 1156 { 1157 struct firmware_cache *fwc = &fw_cache; 1158 struct fw_cache_entry *fce; 1159 int ret = 0; 1160 1161 spin_lock(&fwc->name_lock); 1162 if (__fw_entry_found(name)) 1163 goto found; 1164 1165 fce = alloc_fw_cache_entry(name); 1166 if (fce) { 1167 ret = 1; 1168 list_add(&fce->list, &fwc->fw_names); 1169 pr_debug("%s: fw: %s\n", __func__, name); 1170 } 1171 found: 1172 spin_unlock(&fwc->name_lock); 1173 return ret; 1174 } 1175 1176 static void free_fw_cache_entry(struct fw_cache_entry *fce) 1177 { 1178 kfree_const(fce->name); 1179 kfree(fce); 1180 } 1181 1182 static void __async_dev_cache_fw_image(void *fw_entry, 1183 async_cookie_t cookie) 1184 { 1185 struct fw_cache_entry *fce = fw_entry; 1186 struct firmware_cache *fwc = &fw_cache; 1187 int ret; 1188 1189 ret = cache_firmware(fce->name); 1190 if (ret) { 1191 spin_lock(&fwc->name_lock); 1192 list_del(&fce->list); 1193 spin_unlock(&fwc->name_lock); 1194 1195 free_fw_cache_entry(fce); 1196 } 1197 } 1198 1199 /* called with dev->devres_lock held */ 1200 static void dev_create_fw_entry(struct device *dev, void *res, 1201 void *data) 1202 { 1203 struct fw_name_devm *fwn = res; 1204 const char *fw_name = fwn->name; 1205 struct list_head *head = data; 1206 struct fw_cache_entry *fce; 1207 1208 fce = alloc_fw_cache_entry(fw_name); 1209 if (fce) 1210 list_add(&fce->list, head); 1211 } 1212 1213 static int devm_name_match(struct device *dev, void *res, 1214 void *match_data) 1215 { 1216 struct fw_name_devm *fwn = res; 1217 return (fwn->magic == (unsigned long)match_data); 1218 } 1219 1220 static void dev_cache_fw_image(struct device *dev, void *data) 1221 { 1222 LIST_HEAD(todo); 1223 struct fw_cache_entry *fce; 1224 struct fw_cache_entry *fce_next; 1225 struct firmware_cache *fwc = &fw_cache; 1226 1227 devres_for_each_res(dev, fw_name_devm_release, 1228 devm_name_match, &fw_cache, 1229 dev_create_fw_entry, &todo); 1230 1231 list_for_each_entry_safe(fce, fce_next, &todo, list) { 1232 list_del(&fce->list); 1233 1234 spin_lock(&fwc->name_lock); 1235 /* only one cache entry for one firmware */ 1236 if (!__fw_entry_found(fce->name)) { 1237 list_add(&fce->list, &fwc->fw_names); 1238 } else { 1239 free_fw_cache_entry(fce); 1240 fce = NULL; 1241 } 1242 spin_unlock(&fwc->name_lock); 1243 1244 if (fce) 1245 async_schedule_domain(__async_dev_cache_fw_image, 1246 (void *)fce, 1247 &fw_cache_domain); 1248 } 1249 } 1250 1251 static void __device_uncache_fw_images(void) 1252 { 1253 struct firmware_cache *fwc = &fw_cache; 1254 struct fw_cache_entry *fce; 1255 1256 spin_lock(&fwc->name_lock); 1257 while (!list_empty(&fwc->fw_names)) { 1258 fce = list_entry(fwc->fw_names.next, 1259 struct fw_cache_entry, list); 1260 list_del(&fce->list); 1261 spin_unlock(&fwc->name_lock); 1262 1263 uncache_firmware(fce->name); 1264 free_fw_cache_entry(fce); 1265 1266 spin_lock(&fwc->name_lock); 1267 } 1268 spin_unlock(&fwc->name_lock); 1269 } 1270 1271 /** 1272 * device_cache_fw_images() - cache devices' firmware 1273 * 1274 * If one device called request_firmware or its nowait version 1275 * successfully before, the firmware names are recored into the 1276 * device's devres link list, so device_cache_fw_images can call 1277 * cache_firmware() to cache these firmwares for the device, 1278 * then the device driver can load its firmwares easily at 1279 * time when system is not ready to complete loading firmware. 1280 */ 1281 static void device_cache_fw_images(void) 1282 { 1283 struct firmware_cache *fwc = &fw_cache; 1284 DEFINE_WAIT(wait); 1285 1286 pr_debug("%s\n", __func__); 1287 1288 /* cancel uncache work */ 1289 cancel_delayed_work_sync(&fwc->work); 1290 1291 fw_fallback_set_cache_timeout(); 1292 1293 mutex_lock(&fw_lock); 1294 fwc->state = FW_LOADER_START_CACHE; 1295 dpm_for_each_dev(NULL, dev_cache_fw_image); 1296 mutex_unlock(&fw_lock); 1297 1298 /* wait for completion of caching firmware for all devices */ 1299 async_synchronize_full_domain(&fw_cache_domain); 1300 1301 fw_fallback_set_default_timeout(); 1302 } 1303 1304 /** 1305 * device_uncache_fw_images() - uncache devices' firmware 1306 * 1307 * uncache all firmwares which have been cached successfully 1308 * by device_uncache_fw_images earlier 1309 */ 1310 static void device_uncache_fw_images(void) 1311 { 1312 pr_debug("%s\n", __func__); 1313 __device_uncache_fw_images(); 1314 } 1315 1316 static void device_uncache_fw_images_work(struct work_struct *work) 1317 { 1318 device_uncache_fw_images(); 1319 } 1320 1321 /** 1322 * device_uncache_fw_images_delay() - uncache devices firmwares 1323 * @delay: number of milliseconds to delay uncache device firmwares 1324 * 1325 * uncache all devices's firmwares which has been cached successfully 1326 * by device_cache_fw_images after @delay milliseconds. 1327 */ 1328 static void device_uncache_fw_images_delay(unsigned long delay) 1329 { 1330 queue_delayed_work(system_power_efficient_wq, &fw_cache.work, 1331 msecs_to_jiffies(delay)); 1332 } 1333 1334 static int fw_pm_notify(struct notifier_block *notify_block, 1335 unsigned long mode, void *unused) 1336 { 1337 switch (mode) { 1338 case PM_HIBERNATION_PREPARE: 1339 case PM_SUSPEND_PREPARE: 1340 case PM_RESTORE_PREPARE: 1341 /* 1342 * kill pending fallback requests with a custom fallback 1343 * to avoid stalling suspend. 1344 */ 1345 kill_pending_fw_fallback_reqs(true); 1346 device_cache_fw_images(); 1347 break; 1348 1349 case PM_POST_SUSPEND: 1350 case PM_POST_HIBERNATION: 1351 case PM_POST_RESTORE: 1352 /* 1353 * In case that system sleep failed and syscore_suspend is 1354 * not called. 1355 */ 1356 mutex_lock(&fw_lock); 1357 fw_cache.state = FW_LOADER_NO_CACHE; 1358 mutex_unlock(&fw_lock); 1359 1360 device_uncache_fw_images_delay(10 * MSEC_PER_SEC); 1361 break; 1362 } 1363 1364 return 0; 1365 } 1366 1367 /* stop caching firmware once syscore_suspend is reached */ 1368 static int fw_suspend(void) 1369 { 1370 fw_cache.state = FW_LOADER_NO_CACHE; 1371 return 0; 1372 } 1373 1374 static struct syscore_ops fw_syscore_ops = { 1375 .suspend = fw_suspend, 1376 }; 1377 1378 static int __init register_fw_pm_ops(void) 1379 { 1380 int ret; 1381 1382 spin_lock_init(&fw_cache.name_lock); 1383 INIT_LIST_HEAD(&fw_cache.fw_names); 1384 1385 INIT_DELAYED_WORK(&fw_cache.work, 1386 device_uncache_fw_images_work); 1387 1388 fw_cache.pm_notify.notifier_call = fw_pm_notify; 1389 ret = register_pm_notifier(&fw_cache.pm_notify); 1390 if (ret) 1391 return ret; 1392 1393 register_syscore_ops(&fw_syscore_ops); 1394 1395 return ret; 1396 } 1397 1398 static inline void unregister_fw_pm_ops(void) 1399 { 1400 unregister_syscore_ops(&fw_syscore_ops); 1401 unregister_pm_notifier(&fw_cache.pm_notify); 1402 } 1403 #else 1404 static int fw_cache_piggyback_on_request(const char *name) 1405 { 1406 return 0; 1407 } 1408 static inline int register_fw_pm_ops(void) 1409 { 1410 return 0; 1411 } 1412 static inline void unregister_fw_pm_ops(void) 1413 { 1414 } 1415 #endif 1416 1417 static void __init fw_cache_init(void) 1418 { 1419 spin_lock_init(&fw_cache.lock); 1420 INIT_LIST_HEAD(&fw_cache.head); 1421 fw_cache.state = FW_LOADER_NO_CACHE; 1422 } 1423 1424 static int fw_shutdown_notify(struct notifier_block *unused1, 1425 unsigned long unused2, void *unused3) 1426 { 1427 /* 1428 * Kill all pending fallback requests to avoid both stalling shutdown, 1429 * and avoid a deadlock with the usermode_lock. 1430 */ 1431 kill_pending_fw_fallback_reqs(false); 1432 1433 return NOTIFY_DONE; 1434 } 1435 1436 static struct notifier_block fw_shutdown_nb = { 1437 .notifier_call = fw_shutdown_notify, 1438 }; 1439 1440 static int __init firmware_class_init(void) 1441 { 1442 int ret; 1443 1444 /* No need to unfold these on exit */ 1445 fw_cache_init(); 1446 1447 ret = register_fw_pm_ops(); 1448 if (ret) 1449 return ret; 1450 1451 ret = register_reboot_notifier(&fw_shutdown_nb); 1452 if (ret) 1453 goto out; 1454 1455 return register_sysfs_loader(); 1456 1457 out: 1458 unregister_fw_pm_ops(); 1459 return ret; 1460 } 1461 1462 static void __exit firmware_class_exit(void) 1463 { 1464 unregister_fw_pm_ops(); 1465 unregister_reboot_notifier(&fw_shutdown_nb); 1466 unregister_sysfs_loader(); 1467 } 1468 1469 fs_initcall(firmware_class_init); 1470 module_exit(firmware_class_exit); 1471