1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * main.c - Multi purpose firmware loading support 4 * 5 * Copyright (c) 2003 Manuel Estrada Sainz 6 * 7 * Please see Documentation/driver-api/firmware/ for more information. 8 * 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/capability.h> 14 #include <linux/device.h> 15 #include <linux/kernel_read_file.h> 16 #include <linux/module.h> 17 #include <linux/init.h> 18 #include <linux/initrd.h> 19 #include <linux/timer.h> 20 #include <linux/vmalloc.h> 21 #include <linux/interrupt.h> 22 #include <linux/bitops.h> 23 #include <linux/mutex.h> 24 #include <linux/workqueue.h> 25 #include <linux/highmem.h> 26 #include <linux/firmware.h> 27 #include <linux/slab.h> 28 #include <linux/sched.h> 29 #include <linux/file.h> 30 #include <linux/list.h> 31 #include <linux/fs.h> 32 #include <linux/async.h> 33 #include <linux/pm.h> 34 #include <linux/suspend.h> 35 #include <linux/syscore_ops.h> 36 #include <linux/reboot.h> 37 #include <linux/security.h> 38 #include <linux/zstd.h> 39 #include <linux/xz.h> 40 41 #include <generated/utsrelease.h> 42 43 #include "../base.h" 44 #include "firmware.h" 45 #include "fallback.h" 46 47 MODULE_AUTHOR("Manuel Estrada Sainz"); 48 MODULE_DESCRIPTION("Multi purpose firmware loading support"); 49 MODULE_LICENSE("GPL"); 50 51 struct firmware_cache { 52 /* firmware_buf instance will be added into the below list */ 53 spinlock_t lock; 54 struct list_head head; 55 int state; 56 57 #ifdef CONFIG_FW_CACHE 58 /* 59 * Names of firmware images which have been cached successfully 60 * will be added into the below list so that device uncache 61 * helper can trace which firmware images have been cached 62 * before. 63 */ 64 spinlock_t name_lock; 65 struct list_head fw_names; 66 67 struct delayed_work work; 68 69 struct notifier_block pm_notify; 70 #endif 71 }; 72 73 struct fw_cache_entry { 74 struct list_head list; 75 const char *name; 76 }; 77 78 struct fw_name_devm { 79 unsigned long magic; 80 const char *name; 81 }; 82 83 static inline struct fw_priv *to_fw_priv(struct kref *ref) 84 { 85 return container_of(ref, struct fw_priv, ref); 86 } 87 88 #define FW_LOADER_NO_CACHE 0 89 #define FW_LOADER_START_CACHE 1 90 91 /* fw_lock could be moved to 'struct fw_sysfs' but since it is just 92 * guarding for corner cases a global lock should be OK */ 93 DEFINE_MUTEX(fw_lock); 94 95 static struct firmware_cache fw_cache; 96 97 static void fw_state_init(struct fw_priv *fw_priv) 98 { 99 struct fw_state *fw_st = &fw_priv->fw_st; 100 101 init_completion(&fw_st->completion); 102 fw_st->status = FW_STATUS_UNKNOWN; 103 } 104 105 static inline int fw_state_wait(struct fw_priv *fw_priv) 106 { 107 return __fw_state_wait_common(fw_priv, MAX_SCHEDULE_TIMEOUT); 108 } 109 110 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv); 111 112 static struct fw_priv *__allocate_fw_priv(const char *fw_name, 113 struct firmware_cache *fwc, 114 void *dbuf, 115 size_t size, 116 size_t offset, 117 u32 opt_flags) 118 { 119 struct fw_priv *fw_priv; 120 121 /* For a partial read, the buffer must be preallocated. */ 122 if ((opt_flags & FW_OPT_PARTIAL) && !dbuf) 123 return NULL; 124 125 /* Only partial reads are allowed to use an offset. */ 126 if (offset != 0 && !(opt_flags & FW_OPT_PARTIAL)) 127 return NULL; 128 129 fw_priv = kzalloc(sizeof(*fw_priv), GFP_ATOMIC); 130 if (!fw_priv) 131 return NULL; 132 133 fw_priv->fw_name = kstrdup_const(fw_name, GFP_ATOMIC); 134 if (!fw_priv->fw_name) { 135 kfree(fw_priv); 136 return NULL; 137 } 138 139 kref_init(&fw_priv->ref); 140 fw_priv->fwc = fwc; 141 fw_priv->data = dbuf; 142 fw_priv->allocated_size = size; 143 fw_priv->offset = offset; 144 fw_priv->opt_flags = opt_flags; 145 fw_state_init(fw_priv); 146 #ifdef CONFIG_FW_LOADER_USER_HELPER 147 INIT_LIST_HEAD(&fw_priv->pending_list); 148 #endif 149 150 pr_debug("%s: fw-%s fw_priv=%p\n", __func__, fw_name, fw_priv); 151 152 return fw_priv; 153 } 154 155 static struct fw_priv *__lookup_fw_priv(const char *fw_name) 156 { 157 struct fw_priv *tmp; 158 struct firmware_cache *fwc = &fw_cache; 159 160 list_for_each_entry(tmp, &fwc->head, list) 161 if (!strcmp(tmp->fw_name, fw_name)) 162 return tmp; 163 return NULL; 164 } 165 166 /* Returns 1 for batching firmware requests with the same name */ 167 static int alloc_lookup_fw_priv(const char *fw_name, 168 struct firmware_cache *fwc, 169 struct fw_priv **fw_priv, 170 void *dbuf, 171 size_t size, 172 size_t offset, 173 u32 opt_flags) 174 { 175 struct fw_priv *tmp; 176 177 spin_lock(&fwc->lock); 178 /* 179 * Do not merge requests that are marked to be non-cached or 180 * are performing partial reads. 181 */ 182 if (!(opt_flags & (FW_OPT_NOCACHE | FW_OPT_PARTIAL))) { 183 tmp = __lookup_fw_priv(fw_name); 184 if (tmp) { 185 kref_get(&tmp->ref); 186 spin_unlock(&fwc->lock); 187 *fw_priv = tmp; 188 pr_debug("batched request - sharing the same struct fw_priv and lookup for multiple requests\n"); 189 return 1; 190 } 191 } 192 193 tmp = __allocate_fw_priv(fw_name, fwc, dbuf, size, offset, opt_flags); 194 if (tmp) { 195 INIT_LIST_HEAD(&tmp->list); 196 if (!(opt_flags & FW_OPT_NOCACHE)) 197 list_add(&tmp->list, &fwc->head); 198 } 199 spin_unlock(&fwc->lock); 200 201 *fw_priv = tmp; 202 203 return tmp ? 0 : -ENOMEM; 204 } 205 206 static void __free_fw_priv(struct kref *ref) 207 __releases(&fwc->lock) 208 { 209 struct fw_priv *fw_priv = to_fw_priv(ref); 210 struct firmware_cache *fwc = fw_priv->fwc; 211 212 pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n", 213 __func__, fw_priv->fw_name, fw_priv, fw_priv->data, 214 (unsigned int)fw_priv->size); 215 216 list_del(&fw_priv->list); 217 spin_unlock(&fwc->lock); 218 219 if (fw_is_paged_buf(fw_priv)) 220 fw_free_paged_buf(fw_priv); 221 else if (!fw_priv->allocated_size) 222 vfree(fw_priv->data); 223 224 kfree_const(fw_priv->fw_name); 225 kfree(fw_priv); 226 } 227 228 static void free_fw_priv(struct fw_priv *fw_priv) 229 { 230 struct firmware_cache *fwc = fw_priv->fwc; 231 spin_lock(&fwc->lock); 232 if (!kref_put(&fw_priv->ref, __free_fw_priv)) 233 spin_unlock(&fwc->lock); 234 } 235 236 #ifdef CONFIG_FW_LOADER_PAGED_BUF 237 bool fw_is_paged_buf(struct fw_priv *fw_priv) 238 { 239 return fw_priv->is_paged_buf; 240 } 241 242 void fw_free_paged_buf(struct fw_priv *fw_priv) 243 { 244 int i; 245 246 if (!fw_priv->pages) 247 return; 248 249 vunmap(fw_priv->data); 250 251 for (i = 0; i < fw_priv->nr_pages; i++) 252 __free_page(fw_priv->pages[i]); 253 kvfree(fw_priv->pages); 254 fw_priv->pages = NULL; 255 fw_priv->page_array_size = 0; 256 fw_priv->nr_pages = 0; 257 } 258 259 int fw_grow_paged_buf(struct fw_priv *fw_priv, int pages_needed) 260 { 261 /* If the array of pages is too small, grow it */ 262 if (fw_priv->page_array_size < pages_needed) { 263 int new_array_size = max(pages_needed, 264 fw_priv->page_array_size * 2); 265 struct page **new_pages; 266 267 new_pages = kvmalloc_array(new_array_size, sizeof(void *), 268 GFP_KERNEL); 269 if (!new_pages) 270 return -ENOMEM; 271 memcpy(new_pages, fw_priv->pages, 272 fw_priv->page_array_size * sizeof(void *)); 273 memset(&new_pages[fw_priv->page_array_size], 0, sizeof(void *) * 274 (new_array_size - fw_priv->page_array_size)); 275 kvfree(fw_priv->pages); 276 fw_priv->pages = new_pages; 277 fw_priv->page_array_size = new_array_size; 278 } 279 280 while (fw_priv->nr_pages < pages_needed) { 281 fw_priv->pages[fw_priv->nr_pages] = 282 alloc_page(GFP_KERNEL | __GFP_HIGHMEM); 283 284 if (!fw_priv->pages[fw_priv->nr_pages]) 285 return -ENOMEM; 286 fw_priv->nr_pages++; 287 } 288 289 return 0; 290 } 291 292 int fw_map_paged_buf(struct fw_priv *fw_priv) 293 { 294 /* one pages buffer should be mapped/unmapped only once */ 295 if (!fw_priv->pages) 296 return 0; 297 298 vunmap(fw_priv->data); 299 fw_priv->data = vmap(fw_priv->pages, fw_priv->nr_pages, 0, 300 PAGE_KERNEL_RO); 301 if (!fw_priv->data) 302 return -ENOMEM; 303 304 return 0; 305 } 306 #endif 307 308 /* 309 * ZSTD-compressed firmware support 310 */ 311 #ifdef CONFIG_FW_LOADER_COMPRESS_ZSTD 312 static int fw_decompress_zstd(struct device *dev, struct fw_priv *fw_priv, 313 size_t in_size, const void *in_buffer) 314 { 315 size_t len, out_size, workspace_size; 316 void *workspace, *out_buf; 317 zstd_dctx *ctx; 318 int err; 319 320 if (fw_priv->allocated_size) { 321 out_size = fw_priv->allocated_size; 322 out_buf = fw_priv->data; 323 } else { 324 zstd_frame_header params; 325 326 if (zstd_get_frame_header(¶ms, in_buffer, in_size) || 327 params.frameContentSize == ZSTD_CONTENTSIZE_UNKNOWN) { 328 dev_dbg(dev, "%s: invalid zstd header\n", __func__); 329 return -EINVAL; 330 } 331 out_size = params.frameContentSize; 332 out_buf = vzalloc(out_size); 333 if (!out_buf) 334 return -ENOMEM; 335 } 336 337 workspace_size = zstd_dctx_workspace_bound(); 338 workspace = kvzalloc(workspace_size, GFP_KERNEL); 339 if (!workspace) { 340 err = -ENOMEM; 341 goto error; 342 } 343 344 ctx = zstd_init_dctx(workspace, workspace_size); 345 if (!ctx) { 346 dev_dbg(dev, "%s: failed to initialize context\n", __func__); 347 err = -EINVAL; 348 goto error; 349 } 350 351 len = zstd_decompress_dctx(ctx, out_buf, out_size, in_buffer, in_size); 352 if (zstd_is_error(len)) { 353 dev_dbg(dev, "%s: failed to decompress: %d\n", __func__, 354 zstd_get_error_code(len)); 355 err = -EINVAL; 356 goto error; 357 } 358 359 if (!fw_priv->allocated_size) 360 fw_priv->data = out_buf; 361 fw_priv->size = len; 362 err = 0; 363 364 error: 365 kvfree(workspace); 366 if (err && !fw_priv->allocated_size) 367 vfree(out_buf); 368 return err; 369 } 370 #endif /* CONFIG_FW_LOADER_COMPRESS_ZSTD */ 371 372 /* 373 * XZ-compressed firmware support 374 */ 375 #ifdef CONFIG_FW_LOADER_COMPRESS_XZ 376 /* show an error and return the standard error code */ 377 static int fw_decompress_xz_error(struct device *dev, enum xz_ret xz_ret) 378 { 379 if (xz_ret != XZ_STREAM_END) { 380 dev_warn(dev, "xz decompression failed (xz_ret=%d)\n", xz_ret); 381 return xz_ret == XZ_MEM_ERROR ? -ENOMEM : -EINVAL; 382 } 383 return 0; 384 } 385 386 /* single-shot decompression onto the pre-allocated buffer */ 387 static int fw_decompress_xz_single(struct device *dev, struct fw_priv *fw_priv, 388 size_t in_size, const void *in_buffer) 389 { 390 struct xz_dec *xz_dec; 391 struct xz_buf xz_buf; 392 enum xz_ret xz_ret; 393 394 xz_dec = xz_dec_init(XZ_SINGLE, (u32)-1); 395 if (!xz_dec) 396 return -ENOMEM; 397 398 xz_buf.in_size = in_size; 399 xz_buf.in = in_buffer; 400 xz_buf.in_pos = 0; 401 xz_buf.out_size = fw_priv->allocated_size; 402 xz_buf.out = fw_priv->data; 403 xz_buf.out_pos = 0; 404 405 xz_ret = xz_dec_run(xz_dec, &xz_buf); 406 xz_dec_end(xz_dec); 407 408 fw_priv->size = xz_buf.out_pos; 409 return fw_decompress_xz_error(dev, xz_ret); 410 } 411 412 /* decompression on paged buffer and map it */ 413 static int fw_decompress_xz_pages(struct device *dev, struct fw_priv *fw_priv, 414 size_t in_size, const void *in_buffer) 415 { 416 struct xz_dec *xz_dec; 417 struct xz_buf xz_buf; 418 enum xz_ret xz_ret; 419 struct page *page; 420 int err = 0; 421 422 xz_dec = xz_dec_init(XZ_DYNALLOC, (u32)-1); 423 if (!xz_dec) 424 return -ENOMEM; 425 426 xz_buf.in_size = in_size; 427 xz_buf.in = in_buffer; 428 xz_buf.in_pos = 0; 429 430 fw_priv->is_paged_buf = true; 431 fw_priv->size = 0; 432 do { 433 if (fw_grow_paged_buf(fw_priv, fw_priv->nr_pages + 1)) { 434 err = -ENOMEM; 435 goto out; 436 } 437 438 /* decompress onto the new allocated page */ 439 page = fw_priv->pages[fw_priv->nr_pages - 1]; 440 xz_buf.out = kmap(page); 441 xz_buf.out_pos = 0; 442 xz_buf.out_size = PAGE_SIZE; 443 xz_ret = xz_dec_run(xz_dec, &xz_buf); 444 kunmap(page); 445 fw_priv->size += xz_buf.out_pos; 446 /* partial decompression means either end or error */ 447 if (xz_buf.out_pos != PAGE_SIZE) 448 break; 449 } while (xz_ret == XZ_OK); 450 451 err = fw_decompress_xz_error(dev, xz_ret); 452 if (!err) 453 err = fw_map_paged_buf(fw_priv); 454 455 out: 456 xz_dec_end(xz_dec); 457 return err; 458 } 459 460 static int fw_decompress_xz(struct device *dev, struct fw_priv *fw_priv, 461 size_t in_size, const void *in_buffer) 462 { 463 /* if the buffer is pre-allocated, we can perform in single-shot mode */ 464 if (fw_priv->data) 465 return fw_decompress_xz_single(dev, fw_priv, in_size, in_buffer); 466 else 467 return fw_decompress_xz_pages(dev, fw_priv, in_size, in_buffer); 468 } 469 #endif /* CONFIG_FW_LOADER_COMPRESS_XZ */ 470 471 /* direct firmware loading support */ 472 static char fw_path_para[256]; 473 static const char * const fw_path[] = { 474 fw_path_para, 475 "/lib/firmware/updates/" UTS_RELEASE, 476 "/lib/firmware/updates", 477 "/lib/firmware/" UTS_RELEASE, 478 "/lib/firmware" 479 }; 480 481 /* 482 * Typical usage is that passing 'firmware_class.path=$CUSTOMIZED_PATH' 483 * from kernel command line because firmware_class is generally built in 484 * kernel instead of module. 485 */ 486 module_param_string(path, fw_path_para, sizeof(fw_path_para), 0644); 487 MODULE_PARM_DESC(path, "customized firmware image search path with a higher priority than default path"); 488 489 static int 490 fw_get_filesystem_firmware(struct device *device, struct fw_priv *fw_priv, 491 const char *suffix, 492 int (*decompress)(struct device *dev, 493 struct fw_priv *fw_priv, 494 size_t in_size, 495 const void *in_buffer)) 496 { 497 size_t size; 498 int i, len; 499 int rc = -ENOENT; 500 char *path; 501 size_t msize = INT_MAX; 502 void *buffer = NULL; 503 504 /* Already populated data member means we're loading into a buffer */ 505 if (!decompress && fw_priv->data) { 506 buffer = fw_priv->data; 507 msize = fw_priv->allocated_size; 508 } 509 510 path = __getname(); 511 if (!path) 512 return -ENOMEM; 513 514 wait_for_initramfs(); 515 for (i = 0; i < ARRAY_SIZE(fw_path); i++) { 516 size_t file_size = 0; 517 size_t *file_size_ptr = NULL; 518 519 /* skip the unset customized path */ 520 if (!fw_path[i][0]) 521 continue; 522 523 len = snprintf(path, PATH_MAX, "%s/%s%s", 524 fw_path[i], fw_priv->fw_name, suffix); 525 if (len >= PATH_MAX) { 526 rc = -ENAMETOOLONG; 527 break; 528 } 529 530 fw_priv->size = 0; 531 532 /* 533 * The total file size is only examined when doing a partial 534 * read; the "full read" case needs to fail if the whole 535 * firmware was not completely loaded. 536 */ 537 if ((fw_priv->opt_flags & FW_OPT_PARTIAL) && buffer) 538 file_size_ptr = &file_size; 539 540 /* load firmware files from the mount namespace of init */ 541 rc = kernel_read_file_from_path_initns(path, fw_priv->offset, 542 &buffer, msize, 543 file_size_ptr, 544 READING_FIRMWARE); 545 if (rc < 0) { 546 if (rc != -ENOENT) 547 dev_warn(device, "loading %s failed with error %d\n", 548 path, rc); 549 else 550 dev_dbg(device, "loading %s failed for no such file or directory.\n", 551 path); 552 continue; 553 } 554 size = rc; 555 rc = 0; 556 557 dev_dbg(device, "Loading firmware from %s\n", path); 558 if (decompress) { 559 dev_dbg(device, "f/w decompressing %s\n", 560 fw_priv->fw_name); 561 rc = decompress(device, fw_priv, size, buffer); 562 /* discard the superfluous original content */ 563 vfree(buffer); 564 buffer = NULL; 565 if (rc) { 566 fw_free_paged_buf(fw_priv); 567 continue; 568 } 569 } else { 570 dev_dbg(device, "direct-loading %s\n", 571 fw_priv->fw_name); 572 if (!fw_priv->data) 573 fw_priv->data = buffer; 574 fw_priv->size = size; 575 } 576 fw_state_done(fw_priv); 577 break; 578 } 579 __putname(path); 580 581 return rc; 582 } 583 584 /* firmware holds the ownership of pages */ 585 static void firmware_free_data(const struct firmware *fw) 586 { 587 /* Loaded directly? */ 588 if (!fw->priv) { 589 vfree(fw->data); 590 return; 591 } 592 free_fw_priv(fw->priv); 593 } 594 595 /* store the pages buffer info firmware from buf */ 596 static void fw_set_page_data(struct fw_priv *fw_priv, struct firmware *fw) 597 { 598 fw->priv = fw_priv; 599 fw->size = fw_priv->size; 600 fw->data = fw_priv->data; 601 602 pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n", 603 __func__, fw_priv->fw_name, fw_priv, fw_priv->data, 604 (unsigned int)fw_priv->size); 605 } 606 607 #ifdef CONFIG_FW_CACHE 608 static void fw_name_devm_release(struct device *dev, void *res) 609 { 610 struct fw_name_devm *fwn = res; 611 612 if (fwn->magic == (unsigned long)&fw_cache) 613 pr_debug("%s: fw_name-%s devm-%p released\n", 614 __func__, fwn->name, res); 615 kfree_const(fwn->name); 616 } 617 618 static int fw_devm_match(struct device *dev, void *res, 619 void *match_data) 620 { 621 struct fw_name_devm *fwn = res; 622 623 return (fwn->magic == (unsigned long)&fw_cache) && 624 !strcmp(fwn->name, match_data); 625 } 626 627 static struct fw_name_devm *fw_find_devm_name(struct device *dev, 628 const char *name) 629 { 630 struct fw_name_devm *fwn; 631 632 fwn = devres_find(dev, fw_name_devm_release, 633 fw_devm_match, (void *)name); 634 return fwn; 635 } 636 637 static bool fw_cache_is_setup(struct device *dev, const char *name) 638 { 639 struct fw_name_devm *fwn; 640 641 fwn = fw_find_devm_name(dev, name); 642 if (fwn) 643 return true; 644 645 return false; 646 } 647 648 /* add firmware name into devres list */ 649 static int fw_add_devm_name(struct device *dev, const char *name) 650 { 651 struct fw_name_devm *fwn; 652 653 if (fw_cache_is_setup(dev, name)) 654 return 0; 655 656 fwn = devres_alloc(fw_name_devm_release, sizeof(struct fw_name_devm), 657 GFP_KERNEL); 658 if (!fwn) 659 return -ENOMEM; 660 fwn->name = kstrdup_const(name, GFP_KERNEL); 661 if (!fwn->name) { 662 devres_free(fwn); 663 return -ENOMEM; 664 } 665 666 fwn->magic = (unsigned long)&fw_cache; 667 devres_add(dev, fwn); 668 669 return 0; 670 } 671 #else 672 static bool fw_cache_is_setup(struct device *dev, const char *name) 673 { 674 return false; 675 } 676 677 static int fw_add_devm_name(struct device *dev, const char *name) 678 { 679 return 0; 680 } 681 #endif 682 683 int assign_fw(struct firmware *fw, struct device *device) 684 { 685 struct fw_priv *fw_priv = fw->priv; 686 int ret; 687 688 mutex_lock(&fw_lock); 689 if (!fw_priv->size || fw_state_is_aborted(fw_priv)) { 690 mutex_unlock(&fw_lock); 691 return -ENOENT; 692 } 693 694 /* 695 * add firmware name into devres list so that we can auto cache 696 * and uncache firmware for device. 697 * 698 * device may has been deleted already, but the problem 699 * should be fixed in devres or driver core. 700 */ 701 /* don't cache firmware handled without uevent */ 702 if (device && (fw_priv->opt_flags & FW_OPT_UEVENT) && 703 !(fw_priv->opt_flags & FW_OPT_NOCACHE)) { 704 ret = fw_add_devm_name(device, fw_priv->fw_name); 705 if (ret) { 706 mutex_unlock(&fw_lock); 707 return ret; 708 } 709 } 710 711 /* 712 * After caching firmware image is started, let it piggyback 713 * on request firmware. 714 */ 715 if (!(fw_priv->opt_flags & FW_OPT_NOCACHE) && 716 fw_priv->fwc->state == FW_LOADER_START_CACHE) 717 fw_cache_piggyback_on_request(fw_priv); 718 719 /* pass the pages buffer to driver at the last minute */ 720 fw_set_page_data(fw_priv, fw); 721 mutex_unlock(&fw_lock); 722 return 0; 723 } 724 725 /* prepare firmware and firmware_buf structs; 726 * return 0 if a firmware is already assigned, 1 if need to load one, 727 * or a negative error code 728 */ 729 static int 730 _request_firmware_prepare(struct firmware **firmware_p, const char *name, 731 struct device *device, void *dbuf, size_t size, 732 size_t offset, u32 opt_flags) 733 { 734 struct firmware *firmware; 735 struct fw_priv *fw_priv; 736 int ret; 737 738 *firmware_p = firmware = kzalloc(sizeof(*firmware), GFP_KERNEL); 739 if (!firmware) { 740 dev_err(device, "%s: kmalloc(struct firmware) failed\n", 741 __func__); 742 return -ENOMEM; 743 } 744 745 if (firmware_request_builtin_buf(firmware, name, dbuf, size)) { 746 dev_dbg(device, "using built-in %s\n", name); 747 return 0; /* assigned */ 748 } 749 750 ret = alloc_lookup_fw_priv(name, &fw_cache, &fw_priv, dbuf, size, 751 offset, opt_flags); 752 753 /* 754 * bind with 'priv' now to avoid warning in failure path 755 * of requesting firmware. 756 */ 757 firmware->priv = fw_priv; 758 759 if (ret > 0) { 760 ret = fw_state_wait(fw_priv); 761 if (!ret) { 762 fw_set_page_data(fw_priv, firmware); 763 return 0; /* assigned */ 764 } 765 } 766 767 if (ret < 0) 768 return ret; 769 return 1; /* need to load */ 770 } 771 772 /* 773 * Batched requests need only one wake, we need to do this step last due to the 774 * fallback mechanism. The buf is protected with kref_get(), and it won't be 775 * released until the last user calls release_firmware(). 776 * 777 * Failed batched requests are possible as well, in such cases we just share 778 * the struct fw_priv and won't release it until all requests are woken 779 * and have gone through this same path. 780 */ 781 static void fw_abort_batch_reqs(struct firmware *fw) 782 { 783 struct fw_priv *fw_priv; 784 785 /* Loaded directly? */ 786 if (!fw || !fw->priv) 787 return; 788 789 fw_priv = fw->priv; 790 mutex_lock(&fw_lock); 791 if (!fw_state_is_aborted(fw_priv)) 792 fw_state_aborted(fw_priv); 793 mutex_unlock(&fw_lock); 794 } 795 796 /* called from request_firmware() and request_firmware_work_func() */ 797 static int 798 _request_firmware(const struct firmware **firmware_p, const char *name, 799 struct device *device, void *buf, size_t size, 800 size_t offset, u32 opt_flags) 801 { 802 struct firmware *fw = NULL; 803 bool nondirect = false; 804 int ret; 805 806 if (!firmware_p) 807 return -EINVAL; 808 809 if (!name || name[0] == '\0') { 810 ret = -EINVAL; 811 goto out; 812 } 813 814 ret = _request_firmware_prepare(&fw, name, device, buf, size, 815 offset, opt_flags); 816 if (ret <= 0) /* error or already assigned */ 817 goto out; 818 819 ret = fw_get_filesystem_firmware(device, fw->priv, "", NULL); 820 821 /* Only full reads can support decompression, platform, and sysfs. */ 822 if (!(opt_flags & FW_OPT_PARTIAL)) 823 nondirect = true; 824 825 #ifdef CONFIG_FW_LOADER_COMPRESS_ZSTD 826 if (ret == -ENOENT && nondirect) 827 ret = fw_get_filesystem_firmware(device, fw->priv, ".zst", 828 fw_decompress_zstd); 829 #endif 830 #ifdef CONFIG_FW_LOADER_COMPRESS_XZ 831 if (ret == -ENOENT && nondirect) 832 ret = fw_get_filesystem_firmware(device, fw->priv, ".xz", 833 fw_decompress_xz); 834 #endif 835 if (ret == -ENOENT && nondirect) 836 ret = firmware_fallback_platform(fw->priv); 837 838 if (ret) { 839 if (!(opt_flags & FW_OPT_NO_WARN)) 840 dev_warn(device, 841 "Direct firmware load for %s failed with error %d\n", 842 name, ret); 843 if (nondirect) 844 ret = firmware_fallback_sysfs(fw, name, device, 845 opt_flags, ret); 846 } else 847 ret = assign_fw(fw, device); 848 849 out: 850 if (ret < 0) { 851 fw_abort_batch_reqs(fw); 852 release_firmware(fw); 853 fw = NULL; 854 } 855 856 *firmware_p = fw; 857 return ret; 858 } 859 860 /** 861 * request_firmware() - send firmware request and wait for it 862 * @firmware_p: pointer to firmware image 863 * @name: name of firmware file 864 * @device: device for which firmware is being loaded 865 * 866 * @firmware_p will be used to return a firmware image by the name 867 * of @name for device @device. 868 * 869 * Should be called from user context where sleeping is allowed. 870 * 871 * @name will be used as $FIRMWARE in the uevent environment and 872 * should be distinctive enough not to be confused with any other 873 * firmware image for this or any other device. 874 * 875 * Caller must hold the reference count of @device. 876 * 877 * The function can be called safely inside device's suspend and 878 * resume callback. 879 **/ 880 int 881 request_firmware(const struct firmware **firmware_p, const char *name, 882 struct device *device) 883 { 884 int ret; 885 886 /* Need to pin this module until return */ 887 __module_get(THIS_MODULE); 888 ret = _request_firmware(firmware_p, name, device, NULL, 0, 0, 889 FW_OPT_UEVENT); 890 module_put(THIS_MODULE); 891 return ret; 892 } 893 EXPORT_SYMBOL(request_firmware); 894 895 /** 896 * firmware_request_nowarn() - request for an optional fw module 897 * @firmware: pointer to firmware image 898 * @name: name of firmware file 899 * @device: device for which firmware is being loaded 900 * 901 * This function is similar in behaviour to request_firmware(), except it 902 * doesn't produce warning messages when the file is not found. The sysfs 903 * fallback mechanism is enabled if direct filesystem lookup fails. However, 904 * failures to find the firmware file with it are still suppressed. It is 905 * therefore up to the driver to check for the return value of this call and to 906 * decide when to inform the users of errors. 907 **/ 908 int firmware_request_nowarn(const struct firmware **firmware, const char *name, 909 struct device *device) 910 { 911 int ret; 912 913 /* Need to pin this module until return */ 914 __module_get(THIS_MODULE); 915 ret = _request_firmware(firmware, name, device, NULL, 0, 0, 916 FW_OPT_UEVENT | FW_OPT_NO_WARN); 917 module_put(THIS_MODULE); 918 return ret; 919 } 920 EXPORT_SYMBOL_GPL(firmware_request_nowarn); 921 922 /** 923 * request_firmware_direct() - load firmware directly without usermode helper 924 * @firmware_p: pointer to firmware image 925 * @name: name of firmware file 926 * @device: device for which firmware is being loaded 927 * 928 * This function works pretty much like request_firmware(), but this doesn't 929 * fall back to usermode helper even if the firmware couldn't be loaded 930 * directly from fs. Hence it's useful for loading optional firmwares, which 931 * aren't always present, without extra long timeouts of udev. 932 **/ 933 int request_firmware_direct(const struct firmware **firmware_p, 934 const char *name, struct device *device) 935 { 936 int ret; 937 938 __module_get(THIS_MODULE); 939 ret = _request_firmware(firmware_p, name, device, NULL, 0, 0, 940 FW_OPT_UEVENT | FW_OPT_NO_WARN | 941 FW_OPT_NOFALLBACK_SYSFS); 942 module_put(THIS_MODULE); 943 return ret; 944 } 945 EXPORT_SYMBOL_GPL(request_firmware_direct); 946 947 /** 948 * firmware_request_platform() - request firmware with platform-fw fallback 949 * @firmware: pointer to firmware image 950 * @name: name of firmware file 951 * @device: device for which firmware is being loaded 952 * 953 * This function is similar in behaviour to request_firmware, except that if 954 * direct filesystem lookup fails, it will fallback to looking for a copy of the 955 * requested firmware embedded in the platform's main (e.g. UEFI) firmware. 956 **/ 957 int firmware_request_platform(const struct firmware **firmware, 958 const char *name, struct device *device) 959 { 960 int ret; 961 962 /* Need to pin this module until return */ 963 __module_get(THIS_MODULE); 964 ret = _request_firmware(firmware, name, device, NULL, 0, 0, 965 FW_OPT_UEVENT | FW_OPT_FALLBACK_PLATFORM); 966 module_put(THIS_MODULE); 967 return ret; 968 } 969 EXPORT_SYMBOL_GPL(firmware_request_platform); 970 971 /** 972 * firmware_request_cache() - cache firmware for suspend so resume can use it 973 * @name: name of firmware file 974 * @device: device for which firmware should be cached for 975 * 976 * There are some devices with an optimization that enables the device to not 977 * require loading firmware on system reboot. This optimization may still 978 * require the firmware present on resume from suspend. This routine can be 979 * used to ensure the firmware is present on resume from suspend in these 980 * situations. This helper is not compatible with drivers which use 981 * request_firmware_into_buf() or request_firmware_nowait() with no uevent set. 982 **/ 983 int firmware_request_cache(struct device *device, const char *name) 984 { 985 int ret; 986 987 mutex_lock(&fw_lock); 988 ret = fw_add_devm_name(device, name); 989 mutex_unlock(&fw_lock); 990 991 return ret; 992 } 993 EXPORT_SYMBOL_GPL(firmware_request_cache); 994 995 /** 996 * request_firmware_into_buf() - load firmware into a previously allocated buffer 997 * @firmware_p: pointer to firmware image 998 * @name: name of firmware file 999 * @device: device for which firmware is being loaded and DMA region allocated 1000 * @buf: address of buffer to load firmware into 1001 * @size: size of buffer 1002 * 1003 * This function works pretty much like request_firmware(), but it doesn't 1004 * allocate a buffer to hold the firmware data. Instead, the firmware 1005 * is loaded directly into the buffer pointed to by @buf and the @firmware_p 1006 * data member is pointed at @buf. 1007 * 1008 * This function doesn't cache firmware either. 1009 */ 1010 int 1011 request_firmware_into_buf(const struct firmware **firmware_p, const char *name, 1012 struct device *device, void *buf, size_t size) 1013 { 1014 int ret; 1015 1016 if (fw_cache_is_setup(device, name)) 1017 return -EOPNOTSUPP; 1018 1019 __module_get(THIS_MODULE); 1020 ret = _request_firmware(firmware_p, name, device, buf, size, 0, 1021 FW_OPT_UEVENT | FW_OPT_NOCACHE); 1022 module_put(THIS_MODULE); 1023 return ret; 1024 } 1025 EXPORT_SYMBOL(request_firmware_into_buf); 1026 1027 /** 1028 * request_partial_firmware_into_buf() - load partial firmware into a previously allocated buffer 1029 * @firmware_p: pointer to firmware image 1030 * @name: name of firmware file 1031 * @device: device for which firmware is being loaded and DMA region allocated 1032 * @buf: address of buffer to load firmware into 1033 * @size: size of buffer 1034 * @offset: offset into file to read 1035 * 1036 * This function works pretty much like request_firmware_into_buf except 1037 * it allows a partial read of the file. 1038 */ 1039 int 1040 request_partial_firmware_into_buf(const struct firmware **firmware_p, 1041 const char *name, struct device *device, 1042 void *buf, size_t size, size_t offset) 1043 { 1044 int ret; 1045 1046 if (fw_cache_is_setup(device, name)) 1047 return -EOPNOTSUPP; 1048 1049 __module_get(THIS_MODULE); 1050 ret = _request_firmware(firmware_p, name, device, buf, size, offset, 1051 FW_OPT_UEVENT | FW_OPT_NOCACHE | 1052 FW_OPT_PARTIAL); 1053 module_put(THIS_MODULE); 1054 return ret; 1055 } 1056 EXPORT_SYMBOL(request_partial_firmware_into_buf); 1057 1058 /** 1059 * release_firmware() - release the resource associated with a firmware image 1060 * @fw: firmware resource to release 1061 **/ 1062 void release_firmware(const struct firmware *fw) 1063 { 1064 if (fw) { 1065 if (!firmware_is_builtin(fw)) 1066 firmware_free_data(fw); 1067 kfree(fw); 1068 } 1069 } 1070 EXPORT_SYMBOL(release_firmware); 1071 1072 /* Async support */ 1073 struct firmware_work { 1074 struct work_struct work; 1075 struct module *module; 1076 const char *name; 1077 struct device *device; 1078 void *context; 1079 void (*cont)(const struct firmware *fw, void *context); 1080 u32 opt_flags; 1081 }; 1082 1083 static void request_firmware_work_func(struct work_struct *work) 1084 { 1085 struct firmware_work *fw_work; 1086 const struct firmware *fw; 1087 1088 fw_work = container_of(work, struct firmware_work, work); 1089 1090 _request_firmware(&fw, fw_work->name, fw_work->device, NULL, 0, 0, 1091 fw_work->opt_flags); 1092 fw_work->cont(fw, fw_work->context); 1093 put_device(fw_work->device); /* taken in request_firmware_nowait() */ 1094 1095 module_put(fw_work->module); 1096 kfree_const(fw_work->name); 1097 kfree(fw_work); 1098 } 1099 1100 /** 1101 * request_firmware_nowait() - asynchronous version of request_firmware 1102 * @module: module requesting the firmware 1103 * @uevent: sends uevent to copy the firmware image if this flag 1104 * is non-zero else the firmware copy must be done manually. 1105 * @name: name of firmware file 1106 * @device: device for which firmware is being loaded 1107 * @gfp: allocation flags 1108 * @context: will be passed over to @cont, and 1109 * @fw may be %NULL if firmware request fails. 1110 * @cont: function will be called asynchronously when the firmware 1111 * request is over. 1112 * 1113 * Caller must hold the reference count of @device. 1114 * 1115 * Asynchronous variant of request_firmware() for user contexts: 1116 * - sleep for as small periods as possible since it may 1117 * increase kernel boot time of built-in device drivers 1118 * requesting firmware in their ->probe() methods, if 1119 * @gfp is GFP_KERNEL. 1120 * 1121 * - can't sleep at all if @gfp is GFP_ATOMIC. 1122 **/ 1123 int 1124 request_firmware_nowait( 1125 struct module *module, bool uevent, 1126 const char *name, struct device *device, gfp_t gfp, void *context, 1127 void (*cont)(const struct firmware *fw, void *context)) 1128 { 1129 struct firmware_work *fw_work; 1130 1131 fw_work = kzalloc(sizeof(struct firmware_work), gfp); 1132 if (!fw_work) 1133 return -ENOMEM; 1134 1135 fw_work->module = module; 1136 fw_work->name = kstrdup_const(name, gfp); 1137 if (!fw_work->name) { 1138 kfree(fw_work); 1139 return -ENOMEM; 1140 } 1141 fw_work->device = device; 1142 fw_work->context = context; 1143 fw_work->cont = cont; 1144 fw_work->opt_flags = FW_OPT_NOWAIT | 1145 (uevent ? FW_OPT_UEVENT : FW_OPT_USERHELPER); 1146 1147 if (!uevent && fw_cache_is_setup(device, name)) { 1148 kfree_const(fw_work->name); 1149 kfree(fw_work); 1150 return -EOPNOTSUPP; 1151 } 1152 1153 if (!try_module_get(module)) { 1154 kfree_const(fw_work->name); 1155 kfree(fw_work); 1156 return -EFAULT; 1157 } 1158 1159 get_device(fw_work->device); 1160 INIT_WORK(&fw_work->work, request_firmware_work_func); 1161 schedule_work(&fw_work->work); 1162 return 0; 1163 } 1164 EXPORT_SYMBOL(request_firmware_nowait); 1165 1166 #ifdef CONFIG_FW_CACHE 1167 static ASYNC_DOMAIN_EXCLUSIVE(fw_cache_domain); 1168 1169 /** 1170 * cache_firmware() - cache one firmware image in kernel memory space 1171 * @fw_name: the firmware image name 1172 * 1173 * Cache firmware in kernel memory so that drivers can use it when 1174 * system isn't ready for them to request firmware image from userspace. 1175 * Once it returns successfully, driver can use request_firmware or its 1176 * nowait version to get the cached firmware without any interacting 1177 * with userspace 1178 * 1179 * Return 0 if the firmware image has been cached successfully 1180 * Return !0 otherwise 1181 * 1182 */ 1183 static int cache_firmware(const char *fw_name) 1184 { 1185 int ret; 1186 const struct firmware *fw; 1187 1188 pr_debug("%s: %s\n", __func__, fw_name); 1189 1190 ret = request_firmware(&fw, fw_name, NULL); 1191 if (!ret) 1192 kfree(fw); 1193 1194 pr_debug("%s: %s ret=%d\n", __func__, fw_name, ret); 1195 1196 return ret; 1197 } 1198 1199 static struct fw_priv *lookup_fw_priv(const char *fw_name) 1200 { 1201 struct fw_priv *tmp; 1202 struct firmware_cache *fwc = &fw_cache; 1203 1204 spin_lock(&fwc->lock); 1205 tmp = __lookup_fw_priv(fw_name); 1206 spin_unlock(&fwc->lock); 1207 1208 return tmp; 1209 } 1210 1211 /** 1212 * uncache_firmware() - remove one cached firmware image 1213 * @fw_name: the firmware image name 1214 * 1215 * Uncache one firmware image which has been cached successfully 1216 * before. 1217 * 1218 * Return 0 if the firmware cache has been removed successfully 1219 * Return !0 otherwise 1220 * 1221 */ 1222 static int uncache_firmware(const char *fw_name) 1223 { 1224 struct fw_priv *fw_priv; 1225 struct firmware fw; 1226 1227 pr_debug("%s: %s\n", __func__, fw_name); 1228 1229 if (firmware_request_builtin(&fw, fw_name)) 1230 return 0; 1231 1232 fw_priv = lookup_fw_priv(fw_name); 1233 if (fw_priv) { 1234 free_fw_priv(fw_priv); 1235 return 0; 1236 } 1237 1238 return -EINVAL; 1239 } 1240 1241 static struct fw_cache_entry *alloc_fw_cache_entry(const char *name) 1242 { 1243 struct fw_cache_entry *fce; 1244 1245 fce = kzalloc(sizeof(*fce), GFP_ATOMIC); 1246 if (!fce) 1247 goto exit; 1248 1249 fce->name = kstrdup_const(name, GFP_ATOMIC); 1250 if (!fce->name) { 1251 kfree(fce); 1252 fce = NULL; 1253 goto exit; 1254 } 1255 exit: 1256 return fce; 1257 } 1258 1259 static int __fw_entry_found(const char *name) 1260 { 1261 struct firmware_cache *fwc = &fw_cache; 1262 struct fw_cache_entry *fce; 1263 1264 list_for_each_entry(fce, &fwc->fw_names, list) { 1265 if (!strcmp(fce->name, name)) 1266 return 1; 1267 } 1268 return 0; 1269 } 1270 1271 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv) 1272 { 1273 const char *name = fw_priv->fw_name; 1274 struct firmware_cache *fwc = fw_priv->fwc; 1275 struct fw_cache_entry *fce; 1276 1277 spin_lock(&fwc->name_lock); 1278 if (__fw_entry_found(name)) 1279 goto found; 1280 1281 fce = alloc_fw_cache_entry(name); 1282 if (fce) { 1283 list_add(&fce->list, &fwc->fw_names); 1284 kref_get(&fw_priv->ref); 1285 pr_debug("%s: fw: %s\n", __func__, name); 1286 } 1287 found: 1288 spin_unlock(&fwc->name_lock); 1289 } 1290 1291 static void free_fw_cache_entry(struct fw_cache_entry *fce) 1292 { 1293 kfree_const(fce->name); 1294 kfree(fce); 1295 } 1296 1297 static void __async_dev_cache_fw_image(void *fw_entry, 1298 async_cookie_t cookie) 1299 { 1300 struct fw_cache_entry *fce = fw_entry; 1301 struct firmware_cache *fwc = &fw_cache; 1302 int ret; 1303 1304 ret = cache_firmware(fce->name); 1305 if (ret) { 1306 spin_lock(&fwc->name_lock); 1307 list_del(&fce->list); 1308 spin_unlock(&fwc->name_lock); 1309 1310 free_fw_cache_entry(fce); 1311 } 1312 } 1313 1314 /* called with dev->devres_lock held */ 1315 static void dev_create_fw_entry(struct device *dev, void *res, 1316 void *data) 1317 { 1318 struct fw_name_devm *fwn = res; 1319 const char *fw_name = fwn->name; 1320 struct list_head *head = data; 1321 struct fw_cache_entry *fce; 1322 1323 fce = alloc_fw_cache_entry(fw_name); 1324 if (fce) 1325 list_add(&fce->list, head); 1326 } 1327 1328 static int devm_name_match(struct device *dev, void *res, 1329 void *match_data) 1330 { 1331 struct fw_name_devm *fwn = res; 1332 return (fwn->magic == (unsigned long)match_data); 1333 } 1334 1335 static void dev_cache_fw_image(struct device *dev, void *data) 1336 { 1337 LIST_HEAD(todo); 1338 struct fw_cache_entry *fce; 1339 struct fw_cache_entry *fce_next; 1340 struct firmware_cache *fwc = &fw_cache; 1341 1342 devres_for_each_res(dev, fw_name_devm_release, 1343 devm_name_match, &fw_cache, 1344 dev_create_fw_entry, &todo); 1345 1346 list_for_each_entry_safe(fce, fce_next, &todo, list) { 1347 list_del(&fce->list); 1348 1349 spin_lock(&fwc->name_lock); 1350 /* only one cache entry for one firmware */ 1351 if (!__fw_entry_found(fce->name)) { 1352 list_add(&fce->list, &fwc->fw_names); 1353 } else { 1354 free_fw_cache_entry(fce); 1355 fce = NULL; 1356 } 1357 spin_unlock(&fwc->name_lock); 1358 1359 if (fce) 1360 async_schedule_domain(__async_dev_cache_fw_image, 1361 (void *)fce, 1362 &fw_cache_domain); 1363 } 1364 } 1365 1366 static void __device_uncache_fw_images(void) 1367 { 1368 struct firmware_cache *fwc = &fw_cache; 1369 struct fw_cache_entry *fce; 1370 1371 spin_lock(&fwc->name_lock); 1372 while (!list_empty(&fwc->fw_names)) { 1373 fce = list_entry(fwc->fw_names.next, 1374 struct fw_cache_entry, list); 1375 list_del(&fce->list); 1376 spin_unlock(&fwc->name_lock); 1377 1378 uncache_firmware(fce->name); 1379 free_fw_cache_entry(fce); 1380 1381 spin_lock(&fwc->name_lock); 1382 } 1383 spin_unlock(&fwc->name_lock); 1384 } 1385 1386 /** 1387 * device_cache_fw_images() - cache devices' firmware 1388 * 1389 * If one device called request_firmware or its nowait version 1390 * successfully before, the firmware names are recored into the 1391 * device's devres link list, so device_cache_fw_images can call 1392 * cache_firmware() to cache these firmwares for the device, 1393 * then the device driver can load its firmwares easily at 1394 * time when system is not ready to complete loading firmware. 1395 */ 1396 static void device_cache_fw_images(void) 1397 { 1398 struct firmware_cache *fwc = &fw_cache; 1399 DEFINE_WAIT(wait); 1400 1401 pr_debug("%s\n", __func__); 1402 1403 /* cancel uncache work */ 1404 cancel_delayed_work_sync(&fwc->work); 1405 1406 fw_fallback_set_cache_timeout(); 1407 1408 mutex_lock(&fw_lock); 1409 fwc->state = FW_LOADER_START_CACHE; 1410 dpm_for_each_dev(NULL, dev_cache_fw_image); 1411 mutex_unlock(&fw_lock); 1412 1413 /* wait for completion of caching firmware for all devices */ 1414 async_synchronize_full_domain(&fw_cache_domain); 1415 1416 fw_fallback_set_default_timeout(); 1417 } 1418 1419 /** 1420 * device_uncache_fw_images() - uncache devices' firmware 1421 * 1422 * uncache all firmwares which have been cached successfully 1423 * by device_uncache_fw_images earlier 1424 */ 1425 static void device_uncache_fw_images(void) 1426 { 1427 pr_debug("%s\n", __func__); 1428 __device_uncache_fw_images(); 1429 } 1430 1431 static void device_uncache_fw_images_work(struct work_struct *work) 1432 { 1433 device_uncache_fw_images(); 1434 } 1435 1436 /** 1437 * device_uncache_fw_images_delay() - uncache devices firmwares 1438 * @delay: number of milliseconds to delay uncache device firmwares 1439 * 1440 * uncache all devices's firmwares which has been cached successfully 1441 * by device_cache_fw_images after @delay milliseconds. 1442 */ 1443 static void device_uncache_fw_images_delay(unsigned long delay) 1444 { 1445 queue_delayed_work(system_power_efficient_wq, &fw_cache.work, 1446 msecs_to_jiffies(delay)); 1447 } 1448 1449 static int fw_pm_notify(struct notifier_block *notify_block, 1450 unsigned long mode, void *unused) 1451 { 1452 switch (mode) { 1453 case PM_HIBERNATION_PREPARE: 1454 case PM_SUSPEND_PREPARE: 1455 case PM_RESTORE_PREPARE: 1456 /* 1457 * kill pending fallback requests with a custom fallback 1458 * to avoid stalling suspend. 1459 */ 1460 kill_pending_fw_fallback_reqs(true); 1461 device_cache_fw_images(); 1462 break; 1463 1464 case PM_POST_SUSPEND: 1465 case PM_POST_HIBERNATION: 1466 case PM_POST_RESTORE: 1467 /* 1468 * In case that system sleep failed and syscore_suspend is 1469 * not called. 1470 */ 1471 mutex_lock(&fw_lock); 1472 fw_cache.state = FW_LOADER_NO_CACHE; 1473 mutex_unlock(&fw_lock); 1474 1475 device_uncache_fw_images_delay(10 * MSEC_PER_SEC); 1476 break; 1477 } 1478 1479 return 0; 1480 } 1481 1482 /* stop caching firmware once syscore_suspend is reached */ 1483 static int fw_suspend(void) 1484 { 1485 fw_cache.state = FW_LOADER_NO_CACHE; 1486 return 0; 1487 } 1488 1489 static struct syscore_ops fw_syscore_ops = { 1490 .suspend = fw_suspend, 1491 }; 1492 1493 static int __init register_fw_pm_ops(void) 1494 { 1495 int ret; 1496 1497 spin_lock_init(&fw_cache.name_lock); 1498 INIT_LIST_HEAD(&fw_cache.fw_names); 1499 1500 INIT_DELAYED_WORK(&fw_cache.work, 1501 device_uncache_fw_images_work); 1502 1503 fw_cache.pm_notify.notifier_call = fw_pm_notify; 1504 ret = register_pm_notifier(&fw_cache.pm_notify); 1505 if (ret) 1506 return ret; 1507 1508 register_syscore_ops(&fw_syscore_ops); 1509 1510 return ret; 1511 } 1512 1513 static inline void unregister_fw_pm_ops(void) 1514 { 1515 unregister_syscore_ops(&fw_syscore_ops); 1516 unregister_pm_notifier(&fw_cache.pm_notify); 1517 } 1518 #else 1519 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv) 1520 { 1521 } 1522 static inline int register_fw_pm_ops(void) 1523 { 1524 return 0; 1525 } 1526 static inline void unregister_fw_pm_ops(void) 1527 { 1528 } 1529 #endif 1530 1531 static void __init fw_cache_init(void) 1532 { 1533 spin_lock_init(&fw_cache.lock); 1534 INIT_LIST_HEAD(&fw_cache.head); 1535 fw_cache.state = FW_LOADER_NO_CACHE; 1536 } 1537 1538 static int fw_shutdown_notify(struct notifier_block *unused1, 1539 unsigned long unused2, void *unused3) 1540 { 1541 /* 1542 * Kill all pending fallback requests to avoid both stalling shutdown, 1543 * and avoid a deadlock with the usermode_lock. 1544 */ 1545 kill_pending_fw_fallback_reqs(false); 1546 1547 return NOTIFY_DONE; 1548 } 1549 1550 static struct notifier_block fw_shutdown_nb = { 1551 .notifier_call = fw_shutdown_notify, 1552 }; 1553 1554 static int __init firmware_class_init(void) 1555 { 1556 int ret; 1557 1558 /* No need to unfold these on exit */ 1559 fw_cache_init(); 1560 1561 ret = register_fw_pm_ops(); 1562 if (ret) 1563 return ret; 1564 1565 ret = register_reboot_notifier(&fw_shutdown_nb); 1566 if (ret) 1567 goto out; 1568 1569 return register_sysfs_loader(); 1570 1571 out: 1572 unregister_fw_pm_ops(); 1573 return ret; 1574 } 1575 1576 static void __exit firmware_class_exit(void) 1577 { 1578 unregister_fw_pm_ops(); 1579 unregister_reboot_notifier(&fw_shutdown_nb); 1580 unregister_sysfs_loader(); 1581 } 1582 1583 fs_initcall(firmware_class_init); 1584 module_exit(firmware_class_exit); 1585