xref: /openbmc/linux/drivers/base/core.c (revision fe17b91a7777df140d0f1433991da67ba658796c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/blkdev.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sched/mm.h>
30 #include <linux/swiotlb.h>
31 #include <linux/sysfs.h>
32 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
33 
34 #include "base.h"
35 #include "physical_location.h"
36 #include "power/power.h"
37 
38 #ifdef CONFIG_SYSFS_DEPRECATED
39 #ifdef CONFIG_SYSFS_DEPRECATED_V2
40 long sysfs_deprecated = 1;
41 #else
42 long sysfs_deprecated = 0;
43 #endif
44 static int __init sysfs_deprecated_setup(char *arg)
45 {
46 	return kstrtol(arg, 10, &sysfs_deprecated);
47 }
48 early_param("sysfs.deprecated", sysfs_deprecated_setup);
49 #endif
50 
51 /* Device links support. */
52 static LIST_HEAD(deferred_sync);
53 static unsigned int defer_sync_state_count = 1;
54 static DEFINE_MUTEX(fwnode_link_lock);
55 static bool fw_devlink_is_permissive(void);
56 static bool fw_devlink_drv_reg_done;
57 
58 /**
59  * fwnode_link_add - Create a link between two fwnode_handles.
60  * @con: Consumer end of the link.
61  * @sup: Supplier end of the link.
62  *
63  * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
64  * represents the detail that the firmware lists @sup fwnode as supplying a
65  * resource to @con.
66  *
67  * The driver core will use the fwnode link to create a device link between the
68  * two device objects corresponding to @con and @sup when they are created. The
69  * driver core will automatically delete the fwnode link between @con and @sup
70  * after doing that.
71  *
72  * Attempts to create duplicate links between the same pair of fwnode handles
73  * are ignored and there is no reference counting.
74  */
75 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
76 {
77 	struct fwnode_link *link;
78 	int ret = 0;
79 
80 	mutex_lock(&fwnode_link_lock);
81 
82 	list_for_each_entry(link, &sup->consumers, s_hook)
83 		if (link->consumer == con)
84 			goto out;
85 
86 	link = kzalloc(sizeof(*link), GFP_KERNEL);
87 	if (!link) {
88 		ret = -ENOMEM;
89 		goto out;
90 	}
91 
92 	link->supplier = sup;
93 	INIT_LIST_HEAD(&link->s_hook);
94 	link->consumer = con;
95 	INIT_LIST_HEAD(&link->c_hook);
96 
97 	list_add(&link->s_hook, &sup->consumers);
98 	list_add(&link->c_hook, &con->suppliers);
99 	pr_debug("%pfwP Linked as a fwnode consumer to %pfwP\n",
100 		 con, sup);
101 out:
102 	mutex_unlock(&fwnode_link_lock);
103 
104 	return ret;
105 }
106 
107 /**
108  * __fwnode_link_del - Delete a link between two fwnode_handles.
109  * @link: the fwnode_link to be deleted
110  *
111  * The fwnode_link_lock needs to be held when this function is called.
112  */
113 static void __fwnode_link_del(struct fwnode_link *link)
114 {
115 	pr_debug("%pfwP Dropping the fwnode link to %pfwP\n",
116 		 link->consumer, link->supplier);
117 	list_del(&link->s_hook);
118 	list_del(&link->c_hook);
119 	kfree(link);
120 }
121 
122 /**
123  * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
124  * @fwnode: fwnode whose supplier links need to be deleted
125  *
126  * Deletes all supplier links connecting directly to @fwnode.
127  */
128 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
129 {
130 	struct fwnode_link *link, *tmp;
131 
132 	mutex_lock(&fwnode_link_lock);
133 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
134 		__fwnode_link_del(link);
135 	mutex_unlock(&fwnode_link_lock);
136 }
137 
138 /**
139  * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
140  * @fwnode: fwnode whose consumer links need to be deleted
141  *
142  * Deletes all consumer links connecting directly to @fwnode.
143  */
144 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
145 {
146 	struct fwnode_link *link, *tmp;
147 
148 	mutex_lock(&fwnode_link_lock);
149 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
150 		__fwnode_link_del(link);
151 	mutex_unlock(&fwnode_link_lock);
152 }
153 
154 /**
155  * fwnode_links_purge - Delete all links connected to a fwnode_handle.
156  * @fwnode: fwnode whose links needs to be deleted
157  *
158  * Deletes all links connecting directly to a fwnode.
159  */
160 void fwnode_links_purge(struct fwnode_handle *fwnode)
161 {
162 	fwnode_links_purge_suppliers(fwnode);
163 	fwnode_links_purge_consumers(fwnode);
164 }
165 
166 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
167 {
168 	struct fwnode_handle *child;
169 
170 	/* Don't purge consumer links of an added child */
171 	if (fwnode->dev)
172 		return;
173 
174 	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
175 	fwnode_links_purge_consumers(fwnode);
176 
177 	fwnode_for_each_available_child_node(fwnode, child)
178 		fw_devlink_purge_absent_suppliers(child);
179 }
180 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
181 
182 #ifdef CONFIG_SRCU
183 static DEFINE_MUTEX(device_links_lock);
184 DEFINE_STATIC_SRCU(device_links_srcu);
185 
186 static inline void device_links_write_lock(void)
187 {
188 	mutex_lock(&device_links_lock);
189 }
190 
191 static inline void device_links_write_unlock(void)
192 {
193 	mutex_unlock(&device_links_lock);
194 }
195 
196 int device_links_read_lock(void) __acquires(&device_links_srcu)
197 {
198 	return srcu_read_lock(&device_links_srcu);
199 }
200 
201 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
202 {
203 	srcu_read_unlock(&device_links_srcu, idx);
204 }
205 
206 int device_links_read_lock_held(void)
207 {
208 	return srcu_read_lock_held(&device_links_srcu);
209 }
210 
211 static void device_link_synchronize_removal(void)
212 {
213 	synchronize_srcu(&device_links_srcu);
214 }
215 
216 static void device_link_remove_from_lists(struct device_link *link)
217 {
218 	list_del_rcu(&link->s_node);
219 	list_del_rcu(&link->c_node);
220 }
221 #else /* !CONFIG_SRCU */
222 static DECLARE_RWSEM(device_links_lock);
223 
224 static inline void device_links_write_lock(void)
225 {
226 	down_write(&device_links_lock);
227 }
228 
229 static inline void device_links_write_unlock(void)
230 {
231 	up_write(&device_links_lock);
232 }
233 
234 int device_links_read_lock(void)
235 {
236 	down_read(&device_links_lock);
237 	return 0;
238 }
239 
240 void device_links_read_unlock(int not_used)
241 {
242 	up_read(&device_links_lock);
243 }
244 
245 #ifdef CONFIG_DEBUG_LOCK_ALLOC
246 int device_links_read_lock_held(void)
247 {
248 	return lockdep_is_held(&device_links_lock);
249 }
250 #endif
251 
252 static inline void device_link_synchronize_removal(void)
253 {
254 }
255 
256 static void device_link_remove_from_lists(struct device_link *link)
257 {
258 	list_del(&link->s_node);
259 	list_del(&link->c_node);
260 }
261 #endif /* !CONFIG_SRCU */
262 
263 static bool device_is_ancestor(struct device *dev, struct device *target)
264 {
265 	while (target->parent) {
266 		target = target->parent;
267 		if (dev == target)
268 			return true;
269 	}
270 	return false;
271 }
272 
273 /**
274  * device_is_dependent - Check if one device depends on another one
275  * @dev: Device to check dependencies for.
276  * @target: Device to check against.
277  *
278  * Check if @target depends on @dev or any device dependent on it (its child or
279  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
280  */
281 int device_is_dependent(struct device *dev, void *target)
282 {
283 	struct device_link *link;
284 	int ret;
285 
286 	/*
287 	 * The "ancestors" check is needed to catch the case when the target
288 	 * device has not been completely initialized yet and it is still
289 	 * missing from the list of children of its parent device.
290 	 */
291 	if (dev == target || device_is_ancestor(dev, target))
292 		return 1;
293 
294 	ret = device_for_each_child(dev, target, device_is_dependent);
295 	if (ret)
296 		return ret;
297 
298 	list_for_each_entry(link, &dev->links.consumers, s_node) {
299 		if ((link->flags & ~DL_FLAG_INFERRED) ==
300 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
301 			continue;
302 
303 		if (link->consumer == target)
304 			return 1;
305 
306 		ret = device_is_dependent(link->consumer, target);
307 		if (ret)
308 			break;
309 	}
310 	return ret;
311 }
312 
313 static void device_link_init_status(struct device_link *link,
314 				    struct device *consumer,
315 				    struct device *supplier)
316 {
317 	switch (supplier->links.status) {
318 	case DL_DEV_PROBING:
319 		switch (consumer->links.status) {
320 		case DL_DEV_PROBING:
321 			/*
322 			 * A consumer driver can create a link to a supplier
323 			 * that has not completed its probing yet as long as it
324 			 * knows that the supplier is already functional (for
325 			 * example, it has just acquired some resources from the
326 			 * supplier).
327 			 */
328 			link->status = DL_STATE_CONSUMER_PROBE;
329 			break;
330 		default:
331 			link->status = DL_STATE_DORMANT;
332 			break;
333 		}
334 		break;
335 	case DL_DEV_DRIVER_BOUND:
336 		switch (consumer->links.status) {
337 		case DL_DEV_PROBING:
338 			link->status = DL_STATE_CONSUMER_PROBE;
339 			break;
340 		case DL_DEV_DRIVER_BOUND:
341 			link->status = DL_STATE_ACTIVE;
342 			break;
343 		default:
344 			link->status = DL_STATE_AVAILABLE;
345 			break;
346 		}
347 		break;
348 	case DL_DEV_UNBINDING:
349 		link->status = DL_STATE_SUPPLIER_UNBIND;
350 		break;
351 	default:
352 		link->status = DL_STATE_DORMANT;
353 		break;
354 	}
355 }
356 
357 static int device_reorder_to_tail(struct device *dev, void *not_used)
358 {
359 	struct device_link *link;
360 
361 	/*
362 	 * Devices that have not been registered yet will be put to the ends
363 	 * of the lists during the registration, so skip them here.
364 	 */
365 	if (device_is_registered(dev))
366 		devices_kset_move_last(dev);
367 
368 	if (device_pm_initialized(dev))
369 		device_pm_move_last(dev);
370 
371 	device_for_each_child(dev, NULL, device_reorder_to_tail);
372 	list_for_each_entry(link, &dev->links.consumers, s_node) {
373 		if ((link->flags & ~DL_FLAG_INFERRED) ==
374 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
375 			continue;
376 		device_reorder_to_tail(link->consumer, NULL);
377 	}
378 
379 	return 0;
380 }
381 
382 /**
383  * device_pm_move_to_tail - Move set of devices to the end of device lists
384  * @dev: Device to move
385  *
386  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
387  *
388  * It moves the @dev along with all of its children and all of its consumers
389  * to the ends of the device_kset and dpm_list, recursively.
390  */
391 void device_pm_move_to_tail(struct device *dev)
392 {
393 	int idx;
394 
395 	idx = device_links_read_lock();
396 	device_pm_lock();
397 	device_reorder_to_tail(dev, NULL);
398 	device_pm_unlock();
399 	device_links_read_unlock(idx);
400 }
401 
402 #define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
403 
404 static ssize_t status_show(struct device *dev,
405 			   struct device_attribute *attr, char *buf)
406 {
407 	const char *output;
408 
409 	switch (to_devlink(dev)->status) {
410 	case DL_STATE_NONE:
411 		output = "not tracked";
412 		break;
413 	case DL_STATE_DORMANT:
414 		output = "dormant";
415 		break;
416 	case DL_STATE_AVAILABLE:
417 		output = "available";
418 		break;
419 	case DL_STATE_CONSUMER_PROBE:
420 		output = "consumer probing";
421 		break;
422 	case DL_STATE_ACTIVE:
423 		output = "active";
424 		break;
425 	case DL_STATE_SUPPLIER_UNBIND:
426 		output = "supplier unbinding";
427 		break;
428 	default:
429 		output = "unknown";
430 		break;
431 	}
432 
433 	return sysfs_emit(buf, "%s\n", output);
434 }
435 static DEVICE_ATTR_RO(status);
436 
437 static ssize_t auto_remove_on_show(struct device *dev,
438 				   struct device_attribute *attr, char *buf)
439 {
440 	struct device_link *link = to_devlink(dev);
441 	const char *output;
442 
443 	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
444 		output = "supplier unbind";
445 	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
446 		output = "consumer unbind";
447 	else
448 		output = "never";
449 
450 	return sysfs_emit(buf, "%s\n", output);
451 }
452 static DEVICE_ATTR_RO(auto_remove_on);
453 
454 static ssize_t runtime_pm_show(struct device *dev,
455 			       struct device_attribute *attr, char *buf)
456 {
457 	struct device_link *link = to_devlink(dev);
458 
459 	return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
460 }
461 static DEVICE_ATTR_RO(runtime_pm);
462 
463 static ssize_t sync_state_only_show(struct device *dev,
464 				    struct device_attribute *attr, char *buf)
465 {
466 	struct device_link *link = to_devlink(dev);
467 
468 	return sysfs_emit(buf, "%d\n",
469 			  !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
470 }
471 static DEVICE_ATTR_RO(sync_state_only);
472 
473 static struct attribute *devlink_attrs[] = {
474 	&dev_attr_status.attr,
475 	&dev_attr_auto_remove_on.attr,
476 	&dev_attr_runtime_pm.attr,
477 	&dev_attr_sync_state_only.attr,
478 	NULL,
479 };
480 ATTRIBUTE_GROUPS(devlink);
481 
482 static void device_link_release_fn(struct work_struct *work)
483 {
484 	struct device_link *link = container_of(work, struct device_link, rm_work);
485 
486 	/* Ensure that all references to the link object have been dropped. */
487 	device_link_synchronize_removal();
488 
489 	pm_runtime_release_supplier(link);
490 	/*
491 	 * If supplier_preactivated is set, the link has been dropped between
492 	 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
493 	 * in __driver_probe_device().  In that case, drop the supplier's
494 	 * PM-runtime usage counter to remove the reference taken by
495 	 * pm_runtime_get_suppliers().
496 	 */
497 	if (link->supplier_preactivated)
498 		pm_runtime_put_noidle(link->supplier);
499 
500 	pm_request_idle(link->supplier);
501 
502 	put_device(link->consumer);
503 	put_device(link->supplier);
504 	kfree(link);
505 }
506 
507 static void devlink_dev_release(struct device *dev)
508 {
509 	struct device_link *link = to_devlink(dev);
510 
511 	INIT_WORK(&link->rm_work, device_link_release_fn);
512 	/*
513 	 * It may take a while to complete this work because of the SRCU
514 	 * synchronization in device_link_release_fn() and if the consumer or
515 	 * supplier devices get deleted when it runs, so put it into the "long"
516 	 * workqueue.
517 	 */
518 	queue_work(system_long_wq, &link->rm_work);
519 }
520 
521 static struct class devlink_class = {
522 	.name = "devlink",
523 	.owner = THIS_MODULE,
524 	.dev_groups = devlink_groups,
525 	.dev_release = devlink_dev_release,
526 };
527 
528 static int devlink_add_symlinks(struct device *dev,
529 				struct class_interface *class_intf)
530 {
531 	int ret;
532 	size_t len;
533 	struct device_link *link = to_devlink(dev);
534 	struct device *sup = link->supplier;
535 	struct device *con = link->consumer;
536 	char *buf;
537 
538 	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
539 		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
540 	len += strlen(":");
541 	len += strlen("supplier:") + 1;
542 	buf = kzalloc(len, GFP_KERNEL);
543 	if (!buf)
544 		return -ENOMEM;
545 
546 	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
547 	if (ret)
548 		goto out;
549 
550 	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
551 	if (ret)
552 		goto err_con;
553 
554 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
555 	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
556 	if (ret)
557 		goto err_con_dev;
558 
559 	snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
560 	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
561 	if (ret)
562 		goto err_sup_dev;
563 
564 	goto out;
565 
566 err_sup_dev:
567 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
568 	sysfs_remove_link(&sup->kobj, buf);
569 err_con_dev:
570 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
571 err_con:
572 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
573 out:
574 	kfree(buf);
575 	return ret;
576 }
577 
578 static void devlink_remove_symlinks(struct device *dev,
579 				   struct class_interface *class_intf)
580 {
581 	struct device_link *link = to_devlink(dev);
582 	size_t len;
583 	struct device *sup = link->supplier;
584 	struct device *con = link->consumer;
585 	char *buf;
586 
587 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
588 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
589 
590 	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
591 		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
592 	len += strlen(":");
593 	len += strlen("supplier:") + 1;
594 	buf = kzalloc(len, GFP_KERNEL);
595 	if (!buf) {
596 		WARN(1, "Unable to properly free device link symlinks!\n");
597 		return;
598 	}
599 
600 	if (device_is_registered(con)) {
601 		snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
602 		sysfs_remove_link(&con->kobj, buf);
603 	}
604 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
605 	sysfs_remove_link(&sup->kobj, buf);
606 	kfree(buf);
607 }
608 
609 static struct class_interface devlink_class_intf = {
610 	.class = &devlink_class,
611 	.add_dev = devlink_add_symlinks,
612 	.remove_dev = devlink_remove_symlinks,
613 };
614 
615 static int __init devlink_class_init(void)
616 {
617 	int ret;
618 
619 	ret = class_register(&devlink_class);
620 	if (ret)
621 		return ret;
622 
623 	ret = class_interface_register(&devlink_class_intf);
624 	if (ret)
625 		class_unregister(&devlink_class);
626 
627 	return ret;
628 }
629 postcore_initcall(devlink_class_init);
630 
631 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
632 			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
633 			       DL_FLAG_AUTOPROBE_CONSUMER  | \
634 			       DL_FLAG_SYNC_STATE_ONLY | \
635 			       DL_FLAG_INFERRED)
636 
637 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
638 			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
639 
640 /**
641  * device_link_add - Create a link between two devices.
642  * @consumer: Consumer end of the link.
643  * @supplier: Supplier end of the link.
644  * @flags: Link flags.
645  *
646  * The caller is responsible for the proper synchronization of the link creation
647  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
648  * runtime PM framework to take the link into account.  Second, if the
649  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
650  * be forced into the active meta state and reference-counted upon the creation
651  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
652  * ignored.
653  *
654  * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
655  * expected to release the link returned by it directly with the help of either
656  * device_link_del() or device_link_remove().
657  *
658  * If that flag is not set, however, the caller of this function is handing the
659  * management of the link over to the driver core entirely and its return value
660  * can only be used to check whether or not the link is present.  In that case,
661  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
662  * flags can be used to indicate to the driver core when the link can be safely
663  * deleted.  Namely, setting one of them in @flags indicates to the driver core
664  * that the link is not going to be used (by the given caller of this function)
665  * after unbinding the consumer or supplier driver, respectively, from its
666  * device, so the link can be deleted at that point.  If none of them is set,
667  * the link will be maintained until one of the devices pointed to by it (either
668  * the consumer or the supplier) is unregistered.
669  *
670  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
671  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
672  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
673  * be used to request the driver core to automatically probe for a consumer
674  * driver after successfully binding a driver to the supplier device.
675  *
676  * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
677  * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
678  * the same time is invalid and will cause NULL to be returned upfront.
679  * However, if a device link between the given @consumer and @supplier pair
680  * exists already when this function is called for them, the existing link will
681  * be returned regardless of its current type and status (the link's flags may
682  * be modified then).  The caller of this function is then expected to treat
683  * the link as though it has just been created, so (in particular) if
684  * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
685  * explicitly when not needed any more (as stated above).
686  *
687  * A side effect of the link creation is re-ordering of dpm_list and the
688  * devices_kset list by moving the consumer device and all devices depending
689  * on it to the ends of these lists (that does not happen to devices that have
690  * not been registered when this function is called).
691  *
692  * The supplier device is required to be registered when this function is called
693  * and NULL will be returned if that is not the case.  The consumer device need
694  * not be registered, however.
695  */
696 struct device_link *device_link_add(struct device *consumer,
697 				    struct device *supplier, u32 flags)
698 {
699 	struct device_link *link;
700 
701 	if (!consumer || !supplier || consumer == supplier ||
702 	    flags & ~DL_ADD_VALID_FLAGS ||
703 	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
704 	    (flags & DL_FLAG_SYNC_STATE_ONLY &&
705 	     (flags & ~DL_FLAG_INFERRED) != DL_FLAG_SYNC_STATE_ONLY) ||
706 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
707 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
708 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
709 		return NULL;
710 
711 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
712 		if (pm_runtime_get_sync(supplier) < 0) {
713 			pm_runtime_put_noidle(supplier);
714 			return NULL;
715 		}
716 	}
717 
718 	if (!(flags & DL_FLAG_STATELESS))
719 		flags |= DL_FLAG_MANAGED;
720 
721 	device_links_write_lock();
722 	device_pm_lock();
723 
724 	/*
725 	 * If the supplier has not been fully registered yet or there is a
726 	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
727 	 * the supplier already in the graph, return NULL. If the link is a
728 	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
729 	 * because it only affects sync_state() callbacks.
730 	 */
731 	if (!device_pm_initialized(supplier)
732 	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
733 		  device_is_dependent(consumer, supplier))) {
734 		link = NULL;
735 		goto out;
736 	}
737 
738 	/*
739 	 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
740 	 * So, only create it if the consumer hasn't probed yet.
741 	 */
742 	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
743 	    consumer->links.status != DL_DEV_NO_DRIVER &&
744 	    consumer->links.status != DL_DEV_PROBING) {
745 		link = NULL;
746 		goto out;
747 	}
748 
749 	/*
750 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
751 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
752 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
753 	 */
754 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
755 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
756 
757 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
758 		if (link->consumer != consumer)
759 			continue;
760 
761 		if (link->flags & DL_FLAG_INFERRED &&
762 		    !(flags & DL_FLAG_INFERRED))
763 			link->flags &= ~DL_FLAG_INFERRED;
764 
765 		if (flags & DL_FLAG_PM_RUNTIME) {
766 			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
767 				pm_runtime_new_link(consumer);
768 				link->flags |= DL_FLAG_PM_RUNTIME;
769 			}
770 			if (flags & DL_FLAG_RPM_ACTIVE)
771 				refcount_inc(&link->rpm_active);
772 		}
773 
774 		if (flags & DL_FLAG_STATELESS) {
775 			kref_get(&link->kref);
776 			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
777 			    !(link->flags & DL_FLAG_STATELESS)) {
778 				link->flags |= DL_FLAG_STATELESS;
779 				goto reorder;
780 			} else {
781 				link->flags |= DL_FLAG_STATELESS;
782 				goto out;
783 			}
784 		}
785 
786 		/*
787 		 * If the life time of the link following from the new flags is
788 		 * longer than indicated by the flags of the existing link,
789 		 * update the existing link to stay around longer.
790 		 */
791 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
792 			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
793 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
794 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
795 			}
796 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
797 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
798 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
799 		}
800 		if (!(link->flags & DL_FLAG_MANAGED)) {
801 			kref_get(&link->kref);
802 			link->flags |= DL_FLAG_MANAGED;
803 			device_link_init_status(link, consumer, supplier);
804 		}
805 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
806 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
807 			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
808 			goto reorder;
809 		}
810 
811 		goto out;
812 	}
813 
814 	link = kzalloc(sizeof(*link), GFP_KERNEL);
815 	if (!link)
816 		goto out;
817 
818 	refcount_set(&link->rpm_active, 1);
819 
820 	get_device(supplier);
821 	link->supplier = supplier;
822 	INIT_LIST_HEAD(&link->s_node);
823 	get_device(consumer);
824 	link->consumer = consumer;
825 	INIT_LIST_HEAD(&link->c_node);
826 	link->flags = flags;
827 	kref_init(&link->kref);
828 
829 	link->link_dev.class = &devlink_class;
830 	device_set_pm_not_required(&link->link_dev);
831 	dev_set_name(&link->link_dev, "%s:%s--%s:%s",
832 		     dev_bus_name(supplier), dev_name(supplier),
833 		     dev_bus_name(consumer), dev_name(consumer));
834 	if (device_register(&link->link_dev)) {
835 		put_device(&link->link_dev);
836 		link = NULL;
837 		goto out;
838 	}
839 
840 	if (flags & DL_FLAG_PM_RUNTIME) {
841 		if (flags & DL_FLAG_RPM_ACTIVE)
842 			refcount_inc(&link->rpm_active);
843 
844 		pm_runtime_new_link(consumer);
845 	}
846 
847 	/* Determine the initial link state. */
848 	if (flags & DL_FLAG_STATELESS)
849 		link->status = DL_STATE_NONE;
850 	else
851 		device_link_init_status(link, consumer, supplier);
852 
853 	/*
854 	 * Some callers expect the link creation during consumer driver probe to
855 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
856 	 */
857 	if (link->status == DL_STATE_CONSUMER_PROBE &&
858 	    flags & DL_FLAG_PM_RUNTIME)
859 		pm_runtime_resume(supplier);
860 
861 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
862 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
863 
864 	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
865 		dev_dbg(consumer,
866 			"Linked as a sync state only consumer to %s\n",
867 			dev_name(supplier));
868 		goto out;
869 	}
870 
871 reorder:
872 	/*
873 	 * Move the consumer and all of the devices depending on it to the end
874 	 * of dpm_list and the devices_kset list.
875 	 *
876 	 * It is necessary to hold dpm_list locked throughout all that or else
877 	 * we may end up suspending with a wrong ordering of it.
878 	 */
879 	device_reorder_to_tail(consumer, NULL);
880 
881 	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
882 
883 out:
884 	device_pm_unlock();
885 	device_links_write_unlock();
886 
887 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
888 		pm_runtime_put(supplier);
889 
890 	return link;
891 }
892 EXPORT_SYMBOL_GPL(device_link_add);
893 
894 static void __device_link_del(struct kref *kref)
895 {
896 	struct device_link *link = container_of(kref, struct device_link, kref);
897 
898 	dev_dbg(link->consumer, "Dropping the link to %s\n",
899 		dev_name(link->supplier));
900 
901 	pm_runtime_drop_link(link);
902 
903 	device_link_remove_from_lists(link);
904 	device_unregister(&link->link_dev);
905 }
906 
907 static void device_link_put_kref(struct device_link *link)
908 {
909 	if (link->flags & DL_FLAG_STATELESS)
910 		kref_put(&link->kref, __device_link_del);
911 	else if (!device_is_registered(link->consumer))
912 		__device_link_del(&link->kref);
913 	else
914 		WARN(1, "Unable to drop a managed device link reference\n");
915 }
916 
917 /**
918  * device_link_del - Delete a stateless link between two devices.
919  * @link: Device link to delete.
920  *
921  * The caller must ensure proper synchronization of this function with runtime
922  * PM.  If the link was added multiple times, it needs to be deleted as often.
923  * Care is required for hotplugged devices:  Their links are purged on removal
924  * and calling device_link_del() is then no longer allowed.
925  */
926 void device_link_del(struct device_link *link)
927 {
928 	device_links_write_lock();
929 	device_link_put_kref(link);
930 	device_links_write_unlock();
931 }
932 EXPORT_SYMBOL_GPL(device_link_del);
933 
934 /**
935  * device_link_remove - Delete a stateless link between two devices.
936  * @consumer: Consumer end of the link.
937  * @supplier: Supplier end of the link.
938  *
939  * The caller must ensure proper synchronization of this function with runtime
940  * PM.
941  */
942 void device_link_remove(void *consumer, struct device *supplier)
943 {
944 	struct device_link *link;
945 
946 	if (WARN_ON(consumer == supplier))
947 		return;
948 
949 	device_links_write_lock();
950 
951 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
952 		if (link->consumer == consumer) {
953 			device_link_put_kref(link);
954 			break;
955 		}
956 	}
957 
958 	device_links_write_unlock();
959 }
960 EXPORT_SYMBOL_GPL(device_link_remove);
961 
962 static void device_links_missing_supplier(struct device *dev)
963 {
964 	struct device_link *link;
965 
966 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
967 		if (link->status != DL_STATE_CONSUMER_PROBE)
968 			continue;
969 
970 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
971 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
972 		} else {
973 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
974 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
975 		}
976 	}
977 }
978 
979 /**
980  * device_links_check_suppliers - Check presence of supplier drivers.
981  * @dev: Consumer device.
982  *
983  * Check links from this device to any suppliers.  Walk the list of the device's
984  * links to suppliers and see if all of them are available.  If not, simply
985  * return -EPROBE_DEFER.
986  *
987  * We need to guarantee that the supplier will not go away after the check has
988  * been positive here.  It only can go away in __device_release_driver() and
989  * that function  checks the device's links to consumers.  This means we need to
990  * mark the link as "consumer probe in progress" to make the supplier removal
991  * wait for us to complete (or bad things may happen).
992  *
993  * Links without the DL_FLAG_MANAGED flag set are ignored.
994  */
995 int device_links_check_suppliers(struct device *dev)
996 {
997 	struct device_link *link;
998 	int ret = 0;
999 	struct fwnode_handle *sup_fw;
1000 
1001 	/*
1002 	 * Device waiting for supplier to become available is not allowed to
1003 	 * probe.
1004 	 */
1005 	mutex_lock(&fwnode_link_lock);
1006 	if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) &&
1007 	    !fw_devlink_is_permissive()) {
1008 		sup_fw = list_first_entry(&dev->fwnode->suppliers,
1009 					  struct fwnode_link,
1010 					  c_hook)->supplier;
1011 		dev_err_probe(dev, -EPROBE_DEFER, "wait for supplier %pfwP\n",
1012 			      sup_fw);
1013 		mutex_unlock(&fwnode_link_lock);
1014 		return -EPROBE_DEFER;
1015 	}
1016 	mutex_unlock(&fwnode_link_lock);
1017 
1018 	device_links_write_lock();
1019 
1020 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
1021 		if (!(link->flags & DL_FLAG_MANAGED))
1022 			continue;
1023 
1024 		if (link->status != DL_STATE_AVAILABLE &&
1025 		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1026 			device_links_missing_supplier(dev);
1027 			dev_err_probe(dev, -EPROBE_DEFER,
1028 				      "supplier %s not ready\n",
1029 				      dev_name(link->supplier));
1030 			ret = -EPROBE_DEFER;
1031 			break;
1032 		}
1033 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1034 	}
1035 	dev->links.status = DL_DEV_PROBING;
1036 
1037 	device_links_write_unlock();
1038 	return ret;
1039 }
1040 
1041 /**
1042  * __device_links_queue_sync_state - Queue a device for sync_state() callback
1043  * @dev: Device to call sync_state() on
1044  * @list: List head to queue the @dev on
1045  *
1046  * Queues a device for a sync_state() callback when the device links write lock
1047  * isn't held. This allows the sync_state() execution flow to use device links
1048  * APIs.  The caller must ensure this function is called with
1049  * device_links_write_lock() held.
1050  *
1051  * This function does a get_device() to make sure the device is not freed while
1052  * on this list.
1053  *
1054  * So the caller must also ensure that device_links_flush_sync_list() is called
1055  * as soon as the caller releases device_links_write_lock().  This is necessary
1056  * to make sure the sync_state() is called in a timely fashion and the
1057  * put_device() is called on this device.
1058  */
1059 static void __device_links_queue_sync_state(struct device *dev,
1060 					    struct list_head *list)
1061 {
1062 	struct device_link *link;
1063 
1064 	if (!dev_has_sync_state(dev))
1065 		return;
1066 	if (dev->state_synced)
1067 		return;
1068 
1069 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1070 		if (!(link->flags & DL_FLAG_MANAGED))
1071 			continue;
1072 		if (link->status != DL_STATE_ACTIVE)
1073 			return;
1074 	}
1075 
1076 	/*
1077 	 * Set the flag here to avoid adding the same device to a list more
1078 	 * than once. This can happen if new consumers get added to the device
1079 	 * and probed before the list is flushed.
1080 	 */
1081 	dev->state_synced = true;
1082 
1083 	if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1084 		return;
1085 
1086 	get_device(dev);
1087 	list_add_tail(&dev->links.defer_sync, list);
1088 }
1089 
1090 /**
1091  * device_links_flush_sync_list - Call sync_state() on a list of devices
1092  * @list: List of devices to call sync_state() on
1093  * @dont_lock_dev: Device for which lock is already held by the caller
1094  *
1095  * Calls sync_state() on all the devices that have been queued for it. This
1096  * function is used in conjunction with __device_links_queue_sync_state(). The
1097  * @dont_lock_dev parameter is useful when this function is called from a
1098  * context where a device lock is already held.
1099  */
1100 static void device_links_flush_sync_list(struct list_head *list,
1101 					 struct device *dont_lock_dev)
1102 {
1103 	struct device *dev, *tmp;
1104 
1105 	list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1106 		list_del_init(&dev->links.defer_sync);
1107 
1108 		if (dev != dont_lock_dev)
1109 			device_lock(dev);
1110 
1111 		if (dev->bus->sync_state)
1112 			dev->bus->sync_state(dev);
1113 		else if (dev->driver && dev->driver->sync_state)
1114 			dev->driver->sync_state(dev);
1115 
1116 		if (dev != dont_lock_dev)
1117 			device_unlock(dev);
1118 
1119 		put_device(dev);
1120 	}
1121 }
1122 
1123 void device_links_supplier_sync_state_pause(void)
1124 {
1125 	device_links_write_lock();
1126 	defer_sync_state_count++;
1127 	device_links_write_unlock();
1128 }
1129 
1130 void device_links_supplier_sync_state_resume(void)
1131 {
1132 	struct device *dev, *tmp;
1133 	LIST_HEAD(sync_list);
1134 
1135 	device_links_write_lock();
1136 	if (!defer_sync_state_count) {
1137 		WARN(true, "Unmatched sync_state pause/resume!");
1138 		goto out;
1139 	}
1140 	defer_sync_state_count--;
1141 	if (defer_sync_state_count)
1142 		goto out;
1143 
1144 	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1145 		/*
1146 		 * Delete from deferred_sync list before queuing it to
1147 		 * sync_list because defer_sync is used for both lists.
1148 		 */
1149 		list_del_init(&dev->links.defer_sync);
1150 		__device_links_queue_sync_state(dev, &sync_list);
1151 	}
1152 out:
1153 	device_links_write_unlock();
1154 
1155 	device_links_flush_sync_list(&sync_list, NULL);
1156 }
1157 
1158 static int sync_state_resume_initcall(void)
1159 {
1160 	device_links_supplier_sync_state_resume();
1161 	return 0;
1162 }
1163 late_initcall(sync_state_resume_initcall);
1164 
1165 static void __device_links_supplier_defer_sync(struct device *sup)
1166 {
1167 	if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1168 		list_add_tail(&sup->links.defer_sync, &deferred_sync);
1169 }
1170 
1171 static void device_link_drop_managed(struct device_link *link)
1172 {
1173 	link->flags &= ~DL_FLAG_MANAGED;
1174 	WRITE_ONCE(link->status, DL_STATE_NONE);
1175 	kref_put(&link->kref, __device_link_del);
1176 }
1177 
1178 static ssize_t waiting_for_supplier_show(struct device *dev,
1179 					 struct device_attribute *attr,
1180 					 char *buf)
1181 {
1182 	bool val;
1183 
1184 	device_lock(dev);
1185 	val = !list_empty(&dev->fwnode->suppliers);
1186 	device_unlock(dev);
1187 	return sysfs_emit(buf, "%u\n", val);
1188 }
1189 static DEVICE_ATTR_RO(waiting_for_supplier);
1190 
1191 /**
1192  * device_links_force_bind - Prepares device to be force bound
1193  * @dev: Consumer device.
1194  *
1195  * device_bind_driver() force binds a device to a driver without calling any
1196  * driver probe functions. So the consumer really isn't going to wait for any
1197  * supplier before it's bound to the driver. We still want the device link
1198  * states to be sensible when this happens.
1199  *
1200  * In preparation for device_bind_driver(), this function goes through each
1201  * supplier device links and checks if the supplier is bound. If it is, then
1202  * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1203  * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1204  */
1205 void device_links_force_bind(struct device *dev)
1206 {
1207 	struct device_link *link, *ln;
1208 
1209 	device_links_write_lock();
1210 
1211 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1212 		if (!(link->flags & DL_FLAG_MANAGED))
1213 			continue;
1214 
1215 		if (link->status != DL_STATE_AVAILABLE) {
1216 			device_link_drop_managed(link);
1217 			continue;
1218 		}
1219 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1220 	}
1221 	dev->links.status = DL_DEV_PROBING;
1222 
1223 	device_links_write_unlock();
1224 }
1225 
1226 /**
1227  * device_links_driver_bound - Update device links after probing its driver.
1228  * @dev: Device to update the links for.
1229  *
1230  * The probe has been successful, so update links from this device to any
1231  * consumers by changing their status to "available".
1232  *
1233  * Also change the status of @dev's links to suppliers to "active".
1234  *
1235  * Links without the DL_FLAG_MANAGED flag set are ignored.
1236  */
1237 void device_links_driver_bound(struct device *dev)
1238 {
1239 	struct device_link *link, *ln;
1240 	LIST_HEAD(sync_list);
1241 
1242 	/*
1243 	 * If a device binds successfully, it's expected to have created all
1244 	 * the device links it needs to or make new device links as it needs
1245 	 * them. So, fw_devlink no longer needs to create device links to any
1246 	 * of the device's suppliers.
1247 	 *
1248 	 * Also, if a child firmware node of this bound device is not added as
1249 	 * a device by now, assume it is never going to be added and make sure
1250 	 * other devices don't defer probe indefinitely by waiting for such a
1251 	 * child device.
1252 	 */
1253 	if (dev->fwnode && dev->fwnode->dev == dev) {
1254 		struct fwnode_handle *child;
1255 		fwnode_links_purge_suppliers(dev->fwnode);
1256 		fwnode_for_each_available_child_node(dev->fwnode, child)
1257 			fw_devlink_purge_absent_suppliers(child);
1258 	}
1259 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1260 
1261 	device_links_write_lock();
1262 
1263 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1264 		if (!(link->flags & DL_FLAG_MANAGED))
1265 			continue;
1266 
1267 		/*
1268 		 * Links created during consumer probe may be in the "consumer
1269 		 * probe" state to start with if the supplier is still probing
1270 		 * when they are created and they may become "active" if the
1271 		 * consumer probe returns first.  Skip them here.
1272 		 */
1273 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1274 		    link->status == DL_STATE_ACTIVE)
1275 			continue;
1276 
1277 		WARN_ON(link->status != DL_STATE_DORMANT);
1278 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1279 
1280 		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1281 			driver_deferred_probe_add(link->consumer);
1282 	}
1283 
1284 	if (defer_sync_state_count)
1285 		__device_links_supplier_defer_sync(dev);
1286 	else
1287 		__device_links_queue_sync_state(dev, &sync_list);
1288 
1289 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1290 		struct device *supplier;
1291 
1292 		if (!(link->flags & DL_FLAG_MANAGED))
1293 			continue;
1294 
1295 		supplier = link->supplier;
1296 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1297 			/*
1298 			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1299 			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1300 			 * save to drop the managed link completely.
1301 			 */
1302 			device_link_drop_managed(link);
1303 		} else {
1304 			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1305 			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1306 		}
1307 
1308 		/*
1309 		 * This needs to be done even for the deleted
1310 		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1311 		 * device link that was preventing the supplier from getting a
1312 		 * sync_state() call.
1313 		 */
1314 		if (defer_sync_state_count)
1315 			__device_links_supplier_defer_sync(supplier);
1316 		else
1317 			__device_links_queue_sync_state(supplier, &sync_list);
1318 	}
1319 
1320 	dev->links.status = DL_DEV_DRIVER_BOUND;
1321 
1322 	device_links_write_unlock();
1323 
1324 	device_links_flush_sync_list(&sync_list, dev);
1325 }
1326 
1327 /**
1328  * __device_links_no_driver - Update links of a device without a driver.
1329  * @dev: Device without a drvier.
1330  *
1331  * Delete all non-persistent links from this device to any suppliers.
1332  *
1333  * Persistent links stay around, but their status is changed to "available",
1334  * unless they already are in the "supplier unbind in progress" state in which
1335  * case they need not be updated.
1336  *
1337  * Links without the DL_FLAG_MANAGED flag set are ignored.
1338  */
1339 static void __device_links_no_driver(struct device *dev)
1340 {
1341 	struct device_link *link, *ln;
1342 
1343 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1344 		if (!(link->flags & DL_FLAG_MANAGED))
1345 			continue;
1346 
1347 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1348 			device_link_drop_managed(link);
1349 			continue;
1350 		}
1351 
1352 		if (link->status != DL_STATE_CONSUMER_PROBE &&
1353 		    link->status != DL_STATE_ACTIVE)
1354 			continue;
1355 
1356 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1357 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1358 		} else {
1359 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1360 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1361 		}
1362 	}
1363 
1364 	dev->links.status = DL_DEV_NO_DRIVER;
1365 }
1366 
1367 /**
1368  * device_links_no_driver - Update links after failing driver probe.
1369  * @dev: Device whose driver has just failed to probe.
1370  *
1371  * Clean up leftover links to consumers for @dev and invoke
1372  * %__device_links_no_driver() to update links to suppliers for it as
1373  * appropriate.
1374  *
1375  * Links without the DL_FLAG_MANAGED flag set are ignored.
1376  */
1377 void device_links_no_driver(struct device *dev)
1378 {
1379 	struct device_link *link;
1380 
1381 	device_links_write_lock();
1382 
1383 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1384 		if (!(link->flags & DL_FLAG_MANAGED))
1385 			continue;
1386 
1387 		/*
1388 		 * The probe has failed, so if the status of the link is
1389 		 * "consumer probe" or "active", it must have been added by
1390 		 * a probing consumer while this device was still probing.
1391 		 * Change its state to "dormant", as it represents a valid
1392 		 * relationship, but it is not functionally meaningful.
1393 		 */
1394 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1395 		    link->status == DL_STATE_ACTIVE)
1396 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1397 	}
1398 
1399 	__device_links_no_driver(dev);
1400 
1401 	device_links_write_unlock();
1402 }
1403 
1404 /**
1405  * device_links_driver_cleanup - Update links after driver removal.
1406  * @dev: Device whose driver has just gone away.
1407  *
1408  * Update links to consumers for @dev by changing their status to "dormant" and
1409  * invoke %__device_links_no_driver() to update links to suppliers for it as
1410  * appropriate.
1411  *
1412  * Links without the DL_FLAG_MANAGED flag set are ignored.
1413  */
1414 void device_links_driver_cleanup(struct device *dev)
1415 {
1416 	struct device_link *link, *ln;
1417 
1418 	device_links_write_lock();
1419 
1420 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1421 		if (!(link->flags & DL_FLAG_MANAGED))
1422 			continue;
1423 
1424 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1425 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1426 
1427 		/*
1428 		 * autoremove the links between this @dev and its consumer
1429 		 * devices that are not active, i.e. where the link state
1430 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1431 		 */
1432 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1433 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1434 			device_link_drop_managed(link);
1435 
1436 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1437 	}
1438 
1439 	list_del_init(&dev->links.defer_sync);
1440 	__device_links_no_driver(dev);
1441 
1442 	device_links_write_unlock();
1443 }
1444 
1445 /**
1446  * device_links_busy - Check if there are any busy links to consumers.
1447  * @dev: Device to check.
1448  *
1449  * Check each consumer of the device and return 'true' if its link's status
1450  * is one of "consumer probe" or "active" (meaning that the given consumer is
1451  * probing right now or its driver is present).  Otherwise, change the link
1452  * state to "supplier unbind" to prevent the consumer from being probed
1453  * successfully going forward.
1454  *
1455  * Return 'false' if there are no probing or active consumers.
1456  *
1457  * Links without the DL_FLAG_MANAGED flag set are ignored.
1458  */
1459 bool device_links_busy(struct device *dev)
1460 {
1461 	struct device_link *link;
1462 	bool ret = false;
1463 
1464 	device_links_write_lock();
1465 
1466 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1467 		if (!(link->flags & DL_FLAG_MANAGED))
1468 			continue;
1469 
1470 		if (link->status == DL_STATE_CONSUMER_PROBE
1471 		    || link->status == DL_STATE_ACTIVE) {
1472 			ret = true;
1473 			break;
1474 		}
1475 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1476 	}
1477 
1478 	dev->links.status = DL_DEV_UNBINDING;
1479 
1480 	device_links_write_unlock();
1481 	return ret;
1482 }
1483 
1484 /**
1485  * device_links_unbind_consumers - Force unbind consumers of the given device.
1486  * @dev: Device to unbind the consumers of.
1487  *
1488  * Walk the list of links to consumers for @dev and if any of them is in the
1489  * "consumer probe" state, wait for all device probes in progress to complete
1490  * and start over.
1491  *
1492  * If that's not the case, change the status of the link to "supplier unbind"
1493  * and check if the link was in the "active" state.  If so, force the consumer
1494  * driver to unbind and start over (the consumer will not re-probe as we have
1495  * changed the state of the link already).
1496  *
1497  * Links without the DL_FLAG_MANAGED flag set are ignored.
1498  */
1499 void device_links_unbind_consumers(struct device *dev)
1500 {
1501 	struct device_link *link;
1502 
1503  start:
1504 	device_links_write_lock();
1505 
1506 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1507 		enum device_link_state status;
1508 
1509 		if (!(link->flags & DL_FLAG_MANAGED) ||
1510 		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1511 			continue;
1512 
1513 		status = link->status;
1514 		if (status == DL_STATE_CONSUMER_PROBE) {
1515 			device_links_write_unlock();
1516 
1517 			wait_for_device_probe();
1518 			goto start;
1519 		}
1520 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1521 		if (status == DL_STATE_ACTIVE) {
1522 			struct device *consumer = link->consumer;
1523 
1524 			get_device(consumer);
1525 
1526 			device_links_write_unlock();
1527 
1528 			device_release_driver_internal(consumer, NULL,
1529 						       consumer->parent);
1530 			put_device(consumer);
1531 			goto start;
1532 		}
1533 	}
1534 
1535 	device_links_write_unlock();
1536 }
1537 
1538 /**
1539  * device_links_purge - Delete existing links to other devices.
1540  * @dev: Target device.
1541  */
1542 static void device_links_purge(struct device *dev)
1543 {
1544 	struct device_link *link, *ln;
1545 
1546 	if (dev->class == &devlink_class)
1547 		return;
1548 
1549 	/*
1550 	 * Delete all of the remaining links from this device to any other
1551 	 * devices (either consumers or suppliers).
1552 	 */
1553 	device_links_write_lock();
1554 
1555 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1556 		WARN_ON(link->status == DL_STATE_ACTIVE);
1557 		__device_link_del(&link->kref);
1558 	}
1559 
1560 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1561 		WARN_ON(link->status != DL_STATE_DORMANT &&
1562 			link->status != DL_STATE_NONE);
1563 		__device_link_del(&link->kref);
1564 	}
1565 
1566 	device_links_write_unlock();
1567 }
1568 
1569 #define FW_DEVLINK_FLAGS_PERMISSIVE	(DL_FLAG_INFERRED | \
1570 					 DL_FLAG_SYNC_STATE_ONLY)
1571 #define FW_DEVLINK_FLAGS_ON		(DL_FLAG_INFERRED | \
1572 					 DL_FLAG_AUTOPROBE_CONSUMER)
1573 #define FW_DEVLINK_FLAGS_RPM		(FW_DEVLINK_FLAGS_ON | \
1574 					 DL_FLAG_PM_RUNTIME)
1575 
1576 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1577 static int __init fw_devlink_setup(char *arg)
1578 {
1579 	if (!arg)
1580 		return -EINVAL;
1581 
1582 	if (strcmp(arg, "off") == 0) {
1583 		fw_devlink_flags = 0;
1584 	} else if (strcmp(arg, "permissive") == 0) {
1585 		fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1586 	} else if (strcmp(arg, "on") == 0) {
1587 		fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1588 	} else if (strcmp(arg, "rpm") == 0) {
1589 		fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1590 	}
1591 	return 0;
1592 }
1593 early_param("fw_devlink", fw_devlink_setup);
1594 
1595 static bool fw_devlink_strict;
1596 static int __init fw_devlink_strict_setup(char *arg)
1597 {
1598 	return strtobool(arg, &fw_devlink_strict);
1599 }
1600 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1601 
1602 u32 fw_devlink_get_flags(void)
1603 {
1604 	return fw_devlink_flags;
1605 }
1606 
1607 static bool fw_devlink_is_permissive(void)
1608 {
1609 	return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1610 }
1611 
1612 bool fw_devlink_is_strict(void)
1613 {
1614 	return fw_devlink_strict && !fw_devlink_is_permissive();
1615 }
1616 
1617 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1618 {
1619 	if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1620 		return;
1621 
1622 	fwnode_call_int_op(fwnode, add_links);
1623 	fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1624 }
1625 
1626 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1627 {
1628 	struct fwnode_handle *child = NULL;
1629 
1630 	fw_devlink_parse_fwnode(fwnode);
1631 
1632 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1633 		fw_devlink_parse_fwtree(child);
1634 }
1635 
1636 static void fw_devlink_relax_link(struct device_link *link)
1637 {
1638 	if (!(link->flags & DL_FLAG_INFERRED))
1639 		return;
1640 
1641 	if (link->flags == (DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE))
1642 		return;
1643 
1644 	pm_runtime_drop_link(link);
1645 	link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1646 	dev_dbg(link->consumer, "Relaxing link with %s\n",
1647 		dev_name(link->supplier));
1648 }
1649 
1650 static int fw_devlink_no_driver(struct device *dev, void *data)
1651 {
1652 	struct device_link *link = to_devlink(dev);
1653 
1654 	if (!link->supplier->can_match)
1655 		fw_devlink_relax_link(link);
1656 
1657 	return 0;
1658 }
1659 
1660 void fw_devlink_drivers_done(void)
1661 {
1662 	fw_devlink_drv_reg_done = true;
1663 	device_links_write_lock();
1664 	class_for_each_device(&devlink_class, NULL, NULL,
1665 			      fw_devlink_no_driver);
1666 	device_links_write_unlock();
1667 }
1668 
1669 static void fw_devlink_unblock_consumers(struct device *dev)
1670 {
1671 	struct device_link *link;
1672 
1673 	if (!fw_devlink_flags || fw_devlink_is_permissive())
1674 		return;
1675 
1676 	device_links_write_lock();
1677 	list_for_each_entry(link, &dev->links.consumers, s_node)
1678 		fw_devlink_relax_link(link);
1679 	device_links_write_unlock();
1680 }
1681 
1682 /**
1683  * fw_devlink_relax_cycle - Convert cyclic links to SYNC_STATE_ONLY links
1684  * @con: Device to check dependencies for.
1685  * @sup: Device to check against.
1686  *
1687  * Check if @sup depends on @con or any device dependent on it (its child or
1688  * its consumer etc).  When such a cyclic dependency is found, convert all
1689  * device links created solely by fw_devlink into SYNC_STATE_ONLY device links.
1690  * This is the equivalent of doing fw_devlink=permissive just between the
1691  * devices in the cycle. We need to do this because, at this point, fw_devlink
1692  * can't tell which of these dependencies is not a real dependency.
1693  *
1694  * Return 1 if a cycle is found. Otherwise, return 0.
1695  */
1696 static int fw_devlink_relax_cycle(struct device *con, void *sup)
1697 {
1698 	struct device_link *link;
1699 	int ret;
1700 
1701 	if (con == sup)
1702 		return 1;
1703 
1704 	ret = device_for_each_child(con, sup, fw_devlink_relax_cycle);
1705 	if (ret)
1706 		return ret;
1707 
1708 	list_for_each_entry(link, &con->links.consumers, s_node) {
1709 		if ((link->flags & ~DL_FLAG_INFERRED) ==
1710 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
1711 			continue;
1712 
1713 		if (!fw_devlink_relax_cycle(link->consumer, sup))
1714 			continue;
1715 
1716 		ret = 1;
1717 
1718 		fw_devlink_relax_link(link);
1719 	}
1720 	return ret;
1721 }
1722 
1723 /**
1724  * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
1725  * @con: consumer device for the device link
1726  * @sup_handle: fwnode handle of supplier
1727  * @flags: devlink flags
1728  *
1729  * This function will try to create a device link between the consumer device
1730  * @con and the supplier device represented by @sup_handle.
1731  *
1732  * The supplier has to be provided as a fwnode because incorrect cycles in
1733  * fwnode links can sometimes cause the supplier device to never be created.
1734  * This function detects such cases and returns an error if it cannot create a
1735  * device link from the consumer to a missing supplier.
1736  *
1737  * Returns,
1738  * 0 on successfully creating a device link
1739  * -EINVAL if the device link cannot be created as expected
1740  * -EAGAIN if the device link cannot be created right now, but it may be
1741  *  possible to do that in the future
1742  */
1743 static int fw_devlink_create_devlink(struct device *con,
1744 				     struct fwnode_handle *sup_handle, u32 flags)
1745 {
1746 	struct device *sup_dev;
1747 	int ret = 0;
1748 
1749 	/*
1750 	 * In some cases, a device P might also be a supplier to its child node
1751 	 * C. However, this would defer the probe of C until the probe of P
1752 	 * completes successfully. This is perfectly fine in the device driver
1753 	 * model. device_add() doesn't guarantee probe completion of the device
1754 	 * by the time it returns.
1755 	 *
1756 	 * However, there are a few drivers that assume C will finish probing
1757 	 * as soon as it's added and before P finishes probing. So, we provide
1758 	 * a flag to let fw_devlink know not to delay the probe of C until the
1759 	 * probe of P completes successfully.
1760 	 *
1761 	 * When such a flag is set, we can't create device links where P is the
1762 	 * supplier of C as that would delay the probe of C.
1763 	 */
1764 	if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
1765 	    fwnode_is_ancestor_of(sup_handle, con->fwnode))
1766 		return -EINVAL;
1767 
1768 	sup_dev = get_dev_from_fwnode(sup_handle);
1769 	if (sup_dev) {
1770 		/*
1771 		 * If it's one of those drivers that don't actually bind to
1772 		 * their device using driver core, then don't wait on this
1773 		 * supplier device indefinitely.
1774 		 */
1775 		if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
1776 		    sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
1777 			ret = -EINVAL;
1778 			goto out;
1779 		}
1780 
1781 		/*
1782 		 * If this fails, it is due to cycles in device links.  Just
1783 		 * give up on this link and treat it as invalid.
1784 		 */
1785 		if (!device_link_add(con, sup_dev, flags) &&
1786 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
1787 			dev_info(con, "Fixing up cyclic dependency with %s\n",
1788 				 dev_name(sup_dev));
1789 			device_links_write_lock();
1790 			fw_devlink_relax_cycle(con, sup_dev);
1791 			device_links_write_unlock();
1792 			device_link_add(con, sup_dev,
1793 					FW_DEVLINK_FLAGS_PERMISSIVE);
1794 			ret = -EINVAL;
1795 		}
1796 
1797 		goto out;
1798 	}
1799 
1800 	/* Supplier that's already initialized without a struct device. */
1801 	if (sup_handle->flags & FWNODE_FLAG_INITIALIZED)
1802 		return -EINVAL;
1803 
1804 	/*
1805 	 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports
1806 	 * cycles. So cycle detection isn't necessary and shouldn't be
1807 	 * done.
1808 	 */
1809 	if (flags & DL_FLAG_SYNC_STATE_ONLY)
1810 		return -EAGAIN;
1811 
1812 	/*
1813 	 * If we can't find the supplier device from its fwnode, it might be
1814 	 * due to a cyclic dependency between fwnodes. Some of these cycles can
1815 	 * be broken by applying logic. Check for these types of cycles and
1816 	 * break them so that devices in the cycle probe properly.
1817 	 *
1818 	 * If the supplier's parent is dependent on the consumer, then the
1819 	 * consumer and supplier have a cyclic dependency. Since fw_devlink
1820 	 * can't tell which of the inferred dependencies are incorrect, don't
1821 	 * enforce probe ordering between any of the devices in this cyclic
1822 	 * dependency. Do this by relaxing all the fw_devlink device links in
1823 	 * this cycle and by treating the fwnode link between the consumer and
1824 	 * the supplier as an invalid dependency.
1825 	 */
1826 	sup_dev = fwnode_get_next_parent_dev(sup_handle);
1827 	if (sup_dev && device_is_dependent(con, sup_dev)) {
1828 		dev_info(con, "Fixing up cyclic dependency with %pfwP (%s)\n",
1829 			 sup_handle, dev_name(sup_dev));
1830 		device_links_write_lock();
1831 		fw_devlink_relax_cycle(con, sup_dev);
1832 		device_links_write_unlock();
1833 		ret = -EINVAL;
1834 	} else {
1835 		/*
1836 		 * Can't check for cycles or no cycles. So let's try
1837 		 * again later.
1838 		 */
1839 		ret = -EAGAIN;
1840 	}
1841 
1842 out:
1843 	put_device(sup_dev);
1844 	return ret;
1845 }
1846 
1847 /**
1848  * __fw_devlink_link_to_consumers - Create device links to consumers of a device
1849  * @dev: Device that needs to be linked to its consumers
1850  *
1851  * This function looks at all the consumer fwnodes of @dev and creates device
1852  * links between the consumer device and @dev (supplier).
1853  *
1854  * If the consumer device has not been added yet, then this function creates a
1855  * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
1856  * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
1857  * sync_state() callback before the real consumer device gets to be added and
1858  * then probed.
1859  *
1860  * Once device links are created from the real consumer to @dev (supplier), the
1861  * fwnode links are deleted.
1862  */
1863 static void __fw_devlink_link_to_consumers(struct device *dev)
1864 {
1865 	struct fwnode_handle *fwnode = dev->fwnode;
1866 	struct fwnode_link *link, *tmp;
1867 
1868 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
1869 		u32 dl_flags = fw_devlink_get_flags();
1870 		struct device *con_dev;
1871 		bool own_link = true;
1872 		int ret;
1873 
1874 		con_dev = get_dev_from_fwnode(link->consumer);
1875 		/*
1876 		 * If consumer device is not available yet, make a "proxy"
1877 		 * SYNC_STATE_ONLY link from the consumer's parent device to
1878 		 * the supplier device. This is necessary to make sure the
1879 		 * supplier doesn't get a sync_state() callback before the real
1880 		 * consumer can create a device link to the supplier.
1881 		 *
1882 		 * This proxy link step is needed to handle the case where the
1883 		 * consumer's parent device is added before the supplier.
1884 		 */
1885 		if (!con_dev) {
1886 			con_dev = fwnode_get_next_parent_dev(link->consumer);
1887 			/*
1888 			 * However, if the consumer's parent device is also the
1889 			 * parent of the supplier, don't create a
1890 			 * consumer-supplier link from the parent to its child
1891 			 * device. Such a dependency is impossible.
1892 			 */
1893 			if (con_dev &&
1894 			    fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
1895 				put_device(con_dev);
1896 				con_dev = NULL;
1897 			} else {
1898 				own_link = false;
1899 				dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1900 			}
1901 		}
1902 
1903 		if (!con_dev)
1904 			continue;
1905 
1906 		ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags);
1907 		put_device(con_dev);
1908 		if (!own_link || ret == -EAGAIN)
1909 			continue;
1910 
1911 		__fwnode_link_del(link);
1912 	}
1913 }
1914 
1915 /**
1916  * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
1917  * @dev: The consumer device that needs to be linked to its suppliers
1918  * @fwnode: Root of the fwnode tree that is used to create device links
1919  *
1920  * This function looks at all the supplier fwnodes of fwnode tree rooted at
1921  * @fwnode and creates device links between @dev (consumer) and all the
1922  * supplier devices of the entire fwnode tree at @fwnode.
1923  *
1924  * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
1925  * and the real suppliers of @dev. Once these device links are created, the
1926  * fwnode links are deleted. When such device links are successfully created,
1927  * this function is called recursively on those supplier devices. This is
1928  * needed to detect and break some invalid cycles in fwnode links.  See
1929  * fw_devlink_create_devlink() for more details.
1930  *
1931  * In addition, it also looks at all the suppliers of the entire fwnode tree
1932  * because some of the child devices of @dev that have not been added yet
1933  * (because @dev hasn't probed) might already have their suppliers added to
1934  * driver core. So, this function creates SYNC_STATE_ONLY device links between
1935  * @dev (consumer) and these suppliers to make sure they don't execute their
1936  * sync_state() callbacks before these child devices have a chance to create
1937  * their device links. The fwnode links that correspond to the child devices
1938  * aren't delete because they are needed later to create the device links
1939  * between the real consumer and supplier devices.
1940  */
1941 static void __fw_devlink_link_to_suppliers(struct device *dev,
1942 					   struct fwnode_handle *fwnode)
1943 {
1944 	bool own_link = (dev->fwnode == fwnode);
1945 	struct fwnode_link *link, *tmp;
1946 	struct fwnode_handle *child = NULL;
1947 	u32 dl_flags;
1948 
1949 	if (own_link)
1950 		dl_flags = fw_devlink_get_flags();
1951 	else
1952 		dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1953 
1954 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
1955 		int ret;
1956 		struct device *sup_dev;
1957 		struct fwnode_handle *sup = link->supplier;
1958 
1959 		ret = fw_devlink_create_devlink(dev, sup, dl_flags);
1960 		if (!own_link || ret == -EAGAIN)
1961 			continue;
1962 
1963 		__fwnode_link_del(link);
1964 
1965 		/* If no device link was created, nothing more to do. */
1966 		if (ret)
1967 			continue;
1968 
1969 		/*
1970 		 * If a device link was successfully created to a supplier, we
1971 		 * now need to try and link the supplier to all its suppliers.
1972 		 *
1973 		 * This is needed to detect and delete false dependencies in
1974 		 * fwnode links that haven't been converted to a device link
1975 		 * yet. See comments in fw_devlink_create_devlink() for more
1976 		 * details on the false dependency.
1977 		 *
1978 		 * Without deleting these false dependencies, some devices will
1979 		 * never probe because they'll keep waiting for their false
1980 		 * dependency fwnode links to be converted to device links.
1981 		 */
1982 		sup_dev = get_dev_from_fwnode(sup);
1983 		__fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode);
1984 		put_device(sup_dev);
1985 	}
1986 
1987 	/*
1988 	 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
1989 	 * all the descendants. This proxy link step is needed to handle the
1990 	 * case where the supplier is added before the consumer's parent device
1991 	 * (@dev).
1992 	 */
1993 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1994 		__fw_devlink_link_to_suppliers(dev, child);
1995 }
1996 
1997 static void fw_devlink_link_device(struct device *dev)
1998 {
1999 	struct fwnode_handle *fwnode = dev->fwnode;
2000 
2001 	if (!fw_devlink_flags)
2002 		return;
2003 
2004 	fw_devlink_parse_fwtree(fwnode);
2005 
2006 	mutex_lock(&fwnode_link_lock);
2007 	__fw_devlink_link_to_consumers(dev);
2008 	__fw_devlink_link_to_suppliers(dev, fwnode);
2009 	mutex_unlock(&fwnode_link_lock);
2010 }
2011 
2012 /* Device links support end. */
2013 
2014 int (*platform_notify)(struct device *dev) = NULL;
2015 int (*platform_notify_remove)(struct device *dev) = NULL;
2016 static struct kobject *dev_kobj;
2017 struct kobject *sysfs_dev_char_kobj;
2018 struct kobject *sysfs_dev_block_kobj;
2019 
2020 static DEFINE_MUTEX(device_hotplug_lock);
2021 
2022 void lock_device_hotplug(void)
2023 {
2024 	mutex_lock(&device_hotplug_lock);
2025 }
2026 
2027 void unlock_device_hotplug(void)
2028 {
2029 	mutex_unlock(&device_hotplug_lock);
2030 }
2031 
2032 int lock_device_hotplug_sysfs(void)
2033 {
2034 	if (mutex_trylock(&device_hotplug_lock))
2035 		return 0;
2036 
2037 	/* Avoid busy looping (5 ms of sleep should do). */
2038 	msleep(5);
2039 	return restart_syscall();
2040 }
2041 
2042 #ifdef CONFIG_BLOCK
2043 static inline int device_is_not_partition(struct device *dev)
2044 {
2045 	return !(dev->type == &part_type);
2046 }
2047 #else
2048 static inline int device_is_not_partition(struct device *dev)
2049 {
2050 	return 1;
2051 }
2052 #endif
2053 
2054 static void device_platform_notify(struct device *dev)
2055 {
2056 	acpi_device_notify(dev);
2057 
2058 	software_node_notify(dev);
2059 
2060 	if (platform_notify)
2061 		platform_notify(dev);
2062 }
2063 
2064 static void device_platform_notify_remove(struct device *dev)
2065 {
2066 	acpi_device_notify_remove(dev);
2067 
2068 	software_node_notify_remove(dev);
2069 
2070 	if (platform_notify_remove)
2071 		platform_notify_remove(dev);
2072 }
2073 
2074 /**
2075  * dev_driver_string - Return a device's driver name, if at all possible
2076  * @dev: struct device to get the name of
2077  *
2078  * Will return the device's driver's name if it is bound to a device.  If
2079  * the device is not bound to a driver, it will return the name of the bus
2080  * it is attached to.  If it is not attached to a bus either, an empty
2081  * string will be returned.
2082  */
2083 const char *dev_driver_string(const struct device *dev)
2084 {
2085 	struct device_driver *drv;
2086 
2087 	/* dev->driver can change to NULL underneath us because of unbinding,
2088 	 * so be careful about accessing it.  dev->bus and dev->class should
2089 	 * never change once they are set, so they don't need special care.
2090 	 */
2091 	drv = READ_ONCE(dev->driver);
2092 	return drv ? drv->name : dev_bus_name(dev);
2093 }
2094 EXPORT_SYMBOL(dev_driver_string);
2095 
2096 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2097 
2098 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2099 			     char *buf)
2100 {
2101 	struct device_attribute *dev_attr = to_dev_attr(attr);
2102 	struct device *dev = kobj_to_dev(kobj);
2103 	ssize_t ret = -EIO;
2104 
2105 	if (dev_attr->show)
2106 		ret = dev_attr->show(dev, dev_attr, buf);
2107 	if (ret >= (ssize_t)PAGE_SIZE) {
2108 		printk("dev_attr_show: %pS returned bad count\n",
2109 				dev_attr->show);
2110 	}
2111 	return ret;
2112 }
2113 
2114 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2115 			      const char *buf, size_t count)
2116 {
2117 	struct device_attribute *dev_attr = to_dev_attr(attr);
2118 	struct device *dev = kobj_to_dev(kobj);
2119 	ssize_t ret = -EIO;
2120 
2121 	if (dev_attr->store)
2122 		ret = dev_attr->store(dev, dev_attr, buf, count);
2123 	return ret;
2124 }
2125 
2126 static const struct sysfs_ops dev_sysfs_ops = {
2127 	.show	= dev_attr_show,
2128 	.store	= dev_attr_store,
2129 };
2130 
2131 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2132 
2133 ssize_t device_store_ulong(struct device *dev,
2134 			   struct device_attribute *attr,
2135 			   const char *buf, size_t size)
2136 {
2137 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2138 	int ret;
2139 	unsigned long new;
2140 
2141 	ret = kstrtoul(buf, 0, &new);
2142 	if (ret)
2143 		return ret;
2144 	*(unsigned long *)(ea->var) = new;
2145 	/* Always return full write size even if we didn't consume all */
2146 	return size;
2147 }
2148 EXPORT_SYMBOL_GPL(device_store_ulong);
2149 
2150 ssize_t device_show_ulong(struct device *dev,
2151 			  struct device_attribute *attr,
2152 			  char *buf)
2153 {
2154 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2155 	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2156 }
2157 EXPORT_SYMBOL_GPL(device_show_ulong);
2158 
2159 ssize_t device_store_int(struct device *dev,
2160 			 struct device_attribute *attr,
2161 			 const char *buf, size_t size)
2162 {
2163 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2164 	int ret;
2165 	long new;
2166 
2167 	ret = kstrtol(buf, 0, &new);
2168 	if (ret)
2169 		return ret;
2170 
2171 	if (new > INT_MAX || new < INT_MIN)
2172 		return -EINVAL;
2173 	*(int *)(ea->var) = new;
2174 	/* Always return full write size even if we didn't consume all */
2175 	return size;
2176 }
2177 EXPORT_SYMBOL_GPL(device_store_int);
2178 
2179 ssize_t device_show_int(struct device *dev,
2180 			struct device_attribute *attr,
2181 			char *buf)
2182 {
2183 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2184 
2185 	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2186 }
2187 EXPORT_SYMBOL_GPL(device_show_int);
2188 
2189 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2190 			  const char *buf, size_t size)
2191 {
2192 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2193 
2194 	if (strtobool(buf, ea->var) < 0)
2195 		return -EINVAL;
2196 
2197 	return size;
2198 }
2199 EXPORT_SYMBOL_GPL(device_store_bool);
2200 
2201 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2202 			 char *buf)
2203 {
2204 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2205 
2206 	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2207 }
2208 EXPORT_SYMBOL_GPL(device_show_bool);
2209 
2210 /**
2211  * device_release - free device structure.
2212  * @kobj: device's kobject.
2213  *
2214  * This is called once the reference count for the object
2215  * reaches 0. We forward the call to the device's release
2216  * method, which should handle actually freeing the structure.
2217  */
2218 static void device_release(struct kobject *kobj)
2219 {
2220 	struct device *dev = kobj_to_dev(kobj);
2221 	struct device_private *p = dev->p;
2222 
2223 	/*
2224 	 * Some platform devices are driven without driver attached
2225 	 * and managed resources may have been acquired.  Make sure
2226 	 * all resources are released.
2227 	 *
2228 	 * Drivers still can add resources into device after device
2229 	 * is deleted but alive, so release devres here to avoid
2230 	 * possible memory leak.
2231 	 */
2232 	devres_release_all(dev);
2233 
2234 	kfree(dev->dma_range_map);
2235 
2236 	if (dev->release)
2237 		dev->release(dev);
2238 	else if (dev->type && dev->type->release)
2239 		dev->type->release(dev);
2240 	else if (dev->class && dev->class->dev_release)
2241 		dev->class->dev_release(dev);
2242 	else
2243 		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2244 			dev_name(dev));
2245 	kfree(p);
2246 }
2247 
2248 static const void *device_namespace(struct kobject *kobj)
2249 {
2250 	struct device *dev = kobj_to_dev(kobj);
2251 	const void *ns = NULL;
2252 
2253 	if (dev->class && dev->class->ns_type)
2254 		ns = dev->class->namespace(dev);
2255 
2256 	return ns;
2257 }
2258 
2259 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2260 {
2261 	struct device *dev = kobj_to_dev(kobj);
2262 
2263 	if (dev->class && dev->class->get_ownership)
2264 		dev->class->get_ownership(dev, uid, gid);
2265 }
2266 
2267 static struct kobj_type device_ktype = {
2268 	.release	= device_release,
2269 	.sysfs_ops	= &dev_sysfs_ops,
2270 	.namespace	= device_namespace,
2271 	.get_ownership	= device_get_ownership,
2272 };
2273 
2274 
2275 static int dev_uevent_filter(struct kobject *kobj)
2276 {
2277 	const struct kobj_type *ktype = get_ktype(kobj);
2278 
2279 	if (ktype == &device_ktype) {
2280 		struct device *dev = kobj_to_dev(kobj);
2281 		if (dev->bus)
2282 			return 1;
2283 		if (dev->class)
2284 			return 1;
2285 	}
2286 	return 0;
2287 }
2288 
2289 static const char *dev_uevent_name(struct kobject *kobj)
2290 {
2291 	struct device *dev = kobj_to_dev(kobj);
2292 
2293 	if (dev->bus)
2294 		return dev->bus->name;
2295 	if (dev->class)
2296 		return dev->class->name;
2297 	return NULL;
2298 }
2299 
2300 static int dev_uevent(struct kobject *kobj, struct kobj_uevent_env *env)
2301 {
2302 	struct device *dev = kobj_to_dev(kobj);
2303 	int retval = 0;
2304 
2305 	/* add device node properties if present */
2306 	if (MAJOR(dev->devt)) {
2307 		const char *tmp;
2308 		const char *name;
2309 		umode_t mode = 0;
2310 		kuid_t uid = GLOBAL_ROOT_UID;
2311 		kgid_t gid = GLOBAL_ROOT_GID;
2312 
2313 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2314 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2315 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2316 		if (name) {
2317 			add_uevent_var(env, "DEVNAME=%s", name);
2318 			if (mode)
2319 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2320 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
2321 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2322 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
2323 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2324 			kfree(tmp);
2325 		}
2326 	}
2327 
2328 	if (dev->type && dev->type->name)
2329 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2330 
2331 	if (dev->driver)
2332 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2333 
2334 	/* Add common DT information about the device */
2335 	of_device_uevent(dev, env);
2336 
2337 	/* have the bus specific function add its stuff */
2338 	if (dev->bus && dev->bus->uevent) {
2339 		retval = dev->bus->uevent(dev, env);
2340 		if (retval)
2341 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2342 				 dev_name(dev), __func__, retval);
2343 	}
2344 
2345 	/* have the class specific function add its stuff */
2346 	if (dev->class && dev->class->dev_uevent) {
2347 		retval = dev->class->dev_uevent(dev, env);
2348 		if (retval)
2349 			pr_debug("device: '%s': %s: class uevent() "
2350 				 "returned %d\n", dev_name(dev),
2351 				 __func__, retval);
2352 	}
2353 
2354 	/* have the device type specific function add its stuff */
2355 	if (dev->type && dev->type->uevent) {
2356 		retval = dev->type->uevent(dev, env);
2357 		if (retval)
2358 			pr_debug("device: '%s': %s: dev_type uevent() "
2359 				 "returned %d\n", dev_name(dev),
2360 				 __func__, retval);
2361 	}
2362 
2363 	return retval;
2364 }
2365 
2366 static const struct kset_uevent_ops device_uevent_ops = {
2367 	.filter =	dev_uevent_filter,
2368 	.name =		dev_uevent_name,
2369 	.uevent =	dev_uevent,
2370 };
2371 
2372 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2373 			   char *buf)
2374 {
2375 	struct kobject *top_kobj;
2376 	struct kset *kset;
2377 	struct kobj_uevent_env *env = NULL;
2378 	int i;
2379 	int len = 0;
2380 	int retval;
2381 
2382 	/* search the kset, the device belongs to */
2383 	top_kobj = &dev->kobj;
2384 	while (!top_kobj->kset && top_kobj->parent)
2385 		top_kobj = top_kobj->parent;
2386 	if (!top_kobj->kset)
2387 		goto out;
2388 
2389 	kset = top_kobj->kset;
2390 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2391 		goto out;
2392 
2393 	/* respect filter */
2394 	if (kset->uevent_ops && kset->uevent_ops->filter)
2395 		if (!kset->uevent_ops->filter(&dev->kobj))
2396 			goto out;
2397 
2398 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2399 	if (!env)
2400 		return -ENOMEM;
2401 
2402 	/* let the kset specific function add its keys */
2403 	retval = kset->uevent_ops->uevent(&dev->kobj, env);
2404 	if (retval)
2405 		goto out;
2406 
2407 	/* copy keys to file */
2408 	for (i = 0; i < env->envp_idx; i++)
2409 		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2410 out:
2411 	kfree(env);
2412 	return len;
2413 }
2414 
2415 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2416 			    const char *buf, size_t count)
2417 {
2418 	int rc;
2419 
2420 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
2421 
2422 	if (rc) {
2423 		dev_err(dev, "uevent: failed to send synthetic uevent\n");
2424 		return rc;
2425 	}
2426 
2427 	return count;
2428 }
2429 static DEVICE_ATTR_RW(uevent);
2430 
2431 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2432 			   char *buf)
2433 {
2434 	bool val;
2435 
2436 	device_lock(dev);
2437 	val = !dev->offline;
2438 	device_unlock(dev);
2439 	return sysfs_emit(buf, "%u\n", val);
2440 }
2441 
2442 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2443 			    const char *buf, size_t count)
2444 {
2445 	bool val;
2446 	int ret;
2447 
2448 	ret = strtobool(buf, &val);
2449 	if (ret < 0)
2450 		return ret;
2451 
2452 	ret = lock_device_hotplug_sysfs();
2453 	if (ret)
2454 		return ret;
2455 
2456 	ret = val ? device_online(dev) : device_offline(dev);
2457 	unlock_device_hotplug();
2458 	return ret < 0 ? ret : count;
2459 }
2460 static DEVICE_ATTR_RW(online);
2461 
2462 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2463 			      char *buf)
2464 {
2465 	const char *loc;
2466 
2467 	switch (dev->removable) {
2468 	case DEVICE_REMOVABLE:
2469 		loc = "removable";
2470 		break;
2471 	case DEVICE_FIXED:
2472 		loc = "fixed";
2473 		break;
2474 	default:
2475 		loc = "unknown";
2476 	}
2477 	return sysfs_emit(buf, "%s\n", loc);
2478 }
2479 static DEVICE_ATTR_RO(removable);
2480 
2481 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2482 {
2483 	return sysfs_create_groups(&dev->kobj, groups);
2484 }
2485 EXPORT_SYMBOL_GPL(device_add_groups);
2486 
2487 void device_remove_groups(struct device *dev,
2488 			  const struct attribute_group **groups)
2489 {
2490 	sysfs_remove_groups(&dev->kobj, groups);
2491 }
2492 EXPORT_SYMBOL_GPL(device_remove_groups);
2493 
2494 union device_attr_group_devres {
2495 	const struct attribute_group *group;
2496 	const struct attribute_group **groups;
2497 };
2498 
2499 static int devm_attr_group_match(struct device *dev, void *res, void *data)
2500 {
2501 	return ((union device_attr_group_devres *)res)->group == data;
2502 }
2503 
2504 static void devm_attr_group_remove(struct device *dev, void *res)
2505 {
2506 	union device_attr_group_devres *devres = res;
2507 	const struct attribute_group *group = devres->group;
2508 
2509 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2510 	sysfs_remove_group(&dev->kobj, group);
2511 }
2512 
2513 static void devm_attr_groups_remove(struct device *dev, void *res)
2514 {
2515 	union device_attr_group_devres *devres = res;
2516 	const struct attribute_group **groups = devres->groups;
2517 
2518 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2519 	sysfs_remove_groups(&dev->kobj, groups);
2520 }
2521 
2522 /**
2523  * devm_device_add_group - given a device, create a managed attribute group
2524  * @dev:	The device to create the group for
2525  * @grp:	The attribute group to create
2526  *
2527  * This function creates a group for the first time.  It will explicitly
2528  * warn and error if any of the attribute files being created already exist.
2529  *
2530  * Returns 0 on success or error code on failure.
2531  */
2532 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2533 {
2534 	union device_attr_group_devres *devres;
2535 	int error;
2536 
2537 	devres = devres_alloc(devm_attr_group_remove,
2538 			      sizeof(*devres), GFP_KERNEL);
2539 	if (!devres)
2540 		return -ENOMEM;
2541 
2542 	error = sysfs_create_group(&dev->kobj, grp);
2543 	if (error) {
2544 		devres_free(devres);
2545 		return error;
2546 	}
2547 
2548 	devres->group = grp;
2549 	devres_add(dev, devres);
2550 	return 0;
2551 }
2552 EXPORT_SYMBOL_GPL(devm_device_add_group);
2553 
2554 /**
2555  * devm_device_remove_group: remove a managed group from a device
2556  * @dev:	device to remove the group from
2557  * @grp:	group to remove
2558  *
2559  * This function removes a group of attributes from a device. The attributes
2560  * previously have to have been created for this group, otherwise it will fail.
2561  */
2562 void devm_device_remove_group(struct device *dev,
2563 			      const struct attribute_group *grp)
2564 {
2565 	WARN_ON(devres_release(dev, devm_attr_group_remove,
2566 			       devm_attr_group_match,
2567 			       /* cast away const */ (void *)grp));
2568 }
2569 EXPORT_SYMBOL_GPL(devm_device_remove_group);
2570 
2571 /**
2572  * devm_device_add_groups - create a bunch of managed attribute groups
2573  * @dev:	The device to create the group for
2574  * @groups:	The attribute groups to create, NULL terminated
2575  *
2576  * This function creates a bunch of managed attribute groups.  If an error
2577  * occurs when creating a group, all previously created groups will be
2578  * removed, unwinding everything back to the original state when this
2579  * function was called.  It will explicitly warn and error if any of the
2580  * attribute files being created already exist.
2581  *
2582  * Returns 0 on success or error code from sysfs_create_group on failure.
2583  */
2584 int devm_device_add_groups(struct device *dev,
2585 			   const struct attribute_group **groups)
2586 {
2587 	union device_attr_group_devres *devres;
2588 	int error;
2589 
2590 	devres = devres_alloc(devm_attr_groups_remove,
2591 			      sizeof(*devres), GFP_KERNEL);
2592 	if (!devres)
2593 		return -ENOMEM;
2594 
2595 	error = sysfs_create_groups(&dev->kobj, groups);
2596 	if (error) {
2597 		devres_free(devres);
2598 		return error;
2599 	}
2600 
2601 	devres->groups = groups;
2602 	devres_add(dev, devres);
2603 	return 0;
2604 }
2605 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2606 
2607 /**
2608  * devm_device_remove_groups - remove a list of managed groups
2609  *
2610  * @dev:	The device for the groups to be removed from
2611  * @groups:	NULL terminated list of groups to be removed
2612  *
2613  * If groups is not NULL, remove the specified groups from the device.
2614  */
2615 void devm_device_remove_groups(struct device *dev,
2616 			       const struct attribute_group **groups)
2617 {
2618 	WARN_ON(devres_release(dev, devm_attr_groups_remove,
2619 			       devm_attr_group_match,
2620 			       /* cast away const */ (void *)groups));
2621 }
2622 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2623 
2624 static int device_add_attrs(struct device *dev)
2625 {
2626 	struct class *class = dev->class;
2627 	const struct device_type *type = dev->type;
2628 	int error;
2629 
2630 	if (class) {
2631 		error = device_add_groups(dev, class->dev_groups);
2632 		if (error)
2633 			return error;
2634 	}
2635 
2636 	if (type) {
2637 		error = device_add_groups(dev, type->groups);
2638 		if (error)
2639 			goto err_remove_class_groups;
2640 	}
2641 
2642 	error = device_add_groups(dev, dev->groups);
2643 	if (error)
2644 		goto err_remove_type_groups;
2645 
2646 	if (device_supports_offline(dev) && !dev->offline_disabled) {
2647 		error = device_create_file(dev, &dev_attr_online);
2648 		if (error)
2649 			goto err_remove_dev_groups;
2650 	}
2651 
2652 	if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2653 		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2654 		if (error)
2655 			goto err_remove_dev_online;
2656 	}
2657 
2658 	if (dev_removable_is_valid(dev)) {
2659 		error = device_create_file(dev, &dev_attr_removable);
2660 		if (error)
2661 			goto err_remove_dev_waiting_for_supplier;
2662 	}
2663 
2664 	if (dev_add_physical_location(dev)) {
2665 		error = device_add_group(dev,
2666 			&dev_attr_physical_location_group);
2667 		if (error)
2668 			goto err_remove_dev_removable;
2669 	}
2670 
2671 	return 0;
2672 
2673  err_remove_dev_removable:
2674 	device_remove_file(dev, &dev_attr_removable);
2675  err_remove_dev_waiting_for_supplier:
2676 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2677  err_remove_dev_online:
2678 	device_remove_file(dev, &dev_attr_online);
2679  err_remove_dev_groups:
2680 	device_remove_groups(dev, dev->groups);
2681  err_remove_type_groups:
2682 	if (type)
2683 		device_remove_groups(dev, type->groups);
2684  err_remove_class_groups:
2685 	if (class)
2686 		device_remove_groups(dev, class->dev_groups);
2687 
2688 	return error;
2689 }
2690 
2691 static void device_remove_attrs(struct device *dev)
2692 {
2693 	struct class *class = dev->class;
2694 	const struct device_type *type = dev->type;
2695 
2696 	if (dev->physical_location) {
2697 		device_remove_group(dev, &dev_attr_physical_location_group);
2698 		kfree(dev->physical_location);
2699 	}
2700 
2701 	device_remove_file(dev, &dev_attr_removable);
2702 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2703 	device_remove_file(dev, &dev_attr_online);
2704 	device_remove_groups(dev, dev->groups);
2705 
2706 	if (type)
2707 		device_remove_groups(dev, type->groups);
2708 
2709 	if (class)
2710 		device_remove_groups(dev, class->dev_groups);
2711 }
2712 
2713 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2714 			char *buf)
2715 {
2716 	return print_dev_t(buf, dev->devt);
2717 }
2718 static DEVICE_ATTR_RO(dev);
2719 
2720 /* /sys/devices/ */
2721 struct kset *devices_kset;
2722 
2723 /**
2724  * devices_kset_move_before - Move device in the devices_kset's list.
2725  * @deva: Device to move.
2726  * @devb: Device @deva should come before.
2727  */
2728 static void devices_kset_move_before(struct device *deva, struct device *devb)
2729 {
2730 	if (!devices_kset)
2731 		return;
2732 	pr_debug("devices_kset: Moving %s before %s\n",
2733 		 dev_name(deva), dev_name(devb));
2734 	spin_lock(&devices_kset->list_lock);
2735 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2736 	spin_unlock(&devices_kset->list_lock);
2737 }
2738 
2739 /**
2740  * devices_kset_move_after - Move device in the devices_kset's list.
2741  * @deva: Device to move
2742  * @devb: Device @deva should come after.
2743  */
2744 static void devices_kset_move_after(struct device *deva, struct device *devb)
2745 {
2746 	if (!devices_kset)
2747 		return;
2748 	pr_debug("devices_kset: Moving %s after %s\n",
2749 		 dev_name(deva), dev_name(devb));
2750 	spin_lock(&devices_kset->list_lock);
2751 	list_move(&deva->kobj.entry, &devb->kobj.entry);
2752 	spin_unlock(&devices_kset->list_lock);
2753 }
2754 
2755 /**
2756  * devices_kset_move_last - move the device to the end of devices_kset's list.
2757  * @dev: device to move
2758  */
2759 void devices_kset_move_last(struct device *dev)
2760 {
2761 	if (!devices_kset)
2762 		return;
2763 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2764 	spin_lock(&devices_kset->list_lock);
2765 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
2766 	spin_unlock(&devices_kset->list_lock);
2767 }
2768 
2769 /**
2770  * device_create_file - create sysfs attribute file for device.
2771  * @dev: device.
2772  * @attr: device attribute descriptor.
2773  */
2774 int device_create_file(struct device *dev,
2775 		       const struct device_attribute *attr)
2776 {
2777 	int error = 0;
2778 
2779 	if (dev) {
2780 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2781 			"Attribute %s: write permission without 'store'\n",
2782 			attr->attr.name);
2783 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2784 			"Attribute %s: read permission without 'show'\n",
2785 			attr->attr.name);
2786 		error = sysfs_create_file(&dev->kobj, &attr->attr);
2787 	}
2788 
2789 	return error;
2790 }
2791 EXPORT_SYMBOL_GPL(device_create_file);
2792 
2793 /**
2794  * device_remove_file - remove sysfs attribute file.
2795  * @dev: device.
2796  * @attr: device attribute descriptor.
2797  */
2798 void device_remove_file(struct device *dev,
2799 			const struct device_attribute *attr)
2800 {
2801 	if (dev)
2802 		sysfs_remove_file(&dev->kobj, &attr->attr);
2803 }
2804 EXPORT_SYMBOL_GPL(device_remove_file);
2805 
2806 /**
2807  * device_remove_file_self - remove sysfs attribute file from its own method.
2808  * @dev: device.
2809  * @attr: device attribute descriptor.
2810  *
2811  * See kernfs_remove_self() for details.
2812  */
2813 bool device_remove_file_self(struct device *dev,
2814 			     const struct device_attribute *attr)
2815 {
2816 	if (dev)
2817 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2818 	else
2819 		return false;
2820 }
2821 EXPORT_SYMBOL_GPL(device_remove_file_self);
2822 
2823 /**
2824  * device_create_bin_file - create sysfs binary attribute file for device.
2825  * @dev: device.
2826  * @attr: device binary attribute descriptor.
2827  */
2828 int device_create_bin_file(struct device *dev,
2829 			   const struct bin_attribute *attr)
2830 {
2831 	int error = -EINVAL;
2832 	if (dev)
2833 		error = sysfs_create_bin_file(&dev->kobj, attr);
2834 	return error;
2835 }
2836 EXPORT_SYMBOL_GPL(device_create_bin_file);
2837 
2838 /**
2839  * device_remove_bin_file - remove sysfs binary attribute file
2840  * @dev: device.
2841  * @attr: device binary attribute descriptor.
2842  */
2843 void device_remove_bin_file(struct device *dev,
2844 			    const struct bin_attribute *attr)
2845 {
2846 	if (dev)
2847 		sysfs_remove_bin_file(&dev->kobj, attr);
2848 }
2849 EXPORT_SYMBOL_GPL(device_remove_bin_file);
2850 
2851 static void klist_children_get(struct klist_node *n)
2852 {
2853 	struct device_private *p = to_device_private_parent(n);
2854 	struct device *dev = p->device;
2855 
2856 	get_device(dev);
2857 }
2858 
2859 static void klist_children_put(struct klist_node *n)
2860 {
2861 	struct device_private *p = to_device_private_parent(n);
2862 	struct device *dev = p->device;
2863 
2864 	put_device(dev);
2865 }
2866 
2867 /**
2868  * device_initialize - init device structure.
2869  * @dev: device.
2870  *
2871  * This prepares the device for use by other layers by initializing
2872  * its fields.
2873  * It is the first half of device_register(), if called by
2874  * that function, though it can also be called separately, so one
2875  * may use @dev's fields. In particular, get_device()/put_device()
2876  * may be used for reference counting of @dev after calling this
2877  * function.
2878  *
2879  * All fields in @dev must be initialized by the caller to 0, except
2880  * for those explicitly set to some other value.  The simplest
2881  * approach is to use kzalloc() to allocate the structure containing
2882  * @dev.
2883  *
2884  * NOTE: Use put_device() to give up your reference instead of freeing
2885  * @dev directly once you have called this function.
2886  */
2887 void device_initialize(struct device *dev)
2888 {
2889 	dev->kobj.kset = devices_kset;
2890 	kobject_init(&dev->kobj, &device_ktype);
2891 	INIT_LIST_HEAD(&dev->dma_pools);
2892 	mutex_init(&dev->mutex);
2893 	lockdep_set_novalidate_class(&dev->mutex);
2894 	spin_lock_init(&dev->devres_lock);
2895 	INIT_LIST_HEAD(&dev->devres_head);
2896 	device_pm_init(dev);
2897 	set_dev_node(dev, NUMA_NO_NODE);
2898 	INIT_LIST_HEAD(&dev->links.consumers);
2899 	INIT_LIST_HEAD(&dev->links.suppliers);
2900 	INIT_LIST_HEAD(&dev->links.defer_sync);
2901 	dev->links.status = DL_DEV_NO_DRIVER;
2902 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
2903     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
2904     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
2905 	dev->dma_coherent = dma_default_coherent;
2906 #endif
2907 #ifdef CONFIG_SWIOTLB
2908 	dev->dma_io_tlb_mem = &io_tlb_default_mem;
2909 #endif
2910 }
2911 EXPORT_SYMBOL_GPL(device_initialize);
2912 
2913 struct kobject *virtual_device_parent(struct device *dev)
2914 {
2915 	static struct kobject *virtual_dir = NULL;
2916 
2917 	if (!virtual_dir)
2918 		virtual_dir = kobject_create_and_add("virtual",
2919 						     &devices_kset->kobj);
2920 
2921 	return virtual_dir;
2922 }
2923 
2924 struct class_dir {
2925 	struct kobject kobj;
2926 	struct class *class;
2927 };
2928 
2929 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2930 
2931 static void class_dir_release(struct kobject *kobj)
2932 {
2933 	struct class_dir *dir = to_class_dir(kobj);
2934 	kfree(dir);
2935 }
2936 
2937 static const
2938 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2939 {
2940 	struct class_dir *dir = to_class_dir(kobj);
2941 	return dir->class->ns_type;
2942 }
2943 
2944 static struct kobj_type class_dir_ktype = {
2945 	.release	= class_dir_release,
2946 	.sysfs_ops	= &kobj_sysfs_ops,
2947 	.child_ns_type	= class_dir_child_ns_type
2948 };
2949 
2950 static struct kobject *
2951 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2952 {
2953 	struct class_dir *dir;
2954 	int retval;
2955 
2956 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2957 	if (!dir)
2958 		return ERR_PTR(-ENOMEM);
2959 
2960 	dir->class = class;
2961 	kobject_init(&dir->kobj, &class_dir_ktype);
2962 
2963 	dir->kobj.kset = &class->p->glue_dirs;
2964 
2965 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2966 	if (retval < 0) {
2967 		kobject_put(&dir->kobj);
2968 		return ERR_PTR(retval);
2969 	}
2970 	return &dir->kobj;
2971 }
2972 
2973 static DEFINE_MUTEX(gdp_mutex);
2974 
2975 static struct kobject *get_device_parent(struct device *dev,
2976 					 struct device *parent)
2977 {
2978 	if (dev->class) {
2979 		struct kobject *kobj = NULL;
2980 		struct kobject *parent_kobj;
2981 		struct kobject *k;
2982 
2983 #ifdef CONFIG_BLOCK
2984 		/* block disks show up in /sys/block */
2985 		if (sysfs_deprecated && dev->class == &block_class) {
2986 			if (parent && parent->class == &block_class)
2987 				return &parent->kobj;
2988 			return &block_class.p->subsys.kobj;
2989 		}
2990 #endif
2991 
2992 		/*
2993 		 * If we have no parent, we live in "virtual".
2994 		 * Class-devices with a non class-device as parent, live
2995 		 * in a "glue" directory to prevent namespace collisions.
2996 		 */
2997 		if (parent == NULL)
2998 			parent_kobj = virtual_device_parent(dev);
2999 		else if (parent->class && !dev->class->ns_type)
3000 			return &parent->kobj;
3001 		else
3002 			parent_kobj = &parent->kobj;
3003 
3004 		mutex_lock(&gdp_mutex);
3005 
3006 		/* find our class-directory at the parent and reference it */
3007 		spin_lock(&dev->class->p->glue_dirs.list_lock);
3008 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
3009 			if (k->parent == parent_kobj) {
3010 				kobj = kobject_get(k);
3011 				break;
3012 			}
3013 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
3014 		if (kobj) {
3015 			mutex_unlock(&gdp_mutex);
3016 			return kobj;
3017 		}
3018 
3019 		/* or create a new class-directory at the parent device */
3020 		k = class_dir_create_and_add(dev->class, parent_kobj);
3021 		/* do not emit an uevent for this simple "glue" directory */
3022 		mutex_unlock(&gdp_mutex);
3023 		return k;
3024 	}
3025 
3026 	/* subsystems can specify a default root directory for their devices */
3027 	if (!parent && dev->bus && dev->bus->dev_root)
3028 		return &dev->bus->dev_root->kobj;
3029 
3030 	if (parent)
3031 		return &parent->kobj;
3032 	return NULL;
3033 }
3034 
3035 static inline bool live_in_glue_dir(struct kobject *kobj,
3036 				    struct device *dev)
3037 {
3038 	if (!kobj || !dev->class ||
3039 	    kobj->kset != &dev->class->p->glue_dirs)
3040 		return false;
3041 	return true;
3042 }
3043 
3044 static inline struct kobject *get_glue_dir(struct device *dev)
3045 {
3046 	return dev->kobj.parent;
3047 }
3048 
3049 /**
3050  * kobject_has_children - Returns whether a kobject has children.
3051  * @kobj: the object to test
3052  *
3053  * This will return whether a kobject has other kobjects as children.
3054  *
3055  * It does NOT account for the presence of attribute files, only sub
3056  * directories. It also assumes there is no concurrent addition or
3057  * removal of such children, and thus relies on external locking.
3058  */
3059 static inline bool kobject_has_children(struct kobject *kobj)
3060 {
3061 	WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
3062 
3063 	return kobj->sd && kobj->sd->dir.subdirs;
3064 }
3065 
3066 /*
3067  * make sure cleaning up dir as the last step, we need to make
3068  * sure .release handler of kobject is run with holding the
3069  * global lock
3070  */
3071 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3072 {
3073 	unsigned int ref;
3074 
3075 	/* see if we live in a "glue" directory */
3076 	if (!live_in_glue_dir(glue_dir, dev))
3077 		return;
3078 
3079 	mutex_lock(&gdp_mutex);
3080 	/**
3081 	 * There is a race condition between removing glue directory
3082 	 * and adding a new device under the glue directory.
3083 	 *
3084 	 * CPU1:                                         CPU2:
3085 	 *
3086 	 * device_add()
3087 	 *   get_device_parent()
3088 	 *     class_dir_create_and_add()
3089 	 *       kobject_add_internal()
3090 	 *         create_dir()    // create glue_dir
3091 	 *
3092 	 *                                               device_add()
3093 	 *                                                 get_device_parent()
3094 	 *                                                   kobject_get() // get glue_dir
3095 	 *
3096 	 * device_del()
3097 	 *   cleanup_glue_dir()
3098 	 *     kobject_del(glue_dir)
3099 	 *
3100 	 *                                               kobject_add()
3101 	 *                                                 kobject_add_internal()
3102 	 *                                                   create_dir() // in glue_dir
3103 	 *                                                     sysfs_create_dir_ns()
3104 	 *                                                       kernfs_create_dir_ns(sd)
3105 	 *
3106 	 *       sysfs_remove_dir() // glue_dir->sd=NULL
3107 	 *       sysfs_put()        // free glue_dir->sd
3108 	 *
3109 	 *                                                         // sd is freed
3110 	 *                                                         kernfs_new_node(sd)
3111 	 *                                                           kernfs_get(glue_dir)
3112 	 *                                                           kernfs_add_one()
3113 	 *                                                           kernfs_put()
3114 	 *
3115 	 * Before CPU1 remove last child device under glue dir, if CPU2 add
3116 	 * a new device under glue dir, the glue_dir kobject reference count
3117 	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3118 	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3119 	 * and sysfs_put(). This result in glue_dir->sd is freed.
3120 	 *
3121 	 * Then the CPU2 will see a stale "empty" but still potentially used
3122 	 * glue dir around in kernfs_new_node().
3123 	 *
3124 	 * In order to avoid this happening, we also should make sure that
3125 	 * kernfs_node for glue_dir is released in CPU1 only when refcount
3126 	 * for glue_dir kobj is 1.
3127 	 */
3128 	ref = kref_read(&glue_dir->kref);
3129 	if (!kobject_has_children(glue_dir) && !--ref)
3130 		kobject_del(glue_dir);
3131 	kobject_put(glue_dir);
3132 	mutex_unlock(&gdp_mutex);
3133 }
3134 
3135 static int device_add_class_symlinks(struct device *dev)
3136 {
3137 	struct device_node *of_node = dev_of_node(dev);
3138 	int error;
3139 
3140 	if (of_node) {
3141 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3142 		if (error)
3143 			dev_warn(dev, "Error %d creating of_node link\n",error);
3144 		/* An error here doesn't warrant bringing down the device */
3145 	}
3146 
3147 	if (!dev->class)
3148 		return 0;
3149 
3150 	error = sysfs_create_link(&dev->kobj,
3151 				  &dev->class->p->subsys.kobj,
3152 				  "subsystem");
3153 	if (error)
3154 		goto out_devnode;
3155 
3156 	if (dev->parent && device_is_not_partition(dev)) {
3157 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3158 					  "device");
3159 		if (error)
3160 			goto out_subsys;
3161 	}
3162 
3163 #ifdef CONFIG_BLOCK
3164 	/* /sys/block has directories and does not need symlinks */
3165 	if (sysfs_deprecated && dev->class == &block_class)
3166 		return 0;
3167 #endif
3168 
3169 	/* link in the class directory pointing to the device */
3170 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
3171 				  &dev->kobj, dev_name(dev));
3172 	if (error)
3173 		goto out_device;
3174 
3175 	return 0;
3176 
3177 out_device:
3178 	sysfs_remove_link(&dev->kobj, "device");
3179 
3180 out_subsys:
3181 	sysfs_remove_link(&dev->kobj, "subsystem");
3182 out_devnode:
3183 	sysfs_remove_link(&dev->kobj, "of_node");
3184 	return error;
3185 }
3186 
3187 static void device_remove_class_symlinks(struct device *dev)
3188 {
3189 	if (dev_of_node(dev))
3190 		sysfs_remove_link(&dev->kobj, "of_node");
3191 
3192 	if (!dev->class)
3193 		return;
3194 
3195 	if (dev->parent && device_is_not_partition(dev))
3196 		sysfs_remove_link(&dev->kobj, "device");
3197 	sysfs_remove_link(&dev->kobj, "subsystem");
3198 #ifdef CONFIG_BLOCK
3199 	if (sysfs_deprecated && dev->class == &block_class)
3200 		return;
3201 #endif
3202 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
3203 }
3204 
3205 /**
3206  * dev_set_name - set a device name
3207  * @dev: device
3208  * @fmt: format string for the device's name
3209  */
3210 int dev_set_name(struct device *dev, const char *fmt, ...)
3211 {
3212 	va_list vargs;
3213 	int err;
3214 
3215 	va_start(vargs, fmt);
3216 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3217 	va_end(vargs);
3218 	return err;
3219 }
3220 EXPORT_SYMBOL_GPL(dev_set_name);
3221 
3222 /**
3223  * device_to_dev_kobj - select a /sys/dev/ directory for the device
3224  * @dev: device
3225  *
3226  * By default we select char/ for new entries.  Setting class->dev_obj
3227  * to NULL prevents an entry from being created.  class->dev_kobj must
3228  * be set (or cleared) before any devices are registered to the class
3229  * otherwise device_create_sys_dev_entry() and
3230  * device_remove_sys_dev_entry() will disagree about the presence of
3231  * the link.
3232  */
3233 static struct kobject *device_to_dev_kobj(struct device *dev)
3234 {
3235 	struct kobject *kobj;
3236 
3237 	if (dev->class)
3238 		kobj = dev->class->dev_kobj;
3239 	else
3240 		kobj = sysfs_dev_char_kobj;
3241 
3242 	return kobj;
3243 }
3244 
3245 static int device_create_sys_dev_entry(struct device *dev)
3246 {
3247 	struct kobject *kobj = device_to_dev_kobj(dev);
3248 	int error = 0;
3249 	char devt_str[15];
3250 
3251 	if (kobj) {
3252 		format_dev_t(devt_str, dev->devt);
3253 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3254 	}
3255 
3256 	return error;
3257 }
3258 
3259 static void device_remove_sys_dev_entry(struct device *dev)
3260 {
3261 	struct kobject *kobj = device_to_dev_kobj(dev);
3262 	char devt_str[15];
3263 
3264 	if (kobj) {
3265 		format_dev_t(devt_str, dev->devt);
3266 		sysfs_remove_link(kobj, devt_str);
3267 	}
3268 }
3269 
3270 static int device_private_init(struct device *dev)
3271 {
3272 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3273 	if (!dev->p)
3274 		return -ENOMEM;
3275 	dev->p->device = dev;
3276 	klist_init(&dev->p->klist_children, klist_children_get,
3277 		   klist_children_put);
3278 	INIT_LIST_HEAD(&dev->p->deferred_probe);
3279 	return 0;
3280 }
3281 
3282 /**
3283  * device_add - add device to device hierarchy.
3284  * @dev: device.
3285  *
3286  * This is part 2 of device_register(), though may be called
3287  * separately _iff_ device_initialize() has been called separately.
3288  *
3289  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3290  * to the global and sibling lists for the device, then
3291  * adds it to the other relevant subsystems of the driver model.
3292  *
3293  * Do not call this routine or device_register() more than once for
3294  * any device structure.  The driver model core is not designed to work
3295  * with devices that get unregistered and then spring back to life.
3296  * (Among other things, it's very hard to guarantee that all references
3297  * to the previous incarnation of @dev have been dropped.)  Allocate
3298  * and register a fresh new struct device instead.
3299  *
3300  * NOTE: _Never_ directly free @dev after calling this function, even
3301  * if it returned an error! Always use put_device() to give up your
3302  * reference instead.
3303  *
3304  * Rule of thumb is: if device_add() succeeds, you should call
3305  * device_del() when you want to get rid of it. If device_add() has
3306  * *not* succeeded, use *only* put_device() to drop the reference
3307  * count.
3308  */
3309 int device_add(struct device *dev)
3310 {
3311 	struct device *parent;
3312 	struct kobject *kobj;
3313 	struct class_interface *class_intf;
3314 	int error = -EINVAL;
3315 	struct kobject *glue_dir = NULL;
3316 
3317 	dev = get_device(dev);
3318 	if (!dev)
3319 		goto done;
3320 
3321 	if (!dev->p) {
3322 		error = device_private_init(dev);
3323 		if (error)
3324 			goto done;
3325 	}
3326 
3327 	/*
3328 	 * for statically allocated devices, which should all be converted
3329 	 * some day, we need to initialize the name. We prevent reading back
3330 	 * the name, and force the use of dev_name()
3331 	 */
3332 	if (dev->init_name) {
3333 		dev_set_name(dev, "%s", dev->init_name);
3334 		dev->init_name = NULL;
3335 	}
3336 
3337 	/* subsystems can specify simple device enumeration */
3338 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
3339 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3340 
3341 	if (!dev_name(dev)) {
3342 		error = -EINVAL;
3343 		goto name_error;
3344 	}
3345 
3346 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3347 
3348 	parent = get_device(dev->parent);
3349 	kobj = get_device_parent(dev, parent);
3350 	if (IS_ERR(kobj)) {
3351 		error = PTR_ERR(kobj);
3352 		goto parent_error;
3353 	}
3354 	if (kobj)
3355 		dev->kobj.parent = kobj;
3356 
3357 	/* use parent numa_node */
3358 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3359 		set_dev_node(dev, dev_to_node(parent));
3360 
3361 	/* first, register with generic layer. */
3362 	/* we require the name to be set before, and pass NULL */
3363 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3364 	if (error) {
3365 		glue_dir = get_glue_dir(dev);
3366 		goto Error;
3367 	}
3368 
3369 	/* notify platform of device entry */
3370 	device_platform_notify(dev);
3371 
3372 	error = device_create_file(dev, &dev_attr_uevent);
3373 	if (error)
3374 		goto attrError;
3375 
3376 	error = device_add_class_symlinks(dev);
3377 	if (error)
3378 		goto SymlinkError;
3379 	error = device_add_attrs(dev);
3380 	if (error)
3381 		goto AttrsError;
3382 	error = bus_add_device(dev);
3383 	if (error)
3384 		goto BusError;
3385 	error = dpm_sysfs_add(dev);
3386 	if (error)
3387 		goto DPMError;
3388 	device_pm_add(dev);
3389 
3390 	if (MAJOR(dev->devt)) {
3391 		error = device_create_file(dev, &dev_attr_dev);
3392 		if (error)
3393 			goto DevAttrError;
3394 
3395 		error = device_create_sys_dev_entry(dev);
3396 		if (error)
3397 			goto SysEntryError;
3398 
3399 		devtmpfs_create_node(dev);
3400 	}
3401 
3402 	/* Notify clients of device addition.  This call must come
3403 	 * after dpm_sysfs_add() and before kobject_uevent().
3404 	 */
3405 	if (dev->bus)
3406 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3407 					     BUS_NOTIFY_ADD_DEVICE, dev);
3408 
3409 	kobject_uevent(&dev->kobj, KOBJ_ADD);
3410 
3411 	/*
3412 	 * Check if any of the other devices (consumers) have been waiting for
3413 	 * this device (supplier) to be added so that they can create a device
3414 	 * link to it.
3415 	 *
3416 	 * This needs to happen after device_pm_add() because device_link_add()
3417 	 * requires the supplier be registered before it's called.
3418 	 *
3419 	 * But this also needs to happen before bus_probe_device() to make sure
3420 	 * waiting consumers can link to it before the driver is bound to the
3421 	 * device and the driver sync_state callback is called for this device.
3422 	 */
3423 	if (dev->fwnode && !dev->fwnode->dev) {
3424 		dev->fwnode->dev = dev;
3425 		fw_devlink_link_device(dev);
3426 	}
3427 
3428 	bus_probe_device(dev);
3429 
3430 	/*
3431 	 * If all driver registration is done and a newly added device doesn't
3432 	 * match with any driver, don't block its consumers from probing in
3433 	 * case the consumer device is able to operate without this supplier.
3434 	 */
3435 	if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3436 		fw_devlink_unblock_consumers(dev);
3437 
3438 	if (parent)
3439 		klist_add_tail(&dev->p->knode_parent,
3440 			       &parent->p->klist_children);
3441 
3442 	if (dev->class) {
3443 		mutex_lock(&dev->class->p->mutex);
3444 		/* tie the class to the device */
3445 		klist_add_tail(&dev->p->knode_class,
3446 			       &dev->class->p->klist_devices);
3447 
3448 		/* notify any interfaces that the device is here */
3449 		list_for_each_entry(class_intf,
3450 				    &dev->class->p->interfaces, node)
3451 			if (class_intf->add_dev)
3452 				class_intf->add_dev(dev, class_intf);
3453 		mutex_unlock(&dev->class->p->mutex);
3454 	}
3455 done:
3456 	put_device(dev);
3457 	return error;
3458  SysEntryError:
3459 	if (MAJOR(dev->devt))
3460 		device_remove_file(dev, &dev_attr_dev);
3461  DevAttrError:
3462 	device_pm_remove(dev);
3463 	dpm_sysfs_remove(dev);
3464  DPMError:
3465 	bus_remove_device(dev);
3466  BusError:
3467 	device_remove_attrs(dev);
3468  AttrsError:
3469 	device_remove_class_symlinks(dev);
3470  SymlinkError:
3471 	device_remove_file(dev, &dev_attr_uevent);
3472  attrError:
3473 	device_platform_notify_remove(dev);
3474 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3475 	glue_dir = get_glue_dir(dev);
3476 	kobject_del(&dev->kobj);
3477  Error:
3478 	cleanup_glue_dir(dev, glue_dir);
3479 parent_error:
3480 	put_device(parent);
3481 name_error:
3482 	kfree(dev->p);
3483 	dev->p = NULL;
3484 	goto done;
3485 }
3486 EXPORT_SYMBOL_GPL(device_add);
3487 
3488 /**
3489  * device_register - register a device with the system.
3490  * @dev: pointer to the device structure
3491  *
3492  * This happens in two clean steps - initialize the device
3493  * and add it to the system. The two steps can be called
3494  * separately, but this is the easiest and most common.
3495  * I.e. you should only call the two helpers separately if
3496  * have a clearly defined need to use and refcount the device
3497  * before it is added to the hierarchy.
3498  *
3499  * For more information, see the kerneldoc for device_initialize()
3500  * and device_add().
3501  *
3502  * NOTE: _Never_ directly free @dev after calling this function, even
3503  * if it returned an error! Always use put_device() to give up the
3504  * reference initialized in this function instead.
3505  */
3506 int device_register(struct device *dev)
3507 {
3508 	device_initialize(dev);
3509 	return device_add(dev);
3510 }
3511 EXPORT_SYMBOL_GPL(device_register);
3512 
3513 /**
3514  * get_device - increment reference count for device.
3515  * @dev: device.
3516  *
3517  * This simply forwards the call to kobject_get(), though
3518  * we do take care to provide for the case that we get a NULL
3519  * pointer passed in.
3520  */
3521 struct device *get_device(struct device *dev)
3522 {
3523 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3524 }
3525 EXPORT_SYMBOL_GPL(get_device);
3526 
3527 /**
3528  * put_device - decrement reference count.
3529  * @dev: device in question.
3530  */
3531 void put_device(struct device *dev)
3532 {
3533 	/* might_sleep(); */
3534 	if (dev)
3535 		kobject_put(&dev->kobj);
3536 }
3537 EXPORT_SYMBOL_GPL(put_device);
3538 
3539 bool kill_device(struct device *dev)
3540 {
3541 	/*
3542 	 * Require the device lock and set the "dead" flag to guarantee that
3543 	 * the update behavior is consistent with the other bitfields near
3544 	 * it and that we cannot have an asynchronous probe routine trying
3545 	 * to run while we are tearing out the bus/class/sysfs from
3546 	 * underneath the device.
3547 	 */
3548 	device_lock_assert(dev);
3549 
3550 	if (dev->p->dead)
3551 		return false;
3552 	dev->p->dead = true;
3553 	return true;
3554 }
3555 EXPORT_SYMBOL_GPL(kill_device);
3556 
3557 /**
3558  * device_del - delete device from system.
3559  * @dev: device.
3560  *
3561  * This is the first part of the device unregistration
3562  * sequence. This removes the device from the lists we control
3563  * from here, has it removed from the other driver model
3564  * subsystems it was added to in device_add(), and removes it
3565  * from the kobject hierarchy.
3566  *
3567  * NOTE: this should be called manually _iff_ device_add() was
3568  * also called manually.
3569  */
3570 void device_del(struct device *dev)
3571 {
3572 	struct device *parent = dev->parent;
3573 	struct kobject *glue_dir = NULL;
3574 	struct class_interface *class_intf;
3575 	unsigned int noio_flag;
3576 
3577 	device_lock(dev);
3578 	kill_device(dev);
3579 	device_unlock(dev);
3580 
3581 	if (dev->fwnode && dev->fwnode->dev == dev)
3582 		dev->fwnode->dev = NULL;
3583 
3584 	/* Notify clients of device removal.  This call must come
3585 	 * before dpm_sysfs_remove().
3586 	 */
3587 	noio_flag = memalloc_noio_save();
3588 	if (dev->bus)
3589 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3590 					     BUS_NOTIFY_DEL_DEVICE, dev);
3591 
3592 	dpm_sysfs_remove(dev);
3593 	if (parent)
3594 		klist_del(&dev->p->knode_parent);
3595 	if (MAJOR(dev->devt)) {
3596 		devtmpfs_delete_node(dev);
3597 		device_remove_sys_dev_entry(dev);
3598 		device_remove_file(dev, &dev_attr_dev);
3599 	}
3600 	if (dev->class) {
3601 		device_remove_class_symlinks(dev);
3602 
3603 		mutex_lock(&dev->class->p->mutex);
3604 		/* notify any interfaces that the device is now gone */
3605 		list_for_each_entry(class_intf,
3606 				    &dev->class->p->interfaces, node)
3607 			if (class_intf->remove_dev)
3608 				class_intf->remove_dev(dev, class_intf);
3609 		/* remove the device from the class list */
3610 		klist_del(&dev->p->knode_class);
3611 		mutex_unlock(&dev->class->p->mutex);
3612 	}
3613 	device_remove_file(dev, &dev_attr_uevent);
3614 	device_remove_attrs(dev);
3615 	bus_remove_device(dev);
3616 	device_pm_remove(dev);
3617 	driver_deferred_probe_del(dev);
3618 	device_platform_notify_remove(dev);
3619 	device_links_purge(dev);
3620 
3621 	if (dev->bus)
3622 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3623 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
3624 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3625 	glue_dir = get_glue_dir(dev);
3626 	kobject_del(&dev->kobj);
3627 	cleanup_glue_dir(dev, glue_dir);
3628 	memalloc_noio_restore(noio_flag);
3629 	put_device(parent);
3630 }
3631 EXPORT_SYMBOL_GPL(device_del);
3632 
3633 /**
3634  * device_unregister - unregister device from system.
3635  * @dev: device going away.
3636  *
3637  * We do this in two parts, like we do device_register(). First,
3638  * we remove it from all the subsystems with device_del(), then
3639  * we decrement the reference count via put_device(). If that
3640  * is the final reference count, the device will be cleaned up
3641  * via device_release() above. Otherwise, the structure will
3642  * stick around until the final reference to the device is dropped.
3643  */
3644 void device_unregister(struct device *dev)
3645 {
3646 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3647 	device_del(dev);
3648 	put_device(dev);
3649 }
3650 EXPORT_SYMBOL_GPL(device_unregister);
3651 
3652 static struct device *prev_device(struct klist_iter *i)
3653 {
3654 	struct klist_node *n = klist_prev(i);
3655 	struct device *dev = NULL;
3656 	struct device_private *p;
3657 
3658 	if (n) {
3659 		p = to_device_private_parent(n);
3660 		dev = p->device;
3661 	}
3662 	return dev;
3663 }
3664 
3665 static struct device *next_device(struct klist_iter *i)
3666 {
3667 	struct klist_node *n = klist_next(i);
3668 	struct device *dev = NULL;
3669 	struct device_private *p;
3670 
3671 	if (n) {
3672 		p = to_device_private_parent(n);
3673 		dev = p->device;
3674 	}
3675 	return dev;
3676 }
3677 
3678 /**
3679  * device_get_devnode - path of device node file
3680  * @dev: device
3681  * @mode: returned file access mode
3682  * @uid: returned file owner
3683  * @gid: returned file group
3684  * @tmp: possibly allocated string
3685  *
3686  * Return the relative path of a possible device node.
3687  * Non-default names may need to allocate a memory to compose
3688  * a name. This memory is returned in tmp and needs to be
3689  * freed by the caller.
3690  */
3691 const char *device_get_devnode(struct device *dev,
3692 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3693 			       const char **tmp)
3694 {
3695 	char *s;
3696 
3697 	*tmp = NULL;
3698 
3699 	/* the device type may provide a specific name */
3700 	if (dev->type && dev->type->devnode)
3701 		*tmp = dev->type->devnode(dev, mode, uid, gid);
3702 	if (*tmp)
3703 		return *tmp;
3704 
3705 	/* the class may provide a specific name */
3706 	if (dev->class && dev->class->devnode)
3707 		*tmp = dev->class->devnode(dev, mode);
3708 	if (*tmp)
3709 		return *tmp;
3710 
3711 	/* return name without allocation, tmp == NULL */
3712 	if (strchr(dev_name(dev), '!') == NULL)
3713 		return dev_name(dev);
3714 
3715 	/* replace '!' in the name with '/' */
3716 	s = kstrdup(dev_name(dev), GFP_KERNEL);
3717 	if (!s)
3718 		return NULL;
3719 	strreplace(s, '!', '/');
3720 	return *tmp = s;
3721 }
3722 
3723 /**
3724  * device_for_each_child - device child iterator.
3725  * @parent: parent struct device.
3726  * @fn: function to be called for each device.
3727  * @data: data for the callback.
3728  *
3729  * Iterate over @parent's child devices, and call @fn for each,
3730  * passing it @data.
3731  *
3732  * We check the return of @fn each time. If it returns anything
3733  * other than 0, we break out and return that value.
3734  */
3735 int device_for_each_child(struct device *parent, void *data,
3736 			  int (*fn)(struct device *dev, void *data))
3737 {
3738 	struct klist_iter i;
3739 	struct device *child;
3740 	int error = 0;
3741 
3742 	if (!parent->p)
3743 		return 0;
3744 
3745 	klist_iter_init(&parent->p->klist_children, &i);
3746 	while (!error && (child = next_device(&i)))
3747 		error = fn(child, data);
3748 	klist_iter_exit(&i);
3749 	return error;
3750 }
3751 EXPORT_SYMBOL_GPL(device_for_each_child);
3752 
3753 /**
3754  * device_for_each_child_reverse - device child iterator in reversed order.
3755  * @parent: parent struct device.
3756  * @fn: function to be called for each device.
3757  * @data: data for the callback.
3758  *
3759  * Iterate over @parent's child devices, and call @fn for each,
3760  * passing it @data.
3761  *
3762  * We check the return of @fn each time. If it returns anything
3763  * other than 0, we break out and return that value.
3764  */
3765 int device_for_each_child_reverse(struct device *parent, void *data,
3766 				  int (*fn)(struct device *dev, void *data))
3767 {
3768 	struct klist_iter i;
3769 	struct device *child;
3770 	int error = 0;
3771 
3772 	if (!parent->p)
3773 		return 0;
3774 
3775 	klist_iter_init(&parent->p->klist_children, &i);
3776 	while ((child = prev_device(&i)) && !error)
3777 		error = fn(child, data);
3778 	klist_iter_exit(&i);
3779 	return error;
3780 }
3781 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3782 
3783 /**
3784  * device_find_child - device iterator for locating a particular device.
3785  * @parent: parent struct device
3786  * @match: Callback function to check device
3787  * @data: Data to pass to match function
3788  *
3789  * This is similar to the device_for_each_child() function above, but it
3790  * returns a reference to a device that is 'found' for later use, as
3791  * determined by the @match callback.
3792  *
3793  * The callback should return 0 if the device doesn't match and non-zero
3794  * if it does.  If the callback returns non-zero and a reference to the
3795  * current device can be obtained, this function will return to the caller
3796  * and not iterate over any more devices.
3797  *
3798  * NOTE: you will need to drop the reference with put_device() after use.
3799  */
3800 struct device *device_find_child(struct device *parent, void *data,
3801 				 int (*match)(struct device *dev, void *data))
3802 {
3803 	struct klist_iter i;
3804 	struct device *child;
3805 
3806 	if (!parent)
3807 		return NULL;
3808 
3809 	klist_iter_init(&parent->p->klist_children, &i);
3810 	while ((child = next_device(&i)))
3811 		if (match(child, data) && get_device(child))
3812 			break;
3813 	klist_iter_exit(&i);
3814 	return child;
3815 }
3816 EXPORT_SYMBOL_GPL(device_find_child);
3817 
3818 /**
3819  * device_find_child_by_name - device iterator for locating a child device.
3820  * @parent: parent struct device
3821  * @name: name of the child device
3822  *
3823  * This is similar to the device_find_child() function above, but it
3824  * returns a reference to a device that has the name @name.
3825  *
3826  * NOTE: you will need to drop the reference with put_device() after use.
3827  */
3828 struct device *device_find_child_by_name(struct device *parent,
3829 					 const char *name)
3830 {
3831 	struct klist_iter i;
3832 	struct device *child;
3833 
3834 	if (!parent)
3835 		return NULL;
3836 
3837 	klist_iter_init(&parent->p->klist_children, &i);
3838 	while ((child = next_device(&i)))
3839 		if (sysfs_streq(dev_name(child), name) && get_device(child))
3840 			break;
3841 	klist_iter_exit(&i);
3842 	return child;
3843 }
3844 EXPORT_SYMBOL_GPL(device_find_child_by_name);
3845 
3846 int __init devices_init(void)
3847 {
3848 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3849 	if (!devices_kset)
3850 		return -ENOMEM;
3851 	dev_kobj = kobject_create_and_add("dev", NULL);
3852 	if (!dev_kobj)
3853 		goto dev_kobj_err;
3854 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3855 	if (!sysfs_dev_block_kobj)
3856 		goto block_kobj_err;
3857 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3858 	if (!sysfs_dev_char_kobj)
3859 		goto char_kobj_err;
3860 
3861 	return 0;
3862 
3863  char_kobj_err:
3864 	kobject_put(sysfs_dev_block_kobj);
3865  block_kobj_err:
3866 	kobject_put(dev_kobj);
3867  dev_kobj_err:
3868 	kset_unregister(devices_kset);
3869 	return -ENOMEM;
3870 }
3871 
3872 static int device_check_offline(struct device *dev, void *not_used)
3873 {
3874 	int ret;
3875 
3876 	ret = device_for_each_child(dev, NULL, device_check_offline);
3877 	if (ret)
3878 		return ret;
3879 
3880 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3881 }
3882 
3883 /**
3884  * device_offline - Prepare the device for hot-removal.
3885  * @dev: Device to be put offline.
3886  *
3887  * Execute the device bus type's .offline() callback, if present, to prepare
3888  * the device for a subsequent hot-removal.  If that succeeds, the device must
3889  * not be used until either it is removed or its bus type's .online() callback
3890  * is executed.
3891  *
3892  * Call under device_hotplug_lock.
3893  */
3894 int device_offline(struct device *dev)
3895 {
3896 	int ret;
3897 
3898 	if (dev->offline_disabled)
3899 		return -EPERM;
3900 
3901 	ret = device_for_each_child(dev, NULL, device_check_offline);
3902 	if (ret)
3903 		return ret;
3904 
3905 	device_lock(dev);
3906 	if (device_supports_offline(dev)) {
3907 		if (dev->offline) {
3908 			ret = 1;
3909 		} else {
3910 			ret = dev->bus->offline(dev);
3911 			if (!ret) {
3912 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3913 				dev->offline = true;
3914 			}
3915 		}
3916 	}
3917 	device_unlock(dev);
3918 
3919 	return ret;
3920 }
3921 
3922 /**
3923  * device_online - Put the device back online after successful device_offline().
3924  * @dev: Device to be put back online.
3925  *
3926  * If device_offline() has been successfully executed for @dev, but the device
3927  * has not been removed subsequently, execute its bus type's .online() callback
3928  * to indicate that the device can be used again.
3929  *
3930  * Call under device_hotplug_lock.
3931  */
3932 int device_online(struct device *dev)
3933 {
3934 	int ret = 0;
3935 
3936 	device_lock(dev);
3937 	if (device_supports_offline(dev)) {
3938 		if (dev->offline) {
3939 			ret = dev->bus->online(dev);
3940 			if (!ret) {
3941 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3942 				dev->offline = false;
3943 			}
3944 		} else {
3945 			ret = 1;
3946 		}
3947 	}
3948 	device_unlock(dev);
3949 
3950 	return ret;
3951 }
3952 
3953 struct root_device {
3954 	struct device dev;
3955 	struct module *owner;
3956 };
3957 
3958 static inline struct root_device *to_root_device(struct device *d)
3959 {
3960 	return container_of(d, struct root_device, dev);
3961 }
3962 
3963 static void root_device_release(struct device *dev)
3964 {
3965 	kfree(to_root_device(dev));
3966 }
3967 
3968 /**
3969  * __root_device_register - allocate and register a root device
3970  * @name: root device name
3971  * @owner: owner module of the root device, usually THIS_MODULE
3972  *
3973  * This function allocates a root device and registers it
3974  * using device_register(). In order to free the returned
3975  * device, use root_device_unregister().
3976  *
3977  * Root devices are dummy devices which allow other devices
3978  * to be grouped under /sys/devices. Use this function to
3979  * allocate a root device and then use it as the parent of
3980  * any device which should appear under /sys/devices/{name}
3981  *
3982  * The /sys/devices/{name} directory will also contain a
3983  * 'module' symlink which points to the @owner directory
3984  * in sysfs.
3985  *
3986  * Returns &struct device pointer on success, or ERR_PTR() on error.
3987  *
3988  * Note: You probably want to use root_device_register().
3989  */
3990 struct device *__root_device_register(const char *name, struct module *owner)
3991 {
3992 	struct root_device *root;
3993 	int err = -ENOMEM;
3994 
3995 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3996 	if (!root)
3997 		return ERR_PTR(err);
3998 
3999 	err = dev_set_name(&root->dev, "%s", name);
4000 	if (err) {
4001 		kfree(root);
4002 		return ERR_PTR(err);
4003 	}
4004 
4005 	root->dev.release = root_device_release;
4006 
4007 	err = device_register(&root->dev);
4008 	if (err) {
4009 		put_device(&root->dev);
4010 		return ERR_PTR(err);
4011 	}
4012 
4013 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
4014 	if (owner) {
4015 		struct module_kobject *mk = &owner->mkobj;
4016 
4017 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
4018 		if (err) {
4019 			device_unregister(&root->dev);
4020 			return ERR_PTR(err);
4021 		}
4022 		root->owner = owner;
4023 	}
4024 #endif
4025 
4026 	return &root->dev;
4027 }
4028 EXPORT_SYMBOL_GPL(__root_device_register);
4029 
4030 /**
4031  * root_device_unregister - unregister and free a root device
4032  * @dev: device going away
4033  *
4034  * This function unregisters and cleans up a device that was created by
4035  * root_device_register().
4036  */
4037 void root_device_unregister(struct device *dev)
4038 {
4039 	struct root_device *root = to_root_device(dev);
4040 
4041 	if (root->owner)
4042 		sysfs_remove_link(&root->dev.kobj, "module");
4043 
4044 	device_unregister(dev);
4045 }
4046 EXPORT_SYMBOL_GPL(root_device_unregister);
4047 
4048 
4049 static void device_create_release(struct device *dev)
4050 {
4051 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4052 	kfree(dev);
4053 }
4054 
4055 static __printf(6, 0) struct device *
4056 device_create_groups_vargs(struct class *class, struct device *parent,
4057 			   dev_t devt, void *drvdata,
4058 			   const struct attribute_group **groups,
4059 			   const char *fmt, va_list args)
4060 {
4061 	struct device *dev = NULL;
4062 	int retval = -ENODEV;
4063 
4064 	if (class == NULL || IS_ERR(class))
4065 		goto error;
4066 
4067 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4068 	if (!dev) {
4069 		retval = -ENOMEM;
4070 		goto error;
4071 	}
4072 
4073 	device_initialize(dev);
4074 	dev->devt = devt;
4075 	dev->class = class;
4076 	dev->parent = parent;
4077 	dev->groups = groups;
4078 	dev->release = device_create_release;
4079 	dev_set_drvdata(dev, drvdata);
4080 
4081 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4082 	if (retval)
4083 		goto error;
4084 
4085 	retval = device_add(dev);
4086 	if (retval)
4087 		goto error;
4088 
4089 	return dev;
4090 
4091 error:
4092 	put_device(dev);
4093 	return ERR_PTR(retval);
4094 }
4095 
4096 /**
4097  * device_create - creates a device and registers it with sysfs
4098  * @class: pointer to the struct class that this device should be registered to
4099  * @parent: pointer to the parent struct device of this new device, if any
4100  * @devt: the dev_t for the char device to be added
4101  * @drvdata: the data to be added to the device for callbacks
4102  * @fmt: string for the device's name
4103  *
4104  * This function can be used by char device classes.  A struct device
4105  * will be created in sysfs, registered to the specified class.
4106  *
4107  * A "dev" file will be created, showing the dev_t for the device, if
4108  * the dev_t is not 0,0.
4109  * If a pointer to a parent struct device is passed in, the newly created
4110  * struct device will be a child of that device in sysfs.
4111  * The pointer to the struct device will be returned from the call.
4112  * Any further sysfs files that might be required can be created using this
4113  * pointer.
4114  *
4115  * Returns &struct device pointer on success, or ERR_PTR() on error.
4116  *
4117  * Note: the struct class passed to this function must have previously
4118  * been created with a call to class_create().
4119  */
4120 struct device *device_create(struct class *class, struct device *parent,
4121 			     dev_t devt, void *drvdata, const char *fmt, ...)
4122 {
4123 	va_list vargs;
4124 	struct device *dev;
4125 
4126 	va_start(vargs, fmt);
4127 	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4128 					  fmt, vargs);
4129 	va_end(vargs);
4130 	return dev;
4131 }
4132 EXPORT_SYMBOL_GPL(device_create);
4133 
4134 /**
4135  * device_create_with_groups - creates a device and registers it with sysfs
4136  * @class: pointer to the struct class that this device should be registered to
4137  * @parent: pointer to the parent struct device of this new device, if any
4138  * @devt: the dev_t for the char device to be added
4139  * @drvdata: the data to be added to the device for callbacks
4140  * @groups: NULL-terminated list of attribute groups to be created
4141  * @fmt: string for the device's name
4142  *
4143  * This function can be used by char device classes.  A struct device
4144  * will be created in sysfs, registered to the specified class.
4145  * Additional attributes specified in the groups parameter will also
4146  * be created automatically.
4147  *
4148  * A "dev" file will be created, showing the dev_t for the device, if
4149  * the dev_t is not 0,0.
4150  * If a pointer to a parent struct device is passed in, the newly created
4151  * struct device will be a child of that device in sysfs.
4152  * The pointer to the struct device will be returned from the call.
4153  * Any further sysfs files that might be required can be created using this
4154  * pointer.
4155  *
4156  * Returns &struct device pointer on success, or ERR_PTR() on error.
4157  *
4158  * Note: the struct class passed to this function must have previously
4159  * been created with a call to class_create().
4160  */
4161 struct device *device_create_with_groups(struct class *class,
4162 					 struct device *parent, dev_t devt,
4163 					 void *drvdata,
4164 					 const struct attribute_group **groups,
4165 					 const char *fmt, ...)
4166 {
4167 	va_list vargs;
4168 	struct device *dev;
4169 
4170 	va_start(vargs, fmt);
4171 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4172 					 fmt, vargs);
4173 	va_end(vargs);
4174 	return dev;
4175 }
4176 EXPORT_SYMBOL_GPL(device_create_with_groups);
4177 
4178 /**
4179  * device_destroy - removes a device that was created with device_create()
4180  * @class: pointer to the struct class that this device was registered with
4181  * @devt: the dev_t of the device that was previously registered
4182  *
4183  * This call unregisters and cleans up a device that was created with a
4184  * call to device_create().
4185  */
4186 void device_destroy(struct class *class, dev_t devt)
4187 {
4188 	struct device *dev;
4189 
4190 	dev = class_find_device_by_devt(class, devt);
4191 	if (dev) {
4192 		put_device(dev);
4193 		device_unregister(dev);
4194 	}
4195 }
4196 EXPORT_SYMBOL_GPL(device_destroy);
4197 
4198 /**
4199  * device_rename - renames a device
4200  * @dev: the pointer to the struct device to be renamed
4201  * @new_name: the new name of the device
4202  *
4203  * It is the responsibility of the caller to provide mutual
4204  * exclusion between two different calls of device_rename
4205  * on the same device to ensure that new_name is valid and
4206  * won't conflict with other devices.
4207  *
4208  * Note: Don't call this function.  Currently, the networking layer calls this
4209  * function, but that will change.  The following text from Kay Sievers offers
4210  * some insight:
4211  *
4212  * Renaming devices is racy at many levels, symlinks and other stuff are not
4213  * replaced atomically, and you get a "move" uevent, but it's not easy to
4214  * connect the event to the old and new device. Device nodes are not renamed at
4215  * all, there isn't even support for that in the kernel now.
4216  *
4217  * In the meantime, during renaming, your target name might be taken by another
4218  * driver, creating conflicts. Or the old name is taken directly after you
4219  * renamed it -- then you get events for the same DEVPATH, before you even see
4220  * the "move" event. It's just a mess, and nothing new should ever rely on
4221  * kernel device renaming. Besides that, it's not even implemented now for
4222  * other things than (driver-core wise very simple) network devices.
4223  *
4224  * We are currently about to change network renaming in udev to completely
4225  * disallow renaming of devices in the same namespace as the kernel uses,
4226  * because we can't solve the problems properly, that arise with swapping names
4227  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
4228  * be allowed to some other name than eth[0-9]*, for the aforementioned
4229  * reasons.
4230  *
4231  * Make up a "real" name in the driver before you register anything, or add
4232  * some other attributes for userspace to find the device, or use udev to add
4233  * symlinks -- but never rename kernel devices later, it's a complete mess. We
4234  * don't even want to get into that and try to implement the missing pieces in
4235  * the core. We really have other pieces to fix in the driver core mess. :)
4236  */
4237 int device_rename(struct device *dev, const char *new_name)
4238 {
4239 	struct kobject *kobj = &dev->kobj;
4240 	char *old_device_name = NULL;
4241 	int error;
4242 
4243 	dev = get_device(dev);
4244 	if (!dev)
4245 		return -EINVAL;
4246 
4247 	dev_dbg(dev, "renaming to %s\n", new_name);
4248 
4249 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4250 	if (!old_device_name) {
4251 		error = -ENOMEM;
4252 		goto out;
4253 	}
4254 
4255 	if (dev->class) {
4256 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
4257 					     kobj, old_device_name,
4258 					     new_name, kobject_namespace(kobj));
4259 		if (error)
4260 			goto out;
4261 	}
4262 
4263 	error = kobject_rename(kobj, new_name);
4264 	if (error)
4265 		goto out;
4266 
4267 out:
4268 	put_device(dev);
4269 
4270 	kfree(old_device_name);
4271 
4272 	return error;
4273 }
4274 EXPORT_SYMBOL_GPL(device_rename);
4275 
4276 static int device_move_class_links(struct device *dev,
4277 				   struct device *old_parent,
4278 				   struct device *new_parent)
4279 {
4280 	int error = 0;
4281 
4282 	if (old_parent)
4283 		sysfs_remove_link(&dev->kobj, "device");
4284 	if (new_parent)
4285 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4286 					  "device");
4287 	return error;
4288 }
4289 
4290 /**
4291  * device_move - moves a device to a new parent
4292  * @dev: the pointer to the struct device to be moved
4293  * @new_parent: the new parent of the device (can be NULL)
4294  * @dpm_order: how to reorder the dpm_list
4295  */
4296 int device_move(struct device *dev, struct device *new_parent,
4297 		enum dpm_order dpm_order)
4298 {
4299 	int error;
4300 	struct device *old_parent;
4301 	struct kobject *new_parent_kobj;
4302 
4303 	dev = get_device(dev);
4304 	if (!dev)
4305 		return -EINVAL;
4306 
4307 	device_pm_lock();
4308 	new_parent = get_device(new_parent);
4309 	new_parent_kobj = get_device_parent(dev, new_parent);
4310 	if (IS_ERR(new_parent_kobj)) {
4311 		error = PTR_ERR(new_parent_kobj);
4312 		put_device(new_parent);
4313 		goto out;
4314 	}
4315 
4316 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4317 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4318 	error = kobject_move(&dev->kobj, new_parent_kobj);
4319 	if (error) {
4320 		cleanup_glue_dir(dev, new_parent_kobj);
4321 		put_device(new_parent);
4322 		goto out;
4323 	}
4324 	old_parent = dev->parent;
4325 	dev->parent = new_parent;
4326 	if (old_parent)
4327 		klist_remove(&dev->p->knode_parent);
4328 	if (new_parent) {
4329 		klist_add_tail(&dev->p->knode_parent,
4330 			       &new_parent->p->klist_children);
4331 		set_dev_node(dev, dev_to_node(new_parent));
4332 	}
4333 
4334 	if (dev->class) {
4335 		error = device_move_class_links(dev, old_parent, new_parent);
4336 		if (error) {
4337 			/* We ignore errors on cleanup since we're hosed anyway... */
4338 			device_move_class_links(dev, new_parent, old_parent);
4339 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4340 				if (new_parent)
4341 					klist_remove(&dev->p->knode_parent);
4342 				dev->parent = old_parent;
4343 				if (old_parent) {
4344 					klist_add_tail(&dev->p->knode_parent,
4345 						       &old_parent->p->klist_children);
4346 					set_dev_node(dev, dev_to_node(old_parent));
4347 				}
4348 			}
4349 			cleanup_glue_dir(dev, new_parent_kobj);
4350 			put_device(new_parent);
4351 			goto out;
4352 		}
4353 	}
4354 	switch (dpm_order) {
4355 	case DPM_ORDER_NONE:
4356 		break;
4357 	case DPM_ORDER_DEV_AFTER_PARENT:
4358 		device_pm_move_after(dev, new_parent);
4359 		devices_kset_move_after(dev, new_parent);
4360 		break;
4361 	case DPM_ORDER_PARENT_BEFORE_DEV:
4362 		device_pm_move_before(new_parent, dev);
4363 		devices_kset_move_before(new_parent, dev);
4364 		break;
4365 	case DPM_ORDER_DEV_LAST:
4366 		device_pm_move_last(dev);
4367 		devices_kset_move_last(dev);
4368 		break;
4369 	}
4370 
4371 	put_device(old_parent);
4372 out:
4373 	device_pm_unlock();
4374 	put_device(dev);
4375 	return error;
4376 }
4377 EXPORT_SYMBOL_GPL(device_move);
4378 
4379 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4380 				     kgid_t kgid)
4381 {
4382 	struct kobject *kobj = &dev->kobj;
4383 	struct class *class = dev->class;
4384 	const struct device_type *type = dev->type;
4385 	int error;
4386 
4387 	if (class) {
4388 		/*
4389 		 * Change the device groups of the device class for @dev to
4390 		 * @kuid/@kgid.
4391 		 */
4392 		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4393 						  kgid);
4394 		if (error)
4395 			return error;
4396 	}
4397 
4398 	if (type) {
4399 		/*
4400 		 * Change the device groups of the device type for @dev to
4401 		 * @kuid/@kgid.
4402 		 */
4403 		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4404 						  kgid);
4405 		if (error)
4406 			return error;
4407 	}
4408 
4409 	/* Change the device groups of @dev to @kuid/@kgid. */
4410 	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4411 	if (error)
4412 		return error;
4413 
4414 	if (device_supports_offline(dev) && !dev->offline_disabled) {
4415 		/* Change online device attributes of @dev to @kuid/@kgid. */
4416 		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4417 						kuid, kgid);
4418 		if (error)
4419 			return error;
4420 	}
4421 
4422 	return 0;
4423 }
4424 
4425 /**
4426  * device_change_owner - change the owner of an existing device.
4427  * @dev: device.
4428  * @kuid: new owner's kuid
4429  * @kgid: new owner's kgid
4430  *
4431  * This changes the owner of @dev and its corresponding sysfs entries to
4432  * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4433  * core.
4434  *
4435  * Returns 0 on success or error code on failure.
4436  */
4437 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4438 {
4439 	int error;
4440 	struct kobject *kobj = &dev->kobj;
4441 
4442 	dev = get_device(dev);
4443 	if (!dev)
4444 		return -EINVAL;
4445 
4446 	/*
4447 	 * Change the kobject and the default attributes and groups of the
4448 	 * ktype associated with it to @kuid/@kgid.
4449 	 */
4450 	error = sysfs_change_owner(kobj, kuid, kgid);
4451 	if (error)
4452 		goto out;
4453 
4454 	/*
4455 	 * Change the uevent file for @dev to the new owner. The uevent file
4456 	 * was created in a separate step when @dev got added and we mirror
4457 	 * that step here.
4458 	 */
4459 	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4460 					kgid);
4461 	if (error)
4462 		goto out;
4463 
4464 	/*
4465 	 * Change the device groups, the device groups associated with the
4466 	 * device class, and the groups associated with the device type of @dev
4467 	 * to @kuid/@kgid.
4468 	 */
4469 	error = device_attrs_change_owner(dev, kuid, kgid);
4470 	if (error)
4471 		goto out;
4472 
4473 	error = dpm_sysfs_change_owner(dev, kuid, kgid);
4474 	if (error)
4475 		goto out;
4476 
4477 #ifdef CONFIG_BLOCK
4478 	if (sysfs_deprecated && dev->class == &block_class)
4479 		goto out;
4480 #endif
4481 
4482 	/*
4483 	 * Change the owner of the symlink located in the class directory of
4484 	 * the device class associated with @dev which points to the actual
4485 	 * directory entry for @dev to @kuid/@kgid. This ensures that the
4486 	 * symlink shows the same permissions as its target.
4487 	 */
4488 	error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4489 					dev_name(dev), kuid, kgid);
4490 	if (error)
4491 		goto out;
4492 
4493 out:
4494 	put_device(dev);
4495 	return error;
4496 }
4497 EXPORT_SYMBOL_GPL(device_change_owner);
4498 
4499 /**
4500  * device_shutdown - call ->shutdown() on each device to shutdown.
4501  */
4502 void device_shutdown(void)
4503 {
4504 	struct device *dev, *parent;
4505 
4506 	wait_for_device_probe();
4507 	device_block_probing();
4508 
4509 	cpufreq_suspend();
4510 
4511 	spin_lock(&devices_kset->list_lock);
4512 	/*
4513 	 * Walk the devices list backward, shutting down each in turn.
4514 	 * Beware that device unplug events may also start pulling
4515 	 * devices offline, even as the system is shutting down.
4516 	 */
4517 	while (!list_empty(&devices_kset->list)) {
4518 		dev = list_entry(devices_kset->list.prev, struct device,
4519 				kobj.entry);
4520 
4521 		/*
4522 		 * hold reference count of device's parent to
4523 		 * prevent it from being freed because parent's
4524 		 * lock is to be held
4525 		 */
4526 		parent = get_device(dev->parent);
4527 		get_device(dev);
4528 		/*
4529 		 * Make sure the device is off the kset list, in the
4530 		 * event that dev->*->shutdown() doesn't remove it.
4531 		 */
4532 		list_del_init(&dev->kobj.entry);
4533 		spin_unlock(&devices_kset->list_lock);
4534 
4535 		/* hold lock to avoid race with probe/release */
4536 		if (parent)
4537 			device_lock(parent);
4538 		device_lock(dev);
4539 
4540 		/* Don't allow any more runtime suspends */
4541 		pm_runtime_get_noresume(dev);
4542 		pm_runtime_barrier(dev);
4543 
4544 		if (dev->class && dev->class->shutdown_pre) {
4545 			if (initcall_debug)
4546 				dev_info(dev, "shutdown_pre\n");
4547 			dev->class->shutdown_pre(dev);
4548 		}
4549 		if (dev->bus && dev->bus->shutdown) {
4550 			if (initcall_debug)
4551 				dev_info(dev, "shutdown\n");
4552 			dev->bus->shutdown(dev);
4553 		} else if (dev->driver && dev->driver->shutdown) {
4554 			if (initcall_debug)
4555 				dev_info(dev, "shutdown\n");
4556 			dev->driver->shutdown(dev);
4557 		}
4558 
4559 		device_unlock(dev);
4560 		if (parent)
4561 			device_unlock(parent);
4562 
4563 		put_device(dev);
4564 		put_device(parent);
4565 
4566 		spin_lock(&devices_kset->list_lock);
4567 	}
4568 	spin_unlock(&devices_kset->list_lock);
4569 }
4570 
4571 /*
4572  * Device logging functions
4573  */
4574 
4575 #ifdef CONFIG_PRINTK
4576 static void
4577 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4578 {
4579 	const char *subsys;
4580 
4581 	memset(dev_info, 0, sizeof(*dev_info));
4582 
4583 	if (dev->class)
4584 		subsys = dev->class->name;
4585 	else if (dev->bus)
4586 		subsys = dev->bus->name;
4587 	else
4588 		return;
4589 
4590 	strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4591 
4592 	/*
4593 	 * Add device identifier DEVICE=:
4594 	 *   b12:8         block dev_t
4595 	 *   c127:3        char dev_t
4596 	 *   n8            netdev ifindex
4597 	 *   +sound:card0  subsystem:devname
4598 	 */
4599 	if (MAJOR(dev->devt)) {
4600 		char c;
4601 
4602 		if (strcmp(subsys, "block") == 0)
4603 			c = 'b';
4604 		else
4605 			c = 'c';
4606 
4607 		snprintf(dev_info->device, sizeof(dev_info->device),
4608 			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4609 	} else if (strcmp(subsys, "net") == 0) {
4610 		struct net_device *net = to_net_dev(dev);
4611 
4612 		snprintf(dev_info->device, sizeof(dev_info->device),
4613 			 "n%u", net->ifindex);
4614 	} else {
4615 		snprintf(dev_info->device, sizeof(dev_info->device),
4616 			 "+%s:%s", subsys, dev_name(dev));
4617 	}
4618 }
4619 
4620 int dev_vprintk_emit(int level, const struct device *dev,
4621 		     const char *fmt, va_list args)
4622 {
4623 	struct dev_printk_info dev_info;
4624 
4625 	set_dev_info(dev, &dev_info);
4626 
4627 	return vprintk_emit(0, level, &dev_info, fmt, args);
4628 }
4629 EXPORT_SYMBOL(dev_vprintk_emit);
4630 
4631 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4632 {
4633 	va_list args;
4634 	int r;
4635 
4636 	va_start(args, fmt);
4637 
4638 	r = dev_vprintk_emit(level, dev, fmt, args);
4639 
4640 	va_end(args);
4641 
4642 	return r;
4643 }
4644 EXPORT_SYMBOL(dev_printk_emit);
4645 
4646 static void __dev_printk(const char *level, const struct device *dev,
4647 			struct va_format *vaf)
4648 {
4649 	if (dev)
4650 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4651 				dev_driver_string(dev), dev_name(dev), vaf);
4652 	else
4653 		printk("%s(NULL device *): %pV", level, vaf);
4654 }
4655 
4656 void _dev_printk(const char *level, const struct device *dev,
4657 		 const char *fmt, ...)
4658 {
4659 	struct va_format vaf;
4660 	va_list args;
4661 
4662 	va_start(args, fmt);
4663 
4664 	vaf.fmt = fmt;
4665 	vaf.va = &args;
4666 
4667 	__dev_printk(level, dev, &vaf);
4668 
4669 	va_end(args);
4670 }
4671 EXPORT_SYMBOL(_dev_printk);
4672 
4673 #define define_dev_printk_level(func, kern_level)		\
4674 void func(const struct device *dev, const char *fmt, ...)	\
4675 {								\
4676 	struct va_format vaf;					\
4677 	va_list args;						\
4678 								\
4679 	va_start(args, fmt);					\
4680 								\
4681 	vaf.fmt = fmt;						\
4682 	vaf.va = &args;						\
4683 								\
4684 	__dev_printk(kern_level, dev, &vaf);			\
4685 								\
4686 	va_end(args);						\
4687 }								\
4688 EXPORT_SYMBOL(func);
4689 
4690 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4691 define_dev_printk_level(_dev_alert, KERN_ALERT);
4692 define_dev_printk_level(_dev_crit, KERN_CRIT);
4693 define_dev_printk_level(_dev_err, KERN_ERR);
4694 define_dev_printk_level(_dev_warn, KERN_WARNING);
4695 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4696 define_dev_printk_level(_dev_info, KERN_INFO);
4697 
4698 #endif
4699 
4700 /**
4701  * dev_err_probe - probe error check and log helper
4702  * @dev: the pointer to the struct device
4703  * @err: error value to test
4704  * @fmt: printf-style format string
4705  * @...: arguments as specified in the format string
4706  *
4707  * This helper implements common pattern present in probe functions for error
4708  * checking: print debug or error message depending if the error value is
4709  * -EPROBE_DEFER and propagate error upwards.
4710  * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4711  * checked later by reading devices_deferred debugfs attribute.
4712  * It replaces code sequence::
4713  *
4714  * 	if (err != -EPROBE_DEFER)
4715  * 		dev_err(dev, ...);
4716  * 	else
4717  * 		dev_dbg(dev, ...);
4718  * 	return err;
4719  *
4720  * with::
4721  *
4722  * 	return dev_err_probe(dev, err, ...);
4723  *
4724  * Note that it is deemed acceptable to use this function for error
4725  * prints during probe even if the @err is known to never be -EPROBE_DEFER.
4726  * The benefit compared to a normal dev_err() is the standardized format
4727  * of the error code and the fact that the error code is returned.
4728  *
4729  * Returns @err.
4730  *
4731  */
4732 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4733 {
4734 	struct va_format vaf;
4735 	va_list args;
4736 
4737 	va_start(args, fmt);
4738 	vaf.fmt = fmt;
4739 	vaf.va = &args;
4740 
4741 	if (err != -EPROBE_DEFER) {
4742 		dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4743 	} else {
4744 		device_set_deferred_probe_reason(dev, &vaf);
4745 		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4746 	}
4747 
4748 	va_end(args);
4749 
4750 	return err;
4751 }
4752 EXPORT_SYMBOL_GPL(dev_err_probe);
4753 
4754 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4755 {
4756 	return fwnode && !IS_ERR(fwnode->secondary);
4757 }
4758 
4759 /**
4760  * set_primary_fwnode - Change the primary firmware node of a given device.
4761  * @dev: Device to handle.
4762  * @fwnode: New primary firmware node of the device.
4763  *
4764  * Set the device's firmware node pointer to @fwnode, but if a secondary
4765  * firmware node of the device is present, preserve it.
4766  *
4767  * Valid fwnode cases are:
4768  *  - primary --> secondary --> -ENODEV
4769  *  - primary --> NULL
4770  *  - secondary --> -ENODEV
4771  *  - NULL
4772  */
4773 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4774 {
4775 	struct device *parent = dev->parent;
4776 	struct fwnode_handle *fn = dev->fwnode;
4777 
4778 	if (fwnode) {
4779 		if (fwnode_is_primary(fn))
4780 			fn = fn->secondary;
4781 
4782 		if (fn) {
4783 			WARN_ON(fwnode->secondary);
4784 			fwnode->secondary = fn;
4785 		}
4786 		dev->fwnode = fwnode;
4787 	} else {
4788 		if (fwnode_is_primary(fn)) {
4789 			dev->fwnode = fn->secondary;
4790 			/* Set fn->secondary = NULL, so fn remains the primary fwnode */
4791 			if (!(parent && fn == parent->fwnode))
4792 				fn->secondary = NULL;
4793 		} else {
4794 			dev->fwnode = NULL;
4795 		}
4796 	}
4797 }
4798 EXPORT_SYMBOL_GPL(set_primary_fwnode);
4799 
4800 /**
4801  * set_secondary_fwnode - Change the secondary firmware node of a given device.
4802  * @dev: Device to handle.
4803  * @fwnode: New secondary firmware node of the device.
4804  *
4805  * If a primary firmware node of the device is present, set its secondary
4806  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
4807  * @fwnode.
4808  */
4809 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4810 {
4811 	if (fwnode)
4812 		fwnode->secondary = ERR_PTR(-ENODEV);
4813 
4814 	if (fwnode_is_primary(dev->fwnode))
4815 		dev->fwnode->secondary = fwnode;
4816 	else
4817 		dev->fwnode = fwnode;
4818 }
4819 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4820 
4821 /**
4822  * device_set_of_node_from_dev - reuse device-tree node of another device
4823  * @dev: device whose device-tree node is being set
4824  * @dev2: device whose device-tree node is being reused
4825  *
4826  * Takes another reference to the new device-tree node after first dropping
4827  * any reference held to the old node.
4828  */
4829 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4830 {
4831 	of_node_put(dev->of_node);
4832 	dev->of_node = of_node_get(dev2->of_node);
4833 	dev->of_node_reused = true;
4834 }
4835 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4836 
4837 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
4838 {
4839 	dev->fwnode = fwnode;
4840 	dev->of_node = to_of_node(fwnode);
4841 }
4842 EXPORT_SYMBOL_GPL(device_set_node);
4843 
4844 int device_match_name(struct device *dev, const void *name)
4845 {
4846 	return sysfs_streq(dev_name(dev), name);
4847 }
4848 EXPORT_SYMBOL_GPL(device_match_name);
4849 
4850 int device_match_of_node(struct device *dev, const void *np)
4851 {
4852 	return dev->of_node == np;
4853 }
4854 EXPORT_SYMBOL_GPL(device_match_of_node);
4855 
4856 int device_match_fwnode(struct device *dev, const void *fwnode)
4857 {
4858 	return dev_fwnode(dev) == fwnode;
4859 }
4860 EXPORT_SYMBOL_GPL(device_match_fwnode);
4861 
4862 int device_match_devt(struct device *dev, const void *pdevt)
4863 {
4864 	return dev->devt == *(dev_t *)pdevt;
4865 }
4866 EXPORT_SYMBOL_GPL(device_match_devt);
4867 
4868 int device_match_acpi_dev(struct device *dev, const void *adev)
4869 {
4870 	return ACPI_COMPANION(dev) == adev;
4871 }
4872 EXPORT_SYMBOL(device_match_acpi_dev);
4873 
4874 int device_match_acpi_handle(struct device *dev, const void *handle)
4875 {
4876 	return ACPI_HANDLE(dev) == handle;
4877 }
4878 EXPORT_SYMBOL(device_match_acpi_handle);
4879 
4880 int device_match_any(struct device *dev, const void *unused)
4881 {
4882 	return 1;
4883 }
4884 EXPORT_SYMBOL_GPL(device_match_any);
4885