xref: /openbmc/linux/drivers/base/devres.c (revision 6c9111bc)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/devres.c - device resource management
4  *
5  * Copyright (c) 2006  SUSE Linux Products GmbH
6  * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/module.h>
11 #include <linux/slab.h>
12 #include <linux/percpu.h>
13 
14 #include <asm/sections.h>
15 
16 #include "base.h"
17 
18 struct devres_node {
19 	struct list_head		entry;
20 	dr_release_t			release;
21 #ifdef CONFIG_DEBUG_DEVRES
22 	const char			*name;
23 	size_t				size;
24 #endif
25 };
26 
27 struct devres {
28 	struct devres_node		node;
29 	/*
30 	 * Some archs want to perform DMA into kmalloc caches
31 	 * and need a guaranteed alignment larger than
32 	 * the alignment of a 64-bit integer.
33 	 * Thus we use ARCH_KMALLOC_MINALIGN here and get exactly the same
34 	 * buffer alignment as if it was allocated by plain kmalloc().
35 	 */
36 	u8 __aligned(ARCH_KMALLOC_MINALIGN) data[];
37 };
38 
39 struct devres_group {
40 	struct devres_node		node[2];
41 	void				*id;
42 	int				color;
43 	/* -- 8 pointers */
44 };
45 
46 #ifdef CONFIG_DEBUG_DEVRES
47 static int log_devres = 0;
48 module_param_named(log, log_devres, int, S_IRUGO | S_IWUSR);
49 
50 static void set_node_dbginfo(struct devres_node *node, const char *name,
51 			     size_t size)
52 {
53 	node->name = name;
54 	node->size = size;
55 }
56 
57 static void devres_log(struct device *dev, struct devres_node *node,
58 		       const char *op)
59 {
60 	if (unlikely(log_devres))
61 		dev_err(dev, "DEVRES %3s %p %s (%lu bytes)\n",
62 			op, node, node->name, (unsigned long)node->size);
63 }
64 #else /* CONFIG_DEBUG_DEVRES */
65 #define set_node_dbginfo(node, n, s)	do {} while (0)
66 #define devres_log(dev, node, op)	do {} while (0)
67 #endif /* CONFIG_DEBUG_DEVRES */
68 
69 /*
70  * Release functions for devres group.  These callbacks are used only
71  * for identification.
72  */
73 static void group_open_release(struct device *dev, void *res)
74 {
75 	/* noop */
76 }
77 
78 static void group_close_release(struct device *dev, void *res)
79 {
80 	/* noop */
81 }
82 
83 static struct devres_group * node_to_group(struct devres_node *node)
84 {
85 	if (node->release == &group_open_release)
86 		return container_of(node, struct devres_group, node[0]);
87 	if (node->release == &group_close_release)
88 		return container_of(node, struct devres_group, node[1]);
89 	return NULL;
90 }
91 
92 static bool check_dr_size(size_t size, size_t *tot_size)
93 {
94 	/* We must catch any near-SIZE_MAX cases that could overflow. */
95 	if (unlikely(check_add_overflow(sizeof(struct devres),
96 					size, tot_size)))
97 		return false;
98 
99 	return true;
100 }
101 
102 static __always_inline struct devres * alloc_dr(dr_release_t release,
103 						size_t size, gfp_t gfp, int nid)
104 {
105 	size_t tot_size;
106 	struct devres *dr;
107 
108 	if (!check_dr_size(size, &tot_size))
109 		return NULL;
110 
111 	dr = kmalloc_node_track_caller(tot_size, gfp, nid);
112 	if (unlikely(!dr))
113 		return NULL;
114 
115 	memset(dr, 0, offsetof(struct devres, data));
116 
117 	INIT_LIST_HEAD(&dr->node.entry);
118 	dr->node.release = release;
119 	return dr;
120 }
121 
122 static void add_dr(struct device *dev, struct devres_node *node)
123 {
124 	devres_log(dev, node, "ADD");
125 	BUG_ON(!list_empty(&node->entry));
126 	list_add_tail(&node->entry, &dev->devres_head);
127 }
128 
129 static void replace_dr(struct device *dev,
130 		       struct devres_node *old, struct devres_node *new)
131 {
132 	devres_log(dev, old, "REPLACE");
133 	BUG_ON(!list_empty(&new->entry));
134 	list_replace(&old->entry, &new->entry);
135 }
136 
137 #ifdef CONFIG_DEBUG_DEVRES
138 void * __devres_alloc_node(dr_release_t release, size_t size, gfp_t gfp, int nid,
139 		      const char *name)
140 {
141 	struct devres *dr;
142 
143 	dr = alloc_dr(release, size, gfp | __GFP_ZERO, nid);
144 	if (unlikely(!dr))
145 		return NULL;
146 	set_node_dbginfo(&dr->node, name, size);
147 	return dr->data;
148 }
149 EXPORT_SYMBOL_GPL(__devres_alloc_node);
150 #else
151 /**
152  * devres_alloc - Allocate device resource data
153  * @release: Release function devres will be associated with
154  * @size: Allocation size
155  * @gfp: Allocation flags
156  * @nid: NUMA node
157  *
158  * Allocate devres of @size bytes.  The allocated area is zeroed, then
159  * associated with @release.  The returned pointer can be passed to
160  * other devres_*() functions.
161  *
162  * RETURNS:
163  * Pointer to allocated devres on success, NULL on failure.
164  */
165 void * devres_alloc_node(dr_release_t release, size_t size, gfp_t gfp, int nid)
166 {
167 	struct devres *dr;
168 
169 	dr = alloc_dr(release, size, gfp | __GFP_ZERO, nid);
170 	if (unlikely(!dr))
171 		return NULL;
172 	return dr->data;
173 }
174 EXPORT_SYMBOL_GPL(devres_alloc_node);
175 #endif
176 
177 /**
178  * devres_for_each_res - Resource iterator
179  * @dev: Device to iterate resource from
180  * @release: Look for resources associated with this release function
181  * @match: Match function (optional)
182  * @match_data: Data for the match function
183  * @fn: Function to be called for each matched resource.
184  * @data: Data for @fn, the 3rd parameter of @fn
185  *
186  * Call @fn for each devres of @dev which is associated with @release
187  * and for which @match returns 1.
188  *
189  * RETURNS:
190  * 	void
191  */
192 void devres_for_each_res(struct device *dev, dr_release_t release,
193 			dr_match_t match, void *match_data,
194 			void (*fn)(struct device *, void *, void *),
195 			void *data)
196 {
197 	struct devres_node *node;
198 	struct devres_node *tmp;
199 	unsigned long flags;
200 
201 	if (!fn)
202 		return;
203 
204 	spin_lock_irqsave(&dev->devres_lock, flags);
205 	list_for_each_entry_safe_reverse(node, tmp,
206 			&dev->devres_head, entry) {
207 		struct devres *dr = container_of(node, struct devres, node);
208 
209 		if (node->release != release)
210 			continue;
211 		if (match && !match(dev, dr->data, match_data))
212 			continue;
213 		fn(dev, dr->data, data);
214 	}
215 	spin_unlock_irqrestore(&dev->devres_lock, flags);
216 }
217 EXPORT_SYMBOL_GPL(devres_for_each_res);
218 
219 /**
220  * devres_free - Free device resource data
221  * @res: Pointer to devres data to free
222  *
223  * Free devres created with devres_alloc().
224  */
225 void devres_free(void *res)
226 {
227 	if (res) {
228 		struct devres *dr = container_of(res, struct devres, data);
229 
230 		BUG_ON(!list_empty(&dr->node.entry));
231 		kfree(dr);
232 	}
233 }
234 EXPORT_SYMBOL_GPL(devres_free);
235 
236 /**
237  * devres_add - Register device resource
238  * @dev: Device to add resource to
239  * @res: Resource to register
240  *
241  * Register devres @res to @dev.  @res should have been allocated
242  * using devres_alloc().  On driver detach, the associated release
243  * function will be invoked and devres will be freed automatically.
244  */
245 void devres_add(struct device *dev, void *res)
246 {
247 	struct devres *dr = container_of(res, struct devres, data);
248 	unsigned long flags;
249 
250 	spin_lock_irqsave(&dev->devres_lock, flags);
251 	add_dr(dev, &dr->node);
252 	spin_unlock_irqrestore(&dev->devres_lock, flags);
253 }
254 EXPORT_SYMBOL_GPL(devres_add);
255 
256 static struct devres *find_dr(struct device *dev, dr_release_t release,
257 			      dr_match_t match, void *match_data)
258 {
259 	struct devres_node *node;
260 
261 	list_for_each_entry_reverse(node, &dev->devres_head, entry) {
262 		struct devres *dr = container_of(node, struct devres, node);
263 
264 		if (node->release != release)
265 			continue;
266 		if (match && !match(dev, dr->data, match_data))
267 			continue;
268 		return dr;
269 	}
270 
271 	return NULL;
272 }
273 
274 /**
275  * devres_find - Find device resource
276  * @dev: Device to lookup resource from
277  * @release: Look for resources associated with this release function
278  * @match: Match function (optional)
279  * @match_data: Data for the match function
280  *
281  * Find the latest devres of @dev which is associated with @release
282  * and for which @match returns 1.  If @match is NULL, it's considered
283  * to match all.
284  *
285  * RETURNS:
286  * Pointer to found devres, NULL if not found.
287  */
288 void * devres_find(struct device *dev, dr_release_t release,
289 		   dr_match_t match, void *match_data)
290 {
291 	struct devres *dr;
292 	unsigned long flags;
293 
294 	spin_lock_irqsave(&dev->devres_lock, flags);
295 	dr = find_dr(dev, release, match, match_data);
296 	spin_unlock_irqrestore(&dev->devres_lock, flags);
297 
298 	if (dr)
299 		return dr->data;
300 	return NULL;
301 }
302 EXPORT_SYMBOL_GPL(devres_find);
303 
304 /**
305  * devres_get - Find devres, if non-existent, add one atomically
306  * @dev: Device to lookup or add devres for
307  * @new_res: Pointer to new initialized devres to add if not found
308  * @match: Match function (optional)
309  * @match_data: Data for the match function
310  *
311  * Find the latest devres of @dev which has the same release function
312  * as @new_res and for which @match return 1.  If found, @new_res is
313  * freed; otherwise, @new_res is added atomically.
314  *
315  * RETURNS:
316  * Pointer to found or added devres.
317  */
318 void * devres_get(struct device *dev, void *new_res,
319 		  dr_match_t match, void *match_data)
320 {
321 	struct devres *new_dr = container_of(new_res, struct devres, data);
322 	struct devres *dr;
323 	unsigned long flags;
324 
325 	spin_lock_irqsave(&dev->devres_lock, flags);
326 	dr = find_dr(dev, new_dr->node.release, match, match_data);
327 	if (!dr) {
328 		add_dr(dev, &new_dr->node);
329 		dr = new_dr;
330 		new_res = NULL;
331 	}
332 	spin_unlock_irqrestore(&dev->devres_lock, flags);
333 	devres_free(new_res);
334 
335 	return dr->data;
336 }
337 EXPORT_SYMBOL_GPL(devres_get);
338 
339 /**
340  * devres_remove - Find a device resource and remove it
341  * @dev: Device to find resource from
342  * @release: Look for resources associated with this release function
343  * @match: Match function (optional)
344  * @match_data: Data for the match function
345  *
346  * Find the latest devres of @dev associated with @release and for
347  * which @match returns 1.  If @match is NULL, it's considered to
348  * match all.  If found, the resource is removed atomically and
349  * returned.
350  *
351  * RETURNS:
352  * Pointer to removed devres on success, NULL if not found.
353  */
354 void * devres_remove(struct device *dev, dr_release_t release,
355 		     dr_match_t match, void *match_data)
356 {
357 	struct devres *dr;
358 	unsigned long flags;
359 
360 	spin_lock_irqsave(&dev->devres_lock, flags);
361 	dr = find_dr(dev, release, match, match_data);
362 	if (dr) {
363 		list_del_init(&dr->node.entry);
364 		devres_log(dev, &dr->node, "REM");
365 	}
366 	spin_unlock_irqrestore(&dev->devres_lock, flags);
367 
368 	if (dr)
369 		return dr->data;
370 	return NULL;
371 }
372 EXPORT_SYMBOL_GPL(devres_remove);
373 
374 /**
375  * devres_destroy - Find a device resource and destroy it
376  * @dev: Device to find resource from
377  * @release: Look for resources associated with this release function
378  * @match: Match function (optional)
379  * @match_data: Data for the match function
380  *
381  * Find the latest devres of @dev associated with @release and for
382  * which @match returns 1.  If @match is NULL, it's considered to
383  * match all.  If found, the resource is removed atomically and freed.
384  *
385  * Note that the release function for the resource will not be called,
386  * only the devres-allocated data will be freed.  The caller becomes
387  * responsible for freeing any other data.
388  *
389  * RETURNS:
390  * 0 if devres is found and freed, -ENOENT if not found.
391  */
392 int devres_destroy(struct device *dev, dr_release_t release,
393 		   dr_match_t match, void *match_data)
394 {
395 	void *res;
396 
397 	res = devres_remove(dev, release, match, match_data);
398 	if (unlikely(!res))
399 		return -ENOENT;
400 
401 	devres_free(res);
402 	return 0;
403 }
404 EXPORT_SYMBOL_GPL(devres_destroy);
405 
406 
407 /**
408  * devres_release - Find a device resource and destroy it, calling release
409  * @dev: Device to find resource from
410  * @release: Look for resources associated with this release function
411  * @match: Match function (optional)
412  * @match_data: Data for the match function
413  *
414  * Find the latest devres of @dev associated with @release and for
415  * which @match returns 1.  If @match is NULL, it's considered to
416  * match all.  If found, the resource is removed atomically, the
417  * release function called and the resource freed.
418  *
419  * RETURNS:
420  * 0 if devres is found and freed, -ENOENT if not found.
421  */
422 int devres_release(struct device *dev, dr_release_t release,
423 		   dr_match_t match, void *match_data)
424 {
425 	void *res;
426 
427 	res = devres_remove(dev, release, match, match_data);
428 	if (unlikely(!res))
429 		return -ENOENT;
430 
431 	(*release)(dev, res);
432 	devres_free(res);
433 	return 0;
434 }
435 EXPORT_SYMBOL_GPL(devres_release);
436 
437 static int remove_nodes(struct device *dev,
438 			struct list_head *first, struct list_head *end,
439 			struct list_head *todo)
440 {
441 	int cnt = 0, nr_groups = 0;
442 	struct list_head *cur;
443 
444 	/* First pass - move normal devres entries to @todo and clear
445 	 * devres_group colors.
446 	 */
447 	cur = first;
448 	while (cur != end) {
449 		struct devres_node *node;
450 		struct devres_group *grp;
451 
452 		node = list_entry(cur, struct devres_node, entry);
453 		cur = cur->next;
454 
455 		grp = node_to_group(node);
456 		if (grp) {
457 			/* clear color of group markers in the first pass */
458 			grp->color = 0;
459 			nr_groups++;
460 		} else {
461 			/* regular devres entry */
462 			if (&node->entry == first)
463 				first = first->next;
464 			list_move_tail(&node->entry, todo);
465 			cnt++;
466 		}
467 	}
468 
469 	if (!nr_groups)
470 		return cnt;
471 
472 	/* Second pass - Scan groups and color them.  A group gets
473 	 * color value of two iff the group is wholly contained in
474 	 * [cur, end).  That is, for a closed group, both opening and
475 	 * closing markers should be in the range, while just the
476 	 * opening marker is enough for an open group.
477 	 */
478 	cur = first;
479 	while (cur != end) {
480 		struct devres_node *node;
481 		struct devres_group *grp;
482 
483 		node = list_entry(cur, struct devres_node, entry);
484 		cur = cur->next;
485 
486 		grp = node_to_group(node);
487 		BUG_ON(!grp || list_empty(&grp->node[0].entry));
488 
489 		grp->color++;
490 		if (list_empty(&grp->node[1].entry))
491 			grp->color++;
492 
493 		BUG_ON(grp->color <= 0 || grp->color > 2);
494 		if (grp->color == 2) {
495 			/* No need to update cur or end.  The removed
496 			 * nodes are always before both.
497 			 */
498 			list_move_tail(&grp->node[0].entry, todo);
499 			list_del_init(&grp->node[1].entry);
500 		}
501 	}
502 
503 	return cnt;
504 }
505 
506 static int release_nodes(struct device *dev, struct list_head *first,
507 			 struct list_head *end, unsigned long flags)
508 	__releases(&dev->devres_lock)
509 {
510 	LIST_HEAD(todo);
511 	int cnt;
512 	struct devres *dr, *tmp;
513 
514 	cnt = remove_nodes(dev, first, end, &todo);
515 
516 	spin_unlock_irqrestore(&dev->devres_lock, flags);
517 
518 	/* Release.  Note that both devres and devres_group are
519 	 * handled as devres in the following loop.  This is safe.
520 	 */
521 	list_for_each_entry_safe_reverse(dr, tmp, &todo, node.entry) {
522 		devres_log(dev, &dr->node, "REL");
523 		dr->node.release(dev, dr->data);
524 		kfree(dr);
525 	}
526 
527 	return cnt;
528 }
529 
530 /**
531  * devres_release_all - Release all managed resources
532  * @dev: Device to release resources for
533  *
534  * Release all resources associated with @dev.  This function is
535  * called on driver detach.
536  */
537 int devres_release_all(struct device *dev)
538 {
539 	unsigned long flags;
540 
541 	/* Looks like an uninitialized device structure */
542 	if (WARN_ON(dev->devres_head.next == NULL))
543 		return -ENODEV;
544 	spin_lock_irqsave(&dev->devres_lock, flags);
545 	return release_nodes(dev, dev->devres_head.next, &dev->devres_head,
546 			     flags);
547 }
548 
549 /**
550  * devres_open_group - Open a new devres group
551  * @dev: Device to open devres group for
552  * @id: Separator ID
553  * @gfp: Allocation flags
554  *
555  * Open a new devres group for @dev with @id.  For @id, using a
556  * pointer to an object which won't be used for another group is
557  * recommended.  If @id is NULL, address-wise unique ID is created.
558  *
559  * RETURNS:
560  * ID of the new group, NULL on failure.
561  */
562 void * devres_open_group(struct device *dev, void *id, gfp_t gfp)
563 {
564 	struct devres_group *grp;
565 	unsigned long flags;
566 
567 	grp = kmalloc(sizeof(*grp), gfp);
568 	if (unlikely(!grp))
569 		return NULL;
570 
571 	grp->node[0].release = &group_open_release;
572 	grp->node[1].release = &group_close_release;
573 	INIT_LIST_HEAD(&grp->node[0].entry);
574 	INIT_LIST_HEAD(&grp->node[1].entry);
575 	set_node_dbginfo(&grp->node[0], "grp<", 0);
576 	set_node_dbginfo(&grp->node[1], "grp>", 0);
577 	grp->id = grp;
578 	if (id)
579 		grp->id = id;
580 
581 	spin_lock_irqsave(&dev->devres_lock, flags);
582 	add_dr(dev, &grp->node[0]);
583 	spin_unlock_irqrestore(&dev->devres_lock, flags);
584 	return grp->id;
585 }
586 EXPORT_SYMBOL_GPL(devres_open_group);
587 
588 /* Find devres group with ID @id.  If @id is NULL, look for the latest. */
589 static struct devres_group * find_group(struct device *dev, void *id)
590 {
591 	struct devres_node *node;
592 
593 	list_for_each_entry_reverse(node, &dev->devres_head, entry) {
594 		struct devres_group *grp;
595 
596 		if (node->release != &group_open_release)
597 			continue;
598 
599 		grp = container_of(node, struct devres_group, node[0]);
600 
601 		if (id) {
602 			if (grp->id == id)
603 				return grp;
604 		} else if (list_empty(&grp->node[1].entry))
605 			return grp;
606 	}
607 
608 	return NULL;
609 }
610 
611 /**
612  * devres_close_group - Close a devres group
613  * @dev: Device to close devres group for
614  * @id: ID of target group, can be NULL
615  *
616  * Close the group identified by @id.  If @id is NULL, the latest open
617  * group is selected.
618  */
619 void devres_close_group(struct device *dev, void *id)
620 {
621 	struct devres_group *grp;
622 	unsigned long flags;
623 
624 	spin_lock_irqsave(&dev->devres_lock, flags);
625 
626 	grp = find_group(dev, id);
627 	if (grp)
628 		add_dr(dev, &grp->node[1]);
629 	else
630 		WARN_ON(1);
631 
632 	spin_unlock_irqrestore(&dev->devres_lock, flags);
633 }
634 EXPORT_SYMBOL_GPL(devres_close_group);
635 
636 /**
637  * devres_remove_group - Remove a devres group
638  * @dev: Device to remove group for
639  * @id: ID of target group, can be NULL
640  *
641  * Remove the group identified by @id.  If @id is NULL, the latest
642  * open group is selected.  Note that removing a group doesn't affect
643  * any other resources.
644  */
645 void devres_remove_group(struct device *dev, void *id)
646 {
647 	struct devres_group *grp;
648 	unsigned long flags;
649 
650 	spin_lock_irqsave(&dev->devres_lock, flags);
651 
652 	grp = find_group(dev, id);
653 	if (grp) {
654 		list_del_init(&grp->node[0].entry);
655 		list_del_init(&grp->node[1].entry);
656 		devres_log(dev, &grp->node[0], "REM");
657 	} else
658 		WARN_ON(1);
659 
660 	spin_unlock_irqrestore(&dev->devres_lock, flags);
661 
662 	kfree(grp);
663 }
664 EXPORT_SYMBOL_GPL(devres_remove_group);
665 
666 /**
667  * devres_release_group - Release resources in a devres group
668  * @dev: Device to release group for
669  * @id: ID of target group, can be NULL
670  *
671  * Release all resources in the group identified by @id.  If @id is
672  * NULL, the latest open group is selected.  The selected group and
673  * groups properly nested inside the selected group are removed.
674  *
675  * RETURNS:
676  * The number of released non-group resources.
677  */
678 int devres_release_group(struct device *dev, void *id)
679 {
680 	struct devres_group *grp;
681 	unsigned long flags;
682 	int cnt = 0;
683 
684 	spin_lock_irqsave(&dev->devres_lock, flags);
685 
686 	grp = find_group(dev, id);
687 	if (grp) {
688 		struct list_head *first = &grp->node[0].entry;
689 		struct list_head *end = &dev->devres_head;
690 
691 		if (!list_empty(&grp->node[1].entry))
692 			end = grp->node[1].entry.next;
693 
694 		cnt = release_nodes(dev, first, end, flags);
695 	} else {
696 		WARN_ON(1);
697 		spin_unlock_irqrestore(&dev->devres_lock, flags);
698 	}
699 
700 	return cnt;
701 }
702 EXPORT_SYMBOL_GPL(devres_release_group);
703 
704 /*
705  * Custom devres actions allow inserting a simple function call
706  * into the teadown sequence.
707  */
708 
709 struct action_devres {
710 	void *data;
711 	void (*action)(void *);
712 };
713 
714 static int devm_action_match(struct device *dev, void *res, void *p)
715 {
716 	struct action_devres *devres = res;
717 	struct action_devres *target = p;
718 
719 	return devres->action == target->action &&
720 	       devres->data == target->data;
721 }
722 
723 static void devm_action_release(struct device *dev, void *res)
724 {
725 	struct action_devres *devres = res;
726 
727 	devres->action(devres->data);
728 }
729 
730 /**
731  * devm_add_action() - add a custom action to list of managed resources
732  * @dev: Device that owns the action
733  * @action: Function that should be called
734  * @data: Pointer to data passed to @action implementation
735  *
736  * This adds a custom action to the list of managed resources so that
737  * it gets executed as part of standard resource unwinding.
738  */
739 int devm_add_action(struct device *dev, void (*action)(void *), void *data)
740 {
741 	struct action_devres *devres;
742 
743 	devres = devres_alloc(devm_action_release,
744 			      sizeof(struct action_devres), GFP_KERNEL);
745 	if (!devres)
746 		return -ENOMEM;
747 
748 	devres->data = data;
749 	devres->action = action;
750 
751 	devres_add(dev, devres);
752 	return 0;
753 }
754 EXPORT_SYMBOL_GPL(devm_add_action);
755 
756 /**
757  * devm_remove_action() - removes previously added custom action
758  * @dev: Device that owns the action
759  * @action: Function implementing the action
760  * @data: Pointer to data passed to @action implementation
761  *
762  * Removes instance of @action previously added by devm_add_action().
763  * Both action and data should match one of the existing entries.
764  */
765 void devm_remove_action(struct device *dev, void (*action)(void *), void *data)
766 {
767 	struct action_devres devres = {
768 		.data = data,
769 		.action = action,
770 	};
771 
772 	WARN_ON(devres_destroy(dev, devm_action_release, devm_action_match,
773 			       &devres));
774 }
775 EXPORT_SYMBOL_GPL(devm_remove_action);
776 
777 /**
778  * devm_release_action() - release previously added custom action
779  * @dev: Device that owns the action
780  * @action: Function implementing the action
781  * @data: Pointer to data passed to @action implementation
782  *
783  * Releases and removes instance of @action previously added by
784  * devm_add_action().  Both action and data should match one of the
785  * existing entries.
786  */
787 void devm_release_action(struct device *dev, void (*action)(void *), void *data)
788 {
789 	struct action_devres devres = {
790 		.data = data,
791 		.action = action,
792 	};
793 
794 	WARN_ON(devres_release(dev, devm_action_release, devm_action_match,
795 			       &devres));
796 
797 }
798 EXPORT_SYMBOL_GPL(devm_release_action);
799 
800 /*
801  * Managed kmalloc/kfree
802  */
803 static void devm_kmalloc_release(struct device *dev, void *res)
804 {
805 	/* noop */
806 }
807 
808 static int devm_kmalloc_match(struct device *dev, void *res, void *data)
809 {
810 	return res == data;
811 }
812 
813 /**
814  * devm_kmalloc - Resource-managed kmalloc
815  * @dev: Device to allocate memory for
816  * @size: Allocation size
817  * @gfp: Allocation gfp flags
818  *
819  * Managed kmalloc.  Memory allocated with this function is
820  * automatically freed on driver detach.  Like all other devres
821  * resources, guaranteed alignment is unsigned long long.
822  *
823  * RETURNS:
824  * Pointer to allocated memory on success, NULL on failure.
825  */
826 void *devm_kmalloc(struct device *dev, size_t size, gfp_t gfp)
827 {
828 	struct devres *dr;
829 
830 	if (unlikely(!size))
831 		return ZERO_SIZE_PTR;
832 
833 	/* use raw alloc_dr for kmalloc caller tracing */
834 	dr = alloc_dr(devm_kmalloc_release, size, gfp, dev_to_node(dev));
835 	if (unlikely(!dr))
836 		return NULL;
837 
838 	/*
839 	 * This is named devm_kzalloc_release for historical reasons
840 	 * The initial implementation did not support kmalloc, only kzalloc
841 	 */
842 	set_node_dbginfo(&dr->node, "devm_kzalloc_release", size);
843 	devres_add(dev, dr->data);
844 	return dr->data;
845 }
846 EXPORT_SYMBOL_GPL(devm_kmalloc);
847 
848 /**
849  * devm_krealloc - Resource-managed krealloc()
850  * @dev: Device to re-allocate memory for
851  * @ptr: Pointer to the memory chunk to re-allocate
852  * @new_size: New allocation size
853  * @gfp: Allocation gfp flags
854  *
855  * Managed krealloc(). Resizes the memory chunk allocated with devm_kmalloc().
856  * Behaves similarly to regular krealloc(): if @ptr is NULL or ZERO_SIZE_PTR,
857  * it's the equivalent of devm_kmalloc(). If new_size is zero, it frees the
858  * previously allocated memory and returns ZERO_SIZE_PTR. This function doesn't
859  * change the order in which the release callback for the re-alloc'ed devres
860  * will be called (except when falling back to devm_kmalloc() or when freeing
861  * resources when new_size is zero). The contents of the memory are preserved
862  * up to the lesser of new and old sizes.
863  */
864 void *devm_krealloc(struct device *dev, void *ptr, size_t new_size, gfp_t gfp)
865 {
866 	size_t total_new_size, total_old_size;
867 	struct devres *old_dr, *new_dr;
868 	unsigned long flags;
869 
870 	if (unlikely(!new_size)) {
871 		devm_kfree(dev, ptr);
872 		return ZERO_SIZE_PTR;
873 	}
874 
875 	if (unlikely(ZERO_OR_NULL_PTR(ptr)))
876 		return devm_kmalloc(dev, new_size, gfp);
877 
878 	if (WARN_ON(is_kernel_rodata((unsigned long)ptr)))
879 		/*
880 		 * We cannot reliably realloc a const string returned by
881 		 * devm_kstrdup_const().
882 		 */
883 		return NULL;
884 
885 	if (!check_dr_size(new_size, &total_new_size))
886 		return NULL;
887 
888 	total_old_size = ksize(container_of(ptr, struct devres, data));
889 	if (total_old_size == 0) {
890 		WARN(1, "Pointer doesn't point to dynamically allocated memory.");
891 		return NULL;
892 	}
893 
894 	/*
895 	 * If new size is smaller or equal to the actual number of bytes
896 	 * allocated previously - just return the same pointer.
897 	 */
898 	if (total_new_size <= total_old_size)
899 		return ptr;
900 
901 	/*
902 	 * Otherwise: allocate new, larger chunk. We need to allocate before
903 	 * taking the lock as most probably the caller uses GFP_KERNEL.
904 	 */
905 	new_dr = alloc_dr(devm_kmalloc_release,
906 			  total_new_size, gfp, dev_to_node(dev));
907 	if (!new_dr)
908 		return NULL;
909 
910 	/*
911 	 * The spinlock protects the linked list against concurrent
912 	 * modifications but not the resource itself.
913 	 */
914 	spin_lock_irqsave(&dev->devres_lock, flags);
915 
916 	old_dr = find_dr(dev, devm_kmalloc_release, devm_kmalloc_match, ptr);
917 	if (!old_dr) {
918 		spin_unlock_irqrestore(&dev->devres_lock, flags);
919 		kfree(new_dr);
920 		WARN(1, "Memory chunk not managed or managed by a different device.");
921 		return NULL;
922 	}
923 
924 	replace_dr(dev, &old_dr->node, &new_dr->node);
925 
926 	spin_unlock_irqrestore(&dev->devres_lock, flags);
927 
928 	/*
929 	 * We can copy the memory contents after releasing the lock as we're
930 	 * no longer modyfing the list links.
931 	 */
932 	memcpy(new_dr->data, old_dr->data,
933 	       total_old_size - offsetof(struct devres, data));
934 	/*
935 	 * Same for releasing the old devres - it's now been removed from the
936 	 * list. This is also the reason why we must not use devm_kfree() - the
937 	 * links are no longer valid.
938 	 */
939 	kfree(old_dr);
940 
941 	return new_dr->data;
942 }
943 EXPORT_SYMBOL_GPL(devm_krealloc);
944 
945 /**
946  * devm_kstrdup - Allocate resource managed space and
947  *                copy an existing string into that.
948  * @dev: Device to allocate memory for
949  * @s: the string to duplicate
950  * @gfp: the GFP mask used in the devm_kmalloc() call when
951  *       allocating memory
952  * RETURNS:
953  * Pointer to allocated string on success, NULL on failure.
954  */
955 char *devm_kstrdup(struct device *dev, const char *s, gfp_t gfp)
956 {
957 	size_t size;
958 	char *buf;
959 
960 	if (!s)
961 		return NULL;
962 
963 	size = strlen(s) + 1;
964 	buf = devm_kmalloc(dev, size, gfp);
965 	if (buf)
966 		memcpy(buf, s, size);
967 	return buf;
968 }
969 EXPORT_SYMBOL_GPL(devm_kstrdup);
970 
971 /**
972  * devm_kstrdup_const - resource managed conditional string duplication
973  * @dev: device for which to duplicate the string
974  * @s: the string to duplicate
975  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
976  *
977  * Strings allocated by devm_kstrdup_const will be automatically freed when
978  * the associated device is detached.
979  *
980  * RETURNS:
981  * Source string if it is in .rodata section otherwise it falls back to
982  * devm_kstrdup.
983  */
984 const char *devm_kstrdup_const(struct device *dev, const char *s, gfp_t gfp)
985 {
986 	if (is_kernel_rodata((unsigned long)s))
987 		return s;
988 
989 	return devm_kstrdup(dev, s, gfp);
990 }
991 EXPORT_SYMBOL_GPL(devm_kstrdup_const);
992 
993 /**
994  * devm_kvasprintf - Allocate resource managed space and format a string
995  *		     into that.
996  * @dev: Device to allocate memory for
997  * @gfp: the GFP mask used in the devm_kmalloc() call when
998  *       allocating memory
999  * @fmt: The printf()-style format string
1000  * @ap: Arguments for the format string
1001  * RETURNS:
1002  * Pointer to allocated string on success, NULL on failure.
1003  */
1004 char *devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt,
1005 		      va_list ap)
1006 {
1007 	unsigned int len;
1008 	char *p;
1009 	va_list aq;
1010 
1011 	va_copy(aq, ap);
1012 	len = vsnprintf(NULL, 0, fmt, aq);
1013 	va_end(aq);
1014 
1015 	p = devm_kmalloc(dev, len+1, gfp);
1016 	if (!p)
1017 		return NULL;
1018 
1019 	vsnprintf(p, len+1, fmt, ap);
1020 
1021 	return p;
1022 }
1023 EXPORT_SYMBOL(devm_kvasprintf);
1024 
1025 /**
1026  * devm_kasprintf - Allocate resource managed space and format a string
1027  *		    into that.
1028  * @dev: Device to allocate memory for
1029  * @gfp: the GFP mask used in the devm_kmalloc() call when
1030  *       allocating memory
1031  * @fmt: The printf()-style format string
1032  * @...: Arguments for the format string
1033  * RETURNS:
1034  * Pointer to allocated string on success, NULL on failure.
1035  */
1036 char *devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...)
1037 {
1038 	va_list ap;
1039 	char *p;
1040 
1041 	va_start(ap, fmt);
1042 	p = devm_kvasprintf(dev, gfp, fmt, ap);
1043 	va_end(ap);
1044 
1045 	return p;
1046 }
1047 EXPORT_SYMBOL_GPL(devm_kasprintf);
1048 
1049 /**
1050  * devm_kfree - Resource-managed kfree
1051  * @dev: Device this memory belongs to
1052  * @p: Memory to free
1053  *
1054  * Free memory allocated with devm_kmalloc().
1055  */
1056 void devm_kfree(struct device *dev, const void *p)
1057 {
1058 	int rc;
1059 
1060 	/*
1061 	 * Special cases: pointer to a string in .rodata returned by
1062 	 * devm_kstrdup_const() or NULL/ZERO ptr.
1063 	 */
1064 	if (unlikely(is_kernel_rodata((unsigned long)p) || ZERO_OR_NULL_PTR(p)))
1065 		return;
1066 
1067 	rc = devres_destroy(dev, devm_kmalloc_release,
1068 			    devm_kmalloc_match, (void *)p);
1069 	WARN_ON(rc);
1070 }
1071 EXPORT_SYMBOL_GPL(devm_kfree);
1072 
1073 /**
1074  * devm_kmemdup - Resource-managed kmemdup
1075  * @dev: Device this memory belongs to
1076  * @src: Memory region to duplicate
1077  * @len: Memory region length
1078  * @gfp: GFP mask to use
1079  *
1080  * Duplicate region of a memory using resource managed kmalloc
1081  */
1082 void *devm_kmemdup(struct device *dev, const void *src, size_t len, gfp_t gfp)
1083 {
1084 	void *p;
1085 
1086 	p = devm_kmalloc(dev, len, gfp);
1087 	if (p)
1088 		memcpy(p, src, len);
1089 
1090 	return p;
1091 }
1092 EXPORT_SYMBOL_GPL(devm_kmemdup);
1093 
1094 struct pages_devres {
1095 	unsigned long addr;
1096 	unsigned int order;
1097 };
1098 
1099 static int devm_pages_match(struct device *dev, void *res, void *p)
1100 {
1101 	struct pages_devres *devres = res;
1102 	struct pages_devres *target = p;
1103 
1104 	return devres->addr == target->addr;
1105 }
1106 
1107 static void devm_pages_release(struct device *dev, void *res)
1108 {
1109 	struct pages_devres *devres = res;
1110 
1111 	free_pages(devres->addr, devres->order);
1112 }
1113 
1114 /**
1115  * devm_get_free_pages - Resource-managed __get_free_pages
1116  * @dev: Device to allocate memory for
1117  * @gfp_mask: Allocation gfp flags
1118  * @order: Allocation size is (1 << order) pages
1119  *
1120  * Managed get_free_pages.  Memory allocated with this function is
1121  * automatically freed on driver detach.
1122  *
1123  * RETURNS:
1124  * Address of allocated memory on success, 0 on failure.
1125  */
1126 
1127 unsigned long devm_get_free_pages(struct device *dev,
1128 				  gfp_t gfp_mask, unsigned int order)
1129 {
1130 	struct pages_devres *devres;
1131 	unsigned long addr;
1132 
1133 	addr = __get_free_pages(gfp_mask, order);
1134 
1135 	if (unlikely(!addr))
1136 		return 0;
1137 
1138 	devres = devres_alloc(devm_pages_release,
1139 			      sizeof(struct pages_devres), GFP_KERNEL);
1140 	if (unlikely(!devres)) {
1141 		free_pages(addr, order);
1142 		return 0;
1143 	}
1144 
1145 	devres->addr = addr;
1146 	devres->order = order;
1147 
1148 	devres_add(dev, devres);
1149 	return addr;
1150 }
1151 EXPORT_SYMBOL_GPL(devm_get_free_pages);
1152 
1153 /**
1154  * devm_free_pages - Resource-managed free_pages
1155  * @dev: Device this memory belongs to
1156  * @addr: Memory to free
1157  *
1158  * Free memory allocated with devm_get_free_pages(). Unlike free_pages,
1159  * there is no need to supply the @order.
1160  */
1161 void devm_free_pages(struct device *dev, unsigned long addr)
1162 {
1163 	struct pages_devres devres = { .addr = addr };
1164 
1165 	WARN_ON(devres_release(dev, devm_pages_release, devm_pages_match,
1166 			       &devres));
1167 }
1168 EXPORT_SYMBOL_GPL(devm_free_pages);
1169 
1170 static void devm_percpu_release(struct device *dev, void *pdata)
1171 {
1172 	void __percpu *p;
1173 
1174 	p = *(void __percpu **)pdata;
1175 	free_percpu(p);
1176 }
1177 
1178 static int devm_percpu_match(struct device *dev, void *data, void *p)
1179 {
1180 	struct devres *devr = container_of(data, struct devres, data);
1181 
1182 	return *(void **)devr->data == p;
1183 }
1184 
1185 /**
1186  * __devm_alloc_percpu - Resource-managed alloc_percpu
1187  * @dev: Device to allocate per-cpu memory for
1188  * @size: Size of per-cpu memory to allocate
1189  * @align: Alignment of per-cpu memory to allocate
1190  *
1191  * Managed alloc_percpu. Per-cpu memory allocated with this function is
1192  * automatically freed on driver detach.
1193  *
1194  * RETURNS:
1195  * Pointer to allocated memory on success, NULL on failure.
1196  */
1197 void __percpu *__devm_alloc_percpu(struct device *dev, size_t size,
1198 		size_t align)
1199 {
1200 	void *p;
1201 	void __percpu *pcpu;
1202 
1203 	pcpu = __alloc_percpu(size, align);
1204 	if (!pcpu)
1205 		return NULL;
1206 
1207 	p = devres_alloc(devm_percpu_release, sizeof(void *), GFP_KERNEL);
1208 	if (!p) {
1209 		free_percpu(pcpu);
1210 		return NULL;
1211 	}
1212 
1213 	*(void __percpu **)p = pcpu;
1214 
1215 	devres_add(dev, p);
1216 
1217 	return pcpu;
1218 }
1219 EXPORT_SYMBOL_GPL(__devm_alloc_percpu);
1220 
1221 /**
1222  * devm_free_percpu - Resource-managed free_percpu
1223  * @dev: Device this memory belongs to
1224  * @pdata: Per-cpu memory to free
1225  *
1226  * Free memory allocated with devm_alloc_percpu().
1227  */
1228 void devm_free_percpu(struct device *dev, void __percpu *pdata)
1229 {
1230 	WARN_ON(devres_destroy(dev, devm_percpu_release, devm_percpu_match,
1231 			       (void *)pdata));
1232 }
1233 EXPORT_SYMBOL_GPL(devm_free_percpu);
1234