xref: /openbmc/linux/drivers/base/devres.c (revision b868a02e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/devres.c - device resource management
4  *
5  * Copyright (c) 2006  SUSE Linux Products GmbH
6  * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/module.h>
11 #include <linux/slab.h>
12 #include <linux/percpu.h>
13 
14 #include <asm/sections.h>
15 
16 #include "base.h"
17 #include "trace.h"
18 
19 struct devres_node {
20 	struct list_head		entry;
21 	dr_release_t			release;
22 	const char			*name;
23 	size_t				size;
24 };
25 
26 struct devres {
27 	struct devres_node		node;
28 	/*
29 	 * Some archs want to perform DMA into kmalloc caches
30 	 * and need a guaranteed alignment larger than
31 	 * the alignment of a 64-bit integer.
32 	 * Thus we use ARCH_KMALLOC_MINALIGN here and get exactly the same
33 	 * buffer alignment as if it was allocated by plain kmalloc().
34 	 */
35 	u8 __aligned(ARCH_KMALLOC_MINALIGN) data[];
36 };
37 
38 struct devres_group {
39 	struct devres_node		node[2];
40 	void				*id;
41 	int				color;
42 	/* -- 8 pointers */
43 };
44 
45 static void set_node_dbginfo(struct devres_node *node, const char *name,
46 			     size_t size)
47 {
48 	node->name = name;
49 	node->size = size;
50 }
51 
52 #ifdef CONFIG_DEBUG_DEVRES
53 static int log_devres = 0;
54 module_param_named(log, log_devres, int, S_IRUGO | S_IWUSR);
55 
56 static void devres_dbg(struct device *dev, struct devres_node *node,
57 		       const char *op)
58 {
59 	if (unlikely(log_devres))
60 		dev_err(dev, "DEVRES %3s %p %s (%zu bytes)\n",
61 			op, node, node->name, node->size);
62 }
63 #else /* CONFIG_DEBUG_DEVRES */
64 #define devres_dbg(dev, node, op)	do {} while (0)
65 #endif /* CONFIG_DEBUG_DEVRES */
66 
67 static void devres_log(struct device *dev, struct devres_node *node,
68 		       const char *op)
69 {
70 	trace_devres_log(dev, op, node, node->name, node->size);
71 	devres_dbg(dev, node, op);
72 }
73 
74 /*
75  * Release functions for devres group.  These callbacks are used only
76  * for identification.
77  */
78 static void group_open_release(struct device *dev, void *res)
79 {
80 	/* noop */
81 }
82 
83 static void group_close_release(struct device *dev, void *res)
84 {
85 	/* noop */
86 }
87 
88 static struct devres_group * node_to_group(struct devres_node *node)
89 {
90 	if (node->release == &group_open_release)
91 		return container_of(node, struct devres_group, node[0]);
92 	if (node->release == &group_close_release)
93 		return container_of(node, struct devres_group, node[1]);
94 	return NULL;
95 }
96 
97 static bool check_dr_size(size_t size, size_t *tot_size)
98 {
99 	/* We must catch any near-SIZE_MAX cases that could overflow. */
100 	if (unlikely(check_add_overflow(sizeof(struct devres),
101 					size, tot_size)))
102 		return false;
103 
104 	return true;
105 }
106 
107 static __always_inline struct devres * alloc_dr(dr_release_t release,
108 						size_t size, gfp_t gfp, int nid)
109 {
110 	size_t tot_size;
111 	struct devres *dr;
112 
113 	if (!check_dr_size(size, &tot_size))
114 		return NULL;
115 
116 	dr = kmalloc_node_track_caller(tot_size, gfp, nid);
117 	if (unlikely(!dr))
118 		return NULL;
119 
120 	/* No need to clear memory twice */
121 	if (!(gfp & __GFP_ZERO))
122 		memset(dr, 0, offsetof(struct devres, data));
123 
124 	INIT_LIST_HEAD(&dr->node.entry);
125 	dr->node.release = release;
126 	return dr;
127 }
128 
129 static void add_dr(struct device *dev, struct devres_node *node)
130 {
131 	devres_log(dev, node, "ADD");
132 	BUG_ON(!list_empty(&node->entry));
133 	list_add_tail(&node->entry, &dev->devres_head);
134 }
135 
136 static void replace_dr(struct device *dev,
137 		       struct devres_node *old, struct devres_node *new)
138 {
139 	devres_log(dev, old, "REPLACE");
140 	BUG_ON(!list_empty(&new->entry));
141 	list_replace(&old->entry, &new->entry);
142 }
143 
144 /**
145  * __devres_alloc_node - Allocate device resource data
146  * @release: Release function devres will be associated with
147  * @size: Allocation size
148  * @gfp: Allocation flags
149  * @nid: NUMA node
150  * @name: Name of the resource
151  *
152  * Allocate devres of @size bytes.  The allocated area is zeroed, then
153  * associated with @release.  The returned pointer can be passed to
154  * other devres_*() functions.
155  *
156  * RETURNS:
157  * Pointer to allocated devres on success, NULL on failure.
158  */
159 void *__devres_alloc_node(dr_release_t release, size_t size, gfp_t gfp, int nid,
160 			  const char *name)
161 {
162 	struct devres *dr;
163 
164 	dr = alloc_dr(release, size, gfp | __GFP_ZERO, nid);
165 	if (unlikely(!dr))
166 		return NULL;
167 	set_node_dbginfo(&dr->node, name, size);
168 	return dr->data;
169 }
170 EXPORT_SYMBOL_GPL(__devres_alloc_node);
171 
172 /**
173  * devres_for_each_res - Resource iterator
174  * @dev: Device to iterate resource from
175  * @release: Look for resources associated with this release function
176  * @match: Match function (optional)
177  * @match_data: Data for the match function
178  * @fn: Function to be called for each matched resource.
179  * @data: Data for @fn, the 3rd parameter of @fn
180  *
181  * Call @fn for each devres of @dev which is associated with @release
182  * and for which @match returns 1.
183  *
184  * RETURNS:
185  * 	void
186  */
187 void devres_for_each_res(struct device *dev, dr_release_t release,
188 			dr_match_t match, void *match_data,
189 			void (*fn)(struct device *, void *, void *),
190 			void *data)
191 {
192 	struct devres_node *node;
193 	struct devres_node *tmp;
194 	unsigned long flags;
195 
196 	if (!fn)
197 		return;
198 
199 	spin_lock_irqsave(&dev->devres_lock, flags);
200 	list_for_each_entry_safe_reverse(node, tmp,
201 			&dev->devres_head, entry) {
202 		struct devres *dr = container_of(node, struct devres, node);
203 
204 		if (node->release != release)
205 			continue;
206 		if (match && !match(dev, dr->data, match_data))
207 			continue;
208 		fn(dev, dr->data, data);
209 	}
210 	spin_unlock_irqrestore(&dev->devres_lock, flags);
211 }
212 EXPORT_SYMBOL_GPL(devres_for_each_res);
213 
214 /**
215  * devres_free - Free device resource data
216  * @res: Pointer to devres data to free
217  *
218  * Free devres created with devres_alloc().
219  */
220 void devres_free(void *res)
221 {
222 	if (res) {
223 		struct devres *dr = container_of(res, struct devres, data);
224 
225 		BUG_ON(!list_empty(&dr->node.entry));
226 		kfree(dr);
227 	}
228 }
229 EXPORT_SYMBOL_GPL(devres_free);
230 
231 /**
232  * devres_add - Register device resource
233  * @dev: Device to add resource to
234  * @res: Resource to register
235  *
236  * Register devres @res to @dev.  @res should have been allocated
237  * using devres_alloc().  On driver detach, the associated release
238  * function will be invoked and devres will be freed automatically.
239  */
240 void devres_add(struct device *dev, void *res)
241 {
242 	struct devres *dr = container_of(res, struct devres, data);
243 	unsigned long flags;
244 
245 	spin_lock_irqsave(&dev->devres_lock, flags);
246 	add_dr(dev, &dr->node);
247 	spin_unlock_irqrestore(&dev->devres_lock, flags);
248 }
249 EXPORT_SYMBOL_GPL(devres_add);
250 
251 static struct devres *find_dr(struct device *dev, dr_release_t release,
252 			      dr_match_t match, void *match_data)
253 {
254 	struct devres_node *node;
255 
256 	list_for_each_entry_reverse(node, &dev->devres_head, entry) {
257 		struct devres *dr = container_of(node, struct devres, node);
258 
259 		if (node->release != release)
260 			continue;
261 		if (match && !match(dev, dr->data, match_data))
262 			continue;
263 		return dr;
264 	}
265 
266 	return NULL;
267 }
268 
269 /**
270  * devres_find - Find device resource
271  * @dev: Device to lookup resource from
272  * @release: Look for resources associated with this release function
273  * @match: Match function (optional)
274  * @match_data: Data for the match function
275  *
276  * Find the latest devres of @dev which is associated with @release
277  * and for which @match returns 1.  If @match is NULL, it's considered
278  * to match all.
279  *
280  * RETURNS:
281  * Pointer to found devres, NULL if not found.
282  */
283 void * devres_find(struct device *dev, dr_release_t release,
284 		   dr_match_t match, void *match_data)
285 {
286 	struct devres *dr;
287 	unsigned long flags;
288 
289 	spin_lock_irqsave(&dev->devres_lock, flags);
290 	dr = find_dr(dev, release, match, match_data);
291 	spin_unlock_irqrestore(&dev->devres_lock, flags);
292 
293 	if (dr)
294 		return dr->data;
295 	return NULL;
296 }
297 EXPORT_SYMBOL_GPL(devres_find);
298 
299 /**
300  * devres_get - Find devres, if non-existent, add one atomically
301  * @dev: Device to lookup or add devres for
302  * @new_res: Pointer to new initialized devres to add if not found
303  * @match: Match function (optional)
304  * @match_data: Data for the match function
305  *
306  * Find the latest devres of @dev which has the same release function
307  * as @new_res and for which @match return 1.  If found, @new_res is
308  * freed; otherwise, @new_res is added atomically.
309  *
310  * RETURNS:
311  * Pointer to found or added devres.
312  */
313 void * devres_get(struct device *dev, void *new_res,
314 		  dr_match_t match, void *match_data)
315 {
316 	struct devres *new_dr = container_of(new_res, struct devres, data);
317 	struct devres *dr;
318 	unsigned long flags;
319 
320 	spin_lock_irqsave(&dev->devres_lock, flags);
321 	dr = find_dr(dev, new_dr->node.release, match, match_data);
322 	if (!dr) {
323 		add_dr(dev, &new_dr->node);
324 		dr = new_dr;
325 		new_res = NULL;
326 	}
327 	spin_unlock_irqrestore(&dev->devres_lock, flags);
328 	devres_free(new_res);
329 
330 	return dr->data;
331 }
332 EXPORT_SYMBOL_GPL(devres_get);
333 
334 /**
335  * devres_remove - Find a device resource and remove it
336  * @dev: Device to find resource from
337  * @release: Look for resources associated with this release function
338  * @match: Match function (optional)
339  * @match_data: Data for the match function
340  *
341  * Find the latest devres of @dev associated with @release and for
342  * which @match returns 1.  If @match is NULL, it's considered to
343  * match all.  If found, the resource is removed atomically and
344  * returned.
345  *
346  * RETURNS:
347  * Pointer to removed devres on success, NULL if not found.
348  */
349 void * devres_remove(struct device *dev, dr_release_t release,
350 		     dr_match_t match, void *match_data)
351 {
352 	struct devres *dr;
353 	unsigned long flags;
354 
355 	spin_lock_irqsave(&dev->devres_lock, flags);
356 	dr = find_dr(dev, release, match, match_data);
357 	if (dr) {
358 		list_del_init(&dr->node.entry);
359 		devres_log(dev, &dr->node, "REM");
360 	}
361 	spin_unlock_irqrestore(&dev->devres_lock, flags);
362 
363 	if (dr)
364 		return dr->data;
365 	return NULL;
366 }
367 EXPORT_SYMBOL_GPL(devres_remove);
368 
369 /**
370  * devres_destroy - Find a device resource and destroy it
371  * @dev: Device to find resource from
372  * @release: Look for resources associated with this release function
373  * @match: Match function (optional)
374  * @match_data: Data for the match function
375  *
376  * Find the latest devres of @dev associated with @release and for
377  * which @match returns 1.  If @match is NULL, it's considered to
378  * match all.  If found, the resource is removed atomically and freed.
379  *
380  * Note that the release function for the resource will not be called,
381  * only the devres-allocated data will be freed.  The caller becomes
382  * responsible for freeing any other data.
383  *
384  * RETURNS:
385  * 0 if devres is found and freed, -ENOENT if not found.
386  */
387 int devres_destroy(struct device *dev, dr_release_t release,
388 		   dr_match_t match, void *match_data)
389 {
390 	void *res;
391 
392 	res = devres_remove(dev, release, match, match_data);
393 	if (unlikely(!res))
394 		return -ENOENT;
395 
396 	devres_free(res);
397 	return 0;
398 }
399 EXPORT_SYMBOL_GPL(devres_destroy);
400 
401 
402 /**
403  * devres_release - Find a device resource and destroy it, calling release
404  * @dev: Device to find resource from
405  * @release: Look for resources associated with this release function
406  * @match: Match function (optional)
407  * @match_data: Data for the match function
408  *
409  * Find the latest devres of @dev associated with @release and for
410  * which @match returns 1.  If @match is NULL, it's considered to
411  * match all.  If found, the resource is removed atomically, the
412  * release function called and the resource freed.
413  *
414  * RETURNS:
415  * 0 if devres is found and freed, -ENOENT if not found.
416  */
417 int devres_release(struct device *dev, dr_release_t release,
418 		   dr_match_t match, void *match_data)
419 {
420 	void *res;
421 
422 	res = devres_remove(dev, release, match, match_data);
423 	if (unlikely(!res))
424 		return -ENOENT;
425 
426 	(*release)(dev, res);
427 	devres_free(res);
428 	return 0;
429 }
430 EXPORT_SYMBOL_GPL(devres_release);
431 
432 static int remove_nodes(struct device *dev,
433 			struct list_head *first, struct list_head *end,
434 			struct list_head *todo)
435 {
436 	struct devres_node *node, *n;
437 	int cnt = 0, nr_groups = 0;
438 
439 	/* First pass - move normal devres entries to @todo and clear
440 	 * devres_group colors.
441 	 */
442 	node = list_entry(first, struct devres_node, entry);
443 	list_for_each_entry_safe_from(node, n, end, entry) {
444 		struct devres_group *grp;
445 
446 		grp = node_to_group(node);
447 		if (grp) {
448 			/* clear color of group markers in the first pass */
449 			grp->color = 0;
450 			nr_groups++;
451 		} else {
452 			/* regular devres entry */
453 			if (&node->entry == first)
454 				first = first->next;
455 			list_move_tail(&node->entry, todo);
456 			cnt++;
457 		}
458 	}
459 
460 	if (!nr_groups)
461 		return cnt;
462 
463 	/* Second pass - Scan groups and color them.  A group gets
464 	 * color value of two iff the group is wholly contained in
465 	 * [current node, end). That is, for a closed group, both opening
466 	 * and closing markers should be in the range, while just the
467 	 * opening marker is enough for an open group.
468 	 */
469 	node = list_entry(first, struct devres_node, entry);
470 	list_for_each_entry_safe_from(node, n, end, entry) {
471 		struct devres_group *grp;
472 
473 		grp = node_to_group(node);
474 		BUG_ON(!grp || list_empty(&grp->node[0].entry));
475 
476 		grp->color++;
477 		if (list_empty(&grp->node[1].entry))
478 			grp->color++;
479 
480 		BUG_ON(grp->color <= 0 || grp->color > 2);
481 		if (grp->color == 2) {
482 			/* No need to update current node or end. The removed
483 			 * nodes are always before both.
484 			 */
485 			list_move_tail(&grp->node[0].entry, todo);
486 			list_del_init(&grp->node[1].entry);
487 		}
488 	}
489 
490 	return cnt;
491 }
492 
493 static void release_nodes(struct device *dev, struct list_head *todo)
494 {
495 	struct devres *dr, *tmp;
496 
497 	/* Release.  Note that both devres and devres_group are
498 	 * handled as devres in the following loop.  This is safe.
499 	 */
500 	list_for_each_entry_safe_reverse(dr, tmp, todo, node.entry) {
501 		devres_log(dev, &dr->node, "REL");
502 		dr->node.release(dev, dr->data);
503 		kfree(dr);
504 	}
505 }
506 
507 /**
508  * devres_release_all - Release all managed resources
509  * @dev: Device to release resources for
510  *
511  * Release all resources associated with @dev.  This function is
512  * called on driver detach.
513  */
514 int devres_release_all(struct device *dev)
515 {
516 	unsigned long flags;
517 	LIST_HEAD(todo);
518 	int cnt;
519 
520 	/* Looks like an uninitialized device structure */
521 	if (WARN_ON(dev->devres_head.next == NULL))
522 		return -ENODEV;
523 
524 	/* Nothing to release if list is empty */
525 	if (list_empty(&dev->devres_head))
526 		return 0;
527 
528 	spin_lock_irqsave(&dev->devres_lock, flags);
529 	cnt = remove_nodes(dev, dev->devres_head.next, &dev->devres_head, &todo);
530 	spin_unlock_irqrestore(&dev->devres_lock, flags);
531 
532 	release_nodes(dev, &todo);
533 	return cnt;
534 }
535 
536 /**
537  * devres_open_group - Open a new devres group
538  * @dev: Device to open devres group for
539  * @id: Separator ID
540  * @gfp: Allocation flags
541  *
542  * Open a new devres group for @dev with @id.  For @id, using a
543  * pointer to an object which won't be used for another group is
544  * recommended.  If @id is NULL, address-wise unique ID is created.
545  *
546  * RETURNS:
547  * ID of the new group, NULL on failure.
548  */
549 void * devres_open_group(struct device *dev, void *id, gfp_t gfp)
550 {
551 	struct devres_group *grp;
552 	unsigned long flags;
553 
554 	grp = kmalloc(sizeof(*grp), gfp);
555 	if (unlikely(!grp))
556 		return NULL;
557 
558 	grp->node[0].release = &group_open_release;
559 	grp->node[1].release = &group_close_release;
560 	INIT_LIST_HEAD(&grp->node[0].entry);
561 	INIT_LIST_HEAD(&grp->node[1].entry);
562 	set_node_dbginfo(&grp->node[0], "grp<", 0);
563 	set_node_dbginfo(&grp->node[1], "grp>", 0);
564 	grp->id = grp;
565 	if (id)
566 		grp->id = id;
567 
568 	spin_lock_irqsave(&dev->devres_lock, flags);
569 	add_dr(dev, &grp->node[0]);
570 	spin_unlock_irqrestore(&dev->devres_lock, flags);
571 	return grp->id;
572 }
573 EXPORT_SYMBOL_GPL(devres_open_group);
574 
575 /* Find devres group with ID @id.  If @id is NULL, look for the latest. */
576 static struct devres_group * find_group(struct device *dev, void *id)
577 {
578 	struct devres_node *node;
579 
580 	list_for_each_entry_reverse(node, &dev->devres_head, entry) {
581 		struct devres_group *grp;
582 
583 		if (node->release != &group_open_release)
584 			continue;
585 
586 		grp = container_of(node, struct devres_group, node[0]);
587 
588 		if (id) {
589 			if (grp->id == id)
590 				return grp;
591 		} else if (list_empty(&grp->node[1].entry))
592 			return grp;
593 	}
594 
595 	return NULL;
596 }
597 
598 /**
599  * devres_close_group - Close a devres group
600  * @dev: Device to close devres group for
601  * @id: ID of target group, can be NULL
602  *
603  * Close the group identified by @id.  If @id is NULL, the latest open
604  * group is selected.
605  */
606 void devres_close_group(struct device *dev, void *id)
607 {
608 	struct devres_group *grp;
609 	unsigned long flags;
610 
611 	spin_lock_irqsave(&dev->devres_lock, flags);
612 
613 	grp = find_group(dev, id);
614 	if (grp)
615 		add_dr(dev, &grp->node[1]);
616 	else
617 		WARN_ON(1);
618 
619 	spin_unlock_irqrestore(&dev->devres_lock, flags);
620 }
621 EXPORT_SYMBOL_GPL(devres_close_group);
622 
623 /**
624  * devres_remove_group - Remove a devres group
625  * @dev: Device to remove group for
626  * @id: ID of target group, can be NULL
627  *
628  * Remove the group identified by @id.  If @id is NULL, the latest
629  * open group is selected.  Note that removing a group doesn't affect
630  * any other resources.
631  */
632 void devres_remove_group(struct device *dev, void *id)
633 {
634 	struct devres_group *grp;
635 	unsigned long flags;
636 
637 	spin_lock_irqsave(&dev->devres_lock, flags);
638 
639 	grp = find_group(dev, id);
640 	if (grp) {
641 		list_del_init(&grp->node[0].entry);
642 		list_del_init(&grp->node[1].entry);
643 		devres_log(dev, &grp->node[0], "REM");
644 	} else
645 		WARN_ON(1);
646 
647 	spin_unlock_irqrestore(&dev->devres_lock, flags);
648 
649 	kfree(grp);
650 }
651 EXPORT_SYMBOL_GPL(devres_remove_group);
652 
653 /**
654  * devres_release_group - Release resources in a devres group
655  * @dev: Device to release group for
656  * @id: ID of target group, can be NULL
657  *
658  * Release all resources in the group identified by @id.  If @id is
659  * NULL, the latest open group is selected.  The selected group and
660  * groups properly nested inside the selected group are removed.
661  *
662  * RETURNS:
663  * The number of released non-group resources.
664  */
665 int devres_release_group(struct device *dev, void *id)
666 {
667 	struct devres_group *grp;
668 	unsigned long flags;
669 	LIST_HEAD(todo);
670 	int cnt = 0;
671 
672 	spin_lock_irqsave(&dev->devres_lock, flags);
673 
674 	grp = find_group(dev, id);
675 	if (grp) {
676 		struct list_head *first = &grp->node[0].entry;
677 		struct list_head *end = &dev->devres_head;
678 
679 		if (!list_empty(&grp->node[1].entry))
680 			end = grp->node[1].entry.next;
681 
682 		cnt = remove_nodes(dev, first, end, &todo);
683 		spin_unlock_irqrestore(&dev->devres_lock, flags);
684 
685 		release_nodes(dev, &todo);
686 	} else {
687 		WARN_ON(1);
688 		spin_unlock_irqrestore(&dev->devres_lock, flags);
689 	}
690 
691 	return cnt;
692 }
693 EXPORT_SYMBOL_GPL(devres_release_group);
694 
695 /*
696  * Custom devres actions allow inserting a simple function call
697  * into the teardown sequence.
698  */
699 
700 struct action_devres {
701 	void *data;
702 	void (*action)(void *);
703 };
704 
705 static int devm_action_match(struct device *dev, void *res, void *p)
706 {
707 	struct action_devres *devres = res;
708 	struct action_devres *target = p;
709 
710 	return devres->action == target->action &&
711 	       devres->data == target->data;
712 }
713 
714 static void devm_action_release(struct device *dev, void *res)
715 {
716 	struct action_devres *devres = res;
717 
718 	devres->action(devres->data);
719 }
720 
721 /**
722  * devm_add_action() - add a custom action to list of managed resources
723  * @dev: Device that owns the action
724  * @action: Function that should be called
725  * @data: Pointer to data passed to @action implementation
726  *
727  * This adds a custom action to the list of managed resources so that
728  * it gets executed as part of standard resource unwinding.
729  */
730 int devm_add_action(struct device *dev, void (*action)(void *), void *data)
731 {
732 	struct action_devres *devres;
733 
734 	devres = devres_alloc(devm_action_release,
735 			      sizeof(struct action_devres), GFP_KERNEL);
736 	if (!devres)
737 		return -ENOMEM;
738 
739 	devres->data = data;
740 	devres->action = action;
741 
742 	devres_add(dev, devres);
743 	return 0;
744 }
745 EXPORT_SYMBOL_GPL(devm_add_action);
746 
747 /**
748  * devm_remove_action() - removes previously added custom action
749  * @dev: Device that owns the action
750  * @action: Function implementing the action
751  * @data: Pointer to data passed to @action implementation
752  *
753  * Removes instance of @action previously added by devm_add_action().
754  * Both action and data should match one of the existing entries.
755  */
756 void devm_remove_action(struct device *dev, void (*action)(void *), void *data)
757 {
758 	struct action_devres devres = {
759 		.data = data,
760 		.action = action,
761 	};
762 
763 	WARN_ON(devres_destroy(dev, devm_action_release, devm_action_match,
764 			       &devres));
765 }
766 EXPORT_SYMBOL_GPL(devm_remove_action);
767 
768 /**
769  * devm_release_action() - release previously added custom action
770  * @dev: Device that owns the action
771  * @action: Function implementing the action
772  * @data: Pointer to data passed to @action implementation
773  *
774  * Releases and removes instance of @action previously added by
775  * devm_add_action().  Both action and data should match one of the
776  * existing entries.
777  */
778 void devm_release_action(struct device *dev, void (*action)(void *), void *data)
779 {
780 	struct action_devres devres = {
781 		.data = data,
782 		.action = action,
783 	};
784 
785 	WARN_ON(devres_release(dev, devm_action_release, devm_action_match,
786 			       &devres));
787 
788 }
789 EXPORT_SYMBOL_GPL(devm_release_action);
790 
791 /*
792  * Managed kmalloc/kfree
793  */
794 static void devm_kmalloc_release(struct device *dev, void *res)
795 {
796 	/* noop */
797 }
798 
799 static int devm_kmalloc_match(struct device *dev, void *res, void *data)
800 {
801 	return res == data;
802 }
803 
804 /**
805  * devm_kmalloc - Resource-managed kmalloc
806  * @dev: Device to allocate memory for
807  * @size: Allocation size
808  * @gfp: Allocation gfp flags
809  *
810  * Managed kmalloc.  Memory allocated with this function is
811  * automatically freed on driver detach.  Like all other devres
812  * resources, guaranteed alignment is unsigned long long.
813  *
814  * RETURNS:
815  * Pointer to allocated memory on success, NULL on failure.
816  */
817 void *devm_kmalloc(struct device *dev, size_t size, gfp_t gfp)
818 {
819 	struct devres *dr;
820 
821 	if (unlikely(!size))
822 		return ZERO_SIZE_PTR;
823 
824 	/* use raw alloc_dr for kmalloc caller tracing */
825 	dr = alloc_dr(devm_kmalloc_release, size, gfp, dev_to_node(dev));
826 	if (unlikely(!dr))
827 		return NULL;
828 
829 	/*
830 	 * This is named devm_kzalloc_release for historical reasons
831 	 * The initial implementation did not support kmalloc, only kzalloc
832 	 */
833 	set_node_dbginfo(&dr->node, "devm_kzalloc_release", size);
834 	devres_add(dev, dr->data);
835 	return dr->data;
836 }
837 EXPORT_SYMBOL_GPL(devm_kmalloc);
838 
839 /**
840  * devm_krealloc - Resource-managed krealloc()
841  * @dev: Device to re-allocate memory for
842  * @ptr: Pointer to the memory chunk to re-allocate
843  * @new_size: New allocation size
844  * @gfp: Allocation gfp flags
845  *
846  * Managed krealloc(). Resizes the memory chunk allocated with devm_kmalloc().
847  * Behaves similarly to regular krealloc(): if @ptr is NULL or ZERO_SIZE_PTR,
848  * it's the equivalent of devm_kmalloc(). If new_size is zero, it frees the
849  * previously allocated memory and returns ZERO_SIZE_PTR. This function doesn't
850  * change the order in which the release callback for the re-alloc'ed devres
851  * will be called (except when falling back to devm_kmalloc() or when freeing
852  * resources when new_size is zero). The contents of the memory are preserved
853  * up to the lesser of new and old sizes.
854  */
855 void *devm_krealloc(struct device *dev, void *ptr, size_t new_size, gfp_t gfp)
856 {
857 	size_t total_new_size, total_old_size;
858 	struct devres *old_dr, *new_dr;
859 	unsigned long flags;
860 
861 	if (unlikely(!new_size)) {
862 		devm_kfree(dev, ptr);
863 		return ZERO_SIZE_PTR;
864 	}
865 
866 	if (unlikely(ZERO_OR_NULL_PTR(ptr)))
867 		return devm_kmalloc(dev, new_size, gfp);
868 
869 	if (WARN_ON(is_kernel_rodata((unsigned long)ptr)))
870 		/*
871 		 * We cannot reliably realloc a const string returned by
872 		 * devm_kstrdup_const().
873 		 */
874 		return NULL;
875 
876 	if (!check_dr_size(new_size, &total_new_size))
877 		return NULL;
878 
879 	total_old_size = ksize(container_of(ptr, struct devres, data));
880 	if (total_old_size == 0) {
881 		WARN(1, "Pointer doesn't point to dynamically allocated memory.");
882 		return NULL;
883 	}
884 
885 	/*
886 	 * If new size is smaller or equal to the actual number of bytes
887 	 * allocated previously - just return the same pointer.
888 	 */
889 	if (total_new_size <= total_old_size)
890 		return ptr;
891 
892 	/*
893 	 * Otherwise: allocate new, larger chunk. We need to allocate before
894 	 * taking the lock as most probably the caller uses GFP_KERNEL.
895 	 */
896 	new_dr = alloc_dr(devm_kmalloc_release,
897 			  total_new_size, gfp, dev_to_node(dev));
898 	if (!new_dr)
899 		return NULL;
900 
901 	/*
902 	 * The spinlock protects the linked list against concurrent
903 	 * modifications but not the resource itself.
904 	 */
905 	spin_lock_irqsave(&dev->devres_lock, flags);
906 
907 	old_dr = find_dr(dev, devm_kmalloc_release, devm_kmalloc_match, ptr);
908 	if (!old_dr) {
909 		spin_unlock_irqrestore(&dev->devres_lock, flags);
910 		kfree(new_dr);
911 		WARN(1, "Memory chunk not managed or managed by a different device.");
912 		return NULL;
913 	}
914 
915 	replace_dr(dev, &old_dr->node, &new_dr->node);
916 
917 	spin_unlock_irqrestore(&dev->devres_lock, flags);
918 
919 	/*
920 	 * We can copy the memory contents after releasing the lock as we're
921 	 * no longer modifying the list links.
922 	 */
923 	memcpy(new_dr->data, old_dr->data,
924 	       total_old_size - offsetof(struct devres, data));
925 	/*
926 	 * Same for releasing the old devres - it's now been removed from the
927 	 * list. This is also the reason why we must not use devm_kfree() - the
928 	 * links are no longer valid.
929 	 */
930 	kfree(old_dr);
931 
932 	return new_dr->data;
933 }
934 EXPORT_SYMBOL_GPL(devm_krealloc);
935 
936 /**
937  * devm_kstrdup - Allocate resource managed space and
938  *                copy an existing string into that.
939  * @dev: Device to allocate memory for
940  * @s: the string to duplicate
941  * @gfp: the GFP mask used in the devm_kmalloc() call when
942  *       allocating memory
943  * RETURNS:
944  * Pointer to allocated string on success, NULL on failure.
945  */
946 char *devm_kstrdup(struct device *dev, const char *s, gfp_t gfp)
947 {
948 	size_t size;
949 	char *buf;
950 
951 	if (!s)
952 		return NULL;
953 
954 	size = strlen(s) + 1;
955 	buf = devm_kmalloc(dev, size, gfp);
956 	if (buf)
957 		memcpy(buf, s, size);
958 	return buf;
959 }
960 EXPORT_SYMBOL_GPL(devm_kstrdup);
961 
962 /**
963  * devm_kstrdup_const - resource managed conditional string duplication
964  * @dev: device for which to duplicate the string
965  * @s: the string to duplicate
966  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
967  *
968  * Strings allocated by devm_kstrdup_const will be automatically freed when
969  * the associated device is detached.
970  *
971  * RETURNS:
972  * Source string if it is in .rodata section otherwise it falls back to
973  * devm_kstrdup.
974  */
975 const char *devm_kstrdup_const(struct device *dev, const char *s, gfp_t gfp)
976 {
977 	if (is_kernel_rodata((unsigned long)s))
978 		return s;
979 
980 	return devm_kstrdup(dev, s, gfp);
981 }
982 EXPORT_SYMBOL_GPL(devm_kstrdup_const);
983 
984 /**
985  * devm_kvasprintf - Allocate resource managed space and format a string
986  *		     into that.
987  * @dev: Device to allocate memory for
988  * @gfp: the GFP mask used in the devm_kmalloc() call when
989  *       allocating memory
990  * @fmt: The printf()-style format string
991  * @ap: Arguments for the format string
992  * RETURNS:
993  * Pointer to allocated string on success, NULL on failure.
994  */
995 char *devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt,
996 		      va_list ap)
997 {
998 	unsigned int len;
999 	char *p;
1000 	va_list aq;
1001 
1002 	va_copy(aq, ap);
1003 	len = vsnprintf(NULL, 0, fmt, aq);
1004 	va_end(aq);
1005 
1006 	p = devm_kmalloc(dev, len+1, gfp);
1007 	if (!p)
1008 		return NULL;
1009 
1010 	vsnprintf(p, len+1, fmt, ap);
1011 
1012 	return p;
1013 }
1014 EXPORT_SYMBOL(devm_kvasprintf);
1015 
1016 /**
1017  * devm_kasprintf - Allocate resource managed space and format a string
1018  *		    into that.
1019  * @dev: Device to allocate memory for
1020  * @gfp: the GFP mask used in the devm_kmalloc() call when
1021  *       allocating memory
1022  * @fmt: The printf()-style format string
1023  * @...: Arguments for the format string
1024  * RETURNS:
1025  * Pointer to allocated string on success, NULL on failure.
1026  */
1027 char *devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...)
1028 {
1029 	va_list ap;
1030 	char *p;
1031 
1032 	va_start(ap, fmt);
1033 	p = devm_kvasprintf(dev, gfp, fmt, ap);
1034 	va_end(ap);
1035 
1036 	return p;
1037 }
1038 EXPORT_SYMBOL_GPL(devm_kasprintf);
1039 
1040 /**
1041  * devm_kfree - Resource-managed kfree
1042  * @dev: Device this memory belongs to
1043  * @p: Memory to free
1044  *
1045  * Free memory allocated with devm_kmalloc().
1046  */
1047 void devm_kfree(struct device *dev, const void *p)
1048 {
1049 	int rc;
1050 
1051 	/*
1052 	 * Special cases: pointer to a string in .rodata returned by
1053 	 * devm_kstrdup_const() or NULL/ZERO ptr.
1054 	 */
1055 	if (unlikely(is_kernel_rodata((unsigned long)p) || ZERO_OR_NULL_PTR(p)))
1056 		return;
1057 
1058 	rc = devres_destroy(dev, devm_kmalloc_release,
1059 			    devm_kmalloc_match, (void *)p);
1060 	WARN_ON(rc);
1061 }
1062 EXPORT_SYMBOL_GPL(devm_kfree);
1063 
1064 /**
1065  * devm_kmemdup - Resource-managed kmemdup
1066  * @dev: Device this memory belongs to
1067  * @src: Memory region to duplicate
1068  * @len: Memory region length
1069  * @gfp: GFP mask to use
1070  *
1071  * Duplicate region of a memory using resource managed kmalloc
1072  */
1073 void *devm_kmemdup(struct device *dev, const void *src, size_t len, gfp_t gfp)
1074 {
1075 	void *p;
1076 
1077 	p = devm_kmalloc(dev, len, gfp);
1078 	if (p)
1079 		memcpy(p, src, len);
1080 
1081 	return p;
1082 }
1083 EXPORT_SYMBOL_GPL(devm_kmemdup);
1084 
1085 struct pages_devres {
1086 	unsigned long addr;
1087 	unsigned int order;
1088 };
1089 
1090 static int devm_pages_match(struct device *dev, void *res, void *p)
1091 {
1092 	struct pages_devres *devres = res;
1093 	struct pages_devres *target = p;
1094 
1095 	return devres->addr == target->addr;
1096 }
1097 
1098 static void devm_pages_release(struct device *dev, void *res)
1099 {
1100 	struct pages_devres *devres = res;
1101 
1102 	free_pages(devres->addr, devres->order);
1103 }
1104 
1105 /**
1106  * devm_get_free_pages - Resource-managed __get_free_pages
1107  * @dev: Device to allocate memory for
1108  * @gfp_mask: Allocation gfp flags
1109  * @order: Allocation size is (1 << order) pages
1110  *
1111  * Managed get_free_pages.  Memory allocated with this function is
1112  * automatically freed on driver detach.
1113  *
1114  * RETURNS:
1115  * Address of allocated memory on success, 0 on failure.
1116  */
1117 
1118 unsigned long devm_get_free_pages(struct device *dev,
1119 				  gfp_t gfp_mask, unsigned int order)
1120 {
1121 	struct pages_devres *devres;
1122 	unsigned long addr;
1123 
1124 	addr = __get_free_pages(gfp_mask, order);
1125 
1126 	if (unlikely(!addr))
1127 		return 0;
1128 
1129 	devres = devres_alloc(devm_pages_release,
1130 			      sizeof(struct pages_devres), GFP_KERNEL);
1131 	if (unlikely(!devres)) {
1132 		free_pages(addr, order);
1133 		return 0;
1134 	}
1135 
1136 	devres->addr = addr;
1137 	devres->order = order;
1138 
1139 	devres_add(dev, devres);
1140 	return addr;
1141 }
1142 EXPORT_SYMBOL_GPL(devm_get_free_pages);
1143 
1144 /**
1145  * devm_free_pages - Resource-managed free_pages
1146  * @dev: Device this memory belongs to
1147  * @addr: Memory to free
1148  *
1149  * Free memory allocated with devm_get_free_pages(). Unlike free_pages,
1150  * there is no need to supply the @order.
1151  */
1152 void devm_free_pages(struct device *dev, unsigned long addr)
1153 {
1154 	struct pages_devres devres = { .addr = addr };
1155 
1156 	WARN_ON(devres_release(dev, devm_pages_release, devm_pages_match,
1157 			       &devres));
1158 }
1159 EXPORT_SYMBOL_GPL(devm_free_pages);
1160 
1161 static void devm_percpu_release(struct device *dev, void *pdata)
1162 {
1163 	void __percpu *p;
1164 
1165 	p = *(void __percpu **)pdata;
1166 	free_percpu(p);
1167 }
1168 
1169 static int devm_percpu_match(struct device *dev, void *data, void *p)
1170 {
1171 	struct devres *devr = container_of(data, struct devres, data);
1172 
1173 	return *(void **)devr->data == p;
1174 }
1175 
1176 /**
1177  * __devm_alloc_percpu - Resource-managed alloc_percpu
1178  * @dev: Device to allocate per-cpu memory for
1179  * @size: Size of per-cpu memory to allocate
1180  * @align: Alignment of per-cpu memory to allocate
1181  *
1182  * Managed alloc_percpu. Per-cpu memory allocated with this function is
1183  * automatically freed on driver detach.
1184  *
1185  * RETURNS:
1186  * Pointer to allocated memory on success, NULL on failure.
1187  */
1188 void __percpu *__devm_alloc_percpu(struct device *dev, size_t size,
1189 		size_t align)
1190 {
1191 	void *p;
1192 	void __percpu *pcpu;
1193 
1194 	pcpu = __alloc_percpu(size, align);
1195 	if (!pcpu)
1196 		return NULL;
1197 
1198 	p = devres_alloc(devm_percpu_release, sizeof(void *), GFP_KERNEL);
1199 	if (!p) {
1200 		free_percpu(pcpu);
1201 		return NULL;
1202 	}
1203 
1204 	*(void __percpu **)p = pcpu;
1205 
1206 	devres_add(dev, p);
1207 
1208 	return pcpu;
1209 }
1210 EXPORT_SYMBOL_GPL(__devm_alloc_percpu);
1211 
1212 /**
1213  * devm_free_percpu - Resource-managed free_percpu
1214  * @dev: Device this memory belongs to
1215  * @pdata: Per-cpu memory to free
1216  *
1217  * Free memory allocated with devm_alloc_percpu().
1218  */
1219 void devm_free_percpu(struct device *dev, void __percpu *pdata)
1220 {
1221 	WARN_ON(devres_destroy(dev, devm_percpu_release, devm_percpu_match,
1222 			       (__force void *)pdata));
1223 }
1224 EXPORT_SYMBOL_GPL(devm_free_percpu);
1225