1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/cpufreq.h> 13 #include <linux/device.h> 14 #include <linux/err.h> 15 #include <linux/fwnode.h> 16 #include <linux/init.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/string.h> 20 #include <linux/kdev_t.h> 21 #include <linux/notifier.h> 22 #include <linux/of.h> 23 #include <linux/of_device.h> 24 #include <linux/blkdev.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/netdevice.h> 28 #include <linux/sched/signal.h> 29 #include <linux/sched/mm.h> 30 #include <linux/swiotlb.h> 31 #include <linux/sysfs.h> 32 #include <linux/dma-map-ops.h> /* for dma_default_coherent */ 33 34 #include "base.h" 35 #include "physical_location.h" 36 #include "power/power.h" 37 38 #ifdef CONFIG_SYSFS_DEPRECATED 39 #ifdef CONFIG_SYSFS_DEPRECATED_V2 40 long sysfs_deprecated = 1; 41 #else 42 long sysfs_deprecated = 0; 43 #endif 44 static int __init sysfs_deprecated_setup(char *arg) 45 { 46 return kstrtol(arg, 10, &sysfs_deprecated); 47 } 48 early_param("sysfs.deprecated", sysfs_deprecated_setup); 49 #endif 50 51 /* Device links support. */ 52 static LIST_HEAD(deferred_sync); 53 static unsigned int defer_sync_state_count = 1; 54 static DEFINE_MUTEX(fwnode_link_lock); 55 static bool fw_devlink_is_permissive(void); 56 static bool fw_devlink_drv_reg_done; 57 58 /** 59 * fwnode_link_add - Create a link between two fwnode_handles. 60 * @con: Consumer end of the link. 61 * @sup: Supplier end of the link. 62 * 63 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link 64 * represents the detail that the firmware lists @sup fwnode as supplying a 65 * resource to @con. 66 * 67 * The driver core will use the fwnode link to create a device link between the 68 * two device objects corresponding to @con and @sup when they are created. The 69 * driver core will automatically delete the fwnode link between @con and @sup 70 * after doing that. 71 * 72 * Attempts to create duplicate links between the same pair of fwnode handles 73 * are ignored and there is no reference counting. 74 */ 75 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup) 76 { 77 struct fwnode_link *link; 78 int ret = 0; 79 80 mutex_lock(&fwnode_link_lock); 81 82 list_for_each_entry(link, &sup->consumers, s_hook) 83 if (link->consumer == con) 84 goto out; 85 86 link = kzalloc(sizeof(*link), GFP_KERNEL); 87 if (!link) { 88 ret = -ENOMEM; 89 goto out; 90 } 91 92 link->supplier = sup; 93 INIT_LIST_HEAD(&link->s_hook); 94 link->consumer = con; 95 INIT_LIST_HEAD(&link->c_hook); 96 97 list_add(&link->s_hook, &sup->consumers); 98 list_add(&link->c_hook, &con->suppliers); 99 pr_debug("%pfwP Linked as a fwnode consumer to %pfwP\n", 100 con, sup); 101 out: 102 mutex_unlock(&fwnode_link_lock); 103 104 return ret; 105 } 106 107 /** 108 * __fwnode_link_del - Delete a link between two fwnode_handles. 109 * @link: the fwnode_link to be deleted 110 * 111 * The fwnode_link_lock needs to be held when this function is called. 112 */ 113 static void __fwnode_link_del(struct fwnode_link *link) 114 { 115 pr_debug("%pfwP Dropping the fwnode link to %pfwP\n", 116 link->consumer, link->supplier); 117 list_del(&link->s_hook); 118 list_del(&link->c_hook); 119 kfree(link); 120 } 121 122 /** 123 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle. 124 * @fwnode: fwnode whose supplier links need to be deleted 125 * 126 * Deletes all supplier links connecting directly to @fwnode. 127 */ 128 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode) 129 { 130 struct fwnode_link *link, *tmp; 131 132 mutex_lock(&fwnode_link_lock); 133 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) 134 __fwnode_link_del(link); 135 mutex_unlock(&fwnode_link_lock); 136 } 137 138 /** 139 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle. 140 * @fwnode: fwnode whose consumer links need to be deleted 141 * 142 * Deletes all consumer links connecting directly to @fwnode. 143 */ 144 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode) 145 { 146 struct fwnode_link *link, *tmp; 147 148 mutex_lock(&fwnode_link_lock); 149 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) 150 __fwnode_link_del(link); 151 mutex_unlock(&fwnode_link_lock); 152 } 153 154 /** 155 * fwnode_links_purge - Delete all links connected to a fwnode_handle. 156 * @fwnode: fwnode whose links needs to be deleted 157 * 158 * Deletes all links connecting directly to a fwnode. 159 */ 160 void fwnode_links_purge(struct fwnode_handle *fwnode) 161 { 162 fwnode_links_purge_suppliers(fwnode); 163 fwnode_links_purge_consumers(fwnode); 164 } 165 166 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode) 167 { 168 struct fwnode_handle *child; 169 170 /* Don't purge consumer links of an added child */ 171 if (fwnode->dev) 172 return; 173 174 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 175 fwnode_links_purge_consumers(fwnode); 176 177 fwnode_for_each_available_child_node(fwnode, child) 178 fw_devlink_purge_absent_suppliers(child); 179 } 180 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers); 181 182 #ifdef CONFIG_SRCU 183 static DEFINE_MUTEX(device_links_lock); 184 DEFINE_STATIC_SRCU(device_links_srcu); 185 186 static inline void device_links_write_lock(void) 187 { 188 mutex_lock(&device_links_lock); 189 } 190 191 static inline void device_links_write_unlock(void) 192 { 193 mutex_unlock(&device_links_lock); 194 } 195 196 int device_links_read_lock(void) __acquires(&device_links_srcu) 197 { 198 return srcu_read_lock(&device_links_srcu); 199 } 200 201 void device_links_read_unlock(int idx) __releases(&device_links_srcu) 202 { 203 srcu_read_unlock(&device_links_srcu, idx); 204 } 205 206 int device_links_read_lock_held(void) 207 { 208 return srcu_read_lock_held(&device_links_srcu); 209 } 210 211 static void device_link_synchronize_removal(void) 212 { 213 synchronize_srcu(&device_links_srcu); 214 } 215 216 static void device_link_remove_from_lists(struct device_link *link) 217 { 218 list_del_rcu(&link->s_node); 219 list_del_rcu(&link->c_node); 220 } 221 #else /* !CONFIG_SRCU */ 222 static DECLARE_RWSEM(device_links_lock); 223 224 static inline void device_links_write_lock(void) 225 { 226 down_write(&device_links_lock); 227 } 228 229 static inline void device_links_write_unlock(void) 230 { 231 up_write(&device_links_lock); 232 } 233 234 int device_links_read_lock(void) 235 { 236 down_read(&device_links_lock); 237 return 0; 238 } 239 240 void device_links_read_unlock(int not_used) 241 { 242 up_read(&device_links_lock); 243 } 244 245 #ifdef CONFIG_DEBUG_LOCK_ALLOC 246 int device_links_read_lock_held(void) 247 { 248 return lockdep_is_held(&device_links_lock); 249 } 250 #endif 251 252 static inline void device_link_synchronize_removal(void) 253 { 254 } 255 256 static void device_link_remove_from_lists(struct device_link *link) 257 { 258 list_del(&link->s_node); 259 list_del(&link->c_node); 260 } 261 #endif /* !CONFIG_SRCU */ 262 263 static bool device_is_ancestor(struct device *dev, struct device *target) 264 { 265 while (target->parent) { 266 target = target->parent; 267 if (dev == target) 268 return true; 269 } 270 return false; 271 } 272 273 /** 274 * device_is_dependent - Check if one device depends on another one 275 * @dev: Device to check dependencies for. 276 * @target: Device to check against. 277 * 278 * Check if @target depends on @dev or any device dependent on it (its child or 279 * its consumer etc). Return 1 if that is the case or 0 otherwise. 280 */ 281 int device_is_dependent(struct device *dev, void *target) 282 { 283 struct device_link *link; 284 int ret; 285 286 /* 287 * The "ancestors" check is needed to catch the case when the target 288 * device has not been completely initialized yet and it is still 289 * missing from the list of children of its parent device. 290 */ 291 if (dev == target || device_is_ancestor(dev, target)) 292 return 1; 293 294 ret = device_for_each_child(dev, target, device_is_dependent); 295 if (ret) 296 return ret; 297 298 list_for_each_entry(link, &dev->links.consumers, s_node) { 299 if ((link->flags & ~DL_FLAG_INFERRED) == 300 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 301 continue; 302 303 if (link->consumer == target) 304 return 1; 305 306 ret = device_is_dependent(link->consumer, target); 307 if (ret) 308 break; 309 } 310 return ret; 311 } 312 313 static void device_link_init_status(struct device_link *link, 314 struct device *consumer, 315 struct device *supplier) 316 { 317 switch (supplier->links.status) { 318 case DL_DEV_PROBING: 319 switch (consumer->links.status) { 320 case DL_DEV_PROBING: 321 /* 322 * A consumer driver can create a link to a supplier 323 * that has not completed its probing yet as long as it 324 * knows that the supplier is already functional (for 325 * example, it has just acquired some resources from the 326 * supplier). 327 */ 328 link->status = DL_STATE_CONSUMER_PROBE; 329 break; 330 default: 331 link->status = DL_STATE_DORMANT; 332 break; 333 } 334 break; 335 case DL_DEV_DRIVER_BOUND: 336 switch (consumer->links.status) { 337 case DL_DEV_PROBING: 338 link->status = DL_STATE_CONSUMER_PROBE; 339 break; 340 case DL_DEV_DRIVER_BOUND: 341 link->status = DL_STATE_ACTIVE; 342 break; 343 default: 344 link->status = DL_STATE_AVAILABLE; 345 break; 346 } 347 break; 348 case DL_DEV_UNBINDING: 349 link->status = DL_STATE_SUPPLIER_UNBIND; 350 break; 351 default: 352 link->status = DL_STATE_DORMANT; 353 break; 354 } 355 } 356 357 static int device_reorder_to_tail(struct device *dev, void *not_used) 358 { 359 struct device_link *link; 360 361 /* 362 * Devices that have not been registered yet will be put to the ends 363 * of the lists during the registration, so skip them here. 364 */ 365 if (device_is_registered(dev)) 366 devices_kset_move_last(dev); 367 368 if (device_pm_initialized(dev)) 369 device_pm_move_last(dev); 370 371 device_for_each_child(dev, NULL, device_reorder_to_tail); 372 list_for_each_entry(link, &dev->links.consumers, s_node) { 373 if ((link->flags & ~DL_FLAG_INFERRED) == 374 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 375 continue; 376 device_reorder_to_tail(link->consumer, NULL); 377 } 378 379 return 0; 380 } 381 382 /** 383 * device_pm_move_to_tail - Move set of devices to the end of device lists 384 * @dev: Device to move 385 * 386 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 387 * 388 * It moves the @dev along with all of its children and all of its consumers 389 * to the ends of the device_kset and dpm_list, recursively. 390 */ 391 void device_pm_move_to_tail(struct device *dev) 392 { 393 int idx; 394 395 idx = device_links_read_lock(); 396 device_pm_lock(); 397 device_reorder_to_tail(dev, NULL); 398 device_pm_unlock(); 399 device_links_read_unlock(idx); 400 } 401 402 #define to_devlink(dev) container_of((dev), struct device_link, link_dev) 403 404 static ssize_t status_show(struct device *dev, 405 struct device_attribute *attr, char *buf) 406 { 407 const char *output; 408 409 switch (to_devlink(dev)->status) { 410 case DL_STATE_NONE: 411 output = "not tracked"; 412 break; 413 case DL_STATE_DORMANT: 414 output = "dormant"; 415 break; 416 case DL_STATE_AVAILABLE: 417 output = "available"; 418 break; 419 case DL_STATE_CONSUMER_PROBE: 420 output = "consumer probing"; 421 break; 422 case DL_STATE_ACTIVE: 423 output = "active"; 424 break; 425 case DL_STATE_SUPPLIER_UNBIND: 426 output = "supplier unbinding"; 427 break; 428 default: 429 output = "unknown"; 430 break; 431 } 432 433 return sysfs_emit(buf, "%s\n", output); 434 } 435 static DEVICE_ATTR_RO(status); 436 437 static ssize_t auto_remove_on_show(struct device *dev, 438 struct device_attribute *attr, char *buf) 439 { 440 struct device_link *link = to_devlink(dev); 441 const char *output; 442 443 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 444 output = "supplier unbind"; 445 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) 446 output = "consumer unbind"; 447 else 448 output = "never"; 449 450 return sysfs_emit(buf, "%s\n", output); 451 } 452 static DEVICE_ATTR_RO(auto_remove_on); 453 454 static ssize_t runtime_pm_show(struct device *dev, 455 struct device_attribute *attr, char *buf) 456 { 457 struct device_link *link = to_devlink(dev); 458 459 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME)); 460 } 461 static DEVICE_ATTR_RO(runtime_pm); 462 463 static ssize_t sync_state_only_show(struct device *dev, 464 struct device_attribute *attr, char *buf) 465 { 466 struct device_link *link = to_devlink(dev); 467 468 return sysfs_emit(buf, "%d\n", 469 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 470 } 471 static DEVICE_ATTR_RO(sync_state_only); 472 473 static struct attribute *devlink_attrs[] = { 474 &dev_attr_status.attr, 475 &dev_attr_auto_remove_on.attr, 476 &dev_attr_runtime_pm.attr, 477 &dev_attr_sync_state_only.attr, 478 NULL, 479 }; 480 ATTRIBUTE_GROUPS(devlink); 481 482 static void device_link_release_fn(struct work_struct *work) 483 { 484 struct device_link *link = container_of(work, struct device_link, rm_work); 485 486 /* Ensure that all references to the link object have been dropped. */ 487 device_link_synchronize_removal(); 488 489 pm_runtime_release_supplier(link); 490 /* 491 * If supplier_preactivated is set, the link has been dropped between 492 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls 493 * in __driver_probe_device(). In that case, drop the supplier's 494 * PM-runtime usage counter to remove the reference taken by 495 * pm_runtime_get_suppliers(). 496 */ 497 if (link->supplier_preactivated) 498 pm_runtime_put_noidle(link->supplier); 499 500 pm_request_idle(link->supplier); 501 502 put_device(link->consumer); 503 put_device(link->supplier); 504 kfree(link); 505 } 506 507 static void devlink_dev_release(struct device *dev) 508 { 509 struct device_link *link = to_devlink(dev); 510 511 INIT_WORK(&link->rm_work, device_link_release_fn); 512 /* 513 * It may take a while to complete this work because of the SRCU 514 * synchronization in device_link_release_fn() and if the consumer or 515 * supplier devices get deleted when it runs, so put it into the "long" 516 * workqueue. 517 */ 518 queue_work(system_long_wq, &link->rm_work); 519 } 520 521 static struct class devlink_class = { 522 .name = "devlink", 523 .owner = THIS_MODULE, 524 .dev_groups = devlink_groups, 525 .dev_release = devlink_dev_release, 526 }; 527 528 static int devlink_add_symlinks(struct device *dev, 529 struct class_interface *class_intf) 530 { 531 int ret; 532 size_t len; 533 struct device_link *link = to_devlink(dev); 534 struct device *sup = link->supplier; 535 struct device *con = link->consumer; 536 char *buf; 537 538 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 539 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 540 len += strlen(":"); 541 len += strlen("supplier:") + 1; 542 buf = kzalloc(len, GFP_KERNEL); 543 if (!buf) 544 return -ENOMEM; 545 546 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier"); 547 if (ret) 548 goto out; 549 550 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer"); 551 if (ret) 552 goto err_con; 553 554 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 555 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf); 556 if (ret) 557 goto err_con_dev; 558 559 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 560 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf); 561 if (ret) 562 goto err_sup_dev; 563 564 goto out; 565 566 err_sup_dev: 567 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 568 sysfs_remove_link(&sup->kobj, buf); 569 err_con_dev: 570 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 571 err_con: 572 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 573 out: 574 kfree(buf); 575 return ret; 576 } 577 578 static void devlink_remove_symlinks(struct device *dev, 579 struct class_interface *class_intf) 580 { 581 struct device_link *link = to_devlink(dev); 582 size_t len; 583 struct device *sup = link->supplier; 584 struct device *con = link->consumer; 585 char *buf; 586 587 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 588 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 589 590 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 591 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 592 len += strlen(":"); 593 len += strlen("supplier:") + 1; 594 buf = kzalloc(len, GFP_KERNEL); 595 if (!buf) { 596 WARN(1, "Unable to properly free device link symlinks!\n"); 597 return; 598 } 599 600 if (device_is_registered(con)) { 601 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 602 sysfs_remove_link(&con->kobj, buf); 603 } 604 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 605 sysfs_remove_link(&sup->kobj, buf); 606 kfree(buf); 607 } 608 609 static struct class_interface devlink_class_intf = { 610 .class = &devlink_class, 611 .add_dev = devlink_add_symlinks, 612 .remove_dev = devlink_remove_symlinks, 613 }; 614 615 static int __init devlink_class_init(void) 616 { 617 int ret; 618 619 ret = class_register(&devlink_class); 620 if (ret) 621 return ret; 622 623 ret = class_interface_register(&devlink_class_intf); 624 if (ret) 625 class_unregister(&devlink_class); 626 627 return ret; 628 } 629 postcore_initcall(devlink_class_init); 630 631 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \ 632 DL_FLAG_AUTOREMOVE_SUPPLIER | \ 633 DL_FLAG_AUTOPROBE_CONSUMER | \ 634 DL_FLAG_SYNC_STATE_ONLY | \ 635 DL_FLAG_INFERRED) 636 637 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \ 638 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE) 639 640 /** 641 * device_link_add - Create a link between two devices. 642 * @consumer: Consumer end of the link. 643 * @supplier: Supplier end of the link. 644 * @flags: Link flags. 645 * 646 * The caller is responsible for the proper synchronization of the link creation 647 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 648 * runtime PM framework to take the link into account. Second, if the 649 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 650 * be forced into the active meta state and reference-counted upon the creation 651 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 652 * ignored. 653 * 654 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is 655 * expected to release the link returned by it directly with the help of either 656 * device_link_del() or device_link_remove(). 657 * 658 * If that flag is not set, however, the caller of this function is handing the 659 * management of the link over to the driver core entirely and its return value 660 * can only be used to check whether or not the link is present. In that case, 661 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link 662 * flags can be used to indicate to the driver core when the link can be safely 663 * deleted. Namely, setting one of them in @flags indicates to the driver core 664 * that the link is not going to be used (by the given caller of this function) 665 * after unbinding the consumer or supplier driver, respectively, from its 666 * device, so the link can be deleted at that point. If none of them is set, 667 * the link will be maintained until one of the devices pointed to by it (either 668 * the consumer or the supplier) is unregistered. 669 * 670 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and 671 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent 672 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can 673 * be used to request the driver core to automatically probe for a consumer 674 * driver after successfully binding a driver to the supplier device. 675 * 676 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER, 677 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at 678 * the same time is invalid and will cause NULL to be returned upfront. 679 * However, if a device link between the given @consumer and @supplier pair 680 * exists already when this function is called for them, the existing link will 681 * be returned regardless of its current type and status (the link's flags may 682 * be modified then). The caller of this function is then expected to treat 683 * the link as though it has just been created, so (in particular) if 684 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released 685 * explicitly when not needed any more (as stated above). 686 * 687 * A side effect of the link creation is re-ordering of dpm_list and the 688 * devices_kset list by moving the consumer device and all devices depending 689 * on it to the ends of these lists (that does not happen to devices that have 690 * not been registered when this function is called). 691 * 692 * The supplier device is required to be registered when this function is called 693 * and NULL will be returned if that is not the case. The consumer device need 694 * not be registered, however. 695 */ 696 struct device_link *device_link_add(struct device *consumer, 697 struct device *supplier, u32 flags) 698 { 699 struct device_link *link; 700 701 if (!consumer || !supplier || consumer == supplier || 702 flags & ~DL_ADD_VALID_FLAGS || 703 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) || 704 (flags & DL_FLAG_SYNC_STATE_ONLY && 705 (flags & ~DL_FLAG_INFERRED) != DL_FLAG_SYNC_STATE_ONLY) || 706 (flags & DL_FLAG_AUTOPROBE_CONSUMER && 707 flags & (DL_FLAG_AUTOREMOVE_CONSUMER | 708 DL_FLAG_AUTOREMOVE_SUPPLIER))) 709 return NULL; 710 711 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) { 712 if (pm_runtime_get_sync(supplier) < 0) { 713 pm_runtime_put_noidle(supplier); 714 return NULL; 715 } 716 } 717 718 if (!(flags & DL_FLAG_STATELESS)) 719 flags |= DL_FLAG_MANAGED; 720 721 device_links_write_lock(); 722 device_pm_lock(); 723 724 /* 725 * If the supplier has not been fully registered yet or there is a 726 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and 727 * the supplier already in the graph, return NULL. If the link is a 728 * SYNC_STATE_ONLY link, we don't check for reverse dependencies 729 * because it only affects sync_state() callbacks. 730 */ 731 if (!device_pm_initialized(supplier) 732 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) && 733 device_is_dependent(consumer, supplier))) { 734 link = NULL; 735 goto out; 736 } 737 738 /* 739 * SYNC_STATE_ONLY links are useless once a consumer device has probed. 740 * So, only create it if the consumer hasn't probed yet. 741 */ 742 if (flags & DL_FLAG_SYNC_STATE_ONLY && 743 consumer->links.status != DL_DEV_NO_DRIVER && 744 consumer->links.status != DL_DEV_PROBING) { 745 link = NULL; 746 goto out; 747 } 748 749 /* 750 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed 751 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both 752 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER. 753 */ 754 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 755 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 756 757 list_for_each_entry(link, &supplier->links.consumers, s_node) { 758 if (link->consumer != consumer) 759 continue; 760 761 if (link->flags & DL_FLAG_INFERRED && 762 !(flags & DL_FLAG_INFERRED)) 763 link->flags &= ~DL_FLAG_INFERRED; 764 765 if (flags & DL_FLAG_PM_RUNTIME) { 766 if (!(link->flags & DL_FLAG_PM_RUNTIME)) { 767 pm_runtime_new_link(consumer); 768 link->flags |= DL_FLAG_PM_RUNTIME; 769 } 770 if (flags & DL_FLAG_RPM_ACTIVE) 771 refcount_inc(&link->rpm_active); 772 } 773 774 if (flags & DL_FLAG_STATELESS) { 775 kref_get(&link->kref); 776 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 777 !(link->flags & DL_FLAG_STATELESS)) { 778 link->flags |= DL_FLAG_STATELESS; 779 goto reorder; 780 } else { 781 link->flags |= DL_FLAG_STATELESS; 782 goto out; 783 } 784 } 785 786 /* 787 * If the life time of the link following from the new flags is 788 * longer than indicated by the flags of the existing link, 789 * update the existing link to stay around longer. 790 */ 791 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) { 792 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 793 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 794 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER; 795 } 796 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) { 797 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER | 798 DL_FLAG_AUTOREMOVE_SUPPLIER); 799 } 800 if (!(link->flags & DL_FLAG_MANAGED)) { 801 kref_get(&link->kref); 802 link->flags |= DL_FLAG_MANAGED; 803 device_link_init_status(link, consumer, supplier); 804 } 805 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 806 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 807 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY; 808 goto reorder; 809 } 810 811 goto out; 812 } 813 814 link = kzalloc(sizeof(*link), GFP_KERNEL); 815 if (!link) 816 goto out; 817 818 refcount_set(&link->rpm_active, 1); 819 820 get_device(supplier); 821 link->supplier = supplier; 822 INIT_LIST_HEAD(&link->s_node); 823 get_device(consumer); 824 link->consumer = consumer; 825 INIT_LIST_HEAD(&link->c_node); 826 link->flags = flags; 827 kref_init(&link->kref); 828 829 link->link_dev.class = &devlink_class; 830 device_set_pm_not_required(&link->link_dev); 831 dev_set_name(&link->link_dev, "%s:%s--%s:%s", 832 dev_bus_name(supplier), dev_name(supplier), 833 dev_bus_name(consumer), dev_name(consumer)); 834 if (device_register(&link->link_dev)) { 835 put_device(&link->link_dev); 836 link = NULL; 837 goto out; 838 } 839 840 if (flags & DL_FLAG_PM_RUNTIME) { 841 if (flags & DL_FLAG_RPM_ACTIVE) 842 refcount_inc(&link->rpm_active); 843 844 pm_runtime_new_link(consumer); 845 } 846 847 /* Determine the initial link state. */ 848 if (flags & DL_FLAG_STATELESS) 849 link->status = DL_STATE_NONE; 850 else 851 device_link_init_status(link, consumer, supplier); 852 853 /* 854 * Some callers expect the link creation during consumer driver probe to 855 * resume the supplier even without DL_FLAG_RPM_ACTIVE. 856 */ 857 if (link->status == DL_STATE_CONSUMER_PROBE && 858 flags & DL_FLAG_PM_RUNTIME) 859 pm_runtime_resume(supplier); 860 861 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 862 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 863 864 if (flags & DL_FLAG_SYNC_STATE_ONLY) { 865 dev_dbg(consumer, 866 "Linked as a sync state only consumer to %s\n", 867 dev_name(supplier)); 868 goto out; 869 } 870 871 reorder: 872 /* 873 * Move the consumer and all of the devices depending on it to the end 874 * of dpm_list and the devices_kset list. 875 * 876 * It is necessary to hold dpm_list locked throughout all that or else 877 * we may end up suspending with a wrong ordering of it. 878 */ 879 device_reorder_to_tail(consumer, NULL); 880 881 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 882 883 out: 884 device_pm_unlock(); 885 device_links_write_unlock(); 886 887 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link) 888 pm_runtime_put(supplier); 889 890 return link; 891 } 892 EXPORT_SYMBOL_GPL(device_link_add); 893 894 static void __device_link_del(struct kref *kref) 895 { 896 struct device_link *link = container_of(kref, struct device_link, kref); 897 898 dev_dbg(link->consumer, "Dropping the link to %s\n", 899 dev_name(link->supplier)); 900 901 pm_runtime_drop_link(link); 902 903 device_link_remove_from_lists(link); 904 device_unregister(&link->link_dev); 905 } 906 907 static void device_link_put_kref(struct device_link *link) 908 { 909 if (link->flags & DL_FLAG_STATELESS) 910 kref_put(&link->kref, __device_link_del); 911 else if (!device_is_registered(link->consumer)) 912 __device_link_del(&link->kref); 913 else 914 WARN(1, "Unable to drop a managed device link reference\n"); 915 } 916 917 /** 918 * device_link_del - Delete a stateless link between two devices. 919 * @link: Device link to delete. 920 * 921 * The caller must ensure proper synchronization of this function with runtime 922 * PM. If the link was added multiple times, it needs to be deleted as often. 923 * Care is required for hotplugged devices: Their links are purged on removal 924 * and calling device_link_del() is then no longer allowed. 925 */ 926 void device_link_del(struct device_link *link) 927 { 928 device_links_write_lock(); 929 device_link_put_kref(link); 930 device_links_write_unlock(); 931 } 932 EXPORT_SYMBOL_GPL(device_link_del); 933 934 /** 935 * device_link_remove - Delete a stateless link between two devices. 936 * @consumer: Consumer end of the link. 937 * @supplier: Supplier end of the link. 938 * 939 * The caller must ensure proper synchronization of this function with runtime 940 * PM. 941 */ 942 void device_link_remove(void *consumer, struct device *supplier) 943 { 944 struct device_link *link; 945 946 if (WARN_ON(consumer == supplier)) 947 return; 948 949 device_links_write_lock(); 950 951 list_for_each_entry(link, &supplier->links.consumers, s_node) { 952 if (link->consumer == consumer) { 953 device_link_put_kref(link); 954 break; 955 } 956 } 957 958 device_links_write_unlock(); 959 } 960 EXPORT_SYMBOL_GPL(device_link_remove); 961 962 static void device_links_missing_supplier(struct device *dev) 963 { 964 struct device_link *link; 965 966 list_for_each_entry(link, &dev->links.suppliers, c_node) { 967 if (link->status != DL_STATE_CONSUMER_PROBE) 968 continue; 969 970 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 971 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 972 } else { 973 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 974 WRITE_ONCE(link->status, DL_STATE_DORMANT); 975 } 976 } 977 } 978 979 /** 980 * device_links_check_suppliers - Check presence of supplier drivers. 981 * @dev: Consumer device. 982 * 983 * Check links from this device to any suppliers. Walk the list of the device's 984 * links to suppliers and see if all of them are available. If not, simply 985 * return -EPROBE_DEFER. 986 * 987 * We need to guarantee that the supplier will not go away after the check has 988 * been positive here. It only can go away in __device_release_driver() and 989 * that function checks the device's links to consumers. This means we need to 990 * mark the link as "consumer probe in progress" to make the supplier removal 991 * wait for us to complete (or bad things may happen). 992 * 993 * Links without the DL_FLAG_MANAGED flag set are ignored. 994 */ 995 int device_links_check_suppliers(struct device *dev) 996 { 997 struct device_link *link; 998 int ret = 0; 999 struct fwnode_handle *sup_fw; 1000 1001 /* 1002 * Device waiting for supplier to become available is not allowed to 1003 * probe. 1004 */ 1005 mutex_lock(&fwnode_link_lock); 1006 if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) && 1007 !fw_devlink_is_permissive()) { 1008 sup_fw = list_first_entry(&dev->fwnode->suppliers, 1009 struct fwnode_link, 1010 c_hook)->supplier; 1011 dev_err_probe(dev, -EPROBE_DEFER, "wait for supplier %pfwP\n", 1012 sup_fw); 1013 mutex_unlock(&fwnode_link_lock); 1014 return -EPROBE_DEFER; 1015 } 1016 mutex_unlock(&fwnode_link_lock); 1017 1018 device_links_write_lock(); 1019 1020 list_for_each_entry(link, &dev->links.suppliers, c_node) { 1021 if (!(link->flags & DL_FLAG_MANAGED)) 1022 continue; 1023 1024 if (link->status != DL_STATE_AVAILABLE && 1025 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) { 1026 device_links_missing_supplier(dev); 1027 dev_err_probe(dev, -EPROBE_DEFER, 1028 "supplier %s not ready\n", 1029 dev_name(link->supplier)); 1030 ret = -EPROBE_DEFER; 1031 break; 1032 } 1033 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1034 } 1035 dev->links.status = DL_DEV_PROBING; 1036 1037 device_links_write_unlock(); 1038 return ret; 1039 } 1040 1041 /** 1042 * __device_links_queue_sync_state - Queue a device for sync_state() callback 1043 * @dev: Device to call sync_state() on 1044 * @list: List head to queue the @dev on 1045 * 1046 * Queues a device for a sync_state() callback when the device links write lock 1047 * isn't held. This allows the sync_state() execution flow to use device links 1048 * APIs. The caller must ensure this function is called with 1049 * device_links_write_lock() held. 1050 * 1051 * This function does a get_device() to make sure the device is not freed while 1052 * on this list. 1053 * 1054 * So the caller must also ensure that device_links_flush_sync_list() is called 1055 * as soon as the caller releases device_links_write_lock(). This is necessary 1056 * to make sure the sync_state() is called in a timely fashion and the 1057 * put_device() is called on this device. 1058 */ 1059 static void __device_links_queue_sync_state(struct device *dev, 1060 struct list_head *list) 1061 { 1062 struct device_link *link; 1063 1064 if (!dev_has_sync_state(dev)) 1065 return; 1066 if (dev->state_synced) 1067 return; 1068 1069 list_for_each_entry(link, &dev->links.consumers, s_node) { 1070 if (!(link->flags & DL_FLAG_MANAGED)) 1071 continue; 1072 if (link->status != DL_STATE_ACTIVE) 1073 return; 1074 } 1075 1076 /* 1077 * Set the flag here to avoid adding the same device to a list more 1078 * than once. This can happen if new consumers get added to the device 1079 * and probed before the list is flushed. 1080 */ 1081 dev->state_synced = true; 1082 1083 if (WARN_ON(!list_empty(&dev->links.defer_sync))) 1084 return; 1085 1086 get_device(dev); 1087 list_add_tail(&dev->links.defer_sync, list); 1088 } 1089 1090 /** 1091 * device_links_flush_sync_list - Call sync_state() on a list of devices 1092 * @list: List of devices to call sync_state() on 1093 * @dont_lock_dev: Device for which lock is already held by the caller 1094 * 1095 * Calls sync_state() on all the devices that have been queued for it. This 1096 * function is used in conjunction with __device_links_queue_sync_state(). The 1097 * @dont_lock_dev parameter is useful when this function is called from a 1098 * context where a device lock is already held. 1099 */ 1100 static void device_links_flush_sync_list(struct list_head *list, 1101 struct device *dont_lock_dev) 1102 { 1103 struct device *dev, *tmp; 1104 1105 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) { 1106 list_del_init(&dev->links.defer_sync); 1107 1108 if (dev != dont_lock_dev) 1109 device_lock(dev); 1110 1111 if (dev->bus->sync_state) 1112 dev->bus->sync_state(dev); 1113 else if (dev->driver && dev->driver->sync_state) 1114 dev->driver->sync_state(dev); 1115 1116 if (dev != dont_lock_dev) 1117 device_unlock(dev); 1118 1119 put_device(dev); 1120 } 1121 } 1122 1123 void device_links_supplier_sync_state_pause(void) 1124 { 1125 device_links_write_lock(); 1126 defer_sync_state_count++; 1127 device_links_write_unlock(); 1128 } 1129 1130 void device_links_supplier_sync_state_resume(void) 1131 { 1132 struct device *dev, *tmp; 1133 LIST_HEAD(sync_list); 1134 1135 device_links_write_lock(); 1136 if (!defer_sync_state_count) { 1137 WARN(true, "Unmatched sync_state pause/resume!"); 1138 goto out; 1139 } 1140 defer_sync_state_count--; 1141 if (defer_sync_state_count) 1142 goto out; 1143 1144 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) { 1145 /* 1146 * Delete from deferred_sync list before queuing it to 1147 * sync_list because defer_sync is used for both lists. 1148 */ 1149 list_del_init(&dev->links.defer_sync); 1150 __device_links_queue_sync_state(dev, &sync_list); 1151 } 1152 out: 1153 device_links_write_unlock(); 1154 1155 device_links_flush_sync_list(&sync_list, NULL); 1156 } 1157 1158 static int sync_state_resume_initcall(void) 1159 { 1160 device_links_supplier_sync_state_resume(); 1161 return 0; 1162 } 1163 late_initcall(sync_state_resume_initcall); 1164 1165 static void __device_links_supplier_defer_sync(struct device *sup) 1166 { 1167 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup)) 1168 list_add_tail(&sup->links.defer_sync, &deferred_sync); 1169 } 1170 1171 static void device_link_drop_managed(struct device_link *link) 1172 { 1173 link->flags &= ~DL_FLAG_MANAGED; 1174 WRITE_ONCE(link->status, DL_STATE_NONE); 1175 kref_put(&link->kref, __device_link_del); 1176 } 1177 1178 static ssize_t waiting_for_supplier_show(struct device *dev, 1179 struct device_attribute *attr, 1180 char *buf) 1181 { 1182 bool val; 1183 1184 device_lock(dev); 1185 val = !list_empty(&dev->fwnode->suppliers); 1186 device_unlock(dev); 1187 return sysfs_emit(buf, "%u\n", val); 1188 } 1189 static DEVICE_ATTR_RO(waiting_for_supplier); 1190 1191 /** 1192 * device_links_force_bind - Prepares device to be force bound 1193 * @dev: Consumer device. 1194 * 1195 * device_bind_driver() force binds a device to a driver without calling any 1196 * driver probe functions. So the consumer really isn't going to wait for any 1197 * supplier before it's bound to the driver. We still want the device link 1198 * states to be sensible when this happens. 1199 * 1200 * In preparation for device_bind_driver(), this function goes through each 1201 * supplier device links and checks if the supplier is bound. If it is, then 1202 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link 1203 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored. 1204 */ 1205 void device_links_force_bind(struct device *dev) 1206 { 1207 struct device_link *link, *ln; 1208 1209 device_links_write_lock(); 1210 1211 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1212 if (!(link->flags & DL_FLAG_MANAGED)) 1213 continue; 1214 1215 if (link->status != DL_STATE_AVAILABLE) { 1216 device_link_drop_managed(link); 1217 continue; 1218 } 1219 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1220 } 1221 dev->links.status = DL_DEV_PROBING; 1222 1223 device_links_write_unlock(); 1224 } 1225 1226 /** 1227 * device_links_driver_bound - Update device links after probing its driver. 1228 * @dev: Device to update the links for. 1229 * 1230 * The probe has been successful, so update links from this device to any 1231 * consumers by changing their status to "available". 1232 * 1233 * Also change the status of @dev's links to suppliers to "active". 1234 * 1235 * Links without the DL_FLAG_MANAGED flag set are ignored. 1236 */ 1237 void device_links_driver_bound(struct device *dev) 1238 { 1239 struct device_link *link, *ln; 1240 LIST_HEAD(sync_list); 1241 1242 /* 1243 * If a device binds successfully, it's expected to have created all 1244 * the device links it needs to or make new device links as it needs 1245 * them. So, fw_devlink no longer needs to create device links to any 1246 * of the device's suppliers. 1247 * 1248 * Also, if a child firmware node of this bound device is not added as 1249 * a device by now, assume it is never going to be added and make sure 1250 * other devices don't defer probe indefinitely by waiting for such a 1251 * child device. 1252 */ 1253 if (dev->fwnode && dev->fwnode->dev == dev) { 1254 struct fwnode_handle *child; 1255 fwnode_links_purge_suppliers(dev->fwnode); 1256 fwnode_for_each_available_child_node(dev->fwnode, child) 1257 fw_devlink_purge_absent_suppliers(child); 1258 } 1259 device_remove_file(dev, &dev_attr_waiting_for_supplier); 1260 1261 device_links_write_lock(); 1262 1263 list_for_each_entry(link, &dev->links.consumers, s_node) { 1264 if (!(link->flags & DL_FLAG_MANAGED)) 1265 continue; 1266 1267 /* 1268 * Links created during consumer probe may be in the "consumer 1269 * probe" state to start with if the supplier is still probing 1270 * when they are created and they may become "active" if the 1271 * consumer probe returns first. Skip them here. 1272 */ 1273 if (link->status == DL_STATE_CONSUMER_PROBE || 1274 link->status == DL_STATE_ACTIVE) 1275 continue; 1276 1277 WARN_ON(link->status != DL_STATE_DORMANT); 1278 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1279 1280 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER) 1281 driver_deferred_probe_add(link->consumer); 1282 } 1283 1284 if (defer_sync_state_count) 1285 __device_links_supplier_defer_sync(dev); 1286 else 1287 __device_links_queue_sync_state(dev, &sync_list); 1288 1289 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1290 struct device *supplier; 1291 1292 if (!(link->flags & DL_FLAG_MANAGED)) 1293 continue; 1294 1295 supplier = link->supplier; 1296 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) { 1297 /* 1298 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no 1299 * other DL_MANAGED_LINK_FLAGS have been set. So, it's 1300 * save to drop the managed link completely. 1301 */ 1302 device_link_drop_managed(link); 1303 } else { 1304 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 1305 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 1306 } 1307 1308 /* 1309 * This needs to be done even for the deleted 1310 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last 1311 * device link that was preventing the supplier from getting a 1312 * sync_state() call. 1313 */ 1314 if (defer_sync_state_count) 1315 __device_links_supplier_defer_sync(supplier); 1316 else 1317 __device_links_queue_sync_state(supplier, &sync_list); 1318 } 1319 1320 dev->links.status = DL_DEV_DRIVER_BOUND; 1321 1322 device_links_write_unlock(); 1323 1324 device_links_flush_sync_list(&sync_list, dev); 1325 } 1326 1327 /** 1328 * __device_links_no_driver - Update links of a device without a driver. 1329 * @dev: Device without a drvier. 1330 * 1331 * Delete all non-persistent links from this device to any suppliers. 1332 * 1333 * Persistent links stay around, but their status is changed to "available", 1334 * unless they already are in the "supplier unbind in progress" state in which 1335 * case they need not be updated. 1336 * 1337 * Links without the DL_FLAG_MANAGED flag set are ignored. 1338 */ 1339 static void __device_links_no_driver(struct device *dev) 1340 { 1341 struct device_link *link, *ln; 1342 1343 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1344 if (!(link->flags & DL_FLAG_MANAGED)) 1345 continue; 1346 1347 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 1348 device_link_drop_managed(link); 1349 continue; 1350 } 1351 1352 if (link->status != DL_STATE_CONSUMER_PROBE && 1353 link->status != DL_STATE_ACTIVE) 1354 continue; 1355 1356 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1357 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1358 } else { 1359 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1360 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1361 } 1362 } 1363 1364 dev->links.status = DL_DEV_NO_DRIVER; 1365 } 1366 1367 /** 1368 * device_links_no_driver - Update links after failing driver probe. 1369 * @dev: Device whose driver has just failed to probe. 1370 * 1371 * Clean up leftover links to consumers for @dev and invoke 1372 * %__device_links_no_driver() to update links to suppliers for it as 1373 * appropriate. 1374 * 1375 * Links without the DL_FLAG_MANAGED flag set are ignored. 1376 */ 1377 void device_links_no_driver(struct device *dev) 1378 { 1379 struct device_link *link; 1380 1381 device_links_write_lock(); 1382 1383 list_for_each_entry(link, &dev->links.consumers, s_node) { 1384 if (!(link->flags & DL_FLAG_MANAGED)) 1385 continue; 1386 1387 /* 1388 * The probe has failed, so if the status of the link is 1389 * "consumer probe" or "active", it must have been added by 1390 * a probing consumer while this device was still probing. 1391 * Change its state to "dormant", as it represents a valid 1392 * relationship, but it is not functionally meaningful. 1393 */ 1394 if (link->status == DL_STATE_CONSUMER_PROBE || 1395 link->status == DL_STATE_ACTIVE) 1396 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1397 } 1398 1399 __device_links_no_driver(dev); 1400 1401 device_links_write_unlock(); 1402 } 1403 1404 /** 1405 * device_links_driver_cleanup - Update links after driver removal. 1406 * @dev: Device whose driver has just gone away. 1407 * 1408 * Update links to consumers for @dev by changing their status to "dormant" and 1409 * invoke %__device_links_no_driver() to update links to suppliers for it as 1410 * appropriate. 1411 * 1412 * Links without the DL_FLAG_MANAGED flag set are ignored. 1413 */ 1414 void device_links_driver_cleanup(struct device *dev) 1415 { 1416 struct device_link *link, *ln; 1417 1418 device_links_write_lock(); 1419 1420 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) { 1421 if (!(link->flags & DL_FLAG_MANAGED)) 1422 continue; 1423 1424 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER); 1425 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 1426 1427 /* 1428 * autoremove the links between this @dev and its consumer 1429 * devices that are not active, i.e. where the link state 1430 * has moved to DL_STATE_SUPPLIER_UNBIND. 1431 */ 1432 if (link->status == DL_STATE_SUPPLIER_UNBIND && 1433 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 1434 device_link_drop_managed(link); 1435 1436 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1437 } 1438 1439 list_del_init(&dev->links.defer_sync); 1440 __device_links_no_driver(dev); 1441 1442 device_links_write_unlock(); 1443 } 1444 1445 /** 1446 * device_links_busy - Check if there are any busy links to consumers. 1447 * @dev: Device to check. 1448 * 1449 * Check each consumer of the device and return 'true' if its link's status 1450 * is one of "consumer probe" or "active" (meaning that the given consumer is 1451 * probing right now or its driver is present). Otherwise, change the link 1452 * state to "supplier unbind" to prevent the consumer from being probed 1453 * successfully going forward. 1454 * 1455 * Return 'false' if there are no probing or active consumers. 1456 * 1457 * Links without the DL_FLAG_MANAGED flag set are ignored. 1458 */ 1459 bool device_links_busy(struct device *dev) 1460 { 1461 struct device_link *link; 1462 bool ret = false; 1463 1464 device_links_write_lock(); 1465 1466 list_for_each_entry(link, &dev->links.consumers, s_node) { 1467 if (!(link->flags & DL_FLAG_MANAGED)) 1468 continue; 1469 1470 if (link->status == DL_STATE_CONSUMER_PROBE 1471 || link->status == DL_STATE_ACTIVE) { 1472 ret = true; 1473 break; 1474 } 1475 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1476 } 1477 1478 dev->links.status = DL_DEV_UNBINDING; 1479 1480 device_links_write_unlock(); 1481 return ret; 1482 } 1483 1484 /** 1485 * device_links_unbind_consumers - Force unbind consumers of the given device. 1486 * @dev: Device to unbind the consumers of. 1487 * 1488 * Walk the list of links to consumers for @dev and if any of them is in the 1489 * "consumer probe" state, wait for all device probes in progress to complete 1490 * and start over. 1491 * 1492 * If that's not the case, change the status of the link to "supplier unbind" 1493 * and check if the link was in the "active" state. If so, force the consumer 1494 * driver to unbind and start over (the consumer will not re-probe as we have 1495 * changed the state of the link already). 1496 * 1497 * Links without the DL_FLAG_MANAGED flag set are ignored. 1498 */ 1499 void device_links_unbind_consumers(struct device *dev) 1500 { 1501 struct device_link *link; 1502 1503 start: 1504 device_links_write_lock(); 1505 1506 list_for_each_entry(link, &dev->links.consumers, s_node) { 1507 enum device_link_state status; 1508 1509 if (!(link->flags & DL_FLAG_MANAGED) || 1510 link->flags & DL_FLAG_SYNC_STATE_ONLY) 1511 continue; 1512 1513 status = link->status; 1514 if (status == DL_STATE_CONSUMER_PROBE) { 1515 device_links_write_unlock(); 1516 1517 wait_for_device_probe(); 1518 goto start; 1519 } 1520 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1521 if (status == DL_STATE_ACTIVE) { 1522 struct device *consumer = link->consumer; 1523 1524 get_device(consumer); 1525 1526 device_links_write_unlock(); 1527 1528 device_release_driver_internal(consumer, NULL, 1529 consumer->parent); 1530 put_device(consumer); 1531 goto start; 1532 } 1533 } 1534 1535 device_links_write_unlock(); 1536 } 1537 1538 /** 1539 * device_links_purge - Delete existing links to other devices. 1540 * @dev: Target device. 1541 */ 1542 static void device_links_purge(struct device *dev) 1543 { 1544 struct device_link *link, *ln; 1545 1546 if (dev->class == &devlink_class) 1547 return; 1548 1549 /* 1550 * Delete all of the remaining links from this device to any other 1551 * devices (either consumers or suppliers). 1552 */ 1553 device_links_write_lock(); 1554 1555 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1556 WARN_ON(link->status == DL_STATE_ACTIVE); 1557 __device_link_del(&link->kref); 1558 } 1559 1560 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 1561 WARN_ON(link->status != DL_STATE_DORMANT && 1562 link->status != DL_STATE_NONE); 1563 __device_link_del(&link->kref); 1564 } 1565 1566 device_links_write_unlock(); 1567 } 1568 1569 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \ 1570 DL_FLAG_SYNC_STATE_ONLY) 1571 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \ 1572 DL_FLAG_AUTOPROBE_CONSUMER) 1573 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \ 1574 DL_FLAG_PM_RUNTIME) 1575 1576 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1577 static int __init fw_devlink_setup(char *arg) 1578 { 1579 if (!arg) 1580 return -EINVAL; 1581 1582 if (strcmp(arg, "off") == 0) { 1583 fw_devlink_flags = 0; 1584 } else if (strcmp(arg, "permissive") == 0) { 1585 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1586 } else if (strcmp(arg, "on") == 0) { 1587 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1588 } else if (strcmp(arg, "rpm") == 0) { 1589 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM; 1590 } 1591 return 0; 1592 } 1593 early_param("fw_devlink", fw_devlink_setup); 1594 1595 static bool fw_devlink_strict; 1596 static int __init fw_devlink_strict_setup(char *arg) 1597 { 1598 return strtobool(arg, &fw_devlink_strict); 1599 } 1600 early_param("fw_devlink.strict", fw_devlink_strict_setup); 1601 1602 u32 fw_devlink_get_flags(void) 1603 { 1604 return fw_devlink_flags; 1605 } 1606 1607 static bool fw_devlink_is_permissive(void) 1608 { 1609 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE; 1610 } 1611 1612 bool fw_devlink_is_strict(void) 1613 { 1614 return fw_devlink_strict && !fw_devlink_is_permissive(); 1615 } 1616 1617 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode) 1618 { 1619 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED) 1620 return; 1621 1622 fwnode_call_int_op(fwnode, add_links); 1623 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED; 1624 } 1625 1626 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode) 1627 { 1628 struct fwnode_handle *child = NULL; 1629 1630 fw_devlink_parse_fwnode(fwnode); 1631 1632 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 1633 fw_devlink_parse_fwtree(child); 1634 } 1635 1636 static void fw_devlink_relax_link(struct device_link *link) 1637 { 1638 if (!(link->flags & DL_FLAG_INFERRED)) 1639 return; 1640 1641 if (link->flags == (DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE)) 1642 return; 1643 1644 pm_runtime_drop_link(link); 1645 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE; 1646 dev_dbg(link->consumer, "Relaxing link with %s\n", 1647 dev_name(link->supplier)); 1648 } 1649 1650 static int fw_devlink_no_driver(struct device *dev, void *data) 1651 { 1652 struct device_link *link = to_devlink(dev); 1653 1654 if (!link->supplier->can_match) 1655 fw_devlink_relax_link(link); 1656 1657 return 0; 1658 } 1659 1660 void fw_devlink_drivers_done(void) 1661 { 1662 fw_devlink_drv_reg_done = true; 1663 device_links_write_lock(); 1664 class_for_each_device(&devlink_class, NULL, NULL, 1665 fw_devlink_no_driver); 1666 device_links_write_unlock(); 1667 } 1668 1669 static void fw_devlink_unblock_consumers(struct device *dev) 1670 { 1671 struct device_link *link; 1672 1673 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1674 return; 1675 1676 device_links_write_lock(); 1677 list_for_each_entry(link, &dev->links.consumers, s_node) 1678 fw_devlink_relax_link(link); 1679 device_links_write_unlock(); 1680 } 1681 1682 /** 1683 * fw_devlink_relax_cycle - Convert cyclic links to SYNC_STATE_ONLY links 1684 * @con: Device to check dependencies for. 1685 * @sup: Device to check against. 1686 * 1687 * Check if @sup depends on @con or any device dependent on it (its child or 1688 * its consumer etc). When such a cyclic dependency is found, convert all 1689 * device links created solely by fw_devlink into SYNC_STATE_ONLY device links. 1690 * This is the equivalent of doing fw_devlink=permissive just between the 1691 * devices in the cycle. We need to do this because, at this point, fw_devlink 1692 * can't tell which of these dependencies is not a real dependency. 1693 * 1694 * Return 1 if a cycle is found. Otherwise, return 0. 1695 */ 1696 static int fw_devlink_relax_cycle(struct device *con, void *sup) 1697 { 1698 struct device_link *link; 1699 int ret; 1700 1701 if (con == sup) 1702 return 1; 1703 1704 ret = device_for_each_child(con, sup, fw_devlink_relax_cycle); 1705 if (ret) 1706 return ret; 1707 1708 list_for_each_entry(link, &con->links.consumers, s_node) { 1709 if ((link->flags & ~DL_FLAG_INFERRED) == 1710 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 1711 continue; 1712 1713 if (!fw_devlink_relax_cycle(link->consumer, sup)) 1714 continue; 1715 1716 ret = 1; 1717 1718 fw_devlink_relax_link(link); 1719 } 1720 return ret; 1721 } 1722 1723 /** 1724 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode 1725 * @con: consumer device for the device link 1726 * @sup_handle: fwnode handle of supplier 1727 * @flags: devlink flags 1728 * 1729 * This function will try to create a device link between the consumer device 1730 * @con and the supplier device represented by @sup_handle. 1731 * 1732 * The supplier has to be provided as a fwnode because incorrect cycles in 1733 * fwnode links can sometimes cause the supplier device to never be created. 1734 * This function detects such cases and returns an error if it cannot create a 1735 * device link from the consumer to a missing supplier. 1736 * 1737 * Returns, 1738 * 0 on successfully creating a device link 1739 * -EINVAL if the device link cannot be created as expected 1740 * -EAGAIN if the device link cannot be created right now, but it may be 1741 * possible to do that in the future 1742 */ 1743 static int fw_devlink_create_devlink(struct device *con, 1744 struct fwnode_handle *sup_handle, u32 flags) 1745 { 1746 struct device *sup_dev; 1747 int ret = 0; 1748 1749 /* 1750 * In some cases, a device P might also be a supplier to its child node 1751 * C. However, this would defer the probe of C until the probe of P 1752 * completes successfully. This is perfectly fine in the device driver 1753 * model. device_add() doesn't guarantee probe completion of the device 1754 * by the time it returns. 1755 * 1756 * However, there are a few drivers that assume C will finish probing 1757 * as soon as it's added and before P finishes probing. So, we provide 1758 * a flag to let fw_devlink know not to delay the probe of C until the 1759 * probe of P completes successfully. 1760 * 1761 * When such a flag is set, we can't create device links where P is the 1762 * supplier of C as that would delay the probe of C. 1763 */ 1764 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD && 1765 fwnode_is_ancestor_of(sup_handle, con->fwnode)) 1766 return -EINVAL; 1767 1768 sup_dev = get_dev_from_fwnode(sup_handle); 1769 if (sup_dev) { 1770 /* 1771 * If it's one of those drivers that don't actually bind to 1772 * their device using driver core, then don't wait on this 1773 * supplier device indefinitely. 1774 */ 1775 if (sup_dev->links.status == DL_DEV_NO_DRIVER && 1776 sup_handle->flags & FWNODE_FLAG_INITIALIZED) { 1777 ret = -EINVAL; 1778 goto out; 1779 } 1780 1781 /* 1782 * If this fails, it is due to cycles in device links. Just 1783 * give up on this link and treat it as invalid. 1784 */ 1785 if (!device_link_add(con, sup_dev, flags) && 1786 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 1787 dev_info(con, "Fixing up cyclic dependency with %s\n", 1788 dev_name(sup_dev)); 1789 device_links_write_lock(); 1790 fw_devlink_relax_cycle(con, sup_dev); 1791 device_links_write_unlock(); 1792 device_link_add(con, sup_dev, 1793 FW_DEVLINK_FLAGS_PERMISSIVE); 1794 ret = -EINVAL; 1795 } 1796 1797 goto out; 1798 } 1799 1800 /* Supplier that's already initialized without a struct device. */ 1801 if (sup_handle->flags & FWNODE_FLAG_INITIALIZED) 1802 return -EINVAL; 1803 1804 /* 1805 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports 1806 * cycles. So cycle detection isn't necessary and shouldn't be 1807 * done. 1808 */ 1809 if (flags & DL_FLAG_SYNC_STATE_ONLY) 1810 return -EAGAIN; 1811 1812 /* 1813 * If we can't find the supplier device from its fwnode, it might be 1814 * due to a cyclic dependency between fwnodes. Some of these cycles can 1815 * be broken by applying logic. Check for these types of cycles and 1816 * break them so that devices in the cycle probe properly. 1817 * 1818 * If the supplier's parent is dependent on the consumer, then the 1819 * consumer and supplier have a cyclic dependency. Since fw_devlink 1820 * can't tell which of the inferred dependencies are incorrect, don't 1821 * enforce probe ordering between any of the devices in this cyclic 1822 * dependency. Do this by relaxing all the fw_devlink device links in 1823 * this cycle and by treating the fwnode link between the consumer and 1824 * the supplier as an invalid dependency. 1825 */ 1826 sup_dev = fwnode_get_next_parent_dev(sup_handle); 1827 if (sup_dev && device_is_dependent(con, sup_dev)) { 1828 dev_info(con, "Fixing up cyclic dependency with %pfwP (%s)\n", 1829 sup_handle, dev_name(sup_dev)); 1830 device_links_write_lock(); 1831 fw_devlink_relax_cycle(con, sup_dev); 1832 device_links_write_unlock(); 1833 ret = -EINVAL; 1834 } else { 1835 /* 1836 * Can't check for cycles or no cycles. So let's try 1837 * again later. 1838 */ 1839 ret = -EAGAIN; 1840 } 1841 1842 out: 1843 put_device(sup_dev); 1844 return ret; 1845 } 1846 1847 /** 1848 * __fw_devlink_link_to_consumers - Create device links to consumers of a device 1849 * @dev: Device that needs to be linked to its consumers 1850 * 1851 * This function looks at all the consumer fwnodes of @dev and creates device 1852 * links between the consumer device and @dev (supplier). 1853 * 1854 * If the consumer device has not been added yet, then this function creates a 1855 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device 1856 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a 1857 * sync_state() callback before the real consumer device gets to be added and 1858 * then probed. 1859 * 1860 * Once device links are created from the real consumer to @dev (supplier), the 1861 * fwnode links are deleted. 1862 */ 1863 static void __fw_devlink_link_to_consumers(struct device *dev) 1864 { 1865 struct fwnode_handle *fwnode = dev->fwnode; 1866 struct fwnode_link *link, *tmp; 1867 1868 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) { 1869 u32 dl_flags = fw_devlink_get_flags(); 1870 struct device *con_dev; 1871 bool own_link = true; 1872 int ret; 1873 1874 con_dev = get_dev_from_fwnode(link->consumer); 1875 /* 1876 * If consumer device is not available yet, make a "proxy" 1877 * SYNC_STATE_ONLY link from the consumer's parent device to 1878 * the supplier device. This is necessary to make sure the 1879 * supplier doesn't get a sync_state() callback before the real 1880 * consumer can create a device link to the supplier. 1881 * 1882 * This proxy link step is needed to handle the case where the 1883 * consumer's parent device is added before the supplier. 1884 */ 1885 if (!con_dev) { 1886 con_dev = fwnode_get_next_parent_dev(link->consumer); 1887 /* 1888 * However, if the consumer's parent device is also the 1889 * parent of the supplier, don't create a 1890 * consumer-supplier link from the parent to its child 1891 * device. Such a dependency is impossible. 1892 */ 1893 if (con_dev && 1894 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) { 1895 put_device(con_dev); 1896 con_dev = NULL; 1897 } else { 1898 own_link = false; 1899 dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1900 } 1901 } 1902 1903 if (!con_dev) 1904 continue; 1905 1906 ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags); 1907 put_device(con_dev); 1908 if (!own_link || ret == -EAGAIN) 1909 continue; 1910 1911 __fwnode_link_del(link); 1912 } 1913 } 1914 1915 /** 1916 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device 1917 * @dev: The consumer device that needs to be linked to its suppliers 1918 * @fwnode: Root of the fwnode tree that is used to create device links 1919 * 1920 * This function looks at all the supplier fwnodes of fwnode tree rooted at 1921 * @fwnode and creates device links between @dev (consumer) and all the 1922 * supplier devices of the entire fwnode tree at @fwnode. 1923 * 1924 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev 1925 * and the real suppliers of @dev. Once these device links are created, the 1926 * fwnode links are deleted. When such device links are successfully created, 1927 * this function is called recursively on those supplier devices. This is 1928 * needed to detect and break some invalid cycles in fwnode links. See 1929 * fw_devlink_create_devlink() for more details. 1930 * 1931 * In addition, it also looks at all the suppliers of the entire fwnode tree 1932 * because some of the child devices of @dev that have not been added yet 1933 * (because @dev hasn't probed) might already have their suppliers added to 1934 * driver core. So, this function creates SYNC_STATE_ONLY device links between 1935 * @dev (consumer) and these suppliers to make sure they don't execute their 1936 * sync_state() callbacks before these child devices have a chance to create 1937 * their device links. The fwnode links that correspond to the child devices 1938 * aren't delete because they are needed later to create the device links 1939 * between the real consumer and supplier devices. 1940 */ 1941 static void __fw_devlink_link_to_suppliers(struct device *dev, 1942 struct fwnode_handle *fwnode) 1943 { 1944 bool own_link = (dev->fwnode == fwnode); 1945 struct fwnode_link *link, *tmp; 1946 struct fwnode_handle *child = NULL; 1947 u32 dl_flags; 1948 1949 if (own_link) 1950 dl_flags = fw_devlink_get_flags(); 1951 else 1952 dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1953 1954 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) { 1955 int ret; 1956 struct device *sup_dev; 1957 struct fwnode_handle *sup = link->supplier; 1958 1959 ret = fw_devlink_create_devlink(dev, sup, dl_flags); 1960 if (!own_link || ret == -EAGAIN) 1961 continue; 1962 1963 __fwnode_link_del(link); 1964 1965 /* If no device link was created, nothing more to do. */ 1966 if (ret) 1967 continue; 1968 1969 /* 1970 * If a device link was successfully created to a supplier, we 1971 * now need to try and link the supplier to all its suppliers. 1972 * 1973 * This is needed to detect and delete false dependencies in 1974 * fwnode links that haven't been converted to a device link 1975 * yet. See comments in fw_devlink_create_devlink() for more 1976 * details on the false dependency. 1977 * 1978 * Without deleting these false dependencies, some devices will 1979 * never probe because they'll keep waiting for their false 1980 * dependency fwnode links to be converted to device links. 1981 */ 1982 sup_dev = get_dev_from_fwnode(sup); 1983 __fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode); 1984 put_device(sup_dev); 1985 } 1986 1987 /* 1988 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of 1989 * all the descendants. This proxy link step is needed to handle the 1990 * case where the supplier is added before the consumer's parent device 1991 * (@dev). 1992 */ 1993 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 1994 __fw_devlink_link_to_suppliers(dev, child); 1995 } 1996 1997 static void fw_devlink_link_device(struct device *dev) 1998 { 1999 struct fwnode_handle *fwnode = dev->fwnode; 2000 2001 if (!fw_devlink_flags) 2002 return; 2003 2004 fw_devlink_parse_fwtree(fwnode); 2005 2006 mutex_lock(&fwnode_link_lock); 2007 __fw_devlink_link_to_consumers(dev); 2008 __fw_devlink_link_to_suppliers(dev, fwnode); 2009 mutex_unlock(&fwnode_link_lock); 2010 } 2011 2012 /* Device links support end. */ 2013 2014 int (*platform_notify)(struct device *dev) = NULL; 2015 int (*platform_notify_remove)(struct device *dev) = NULL; 2016 static struct kobject *dev_kobj; 2017 struct kobject *sysfs_dev_char_kobj; 2018 struct kobject *sysfs_dev_block_kobj; 2019 2020 static DEFINE_MUTEX(device_hotplug_lock); 2021 2022 void lock_device_hotplug(void) 2023 { 2024 mutex_lock(&device_hotplug_lock); 2025 } 2026 2027 void unlock_device_hotplug(void) 2028 { 2029 mutex_unlock(&device_hotplug_lock); 2030 } 2031 2032 int lock_device_hotplug_sysfs(void) 2033 { 2034 if (mutex_trylock(&device_hotplug_lock)) 2035 return 0; 2036 2037 /* Avoid busy looping (5 ms of sleep should do). */ 2038 msleep(5); 2039 return restart_syscall(); 2040 } 2041 2042 #ifdef CONFIG_BLOCK 2043 static inline int device_is_not_partition(struct device *dev) 2044 { 2045 return !(dev->type == &part_type); 2046 } 2047 #else 2048 static inline int device_is_not_partition(struct device *dev) 2049 { 2050 return 1; 2051 } 2052 #endif 2053 2054 static void device_platform_notify(struct device *dev) 2055 { 2056 acpi_device_notify(dev); 2057 2058 software_node_notify(dev); 2059 2060 if (platform_notify) 2061 platform_notify(dev); 2062 } 2063 2064 static void device_platform_notify_remove(struct device *dev) 2065 { 2066 acpi_device_notify_remove(dev); 2067 2068 software_node_notify_remove(dev); 2069 2070 if (platform_notify_remove) 2071 platform_notify_remove(dev); 2072 } 2073 2074 /** 2075 * dev_driver_string - Return a device's driver name, if at all possible 2076 * @dev: struct device to get the name of 2077 * 2078 * Will return the device's driver's name if it is bound to a device. If 2079 * the device is not bound to a driver, it will return the name of the bus 2080 * it is attached to. If it is not attached to a bus either, an empty 2081 * string will be returned. 2082 */ 2083 const char *dev_driver_string(const struct device *dev) 2084 { 2085 struct device_driver *drv; 2086 2087 /* dev->driver can change to NULL underneath us because of unbinding, 2088 * so be careful about accessing it. dev->bus and dev->class should 2089 * never change once they are set, so they don't need special care. 2090 */ 2091 drv = READ_ONCE(dev->driver); 2092 return drv ? drv->name : dev_bus_name(dev); 2093 } 2094 EXPORT_SYMBOL(dev_driver_string); 2095 2096 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 2097 2098 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 2099 char *buf) 2100 { 2101 struct device_attribute *dev_attr = to_dev_attr(attr); 2102 struct device *dev = kobj_to_dev(kobj); 2103 ssize_t ret = -EIO; 2104 2105 if (dev_attr->show) 2106 ret = dev_attr->show(dev, dev_attr, buf); 2107 if (ret >= (ssize_t)PAGE_SIZE) { 2108 printk("dev_attr_show: %pS returned bad count\n", 2109 dev_attr->show); 2110 } 2111 return ret; 2112 } 2113 2114 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 2115 const char *buf, size_t count) 2116 { 2117 struct device_attribute *dev_attr = to_dev_attr(attr); 2118 struct device *dev = kobj_to_dev(kobj); 2119 ssize_t ret = -EIO; 2120 2121 if (dev_attr->store) 2122 ret = dev_attr->store(dev, dev_attr, buf, count); 2123 return ret; 2124 } 2125 2126 static const struct sysfs_ops dev_sysfs_ops = { 2127 .show = dev_attr_show, 2128 .store = dev_attr_store, 2129 }; 2130 2131 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 2132 2133 ssize_t device_store_ulong(struct device *dev, 2134 struct device_attribute *attr, 2135 const char *buf, size_t size) 2136 { 2137 struct dev_ext_attribute *ea = to_ext_attr(attr); 2138 int ret; 2139 unsigned long new; 2140 2141 ret = kstrtoul(buf, 0, &new); 2142 if (ret) 2143 return ret; 2144 *(unsigned long *)(ea->var) = new; 2145 /* Always return full write size even if we didn't consume all */ 2146 return size; 2147 } 2148 EXPORT_SYMBOL_GPL(device_store_ulong); 2149 2150 ssize_t device_show_ulong(struct device *dev, 2151 struct device_attribute *attr, 2152 char *buf) 2153 { 2154 struct dev_ext_attribute *ea = to_ext_attr(attr); 2155 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var)); 2156 } 2157 EXPORT_SYMBOL_GPL(device_show_ulong); 2158 2159 ssize_t device_store_int(struct device *dev, 2160 struct device_attribute *attr, 2161 const char *buf, size_t size) 2162 { 2163 struct dev_ext_attribute *ea = to_ext_attr(attr); 2164 int ret; 2165 long new; 2166 2167 ret = kstrtol(buf, 0, &new); 2168 if (ret) 2169 return ret; 2170 2171 if (new > INT_MAX || new < INT_MIN) 2172 return -EINVAL; 2173 *(int *)(ea->var) = new; 2174 /* Always return full write size even if we didn't consume all */ 2175 return size; 2176 } 2177 EXPORT_SYMBOL_GPL(device_store_int); 2178 2179 ssize_t device_show_int(struct device *dev, 2180 struct device_attribute *attr, 2181 char *buf) 2182 { 2183 struct dev_ext_attribute *ea = to_ext_attr(attr); 2184 2185 return sysfs_emit(buf, "%d\n", *(int *)(ea->var)); 2186 } 2187 EXPORT_SYMBOL_GPL(device_show_int); 2188 2189 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 2190 const char *buf, size_t size) 2191 { 2192 struct dev_ext_attribute *ea = to_ext_attr(attr); 2193 2194 if (strtobool(buf, ea->var) < 0) 2195 return -EINVAL; 2196 2197 return size; 2198 } 2199 EXPORT_SYMBOL_GPL(device_store_bool); 2200 2201 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 2202 char *buf) 2203 { 2204 struct dev_ext_attribute *ea = to_ext_attr(attr); 2205 2206 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var)); 2207 } 2208 EXPORT_SYMBOL_GPL(device_show_bool); 2209 2210 /** 2211 * device_release - free device structure. 2212 * @kobj: device's kobject. 2213 * 2214 * This is called once the reference count for the object 2215 * reaches 0. We forward the call to the device's release 2216 * method, which should handle actually freeing the structure. 2217 */ 2218 static void device_release(struct kobject *kobj) 2219 { 2220 struct device *dev = kobj_to_dev(kobj); 2221 struct device_private *p = dev->p; 2222 2223 /* 2224 * Some platform devices are driven without driver attached 2225 * and managed resources may have been acquired. Make sure 2226 * all resources are released. 2227 * 2228 * Drivers still can add resources into device after device 2229 * is deleted but alive, so release devres here to avoid 2230 * possible memory leak. 2231 */ 2232 devres_release_all(dev); 2233 2234 kfree(dev->dma_range_map); 2235 2236 if (dev->release) 2237 dev->release(dev); 2238 else if (dev->type && dev->type->release) 2239 dev->type->release(dev); 2240 else if (dev->class && dev->class->dev_release) 2241 dev->class->dev_release(dev); 2242 else 2243 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n", 2244 dev_name(dev)); 2245 kfree(p); 2246 } 2247 2248 static const void *device_namespace(struct kobject *kobj) 2249 { 2250 struct device *dev = kobj_to_dev(kobj); 2251 const void *ns = NULL; 2252 2253 if (dev->class && dev->class->ns_type) 2254 ns = dev->class->namespace(dev); 2255 2256 return ns; 2257 } 2258 2259 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid) 2260 { 2261 struct device *dev = kobj_to_dev(kobj); 2262 2263 if (dev->class && dev->class->get_ownership) 2264 dev->class->get_ownership(dev, uid, gid); 2265 } 2266 2267 static struct kobj_type device_ktype = { 2268 .release = device_release, 2269 .sysfs_ops = &dev_sysfs_ops, 2270 .namespace = device_namespace, 2271 .get_ownership = device_get_ownership, 2272 }; 2273 2274 2275 static int dev_uevent_filter(struct kobject *kobj) 2276 { 2277 const struct kobj_type *ktype = get_ktype(kobj); 2278 2279 if (ktype == &device_ktype) { 2280 struct device *dev = kobj_to_dev(kobj); 2281 if (dev->bus) 2282 return 1; 2283 if (dev->class) 2284 return 1; 2285 } 2286 return 0; 2287 } 2288 2289 static const char *dev_uevent_name(struct kobject *kobj) 2290 { 2291 struct device *dev = kobj_to_dev(kobj); 2292 2293 if (dev->bus) 2294 return dev->bus->name; 2295 if (dev->class) 2296 return dev->class->name; 2297 return NULL; 2298 } 2299 2300 static int dev_uevent(struct kobject *kobj, struct kobj_uevent_env *env) 2301 { 2302 struct device *dev = kobj_to_dev(kobj); 2303 int retval = 0; 2304 2305 /* add device node properties if present */ 2306 if (MAJOR(dev->devt)) { 2307 const char *tmp; 2308 const char *name; 2309 umode_t mode = 0; 2310 kuid_t uid = GLOBAL_ROOT_UID; 2311 kgid_t gid = GLOBAL_ROOT_GID; 2312 2313 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 2314 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 2315 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 2316 if (name) { 2317 add_uevent_var(env, "DEVNAME=%s", name); 2318 if (mode) 2319 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 2320 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 2321 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 2322 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 2323 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 2324 kfree(tmp); 2325 } 2326 } 2327 2328 if (dev->type && dev->type->name) 2329 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 2330 2331 if (dev->driver) 2332 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 2333 2334 /* Add common DT information about the device */ 2335 of_device_uevent(dev, env); 2336 2337 /* have the bus specific function add its stuff */ 2338 if (dev->bus && dev->bus->uevent) { 2339 retval = dev->bus->uevent(dev, env); 2340 if (retval) 2341 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 2342 dev_name(dev), __func__, retval); 2343 } 2344 2345 /* have the class specific function add its stuff */ 2346 if (dev->class && dev->class->dev_uevent) { 2347 retval = dev->class->dev_uevent(dev, env); 2348 if (retval) 2349 pr_debug("device: '%s': %s: class uevent() " 2350 "returned %d\n", dev_name(dev), 2351 __func__, retval); 2352 } 2353 2354 /* have the device type specific function add its stuff */ 2355 if (dev->type && dev->type->uevent) { 2356 retval = dev->type->uevent(dev, env); 2357 if (retval) 2358 pr_debug("device: '%s': %s: dev_type uevent() " 2359 "returned %d\n", dev_name(dev), 2360 __func__, retval); 2361 } 2362 2363 return retval; 2364 } 2365 2366 static const struct kset_uevent_ops device_uevent_ops = { 2367 .filter = dev_uevent_filter, 2368 .name = dev_uevent_name, 2369 .uevent = dev_uevent, 2370 }; 2371 2372 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 2373 char *buf) 2374 { 2375 struct kobject *top_kobj; 2376 struct kset *kset; 2377 struct kobj_uevent_env *env = NULL; 2378 int i; 2379 int len = 0; 2380 int retval; 2381 2382 /* search the kset, the device belongs to */ 2383 top_kobj = &dev->kobj; 2384 while (!top_kobj->kset && top_kobj->parent) 2385 top_kobj = top_kobj->parent; 2386 if (!top_kobj->kset) 2387 goto out; 2388 2389 kset = top_kobj->kset; 2390 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 2391 goto out; 2392 2393 /* respect filter */ 2394 if (kset->uevent_ops && kset->uevent_ops->filter) 2395 if (!kset->uevent_ops->filter(&dev->kobj)) 2396 goto out; 2397 2398 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 2399 if (!env) 2400 return -ENOMEM; 2401 2402 /* let the kset specific function add its keys */ 2403 retval = kset->uevent_ops->uevent(&dev->kobj, env); 2404 if (retval) 2405 goto out; 2406 2407 /* copy keys to file */ 2408 for (i = 0; i < env->envp_idx; i++) 2409 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]); 2410 out: 2411 kfree(env); 2412 return len; 2413 } 2414 2415 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 2416 const char *buf, size_t count) 2417 { 2418 int rc; 2419 2420 rc = kobject_synth_uevent(&dev->kobj, buf, count); 2421 2422 if (rc) { 2423 dev_err(dev, "uevent: failed to send synthetic uevent\n"); 2424 return rc; 2425 } 2426 2427 return count; 2428 } 2429 static DEVICE_ATTR_RW(uevent); 2430 2431 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 2432 char *buf) 2433 { 2434 bool val; 2435 2436 device_lock(dev); 2437 val = !dev->offline; 2438 device_unlock(dev); 2439 return sysfs_emit(buf, "%u\n", val); 2440 } 2441 2442 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 2443 const char *buf, size_t count) 2444 { 2445 bool val; 2446 int ret; 2447 2448 ret = strtobool(buf, &val); 2449 if (ret < 0) 2450 return ret; 2451 2452 ret = lock_device_hotplug_sysfs(); 2453 if (ret) 2454 return ret; 2455 2456 ret = val ? device_online(dev) : device_offline(dev); 2457 unlock_device_hotplug(); 2458 return ret < 0 ? ret : count; 2459 } 2460 static DEVICE_ATTR_RW(online); 2461 2462 static ssize_t removable_show(struct device *dev, struct device_attribute *attr, 2463 char *buf) 2464 { 2465 const char *loc; 2466 2467 switch (dev->removable) { 2468 case DEVICE_REMOVABLE: 2469 loc = "removable"; 2470 break; 2471 case DEVICE_FIXED: 2472 loc = "fixed"; 2473 break; 2474 default: 2475 loc = "unknown"; 2476 } 2477 return sysfs_emit(buf, "%s\n", loc); 2478 } 2479 static DEVICE_ATTR_RO(removable); 2480 2481 int device_add_groups(struct device *dev, const struct attribute_group **groups) 2482 { 2483 return sysfs_create_groups(&dev->kobj, groups); 2484 } 2485 EXPORT_SYMBOL_GPL(device_add_groups); 2486 2487 void device_remove_groups(struct device *dev, 2488 const struct attribute_group **groups) 2489 { 2490 sysfs_remove_groups(&dev->kobj, groups); 2491 } 2492 EXPORT_SYMBOL_GPL(device_remove_groups); 2493 2494 union device_attr_group_devres { 2495 const struct attribute_group *group; 2496 const struct attribute_group **groups; 2497 }; 2498 2499 static int devm_attr_group_match(struct device *dev, void *res, void *data) 2500 { 2501 return ((union device_attr_group_devres *)res)->group == data; 2502 } 2503 2504 static void devm_attr_group_remove(struct device *dev, void *res) 2505 { 2506 union device_attr_group_devres *devres = res; 2507 const struct attribute_group *group = devres->group; 2508 2509 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 2510 sysfs_remove_group(&dev->kobj, group); 2511 } 2512 2513 static void devm_attr_groups_remove(struct device *dev, void *res) 2514 { 2515 union device_attr_group_devres *devres = res; 2516 const struct attribute_group **groups = devres->groups; 2517 2518 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups); 2519 sysfs_remove_groups(&dev->kobj, groups); 2520 } 2521 2522 /** 2523 * devm_device_add_group - given a device, create a managed attribute group 2524 * @dev: The device to create the group for 2525 * @grp: The attribute group to create 2526 * 2527 * This function creates a group for the first time. It will explicitly 2528 * warn and error if any of the attribute files being created already exist. 2529 * 2530 * Returns 0 on success or error code on failure. 2531 */ 2532 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 2533 { 2534 union device_attr_group_devres *devres; 2535 int error; 2536 2537 devres = devres_alloc(devm_attr_group_remove, 2538 sizeof(*devres), GFP_KERNEL); 2539 if (!devres) 2540 return -ENOMEM; 2541 2542 error = sysfs_create_group(&dev->kobj, grp); 2543 if (error) { 2544 devres_free(devres); 2545 return error; 2546 } 2547 2548 devres->group = grp; 2549 devres_add(dev, devres); 2550 return 0; 2551 } 2552 EXPORT_SYMBOL_GPL(devm_device_add_group); 2553 2554 /** 2555 * devm_device_remove_group: remove a managed group from a device 2556 * @dev: device to remove the group from 2557 * @grp: group to remove 2558 * 2559 * This function removes a group of attributes from a device. The attributes 2560 * previously have to have been created for this group, otherwise it will fail. 2561 */ 2562 void devm_device_remove_group(struct device *dev, 2563 const struct attribute_group *grp) 2564 { 2565 WARN_ON(devres_release(dev, devm_attr_group_remove, 2566 devm_attr_group_match, 2567 /* cast away const */ (void *)grp)); 2568 } 2569 EXPORT_SYMBOL_GPL(devm_device_remove_group); 2570 2571 /** 2572 * devm_device_add_groups - create a bunch of managed attribute groups 2573 * @dev: The device to create the group for 2574 * @groups: The attribute groups to create, NULL terminated 2575 * 2576 * This function creates a bunch of managed attribute groups. If an error 2577 * occurs when creating a group, all previously created groups will be 2578 * removed, unwinding everything back to the original state when this 2579 * function was called. It will explicitly warn and error if any of the 2580 * attribute files being created already exist. 2581 * 2582 * Returns 0 on success or error code from sysfs_create_group on failure. 2583 */ 2584 int devm_device_add_groups(struct device *dev, 2585 const struct attribute_group **groups) 2586 { 2587 union device_attr_group_devres *devres; 2588 int error; 2589 2590 devres = devres_alloc(devm_attr_groups_remove, 2591 sizeof(*devres), GFP_KERNEL); 2592 if (!devres) 2593 return -ENOMEM; 2594 2595 error = sysfs_create_groups(&dev->kobj, groups); 2596 if (error) { 2597 devres_free(devres); 2598 return error; 2599 } 2600 2601 devres->groups = groups; 2602 devres_add(dev, devres); 2603 return 0; 2604 } 2605 EXPORT_SYMBOL_GPL(devm_device_add_groups); 2606 2607 /** 2608 * devm_device_remove_groups - remove a list of managed groups 2609 * 2610 * @dev: The device for the groups to be removed from 2611 * @groups: NULL terminated list of groups to be removed 2612 * 2613 * If groups is not NULL, remove the specified groups from the device. 2614 */ 2615 void devm_device_remove_groups(struct device *dev, 2616 const struct attribute_group **groups) 2617 { 2618 WARN_ON(devres_release(dev, devm_attr_groups_remove, 2619 devm_attr_group_match, 2620 /* cast away const */ (void *)groups)); 2621 } 2622 EXPORT_SYMBOL_GPL(devm_device_remove_groups); 2623 2624 static int device_add_attrs(struct device *dev) 2625 { 2626 struct class *class = dev->class; 2627 const struct device_type *type = dev->type; 2628 int error; 2629 2630 if (class) { 2631 error = device_add_groups(dev, class->dev_groups); 2632 if (error) 2633 return error; 2634 } 2635 2636 if (type) { 2637 error = device_add_groups(dev, type->groups); 2638 if (error) 2639 goto err_remove_class_groups; 2640 } 2641 2642 error = device_add_groups(dev, dev->groups); 2643 if (error) 2644 goto err_remove_type_groups; 2645 2646 if (device_supports_offline(dev) && !dev->offline_disabled) { 2647 error = device_create_file(dev, &dev_attr_online); 2648 if (error) 2649 goto err_remove_dev_groups; 2650 } 2651 2652 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) { 2653 error = device_create_file(dev, &dev_attr_waiting_for_supplier); 2654 if (error) 2655 goto err_remove_dev_online; 2656 } 2657 2658 if (dev_removable_is_valid(dev)) { 2659 error = device_create_file(dev, &dev_attr_removable); 2660 if (error) 2661 goto err_remove_dev_waiting_for_supplier; 2662 } 2663 2664 if (dev_add_physical_location(dev)) { 2665 error = device_add_group(dev, 2666 &dev_attr_physical_location_group); 2667 if (error) 2668 goto err_remove_dev_removable; 2669 } 2670 2671 return 0; 2672 2673 err_remove_dev_removable: 2674 device_remove_file(dev, &dev_attr_removable); 2675 err_remove_dev_waiting_for_supplier: 2676 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2677 err_remove_dev_online: 2678 device_remove_file(dev, &dev_attr_online); 2679 err_remove_dev_groups: 2680 device_remove_groups(dev, dev->groups); 2681 err_remove_type_groups: 2682 if (type) 2683 device_remove_groups(dev, type->groups); 2684 err_remove_class_groups: 2685 if (class) 2686 device_remove_groups(dev, class->dev_groups); 2687 2688 return error; 2689 } 2690 2691 static void device_remove_attrs(struct device *dev) 2692 { 2693 struct class *class = dev->class; 2694 const struct device_type *type = dev->type; 2695 2696 if (dev->physical_location) { 2697 device_remove_group(dev, &dev_attr_physical_location_group); 2698 kfree(dev->physical_location); 2699 } 2700 2701 device_remove_file(dev, &dev_attr_removable); 2702 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2703 device_remove_file(dev, &dev_attr_online); 2704 device_remove_groups(dev, dev->groups); 2705 2706 if (type) 2707 device_remove_groups(dev, type->groups); 2708 2709 if (class) 2710 device_remove_groups(dev, class->dev_groups); 2711 } 2712 2713 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 2714 char *buf) 2715 { 2716 return print_dev_t(buf, dev->devt); 2717 } 2718 static DEVICE_ATTR_RO(dev); 2719 2720 /* /sys/devices/ */ 2721 struct kset *devices_kset; 2722 2723 /** 2724 * devices_kset_move_before - Move device in the devices_kset's list. 2725 * @deva: Device to move. 2726 * @devb: Device @deva should come before. 2727 */ 2728 static void devices_kset_move_before(struct device *deva, struct device *devb) 2729 { 2730 if (!devices_kset) 2731 return; 2732 pr_debug("devices_kset: Moving %s before %s\n", 2733 dev_name(deva), dev_name(devb)); 2734 spin_lock(&devices_kset->list_lock); 2735 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 2736 spin_unlock(&devices_kset->list_lock); 2737 } 2738 2739 /** 2740 * devices_kset_move_after - Move device in the devices_kset's list. 2741 * @deva: Device to move 2742 * @devb: Device @deva should come after. 2743 */ 2744 static void devices_kset_move_after(struct device *deva, struct device *devb) 2745 { 2746 if (!devices_kset) 2747 return; 2748 pr_debug("devices_kset: Moving %s after %s\n", 2749 dev_name(deva), dev_name(devb)); 2750 spin_lock(&devices_kset->list_lock); 2751 list_move(&deva->kobj.entry, &devb->kobj.entry); 2752 spin_unlock(&devices_kset->list_lock); 2753 } 2754 2755 /** 2756 * devices_kset_move_last - move the device to the end of devices_kset's list. 2757 * @dev: device to move 2758 */ 2759 void devices_kset_move_last(struct device *dev) 2760 { 2761 if (!devices_kset) 2762 return; 2763 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 2764 spin_lock(&devices_kset->list_lock); 2765 list_move_tail(&dev->kobj.entry, &devices_kset->list); 2766 spin_unlock(&devices_kset->list_lock); 2767 } 2768 2769 /** 2770 * device_create_file - create sysfs attribute file for device. 2771 * @dev: device. 2772 * @attr: device attribute descriptor. 2773 */ 2774 int device_create_file(struct device *dev, 2775 const struct device_attribute *attr) 2776 { 2777 int error = 0; 2778 2779 if (dev) { 2780 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 2781 "Attribute %s: write permission without 'store'\n", 2782 attr->attr.name); 2783 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 2784 "Attribute %s: read permission without 'show'\n", 2785 attr->attr.name); 2786 error = sysfs_create_file(&dev->kobj, &attr->attr); 2787 } 2788 2789 return error; 2790 } 2791 EXPORT_SYMBOL_GPL(device_create_file); 2792 2793 /** 2794 * device_remove_file - remove sysfs attribute file. 2795 * @dev: device. 2796 * @attr: device attribute descriptor. 2797 */ 2798 void device_remove_file(struct device *dev, 2799 const struct device_attribute *attr) 2800 { 2801 if (dev) 2802 sysfs_remove_file(&dev->kobj, &attr->attr); 2803 } 2804 EXPORT_SYMBOL_GPL(device_remove_file); 2805 2806 /** 2807 * device_remove_file_self - remove sysfs attribute file from its own method. 2808 * @dev: device. 2809 * @attr: device attribute descriptor. 2810 * 2811 * See kernfs_remove_self() for details. 2812 */ 2813 bool device_remove_file_self(struct device *dev, 2814 const struct device_attribute *attr) 2815 { 2816 if (dev) 2817 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 2818 else 2819 return false; 2820 } 2821 EXPORT_SYMBOL_GPL(device_remove_file_self); 2822 2823 /** 2824 * device_create_bin_file - create sysfs binary attribute file for device. 2825 * @dev: device. 2826 * @attr: device binary attribute descriptor. 2827 */ 2828 int device_create_bin_file(struct device *dev, 2829 const struct bin_attribute *attr) 2830 { 2831 int error = -EINVAL; 2832 if (dev) 2833 error = sysfs_create_bin_file(&dev->kobj, attr); 2834 return error; 2835 } 2836 EXPORT_SYMBOL_GPL(device_create_bin_file); 2837 2838 /** 2839 * device_remove_bin_file - remove sysfs binary attribute file 2840 * @dev: device. 2841 * @attr: device binary attribute descriptor. 2842 */ 2843 void device_remove_bin_file(struct device *dev, 2844 const struct bin_attribute *attr) 2845 { 2846 if (dev) 2847 sysfs_remove_bin_file(&dev->kobj, attr); 2848 } 2849 EXPORT_SYMBOL_GPL(device_remove_bin_file); 2850 2851 static void klist_children_get(struct klist_node *n) 2852 { 2853 struct device_private *p = to_device_private_parent(n); 2854 struct device *dev = p->device; 2855 2856 get_device(dev); 2857 } 2858 2859 static void klist_children_put(struct klist_node *n) 2860 { 2861 struct device_private *p = to_device_private_parent(n); 2862 struct device *dev = p->device; 2863 2864 put_device(dev); 2865 } 2866 2867 /** 2868 * device_initialize - init device structure. 2869 * @dev: device. 2870 * 2871 * This prepares the device for use by other layers by initializing 2872 * its fields. 2873 * It is the first half of device_register(), if called by 2874 * that function, though it can also be called separately, so one 2875 * may use @dev's fields. In particular, get_device()/put_device() 2876 * may be used for reference counting of @dev after calling this 2877 * function. 2878 * 2879 * All fields in @dev must be initialized by the caller to 0, except 2880 * for those explicitly set to some other value. The simplest 2881 * approach is to use kzalloc() to allocate the structure containing 2882 * @dev. 2883 * 2884 * NOTE: Use put_device() to give up your reference instead of freeing 2885 * @dev directly once you have called this function. 2886 */ 2887 void device_initialize(struct device *dev) 2888 { 2889 dev->kobj.kset = devices_kset; 2890 kobject_init(&dev->kobj, &device_ktype); 2891 INIT_LIST_HEAD(&dev->dma_pools); 2892 mutex_init(&dev->mutex); 2893 lockdep_set_novalidate_class(&dev->mutex); 2894 spin_lock_init(&dev->devres_lock); 2895 INIT_LIST_HEAD(&dev->devres_head); 2896 device_pm_init(dev); 2897 set_dev_node(dev, NUMA_NO_NODE); 2898 INIT_LIST_HEAD(&dev->links.consumers); 2899 INIT_LIST_HEAD(&dev->links.suppliers); 2900 INIT_LIST_HEAD(&dev->links.defer_sync); 2901 dev->links.status = DL_DEV_NO_DRIVER; 2902 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ 2903 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ 2904 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) 2905 dev->dma_coherent = dma_default_coherent; 2906 #endif 2907 #ifdef CONFIG_SWIOTLB 2908 dev->dma_io_tlb_mem = &io_tlb_default_mem; 2909 #endif 2910 } 2911 EXPORT_SYMBOL_GPL(device_initialize); 2912 2913 struct kobject *virtual_device_parent(struct device *dev) 2914 { 2915 static struct kobject *virtual_dir = NULL; 2916 2917 if (!virtual_dir) 2918 virtual_dir = kobject_create_and_add("virtual", 2919 &devices_kset->kobj); 2920 2921 return virtual_dir; 2922 } 2923 2924 struct class_dir { 2925 struct kobject kobj; 2926 struct class *class; 2927 }; 2928 2929 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 2930 2931 static void class_dir_release(struct kobject *kobj) 2932 { 2933 struct class_dir *dir = to_class_dir(kobj); 2934 kfree(dir); 2935 } 2936 2937 static const 2938 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj) 2939 { 2940 struct class_dir *dir = to_class_dir(kobj); 2941 return dir->class->ns_type; 2942 } 2943 2944 static struct kobj_type class_dir_ktype = { 2945 .release = class_dir_release, 2946 .sysfs_ops = &kobj_sysfs_ops, 2947 .child_ns_type = class_dir_child_ns_type 2948 }; 2949 2950 static struct kobject * 2951 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj) 2952 { 2953 struct class_dir *dir; 2954 int retval; 2955 2956 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 2957 if (!dir) 2958 return ERR_PTR(-ENOMEM); 2959 2960 dir->class = class; 2961 kobject_init(&dir->kobj, &class_dir_ktype); 2962 2963 dir->kobj.kset = &class->p->glue_dirs; 2964 2965 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name); 2966 if (retval < 0) { 2967 kobject_put(&dir->kobj); 2968 return ERR_PTR(retval); 2969 } 2970 return &dir->kobj; 2971 } 2972 2973 static DEFINE_MUTEX(gdp_mutex); 2974 2975 static struct kobject *get_device_parent(struct device *dev, 2976 struct device *parent) 2977 { 2978 if (dev->class) { 2979 struct kobject *kobj = NULL; 2980 struct kobject *parent_kobj; 2981 struct kobject *k; 2982 2983 #ifdef CONFIG_BLOCK 2984 /* block disks show up in /sys/block */ 2985 if (sysfs_deprecated && dev->class == &block_class) { 2986 if (parent && parent->class == &block_class) 2987 return &parent->kobj; 2988 return &block_class.p->subsys.kobj; 2989 } 2990 #endif 2991 2992 /* 2993 * If we have no parent, we live in "virtual". 2994 * Class-devices with a non class-device as parent, live 2995 * in a "glue" directory to prevent namespace collisions. 2996 */ 2997 if (parent == NULL) 2998 parent_kobj = virtual_device_parent(dev); 2999 else if (parent->class && !dev->class->ns_type) 3000 return &parent->kobj; 3001 else 3002 parent_kobj = &parent->kobj; 3003 3004 mutex_lock(&gdp_mutex); 3005 3006 /* find our class-directory at the parent and reference it */ 3007 spin_lock(&dev->class->p->glue_dirs.list_lock); 3008 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry) 3009 if (k->parent == parent_kobj) { 3010 kobj = kobject_get(k); 3011 break; 3012 } 3013 spin_unlock(&dev->class->p->glue_dirs.list_lock); 3014 if (kobj) { 3015 mutex_unlock(&gdp_mutex); 3016 return kobj; 3017 } 3018 3019 /* or create a new class-directory at the parent device */ 3020 k = class_dir_create_and_add(dev->class, parent_kobj); 3021 /* do not emit an uevent for this simple "glue" directory */ 3022 mutex_unlock(&gdp_mutex); 3023 return k; 3024 } 3025 3026 /* subsystems can specify a default root directory for their devices */ 3027 if (!parent && dev->bus && dev->bus->dev_root) 3028 return &dev->bus->dev_root->kobj; 3029 3030 if (parent) 3031 return &parent->kobj; 3032 return NULL; 3033 } 3034 3035 static inline bool live_in_glue_dir(struct kobject *kobj, 3036 struct device *dev) 3037 { 3038 if (!kobj || !dev->class || 3039 kobj->kset != &dev->class->p->glue_dirs) 3040 return false; 3041 return true; 3042 } 3043 3044 static inline struct kobject *get_glue_dir(struct device *dev) 3045 { 3046 return dev->kobj.parent; 3047 } 3048 3049 /** 3050 * kobject_has_children - Returns whether a kobject has children. 3051 * @kobj: the object to test 3052 * 3053 * This will return whether a kobject has other kobjects as children. 3054 * 3055 * It does NOT account for the presence of attribute files, only sub 3056 * directories. It also assumes there is no concurrent addition or 3057 * removal of such children, and thus relies on external locking. 3058 */ 3059 static inline bool kobject_has_children(struct kobject *kobj) 3060 { 3061 WARN_ON_ONCE(kref_read(&kobj->kref) == 0); 3062 3063 return kobj->sd && kobj->sd->dir.subdirs; 3064 } 3065 3066 /* 3067 * make sure cleaning up dir as the last step, we need to make 3068 * sure .release handler of kobject is run with holding the 3069 * global lock 3070 */ 3071 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 3072 { 3073 unsigned int ref; 3074 3075 /* see if we live in a "glue" directory */ 3076 if (!live_in_glue_dir(glue_dir, dev)) 3077 return; 3078 3079 mutex_lock(&gdp_mutex); 3080 /** 3081 * There is a race condition between removing glue directory 3082 * and adding a new device under the glue directory. 3083 * 3084 * CPU1: CPU2: 3085 * 3086 * device_add() 3087 * get_device_parent() 3088 * class_dir_create_and_add() 3089 * kobject_add_internal() 3090 * create_dir() // create glue_dir 3091 * 3092 * device_add() 3093 * get_device_parent() 3094 * kobject_get() // get glue_dir 3095 * 3096 * device_del() 3097 * cleanup_glue_dir() 3098 * kobject_del(glue_dir) 3099 * 3100 * kobject_add() 3101 * kobject_add_internal() 3102 * create_dir() // in glue_dir 3103 * sysfs_create_dir_ns() 3104 * kernfs_create_dir_ns(sd) 3105 * 3106 * sysfs_remove_dir() // glue_dir->sd=NULL 3107 * sysfs_put() // free glue_dir->sd 3108 * 3109 * // sd is freed 3110 * kernfs_new_node(sd) 3111 * kernfs_get(glue_dir) 3112 * kernfs_add_one() 3113 * kernfs_put() 3114 * 3115 * Before CPU1 remove last child device under glue dir, if CPU2 add 3116 * a new device under glue dir, the glue_dir kobject reference count 3117 * will be increase to 2 in kobject_get(k). And CPU2 has been called 3118 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir() 3119 * and sysfs_put(). This result in glue_dir->sd is freed. 3120 * 3121 * Then the CPU2 will see a stale "empty" but still potentially used 3122 * glue dir around in kernfs_new_node(). 3123 * 3124 * In order to avoid this happening, we also should make sure that 3125 * kernfs_node for glue_dir is released in CPU1 only when refcount 3126 * for glue_dir kobj is 1. 3127 */ 3128 ref = kref_read(&glue_dir->kref); 3129 if (!kobject_has_children(glue_dir) && !--ref) 3130 kobject_del(glue_dir); 3131 kobject_put(glue_dir); 3132 mutex_unlock(&gdp_mutex); 3133 } 3134 3135 static int device_add_class_symlinks(struct device *dev) 3136 { 3137 struct device_node *of_node = dev_of_node(dev); 3138 int error; 3139 3140 if (of_node) { 3141 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 3142 if (error) 3143 dev_warn(dev, "Error %d creating of_node link\n",error); 3144 /* An error here doesn't warrant bringing down the device */ 3145 } 3146 3147 if (!dev->class) 3148 return 0; 3149 3150 error = sysfs_create_link(&dev->kobj, 3151 &dev->class->p->subsys.kobj, 3152 "subsystem"); 3153 if (error) 3154 goto out_devnode; 3155 3156 if (dev->parent && device_is_not_partition(dev)) { 3157 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 3158 "device"); 3159 if (error) 3160 goto out_subsys; 3161 } 3162 3163 #ifdef CONFIG_BLOCK 3164 /* /sys/block has directories and does not need symlinks */ 3165 if (sysfs_deprecated && dev->class == &block_class) 3166 return 0; 3167 #endif 3168 3169 /* link in the class directory pointing to the device */ 3170 error = sysfs_create_link(&dev->class->p->subsys.kobj, 3171 &dev->kobj, dev_name(dev)); 3172 if (error) 3173 goto out_device; 3174 3175 return 0; 3176 3177 out_device: 3178 sysfs_remove_link(&dev->kobj, "device"); 3179 3180 out_subsys: 3181 sysfs_remove_link(&dev->kobj, "subsystem"); 3182 out_devnode: 3183 sysfs_remove_link(&dev->kobj, "of_node"); 3184 return error; 3185 } 3186 3187 static void device_remove_class_symlinks(struct device *dev) 3188 { 3189 if (dev_of_node(dev)) 3190 sysfs_remove_link(&dev->kobj, "of_node"); 3191 3192 if (!dev->class) 3193 return; 3194 3195 if (dev->parent && device_is_not_partition(dev)) 3196 sysfs_remove_link(&dev->kobj, "device"); 3197 sysfs_remove_link(&dev->kobj, "subsystem"); 3198 #ifdef CONFIG_BLOCK 3199 if (sysfs_deprecated && dev->class == &block_class) 3200 return; 3201 #endif 3202 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev)); 3203 } 3204 3205 /** 3206 * dev_set_name - set a device name 3207 * @dev: device 3208 * @fmt: format string for the device's name 3209 */ 3210 int dev_set_name(struct device *dev, const char *fmt, ...) 3211 { 3212 va_list vargs; 3213 int err; 3214 3215 va_start(vargs, fmt); 3216 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 3217 va_end(vargs); 3218 return err; 3219 } 3220 EXPORT_SYMBOL_GPL(dev_set_name); 3221 3222 /** 3223 * device_to_dev_kobj - select a /sys/dev/ directory for the device 3224 * @dev: device 3225 * 3226 * By default we select char/ for new entries. Setting class->dev_obj 3227 * to NULL prevents an entry from being created. class->dev_kobj must 3228 * be set (or cleared) before any devices are registered to the class 3229 * otherwise device_create_sys_dev_entry() and 3230 * device_remove_sys_dev_entry() will disagree about the presence of 3231 * the link. 3232 */ 3233 static struct kobject *device_to_dev_kobj(struct device *dev) 3234 { 3235 struct kobject *kobj; 3236 3237 if (dev->class) 3238 kobj = dev->class->dev_kobj; 3239 else 3240 kobj = sysfs_dev_char_kobj; 3241 3242 return kobj; 3243 } 3244 3245 static int device_create_sys_dev_entry(struct device *dev) 3246 { 3247 struct kobject *kobj = device_to_dev_kobj(dev); 3248 int error = 0; 3249 char devt_str[15]; 3250 3251 if (kobj) { 3252 format_dev_t(devt_str, dev->devt); 3253 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 3254 } 3255 3256 return error; 3257 } 3258 3259 static void device_remove_sys_dev_entry(struct device *dev) 3260 { 3261 struct kobject *kobj = device_to_dev_kobj(dev); 3262 char devt_str[15]; 3263 3264 if (kobj) { 3265 format_dev_t(devt_str, dev->devt); 3266 sysfs_remove_link(kobj, devt_str); 3267 } 3268 } 3269 3270 static int device_private_init(struct device *dev) 3271 { 3272 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 3273 if (!dev->p) 3274 return -ENOMEM; 3275 dev->p->device = dev; 3276 klist_init(&dev->p->klist_children, klist_children_get, 3277 klist_children_put); 3278 INIT_LIST_HEAD(&dev->p->deferred_probe); 3279 return 0; 3280 } 3281 3282 /** 3283 * device_add - add device to device hierarchy. 3284 * @dev: device. 3285 * 3286 * This is part 2 of device_register(), though may be called 3287 * separately _iff_ device_initialize() has been called separately. 3288 * 3289 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 3290 * to the global and sibling lists for the device, then 3291 * adds it to the other relevant subsystems of the driver model. 3292 * 3293 * Do not call this routine or device_register() more than once for 3294 * any device structure. The driver model core is not designed to work 3295 * with devices that get unregistered and then spring back to life. 3296 * (Among other things, it's very hard to guarantee that all references 3297 * to the previous incarnation of @dev have been dropped.) Allocate 3298 * and register a fresh new struct device instead. 3299 * 3300 * NOTE: _Never_ directly free @dev after calling this function, even 3301 * if it returned an error! Always use put_device() to give up your 3302 * reference instead. 3303 * 3304 * Rule of thumb is: if device_add() succeeds, you should call 3305 * device_del() when you want to get rid of it. If device_add() has 3306 * *not* succeeded, use *only* put_device() to drop the reference 3307 * count. 3308 */ 3309 int device_add(struct device *dev) 3310 { 3311 struct device *parent; 3312 struct kobject *kobj; 3313 struct class_interface *class_intf; 3314 int error = -EINVAL; 3315 struct kobject *glue_dir = NULL; 3316 3317 dev = get_device(dev); 3318 if (!dev) 3319 goto done; 3320 3321 if (!dev->p) { 3322 error = device_private_init(dev); 3323 if (error) 3324 goto done; 3325 } 3326 3327 /* 3328 * for statically allocated devices, which should all be converted 3329 * some day, we need to initialize the name. We prevent reading back 3330 * the name, and force the use of dev_name() 3331 */ 3332 if (dev->init_name) { 3333 dev_set_name(dev, "%s", dev->init_name); 3334 dev->init_name = NULL; 3335 } 3336 3337 /* subsystems can specify simple device enumeration */ 3338 if (!dev_name(dev) && dev->bus && dev->bus->dev_name) 3339 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 3340 3341 if (!dev_name(dev)) { 3342 error = -EINVAL; 3343 goto name_error; 3344 } 3345 3346 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3347 3348 parent = get_device(dev->parent); 3349 kobj = get_device_parent(dev, parent); 3350 if (IS_ERR(kobj)) { 3351 error = PTR_ERR(kobj); 3352 goto parent_error; 3353 } 3354 if (kobj) 3355 dev->kobj.parent = kobj; 3356 3357 /* use parent numa_node */ 3358 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 3359 set_dev_node(dev, dev_to_node(parent)); 3360 3361 /* first, register with generic layer. */ 3362 /* we require the name to be set before, and pass NULL */ 3363 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 3364 if (error) { 3365 glue_dir = get_glue_dir(dev); 3366 goto Error; 3367 } 3368 3369 /* notify platform of device entry */ 3370 device_platform_notify(dev); 3371 3372 error = device_create_file(dev, &dev_attr_uevent); 3373 if (error) 3374 goto attrError; 3375 3376 error = device_add_class_symlinks(dev); 3377 if (error) 3378 goto SymlinkError; 3379 error = device_add_attrs(dev); 3380 if (error) 3381 goto AttrsError; 3382 error = bus_add_device(dev); 3383 if (error) 3384 goto BusError; 3385 error = dpm_sysfs_add(dev); 3386 if (error) 3387 goto DPMError; 3388 device_pm_add(dev); 3389 3390 if (MAJOR(dev->devt)) { 3391 error = device_create_file(dev, &dev_attr_dev); 3392 if (error) 3393 goto DevAttrError; 3394 3395 error = device_create_sys_dev_entry(dev); 3396 if (error) 3397 goto SysEntryError; 3398 3399 devtmpfs_create_node(dev); 3400 } 3401 3402 /* Notify clients of device addition. This call must come 3403 * after dpm_sysfs_add() and before kobject_uevent(). 3404 */ 3405 if (dev->bus) 3406 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 3407 BUS_NOTIFY_ADD_DEVICE, dev); 3408 3409 kobject_uevent(&dev->kobj, KOBJ_ADD); 3410 3411 /* 3412 * Check if any of the other devices (consumers) have been waiting for 3413 * this device (supplier) to be added so that they can create a device 3414 * link to it. 3415 * 3416 * This needs to happen after device_pm_add() because device_link_add() 3417 * requires the supplier be registered before it's called. 3418 * 3419 * But this also needs to happen before bus_probe_device() to make sure 3420 * waiting consumers can link to it before the driver is bound to the 3421 * device and the driver sync_state callback is called for this device. 3422 */ 3423 if (dev->fwnode && !dev->fwnode->dev) { 3424 dev->fwnode->dev = dev; 3425 fw_devlink_link_device(dev); 3426 } 3427 3428 bus_probe_device(dev); 3429 3430 /* 3431 * If all driver registration is done and a newly added device doesn't 3432 * match with any driver, don't block its consumers from probing in 3433 * case the consumer device is able to operate without this supplier. 3434 */ 3435 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match) 3436 fw_devlink_unblock_consumers(dev); 3437 3438 if (parent) 3439 klist_add_tail(&dev->p->knode_parent, 3440 &parent->p->klist_children); 3441 3442 if (dev->class) { 3443 mutex_lock(&dev->class->p->mutex); 3444 /* tie the class to the device */ 3445 klist_add_tail(&dev->p->knode_class, 3446 &dev->class->p->klist_devices); 3447 3448 /* notify any interfaces that the device is here */ 3449 list_for_each_entry(class_intf, 3450 &dev->class->p->interfaces, node) 3451 if (class_intf->add_dev) 3452 class_intf->add_dev(dev, class_intf); 3453 mutex_unlock(&dev->class->p->mutex); 3454 } 3455 done: 3456 put_device(dev); 3457 return error; 3458 SysEntryError: 3459 if (MAJOR(dev->devt)) 3460 device_remove_file(dev, &dev_attr_dev); 3461 DevAttrError: 3462 device_pm_remove(dev); 3463 dpm_sysfs_remove(dev); 3464 DPMError: 3465 bus_remove_device(dev); 3466 BusError: 3467 device_remove_attrs(dev); 3468 AttrsError: 3469 device_remove_class_symlinks(dev); 3470 SymlinkError: 3471 device_remove_file(dev, &dev_attr_uevent); 3472 attrError: 3473 device_platform_notify_remove(dev); 3474 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3475 glue_dir = get_glue_dir(dev); 3476 kobject_del(&dev->kobj); 3477 Error: 3478 cleanup_glue_dir(dev, glue_dir); 3479 parent_error: 3480 put_device(parent); 3481 name_error: 3482 kfree(dev->p); 3483 dev->p = NULL; 3484 goto done; 3485 } 3486 EXPORT_SYMBOL_GPL(device_add); 3487 3488 /** 3489 * device_register - register a device with the system. 3490 * @dev: pointer to the device structure 3491 * 3492 * This happens in two clean steps - initialize the device 3493 * and add it to the system. The two steps can be called 3494 * separately, but this is the easiest and most common. 3495 * I.e. you should only call the two helpers separately if 3496 * have a clearly defined need to use and refcount the device 3497 * before it is added to the hierarchy. 3498 * 3499 * For more information, see the kerneldoc for device_initialize() 3500 * and device_add(). 3501 * 3502 * NOTE: _Never_ directly free @dev after calling this function, even 3503 * if it returned an error! Always use put_device() to give up the 3504 * reference initialized in this function instead. 3505 */ 3506 int device_register(struct device *dev) 3507 { 3508 device_initialize(dev); 3509 return device_add(dev); 3510 } 3511 EXPORT_SYMBOL_GPL(device_register); 3512 3513 /** 3514 * get_device - increment reference count for device. 3515 * @dev: device. 3516 * 3517 * This simply forwards the call to kobject_get(), though 3518 * we do take care to provide for the case that we get a NULL 3519 * pointer passed in. 3520 */ 3521 struct device *get_device(struct device *dev) 3522 { 3523 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 3524 } 3525 EXPORT_SYMBOL_GPL(get_device); 3526 3527 /** 3528 * put_device - decrement reference count. 3529 * @dev: device in question. 3530 */ 3531 void put_device(struct device *dev) 3532 { 3533 /* might_sleep(); */ 3534 if (dev) 3535 kobject_put(&dev->kobj); 3536 } 3537 EXPORT_SYMBOL_GPL(put_device); 3538 3539 bool kill_device(struct device *dev) 3540 { 3541 /* 3542 * Require the device lock and set the "dead" flag to guarantee that 3543 * the update behavior is consistent with the other bitfields near 3544 * it and that we cannot have an asynchronous probe routine trying 3545 * to run while we are tearing out the bus/class/sysfs from 3546 * underneath the device. 3547 */ 3548 device_lock_assert(dev); 3549 3550 if (dev->p->dead) 3551 return false; 3552 dev->p->dead = true; 3553 return true; 3554 } 3555 EXPORT_SYMBOL_GPL(kill_device); 3556 3557 /** 3558 * device_del - delete device from system. 3559 * @dev: device. 3560 * 3561 * This is the first part of the device unregistration 3562 * sequence. This removes the device from the lists we control 3563 * from here, has it removed from the other driver model 3564 * subsystems it was added to in device_add(), and removes it 3565 * from the kobject hierarchy. 3566 * 3567 * NOTE: this should be called manually _iff_ device_add() was 3568 * also called manually. 3569 */ 3570 void device_del(struct device *dev) 3571 { 3572 struct device *parent = dev->parent; 3573 struct kobject *glue_dir = NULL; 3574 struct class_interface *class_intf; 3575 unsigned int noio_flag; 3576 3577 device_lock(dev); 3578 kill_device(dev); 3579 device_unlock(dev); 3580 3581 if (dev->fwnode && dev->fwnode->dev == dev) 3582 dev->fwnode->dev = NULL; 3583 3584 /* Notify clients of device removal. This call must come 3585 * before dpm_sysfs_remove(). 3586 */ 3587 noio_flag = memalloc_noio_save(); 3588 if (dev->bus) 3589 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 3590 BUS_NOTIFY_DEL_DEVICE, dev); 3591 3592 dpm_sysfs_remove(dev); 3593 if (parent) 3594 klist_del(&dev->p->knode_parent); 3595 if (MAJOR(dev->devt)) { 3596 devtmpfs_delete_node(dev); 3597 device_remove_sys_dev_entry(dev); 3598 device_remove_file(dev, &dev_attr_dev); 3599 } 3600 if (dev->class) { 3601 device_remove_class_symlinks(dev); 3602 3603 mutex_lock(&dev->class->p->mutex); 3604 /* notify any interfaces that the device is now gone */ 3605 list_for_each_entry(class_intf, 3606 &dev->class->p->interfaces, node) 3607 if (class_intf->remove_dev) 3608 class_intf->remove_dev(dev, class_intf); 3609 /* remove the device from the class list */ 3610 klist_del(&dev->p->knode_class); 3611 mutex_unlock(&dev->class->p->mutex); 3612 } 3613 device_remove_file(dev, &dev_attr_uevent); 3614 device_remove_attrs(dev); 3615 bus_remove_device(dev); 3616 device_pm_remove(dev); 3617 driver_deferred_probe_del(dev); 3618 device_platform_notify_remove(dev); 3619 device_links_purge(dev); 3620 3621 if (dev->bus) 3622 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 3623 BUS_NOTIFY_REMOVED_DEVICE, dev); 3624 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3625 glue_dir = get_glue_dir(dev); 3626 kobject_del(&dev->kobj); 3627 cleanup_glue_dir(dev, glue_dir); 3628 memalloc_noio_restore(noio_flag); 3629 put_device(parent); 3630 } 3631 EXPORT_SYMBOL_GPL(device_del); 3632 3633 /** 3634 * device_unregister - unregister device from system. 3635 * @dev: device going away. 3636 * 3637 * We do this in two parts, like we do device_register(). First, 3638 * we remove it from all the subsystems with device_del(), then 3639 * we decrement the reference count via put_device(). If that 3640 * is the final reference count, the device will be cleaned up 3641 * via device_release() above. Otherwise, the structure will 3642 * stick around until the final reference to the device is dropped. 3643 */ 3644 void device_unregister(struct device *dev) 3645 { 3646 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3647 device_del(dev); 3648 put_device(dev); 3649 } 3650 EXPORT_SYMBOL_GPL(device_unregister); 3651 3652 static struct device *prev_device(struct klist_iter *i) 3653 { 3654 struct klist_node *n = klist_prev(i); 3655 struct device *dev = NULL; 3656 struct device_private *p; 3657 3658 if (n) { 3659 p = to_device_private_parent(n); 3660 dev = p->device; 3661 } 3662 return dev; 3663 } 3664 3665 static struct device *next_device(struct klist_iter *i) 3666 { 3667 struct klist_node *n = klist_next(i); 3668 struct device *dev = NULL; 3669 struct device_private *p; 3670 3671 if (n) { 3672 p = to_device_private_parent(n); 3673 dev = p->device; 3674 } 3675 return dev; 3676 } 3677 3678 /** 3679 * device_get_devnode - path of device node file 3680 * @dev: device 3681 * @mode: returned file access mode 3682 * @uid: returned file owner 3683 * @gid: returned file group 3684 * @tmp: possibly allocated string 3685 * 3686 * Return the relative path of a possible device node. 3687 * Non-default names may need to allocate a memory to compose 3688 * a name. This memory is returned in tmp and needs to be 3689 * freed by the caller. 3690 */ 3691 const char *device_get_devnode(struct device *dev, 3692 umode_t *mode, kuid_t *uid, kgid_t *gid, 3693 const char **tmp) 3694 { 3695 char *s; 3696 3697 *tmp = NULL; 3698 3699 /* the device type may provide a specific name */ 3700 if (dev->type && dev->type->devnode) 3701 *tmp = dev->type->devnode(dev, mode, uid, gid); 3702 if (*tmp) 3703 return *tmp; 3704 3705 /* the class may provide a specific name */ 3706 if (dev->class && dev->class->devnode) 3707 *tmp = dev->class->devnode(dev, mode); 3708 if (*tmp) 3709 return *tmp; 3710 3711 /* return name without allocation, tmp == NULL */ 3712 if (strchr(dev_name(dev), '!') == NULL) 3713 return dev_name(dev); 3714 3715 /* replace '!' in the name with '/' */ 3716 s = kstrdup(dev_name(dev), GFP_KERNEL); 3717 if (!s) 3718 return NULL; 3719 strreplace(s, '!', '/'); 3720 return *tmp = s; 3721 } 3722 3723 /** 3724 * device_for_each_child - device child iterator. 3725 * @parent: parent struct device. 3726 * @fn: function to be called for each device. 3727 * @data: data for the callback. 3728 * 3729 * Iterate over @parent's child devices, and call @fn for each, 3730 * passing it @data. 3731 * 3732 * We check the return of @fn each time. If it returns anything 3733 * other than 0, we break out and return that value. 3734 */ 3735 int device_for_each_child(struct device *parent, void *data, 3736 int (*fn)(struct device *dev, void *data)) 3737 { 3738 struct klist_iter i; 3739 struct device *child; 3740 int error = 0; 3741 3742 if (!parent->p) 3743 return 0; 3744 3745 klist_iter_init(&parent->p->klist_children, &i); 3746 while (!error && (child = next_device(&i))) 3747 error = fn(child, data); 3748 klist_iter_exit(&i); 3749 return error; 3750 } 3751 EXPORT_SYMBOL_GPL(device_for_each_child); 3752 3753 /** 3754 * device_for_each_child_reverse - device child iterator in reversed order. 3755 * @parent: parent struct device. 3756 * @fn: function to be called for each device. 3757 * @data: data for the callback. 3758 * 3759 * Iterate over @parent's child devices, and call @fn for each, 3760 * passing it @data. 3761 * 3762 * We check the return of @fn each time. If it returns anything 3763 * other than 0, we break out and return that value. 3764 */ 3765 int device_for_each_child_reverse(struct device *parent, void *data, 3766 int (*fn)(struct device *dev, void *data)) 3767 { 3768 struct klist_iter i; 3769 struct device *child; 3770 int error = 0; 3771 3772 if (!parent->p) 3773 return 0; 3774 3775 klist_iter_init(&parent->p->klist_children, &i); 3776 while ((child = prev_device(&i)) && !error) 3777 error = fn(child, data); 3778 klist_iter_exit(&i); 3779 return error; 3780 } 3781 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 3782 3783 /** 3784 * device_find_child - device iterator for locating a particular device. 3785 * @parent: parent struct device 3786 * @match: Callback function to check device 3787 * @data: Data to pass to match function 3788 * 3789 * This is similar to the device_for_each_child() function above, but it 3790 * returns a reference to a device that is 'found' for later use, as 3791 * determined by the @match callback. 3792 * 3793 * The callback should return 0 if the device doesn't match and non-zero 3794 * if it does. If the callback returns non-zero and a reference to the 3795 * current device can be obtained, this function will return to the caller 3796 * and not iterate over any more devices. 3797 * 3798 * NOTE: you will need to drop the reference with put_device() after use. 3799 */ 3800 struct device *device_find_child(struct device *parent, void *data, 3801 int (*match)(struct device *dev, void *data)) 3802 { 3803 struct klist_iter i; 3804 struct device *child; 3805 3806 if (!parent) 3807 return NULL; 3808 3809 klist_iter_init(&parent->p->klist_children, &i); 3810 while ((child = next_device(&i))) 3811 if (match(child, data) && get_device(child)) 3812 break; 3813 klist_iter_exit(&i); 3814 return child; 3815 } 3816 EXPORT_SYMBOL_GPL(device_find_child); 3817 3818 /** 3819 * device_find_child_by_name - device iterator for locating a child device. 3820 * @parent: parent struct device 3821 * @name: name of the child device 3822 * 3823 * This is similar to the device_find_child() function above, but it 3824 * returns a reference to a device that has the name @name. 3825 * 3826 * NOTE: you will need to drop the reference with put_device() after use. 3827 */ 3828 struct device *device_find_child_by_name(struct device *parent, 3829 const char *name) 3830 { 3831 struct klist_iter i; 3832 struct device *child; 3833 3834 if (!parent) 3835 return NULL; 3836 3837 klist_iter_init(&parent->p->klist_children, &i); 3838 while ((child = next_device(&i))) 3839 if (sysfs_streq(dev_name(child), name) && get_device(child)) 3840 break; 3841 klist_iter_exit(&i); 3842 return child; 3843 } 3844 EXPORT_SYMBOL_GPL(device_find_child_by_name); 3845 3846 int __init devices_init(void) 3847 { 3848 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 3849 if (!devices_kset) 3850 return -ENOMEM; 3851 dev_kobj = kobject_create_and_add("dev", NULL); 3852 if (!dev_kobj) 3853 goto dev_kobj_err; 3854 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 3855 if (!sysfs_dev_block_kobj) 3856 goto block_kobj_err; 3857 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 3858 if (!sysfs_dev_char_kobj) 3859 goto char_kobj_err; 3860 3861 return 0; 3862 3863 char_kobj_err: 3864 kobject_put(sysfs_dev_block_kobj); 3865 block_kobj_err: 3866 kobject_put(dev_kobj); 3867 dev_kobj_err: 3868 kset_unregister(devices_kset); 3869 return -ENOMEM; 3870 } 3871 3872 static int device_check_offline(struct device *dev, void *not_used) 3873 { 3874 int ret; 3875 3876 ret = device_for_each_child(dev, NULL, device_check_offline); 3877 if (ret) 3878 return ret; 3879 3880 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 3881 } 3882 3883 /** 3884 * device_offline - Prepare the device for hot-removal. 3885 * @dev: Device to be put offline. 3886 * 3887 * Execute the device bus type's .offline() callback, if present, to prepare 3888 * the device for a subsequent hot-removal. If that succeeds, the device must 3889 * not be used until either it is removed or its bus type's .online() callback 3890 * is executed. 3891 * 3892 * Call under device_hotplug_lock. 3893 */ 3894 int device_offline(struct device *dev) 3895 { 3896 int ret; 3897 3898 if (dev->offline_disabled) 3899 return -EPERM; 3900 3901 ret = device_for_each_child(dev, NULL, device_check_offline); 3902 if (ret) 3903 return ret; 3904 3905 device_lock(dev); 3906 if (device_supports_offline(dev)) { 3907 if (dev->offline) { 3908 ret = 1; 3909 } else { 3910 ret = dev->bus->offline(dev); 3911 if (!ret) { 3912 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 3913 dev->offline = true; 3914 } 3915 } 3916 } 3917 device_unlock(dev); 3918 3919 return ret; 3920 } 3921 3922 /** 3923 * device_online - Put the device back online after successful device_offline(). 3924 * @dev: Device to be put back online. 3925 * 3926 * If device_offline() has been successfully executed for @dev, but the device 3927 * has not been removed subsequently, execute its bus type's .online() callback 3928 * to indicate that the device can be used again. 3929 * 3930 * Call under device_hotplug_lock. 3931 */ 3932 int device_online(struct device *dev) 3933 { 3934 int ret = 0; 3935 3936 device_lock(dev); 3937 if (device_supports_offline(dev)) { 3938 if (dev->offline) { 3939 ret = dev->bus->online(dev); 3940 if (!ret) { 3941 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 3942 dev->offline = false; 3943 } 3944 } else { 3945 ret = 1; 3946 } 3947 } 3948 device_unlock(dev); 3949 3950 return ret; 3951 } 3952 3953 struct root_device { 3954 struct device dev; 3955 struct module *owner; 3956 }; 3957 3958 static inline struct root_device *to_root_device(struct device *d) 3959 { 3960 return container_of(d, struct root_device, dev); 3961 } 3962 3963 static void root_device_release(struct device *dev) 3964 { 3965 kfree(to_root_device(dev)); 3966 } 3967 3968 /** 3969 * __root_device_register - allocate and register a root device 3970 * @name: root device name 3971 * @owner: owner module of the root device, usually THIS_MODULE 3972 * 3973 * This function allocates a root device and registers it 3974 * using device_register(). In order to free the returned 3975 * device, use root_device_unregister(). 3976 * 3977 * Root devices are dummy devices which allow other devices 3978 * to be grouped under /sys/devices. Use this function to 3979 * allocate a root device and then use it as the parent of 3980 * any device which should appear under /sys/devices/{name} 3981 * 3982 * The /sys/devices/{name} directory will also contain a 3983 * 'module' symlink which points to the @owner directory 3984 * in sysfs. 3985 * 3986 * Returns &struct device pointer on success, or ERR_PTR() on error. 3987 * 3988 * Note: You probably want to use root_device_register(). 3989 */ 3990 struct device *__root_device_register(const char *name, struct module *owner) 3991 { 3992 struct root_device *root; 3993 int err = -ENOMEM; 3994 3995 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 3996 if (!root) 3997 return ERR_PTR(err); 3998 3999 err = dev_set_name(&root->dev, "%s", name); 4000 if (err) { 4001 kfree(root); 4002 return ERR_PTR(err); 4003 } 4004 4005 root->dev.release = root_device_release; 4006 4007 err = device_register(&root->dev); 4008 if (err) { 4009 put_device(&root->dev); 4010 return ERR_PTR(err); 4011 } 4012 4013 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 4014 if (owner) { 4015 struct module_kobject *mk = &owner->mkobj; 4016 4017 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 4018 if (err) { 4019 device_unregister(&root->dev); 4020 return ERR_PTR(err); 4021 } 4022 root->owner = owner; 4023 } 4024 #endif 4025 4026 return &root->dev; 4027 } 4028 EXPORT_SYMBOL_GPL(__root_device_register); 4029 4030 /** 4031 * root_device_unregister - unregister and free a root device 4032 * @dev: device going away 4033 * 4034 * This function unregisters and cleans up a device that was created by 4035 * root_device_register(). 4036 */ 4037 void root_device_unregister(struct device *dev) 4038 { 4039 struct root_device *root = to_root_device(dev); 4040 4041 if (root->owner) 4042 sysfs_remove_link(&root->dev.kobj, "module"); 4043 4044 device_unregister(dev); 4045 } 4046 EXPORT_SYMBOL_GPL(root_device_unregister); 4047 4048 4049 static void device_create_release(struct device *dev) 4050 { 4051 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 4052 kfree(dev); 4053 } 4054 4055 static __printf(6, 0) struct device * 4056 device_create_groups_vargs(struct class *class, struct device *parent, 4057 dev_t devt, void *drvdata, 4058 const struct attribute_group **groups, 4059 const char *fmt, va_list args) 4060 { 4061 struct device *dev = NULL; 4062 int retval = -ENODEV; 4063 4064 if (class == NULL || IS_ERR(class)) 4065 goto error; 4066 4067 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 4068 if (!dev) { 4069 retval = -ENOMEM; 4070 goto error; 4071 } 4072 4073 device_initialize(dev); 4074 dev->devt = devt; 4075 dev->class = class; 4076 dev->parent = parent; 4077 dev->groups = groups; 4078 dev->release = device_create_release; 4079 dev_set_drvdata(dev, drvdata); 4080 4081 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 4082 if (retval) 4083 goto error; 4084 4085 retval = device_add(dev); 4086 if (retval) 4087 goto error; 4088 4089 return dev; 4090 4091 error: 4092 put_device(dev); 4093 return ERR_PTR(retval); 4094 } 4095 4096 /** 4097 * device_create - creates a device and registers it with sysfs 4098 * @class: pointer to the struct class that this device should be registered to 4099 * @parent: pointer to the parent struct device of this new device, if any 4100 * @devt: the dev_t for the char device to be added 4101 * @drvdata: the data to be added to the device for callbacks 4102 * @fmt: string for the device's name 4103 * 4104 * This function can be used by char device classes. A struct device 4105 * will be created in sysfs, registered to the specified class. 4106 * 4107 * A "dev" file will be created, showing the dev_t for the device, if 4108 * the dev_t is not 0,0. 4109 * If a pointer to a parent struct device is passed in, the newly created 4110 * struct device will be a child of that device in sysfs. 4111 * The pointer to the struct device will be returned from the call. 4112 * Any further sysfs files that might be required can be created using this 4113 * pointer. 4114 * 4115 * Returns &struct device pointer on success, or ERR_PTR() on error. 4116 * 4117 * Note: the struct class passed to this function must have previously 4118 * been created with a call to class_create(). 4119 */ 4120 struct device *device_create(struct class *class, struct device *parent, 4121 dev_t devt, void *drvdata, const char *fmt, ...) 4122 { 4123 va_list vargs; 4124 struct device *dev; 4125 4126 va_start(vargs, fmt); 4127 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL, 4128 fmt, vargs); 4129 va_end(vargs); 4130 return dev; 4131 } 4132 EXPORT_SYMBOL_GPL(device_create); 4133 4134 /** 4135 * device_create_with_groups - creates a device and registers it with sysfs 4136 * @class: pointer to the struct class that this device should be registered to 4137 * @parent: pointer to the parent struct device of this new device, if any 4138 * @devt: the dev_t for the char device to be added 4139 * @drvdata: the data to be added to the device for callbacks 4140 * @groups: NULL-terminated list of attribute groups to be created 4141 * @fmt: string for the device's name 4142 * 4143 * This function can be used by char device classes. A struct device 4144 * will be created in sysfs, registered to the specified class. 4145 * Additional attributes specified in the groups parameter will also 4146 * be created automatically. 4147 * 4148 * A "dev" file will be created, showing the dev_t for the device, if 4149 * the dev_t is not 0,0. 4150 * If a pointer to a parent struct device is passed in, the newly created 4151 * struct device will be a child of that device in sysfs. 4152 * The pointer to the struct device will be returned from the call. 4153 * Any further sysfs files that might be required can be created using this 4154 * pointer. 4155 * 4156 * Returns &struct device pointer on success, or ERR_PTR() on error. 4157 * 4158 * Note: the struct class passed to this function must have previously 4159 * been created with a call to class_create(). 4160 */ 4161 struct device *device_create_with_groups(struct class *class, 4162 struct device *parent, dev_t devt, 4163 void *drvdata, 4164 const struct attribute_group **groups, 4165 const char *fmt, ...) 4166 { 4167 va_list vargs; 4168 struct device *dev; 4169 4170 va_start(vargs, fmt); 4171 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 4172 fmt, vargs); 4173 va_end(vargs); 4174 return dev; 4175 } 4176 EXPORT_SYMBOL_GPL(device_create_with_groups); 4177 4178 /** 4179 * device_destroy - removes a device that was created with device_create() 4180 * @class: pointer to the struct class that this device was registered with 4181 * @devt: the dev_t of the device that was previously registered 4182 * 4183 * This call unregisters and cleans up a device that was created with a 4184 * call to device_create(). 4185 */ 4186 void device_destroy(struct class *class, dev_t devt) 4187 { 4188 struct device *dev; 4189 4190 dev = class_find_device_by_devt(class, devt); 4191 if (dev) { 4192 put_device(dev); 4193 device_unregister(dev); 4194 } 4195 } 4196 EXPORT_SYMBOL_GPL(device_destroy); 4197 4198 /** 4199 * device_rename - renames a device 4200 * @dev: the pointer to the struct device to be renamed 4201 * @new_name: the new name of the device 4202 * 4203 * It is the responsibility of the caller to provide mutual 4204 * exclusion between two different calls of device_rename 4205 * on the same device to ensure that new_name is valid and 4206 * won't conflict with other devices. 4207 * 4208 * Note: Don't call this function. Currently, the networking layer calls this 4209 * function, but that will change. The following text from Kay Sievers offers 4210 * some insight: 4211 * 4212 * Renaming devices is racy at many levels, symlinks and other stuff are not 4213 * replaced atomically, and you get a "move" uevent, but it's not easy to 4214 * connect the event to the old and new device. Device nodes are not renamed at 4215 * all, there isn't even support for that in the kernel now. 4216 * 4217 * In the meantime, during renaming, your target name might be taken by another 4218 * driver, creating conflicts. Or the old name is taken directly after you 4219 * renamed it -- then you get events for the same DEVPATH, before you even see 4220 * the "move" event. It's just a mess, and nothing new should ever rely on 4221 * kernel device renaming. Besides that, it's not even implemented now for 4222 * other things than (driver-core wise very simple) network devices. 4223 * 4224 * We are currently about to change network renaming in udev to completely 4225 * disallow renaming of devices in the same namespace as the kernel uses, 4226 * because we can't solve the problems properly, that arise with swapping names 4227 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only 4228 * be allowed to some other name than eth[0-9]*, for the aforementioned 4229 * reasons. 4230 * 4231 * Make up a "real" name in the driver before you register anything, or add 4232 * some other attributes for userspace to find the device, or use udev to add 4233 * symlinks -- but never rename kernel devices later, it's a complete mess. We 4234 * don't even want to get into that and try to implement the missing pieces in 4235 * the core. We really have other pieces to fix in the driver core mess. :) 4236 */ 4237 int device_rename(struct device *dev, const char *new_name) 4238 { 4239 struct kobject *kobj = &dev->kobj; 4240 char *old_device_name = NULL; 4241 int error; 4242 4243 dev = get_device(dev); 4244 if (!dev) 4245 return -EINVAL; 4246 4247 dev_dbg(dev, "renaming to %s\n", new_name); 4248 4249 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 4250 if (!old_device_name) { 4251 error = -ENOMEM; 4252 goto out; 4253 } 4254 4255 if (dev->class) { 4256 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj, 4257 kobj, old_device_name, 4258 new_name, kobject_namespace(kobj)); 4259 if (error) 4260 goto out; 4261 } 4262 4263 error = kobject_rename(kobj, new_name); 4264 if (error) 4265 goto out; 4266 4267 out: 4268 put_device(dev); 4269 4270 kfree(old_device_name); 4271 4272 return error; 4273 } 4274 EXPORT_SYMBOL_GPL(device_rename); 4275 4276 static int device_move_class_links(struct device *dev, 4277 struct device *old_parent, 4278 struct device *new_parent) 4279 { 4280 int error = 0; 4281 4282 if (old_parent) 4283 sysfs_remove_link(&dev->kobj, "device"); 4284 if (new_parent) 4285 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 4286 "device"); 4287 return error; 4288 } 4289 4290 /** 4291 * device_move - moves a device to a new parent 4292 * @dev: the pointer to the struct device to be moved 4293 * @new_parent: the new parent of the device (can be NULL) 4294 * @dpm_order: how to reorder the dpm_list 4295 */ 4296 int device_move(struct device *dev, struct device *new_parent, 4297 enum dpm_order dpm_order) 4298 { 4299 int error; 4300 struct device *old_parent; 4301 struct kobject *new_parent_kobj; 4302 4303 dev = get_device(dev); 4304 if (!dev) 4305 return -EINVAL; 4306 4307 device_pm_lock(); 4308 new_parent = get_device(new_parent); 4309 new_parent_kobj = get_device_parent(dev, new_parent); 4310 if (IS_ERR(new_parent_kobj)) { 4311 error = PTR_ERR(new_parent_kobj); 4312 put_device(new_parent); 4313 goto out; 4314 } 4315 4316 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 4317 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 4318 error = kobject_move(&dev->kobj, new_parent_kobj); 4319 if (error) { 4320 cleanup_glue_dir(dev, new_parent_kobj); 4321 put_device(new_parent); 4322 goto out; 4323 } 4324 old_parent = dev->parent; 4325 dev->parent = new_parent; 4326 if (old_parent) 4327 klist_remove(&dev->p->knode_parent); 4328 if (new_parent) { 4329 klist_add_tail(&dev->p->knode_parent, 4330 &new_parent->p->klist_children); 4331 set_dev_node(dev, dev_to_node(new_parent)); 4332 } 4333 4334 if (dev->class) { 4335 error = device_move_class_links(dev, old_parent, new_parent); 4336 if (error) { 4337 /* We ignore errors on cleanup since we're hosed anyway... */ 4338 device_move_class_links(dev, new_parent, old_parent); 4339 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 4340 if (new_parent) 4341 klist_remove(&dev->p->knode_parent); 4342 dev->parent = old_parent; 4343 if (old_parent) { 4344 klist_add_tail(&dev->p->knode_parent, 4345 &old_parent->p->klist_children); 4346 set_dev_node(dev, dev_to_node(old_parent)); 4347 } 4348 } 4349 cleanup_glue_dir(dev, new_parent_kobj); 4350 put_device(new_parent); 4351 goto out; 4352 } 4353 } 4354 switch (dpm_order) { 4355 case DPM_ORDER_NONE: 4356 break; 4357 case DPM_ORDER_DEV_AFTER_PARENT: 4358 device_pm_move_after(dev, new_parent); 4359 devices_kset_move_after(dev, new_parent); 4360 break; 4361 case DPM_ORDER_PARENT_BEFORE_DEV: 4362 device_pm_move_before(new_parent, dev); 4363 devices_kset_move_before(new_parent, dev); 4364 break; 4365 case DPM_ORDER_DEV_LAST: 4366 device_pm_move_last(dev); 4367 devices_kset_move_last(dev); 4368 break; 4369 } 4370 4371 put_device(old_parent); 4372 out: 4373 device_pm_unlock(); 4374 put_device(dev); 4375 return error; 4376 } 4377 EXPORT_SYMBOL_GPL(device_move); 4378 4379 static int device_attrs_change_owner(struct device *dev, kuid_t kuid, 4380 kgid_t kgid) 4381 { 4382 struct kobject *kobj = &dev->kobj; 4383 struct class *class = dev->class; 4384 const struct device_type *type = dev->type; 4385 int error; 4386 4387 if (class) { 4388 /* 4389 * Change the device groups of the device class for @dev to 4390 * @kuid/@kgid. 4391 */ 4392 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid, 4393 kgid); 4394 if (error) 4395 return error; 4396 } 4397 4398 if (type) { 4399 /* 4400 * Change the device groups of the device type for @dev to 4401 * @kuid/@kgid. 4402 */ 4403 error = sysfs_groups_change_owner(kobj, type->groups, kuid, 4404 kgid); 4405 if (error) 4406 return error; 4407 } 4408 4409 /* Change the device groups of @dev to @kuid/@kgid. */ 4410 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid); 4411 if (error) 4412 return error; 4413 4414 if (device_supports_offline(dev) && !dev->offline_disabled) { 4415 /* Change online device attributes of @dev to @kuid/@kgid. */ 4416 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name, 4417 kuid, kgid); 4418 if (error) 4419 return error; 4420 } 4421 4422 return 0; 4423 } 4424 4425 /** 4426 * device_change_owner - change the owner of an existing device. 4427 * @dev: device. 4428 * @kuid: new owner's kuid 4429 * @kgid: new owner's kgid 4430 * 4431 * This changes the owner of @dev and its corresponding sysfs entries to 4432 * @kuid/@kgid. This function closely mirrors how @dev was added via driver 4433 * core. 4434 * 4435 * Returns 0 on success or error code on failure. 4436 */ 4437 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid) 4438 { 4439 int error; 4440 struct kobject *kobj = &dev->kobj; 4441 4442 dev = get_device(dev); 4443 if (!dev) 4444 return -EINVAL; 4445 4446 /* 4447 * Change the kobject and the default attributes and groups of the 4448 * ktype associated with it to @kuid/@kgid. 4449 */ 4450 error = sysfs_change_owner(kobj, kuid, kgid); 4451 if (error) 4452 goto out; 4453 4454 /* 4455 * Change the uevent file for @dev to the new owner. The uevent file 4456 * was created in a separate step when @dev got added and we mirror 4457 * that step here. 4458 */ 4459 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid, 4460 kgid); 4461 if (error) 4462 goto out; 4463 4464 /* 4465 * Change the device groups, the device groups associated with the 4466 * device class, and the groups associated with the device type of @dev 4467 * to @kuid/@kgid. 4468 */ 4469 error = device_attrs_change_owner(dev, kuid, kgid); 4470 if (error) 4471 goto out; 4472 4473 error = dpm_sysfs_change_owner(dev, kuid, kgid); 4474 if (error) 4475 goto out; 4476 4477 #ifdef CONFIG_BLOCK 4478 if (sysfs_deprecated && dev->class == &block_class) 4479 goto out; 4480 #endif 4481 4482 /* 4483 * Change the owner of the symlink located in the class directory of 4484 * the device class associated with @dev which points to the actual 4485 * directory entry for @dev to @kuid/@kgid. This ensures that the 4486 * symlink shows the same permissions as its target. 4487 */ 4488 error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj, 4489 dev_name(dev), kuid, kgid); 4490 if (error) 4491 goto out; 4492 4493 out: 4494 put_device(dev); 4495 return error; 4496 } 4497 EXPORT_SYMBOL_GPL(device_change_owner); 4498 4499 /** 4500 * device_shutdown - call ->shutdown() on each device to shutdown. 4501 */ 4502 void device_shutdown(void) 4503 { 4504 struct device *dev, *parent; 4505 4506 wait_for_device_probe(); 4507 device_block_probing(); 4508 4509 cpufreq_suspend(); 4510 4511 spin_lock(&devices_kset->list_lock); 4512 /* 4513 * Walk the devices list backward, shutting down each in turn. 4514 * Beware that device unplug events may also start pulling 4515 * devices offline, even as the system is shutting down. 4516 */ 4517 while (!list_empty(&devices_kset->list)) { 4518 dev = list_entry(devices_kset->list.prev, struct device, 4519 kobj.entry); 4520 4521 /* 4522 * hold reference count of device's parent to 4523 * prevent it from being freed because parent's 4524 * lock is to be held 4525 */ 4526 parent = get_device(dev->parent); 4527 get_device(dev); 4528 /* 4529 * Make sure the device is off the kset list, in the 4530 * event that dev->*->shutdown() doesn't remove it. 4531 */ 4532 list_del_init(&dev->kobj.entry); 4533 spin_unlock(&devices_kset->list_lock); 4534 4535 /* hold lock to avoid race with probe/release */ 4536 if (parent) 4537 device_lock(parent); 4538 device_lock(dev); 4539 4540 /* Don't allow any more runtime suspends */ 4541 pm_runtime_get_noresume(dev); 4542 pm_runtime_barrier(dev); 4543 4544 if (dev->class && dev->class->shutdown_pre) { 4545 if (initcall_debug) 4546 dev_info(dev, "shutdown_pre\n"); 4547 dev->class->shutdown_pre(dev); 4548 } 4549 if (dev->bus && dev->bus->shutdown) { 4550 if (initcall_debug) 4551 dev_info(dev, "shutdown\n"); 4552 dev->bus->shutdown(dev); 4553 } else if (dev->driver && dev->driver->shutdown) { 4554 if (initcall_debug) 4555 dev_info(dev, "shutdown\n"); 4556 dev->driver->shutdown(dev); 4557 } 4558 4559 device_unlock(dev); 4560 if (parent) 4561 device_unlock(parent); 4562 4563 put_device(dev); 4564 put_device(parent); 4565 4566 spin_lock(&devices_kset->list_lock); 4567 } 4568 spin_unlock(&devices_kset->list_lock); 4569 } 4570 4571 /* 4572 * Device logging functions 4573 */ 4574 4575 #ifdef CONFIG_PRINTK 4576 static void 4577 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info) 4578 { 4579 const char *subsys; 4580 4581 memset(dev_info, 0, sizeof(*dev_info)); 4582 4583 if (dev->class) 4584 subsys = dev->class->name; 4585 else if (dev->bus) 4586 subsys = dev->bus->name; 4587 else 4588 return; 4589 4590 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem)); 4591 4592 /* 4593 * Add device identifier DEVICE=: 4594 * b12:8 block dev_t 4595 * c127:3 char dev_t 4596 * n8 netdev ifindex 4597 * +sound:card0 subsystem:devname 4598 */ 4599 if (MAJOR(dev->devt)) { 4600 char c; 4601 4602 if (strcmp(subsys, "block") == 0) 4603 c = 'b'; 4604 else 4605 c = 'c'; 4606 4607 snprintf(dev_info->device, sizeof(dev_info->device), 4608 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt)); 4609 } else if (strcmp(subsys, "net") == 0) { 4610 struct net_device *net = to_net_dev(dev); 4611 4612 snprintf(dev_info->device, sizeof(dev_info->device), 4613 "n%u", net->ifindex); 4614 } else { 4615 snprintf(dev_info->device, sizeof(dev_info->device), 4616 "+%s:%s", subsys, dev_name(dev)); 4617 } 4618 } 4619 4620 int dev_vprintk_emit(int level, const struct device *dev, 4621 const char *fmt, va_list args) 4622 { 4623 struct dev_printk_info dev_info; 4624 4625 set_dev_info(dev, &dev_info); 4626 4627 return vprintk_emit(0, level, &dev_info, fmt, args); 4628 } 4629 EXPORT_SYMBOL(dev_vprintk_emit); 4630 4631 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 4632 { 4633 va_list args; 4634 int r; 4635 4636 va_start(args, fmt); 4637 4638 r = dev_vprintk_emit(level, dev, fmt, args); 4639 4640 va_end(args); 4641 4642 return r; 4643 } 4644 EXPORT_SYMBOL(dev_printk_emit); 4645 4646 static void __dev_printk(const char *level, const struct device *dev, 4647 struct va_format *vaf) 4648 { 4649 if (dev) 4650 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 4651 dev_driver_string(dev), dev_name(dev), vaf); 4652 else 4653 printk("%s(NULL device *): %pV", level, vaf); 4654 } 4655 4656 void _dev_printk(const char *level, const struct device *dev, 4657 const char *fmt, ...) 4658 { 4659 struct va_format vaf; 4660 va_list args; 4661 4662 va_start(args, fmt); 4663 4664 vaf.fmt = fmt; 4665 vaf.va = &args; 4666 4667 __dev_printk(level, dev, &vaf); 4668 4669 va_end(args); 4670 } 4671 EXPORT_SYMBOL(_dev_printk); 4672 4673 #define define_dev_printk_level(func, kern_level) \ 4674 void func(const struct device *dev, const char *fmt, ...) \ 4675 { \ 4676 struct va_format vaf; \ 4677 va_list args; \ 4678 \ 4679 va_start(args, fmt); \ 4680 \ 4681 vaf.fmt = fmt; \ 4682 vaf.va = &args; \ 4683 \ 4684 __dev_printk(kern_level, dev, &vaf); \ 4685 \ 4686 va_end(args); \ 4687 } \ 4688 EXPORT_SYMBOL(func); 4689 4690 define_dev_printk_level(_dev_emerg, KERN_EMERG); 4691 define_dev_printk_level(_dev_alert, KERN_ALERT); 4692 define_dev_printk_level(_dev_crit, KERN_CRIT); 4693 define_dev_printk_level(_dev_err, KERN_ERR); 4694 define_dev_printk_level(_dev_warn, KERN_WARNING); 4695 define_dev_printk_level(_dev_notice, KERN_NOTICE); 4696 define_dev_printk_level(_dev_info, KERN_INFO); 4697 4698 #endif 4699 4700 /** 4701 * dev_err_probe - probe error check and log helper 4702 * @dev: the pointer to the struct device 4703 * @err: error value to test 4704 * @fmt: printf-style format string 4705 * @...: arguments as specified in the format string 4706 * 4707 * This helper implements common pattern present in probe functions for error 4708 * checking: print debug or error message depending if the error value is 4709 * -EPROBE_DEFER and propagate error upwards. 4710 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be 4711 * checked later by reading devices_deferred debugfs attribute. 4712 * It replaces code sequence:: 4713 * 4714 * if (err != -EPROBE_DEFER) 4715 * dev_err(dev, ...); 4716 * else 4717 * dev_dbg(dev, ...); 4718 * return err; 4719 * 4720 * with:: 4721 * 4722 * return dev_err_probe(dev, err, ...); 4723 * 4724 * Note that it is deemed acceptable to use this function for error 4725 * prints during probe even if the @err is known to never be -EPROBE_DEFER. 4726 * The benefit compared to a normal dev_err() is the standardized format 4727 * of the error code and the fact that the error code is returned. 4728 * 4729 * Returns @err. 4730 * 4731 */ 4732 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...) 4733 { 4734 struct va_format vaf; 4735 va_list args; 4736 4737 va_start(args, fmt); 4738 vaf.fmt = fmt; 4739 vaf.va = &args; 4740 4741 if (err != -EPROBE_DEFER) { 4742 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 4743 } else { 4744 device_set_deferred_probe_reason(dev, &vaf); 4745 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 4746 } 4747 4748 va_end(args); 4749 4750 return err; 4751 } 4752 EXPORT_SYMBOL_GPL(dev_err_probe); 4753 4754 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 4755 { 4756 return fwnode && !IS_ERR(fwnode->secondary); 4757 } 4758 4759 /** 4760 * set_primary_fwnode - Change the primary firmware node of a given device. 4761 * @dev: Device to handle. 4762 * @fwnode: New primary firmware node of the device. 4763 * 4764 * Set the device's firmware node pointer to @fwnode, but if a secondary 4765 * firmware node of the device is present, preserve it. 4766 * 4767 * Valid fwnode cases are: 4768 * - primary --> secondary --> -ENODEV 4769 * - primary --> NULL 4770 * - secondary --> -ENODEV 4771 * - NULL 4772 */ 4773 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 4774 { 4775 struct device *parent = dev->parent; 4776 struct fwnode_handle *fn = dev->fwnode; 4777 4778 if (fwnode) { 4779 if (fwnode_is_primary(fn)) 4780 fn = fn->secondary; 4781 4782 if (fn) { 4783 WARN_ON(fwnode->secondary); 4784 fwnode->secondary = fn; 4785 } 4786 dev->fwnode = fwnode; 4787 } else { 4788 if (fwnode_is_primary(fn)) { 4789 dev->fwnode = fn->secondary; 4790 /* Set fn->secondary = NULL, so fn remains the primary fwnode */ 4791 if (!(parent && fn == parent->fwnode)) 4792 fn->secondary = NULL; 4793 } else { 4794 dev->fwnode = NULL; 4795 } 4796 } 4797 } 4798 EXPORT_SYMBOL_GPL(set_primary_fwnode); 4799 4800 /** 4801 * set_secondary_fwnode - Change the secondary firmware node of a given device. 4802 * @dev: Device to handle. 4803 * @fwnode: New secondary firmware node of the device. 4804 * 4805 * If a primary firmware node of the device is present, set its secondary 4806 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 4807 * @fwnode. 4808 */ 4809 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 4810 { 4811 if (fwnode) 4812 fwnode->secondary = ERR_PTR(-ENODEV); 4813 4814 if (fwnode_is_primary(dev->fwnode)) 4815 dev->fwnode->secondary = fwnode; 4816 else 4817 dev->fwnode = fwnode; 4818 } 4819 EXPORT_SYMBOL_GPL(set_secondary_fwnode); 4820 4821 /** 4822 * device_set_of_node_from_dev - reuse device-tree node of another device 4823 * @dev: device whose device-tree node is being set 4824 * @dev2: device whose device-tree node is being reused 4825 * 4826 * Takes another reference to the new device-tree node after first dropping 4827 * any reference held to the old node. 4828 */ 4829 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 4830 { 4831 of_node_put(dev->of_node); 4832 dev->of_node = of_node_get(dev2->of_node); 4833 dev->of_node_reused = true; 4834 } 4835 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 4836 4837 void device_set_node(struct device *dev, struct fwnode_handle *fwnode) 4838 { 4839 dev->fwnode = fwnode; 4840 dev->of_node = to_of_node(fwnode); 4841 } 4842 EXPORT_SYMBOL_GPL(device_set_node); 4843 4844 int device_match_name(struct device *dev, const void *name) 4845 { 4846 return sysfs_streq(dev_name(dev), name); 4847 } 4848 EXPORT_SYMBOL_GPL(device_match_name); 4849 4850 int device_match_of_node(struct device *dev, const void *np) 4851 { 4852 return dev->of_node == np; 4853 } 4854 EXPORT_SYMBOL_GPL(device_match_of_node); 4855 4856 int device_match_fwnode(struct device *dev, const void *fwnode) 4857 { 4858 return dev_fwnode(dev) == fwnode; 4859 } 4860 EXPORT_SYMBOL_GPL(device_match_fwnode); 4861 4862 int device_match_devt(struct device *dev, const void *pdevt) 4863 { 4864 return dev->devt == *(dev_t *)pdevt; 4865 } 4866 EXPORT_SYMBOL_GPL(device_match_devt); 4867 4868 int device_match_acpi_dev(struct device *dev, const void *adev) 4869 { 4870 return ACPI_COMPANION(dev) == adev; 4871 } 4872 EXPORT_SYMBOL(device_match_acpi_dev); 4873 4874 int device_match_acpi_handle(struct device *dev, const void *handle) 4875 { 4876 return ACPI_HANDLE(dev) == handle; 4877 } 4878 EXPORT_SYMBOL(device_match_acpi_handle); 4879 4880 int device_match_any(struct device *dev, const void *unused) 4881 { 4882 return 1; 4883 } 4884 EXPORT_SYMBOL_GPL(device_match_any); 4885