xref: /openbmc/linux/drivers/base/firmware_loader/main.c (revision 2e7c04aec86758e0adfcad4a24c86593b45807a3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * main.c - Multi purpose firmware loading support
4  *
5  * Copyright (c) 2003 Manuel Estrada Sainz
6  *
7  * Please see Documentation/firmware_class/ for more information.
8  *
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/capability.h>
14 #include <linux/device.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/timer.h>
18 #include <linux/vmalloc.h>
19 #include <linux/interrupt.h>
20 #include <linux/bitops.h>
21 #include <linux/mutex.h>
22 #include <linux/workqueue.h>
23 #include <linux/highmem.h>
24 #include <linux/firmware.h>
25 #include <linux/slab.h>
26 #include <linux/sched.h>
27 #include <linux/file.h>
28 #include <linux/list.h>
29 #include <linux/fs.h>
30 #include <linux/async.h>
31 #include <linux/pm.h>
32 #include <linux/suspend.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/reboot.h>
35 #include <linux/security.h>
36 
37 #include <generated/utsrelease.h>
38 
39 #include "../base.h"
40 #include "firmware.h"
41 #include "fallback.h"
42 
43 MODULE_AUTHOR("Manuel Estrada Sainz");
44 MODULE_DESCRIPTION("Multi purpose firmware loading support");
45 MODULE_LICENSE("GPL");
46 
47 struct firmware_cache {
48 	/* firmware_buf instance will be added into the below list */
49 	spinlock_t lock;
50 	struct list_head head;
51 	int state;
52 
53 #ifdef CONFIG_PM_SLEEP
54 	/*
55 	 * Names of firmware images which have been cached successfully
56 	 * will be added into the below list so that device uncache
57 	 * helper can trace which firmware images have been cached
58 	 * before.
59 	 */
60 	spinlock_t name_lock;
61 	struct list_head fw_names;
62 
63 	struct delayed_work work;
64 
65 	struct notifier_block   pm_notify;
66 #endif
67 };
68 
69 struct fw_cache_entry {
70 	struct list_head list;
71 	const char *name;
72 };
73 
74 struct fw_name_devm {
75 	unsigned long magic;
76 	const char *name;
77 };
78 
79 static inline struct fw_priv *to_fw_priv(struct kref *ref)
80 {
81 	return container_of(ref, struct fw_priv, ref);
82 }
83 
84 #define	FW_LOADER_NO_CACHE	0
85 #define	FW_LOADER_START_CACHE	1
86 
87 /* fw_lock could be moved to 'struct fw_sysfs' but since it is just
88  * guarding for corner cases a global lock should be OK */
89 DEFINE_MUTEX(fw_lock);
90 
91 static struct firmware_cache fw_cache;
92 
93 /* Builtin firmware support */
94 
95 #ifdef CONFIG_FW_LOADER
96 
97 extern struct builtin_fw __start_builtin_fw[];
98 extern struct builtin_fw __end_builtin_fw[];
99 
100 static void fw_copy_to_prealloc_buf(struct firmware *fw,
101 				    void *buf, size_t size)
102 {
103 	if (!buf || size < fw->size)
104 		return;
105 	memcpy(buf, fw->data, fw->size);
106 }
107 
108 static bool fw_get_builtin_firmware(struct firmware *fw, const char *name,
109 				    void *buf, size_t size)
110 {
111 	struct builtin_fw *b_fw;
112 
113 	for (b_fw = __start_builtin_fw; b_fw != __end_builtin_fw; b_fw++) {
114 		if (strcmp(name, b_fw->name) == 0) {
115 			fw->size = b_fw->size;
116 			fw->data = b_fw->data;
117 			fw_copy_to_prealloc_buf(fw, buf, size);
118 
119 			return true;
120 		}
121 	}
122 
123 	return false;
124 }
125 
126 static bool fw_is_builtin_firmware(const struct firmware *fw)
127 {
128 	struct builtin_fw *b_fw;
129 
130 	for (b_fw = __start_builtin_fw; b_fw != __end_builtin_fw; b_fw++)
131 		if (fw->data == b_fw->data)
132 			return true;
133 
134 	return false;
135 }
136 
137 #else /* Module case - no builtin firmware support */
138 
139 static inline bool fw_get_builtin_firmware(struct firmware *fw,
140 					   const char *name, void *buf,
141 					   size_t size)
142 {
143 	return false;
144 }
145 
146 static inline bool fw_is_builtin_firmware(const struct firmware *fw)
147 {
148 	return false;
149 }
150 #endif
151 
152 static void fw_state_init(struct fw_priv *fw_priv)
153 {
154 	struct fw_state *fw_st = &fw_priv->fw_st;
155 
156 	init_completion(&fw_st->completion);
157 	fw_st->status = FW_STATUS_UNKNOWN;
158 }
159 
160 static inline int fw_state_wait(struct fw_priv *fw_priv)
161 {
162 	return __fw_state_wait_common(fw_priv, MAX_SCHEDULE_TIMEOUT);
163 }
164 
165 static int fw_cache_piggyback_on_request(const char *name);
166 
167 static struct fw_priv *__allocate_fw_priv(const char *fw_name,
168 					  struct firmware_cache *fwc,
169 					  void *dbuf, size_t size)
170 {
171 	struct fw_priv *fw_priv;
172 
173 	fw_priv = kzalloc(sizeof(*fw_priv), GFP_ATOMIC);
174 	if (!fw_priv)
175 		return NULL;
176 
177 	fw_priv->fw_name = kstrdup_const(fw_name, GFP_ATOMIC);
178 	if (!fw_priv->fw_name) {
179 		kfree(fw_priv);
180 		return NULL;
181 	}
182 
183 	kref_init(&fw_priv->ref);
184 	fw_priv->fwc = fwc;
185 	fw_priv->data = dbuf;
186 	fw_priv->allocated_size = size;
187 	fw_state_init(fw_priv);
188 #ifdef CONFIG_FW_LOADER_USER_HELPER
189 	INIT_LIST_HEAD(&fw_priv->pending_list);
190 #endif
191 
192 	pr_debug("%s: fw-%s fw_priv=%p\n", __func__, fw_name, fw_priv);
193 
194 	return fw_priv;
195 }
196 
197 static struct fw_priv *__lookup_fw_priv(const char *fw_name)
198 {
199 	struct fw_priv *tmp;
200 	struct firmware_cache *fwc = &fw_cache;
201 
202 	list_for_each_entry(tmp, &fwc->head, list)
203 		if (!strcmp(tmp->fw_name, fw_name))
204 			return tmp;
205 	return NULL;
206 }
207 
208 /* Returns 1 for batching firmware requests with the same name */
209 static int alloc_lookup_fw_priv(const char *fw_name,
210 				struct firmware_cache *fwc,
211 				struct fw_priv **fw_priv, void *dbuf,
212 				size_t size)
213 {
214 	struct fw_priv *tmp;
215 
216 	spin_lock(&fwc->lock);
217 	tmp = __lookup_fw_priv(fw_name);
218 	if (tmp) {
219 		kref_get(&tmp->ref);
220 		spin_unlock(&fwc->lock);
221 		*fw_priv = tmp;
222 		pr_debug("batched request - sharing the same struct fw_priv and lookup for multiple requests\n");
223 		return 1;
224 	}
225 	tmp = __allocate_fw_priv(fw_name, fwc, dbuf, size);
226 	if (tmp)
227 		list_add(&tmp->list, &fwc->head);
228 	spin_unlock(&fwc->lock);
229 
230 	*fw_priv = tmp;
231 
232 	return tmp ? 0 : -ENOMEM;
233 }
234 
235 static void __free_fw_priv(struct kref *ref)
236 	__releases(&fwc->lock)
237 {
238 	struct fw_priv *fw_priv = to_fw_priv(ref);
239 	struct firmware_cache *fwc = fw_priv->fwc;
240 
241 	pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
242 		 __func__, fw_priv->fw_name, fw_priv, fw_priv->data,
243 		 (unsigned int)fw_priv->size);
244 
245 	list_del(&fw_priv->list);
246 	spin_unlock(&fwc->lock);
247 
248 #ifdef CONFIG_FW_LOADER_USER_HELPER
249 	if (fw_priv->is_paged_buf) {
250 		int i;
251 		vunmap(fw_priv->data);
252 		for (i = 0; i < fw_priv->nr_pages; i++)
253 			__free_page(fw_priv->pages[i]);
254 		vfree(fw_priv->pages);
255 	} else
256 #endif
257 	if (!fw_priv->allocated_size)
258 		vfree(fw_priv->data);
259 	kfree_const(fw_priv->fw_name);
260 	kfree(fw_priv);
261 }
262 
263 static void free_fw_priv(struct fw_priv *fw_priv)
264 {
265 	struct firmware_cache *fwc = fw_priv->fwc;
266 	spin_lock(&fwc->lock);
267 	if (!kref_put(&fw_priv->ref, __free_fw_priv))
268 		spin_unlock(&fwc->lock);
269 }
270 
271 /* direct firmware loading support */
272 static char fw_path_para[256];
273 static const char * const fw_path[] = {
274 	fw_path_para,
275 	"/lib/firmware/updates/" UTS_RELEASE,
276 	"/lib/firmware/updates",
277 	"/lib/firmware/" UTS_RELEASE,
278 	"/lib/firmware"
279 };
280 
281 /*
282  * Typical usage is that passing 'firmware_class.path=$CUSTOMIZED_PATH'
283  * from kernel command line because firmware_class is generally built in
284  * kernel instead of module.
285  */
286 module_param_string(path, fw_path_para, sizeof(fw_path_para), 0644);
287 MODULE_PARM_DESC(path, "customized firmware image search path with a higher priority than default path");
288 
289 static int
290 fw_get_filesystem_firmware(struct device *device, struct fw_priv *fw_priv)
291 {
292 	loff_t size;
293 	int i, len;
294 	int rc = -ENOENT;
295 	char *path;
296 	enum kernel_read_file_id id = READING_FIRMWARE;
297 	size_t msize = INT_MAX;
298 
299 	/* Already populated data member means we're loading into a buffer */
300 	if (fw_priv->data) {
301 		id = READING_FIRMWARE_PREALLOC_BUFFER;
302 		msize = fw_priv->allocated_size;
303 	}
304 
305 	path = __getname();
306 	if (!path)
307 		return -ENOMEM;
308 
309 	for (i = 0; i < ARRAY_SIZE(fw_path); i++) {
310 		/* skip the unset customized path */
311 		if (!fw_path[i][0])
312 			continue;
313 
314 		len = snprintf(path, PATH_MAX, "%s/%s",
315 			       fw_path[i], fw_priv->fw_name);
316 		if (len >= PATH_MAX) {
317 			rc = -ENAMETOOLONG;
318 			break;
319 		}
320 
321 		fw_priv->size = 0;
322 		rc = kernel_read_file_from_path(path, &fw_priv->data, &size,
323 						msize, id);
324 		if (rc) {
325 			if (rc == -ENOENT)
326 				dev_dbg(device, "loading %s failed with error %d\n",
327 					 path, rc);
328 			else
329 				dev_warn(device, "loading %s failed with error %d\n",
330 					 path, rc);
331 			continue;
332 		}
333 		dev_dbg(device, "direct-loading %s\n", fw_priv->fw_name);
334 		fw_priv->size = size;
335 		fw_state_done(fw_priv);
336 		break;
337 	}
338 	__putname(path);
339 
340 	return rc;
341 }
342 
343 /* firmware holds the ownership of pages */
344 static void firmware_free_data(const struct firmware *fw)
345 {
346 	/* Loaded directly? */
347 	if (!fw->priv) {
348 		vfree(fw->data);
349 		return;
350 	}
351 	free_fw_priv(fw->priv);
352 }
353 
354 /* store the pages buffer info firmware from buf */
355 static void fw_set_page_data(struct fw_priv *fw_priv, struct firmware *fw)
356 {
357 	fw->priv = fw_priv;
358 #ifdef CONFIG_FW_LOADER_USER_HELPER
359 	fw->pages = fw_priv->pages;
360 #endif
361 	fw->size = fw_priv->size;
362 	fw->data = fw_priv->data;
363 
364 	pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
365 		 __func__, fw_priv->fw_name, fw_priv, fw_priv->data,
366 		 (unsigned int)fw_priv->size);
367 }
368 
369 #ifdef CONFIG_PM_SLEEP
370 static void fw_name_devm_release(struct device *dev, void *res)
371 {
372 	struct fw_name_devm *fwn = res;
373 
374 	if (fwn->magic == (unsigned long)&fw_cache)
375 		pr_debug("%s: fw_name-%s devm-%p released\n",
376 				__func__, fwn->name, res);
377 	kfree_const(fwn->name);
378 }
379 
380 static int fw_devm_match(struct device *dev, void *res,
381 		void *match_data)
382 {
383 	struct fw_name_devm *fwn = res;
384 
385 	return (fwn->magic == (unsigned long)&fw_cache) &&
386 		!strcmp(fwn->name, match_data);
387 }
388 
389 static struct fw_name_devm *fw_find_devm_name(struct device *dev,
390 		const char *name)
391 {
392 	struct fw_name_devm *fwn;
393 
394 	fwn = devres_find(dev, fw_name_devm_release,
395 			  fw_devm_match, (void *)name);
396 	return fwn;
397 }
398 
399 static bool fw_cache_is_setup(struct device *dev, const char *name)
400 {
401 	struct fw_name_devm *fwn;
402 
403 	fwn = fw_find_devm_name(dev, name);
404 	if (fwn)
405 		return true;
406 
407 	return false;
408 }
409 
410 /* add firmware name into devres list */
411 static int fw_add_devm_name(struct device *dev, const char *name)
412 {
413 	struct fw_name_devm *fwn;
414 
415 	if (fw_cache_is_setup(dev, name))
416 		return 0;
417 
418 	fwn = devres_alloc(fw_name_devm_release, sizeof(struct fw_name_devm),
419 			   GFP_KERNEL);
420 	if (!fwn)
421 		return -ENOMEM;
422 	fwn->name = kstrdup_const(name, GFP_KERNEL);
423 	if (!fwn->name) {
424 		devres_free(fwn);
425 		return -ENOMEM;
426 	}
427 
428 	fwn->magic = (unsigned long)&fw_cache;
429 	devres_add(dev, fwn);
430 
431 	return 0;
432 }
433 #else
434 static bool fw_cache_is_setup(struct device *dev, const char *name)
435 {
436 	return false;
437 }
438 
439 static int fw_add_devm_name(struct device *dev, const char *name)
440 {
441 	return 0;
442 }
443 #endif
444 
445 int assign_fw(struct firmware *fw, struct device *device,
446 	      enum fw_opt opt_flags)
447 {
448 	struct fw_priv *fw_priv = fw->priv;
449 	int ret;
450 
451 	mutex_lock(&fw_lock);
452 	if (!fw_priv->size || fw_state_is_aborted(fw_priv)) {
453 		mutex_unlock(&fw_lock);
454 		return -ENOENT;
455 	}
456 
457 	/*
458 	 * add firmware name into devres list so that we can auto cache
459 	 * and uncache firmware for device.
460 	 *
461 	 * device may has been deleted already, but the problem
462 	 * should be fixed in devres or driver core.
463 	 */
464 	/* don't cache firmware handled without uevent */
465 	if (device && (opt_flags & FW_OPT_UEVENT) &&
466 	    !(opt_flags & FW_OPT_NOCACHE)) {
467 		ret = fw_add_devm_name(device, fw_priv->fw_name);
468 		if (ret) {
469 			mutex_unlock(&fw_lock);
470 			return ret;
471 		}
472 	}
473 
474 	/*
475 	 * After caching firmware image is started, let it piggyback
476 	 * on request firmware.
477 	 */
478 	if (!(opt_flags & FW_OPT_NOCACHE) &&
479 	    fw_priv->fwc->state == FW_LOADER_START_CACHE) {
480 		if (fw_cache_piggyback_on_request(fw_priv->fw_name))
481 			kref_get(&fw_priv->ref);
482 	}
483 
484 	/* pass the pages buffer to driver at the last minute */
485 	fw_set_page_data(fw_priv, fw);
486 	mutex_unlock(&fw_lock);
487 	return 0;
488 }
489 
490 /* prepare firmware and firmware_buf structs;
491  * return 0 if a firmware is already assigned, 1 if need to load one,
492  * or a negative error code
493  */
494 static int
495 _request_firmware_prepare(struct firmware **firmware_p, const char *name,
496 			  struct device *device, void *dbuf, size_t size)
497 {
498 	struct firmware *firmware;
499 	struct fw_priv *fw_priv;
500 	int ret;
501 
502 	*firmware_p = firmware = kzalloc(sizeof(*firmware), GFP_KERNEL);
503 	if (!firmware) {
504 		dev_err(device, "%s: kmalloc(struct firmware) failed\n",
505 			__func__);
506 		return -ENOMEM;
507 	}
508 
509 	if (fw_get_builtin_firmware(firmware, name, dbuf, size)) {
510 		dev_dbg(device, "using built-in %s\n", name);
511 		return 0; /* assigned */
512 	}
513 
514 	ret = alloc_lookup_fw_priv(name, &fw_cache, &fw_priv, dbuf, size);
515 
516 	/*
517 	 * bind with 'priv' now to avoid warning in failure path
518 	 * of requesting firmware.
519 	 */
520 	firmware->priv = fw_priv;
521 
522 	if (ret > 0) {
523 		ret = fw_state_wait(fw_priv);
524 		if (!ret) {
525 			fw_set_page_data(fw_priv, firmware);
526 			return 0; /* assigned */
527 		}
528 	}
529 
530 	if (ret < 0)
531 		return ret;
532 	return 1; /* need to load */
533 }
534 
535 /*
536  * Batched requests need only one wake, we need to do this step last due to the
537  * fallback mechanism. The buf is protected with kref_get(), and it won't be
538  * released until the last user calls release_firmware().
539  *
540  * Failed batched requests are possible as well, in such cases we just share
541  * the struct fw_priv and won't release it until all requests are woken
542  * and have gone through this same path.
543  */
544 static void fw_abort_batch_reqs(struct firmware *fw)
545 {
546 	struct fw_priv *fw_priv;
547 
548 	/* Loaded directly? */
549 	if (!fw || !fw->priv)
550 		return;
551 
552 	fw_priv = fw->priv;
553 	if (!fw_state_is_aborted(fw_priv))
554 		fw_state_aborted(fw_priv);
555 }
556 
557 /* called from request_firmware() and request_firmware_work_func() */
558 static int
559 _request_firmware(const struct firmware **firmware_p, const char *name,
560 		  struct device *device, void *buf, size_t size,
561 		  enum fw_opt opt_flags)
562 {
563 	struct firmware *fw = NULL;
564 	int ret;
565 
566 	if (!firmware_p)
567 		return -EINVAL;
568 
569 	if (!name || name[0] == '\0') {
570 		ret = -EINVAL;
571 		goto out;
572 	}
573 
574 	ret = _request_firmware_prepare(&fw, name, device, buf, size);
575 	if (ret <= 0) /* error or already assigned */
576 		goto out;
577 
578 	ret = fw_get_filesystem_firmware(device, fw->priv);
579 	if (ret) {
580 		if (!(opt_flags & FW_OPT_NO_WARN))
581 			dev_warn(device,
582 				 "Direct firmware load for %s failed with error %d\n",
583 				 name, ret);
584 		ret = firmware_fallback_sysfs(fw, name, device, opt_flags, ret);
585 	} else
586 		ret = assign_fw(fw, device, opt_flags);
587 
588  out:
589 	if (ret < 0) {
590 		fw_abort_batch_reqs(fw);
591 		release_firmware(fw);
592 		fw = NULL;
593 	}
594 
595 	*firmware_p = fw;
596 	return ret;
597 }
598 
599 /**
600  * request_firmware() - send firmware request and wait for it
601  * @firmware_p: pointer to firmware image
602  * @name: name of firmware file
603  * @device: device for which firmware is being loaded
604  *
605  *      @firmware_p will be used to return a firmware image by the name
606  *      of @name for device @device.
607  *
608  *      Should be called from user context where sleeping is allowed.
609  *
610  *      @name will be used as $FIRMWARE in the uevent environment and
611  *      should be distinctive enough not to be confused with any other
612  *      firmware image for this or any other device.
613  *
614  *	Caller must hold the reference count of @device.
615  *
616  *	The function can be called safely inside device's suspend and
617  *	resume callback.
618  **/
619 int
620 request_firmware(const struct firmware **firmware_p, const char *name,
621 		 struct device *device)
622 {
623 	int ret;
624 
625 	/* Need to pin this module until return */
626 	__module_get(THIS_MODULE);
627 	ret = _request_firmware(firmware_p, name, device, NULL, 0,
628 				FW_OPT_UEVENT);
629 	module_put(THIS_MODULE);
630 	return ret;
631 }
632 EXPORT_SYMBOL(request_firmware);
633 
634 /**
635  * firmware_request_nowarn() - request for an optional fw module
636  * @firmware: pointer to firmware image
637  * @name: name of firmware file
638  * @device: device for which firmware is being loaded
639  *
640  * This function is similar in behaviour to request_firmware(), except
641  * it doesn't produce warning messages when the file is not found.
642  * The sysfs fallback mechanism is enabled if direct filesystem lookup fails,
643  * however, however failures to find the firmware file with it are still
644  * suppressed. It is therefore up to the driver to check for the return value
645  * of this call and to decide when to inform the users of errors.
646  **/
647 int firmware_request_nowarn(const struct firmware **firmware, const char *name,
648 			    struct device *device)
649 {
650 	int ret;
651 
652 	/* Need to pin this module until return */
653 	__module_get(THIS_MODULE);
654 	ret = _request_firmware(firmware, name, device, NULL, 0,
655 				FW_OPT_UEVENT | FW_OPT_NO_WARN);
656 	module_put(THIS_MODULE);
657 	return ret;
658 }
659 EXPORT_SYMBOL_GPL(firmware_request_nowarn);
660 
661 /**
662  * request_firmware_direct() - load firmware directly without usermode helper
663  * @firmware_p: pointer to firmware image
664  * @name: name of firmware file
665  * @device: device for which firmware is being loaded
666  *
667  * This function works pretty much like request_firmware(), but this doesn't
668  * fall back to usermode helper even if the firmware couldn't be loaded
669  * directly from fs.  Hence it's useful for loading optional firmwares, which
670  * aren't always present, without extra long timeouts of udev.
671  **/
672 int request_firmware_direct(const struct firmware **firmware_p,
673 			    const char *name, struct device *device)
674 {
675 	int ret;
676 
677 	__module_get(THIS_MODULE);
678 	ret = _request_firmware(firmware_p, name, device, NULL, 0,
679 				FW_OPT_UEVENT | FW_OPT_NO_WARN |
680 				FW_OPT_NOFALLBACK);
681 	module_put(THIS_MODULE);
682 	return ret;
683 }
684 EXPORT_SYMBOL_GPL(request_firmware_direct);
685 
686 /**
687  * firmware_request_cache() - cache firmware for suspend so resume can use it
688  * @name: name of firmware file
689  * @device: device for which firmware should be cached for
690  *
691  * There are some devices with an optimization that enables the device to not
692  * require loading firmware on system reboot. This optimization may still
693  * require the firmware present on resume from suspend. This routine can be
694  * used to ensure the firmware is present on resume from suspend in these
695  * situations. This helper is not compatible with drivers which use
696  * request_firmware_into_buf() or request_firmware_nowait() with no uevent set.
697  **/
698 int firmware_request_cache(struct device *device, const char *name)
699 {
700 	int ret;
701 
702 	mutex_lock(&fw_lock);
703 	ret = fw_add_devm_name(device, name);
704 	mutex_unlock(&fw_lock);
705 
706 	return ret;
707 }
708 EXPORT_SYMBOL_GPL(firmware_request_cache);
709 
710 /**
711  * request_firmware_into_buf() - load firmware into a previously allocated buffer
712  * @firmware_p: pointer to firmware image
713  * @name: name of firmware file
714  * @device: device for which firmware is being loaded and DMA region allocated
715  * @buf: address of buffer to load firmware into
716  * @size: size of buffer
717  *
718  * This function works pretty much like request_firmware(), but it doesn't
719  * allocate a buffer to hold the firmware data. Instead, the firmware
720  * is loaded directly into the buffer pointed to by @buf and the @firmware_p
721  * data member is pointed at @buf.
722  *
723  * This function doesn't cache firmware either.
724  */
725 int
726 request_firmware_into_buf(const struct firmware **firmware_p, const char *name,
727 			  struct device *device, void *buf, size_t size)
728 {
729 	int ret;
730 
731 	if (fw_cache_is_setup(device, name))
732 		return -EOPNOTSUPP;
733 
734 	__module_get(THIS_MODULE);
735 	ret = _request_firmware(firmware_p, name, device, buf, size,
736 				FW_OPT_UEVENT | FW_OPT_NOCACHE);
737 	module_put(THIS_MODULE);
738 	return ret;
739 }
740 EXPORT_SYMBOL(request_firmware_into_buf);
741 
742 /**
743  * release_firmware() - release the resource associated with a firmware image
744  * @fw: firmware resource to release
745  **/
746 void release_firmware(const struct firmware *fw)
747 {
748 	if (fw) {
749 		if (!fw_is_builtin_firmware(fw))
750 			firmware_free_data(fw);
751 		kfree(fw);
752 	}
753 }
754 EXPORT_SYMBOL(release_firmware);
755 
756 /* Async support */
757 struct firmware_work {
758 	struct work_struct work;
759 	struct module *module;
760 	const char *name;
761 	struct device *device;
762 	void *context;
763 	void (*cont)(const struct firmware *fw, void *context);
764 	enum fw_opt opt_flags;
765 };
766 
767 static void request_firmware_work_func(struct work_struct *work)
768 {
769 	struct firmware_work *fw_work;
770 	const struct firmware *fw;
771 
772 	fw_work = container_of(work, struct firmware_work, work);
773 
774 	_request_firmware(&fw, fw_work->name, fw_work->device, NULL, 0,
775 			  fw_work->opt_flags);
776 	fw_work->cont(fw, fw_work->context);
777 	put_device(fw_work->device); /* taken in request_firmware_nowait() */
778 
779 	module_put(fw_work->module);
780 	kfree_const(fw_work->name);
781 	kfree(fw_work);
782 }
783 
784 /**
785  * request_firmware_nowait() - asynchronous version of request_firmware
786  * @module: module requesting the firmware
787  * @uevent: sends uevent to copy the firmware image if this flag
788  *	is non-zero else the firmware copy must be done manually.
789  * @name: name of firmware file
790  * @device: device for which firmware is being loaded
791  * @gfp: allocation flags
792  * @context: will be passed over to @cont, and
793  *	@fw may be %NULL if firmware request fails.
794  * @cont: function will be called asynchronously when the firmware
795  *	request is over.
796  *
797  *	Caller must hold the reference count of @device.
798  *
799  *	Asynchronous variant of request_firmware() for user contexts:
800  *		- sleep for as small periods as possible since it may
801  *		  increase kernel boot time of built-in device drivers
802  *		  requesting firmware in their ->probe() methods, if
803  *		  @gfp is GFP_KERNEL.
804  *
805  *		- can't sleep at all if @gfp is GFP_ATOMIC.
806  **/
807 int
808 request_firmware_nowait(
809 	struct module *module, bool uevent,
810 	const char *name, struct device *device, gfp_t gfp, void *context,
811 	void (*cont)(const struct firmware *fw, void *context))
812 {
813 	struct firmware_work *fw_work;
814 
815 	fw_work = kzalloc(sizeof(struct firmware_work), gfp);
816 	if (!fw_work)
817 		return -ENOMEM;
818 
819 	fw_work->module = module;
820 	fw_work->name = kstrdup_const(name, gfp);
821 	if (!fw_work->name) {
822 		kfree(fw_work);
823 		return -ENOMEM;
824 	}
825 	fw_work->device = device;
826 	fw_work->context = context;
827 	fw_work->cont = cont;
828 	fw_work->opt_flags = FW_OPT_NOWAIT |
829 		(uevent ? FW_OPT_UEVENT : FW_OPT_USERHELPER);
830 
831 	if (!uevent && fw_cache_is_setup(device, name)) {
832 		kfree_const(fw_work->name);
833 		kfree(fw_work);
834 		return -EOPNOTSUPP;
835 	}
836 
837 	if (!try_module_get(module)) {
838 		kfree_const(fw_work->name);
839 		kfree(fw_work);
840 		return -EFAULT;
841 	}
842 
843 	get_device(fw_work->device);
844 	INIT_WORK(&fw_work->work, request_firmware_work_func);
845 	schedule_work(&fw_work->work);
846 	return 0;
847 }
848 EXPORT_SYMBOL(request_firmware_nowait);
849 
850 #ifdef CONFIG_PM_SLEEP
851 static ASYNC_DOMAIN_EXCLUSIVE(fw_cache_domain);
852 
853 /**
854  * cache_firmware() - cache one firmware image in kernel memory space
855  * @fw_name: the firmware image name
856  *
857  * Cache firmware in kernel memory so that drivers can use it when
858  * system isn't ready for them to request firmware image from userspace.
859  * Once it returns successfully, driver can use request_firmware or its
860  * nowait version to get the cached firmware without any interacting
861  * with userspace
862  *
863  * Return 0 if the firmware image has been cached successfully
864  * Return !0 otherwise
865  *
866  */
867 static int cache_firmware(const char *fw_name)
868 {
869 	int ret;
870 	const struct firmware *fw;
871 
872 	pr_debug("%s: %s\n", __func__, fw_name);
873 
874 	ret = request_firmware(&fw, fw_name, NULL);
875 	if (!ret)
876 		kfree(fw);
877 
878 	pr_debug("%s: %s ret=%d\n", __func__, fw_name, ret);
879 
880 	return ret;
881 }
882 
883 static struct fw_priv *lookup_fw_priv(const char *fw_name)
884 {
885 	struct fw_priv *tmp;
886 	struct firmware_cache *fwc = &fw_cache;
887 
888 	spin_lock(&fwc->lock);
889 	tmp = __lookup_fw_priv(fw_name);
890 	spin_unlock(&fwc->lock);
891 
892 	return tmp;
893 }
894 
895 /**
896  * uncache_firmware() - remove one cached firmware image
897  * @fw_name: the firmware image name
898  *
899  * Uncache one firmware image which has been cached successfully
900  * before.
901  *
902  * Return 0 if the firmware cache has been removed successfully
903  * Return !0 otherwise
904  *
905  */
906 static int uncache_firmware(const char *fw_name)
907 {
908 	struct fw_priv *fw_priv;
909 	struct firmware fw;
910 
911 	pr_debug("%s: %s\n", __func__, fw_name);
912 
913 	if (fw_get_builtin_firmware(&fw, fw_name, NULL, 0))
914 		return 0;
915 
916 	fw_priv = lookup_fw_priv(fw_name);
917 	if (fw_priv) {
918 		free_fw_priv(fw_priv);
919 		return 0;
920 	}
921 
922 	return -EINVAL;
923 }
924 
925 static struct fw_cache_entry *alloc_fw_cache_entry(const char *name)
926 {
927 	struct fw_cache_entry *fce;
928 
929 	fce = kzalloc(sizeof(*fce), GFP_ATOMIC);
930 	if (!fce)
931 		goto exit;
932 
933 	fce->name = kstrdup_const(name, GFP_ATOMIC);
934 	if (!fce->name) {
935 		kfree(fce);
936 		fce = NULL;
937 		goto exit;
938 	}
939 exit:
940 	return fce;
941 }
942 
943 static int __fw_entry_found(const char *name)
944 {
945 	struct firmware_cache *fwc = &fw_cache;
946 	struct fw_cache_entry *fce;
947 
948 	list_for_each_entry(fce, &fwc->fw_names, list) {
949 		if (!strcmp(fce->name, name))
950 			return 1;
951 	}
952 	return 0;
953 }
954 
955 static int fw_cache_piggyback_on_request(const char *name)
956 {
957 	struct firmware_cache *fwc = &fw_cache;
958 	struct fw_cache_entry *fce;
959 	int ret = 0;
960 
961 	spin_lock(&fwc->name_lock);
962 	if (__fw_entry_found(name))
963 		goto found;
964 
965 	fce = alloc_fw_cache_entry(name);
966 	if (fce) {
967 		ret = 1;
968 		list_add(&fce->list, &fwc->fw_names);
969 		pr_debug("%s: fw: %s\n", __func__, name);
970 	}
971 found:
972 	spin_unlock(&fwc->name_lock);
973 	return ret;
974 }
975 
976 static void free_fw_cache_entry(struct fw_cache_entry *fce)
977 {
978 	kfree_const(fce->name);
979 	kfree(fce);
980 }
981 
982 static void __async_dev_cache_fw_image(void *fw_entry,
983 				       async_cookie_t cookie)
984 {
985 	struct fw_cache_entry *fce = fw_entry;
986 	struct firmware_cache *fwc = &fw_cache;
987 	int ret;
988 
989 	ret = cache_firmware(fce->name);
990 	if (ret) {
991 		spin_lock(&fwc->name_lock);
992 		list_del(&fce->list);
993 		spin_unlock(&fwc->name_lock);
994 
995 		free_fw_cache_entry(fce);
996 	}
997 }
998 
999 /* called with dev->devres_lock held */
1000 static void dev_create_fw_entry(struct device *dev, void *res,
1001 				void *data)
1002 {
1003 	struct fw_name_devm *fwn = res;
1004 	const char *fw_name = fwn->name;
1005 	struct list_head *head = data;
1006 	struct fw_cache_entry *fce;
1007 
1008 	fce = alloc_fw_cache_entry(fw_name);
1009 	if (fce)
1010 		list_add(&fce->list, head);
1011 }
1012 
1013 static int devm_name_match(struct device *dev, void *res,
1014 			   void *match_data)
1015 {
1016 	struct fw_name_devm *fwn = res;
1017 	return (fwn->magic == (unsigned long)match_data);
1018 }
1019 
1020 static void dev_cache_fw_image(struct device *dev, void *data)
1021 {
1022 	LIST_HEAD(todo);
1023 	struct fw_cache_entry *fce;
1024 	struct fw_cache_entry *fce_next;
1025 	struct firmware_cache *fwc = &fw_cache;
1026 
1027 	devres_for_each_res(dev, fw_name_devm_release,
1028 			    devm_name_match, &fw_cache,
1029 			    dev_create_fw_entry, &todo);
1030 
1031 	list_for_each_entry_safe(fce, fce_next, &todo, list) {
1032 		list_del(&fce->list);
1033 
1034 		spin_lock(&fwc->name_lock);
1035 		/* only one cache entry for one firmware */
1036 		if (!__fw_entry_found(fce->name)) {
1037 			list_add(&fce->list, &fwc->fw_names);
1038 		} else {
1039 			free_fw_cache_entry(fce);
1040 			fce = NULL;
1041 		}
1042 		spin_unlock(&fwc->name_lock);
1043 
1044 		if (fce)
1045 			async_schedule_domain(__async_dev_cache_fw_image,
1046 					      (void *)fce,
1047 					      &fw_cache_domain);
1048 	}
1049 }
1050 
1051 static void __device_uncache_fw_images(void)
1052 {
1053 	struct firmware_cache *fwc = &fw_cache;
1054 	struct fw_cache_entry *fce;
1055 
1056 	spin_lock(&fwc->name_lock);
1057 	while (!list_empty(&fwc->fw_names)) {
1058 		fce = list_entry(fwc->fw_names.next,
1059 				struct fw_cache_entry, list);
1060 		list_del(&fce->list);
1061 		spin_unlock(&fwc->name_lock);
1062 
1063 		uncache_firmware(fce->name);
1064 		free_fw_cache_entry(fce);
1065 
1066 		spin_lock(&fwc->name_lock);
1067 	}
1068 	spin_unlock(&fwc->name_lock);
1069 }
1070 
1071 /**
1072  * device_cache_fw_images() - cache devices' firmware
1073  *
1074  * If one device called request_firmware or its nowait version
1075  * successfully before, the firmware names are recored into the
1076  * device's devres link list, so device_cache_fw_images can call
1077  * cache_firmware() to cache these firmwares for the device,
1078  * then the device driver can load its firmwares easily at
1079  * time when system is not ready to complete loading firmware.
1080  */
1081 static void device_cache_fw_images(void)
1082 {
1083 	struct firmware_cache *fwc = &fw_cache;
1084 	DEFINE_WAIT(wait);
1085 
1086 	pr_debug("%s\n", __func__);
1087 
1088 	/* cancel uncache work */
1089 	cancel_delayed_work_sync(&fwc->work);
1090 
1091 	fw_fallback_set_cache_timeout();
1092 
1093 	mutex_lock(&fw_lock);
1094 	fwc->state = FW_LOADER_START_CACHE;
1095 	dpm_for_each_dev(NULL, dev_cache_fw_image);
1096 	mutex_unlock(&fw_lock);
1097 
1098 	/* wait for completion of caching firmware for all devices */
1099 	async_synchronize_full_domain(&fw_cache_domain);
1100 
1101 	fw_fallback_set_default_timeout();
1102 }
1103 
1104 /**
1105  * device_uncache_fw_images() - uncache devices' firmware
1106  *
1107  * uncache all firmwares which have been cached successfully
1108  * by device_uncache_fw_images earlier
1109  */
1110 static void device_uncache_fw_images(void)
1111 {
1112 	pr_debug("%s\n", __func__);
1113 	__device_uncache_fw_images();
1114 }
1115 
1116 static void device_uncache_fw_images_work(struct work_struct *work)
1117 {
1118 	device_uncache_fw_images();
1119 }
1120 
1121 /**
1122  * device_uncache_fw_images_delay() - uncache devices firmwares
1123  * @delay: number of milliseconds to delay uncache device firmwares
1124  *
1125  * uncache all devices's firmwares which has been cached successfully
1126  * by device_cache_fw_images after @delay milliseconds.
1127  */
1128 static void device_uncache_fw_images_delay(unsigned long delay)
1129 {
1130 	queue_delayed_work(system_power_efficient_wq, &fw_cache.work,
1131 			   msecs_to_jiffies(delay));
1132 }
1133 
1134 static int fw_pm_notify(struct notifier_block *notify_block,
1135 			unsigned long mode, void *unused)
1136 {
1137 	switch (mode) {
1138 	case PM_HIBERNATION_PREPARE:
1139 	case PM_SUSPEND_PREPARE:
1140 	case PM_RESTORE_PREPARE:
1141 		/*
1142 		 * kill pending fallback requests with a custom fallback
1143 		 * to avoid stalling suspend.
1144 		 */
1145 		kill_pending_fw_fallback_reqs(true);
1146 		device_cache_fw_images();
1147 		break;
1148 
1149 	case PM_POST_SUSPEND:
1150 	case PM_POST_HIBERNATION:
1151 	case PM_POST_RESTORE:
1152 		/*
1153 		 * In case that system sleep failed and syscore_suspend is
1154 		 * not called.
1155 		 */
1156 		mutex_lock(&fw_lock);
1157 		fw_cache.state = FW_LOADER_NO_CACHE;
1158 		mutex_unlock(&fw_lock);
1159 
1160 		device_uncache_fw_images_delay(10 * MSEC_PER_SEC);
1161 		break;
1162 	}
1163 
1164 	return 0;
1165 }
1166 
1167 /* stop caching firmware once syscore_suspend is reached */
1168 static int fw_suspend(void)
1169 {
1170 	fw_cache.state = FW_LOADER_NO_CACHE;
1171 	return 0;
1172 }
1173 
1174 static struct syscore_ops fw_syscore_ops = {
1175 	.suspend = fw_suspend,
1176 };
1177 
1178 static int __init register_fw_pm_ops(void)
1179 {
1180 	int ret;
1181 
1182 	spin_lock_init(&fw_cache.name_lock);
1183 	INIT_LIST_HEAD(&fw_cache.fw_names);
1184 
1185 	INIT_DELAYED_WORK(&fw_cache.work,
1186 			  device_uncache_fw_images_work);
1187 
1188 	fw_cache.pm_notify.notifier_call = fw_pm_notify;
1189 	ret = register_pm_notifier(&fw_cache.pm_notify);
1190 	if (ret)
1191 		return ret;
1192 
1193 	register_syscore_ops(&fw_syscore_ops);
1194 
1195 	return ret;
1196 }
1197 
1198 static inline void unregister_fw_pm_ops(void)
1199 {
1200 	unregister_syscore_ops(&fw_syscore_ops);
1201 	unregister_pm_notifier(&fw_cache.pm_notify);
1202 }
1203 #else
1204 static int fw_cache_piggyback_on_request(const char *name)
1205 {
1206 	return 0;
1207 }
1208 static inline int register_fw_pm_ops(void)
1209 {
1210 	return 0;
1211 }
1212 static inline void unregister_fw_pm_ops(void)
1213 {
1214 }
1215 #endif
1216 
1217 static void __init fw_cache_init(void)
1218 {
1219 	spin_lock_init(&fw_cache.lock);
1220 	INIT_LIST_HEAD(&fw_cache.head);
1221 	fw_cache.state = FW_LOADER_NO_CACHE;
1222 }
1223 
1224 static int fw_shutdown_notify(struct notifier_block *unused1,
1225 			      unsigned long unused2, void *unused3)
1226 {
1227 	/*
1228 	 * Kill all pending fallback requests to avoid both stalling shutdown,
1229 	 * and avoid a deadlock with the usermode_lock.
1230 	 */
1231 	kill_pending_fw_fallback_reqs(false);
1232 
1233 	return NOTIFY_DONE;
1234 }
1235 
1236 static struct notifier_block fw_shutdown_nb = {
1237 	.notifier_call = fw_shutdown_notify,
1238 };
1239 
1240 static int __init firmware_class_init(void)
1241 {
1242 	int ret;
1243 
1244 	/* No need to unfold these on exit */
1245 	fw_cache_init();
1246 
1247 	ret = register_fw_pm_ops();
1248 	if (ret)
1249 		return ret;
1250 
1251 	ret = register_reboot_notifier(&fw_shutdown_nb);
1252 	if (ret)
1253 		goto out;
1254 
1255 	return register_sysfs_loader();
1256 
1257 out:
1258 	unregister_fw_pm_ops();
1259 	return ret;
1260 }
1261 
1262 static void __exit firmware_class_exit(void)
1263 {
1264 	unregister_fw_pm_ops();
1265 	unregister_reboot_notifier(&fw_shutdown_nb);
1266 	unregister_sysfs_loader();
1267 }
1268 
1269 fs_initcall(firmware_class_init);
1270 module_exit(firmware_class_exit);
1271