1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/devres.c - device resource management 4 * 5 * Copyright (c) 2006 SUSE Linux Products GmbH 6 * Copyright (c) 2006 Tejun Heo <teheo@suse.de> 7 */ 8 9 #include <linux/device.h> 10 #include <linux/module.h> 11 #include <linux/slab.h> 12 #include <linux/percpu.h> 13 14 #include <asm/sections.h> 15 16 #include "base.h" 17 #include "trace.h" 18 19 struct devres_node { 20 struct list_head entry; 21 dr_release_t release; 22 const char *name; 23 size_t size; 24 }; 25 26 struct devres { 27 struct devres_node node; 28 /* 29 * Some archs want to perform DMA into kmalloc caches 30 * and need a guaranteed alignment larger than 31 * the alignment of a 64-bit integer. 32 * Thus we use ARCH_DMA_MINALIGN for data[] which will force the same 33 * alignment for struct devres when allocated by kmalloc(). 34 */ 35 u8 __aligned(ARCH_DMA_MINALIGN) data[]; 36 }; 37 38 struct devres_group { 39 struct devres_node node[2]; 40 void *id; 41 int color; 42 /* -- 8 pointers */ 43 }; 44 45 static void set_node_dbginfo(struct devres_node *node, const char *name, 46 size_t size) 47 { 48 node->name = name; 49 node->size = size; 50 } 51 52 #ifdef CONFIG_DEBUG_DEVRES 53 static int log_devres = 0; 54 module_param_named(log, log_devres, int, S_IRUGO | S_IWUSR); 55 56 static void devres_dbg(struct device *dev, struct devres_node *node, 57 const char *op) 58 { 59 if (unlikely(log_devres)) 60 dev_err(dev, "DEVRES %3s %p %s (%zu bytes)\n", 61 op, node, node->name, node->size); 62 } 63 #else /* CONFIG_DEBUG_DEVRES */ 64 #define devres_dbg(dev, node, op) do {} while (0) 65 #endif /* CONFIG_DEBUG_DEVRES */ 66 67 static void devres_log(struct device *dev, struct devres_node *node, 68 const char *op) 69 { 70 trace_devres_log(dev, op, node, node->name, node->size); 71 devres_dbg(dev, node, op); 72 } 73 74 /* 75 * Release functions for devres group. These callbacks are used only 76 * for identification. 77 */ 78 static void group_open_release(struct device *dev, void *res) 79 { 80 /* noop */ 81 } 82 83 static void group_close_release(struct device *dev, void *res) 84 { 85 /* noop */ 86 } 87 88 static struct devres_group * node_to_group(struct devres_node *node) 89 { 90 if (node->release == &group_open_release) 91 return container_of(node, struct devres_group, node[0]); 92 if (node->release == &group_close_release) 93 return container_of(node, struct devres_group, node[1]); 94 return NULL; 95 } 96 97 static bool check_dr_size(size_t size, size_t *tot_size) 98 { 99 /* We must catch any near-SIZE_MAX cases that could overflow. */ 100 if (unlikely(check_add_overflow(sizeof(struct devres), 101 size, tot_size))) 102 return false; 103 104 /* Actually allocate the full kmalloc bucket size. */ 105 *tot_size = kmalloc_size_roundup(*tot_size); 106 107 return true; 108 } 109 110 static __always_inline struct devres * alloc_dr(dr_release_t release, 111 size_t size, gfp_t gfp, int nid) 112 { 113 size_t tot_size; 114 struct devres *dr; 115 116 if (!check_dr_size(size, &tot_size)) 117 return NULL; 118 119 dr = kmalloc_node_track_caller(tot_size, gfp, nid); 120 if (unlikely(!dr)) 121 return NULL; 122 123 /* No need to clear memory twice */ 124 if (!(gfp & __GFP_ZERO)) 125 memset(dr, 0, offsetof(struct devres, data)); 126 127 INIT_LIST_HEAD(&dr->node.entry); 128 dr->node.release = release; 129 return dr; 130 } 131 132 static void add_dr(struct device *dev, struct devres_node *node) 133 { 134 devres_log(dev, node, "ADD"); 135 BUG_ON(!list_empty(&node->entry)); 136 list_add_tail(&node->entry, &dev->devres_head); 137 } 138 139 static void replace_dr(struct device *dev, 140 struct devres_node *old, struct devres_node *new) 141 { 142 devres_log(dev, old, "REPLACE"); 143 BUG_ON(!list_empty(&new->entry)); 144 list_replace(&old->entry, &new->entry); 145 } 146 147 /** 148 * __devres_alloc_node - Allocate device resource data 149 * @release: Release function devres will be associated with 150 * @size: Allocation size 151 * @gfp: Allocation flags 152 * @nid: NUMA node 153 * @name: Name of the resource 154 * 155 * Allocate devres of @size bytes. The allocated area is zeroed, then 156 * associated with @release. The returned pointer can be passed to 157 * other devres_*() functions. 158 * 159 * RETURNS: 160 * Pointer to allocated devres on success, NULL on failure. 161 */ 162 void *__devres_alloc_node(dr_release_t release, size_t size, gfp_t gfp, int nid, 163 const char *name) 164 { 165 struct devres *dr; 166 167 dr = alloc_dr(release, size, gfp | __GFP_ZERO, nid); 168 if (unlikely(!dr)) 169 return NULL; 170 set_node_dbginfo(&dr->node, name, size); 171 return dr->data; 172 } 173 EXPORT_SYMBOL_GPL(__devres_alloc_node); 174 175 /** 176 * devres_for_each_res - Resource iterator 177 * @dev: Device to iterate resource from 178 * @release: Look for resources associated with this release function 179 * @match: Match function (optional) 180 * @match_data: Data for the match function 181 * @fn: Function to be called for each matched resource. 182 * @data: Data for @fn, the 3rd parameter of @fn 183 * 184 * Call @fn for each devres of @dev which is associated with @release 185 * and for which @match returns 1. 186 * 187 * RETURNS: 188 * void 189 */ 190 void devres_for_each_res(struct device *dev, dr_release_t release, 191 dr_match_t match, void *match_data, 192 void (*fn)(struct device *, void *, void *), 193 void *data) 194 { 195 struct devres_node *node; 196 struct devres_node *tmp; 197 unsigned long flags; 198 199 if (!fn) 200 return; 201 202 spin_lock_irqsave(&dev->devres_lock, flags); 203 list_for_each_entry_safe_reverse(node, tmp, 204 &dev->devres_head, entry) { 205 struct devres *dr = container_of(node, struct devres, node); 206 207 if (node->release != release) 208 continue; 209 if (match && !match(dev, dr->data, match_data)) 210 continue; 211 fn(dev, dr->data, data); 212 } 213 spin_unlock_irqrestore(&dev->devres_lock, flags); 214 } 215 EXPORT_SYMBOL_GPL(devres_for_each_res); 216 217 /** 218 * devres_free - Free device resource data 219 * @res: Pointer to devres data to free 220 * 221 * Free devres created with devres_alloc(). 222 */ 223 void devres_free(void *res) 224 { 225 if (res) { 226 struct devres *dr = container_of(res, struct devres, data); 227 228 BUG_ON(!list_empty(&dr->node.entry)); 229 kfree(dr); 230 } 231 } 232 EXPORT_SYMBOL_GPL(devres_free); 233 234 /** 235 * devres_add - Register device resource 236 * @dev: Device to add resource to 237 * @res: Resource to register 238 * 239 * Register devres @res to @dev. @res should have been allocated 240 * using devres_alloc(). On driver detach, the associated release 241 * function will be invoked and devres will be freed automatically. 242 */ 243 void devres_add(struct device *dev, void *res) 244 { 245 struct devres *dr = container_of(res, struct devres, data); 246 unsigned long flags; 247 248 spin_lock_irqsave(&dev->devres_lock, flags); 249 add_dr(dev, &dr->node); 250 spin_unlock_irqrestore(&dev->devres_lock, flags); 251 } 252 EXPORT_SYMBOL_GPL(devres_add); 253 254 static struct devres *find_dr(struct device *dev, dr_release_t release, 255 dr_match_t match, void *match_data) 256 { 257 struct devres_node *node; 258 259 list_for_each_entry_reverse(node, &dev->devres_head, entry) { 260 struct devres *dr = container_of(node, struct devres, node); 261 262 if (node->release != release) 263 continue; 264 if (match && !match(dev, dr->data, match_data)) 265 continue; 266 return dr; 267 } 268 269 return NULL; 270 } 271 272 /** 273 * devres_find - Find device resource 274 * @dev: Device to lookup resource from 275 * @release: Look for resources associated with this release function 276 * @match: Match function (optional) 277 * @match_data: Data for the match function 278 * 279 * Find the latest devres of @dev which is associated with @release 280 * and for which @match returns 1. If @match is NULL, it's considered 281 * to match all. 282 * 283 * RETURNS: 284 * Pointer to found devres, NULL if not found. 285 */ 286 void * devres_find(struct device *dev, dr_release_t release, 287 dr_match_t match, void *match_data) 288 { 289 struct devres *dr; 290 unsigned long flags; 291 292 spin_lock_irqsave(&dev->devres_lock, flags); 293 dr = find_dr(dev, release, match, match_data); 294 spin_unlock_irqrestore(&dev->devres_lock, flags); 295 296 if (dr) 297 return dr->data; 298 return NULL; 299 } 300 EXPORT_SYMBOL_GPL(devres_find); 301 302 /** 303 * devres_get - Find devres, if non-existent, add one atomically 304 * @dev: Device to lookup or add devres for 305 * @new_res: Pointer to new initialized devres to add if not found 306 * @match: Match function (optional) 307 * @match_data: Data for the match function 308 * 309 * Find the latest devres of @dev which has the same release function 310 * as @new_res and for which @match return 1. If found, @new_res is 311 * freed; otherwise, @new_res is added atomically. 312 * 313 * RETURNS: 314 * Pointer to found or added devres. 315 */ 316 void * devres_get(struct device *dev, void *new_res, 317 dr_match_t match, void *match_data) 318 { 319 struct devres *new_dr = container_of(new_res, struct devres, data); 320 struct devres *dr; 321 unsigned long flags; 322 323 spin_lock_irqsave(&dev->devres_lock, flags); 324 dr = find_dr(dev, new_dr->node.release, match, match_data); 325 if (!dr) { 326 add_dr(dev, &new_dr->node); 327 dr = new_dr; 328 new_res = NULL; 329 } 330 spin_unlock_irqrestore(&dev->devres_lock, flags); 331 devres_free(new_res); 332 333 return dr->data; 334 } 335 EXPORT_SYMBOL_GPL(devres_get); 336 337 /** 338 * devres_remove - Find a device resource and remove it 339 * @dev: Device to find resource from 340 * @release: Look for resources associated with this release function 341 * @match: Match function (optional) 342 * @match_data: Data for the match function 343 * 344 * Find the latest devres of @dev associated with @release and for 345 * which @match returns 1. If @match is NULL, it's considered to 346 * match all. If found, the resource is removed atomically and 347 * returned. 348 * 349 * RETURNS: 350 * Pointer to removed devres on success, NULL if not found. 351 */ 352 void * devres_remove(struct device *dev, dr_release_t release, 353 dr_match_t match, void *match_data) 354 { 355 struct devres *dr; 356 unsigned long flags; 357 358 spin_lock_irqsave(&dev->devres_lock, flags); 359 dr = find_dr(dev, release, match, match_data); 360 if (dr) { 361 list_del_init(&dr->node.entry); 362 devres_log(dev, &dr->node, "REM"); 363 } 364 spin_unlock_irqrestore(&dev->devres_lock, flags); 365 366 if (dr) 367 return dr->data; 368 return NULL; 369 } 370 EXPORT_SYMBOL_GPL(devres_remove); 371 372 /** 373 * devres_destroy - Find a device resource and destroy it 374 * @dev: Device to find resource from 375 * @release: Look for resources associated with this release function 376 * @match: Match function (optional) 377 * @match_data: Data for the match function 378 * 379 * Find the latest devres of @dev associated with @release and for 380 * which @match returns 1. If @match is NULL, it's considered to 381 * match all. If found, the resource is removed atomically and freed. 382 * 383 * Note that the release function for the resource will not be called, 384 * only the devres-allocated data will be freed. The caller becomes 385 * responsible for freeing any other data. 386 * 387 * RETURNS: 388 * 0 if devres is found and freed, -ENOENT if not found. 389 */ 390 int devres_destroy(struct device *dev, dr_release_t release, 391 dr_match_t match, void *match_data) 392 { 393 void *res; 394 395 res = devres_remove(dev, release, match, match_data); 396 if (unlikely(!res)) 397 return -ENOENT; 398 399 devres_free(res); 400 return 0; 401 } 402 EXPORT_SYMBOL_GPL(devres_destroy); 403 404 405 /** 406 * devres_release - Find a device resource and destroy it, calling release 407 * @dev: Device to find resource from 408 * @release: Look for resources associated with this release function 409 * @match: Match function (optional) 410 * @match_data: Data for the match function 411 * 412 * Find the latest devres of @dev associated with @release and for 413 * which @match returns 1. If @match is NULL, it's considered to 414 * match all. If found, the resource is removed atomically, the 415 * release function called and the resource freed. 416 * 417 * RETURNS: 418 * 0 if devres is found and freed, -ENOENT if not found. 419 */ 420 int devres_release(struct device *dev, dr_release_t release, 421 dr_match_t match, void *match_data) 422 { 423 void *res; 424 425 res = devres_remove(dev, release, match, match_data); 426 if (unlikely(!res)) 427 return -ENOENT; 428 429 (*release)(dev, res); 430 devres_free(res); 431 return 0; 432 } 433 EXPORT_SYMBOL_GPL(devres_release); 434 435 static int remove_nodes(struct device *dev, 436 struct list_head *first, struct list_head *end, 437 struct list_head *todo) 438 { 439 struct devres_node *node, *n; 440 int cnt = 0, nr_groups = 0; 441 442 /* First pass - move normal devres entries to @todo and clear 443 * devres_group colors. 444 */ 445 node = list_entry(first, struct devres_node, entry); 446 list_for_each_entry_safe_from(node, n, end, entry) { 447 struct devres_group *grp; 448 449 grp = node_to_group(node); 450 if (grp) { 451 /* clear color of group markers in the first pass */ 452 grp->color = 0; 453 nr_groups++; 454 } else { 455 /* regular devres entry */ 456 if (&node->entry == first) 457 first = first->next; 458 list_move_tail(&node->entry, todo); 459 cnt++; 460 } 461 } 462 463 if (!nr_groups) 464 return cnt; 465 466 /* Second pass - Scan groups and color them. A group gets 467 * color value of two iff the group is wholly contained in 468 * [current node, end). That is, for a closed group, both opening 469 * and closing markers should be in the range, while just the 470 * opening marker is enough for an open group. 471 */ 472 node = list_entry(first, struct devres_node, entry); 473 list_for_each_entry_safe_from(node, n, end, entry) { 474 struct devres_group *grp; 475 476 grp = node_to_group(node); 477 BUG_ON(!grp || list_empty(&grp->node[0].entry)); 478 479 grp->color++; 480 if (list_empty(&grp->node[1].entry)) 481 grp->color++; 482 483 BUG_ON(grp->color <= 0 || grp->color > 2); 484 if (grp->color == 2) { 485 /* No need to update current node or end. The removed 486 * nodes are always before both. 487 */ 488 list_move_tail(&grp->node[0].entry, todo); 489 list_del_init(&grp->node[1].entry); 490 } 491 } 492 493 return cnt; 494 } 495 496 static void release_nodes(struct device *dev, struct list_head *todo) 497 { 498 struct devres *dr, *tmp; 499 500 /* Release. Note that both devres and devres_group are 501 * handled as devres in the following loop. This is safe. 502 */ 503 list_for_each_entry_safe_reverse(dr, tmp, todo, node.entry) { 504 devres_log(dev, &dr->node, "REL"); 505 dr->node.release(dev, dr->data); 506 kfree(dr); 507 } 508 } 509 510 /** 511 * devres_release_all - Release all managed resources 512 * @dev: Device to release resources for 513 * 514 * Release all resources associated with @dev. This function is 515 * called on driver detach. 516 */ 517 int devres_release_all(struct device *dev) 518 { 519 unsigned long flags; 520 LIST_HEAD(todo); 521 int cnt; 522 523 /* Looks like an uninitialized device structure */ 524 if (WARN_ON(dev->devres_head.next == NULL)) 525 return -ENODEV; 526 527 /* Nothing to release if list is empty */ 528 if (list_empty(&dev->devres_head)) 529 return 0; 530 531 spin_lock_irqsave(&dev->devres_lock, flags); 532 cnt = remove_nodes(dev, dev->devres_head.next, &dev->devres_head, &todo); 533 spin_unlock_irqrestore(&dev->devres_lock, flags); 534 535 release_nodes(dev, &todo); 536 return cnt; 537 } 538 539 /** 540 * devres_open_group - Open a new devres group 541 * @dev: Device to open devres group for 542 * @id: Separator ID 543 * @gfp: Allocation flags 544 * 545 * Open a new devres group for @dev with @id. For @id, using a 546 * pointer to an object which won't be used for another group is 547 * recommended. If @id is NULL, address-wise unique ID is created. 548 * 549 * RETURNS: 550 * ID of the new group, NULL on failure. 551 */ 552 void * devres_open_group(struct device *dev, void *id, gfp_t gfp) 553 { 554 struct devres_group *grp; 555 unsigned long flags; 556 557 grp = kmalloc(sizeof(*grp), gfp); 558 if (unlikely(!grp)) 559 return NULL; 560 561 grp->node[0].release = &group_open_release; 562 grp->node[1].release = &group_close_release; 563 INIT_LIST_HEAD(&grp->node[0].entry); 564 INIT_LIST_HEAD(&grp->node[1].entry); 565 set_node_dbginfo(&grp->node[0], "grp<", 0); 566 set_node_dbginfo(&grp->node[1], "grp>", 0); 567 grp->id = grp; 568 if (id) 569 grp->id = id; 570 grp->color = 0; 571 572 spin_lock_irqsave(&dev->devres_lock, flags); 573 add_dr(dev, &grp->node[0]); 574 spin_unlock_irqrestore(&dev->devres_lock, flags); 575 return grp->id; 576 } 577 EXPORT_SYMBOL_GPL(devres_open_group); 578 579 /* Find devres group with ID @id. If @id is NULL, look for the latest. */ 580 static struct devres_group * find_group(struct device *dev, void *id) 581 { 582 struct devres_node *node; 583 584 list_for_each_entry_reverse(node, &dev->devres_head, entry) { 585 struct devres_group *grp; 586 587 if (node->release != &group_open_release) 588 continue; 589 590 grp = container_of(node, struct devres_group, node[0]); 591 592 if (id) { 593 if (grp->id == id) 594 return grp; 595 } else if (list_empty(&grp->node[1].entry)) 596 return grp; 597 } 598 599 return NULL; 600 } 601 602 /** 603 * devres_close_group - Close a devres group 604 * @dev: Device to close devres group for 605 * @id: ID of target group, can be NULL 606 * 607 * Close the group identified by @id. If @id is NULL, the latest open 608 * group is selected. 609 */ 610 void devres_close_group(struct device *dev, void *id) 611 { 612 struct devres_group *grp; 613 unsigned long flags; 614 615 spin_lock_irqsave(&dev->devres_lock, flags); 616 617 grp = find_group(dev, id); 618 if (grp) 619 add_dr(dev, &grp->node[1]); 620 else 621 WARN_ON(1); 622 623 spin_unlock_irqrestore(&dev->devres_lock, flags); 624 } 625 EXPORT_SYMBOL_GPL(devres_close_group); 626 627 /** 628 * devres_remove_group - Remove a devres group 629 * @dev: Device to remove group for 630 * @id: ID of target group, can be NULL 631 * 632 * Remove the group identified by @id. If @id is NULL, the latest 633 * open group is selected. Note that removing a group doesn't affect 634 * any other resources. 635 */ 636 void devres_remove_group(struct device *dev, void *id) 637 { 638 struct devres_group *grp; 639 unsigned long flags; 640 641 spin_lock_irqsave(&dev->devres_lock, flags); 642 643 grp = find_group(dev, id); 644 if (grp) { 645 list_del_init(&grp->node[0].entry); 646 list_del_init(&grp->node[1].entry); 647 devres_log(dev, &grp->node[0], "REM"); 648 } else 649 WARN_ON(1); 650 651 spin_unlock_irqrestore(&dev->devres_lock, flags); 652 653 kfree(grp); 654 } 655 EXPORT_SYMBOL_GPL(devres_remove_group); 656 657 /** 658 * devres_release_group - Release resources in a devres group 659 * @dev: Device to release group for 660 * @id: ID of target group, can be NULL 661 * 662 * Release all resources in the group identified by @id. If @id is 663 * NULL, the latest open group is selected. The selected group and 664 * groups properly nested inside the selected group are removed. 665 * 666 * RETURNS: 667 * The number of released non-group resources. 668 */ 669 int devres_release_group(struct device *dev, void *id) 670 { 671 struct devres_group *grp; 672 unsigned long flags; 673 LIST_HEAD(todo); 674 int cnt = 0; 675 676 spin_lock_irqsave(&dev->devres_lock, flags); 677 678 grp = find_group(dev, id); 679 if (grp) { 680 struct list_head *first = &grp->node[0].entry; 681 struct list_head *end = &dev->devres_head; 682 683 if (!list_empty(&grp->node[1].entry)) 684 end = grp->node[1].entry.next; 685 686 cnt = remove_nodes(dev, first, end, &todo); 687 spin_unlock_irqrestore(&dev->devres_lock, flags); 688 689 release_nodes(dev, &todo); 690 } else { 691 WARN_ON(1); 692 spin_unlock_irqrestore(&dev->devres_lock, flags); 693 } 694 695 return cnt; 696 } 697 EXPORT_SYMBOL_GPL(devres_release_group); 698 699 /* 700 * Custom devres actions allow inserting a simple function call 701 * into the teardown sequence. 702 */ 703 704 struct action_devres { 705 void *data; 706 void (*action)(void *); 707 }; 708 709 static int devm_action_match(struct device *dev, void *res, void *p) 710 { 711 struct action_devres *devres = res; 712 struct action_devres *target = p; 713 714 return devres->action == target->action && 715 devres->data == target->data; 716 } 717 718 static void devm_action_release(struct device *dev, void *res) 719 { 720 struct action_devres *devres = res; 721 722 devres->action(devres->data); 723 } 724 725 /** 726 * __devm_add_action() - add a custom action to list of managed resources 727 * @dev: Device that owns the action 728 * @action: Function that should be called 729 * @data: Pointer to data passed to @action implementation 730 * @name: Name of the resource (for debugging purposes) 731 * 732 * This adds a custom action to the list of managed resources so that 733 * it gets executed as part of standard resource unwinding. 734 */ 735 int __devm_add_action(struct device *dev, void (*action)(void *), void *data, const char *name) 736 { 737 struct action_devres *devres; 738 739 devres = __devres_alloc_node(devm_action_release, sizeof(struct action_devres), 740 GFP_KERNEL, NUMA_NO_NODE, name); 741 if (!devres) 742 return -ENOMEM; 743 744 devres->data = data; 745 devres->action = action; 746 747 devres_add(dev, devres); 748 return 0; 749 } 750 EXPORT_SYMBOL_GPL(__devm_add_action); 751 752 /** 753 * devm_remove_action() - removes previously added custom action 754 * @dev: Device that owns the action 755 * @action: Function implementing the action 756 * @data: Pointer to data passed to @action implementation 757 * 758 * Removes instance of @action previously added by devm_add_action(). 759 * Both action and data should match one of the existing entries. 760 */ 761 void devm_remove_action(struct device *dev, void (*action)(void *), void *data) 762 { 763 struct action_devres devres = { 764 .data = data, 765 .action = action, 766 }; 767 768 WARN_ON(devres_destroy(dev, devm_action_release, devm_action_match, 769 &devres)); 770 } 771 EXPORT_SYMBOL_GPL(devm_remove_action); 772 773 /** 774 * devm_release_action() - release previously added custom action 775 * @dev: Device that owns the action 776 * @action: Function implementing the action 777 * @data: Pointer to data passed to @action implementation 778 * 779 * Releases and removes instance of @action previously added by 780 * devm_add_action(). Both action and data should match one of the 781 * existing entries. 782 */ 783 void devm_release_action(struct device *dev, void (*action)(void *), void *data) 784 { 785 struct action_devres devres = { 786 .data = data, 787 .action = action, 788 }; 789 790 WARN_ON(devres_release(dev, devm_action_release, devm_action_match, 791 &devres)); 792 793 } 794 EXPORT_SYMBOL_GPL(devm_release_action); 795 796 /* 797 * Managed kmalloc/kfree 798 */ 799 static void devm_kmalloc_release(struct device *dev, void *res) 800 { 801 /* noop */ 802 } 803 804 static int devm_kmalloc_match(struct device *dev, void *res, void *data) 805 { 806 return res == data; 807 } 808 809 /** 810 * devm_kmalloc - Resource-managed kmalloc 811 * @dev: Device to allocate memory for 812 * @size: Allocation size 813 * @gfp: Allocation gfp flags 814 * 815 * Managed kmalloc. Memory allocated with this function is 816 * automatically freed on driver detach. Like all other devres 817 * resources, guaranteed alignment is unsigned long long. 818 * 819 * RETURNS: 820 * Pointer to allocated memory on success, NULL on failure. 821 */ 822 void *devm_kmalloc(struct device *dev, size_t size, gfp_t gfp) 823 { 824 struct devres *dr; 825 826 if (unlikely(!size)) 827 return ZERO_SIZE_PTR; 828 829 /* use raw alloc_dr for kmalloc caller tracing */ 830 dr = alloc_dr(devm_kmalloc_release, size, gfp, dev_to_node(dev)); 831 if (unlikely(!dr)) 832 return NULL; 833 834 /* 835 * This is named devm_kzalloc_release for historical reasons 836 * The initial implementation did not support kmalloc, only kzalloc 837 */ 838 set_node_dbginfo(&dr->node, "devm_kzalloc_release", size); 839 devres_add(dev, dr->data); 840 return dr->data; 841 } 842 EXPORT_SYMBOL_GPL(devm_kmalloc); 843 844 /** 845 * devm_krealloc - Resource-managed krealloc() 846 * @dev: Device to re-allocate memory for 847 * @ptr: Pointer to the memory chunk to re-allocate 848 * @new_size: New allocation size 849 * @gfp: Allocation gfp flags 850 * 851 * Managed krealloc(). Resizes the memory chunk allocated with devm_kmalloc(). 852 * Behaves similarly to regular krealloc(): if @ptr is NULL or ZERO_SIZE_PTR, 853 * it's the equivalent of devm_kmalloc(). If new_size is zero, it frees the 854 * previously allocated memory and returns ZERO_SIZE_PTR. This function doesn't 855 * change the order in which the release callback for the re-alloc'ed devres 856 * will be called (except when falling back to devm_kmalloc() or when freeing 857 * resources when new_size is zero). The contents of the memory are preserved 858 * up to the lesser of new and old sizes. 859 */ 860 void *devm_krealloc(struct device *dev, void *ptr, size_t new_size, gfp_t gfp) 861 { 862 size_t total_new_size, total_old_size; 863 struct devres *old_dr, *new_dr; 864 unsigned long flags; 865 866 if (unlikely(!new_size)) { 867 devm_kfree(dev, ptr); 868 return ZERO_SIZE_PTR; 869 } 870 871 if (unlikely(ZERO_OR_NULL_PTR(ptr))) 872 return devm_kmalloc(dev, new_size, gfp); 873 874 if (WARN_ON(is_kernel_rodata((unsigned long)ptr))) 875 /* 876 * We cannot reliably realloc a const string returned by 877 * devm_kstrdup_const(). 878 */ 879 return NULL; 880 881 if (!check_dr_size(new_size, &total_new_size)) 882 return NULL; 883 884 total_old_size = ksize(container_of(ptr, struct devres, data)); 885 if (total_old_size == 0) { 886 WARN(1, "Pointer doesn't point to dynamically allocated memory."); 887 return NULL; 888 } 889 890 /* 891 * If new size is smaller or equal to the actual number of bytes 892 * allocated previously - just return the same pointer. 893 */ 894 if (total_new_size <= total_old_size) 895 return ptr; 896 897 /* 898 * Otherwise: allocate new, larger chunk. We need to allocate before 899 * taking the lock as most probably the caller uses GFP_KERNEL. 900 * alloc_dr() will call check_dr_size() to reserve extra memory 901 * for struct devres automatically, so size @new_size user request 902 * is delivered to it directly as devm_kmalloc() does. 903 */ 904 new_dr = alloc_dr(devm_kmalloc_release, 905 new_size, gfp, dev_to_node(dev)); 906 if (!new_dr) 907 return NULL; 908 909 /* 910 * The spinlock protects the linked list against concurrent 911 * modifications but not the resource itself. 912 */ 913 spin_lock_irqsave(&dev->devres_lock, flags); 914 915 old_dr = find_dr(dev, devm_kmalloc_release, devm_kmalloc_match, ptr); 916 if (!old_dr) { 917 spin_unlock_irqrestore(&dev->devres_lock, flags); 918 kfree(new_dr); 919 WARN(1, "Memory chunk not managed or managed by a different device."); 920 return NULL; 921 } 922 923 replace_dr(dev, &old_dr->node, &new_dr->node); 924 925 spin_unlock_irqrestore(&dev->devres_lock, flags); 926 927 /* 928 * We can copy the memory contents after releasing the lock as we're 929 * no longer modifying the list links. 930 */ 931 memcpy(new_dr->data, old_dr->data, 932 total_old_size - offsetof(struct devres, data)); 933 /* 934 * Same for releasing the old devres - it's now been removed from the 935 * list. This is also the reason why we must not use devm_kfree() - the 936 * links are no longer valid. 937 */ 938 kfree(old_dr); 939 940 return new_dr->data; 941 } 942 EXPORT_SYMBOL_GPL(devm_krealloc); 943 944 /** 945 * devm_kstrdup - Allocate resource managed space and 946 * copy an existing string into that. 947 * @dev: Device to allocate memory for 948 * @s: the string to duplicate 949 * @gfp: the GFP mask used in the devm_kmalloc() call when 950 * allocating memory 951 * RETURNS: 952 * Pointer to allocated string on success, NULL on failure. 953 */ 954 char *devm_kstrdup(struct device *dev, const char *s, gfp_t gfp) 955 { 956 size_t size; 957 char *buf; 958 959 if (!s) 960 return NULL; 961 962 size = strlen(s) + 1; 963 buf = devm_kmalloc(dev, size, gfp); 964 if (buf) 965 memcpy(buf, s, size); 966 return buf; 967 } 968 EXPORT_SYMBOL_GPL(devm_kstrdup); 969 970 /** 971 * devm_kstrdup_const - resource managed conditional string duplication 972 * @dev: device for which to duplicate the string 973 * @s: the string to duplicate 974 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 975 * 976 * Strings allocated by devm_kstrdup_const will be automatically freed when 977 * the associated device is detached. 978 * 979 * RETURNS: 980 * Source string if it is in .rodata section otherwise it falls back to 981 * devm_kstrdup. 982 */ 983 const char *devm_kstrdup_const(struct device *dev, const char *s, gfp_t gfp) 984 { 985 if (is_kernel_rodata((unsigned long)s)) 986 return s; 987 988 return devm_kstrdup(dev, s, gfp); 989 } 990 EXPORT_SYMBOL_GPL(devm_kstrdup_const); 991 992 /** 993 * devm_kvasprintf - Allocate resource managed space and format a string 994 * into that. 995 * @dev: Device to allocate memory for 996 * @gfp: the GFP mask used in the devm_kmalloc() call when 997 * allocating memory 998 * @fmt: The printf()-style format string 999 * @ap: Arguments for the format string 1000 * RETURNS: 1001 * Pointer to allocated string on success, NULL on failure. 1002 */ 1003 char *devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt, 1004 va_list ap) 1005 { 1006 unsigned int len; 1007 char *p; 1008 va_list aq; 1009 1010 va_copy(aq, ap); 1011 len = vsnprintf(NULL, 0, fmt, aq); 1012 va_end(aq); 1013 1014 p = devm_kmalloc(dev, len+1, gfp); 1015 if (!p) 1016 return NULL; 1017 1018 vsnprintf(p, len+1, fmt, ap); 1019 1020 return p; 1021 } 1022 EXPORT_SYMBOL(devm_kvasprintf); 1023 1024 /** 1025 * devm_kasprintf - Allocate resource managed space and format a string 1026 * into that. 1027 * @dev: Device to allocate memory for 1028 * @gfp: the GFP mask used in the devm_kmalloc() call when 1029 * allocating memory 1030 * @fmt: The printf()-style format string 1031 * @...: Arguments for the format string 1032 * RETURNS: 1033 * Pointer to allocated string on success, NULL on failure. 1034 */ 1035 char *devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...) 1036 { 1037 va_list ap; 1038 char *p; 1039 1040 va_start(ap, fmt); 1041 p = devm_kvasprintf(dev, gfp, fmt, ap); 1042 va_end(ap); 1043 1044 return p; 1045 } 1046 EXPORT_SYMBOL_GPL(devm_kasprintf); 1047 1048 /** 1049 * devm_kfree - Resource-managed kfree 1050 * @dev: Device this memory belongs to 1051 * @p: Memory to free 1052 * 1053 * Free memory allocated with devm_kmalloc(). 1054 */ 1055 void devm_kfree(struct device *dev, const void *p) 1056 { 1057 int rc; 1058 1059 /* 1060 * Special cases: pointer to a string in .rodata returned by 1061 * devm_kstrdup_const() or NULL/ZERO ptr. 1062 */ 1063 if (unlikely(is_kernel_rodata((unsigned long)p) || ZERO_OR_NULL_PTR(p))) 1064 return; 1065 1066 rc = devres_destroy(dev, devm_kmalloc_release, 1067 devm_kmalloc_match, (void *)p); 1068 WARN_ON(rc); 1069 } 1070 EXPORT_SYMBOL_GPL(devm_kfree); 1071 1072 /** 1073 * devm_kmemdup - Resource-managed kmemdup 1074 * @dev: Device this memory belongs to 1075 * @src: Memory region to duplicate 1076 * @len: Memory region length 1077 * @gfp: GFP mask to use 1078 * 1079 * Duplicate region of a memory using resource managed kmalloc 1080 */ 1081 void *devm_kmemdup(struct device *dev, const void *src, size_t len, gfp_t gfp) 1082 { 1083 void *p; 1084 1085 p = devm_kmalloc(dev, len, gfp); 1086 if (p) 1087 memcpy(p, src, len); 1088 1089 return p; 1090 } 1091 EXPORT_SYMBOL_GPL(devm_kmemdup); 1092 1093 struct pages_devres { 1094 unsigned long addr; 1095 unsigned int order; 1096 }; 1097 1098 static int devm_pages_match(struct device *dev, void *res, void *p) 1099 { 1100 struct pages_devres *devres = res; 1101 struct pages_devres *target = p; 1102 1103 return devres->addr == target->addr; 1104 } 1105 1106 static void devm_pages_release(struct device *dev, void *res) 1107 { 1108 struct pages_devres *devres = res; 1109 1110 free_pages(devres->addr, devres->order); 1111 } 1112 1113 /** 1114 * devm_get_free_pages - Resource-managed __get_free_pages 1115 * @dev: Device to allocate memory for 1116 * @gfp_mask: Allocation gfp flags 1117 * @order: Allocation size is (1 << order) pages 1118 * 1119 * Managed get_free_pages. Memory allocated with this function is 1120 * automatically freed on driver detach. 1121 * 1122 * RETURNS: 1123 * Address of allocated memory on success, 0 on failure. 1124 */ 1125 1126 unsigned long devm_get_free_pages(struct device *dev, 1127 gfp_t gfp_mask, unsigned int order) 1128 { 1129 struct pages_devres *devres; 1130 unsigned long addr; 1131 1132 addr = __get_free_pages(gfp_mask, order); 1133 1134 if (unlikely(!addr)) 1135 return 0; 1136 1137 devres = devres_alloc(devm_pages_release, 1138 sizeof(struct pages_devres), GFP_KERNEL); 1139 if (unlikely(!devres)) { 1140 free_pages(addr, order); 1141 return 0; 1142 } 1143 1144 devres->addr = addr; 1145 devres->order = order; 1146 1147 devres_add(dev, devres); 1148 return addr; 1149 } 1150 EXPORT_SYMBOL_GPL(devm_get_free_pages); 1151 1152 /** 1153 * devm_free_pages - Resource-managed free_pages 1154 * @dev: Device this memory belongs to 1155 * @addr: Memory to free 1156 * 1157 * Free memory allocated with devm_get_free_pages(). Unlike free_pages, 1158 * there is no need to supply the @order. 1159 */ 1160 void devm_free_pages(struct device *dev, unsigned long addr) 1161 { 1162 struct pages_devres devres = { .addr = addr }; 1163 1164 WARN_ON(devres_release(dev, devm_pages_release, devm_pages_match, 1165 &devres)); 1166 } 1167 EXPORT_SYMBOL_GPL(devm_free_pages); 1168 1169 static void devm_percpu_release(struct device *dev, void *pdata) 1170 { 1171 void __percpu *p; 1172 1173 p = *(void __percpu **)pdata; 1174 free_percpu(p); 1175 } 1176 1177 static int devm_percpu_match(struct device *dev, void *data, void *p) 1178 { 1179 struct devres *devr = container_of(data, struct devres, data); 1180 1181 return *(void **)devr->data == p; 1182 } 1183 1184 /** 1185 * __devm_alloc_percpu - Resource-managed alloc_percpu 1186 * @dev: Device to allocate per-cpu memory for 1187 * @size: Size of per-cpu memory to allocate 1188 * @align: Alignment of per-cpu memory to allocate 1189 * 1190 * Managed alloc_percpu. Per-cpu memory allocated with this function is 1191 * automatically freed on driver detach. 1192 * 1193 * RETURNS: 1194 * Pointer to allocated memory on success, NULL on failure. 1195 */ 1196 void __percpu *__devm_alloc_percpu(struct device *dev, size_t size, 1197 size_t align) 1198 { 1199 void *p; 1200 void __percpu *pcpu; 1201 1202 pcpu = __alloc_percpu(size, align); 1203 if (!pcpu) 1204 return NULL; 1205 1206 p = devres_alloc(devm_percpu_release, sizeof(void *), GFP_KERNEL); 1207 if (!p) { 1208 free_percpu(pcpu); 1209 return NULL; 1210 } 1211 1212 *(void __percpu **)p = pcpu; 1213 1214 devres_add(dev, p); 1215 1216 return pcpu; 1217 } 1218 EXPORT_SYMBOL_GPL(__devm_alloc_percpu); 1219 1220 /** 1221 * devm_free_percpu - Resource-managed free_percpu 1222 * @dev: Device this memory belongs to 1223 * @pdata: Per-cpu memory to free 1224 * 1225 * Free memory allocated with devm_alloc_percpu(). 1226 */ 1227 void devm_free_percpu(struct device *dev, void __percpu *pdata) 1228 { 1229 /* 1230 * Use devres_release() to prevent memory leakage as 1231 * devm_free_pages() does. 1232 */ 1233 WARN_ON(devres_release(dev, devm_percpu_release, devm_percpu_match, 1234 (__force void *)pdata)); 1235 } 1236 EXPORT_SYMBOL_GPL(devm_free_percpu); 1237