1 /* 2 * drivers/base/dd.c - The core device/driver interactions. 3 * 4 * This file contains the (sometimes tricky) code that controls the 5 * interactions between devices and drivers, which primarily includes 6 * driver binding and unbinding. 7 * 8 * All of this code used to exist in drivers/base/bus.c, but was 9 * relocated to here in the name of compartmentalization (since it wasn't 10 * strictly code just for the 'struct bus_type'. 11 * 12 * Copyright (c) 2002-5 Patrick Mochel 13 * Copyright (c) 2002-3 Open Source Development Labs 14 * Copyright (c) 2007-2009 Greg Kroah-Hartman <gregkh@suse.de> 15 * Copyright (c) 2007-2009 Novell Inc. 16 * 17 * This file is released under the GPLv2 18 */ 19 20 #include <linux/device.h> 21 #include <linux/delay.h> 22 #include <linux/module.h> 23 #include <linux/kthread.h> 24 #include <linux/wait.h> 25 #include <linux/async.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/pinctrl/devinfo.h> 28 29 #include "base.h" 30 #include "power/power.h" 31 32 /* 33 * Deferred Probe infrastructure. 34 * 35 * Sometimes driver probe order matters, but the kernel doesn't always have 36 * dependency information which means some drivers will get probed before a 37 * resource it depends on is available. For example, an SDHCI driver may 38 * first need a GPIO line from an i2c GPIO controller before it can be 39 * initialized. If a required resource is not available yet, a driver can 40 * request probing to be deferred by returning -EPROBE_DEFER from its probe hook 41 * 42 * Deferred probe maintains two lists of devices, a pending list and an active 43 * list. A driver returning -EPROBE_DEFER causes the device to be added to the 44 * pending list. A successful driver probe will trigger moving all devices 45 * from the pending to the active list so that the workqueue will eventually 46 * retry them. 47 * 48 * The deferred_probe_mutex must be held any time the deferred_probe_*_list 49 * of the (struct device*)->p->deferred_probe pointers are manipulated 50 */ 51 static DEFINE_MUTEX(deferred_probe_mutex); 52 static LIST_HEAD(deferred_probe_pending_list); 53 static LIST_HEAD(deferred_probe_active_list); 54 static struct workqueue_struct *deferred_wq; 55 static atomic_t deferred_trigger_count = ATOMIC_INIT(0); 56 57 /* 58 * deferred_probe_work_func() - Retry probing devices in the active list. 59 */ 60 static void deferred_probe_work_func(struct work_struct *work) 61 { 62 struct device *dev; 63 struct device_private *private; 64 /* 65 * This block processes every device in the deferred 'active' list. 66 * Each device is removed from the active list and passed to 67 * bus_probe_device() to re-attempt the probe. The loop continues 68 * until every device in the active list is removed and retried. 69 * 70 * Note: Once the device is removed from the list and the mutex is 71 * released, it is possible for the device get freed by another thread 72 * and cause a illegal pointer dereference. This code uses 73 * get/put_device() to ensure the device structure cannot disappear 74 * from under our feet. 75 */ 76 mutex_lock(&deferred_probe_mutex); 77 while (!list_empty(&deferred_probe_active_list)) { 78 private = list_first_entry(&deferred_probe_active_list, 79 typeof(*dev->p), deferred_probe); 80 dev = private->device; 81 list_del_init(&private->deferred_probe); 82 83 get_device(dev); 84 85 /* 86 * Drop the mutex while probing each device; the probe path may 87 * manipulate the deferred list 88 */ 89 mutex_unlock(&deferred_probe_mutex); 90 91 /* 92 * Force the device to the end of the dpm_list since 93 * the PM code assumes that the order we add things to 94 * the list is a good order for suspend but deferred 95 * probe makes that very unsafe. 96 */ 97 device_pm_lock(); 98 device_pm_move_last(dev); 99 device_pm_unlock(); 100 101 dev_dbg(dev, "Retrying from deferred list\n"); 102 bus_probe_device(dev); 103 104 mutex_lock(&deferred_probe_mutex); 105 106 put_device(dev); 107 } 108 mutex_unlock(&deferred_probe_mutex); 109 } 110 static DECLARE_WORK(deferred_probe_work, deferred_probe_work_func); 111 112 static void driver_deferred_probe_add(struct device *dev) 113 { 114 mutex_lock(&deferred_probe_mutex); 115 if (list_empty(&dev->p->deferred_probe)) { 116 dev_dbg(dev, "Added to deferred list\n"); 117 list_add_tail(&dev->p->deferred_probe, &deferred_probe_pending_list); 118 } 119 mutex_unlock(&deferred_probe_mutex); 120 } 121 122 void driver_deferred_probe_del(struct device *dev) 123 { 124 mutex_lock(&deferred_probe_mutex); 125 if (!list_empty(&dev->p->deferred_probe)) { 126 dev_dbg(dev, "Removed from deferred list\n"); 127 list_del_init(&dev->p->deferred_probe); 128 } 129 mutex_unlock(&deferred_probe_mutex); 130 } 131 132 static bool driver_deferred_probe_enable = false; 133 /** 134 * driver_deferred_probe_trigger() - Kick off re-probing deferred devices 135 * 136 * This functions moves all devices from the pending list to the active 137 * list and schedules the deferred probe workqueue to process them. It 138 * should be called anytime a driver is successfully bound to a device. 139 * 140 * Note, there is a race condition in multi-threaded probe. In the case where 141 * more than one device is probing at the same time, it is possible for one 142 * probe to complete successfully while another is about to defer. If the second 143 * depends on the first, then it will get put on the pending list after the 144 * trigger event has already occurred and will be stuck there. 145 * 146 * The atomic 'deferred_trigger_count' is used to determine if a successful 147 * trigger has occurred in the midst of probing a driver. If the trigger count 148 * changes in the midst of a probe, then deferred processing should be triggered 149 * again. 150 */ 151 static void driver_deferred_probe_trigger(void) 152 { 153 if (!driver_deferred_probe_enable) 154 return; 155 156 /* 157 * A successful probe means that all the devices in the pending list 158 * should be triggered to be reprobed. Move all the deferred devices 159 * into the active list so they can be retried by the workqueue 160 */ 161 mutex_lock(&deferred_probe_mutex); 162 atomic_inc(&deferred_trigger_count); 163 list_splice_tail_init(&deferred_probe_pending_list, 164 &deferred_probe_active_list); 165 mutex_unlock(&deferred_probe_mutex); 166 167 /* 168 * Kick the re-probe thread. It may already be scheduled, but it is 169 * safe to kick it again. 170 */ 171 queue_work(deferred_wq, &deferred_probe_work); 172 } 173 174 /** 175 * deferred_probe_initcall() - Enable probing of deferred devices 176 * 177 * We don't want to get in the way when the bulk of drivers are getting probed. 178 * Instead, this initcall makes sure that deferred probing is delayed until 179 * late_initcall time. 180 */ 181 static int deferred_probe_initcall(void) 182 { 183 deferred_wq = create_singlethread_workqueue("deferwq"); 184 if (WARN_ON(!deferred_wq)) 185 return -ENOMEM; 186 187 driver_deferred_probe_enable = true; 188 driver_deferred_probe_trigger(); 189 /* Sort as many dependencies as possible before exiting initcalls */ 190 flush_workqueue(deferred_wq); 191 return 0; 192 } 193 late_initcall(deferred_probe_initcall); 194 195 static void driver_bound(struct device *dev) 196 { 197 if (klist_node_attached(&dev->p->knode_driver)) { 198 printk(KERN_WARNING "%s: device %s already bound\n", 199 __func__, kobject_name(&dev->kobj)); 200 return; 201 } 202 203 pr_debug("driver: '%s': %s: bound to device '%s'\n", dev->driver->name, 204 __func__, dev_name(dev)); 205 206 klist_add_tail(&dev->p->knode_driver, &dev->driver->p->klist_devices); 207 208 /* 209 * Make sure the device is no longer in one of the deferred lists and 210 * kick off retrying all pending devices 211 */ 212 driver_deferred_probe_del(dev); 213 driver_deferred_probe_trigger(); 214 215 if (dev->bus) 216 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 217 BUS_NOTIFY_BOUND_DRIVER, dev); 218 } 219 220 static int driver_sysfs_add(struct device *dev) 221 { 222 int ret; 223 224 if (dev->bus) 225 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 226 BUS_NOTIFY_BIND_DRIVER, dev); 227 228 ret = sysfs_create_link(&dev->driver->p->kobj, &dev->kobj, 229 kobject_name(&dev->kobj)); 230 if (ret == 0) { 231 ret = sysfs_create_link(&dev->kobj, &dev->driver->p->kobj, 232 "driver"); 233 if (ret) 234 sysfs_remove_link(&dev->driver->p->kobj, 235 kobject_name(&dev->kobj)); 236 } 237 return ret; 238 } 239 240 static void driver_sysfs_remove(struct device *dev) 241 { 242 struct device_driver *drv = dev->driver; 243 244 if (drv) { 245 sysfs_remove_link(&drv->p->kobj, kobject_name(&dev->kobj)); 246 sysfs_remove_link(&dev->kobj, "driver"); 247 } 248 } 249 250 /** 251 * device_bind_driver - bind a driver to one device. 252 * @dev: device. 253 * 254 * Allow manual attachment of a driver to a device. 255 * Caller must have already set @dev->driver. 256 * 257 * Note that this does not modify the bus reference count 258 * nor take the bus's rwsem. Please verify those are accounted 259 * for before calling this. (It is ok to call with no other effort 260 * from a driver's probe() method.) 261 * 262 * This function must be called with the device lock held. 263 */ 264 int device_bind_driver(struct device *dev) 265 { 266 int ret; 267 268 ret = driver_sysfs_add(dev); 269 if (!ret) 270 driver_bound(dev); 271 return ret; 272 } 273 EXPORT_SYMBOL_GPL(device_bind_driver); 274 275 static atomic_t probe_count = ATOMIC_INIT(0); 276 static DECLARE_WAIT_QUEUE_HEAD(probe_waitqueue); 277 278 static int really_probe(struct device *dev, struct device_driver *drv) 279 { 280 int ret = 0; 281 int local_trigger_count = atomic_read(&deferred_trigger_count); 282 283 atomic_inc(&probe_count); 284 pr_debug("bus: '%s': %s: probing driver %s with device %s\n", 285 drv->bus->name, __func__, drv->name, dev_name(dev)); 286 WARN_ON(!list_empty(&dev->devres_head)); 287 288 dev->driver = drv; 289 290 /* If using pinctrl, bind pins now before probing */ 291 ret = pinctrl_bind_pins(dev); 292 if (ret) 293 goto probe_failed; 294 295 if (driver_sysfs_add(dev)) { 296 printk(KERN_ERR "%s: driver_sysfs_add(%s) failed\n", 297 __func__, dev_name(dev)); 298 goto probe_failed; 299 } 300 301 if (dev->pm_domain && dev->pm_domain->activate) { 302 ret = dev->pm_domain->activate(dev); 303 if (ret) 304 goto probe_failed; 305 } 306 307 if (dev->bus->probe) { 308 ret = dev->bus->probe(dev); 309 if (ret) 310 goto probe_failed; 311 } else if (drv->probe) { 312 ret = drv->probe(dev); 313 if (ret) 314 goto probe_failed; 315 } 316 317 if (dev->pm_domain && dev->pm_domain->sync) 318 dev->pm_domain->sync(dev); 319 320 driver_bound(dev); 321 ret = 1; 322 pr_debug("bus: '%s': %s: bound device %s to driver %s\n", 323 drv->bus->name, __func__, dev_name(dev), drv->name); 324 goto done; 325 326 probe_failed: 327 devres_release_all(dev); 328 driver_sysfs_remove(dev); 329 dev->driver = NULL; 330 dev_set_drvdata(dev, NULL); 331 if (dev->pm_domain && dev->pm_domain->dismiss) 332 dev->pm_domain->dismiss(dev); 333 334 switch (ret) { 335 case -EPROBE_DEFER: 336 /* Driver requested deferred probing */ 337 dev_dbg(dev, "Driver %s requests probe deferral\n", drv->name); 338 driver_deferred_probe_add(dev); 339 /* Did a trigger occur while probing? Need to re-trigger if yes */ 340 if (local_trigger_count != atomic_read(&deferred_trigger_count)) 341 driver_deferred_probe_trigger(); 342 break; 343 case -ENODEV: 344 case -ENXIO: 345 pr_debug("%s: probe of %s rejects match %d\n", 346 drv->name, dev_name(dev), ret); 347 break; 348 default: 349 /* driver matched but the probe failed */ 350 printk(KERN_WARNING 351 "%s: probe of %s failed with error %d\n", 352 drv->name, dev_name(dev), ret); 353 } 354 /* 355 * Ignore errors returned by ->probe so that the next driver can try 356 * its luck. 357 */ 358 ret = 0; 359 done: 360 atomic_dec(&probe_count); 361 wake_up(&probe_waitqueue); 362 return ret; 363 } 364 365 /** 366 * driver_probe_done 367 * Determine if the probe sequence is finished or not. 368 * 369 * Should somehow figure out how to use a semaphore, not an atomic variable... 370 */ 371 int driver_probe_done(void) 372 { 373 pr_debug("%s: probe_count = %d\n", __func__, 374 atomic_read(&probe_count)); 375 if (atomic_read(&probe_count)) 376 return -EBUSY; 377 return 0; 378 } 379 380 /** 381 * wait_for_device_probe 382 * Wait for device probing to be completed. 383 */ 384 void wait_for_device_probe(void) 385 { 386 /* wait for the known devices to complete their probing */ 387 wait_event(probe_waitqueue, atomic_read(&probe_count) == 0); 388 async_synchronize_full(); 389 } 390 EXPORT_SYMBOL_GPL(wait_for_device_probe); 391 392 /** 393 * driver_probe_device - attempt to bind device & driver together 394 * @drv: driver to bind a device to 395 * @dev: device to try to bind to the driver 396 * 397 * This function returns -ENODEV if the device is not registered, 398 * 1 if the device is bound successfully and 0 otherwise. 399 * 400 * This function must be called with @dev lock held. When called for a 401 * USB interface, @dev->parent lock must be held as well. 402 */ 403 int driver_probe_device(struct device_driver *drv, struct device *dev) 404 { 405 int ret = 0; 406 407 if (!device_is_registered(dev)) 408 return -ENODEV; 409 410 pr_debug("bus: '%s': %s: matched device %s with driver %s\n", 411 drv->bus->name, __func__, dev_name(dev), drv->name); 412 413 pm_runtime_barrier(dev); 414 ret = really_probe(dev, drv); 415 pm_request_idle(dev); 416 417 return ret; 418 } 419 420 bool driver_allows_async_probing(struct device_driver *drv) 421 { 422 switch (drv->probe_type) { 423 case PROBE_PREFER_ASYNCHRONOUS: 424 return true; 425 426 case PROBE_FORCE_SYNCHRONOUS: 427 return false; 428 429 default: 430 if (module_requested_async_probing(drv->owner)) 431 return true; 432 433 return false; 434 } 435 } 436 437 struct device_attach_data { 438 struct device *dev; 439 440 /* 441 * Indicates whether we are are considering asynchronous probing or 442 * not. Only initial binding after device or driver registration 443 * (including deferral processing) may be done asynchronously, the 444 * rest is always synchronous, as we expect it is being done by 445 * request from userspace. 446 */ 447 bool check_async; 448 449 /* 450 * Indicates if we are binding synchronous or asynchronous drivers. 451 * When asynchronous probing is enabled we'll execute 2 passes 452 * over drivers: first pass doing synchronous probing and second 453 * doing asynchronous probing (if synchronous did not succeed - 454 * most likely because there was no driver requiring synchronous 455 * probing - and we found asynchronous driver during first pass). 456 * The 2 passes are done because we can't shoot asynchronous 457 * probe for given device and driver from bus_for_each_drv() since 458 * driver pointer is not guaranteed to stay valid once 459 * bus_for_each_drv() iterates to the next driver on the bus. 460 */ 461 bool want_async; 462 463 /* 464 * We'll set have_async to 'true' if, while scanning for matching 465 * driver, we'll encounter one that requests asynchronous probing. 466 */ 467 bool have_async; 468 }; 469 470 static int __device_attach_driver(struct device_driver *drv, void *_data) 471 { 472 struct device_attach_data *data = _data; 473 struct device *dev = data->dev; 474 bool async_allowed; 475 476 /* 477 * Check if device has already been claimed. This may 478 * happen with driver loading, device discovery/registration, 479 * and deferred probe processing happens all at once with 480 * multiple threads. 481 */ 482 if (dev->driver) 483 return -EBUSY; 484 485 if (!driver_match_device(drv, dev)) 486 return 0; 487 488 async_allowed = driver_allows_async_probing(drv); 489 490 if (async_allowed) 491 data->have_async = true; 492 493 if (data->check_async && async_allowed != data->want_async) 494 return 0; 495 496 return driver_probe_device(drv, dev); 497 } 498 499 static void __device_attach_async_helper(void *_dev, async_cookie_t cookie) 500 { 501 struct device *dev = _dev; 502 struct device_attach_data data = { 503 .dev = dev, 504 .check_async = true, 505 .want_async = true, 506 }; 507 508 device_lock(dev); 509 510 bus_for_each_drv(dev->bus, NULL, &data, __device_attach_driver); 511 dev_dbg(dev, "async probe completed\n"); 512 513 pm_request_idle(dev); 514 515 device_unlock(dev); 516 517 put_device(dev); 518 } 519 520 static int __device_attach(struct device *dev, bool allow_async) 521 { 522 int ret = 0; 523 524 device_lock(dev); 525 if (dev->driver) { 526 if (klist_node_attached(&dev->p->knode_driver)) { 527 ret = 1; 528 goto out_unlock; 529 } 530 ret = device_bind_driver(dev); 531 if (ret == 0) 532 ret = 1; 533 else { 534 dev->driver = NULL; 535 ret = 0; 536 } 537 } else { 538 struct device_attach_data data = { 539 .dev = dev, 540 .check_async = allow_async, 541 .want_async = false, 542 }; 543 544 ret = bus_for_each_drv(dev->bus, NULL, &data, 545 __device_attach_driver); 546 if (!ret && allow_async && data.have_async) { 547 /* 548 * If we could not find appropriate driver 549 * synchronously and we are allowed to do 550 * async probes and there are drivers that 551 * want to probe asynchronously, we'll 552 * try them. 553 */ 554 dev_dbg(dev, "scheduling asynchronous probe\n"); 555 get_device(dev); 556 async_schedule(__device_attach_async_helper, dev); 557 } else { 558 pm_request_idle(dev); 559 } 560 } 561 out_unlock: 562 device_unlock(dev); 563 return ret; 564 } 565 566 /** 567 * device_attach - try to attach device to a driver. 568 * @dev: device. 569 * 570 * Walk the list of drivers that the bus has and call 571 * driver_probe_device() for each pair. If a compatible 572 * pair is found, break out and return. 573 * 574 * Returns 1 if the device was bound to a driver; 575 * 0 if no matching driver was found; 576 * -ENODEV if the device is not registered. 577 * 578 * When called for a USB interface, @dev->parent lock must be held. 579 */ 580 int device_attach(struct device *dev) 581 { 582 return __device_attach(dev, false); 583 } 584 EXPORT_SYMBOL_GPL(device_attach); 585 586 void device_initial_probe(struct device *dev) 587 { 588 __device_attach(dev, true); 589 } 590 591 static int __driver_attach(struct device *dev, void *data) 592 { 593 struct device_driver *drv = data; 594 595 /* 596 * Lock device and try to bind to it. We drop the error 597 * here and always return 0, because we need to keep trying 598 * to bind to devices and some drivers will return an error 599 * simply if it didn't support the device. 600 * 601 * driver_probe_device() will spit a warning if there 602 * is an error. 603 */ 604 605 if (!driver_match_device(drv, dev)) 606 return 0; 607 608 if (dev->parent) /* Needed for USB */ 609 device_lock(dev->parent); 610 device_lock(dev); 611 if (!dev->driver) 612 driver_probe_device(drv, dev); 613 device_unlock(dev); 614 if (dev->parent) 615 device_unlock(dev->parent); 616 617 return 0; 618 } 619 620 /** 621 * driver_attach - try to bind driver to devices. 622 * @drv: driver. 623 * 624 * Walk the list of devices that the bus has on it and try to 625 * match the driver with each one. If driver_probe_device() 626 * returns 0 and the @dev->driver is set, we've found a 627 * compatible pair. 628 */ 629 int driver_attach(struct device_driver *drv) 630 { 631 return bus_for_each_dev(drv->bus, NULL, drv, __driver_attach); 632 } 633 EXPORT_SYMBOL_GPL(driver_attach); 634 635 /* 636 * __device_release_driver() must be called with @dev lock held. 637 * When called for a USB interface, @dev->parent lock must be held as well. 638 */ 639 static void __device_release_driver(struct device *dev) 640 { 641 struct device_driver *drv; 642 643 drv = dev->driver; 644 if (drv) { 645 if (driver_allows_async_probing(drv)) 646 async_synchronize_full(); 647 648 pm_runtime_get_sync(dev); 649 650 driver_sysfs_remove(dev); 651 652 if (dev->bus) 653 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 654 BUS_NOTIFY_UNBIND_DRIVER, 655 dev); 656 657 pm_runtime_put_sync(dev); 658 659 if (dev->bus && dev->bus->remove) 660 dev->bus->remove(dev); 661 else if (drv->remove) 662 drv->remove(dev); 663 devres_release_all(dev); 664 dev->driver = NULL; 665 dev_set_drvdata(dev, NULL); 666 if (dev->pm_domain && dev->pm_domain->dismiss) 667 dev->pm_domain->dismiss(dev); 668 669 klist_remove(&dev->p->knode_driver); 670 if (dev->bus) 671 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 672 BUS_NOTIFY_UNBOUND_DRIVER, 673 dev); 674 675 } 676 } 677 678 /** 679 * device_release_driver - manually detach device from driver. 680 * @dev: device. 681 * 682 * Manually detach device from driver. 683 * When called for a USB interface, @dev->parent lock must be held. 684 */ 685 void device_release_driver(struct device *dev) 686 { 687 /* 688 * If anyone calls device_release_driver() recursively from 689 * within their ->remove callback for the same device, they 690 * will deadlock right here. 691 */ 692 device_lock(dev); 693 __device_release_driver(dev); 694 device_unlock(dev); 695 } 696 EXPORT_SYMBOL_GPL(device_release_driver); 697 698 /** 699 * driver_detach - detach driver from all devices it controls. 700 * @drv: driver. 701 */ 702 void driver_detach(struct device_driver *drv) 703 { 704 struct device_private *dev_prv; 705 struct device *dev; 706 707 for (;;) { 708 spin_lock(&drv->p->klist_devices.k_lock); 709 if (list_empty(&drv->p->klist_devices.k_list)) { 710 spin_unlock(&drv->p->klist_devices.k_lock); 711 break; 712 } 713 dev_prv = list_entry(drv->p->klist_devices.k_list.prev, 714 struct device_private, 715 knode_driver.n_node); 716 dev = dev_prv->device; 717 get_device(dev); 718 spin_unlock(&drv->p->klist_devices.k_lock); 719 720 if (dev->parent) /* Needed for USB */ 721 device_lock(dev->parent); 722 device_lock(dev); 723 if (dev->driver == drv) 724 __device_release_driver(dev); 725 device_unlock(dev); 726 if (dev->parent) 727 device_unlock(dev->parent); 728 put_device(dev); 729 } 730 } 731