xref: /openbmc/linux/drivers/base/core.c (revision fc28ab18)
1 /*
2  * drivers/base/core.c - core driver model code (device registration, etc)
3  *
4  * Copyright (c) 2002-3 Patrick Mochel
5  * Copyright (c) 2002-3 Open Source Development Labs
6  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
7  * Copyright (c) 2006 Novell, Inc.
8  *
9  * This file is released under the GPLv2
10  *
11  */
12 
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/kallsyms.h>
26 #include <linux/mutex.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/netdevice.h>
29 #include <linux/sysfs.h>
30 
31 #include "base.h"
32 #include "power/power.h"
33 
34 #ifdef CONFIG_SYSFS_DEPRECATED
35 #ifdef CONFIG_SYSFS_DEPRECATED_V2
36 long sysfs_deprecated = 1;
37 #else
38 long sysfs_deprecated = 0;
39 #endif
40 static int __init sysfs_deprecated_setup(char *arg)
41 {
42 	return kstrtol(arg, 10, &sysfs_deprecated);
43 }
44 early_param("sysfs.deprecated", sysfs_deprecated_setup);
45 #endif
46 
47 /* Device links support. */
48 
49 #ifdef CONFIG_SRCU
50 static DEFINE_MUTEX(device_links_lock);
51 DEFINE_STATIC_SRCU(device_links_srcu);
52 
53 static inline void device_links_write_lock(void)
54 {
55 	mutex_lock(&device_links_lock);
56 }
57 
58 static inline void device_links_write_unlock(void)
59 {
60 	mutex_unlock(&device_links_lock);
61 }
62 
63 int device_links_read_lock(void)
64 {
65 	return srcu_read_lock(&device_links_srcu);
66 }
67 
68 void device_links_read_unlock(int idx)
69 {
70 	srcu_read_unlock(&device_links_srcu, idx);
71 }
72 #else /* !CONFIG_SRCU */
73 static DECLARE_RWSEM(device_links_lock);
74 
75 static inline void device_links_write_lock(void)
76 {
77 	down_write(&device_links_lock);
78 }
79 
80 static inline void device_links_write_unlock(void)
81 {
82 	up_write(&device_links_lock);
83 }
84 
85 int device_links_read_lock(void)
86 {
87 	down_read(&device_links_lock);
88 	return 0;
89 }
90 
91 void device_links_read_unlock(int not_used)
92 {
93 	up_read(&device_links_lock);
94 }
95 #endif /* !CONFIG_SRCU */
96 
97 /**
98  * device_is_dependent - Check if one device depends on another one
99  * @dev: Device to check dependencies for.
100  * @target: Device to check against.
101  *
102  * Check if @target depends on @dev or any device dependent on it (its child or
103  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
104  */
105 static int device_is_dependent(struct device *dev, void *target)
106 {
107 	struct device_link *link;
108 	int ret;
109 
110 	if (WARN_ON(dev == target))
111 		return 1;
112 
113 	ret = device_for_each_child(dev, target, device_is_dependent);
114 	if (ret)
115 		return ret;
116 
117 	list_for_each_entry(link, &dev->links.consumers, s_node) {
118 		if (WARN_ON(link->consumer == target))
119 			return 1;
120 
121 		ret = device_is_dependent(link->consumer, target);
122 		if (ret)
123 			break;
124 	}
125 	return ret;
126 }
127 
128 static int device_reorder_to_tail(struct device *dev, void *not_used)
129 {
130 	struct device_link *link;
131 
132 	/*
133 	 * Devices that have not been registered yet will be put to the ends
134 	 * of the lists during the registration, so skip them here.
135 	 */
136 	if (device_is_registered(dev))
137 		devices_kset_move_last(dev);
138 
139 	if (device_pm_initialized(dev))
140 		device_pm_move_last(dev);
141 
142 	device_for_each_child(dev, NULL, device_reorder_to_tail);
143 	list_for_each_entry(link, &dev->links.consumers, s_node)
144 		device_reorder_to_tail(link->consumer, NULL);
145 
146 	return 0;
147 }
148 
149 /**
150  * device_link_add - Create a link between two devices.
151  * @consumer: Consumer end of the link.
152  * @supplier: Supplier end of the link.
153  * @flags: Link flags.
154  *
155  * The caller is responsible for the proper synchronization of the link creation
156  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
157  * runtime PM framework to take the link into account.  Second, if the
158  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
159  * be forced into the active metastate and reference-counted upon the creation
160  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
161  * ignored.
162  *
163  * If the DL_FLAG_AUTOREMOVE is set, the link will be removed automatically
164  * when the consumer device driver unbinds from it.  The combination of both
165  * DL_FLAG_AUTOREMOVE and DL_FLAG_STATELESS set is invalid and will cause NULL
166  * to be returned.
167  *
168  * A side effect of the link creation is re-ordering of dpm_list and the
169  * devices_kset list by moving the consumer device and all devices depending
170  * on it to the ends of these lists (that does not happen to devices that have
171  * not been registered when this function is called).
172  *
173  * The supplier device is required to be registered when this function is called
174  * and NULL will be returned if that is not the case.  The consumer device need
175  * not be registered, however.
176  */
177 struct device_link *device_link_add(struct device *consumer,
178 				    struct device *supplier, u32 flags)
179 {
180 	struct device_link *link;
181 
182 	if (!consumer || !supplier ||
183 	    ((flags & DL_FLAG_STATELESS) && (flags & DL_FLAG_AUTOREMOVE)))
184 		return NULL;
185 
186 	device_links_write_lock();
187 	device_pm_lock();
188 
189 	/*
190 	 * If the supplier has not been fully registered yet or there is a
191 	 * reverse dependency between the consumer and the supplier already in
192 	 * the graph, return NULL.
193 	 */
194 	if (!device_pm_initialized(supplier)
195 	    || device_is_dependent(consumer, supplier)) {
196 		link = NULL;
197 		goto out;
198 	}
199 
200 	list_for_each_entry(link, &supplier->links.consumers, s_node)
201 		if (link->consumer == consumer)
202 			goto out;
203 
204 	link = kzalloc(sizeof(*link), GFP_KERNEL);
205 	if (!link)
206 		goto out;
207 
208 	if (flags & DL_FLAG_PM_RUNTIME) {
209 		if (flags & DL_FLAG_RPM_ACTIVE) {
210 			if (pm_runtime_get_sync(supplier) < 0) {
211 				pm_runtime_put_noidle(supplier);
212 				kfree(link);
213 				link = NULL;
214 				goto out;
215 			}
216 			link->rpm_active = true;
217 		}
218 		pm_runtime_new_link(consumer);
219 	}
220 	get_device(supplier);
221 	link->supplier = supplier;
222 	INIT_LIST_HEAD(&link->s_node);
223 	get_device(consumer);
224 	link->consumer = consumer;
225 	INIT_LIST_HEAD(&link->c_node);
226 	link->flags = flags;
227 
228 	/* Determine the initial link state. */
229 	if (flags & DL_FLAG_STATELESS) {
230 		link->status = DL_STATE_NONE;
231 	} else {
232 		switch (supplier->links.status) {
233 		case DL_DEV_DRIVER_BOUND:
234 			switch (consumer->links.status) {
235 			case DL_DEV_PROBING:
236 				/*
237 				 * Balance the decrementation of the supplier's
238 				 * runtime PM usage counter after consumer probe
239 				 * in driver_probe_device().
240 				 */
241 				if (flags & DL_FLAG_PM_RUNTIME)
242 					pm_runtime_get_sync(supplier);
243 
244 				link->status = DL_STATE_CONSUMER_PROBE;
245 				break;
246 			case DL_DEV_DRIVER_BOUND:
247 				link->status = DL_STATE_ACTIVE;
248 				break;
249 			default:
250 				link->status = DL_STATE_AVAILABLE;
251 				break;
252 			}
253 			break;
254 		case DL_DEV_UNBINDING:
255 			link->status = DL_STATE_SUPPLIER_UNBIND;
256 			break;
257 		default:
258 			link->status = DL_STATE_DORMANT;
259 			break;
260 		}
261 	}
262 
263 	/*
264 	 * Move the consumer and all of the devices depending on it to the end
265 	 * of dpm_list and the devices_kset list.
266 	 *
267 	 * It is necessary to hold dpm_list locked throughout all that or else
268 	 * we may end up suspending with a wrong ordering of it.
269 	 */
270 	device_reorder_to_tail(consumer, NULL);
271 
272 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
273 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
274 
275 	dev_info(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
276 
277  out:
278 	device_pm_unlock();
279 	device_links_write_unlock();
280 	return link;
281 }
282 EXPORT_SYMBOL_GPL(device_link_add);
283 
284 static void device_link_free(struct device_link *link)
285 {
286 	put_device(link->consumer);
287 	put_device(link->supplier);
288 	kfree(link);
289 }
290 
291 #ifdef CONFIG_SRCU
292 static void __device_link_free_srcu(struct rcu_head *rhead)
293 {
294 	device_link_free(container_of(rhead, struct device_link, rcu_head));
295 }
296 
297 static void __device_link_del(struct device_link *link)
298 {
299 	dev_info(link->consumer, "Dropping the link to %s\n",
300 		 dev_name(link->supplier));
301 
302 	if (link->flags & DL_FLAG_PM_RUNTIME)
303 		pm_runtime_drop_link(link->consumer);
304 
305 	list_del_rcu(&link->s_node);
306 	list_del_rcu(&link->c_node);
307 	call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
308 }
309 #else /* !CONFIG_SRCU */
310 static void __device_link_del(struct device_link *link)
311 {
312 	dev_info(link->consumer, "Dropping the link to %s\n",
313 		 dev_name(link->supplier));
314 
315 	list_del(&link->s_node);
316 	list_del(&link->c_node);
317 	device_link_free(link);
318 }
319 #endif /* !CONFIG_SRCU */
320 
321 /**
322  * device_link_del - Delete a link between two devices.
323  * @link: Device link to delete.
324  *
325  * The caller must ensure proper synchronization of this function with runtime
326  * PM.
327  */
328 void device_link_del(struct device_link *link)
329 {
330 	device_links_write_lock();
331 	device_pm_lock();
332 	__device_link_del(link);
333 	device_pm_unlock();
334 	device_links_write_unlock();
335 }
336 EXPORT_SYMBOL_GPL(device_link_del);
337 
338 static void device_links_missing_supplier(struct device *dev)
339 {
340 	struct device_link *link;
341 
342 	list_for_each_entry(link, &dev->links.suppliers, c_node)
343 		if (link->status == DL_STATE_CONSUMER_PROBE)
344 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
345 }
346 
347 /**
348  * device_links_check_suppliers - Check presence of supplier drivers.
349  * @dev: Consumer device.
350  *
351  * Check links from this device to any suppliers.  Walk the list of the device's
352  * links to suppliers and see if all of them are available.  If not, simply
353  * return -EPROBE_DEFER.
354  *
355  * We need to guarantee that the supplier will not go away after the check has
356  * been positive here.  It only can go away in __device_release_driver() and
357  * that function  checks the device's links to consumers.  This means we need to
358  * mark the link as "consumer probe in progress" to make the supplier removal
359  * wait for us to complete (or bad things may happen).
360  *
361  * Links with the DL_FLAG_STATELESS flag set are ignored.
362  */
363 int device_links_check_suppliers(struct device *dev)
364 {
365 	struct device_link *link;
366 	int ret = 0;
367 
368 	device_links_write_lock();
369 
370 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
371 		if (link->flags & DL_FLAG_STATELESS)
372 			continue;
373 
374 		if (link->status != DL_STATE_AVAILABLE) {
375 			device_links_missing_supplier(dev);
376 			ret = -EPROBE_DEFER;
377 			break;
378 		}
379 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
380 	}
381 	dev->links.status = DL_DEV_PROBING;
382 
383 	device_links_write_unlock();
384 	return ret;
385 }
386 
387 /**
388  * device_links_driver_bound - Update device links after probing its driver.
389  * @dev: Device to update the links for.
390  *
391  * The probe has been successful, so update links from this device to any
392  * consumers by changing their status to "available".
393  *
394  * Also change the status of @dev's links to suppliers to "active".
395  *
396  * Links with the DL_FLAG_STATELESS flag set are ignored.
397  */
398 void device_links_driver_bound(struct device *dev)
399 {
400 	struct device_link *link;
401 
402 	device_links_write_lock();
403 
404 	list_for_each_entry(link, &dev->links.consumers, s_node) {
405 		if (link->flags & DL_FLAG_STATELESS)
406 			continue;
407 
408 		WARN_ON(link->status != DL_STATE_DORMANT);
409 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
410 	}
411 
412 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
413 		if (link->flags & DL_FLAG_STATELESS)
414 			continue;
415 
416 		WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
417 		WRITE_ONCE(link->status, DL_STATE_ACTIVE);
418 	}
419 
420 	dev->links.status = DL_DEV_DRIVER_BOUND;
421 
422 	device_links_write_unlock();
423 }
424 
425 /**
426  * __device_links_no_driver - Update links of a device without a driver.
427  * @dev: Device without a drvier.
428  *
429  * Delete all non-persistent links from this device to any suppliers.
430  *
431  * Persistent links stay around, but their status is changed to "available",
432  * unless they already are in the "supplier unbind in progress" state in which
433  * case they need not be updated.
434  *
435  * Links with the DL_FLAG_STATELESS flag set are ignored.
436  */
437 static void __device_links_no_driver(struct device *dev)
438 {
439 	struct device_link *link, *ln;
440 
441 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
442 		if (link->flags & DL_FLAG_STATELESS)
443 			continue;
444 
445 		if (link->flags & DL_FLAG_AUTOREMOVE)
446 			__device_link_del(link);
447 		else if (link->status != DL_STATE_SUPPLIER_UNBIND)
448 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
449 	}
450 
451 	dev->links.status = DL_DEV_NO_DRIVER;
452 }
453 
454 void device_links_no_driver(struct device *dev)
455 {
456 	device_links_write_lock();
457 	__device_links_no_driver(dev);
458 	device_links_write_unlock();
459 }
460 
461 /**
462  * device_links_driver_cleanup - Update links after driver removal.
463  * @dev: Device whose driver has just gone away.
464  *
465  * Update links to consumers for @dev by changing their status to "dormant" and
466  * invoke %__device_links_no_driver() to update links to suppliers for it as
467  * appropriate.
468  *
469  * Links with the DL_FLAG_STATELESS flag set are ignored.
470  */
471 void device_links_driver_cleanup(struct device *dev)
472 {
473 	struct device_link *link;
474 
475 	device_links_write_lock();
476 
477 	list_for_each_entry(link, &dev->links.consumers, s_node) {
478 		if (link->flags & DL_FLAG_STATELESS)
479 			continue;
480 
481 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE);
482 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
483 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
484 	}
485 
486 	__device_links_no_driver(dev);
487 
488 	device_links_write_unlock();
489 }
490 
491 /**
492  * device_links_busy - Check if there are any busy links to consumers.
493  * @dev: Device to check.
494  *
495  * Check each consumer of the device and return 'true' if its link's status
496  * is one of "consumer probe" or "active" (meaning that the given consumer is
497  * probing right now or its driver is present).  Otherwise, change the link
498  * state to "supplier unbind" to prevent the consumer from being probed
499  * successfully going forward.
500  *
501  * Return 'false' if there are no probing or active consumers.
502  *
503  * Links with the DL_FLAG_STATELESS flag set are ignored.
504  */
505 bool device_links_busy(struct device *dev)
506 {
507 	struct device_link *link;
508 	bool ret = false;
509 
510 	device_links_write_lock();
511 
512 	list_for_each_entry(link, &dev->links.consumers, s_node) {
513 		if (link->flags & DL_FLAG_STATELESS)
514 			continue;
515 
516 		if (link->status == DL_STATE_CONSUMER_PROBE
517 		    || link->status == DL_STATE_ACTIVE) {
518 			ret = true;
519 			break;
520 		}
521 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
522 	}
523 
524 	dev->links.status = DL_DEV_UNBINDING;
525 
526 	device_links_write_unlock();
527 	return ret;
528 }
529 
530 /**
531  * device_links_unbind_consumers - Force unbind consumers of the given device.
532  * @dev: Device to unbind the consumers of.
533  *
534  * Walk the list of links to consumers for @dev and if any of them is in the
535  * "consumer probe" state, wait for all device probes in progress to complete
536  * and start over.
537  *
538  * If that's not the case, change the status of the link to "supplier unbind"
539  * and check if the link was in the "active" state.  If so, force the consumer
540  * driver to unbind and start over (the consumer will not re-probe as we have
541  * changed the state of the link already).
542  *
543  * Links with the DL_FLAG_STATELESS flag set are ignored.
544  */
545 void device_links_unbind_consumers(struct device *dev)
546 {
547 	struct device_link *link;
548 
549  start:
550 	device_links_write_lock();
551 
552 	list_for_each_entry(link, &dev->links.consumers, s_node) {
553 		enum device_link_state status;
554 
555 		if (link->flags & DL_FLAG_STATELESS)
556 			continue;
557 
558 		status = link->status;
559 		if (status == DL_STATE_CONSUMER_PROBE) {
560 			device_links_write_unlock();
561 
562 			wait_for_device_probe();
563 			goto start;
564 		}
565 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
566 		if (status == DL_STATE_ACTIVE) {
567 			struct device *consumer = link->consumer;
568 
569 			get_device(consumer);
570 
571 			device_links_write_unlock();
572 
573 			device_release_driver_internal(consumer, NULL,
574 						       consumer->parent);
575 			put_device(consumer);
576 			goto start;
577 		}
578 	}
579 
580 	device_links_write_unlock();
581 }
582 
583 /**
584  * device_links_purge - Delete existing links to other devices.
585  * @dev: Target device.
586  */
587 static void device_links_purge(struct device *dev)
588 {
589 	struct device_link *link, *ln;
590 
591 	/*
592 	 * Delete all of the remaining links from this device to any other
593 	 * devices (either consumers or suppliers).
594 	 */
595 	device_links_write_lock();
596 
597 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
598 		WARN_ON(link->status == DL_STATE_ACTIVE);
599 		__device_link_del(link);
600 	}
601 
602 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
603 		WARN_ON(link->status != DL_STATE_DORMANT &&
604 			link->status != DL_STATE_NONE);
605 		__device_link_del(link);
606 	}
607 
608 	device_links_write_unlock();
609 }
610 
611 /* Device links support end. */
612 
613 int (*platform_notify)(struct device *dev) = NULL;
614 int (*platform_notify_remove)(struct device *dev) = NULL;
615 static struct kobject *dev_kobj;
616 struct kobject *sysfs_dev_char_kobj;
617 struct kobject *sysfs_dev_block_kobj;
618 
619 static DEFINE_MUTEX(device_hotplug_lock);
620 
621 void lock_device_hotplug(void)
622 {
623 	mutex_lock(&device_hotplug_lock);
624 }
625 
626 void unlock_device_hotplug(void)
627 {
628 	mutex_unlock(&device_hotplug_lock);
629 }
630 
631 int lock_device_hotplug_sysfs(void)
632 {
633 	if (mutex_trylock(&device_hotplug_lock))
634 		return 0;
635 
636 	/* Avoid busy looping (5 ms of sleep should do). */
637 	msleep(5);
638 	return restart_syscall();
639 }
640 
641 #ifdef CONFIG_BLOCK
642 static inline int device_is_not_partition(struct device *dev)
643 {
644 	return !(dev->type == &part_type);
645 }
646 #else
647 static inline int device_is_not_partition(struct device *dev)
648 {
649 	return 1;
650 }
651 #endif
652 
653 /**
654  * dev_driver_string - Return a device's driver name, if at all possible
655  * @dev: struct device to get the name of
656  *
657  * Will return the device's driver's name if it is bound to a device.  If
658  * the device is not bound to a driver, it will return the name of the bus
659  * it is attached to.  If it is not attached to a bus either, an empty
660  * string will be returned.
661  */
662 const char *dev_driver_string(const struct device *dev)
663 {
664 	struct device_driver *drv;
665 
666 	/* dev->driver can change to NULL underneath us because of unbinding,
667 	 * so be careful about accessing it.  dev->bus and dev->class should
668 	 * never change once they are set, so they don't need special care.
669 	 */
670 	drv = ACCESS_ONCE(dev->driver);
671 	return drv ? drv->name :
672 			(dev->bus ? dev->bus->name :
673 			(dev->class ? dev->class->name : ""));
674 }
675 EXPORT_SYMBOL(dev_driver_string);
676 
677 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
678 
679 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
680 			     char *buf)
681 {
682 	struct device_attribute *dev_attr = to_dev_attr(attr);
683 	struct device *dev = kobj_to_dev(kobj);
684 	ssize_t ret = -EIO;
685 
686 	if (dev_attr->show)
687 		ret = dev_attr->show(dev, dev_attr, buf);
688 	if (ret >= (ssize_t)PAGE_SIZE) {
689 		print_symbol("dev_attr_show: %s returned bad count\n",
690 				(unsigned long)dev_attr->show);
691 	}
692 	return ret;
693 }
694 
695 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
696 			      const char *buf, size_t count)
697 {
698 	struct device_attribute *dev_attr = to_dev_attr(attr);
699 	struct device *dev = kobj_to_dev(kobj);
700 	ssize_t ret = -EIO;
701 
702 	if (dev_attr->store)
703 		ret = dev_attr->store(dev, dev_attr, buf, count);
704 	return ret;
705 }
706 
707 static const struct sysfs_ops dev_sysfs_ops = {
708 	.show	= dev_attr_show,
709 	.store	= dev_attr_store,
710 };
711 
712 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
713 
714 ssize_t device_store_ulong(struct device *dev,
715 			   struct device_attribute *attr,
716 			   const char *buf, size_t size)
717 {
718 	struct dev_ext_attribute *ea = to_ext_attr(attr);
719 	char *end;
720 	unsigned long new = simple_strtoul(buf, &end, 0);
721 	if (end == buf)
722 		return -EINVAL;
723 	*(unsigned long *)(ea->var) = new;
724 	/* Always return full write size even if we didn't consume all */
725 	return size;
726 }
727 EXPORT_SYMBOL_GPL(device_store_ulong);
728 
729 ssize_t device_show_ulong(struct device *dev,
730 			  struct device_attribute *attr,
731 			  char *buf)
732 {
733 	struct dev_ext_attribute *ea = to_ext_attr(attr);
734 	return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
735 }
736 EXPORT_SYMBOL_GPL(device_show_ulong);
737 
738 ssize_t device_store_int(struct device *dev,
739 			 struct device_attribute *attr,
740 			 const char *buf, size_t size)
741 {
742 	struct dev_ext_attribute *ea = to_ext_attr(attr);
743 	char *end;
744 	long new = simple_strtol(buf, &end, 0);
745 	if (end == buf || new > INT_MAX || new < INT_MIN)
746 		return -EINVAL;
747 	*(int *)(ea->var) = new;
748 	/* Always return full write size even if we didn't consume all */
749 	return size;
750 }
751 EXPORT_SYMBOL_GPL(device_store_int);
752 
753 ssize_t device_show_int(struct device *dev,
754 			struct device_attribute *attr,
755 			char *buf)
756 {
757 	struct dev_ext_attribute *ea = to_ext_attr(attr);
758 
759 	return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
760 }
761 EXPORT_SYMBOL_GPL(device_show_int);
762 
763 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
764 			  const char *buf, size_t size)
765 {
766 	struct dev_ext_attribute *ea = to_ext_attr(attr);
767 
768 	if (strtobool(buf, ea->var) < 0)
769 		return -EINVAL;
770 
771 	return size;
772 }
773 EXPORT_SYMBOL_GPL(device_store_bool);
774 
775 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
776 			 char *buf)
777 {
778 	struct dev_ext_attribute *ea = to_ext_attr(attr);
779 
780 	return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
781 }
782 EXPORT_SYMBOL_GPL(device_show_bool);
783 
784 /**
785  * device_release - free device structure.
786  * @kobj: device's kobject.
787  *
788  * This is called once the reference count for the object
789  * reaches 0. We forward the call to the device's release
790  * method, which should handle actually freeing the structure.
791  */
792 static void device_release(struct kobject *kobj)
793 {
794 	struct device *dev = kobj_to_dev(kobj);
795 	struct device_private *p = dev->p;
796 
797 	/*
798 	 * Some platform devices are driven without driver attached
799 	 * and managed resources may have been acquired.  Make sure
800 	 * all resources are released.
801 	 *
802 	 * Drivers still can add resources into device after device
803 	 * is deleted but alive, so release devres here to avoid
804 	 * possible memory leak.
805 	 */
806 	devres_release_all(dev);
807 
808 	if (dev->release)
809 		dev->release(dev);
810 	else if (dev->type && dev->type->release)
811 		dev->type->release(dev);
812 	else if (dev->class && dev->class->dev_release)
813 		dev->class->dev_release(dev);
814 	else
815 		WARN(1, KERN_ERR "Device '%s' does not have a release() "
816 			"function, it is broken and must be fixed.\n",
817 			dev_name(dev));
818 	kfree(p);
819 }
820 
821 static const void *device_namespace(struct kobject *kobj)
822 {
823 	struct device *dev = kobj_to_dev(kobj);
824 	const void *ns = NULL;
825 
826 	if (dev->class && dev->class->ns_type)
827 		ns = dev->class->namespace(dev);
828 
829 	return ns;
830 }
831 
832 static struct kobj_type device_ktype = {
833 	.release	= device_release,
834 	.sysfs_ops	= &dev_sysfs_ops,
835 	.namespace	= device_namespace,
836 };
837 
838 
839 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
840 {
841 	struct kobj_type *ktype = get_ktype(kobj);
842 
843 	if (ktype == &device_ktype) {
844 		struct device *dev = kobj_to_dev(kobj);
845 		if (dev->bus)
846 			return 1;
847 		if (dev->class)
848 			return 1;
849 	}
850 	return 0;
851 }
852 
853 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
854 {
855 	struct device *dev = kobj_to_dev(kobj);
856 
857 	if (dev->bus)
858 		return dev->bus->name;
859 	if (dev->class)
860 		return dev->class->name;
861 	return NULL;
862 }
863 
864 static int dev_uevent(struct kset *kset, struct kobject *kobj,
865 		      struct kobj_uevent_env *env)
866 {
867 	struct device *dev = kobj_to_dev(kobj);
868 	int retval = 0;
869 
870 	/* add device node properties if present */
871 	if (MAJOR(dev->devt)) {
872 		const char *tmp;
873 		const char *name;
874 		umode_t mode = 0;
875 		kuid_t uid = GLOBAL_ROOT_UID;
876 		kgid_t gid = GLOBAL_ROOT_GID;
877 
878 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
879 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
880 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
881 		if (name) {
882 			add_uevent_var(env, "DEVNAME=%s", name);
883 			if (mode)
884 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
885 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
886 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
887 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
888 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
889 			kfree(tmp);
890 		}
891 	}
892 
893 	if (dev->type && dev->type->name)
894 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
895 
896 	if (dev->driver)
897 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
898 
899 	/* Add common DT information about the device */
900 	of_device_uevent(dev, env);
901 
902 	/* have the bus specific function add its stuff */
903 	if (dev->bus && dev->bus->uevent) {
904 		retval = dev->bus->uevent(dev, env);
905 		if (retval)
906 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
907 				 dev_name(dev), __func__, retval);
908 	}
909 
910 	/* have the class specific function add its stuff */
911 	if (dev->class && dev->class->dev_uevent) {
912 		retval = dev->class->dev_uevent(dev, env);
913 		if (retval)
914 			pr_debug("device: '%s': %s: class uevent() "
915 				 "returned %d\n", dev_name(dev),
916 				 __func__, retval);
917 	}
918 
919 	/* have the device type specific function add its stuff */
920 	if (dev->type && dev->type->uevent) {
921 		retval = dev->type->uevent(dev, env);
922 		if (retval)
923 			pr_debug("device: '%s': %s: dev_type uevent() "
924 				 "returned %d\n", dev_name(dev),
925 				 __func__, retval);
926 	}
927 
928 	return retval;
929 }
930 
931 static const struct kset_uevent_ops device_uevent_ops = {
932 	.filter =	dev_uevent_filter,
933 	.name =		dev_uevent_name,
934 	.uevent =	dev_uevent,
935 };
936 
937 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
938 			   char *buf)
939 {
940 	struct kobject *top_kobj;
941 	struct kset *kset;
942 	struct kobj_uevent_env *env = NULL;
943 	int i;
944 	size_t count = 0;
945 	int retval;
946 
947 	/* search the kset, the device belongs to */
948 	top_kobj = &dev->kobj;
949 	while (!top_kobj->kset && top_kobj->parent)
950 		top_kobj = top_kobj->parent;
951 	if (!top_kobj->kset)
952 		goto out;
953 
954 	kset = top_kobj->kset;
955 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
956 		goto out;
957 
958 	/* respect filter */
959 	if (kset->uevent_ops && kset->uevent_ops->filter)
960 		if (!kset->uevent_ops->filter(kset, &dev->kobj))
961 			goto out;
962 
963 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
964 	if (!env)
965 		return -ENOMEM;
966 
967 	/* let the kset specific function add its keys */
968 	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
969 	if (retval)
970 		goto out;
971 
972 	/* copy keys to file */
973 	for (i = 0; i < env->envp_idx; i++)
974 		count += sprintf(&buf[count], "%s\n", env->envp[i]);
975 out:
976 	kfree(env);
977 	return count;
978 }
979 
980 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
981 			    const char *buf, size_t count)
982 {
983 	enum kobject_action action;
984 
985 	if (kobject_action_type(buf, count, &action) == 0)
986 		kobject_uevent(&dev->kobj, action);
987 	else
988 		dev_err(dev, "uevent: unknown action-string\n");
989 	return count;
990 }
991 static DEVICE_ATTR_RW(uevent);
992 
993 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
994 			   char *buf)
995 {
996 	bool val;
997 
998 	device_lock(dev);
999 	val = !dev->offline;
1000 	device_unlock(dev);
1001 	return sprintf(buf, "%u\n", val);
1002 }
1003 
1004 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1005 			    const char *buf, size_t count)
1006 {
1007 	bool val;
1008 	int ret;
1009 
1010 	ret = strtobool(buf, &val);
1011 	if (ret < 0)
1012 		return ret;
1013 
1014 	ret = lock_device_hotplug_sysfs();
1015 	if (ret)
1016 		return ret;
1017 
1018 	ret = val ? device_online(dev) : device_offline(dev);
1019 	unlock_device_hotplug();
1020 	return ret < 0 ? ret : count;
1021 }
1022 static DEVICE_ATTR_RW(online);
1023 
1024 int device_add_groups(struct device *dev, const struct attribute_group **groups)
1025 {
1026 	return sysfs_create_groups(&dev->kobj, groups);
1027 }
1028 
1029 void device_remove_groups(struct device *dev,
1030 			  const struct attribute_group **groups)
1031 {
1032 	sysfs_remove_groups(&dev->kobj, groups);
1033 }
1034 
1035 static int device_add_attrs(struct device *dev)
1036 {
1037 	struct class *class = dev->class;
1038 	const struct device_type *type = dev->type;
1039 	int error;
1040 
1041 	if (class) {
1042 		error = device_add_groups(dev, class->dev_groups);
1043 		if (error)
1044 			return error;
1045 	}
1046 
1047 	if (type) {
1048 		error = device_add_groups(dev, type->groups);
1049 		if (error)
1050 			goto err_remove_class_groups;
1051 	}
1052 
1053 	error = device_add_groups(dev, dev->groups);
1054 	if (error)
1055 		goto err_remove_type_groups;
1056 
1057 	if (device_supports_offline(dev) && !dev->offline_disabled) {
1058 		error = device_create_file(dev, &dev_attr_online);
1059 		if (error)
1060 			goto err_remove_dev_groups;
1061 	}
1062 
1063 	return 0;
1064 
1065  err_remove_dev_groups:
1066 	device_remove_groups(dev, dev->groups);
1067  err_remove_type_groups:
1068 	if (type)
1069 		device_remove_groups(dev, type->groups);
1070  err_remove_class_groups:
1071 	if (class)
1072 		device_remove_groups(dev, class->dev_groups);
1073 
1074 	return error;
1075 }
1076 
1077 static void device_remove_attrs(struct device *dev)
1078 {
1079 	struct class *class = dev->class;
1080 	const struct device_type *type = dev->type;
1081 
1082 	device_remove_file(dev, &dev_attr_online);
1083 	device_remove_groups(dev, dev->groups);
1084 
1085 	if (type)
1086 		device_remove_groups(dev, type->groups);
1087 
1088 	if (class)
1089 		device_remove_groups(dev, class->dev_groups);
1090 }
1091 
1092 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1093 			char *buf)
1094 {
1095 	return print_dev_t(buf, dev->devt);
1096 }
1097 static DEVICE_ATTR_RO(dev);
1098 
1099 /* /sys/devices/ */
1100 struct kset *devices_kset;
1101 
1102 /**
1103  * devices_kset_move_before - Move device in the devices_kset's list.
1104  * @deva: Device to move.
1105  * @devb: Device @deva should come before.
1106  */
1107 static void devices_kset_move_before(struct device *deva, struct device *devb)
1108 {
1109 	if (!devices_kset)
1110 		return;
1111 	pr_debug("devices_kset: Moving %s before %s\n",
1112 		 dev_name(deva), dev_name(devb));
1113 	spin_lock(&devices_kset->list_lock);
1114 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1115 	spin_unlock(&devices_kset->list_lock);
1116 }
1117 
1118 /**
1119  * devices_kset_move_after - Move device in the devices_kset's list.
1120  * @deva: Device to move
1121  * @devb: Device @deva should come after.
1122  */
1123 static void devices_kset_move_after(struct device *deva, struct device *devb)
1124 {
1125 	if (!devices_kset)
1126 		return;
1127 	pr_debug("devices_kset: Moving %s after %s\n",
1128 		 dev_name(deva), dev_name(devb));
1129 	spin_lock(&devices_kset->list_lock);
1130 	list_move(&deva->kobj.entry, &devb->kobj.entry);
1131 	spin_unlock(&devices_kset->list_lock);
1132 }
1133 
1134 /**
1135  * devices_kset_move_last - move the device to the end of devices_kset's list.
1136  * @dev: device to move
1137  */
1138 void devices_kset_move_last(struct device *dev)
1139 {
1140 	if (!devices_kset)
1141 		return;
1142 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1143 	spin_lock(&devices_kset->list_lock);
1144 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
1145 	spin_unlock(&devices_kset->list_lock);
1146 }
1147 
1148 /**
1149  * device_create_file - create sysfs attribute file for device.
1150  * @dev: device.
1151  * @attr: device attribute descriptor.
1152  */
1153 int device_create_file(struct device *dev,
1154 		       const struct device_attribute *attr)
1155 {
1156 	int error = 0;
1157 
1158 	if (dev) {
1159 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1160 			"Attribute %s: write permission without 'store'\n",
1161 			attr->attr.name);
1162 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1163 			"Attribute %s: read permission without 'show'\n",
1164 			attr->attr.name);
1165 		error = sysfs_create_file(&dev->kobj, &attr->attr);
1166 	}
1167 
1168 	return error;
1169 }
1170 EXPORT_SYMBOL_GPL(device_create_file);
1171 
1172 /**
1173  * device_remove_file - remove sysfs attribute file.
1174  * @dev: device.
1175  * @attr: device attribute descriptor.
1176  */
1177 void device_remove_file(struct device *dev,
1178 			const struct device_attribute *attr)
1179 {
1180 	if (dev)
1181 		sysfs_remove_file(&dev->kobj, &attr->attr);
1182 }
1183 EXPORT_SYMBOL_GPL(device_remove_file);
1184 
1185 /**
1186  * device_remove_file_self - remove sysfs attribute file from its own method.
1187  * @dev: device.
1188  * @attr: device attribute descriptor.
1189  *
1190  * See kernfs_remove_self() for details.
1191  */
1192 bool device_remove_file_self(struct device *dev,
1193 			     const struct device_attribute *attr)
1194 {
1195 	if (dev)
1196 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1197 	else
1198 		return false;
1199 }
1200 EXPORT_SYMBOL_GPL(device_remove_file_self);
1201 
1202 /**
1203  * device_create_bin_file - create sysfs binary attribute file for device.
1204  * @dev: device.
1205  * @attr: device binary attribute descriptor.
1206  */
1207 int device_create_bin_file(struct device *dev,
1208 			   const struct bin_attribute *attr)
1209 {
1210 	int error = -EINVAL;
1211 	if (dev)
1212 		error = sysfs_create_bin_file(&dev->kobj, attr);
1213 	return error;
1214 }
1215 EXPORT_SYMBOL_GPL(device_create_bin_file);
1216 
1217 /**
1218  * device_remove_bin_file - remove sysfs binary attribute file
1219  * @dev: device.
1220  * @attr: device binary attribute descriptor.
1221  */
1222 void device_remove_bin_file(struct device *dev,
1223 			    const struct bin_attribute *attr)
1224 {
1225 	if (dev)
1226 		sysfs_remove_bin_file(&dev->kobj, attr);
1227 }
1228 EXPORT_SYMBOL_GPL(device_remove_bin_file);
1229 
1230 static void klist_children_get(struct klist_node *n)
1231 {
1232 	struct device_private *p = to_device_private_parent(n);
1233 	struct device *dev = p->device;
1234 
1235 	get_device(dev);
1236 }
1237 
1238 static void klist_children_put(struct klist_node *n)
1239 {
1240 	struct device_private *p = to_device_private_parent(n);
1241 	struct device *dev = p->device;
1242 
1243 	put_device(dev);
1244 }
1245 
1246 /**
1247  * device_initialize - init device structure.
1248  * @dev: device.
1249  *
1250  * This prepares the device for use by other layers by initializing
1251  * its fields.
1252  * It is the first half of device_register(), if called by
1253  * that function, though it can also be called separately, so one
1254  * may use @dev's fields. In particular, get_device()/put_device()
1255  * may be used for reference counting of @dev after calling this
1256  * function.
1257  *
1258  * All fields in @dev must be initialized by the caller to 0, except
1259  * for those explicitly set to some other value.  The simplest
1260  * approach is to use kzalloc() to allocate the structure containing
1261  * @dev.
1262  *
1263  * NOTE: Use put_device() to give up your reference instead of freeing
1264  * @dev directly once you have called this function.
1265  */
1266 void device_initialize(struct device *dev)
1267 {
1268 	dev->kobj.kset = devices_kset;
1269 	kobject_init(&dev->kobj, &device_ktype);
1270 	INIT_LIST_HEAD(&dev->dma_pools);
1271 	mutex_init(&dev->mutex);
1272 	lockdep_set_novalidate_class(&dev->mutex);
1273 	spin_lock_init(&dev->devres_lock);
1274 	INIT_LIST_HEAD(&dev->devres_head);
1275 	device_pm_init(dev);
1276 	set_dev_node(dev, -1);
1277 #ifdef CONFIG_GENERIC_MSI_IRQ
1278 	INIT_LIST_HEAD(&dev->msi_list);
1279 #endif
1280 	INIT_LIST_HEAD(&dev->links.consumers);
1281 	INIT_LIST_HEAD(&dev->links.suppliers);
1282 	dev->links.status = DL_DEV_NO_DRIVER;
1283 }
1284 EXPORT_SYMBOL_GPL(device_initialize);
1285 
1286 struct kobject *virtual_device_parent(struct device *dev)
1287 {
1288 	static struct kobject *virtual_dir = NULL;
1289 
1290 	if (!virtual_dir)
1291 		virtual_dir = kobject_create_and_add("virtual",
1292 						     &devices_kset->kobj);
1293 
1294 	return virtual_dir;
1295 }
1296 
1297 struct class_dir {
1298 	struct kobject kobj;
1299 	struct class *class;
1300 };
1301 
1302 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
1303 
1304 static void class_dir_release(struct kobject *kobj)
1305 {
1306 	struct class_dir *dir = to_class_dir(kobj);
1307 	kfree(dir);
1308 }
1309 
1310 static const
1311 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
1312 {
1313 	struct class_dir *dir = to_class_dir(kobj);
1314 	return dir->class->ns_type;
1315 }
1316 
1317 static struct kobj_type class_dir_ktype = {
1318 	.release	= class_dir_release,
1319 	.sysfs_ops	= &kobj_sysfs_ops,
1320 	.child_ns_type	= class_dir_child_ns_type
1321 };
1322 
1323 static struct kobject *
1324 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
1325 {
1326 	struct class_dir *dir;
1327 	int retval;
1328 
1329 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
1330 	if (!dir)
1331 		return NULL;
1332 
1333 	dir->class = class;
1334 	kobject_init(&dir->kobj, &class_dir_ktype);
1335 
1336 	dir->kobj.kset = &class->p->glue_dirs;
1337 
1338 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
1339 	if (retval < 0) {
1340 		kobject_put(&dir->kobj);
1341 		return NULL;
1342 	}
1343 	return &dir->kobj;
1344 }
1345 
1346 static DEFINE_MUTEX(gdp_mutex);
1347 
1348 static struct kobject *get_device_parent(struct device *dev,
1349 					 struct device *parent)
1350 {
1351 	if (dev->class) {
1352 		struct kobject *kobj = NULL;
1353 		struct kobject *parent_kobj;
1354 		struct kobject *k;
1355 
1356 #ifdef CONFIG_BLOCK
1357 		/* block disks show up in /sys/block */
1358 		if (sysfs_deprecated && dev->class == &block_class) {
1359 			if (parent && parent->class == &block_class)
1360 				return &parent->kobj;
1361 			return &block_class.p->subsys.kobj;
1362 		}
1363 #endif
1364 
1365 		/*
1366 		 * If we have no parent, we live in "virtual".
1367 		 * Class-devices with a non class-device as parent, live
1368 		 * in a "glue" directory to prevent namespace collisions.
1369 		 */
1370 		if (parent == NULL)
1371 			parent_kobj = virtual_device_parent(dev);
1372 		else if (parent->class && !dev->class->ns_type)
1373 			return &parent->kobj;
1374 		else
1375 			parent_kobj = &parent->kobj;
1376 
1377 		mutex_lock(&gdp_mutex);
1378 
1379 		/* find our class-directory at the parent and reference it */
1380 		spin_lock(&dev->class->p->glue_dirs.list_lock);
1381 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
1382 			if (k->parent == parent_kobj) {
1383 				kobj = kobject_get(k);
1384 				break;
1385 			}
1386 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
1387 		if (kobj) {
1388 			mutex_unlock(&gdp_mutex);
1389 			return kobj;
1390 		}
1391 
1392 		/* or create a new class-directory at the parent device */
1393 		k = class_dir_create_and_add(dev->class, parent_kobj);
1394 		/* do not emit an uevent for this simple "glue" directory */
1395 		mutex_unlock(&gdp_mutex);
1396 		return k;
1397 	}
1398 
1399 	/* subsystems can specify a default root directory for their devices */
1400 	if (!parent && dev->bus && dev->bus->dev_root)
1401 		return &dev->bus->dev_root->kobj;
1402 
1403 	if (parent)
1404 		return &parent->kobj;
1405 	return NULL;
1406 }
1407 
1408 static inline bool live_in_glue_dir(struct kobject *kobj,
1409 				    struct device *dev)
1410 {
1411 	if (!kobj || !dev->class ||
1412 	    kobj->kset != &dev->class->p->glue_dirs)
1413 		return false;
1414 	return true;
1415 }
1416 
1417 static inline struct kobject *get_glue_dir(struct device *dev)
1418 {
1419 	return dev->kobj.parent;
1420 }
1421 
1422 /*
1423  * make sure cleaning up dir as the last step, we need to make
1424  * sure .release handler of kobject is run with holding the
1425  * global lock
1426  */
1427 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
1428 {
1429 	/* see if we live in a "glue" directory */
1430 	if (!live_in_glue_dir(glue_dir, dev))
1431 		return;
1432 
1433 	mutex_lock(&gdp_mutex);
1434 	kobject_put(glue_dir);
1435 	mutex_unlock(&gdp_mutex);
1436 }
1437 
1438 static int device_add_class_symlinks(struct device *dev)
1439 {
1440 	struct device_node *of_node = dev_of_node(dev);
1441 	int error;
1442 
1443 	if (of_node) {
1444 		error = sysfs_create_link(&dev->kobj, &of_node->kobj,"of_node");
1445 		if (error)
1446 			dev_warn(dev, "Error %d creating of_node link\n",error);
1447 		/* An error here doesn't warrant bringing down the device */
1448 	}
1449 
1450 	if (!dev->class)
1451 		return 0;
1452 
1453 	error = sysfs_create_link(&dev->kobj,
1454 				  &dev->class->p->subsys.kobj,
1455 				  "subsystem");
1456 	if (error)
1457 		goto out_devnode;
1458 
1459 	if (dev->parent && device_is_not_partition(dev)) {
1460 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
1461 					  "device");
1462 		if (error)
1463 			goto out_subsys;
1464 	}
1465 
1466 #ifdef CONFIG_BLOCK
1467 	/* /sys/block has directories and does not need symlinks */
1468 	if (sysfs_deprecated && dev->class == &block_class)
1469 		return 0;
1470 #endif
1471 
1472 	/* link in the class directory pointing to the device */
1473 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
1474 				  &dev->kobj, dev_name(dev));
1475 	if (error)
1476 		goto out_device;
1477 
1478 	return 0;
1479 
1480 out_device:
1481 	sysfs_remove_link(&dev->kobj, "device");
1482 
1483 out_subsys:
1484 	sysfs_remove_link(&dev->kobj, "subsystem");
1485 out_devnode:
1486 	sysfs_remove_link(&dev->kobj, "of_node");
1487 	return error;
1488 }
1489 
1490 static void device_remove_class_symlinks(struct device *dev)
1491 {
1492 	if (dev_of_node(dev))
1493 		sysfs_remove_link(&dev->kobj, "of_node");
1494 
1495 	if (!dev->class)
1496 		return;
1497 
1498 	if (dev->parent && device_is_not_partition(dev))
1499 		sysfs_remove_link(&dev->kobj, "device");
1500 	sysfs_remove_link(&dev->kobj, "subsystem");
1501 #ifdef CONFIG_BLOCK
1502 	if (sysfs_deprecated && dev->class == &block_class)
1503 		return;
1504 #endif
1505 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
1506 }
1507 
1508 /**
1509  * dev_set_name - set a device name
1510  * @dev: device
1511  * @fmt: format string for the device's name
1512  */
1513 int dev_set_name(struct device *dev, const char *fmt, ...)
1514 {
1515 	va_list vargs;
1516 	int err;
1517 
1518 	va_start(vargs, fmt);
1519 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
1520 	va_end(vargs);
1521 	return err;
1522 }
1523 EXPORT_SYMBOL_GPL(dev_set_name);
1524 
1525 /**
1526  * device_to_dev_kobj - select a /sys/dev/ directory for the device
1527  * @dev: device
1528  *
1529  * By default we select char/ for new entries.  Setting class->dev_obj
1530  * to NULL prevents an entry from being created.  class->dev_kobj must
1531  * be set (or cleared) before any devices are registered to the class
1532  * otherwise device_create_sys_dev_entry() and
1533  * device_remove_sys_dev_entry() will disagree about the presence of
1534  * the link.
1535  */
1536 static struct kobject *device_to_dev_kobj(struct device *dev)
1537 {
1538 	struct kobject *kobj;
1539 
1540 	if (dev->class)
1541 		kobj = dev->class->dev_kobj;
1542 	else
1543 		kobj = sysfs_dev_char_kobj;
1544 
1545 	return kobj;
1546 }
1547 
1548 static int device_create_sys_dev_entry(struct device *dev)
1549 {
1550 	struct kobject *kobj = device_to_dev_kobj(dev);
1551 	int error = 0;
1552 	char devt_str[15];
1553 
1554 	if (kobj) {
1555 		format_dev_t(devt_str, dev->devt);
1556 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
1557 	}
1558 
1559 	return error;
1560 }
1561 
1562 static void device_remove_sys_dev_entry(struct device *dev)
1563 {
1564 	struct kobject *kobj = device_to_dev_kobj(dev);
1565 	char devt_str[15];
1566 
1567 	if (kobj) {
1568 		format_dev_t(devt_str, dev->devt);
1569 		sysfs_remove_link(kobj, devt_str);
1570 	}
1571 }
1572 
1573 int device_private_init(struct device *dev)
1574 {
1575 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
1576 	if (!dev->p)
1577 		return -ENOMEM;
1578 	dev->p->device = dev;
1579 	klist_init(&dev->p->klist_children, klist_children_get,
1580 		   klist_children_put);
1581 	INIT_LIST_HEAD(&dev->p->deferred_probe);
1582 	return 0;
1583 }
1584 
1585 /**
1586  * device_add - add device to device hierarchy.
1587  * @dev: device.
1588  *
1589  * This is part 2 of device_register(), though may be called
1590  * separately _iff_ device_initialize() has been called separately.
1591  *
1592  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
1593  * to the global and sibling lists for the device, then
1594  * adds it to the other relevant subsystems of the driver model.
1595  *
1596  * Do not call this routine or device_register() more than once for
1597  * any device structure.  The driver model core is not designed to work
1598  * with devices that get unregistered and then spring back to life.
1599  * (Among other things, it's very hard to guarantee that all references
1600  * to the previous incarnation of @dev have been dropped.)  Allocate
1601  * and register a fresh new struct device instead.
1602  *
1603  * NOTE: _Never_ directly free @dev after calling this function, even
1604  * if it returned an error! Always use put_device() to give up your
1605  * reference instead.
1606  */
1607 int device_add(struct device *dev)
1608 {
1609 	struct device *parent = NULL;
1610 	struct kobject *kobj;
1611 	struct class_interface *class_intf;
1612 	int error = -EINVAL;
1613 	struct kobject *glue_dir = NULL;
1614 
1615 	dev = get_device(dev);
1616 	if (!dev)
1617 		goto done;
1618 
1619 	if (!dev->p) {
1620 		error = device_private_init(dev);
1621 		if (error)
1622 			goto done;
1623 	}
1624 
1625 	/*
1626 	 * for statically allocated devices, which should all be converted
1627 	 * some day, we need to initialize the name. We prevent reading back
1628 	 * the name, and force the use of dev_name()
1629 	 */
1630 	if (dev->init_name) {
1631 		dev_set_name(dev, "%s", dev->init_name);
1632 		dev->init_name = NULL;
1633 	}
1634 
1635 	/* subsystems can specify simple device enumeration */
1636 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
1637 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
1638 
1639 	if (!dev_name(dev)) {
1640 		error = -EINVAL;
1641 		goto name_error;
1642 	}
1643 
1644 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1645 
1646 	parent = get_device(dev->parent);
1647 	kobj = get_device_parent(dev, parent);
1648 	if (kobj)
1649 		dev->kobj.parent = kobj;
1650 
1651 	/* use parent numa_node */
1652 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
1653 		set_dev_node(dev, dev_to_node(parent));
1654 
1655 	/* first, register with generic layer. */
1656 	/* we require the name to be set before, and pass NULL */
1657 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
1658 	if (error) {
1659 		glue_dir = get_glue_dir(dev);
1660 		goto Error;
1661 	}
1662 
1663 	/* notify platform of device entry */
1664 	if (platform_notify)
1665 		platform_notify(dev);
1666 
1667 	error = device_create_file(dev, &dev_attr_uevent);
1668 	if (error)
1669 		goto attrError;
1670 
1671 	error = device_add_class_symlinks(dev);
1672 	if (error)
1673 		goto SymlinkError;
1674 	error = device_add_attrs(dev);
1675 	if (error)
1676 		goto AttrsError;
1677 	error = bus_add_device(dev);
1678 	if (error)
1679 		goto BusError;
1680 	error = dpm_sysfs_add(dev);
1681 	if (error)
1682 		goto DPMError;
1683 	device_pm_add(dev);
1684 
1685 	if (MAJOR(dev->devt)) {
1686 		error = device_create_file(dev, &dev_attr_dev);
1687 		if (error)
1688 			goto DevAttrError;
1689 
1690 		error = device_create_sys_dev_entry(dev);
1691 		if (error)
1692 			goto SysEntryError;
1693 
1694 		devtmpfs_create_node(dev);
1695 	}
1696 
1697 	/* Notify clients of device addition.  This call must come
1698 	 * after dpm_sysfs_add() and before kobject_uevent().
1699 	 */
1700 	if (dev->bus)
1701 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1702 					     BUS_NOTIFY_ADD_DEVICE, dev);
1703 
1704 	kobject_uevent(&dev->kobj, KOBJ_ADD);
1705 	bus_probe_device(dev);
1706 	if (parent)
1707 		klist_add_tail(&dev->p->knode_parent,
1708 			       &parent->p->klist_children);
1709 
1710 	if (dev->class) {
1711 		mutex_lock(&dev->class->p->mutex);
1712 		/* tie the class to the device */
1713 		klist_add_tail(&dev->knode_class,
1714 			       &dev->class->p->klist_devices);
1715 
1716 		/* notify any interfaces that the device is here */
1717 		list_for_each_entry(class_intf,
1718 				    &dev->class->p->interfaces, node)
1719 			if (class_intf->add_dev)
1720 				class_intf->add_dev(dev, class_intf);
1721 		mutex_unlock(&dev->class->p->mutex);
1722 	}
1723 done:
1724 	put_device(dev);
1725 	return error;
1726  SysEntryError:
1727 	if (MAJOR(dev->devt))
1728 		device_remove_file(dev, &dev_attr_dev);
1729  DevAttrError:
1730 	device_pm_remove(dev);
1731 	dpm_sysfs_remove(dev);
1732  DPMError:
1733 	bus_remove_device(dev);
1734  BusError:
1735 	device_remove_attrs(dev);
1736  AttrsError:
1737 	device_remove_class_symlinks(dev);
1738  SymlinkError:
1739 	device_remove_file(dev, &dev_attr_uevent);
1740  attrError:
1741 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1742 	glue_dir = get_glue_dir(dev);
1743 	kobject_del(&dev->kobj);
1744  Error:
1745 	cleanup_glue_dir(dev, glue_dir);
1746 	put_device(parent);
1747 name_error:
1748 	kfree(dev->p);
1749 	dev->p = NULL;
1750 	goto done;
1751 }
1752 EXPORT_SYMBOL_GPL(device_add);
1753 
1754 /**
1755  * device_register - register a device with the system.
1756  * @dev: pointer to the device structure
1757  *
1758  * This happens in two clean steps - initialize the device
1759  * and add it to the system. The two steps can be called
1760  * separately, but this is the easiest and most common.
1761  * I.e. you should only call the two helpers separately if
1762  * have a clearly defined need to use and refcount the device
1763  * before it is added to the hierarchy.
1764  *
1765  * For more information, see the kerneldoc for device_initialize()
1766  * and device_add().
1767  *
1768  * NOTE: _Never_ directly free @dev after calling this function, even
1769  * if it returned an error! Always use put_device() to give up the
1770  * reference initialized in this function instead.
1771  */
1772 int device_register(struct device *dev)
1773 {
1774 	device_initialize(dev);
1775 	return device_add(dev);
1776 }
1777 EXPORT_SYMBOL_GPL(device_register);
1778 
1779 /**
1780  * get_device - increment reference count for device.
1781  * @dev: device.
1782  *
1783  * This simply forwards the call to kobject_get(), though
1784  * we do take care to provide for the case that we get a NULL
1785  * pointer passed in.
1786  */
1787 struct device *get_device(struct device *dev)
1788 {
1789 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
1790 }
1791 EXPORT_SYMBOL_GPL(get_device);
1792 
1793 /**
1794  * put_device - decrement reference count.
1795  * @dev: device in question.
1796  */
1797 void put_device(struct device *dev)
1798 {
1799 	/* might_sleep(); */
1800 	if (dev)
1801 		kobject_put(&dev->kobj);
1802 }
1803 EXPORT_SYMBOL_GPL(put_device);
1804 
1805 /**
1806  * device_del - delete device from system.
1807  * @dev: device.
1808  *
1809  * This is the first part of the device unregistration
1810  * sequence. This removes the device from the lists we control
1811  * from here, has it removed from the other driver model
1812  * subsystems it was added to in device_add(), and removes it
1813  * from the kobject hierarchy.
1814  *
1815  * NOTE: this should be called manually _iff_ device_add() was
1816  * also called manually.
1817  */
1818 void device_del(struct device *dev)
1819 {
1820 	struct device *parent = dev->parent;
1821 	struct kobject *glue_dir = NULL;
1822 	struct class_interface *class_intf;
1823 
1824 	/* Notify clients of device removal.  This call must come
1825 	 * before dpm_sysfs_remove().
1826 	 */
1827 	if (dev->bus)
1828 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1829 					     BUS_NOTIFY_DEL_DEVICE, dev);
1830 
1831 	device_links_purge(dev);
1832 	dpm_sysfs_remove(dev);
1833 	if (parent)
1834 		klist_del(&dev->p->knode_parent);
1835 	if (MAJOR(dev->devt)) {
1836 		devtmpfs_delete_node(dev);
1837 		device_remove_sys_dev_entry(dev);
1838 		device_remove_file(dev, &dev_attr_dev);
1839 	}
1840 	if (dev->class) {
1841 		device_remove_class_symlinks(dev);
1842 
1843 		mutex_lock(&dev->class->p->mutex);
1844 		/* notify any interfaces that the device is now gone */
1845 		list_for_each_entry(class_intf,
1846 				    &dev->class->p->interfaces, node)
1847 			if (class_intf->remove_dev)
1848 				class_intf->remove_dev(dev, class_intf);
1849 		/* remove the device from the class list */
1850 		klist_del(&dev->knode_class);
1851 		mutex_unlock(&dev->class->p->mutex);
1852 	}
1853 	device_remove_file(dev, &dev_attr_uevent);
1854 	device_remove_attrs(dev);
1855 	bus_remove_device(dev);
1856 	device_pm_remove(dev);
1857 	driver_deferred_probe_del(dev);
1858 	device_remove_properties(dev);
1859 
1860 	/* Notify the platform of the removal, in case they
1861 	 * need to do anything...
1862 	 */
1863 	if (platform_notify_remove)
1864 		platform_notify_remove(dev);
1865 	if (dev->bus)
1866 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1867 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
1868 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1869 	glue_dir = get_glue_dir(dev);
1870 	kobject_del(&dev->kobj);
1871 	cleanup_glue_dir(dev, glue_dir);
1872 	put_device(parent);
1873 }
1874 EXPORT_SYMBOL_GPL(device_del);
1875 
1876 /**
1877  * device_unregister - unregister device from system.
1878  * @dev: device going away.
1879  *
1880  * We do this in two parts, like we do device_register(). First,
1881  * we remove it from all the subsystems with device_del(), then
1882  * we decrement the reference count via put_device(). If that
1883  * is the final reference count, the device will be cleaned up
1884  * via device_release() above. Otherwise, the structure will
1885  * stick around until the final reference to the device is dropped.
1886  */
1887 void device_unregister(struct device *dev)
1888 {
1889 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1890 	device_del(dev);
1891 	put_device(dev);
1892 }
1893 EXPORT_SYMBOL_GPL(device_unregister);
1894 
1895 static struct device *prev_device(struct klist_iter *i)
1896 {
1897 	struct klist_node *n = klist_prev(i);
1898 	struct device *dev = NULL;
1899 	struct device_private *p;
1900 
1901 	if (n) {
1902 		p = to_device_private_parent(n);
1903 		dev = p->device;
1904 	}
1905 	return dev;
1906 }
1907 
1908 static struct device *next_device(struct klist_iter *i)
1909 {
1910 	struct klist_node *n = klist_next(i);
1911 	struct device *dev = NULL;
1912 	struct device_private *p;
1913 
1914 	if (n) {
1915 		p = to_device_private_parent(n);
1916 		dev = p->device;
1917 	}
1918 	return dev;
1919 }
1920 
1921 /**
1922  * device_get_devnode - path of device node file
1923  * @dev: device
1924  * @mode: returned file access mode
1925  * @uid: returned file owner
1926  * @gid: returned file group
1927  * @tmp: possibly allocated string
1928  *
1929  * Return the relative path of a possible device node.
1930  * Non-default names may need to allocate a memory to compose
1931  * a name. This memory is returned in tmp and needs to be
1932  * freed by the caller.
1933  */
1934 const char *device_get_devnode(struct device *dev,
1935 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
1936 			       const char **tmp)
1937 {
1938 	char *s;
1939 
1940 	*tmp = NULL;
1941 
1942 	/* the device type may provide a specific name */
1943 	if (dev->type && dev->type->devnode)
1944 		*tmp = dev->type->devnode(dev, mode, uid, gid);
1945 	if (*tmp)
1946 		return *tmp;
1947 
1948 	/* the class may provide a specific name */
1949 	if (dev->class && dev->class->devnode)
1950 		*tmp = dev->class->devnode(dev, mode);
1951 	if (*tmp)
1952 		return *tmp;
1953 
1954 	/* return name without allocation, tmp == NULL */
1955 	if (strchr(dev_name(dev), '!') == NULL)
1956 		return dev_name(dev);
1957 
1958 	/* replace '!' in the name with '/' */
1959 	s = kstrdup(dev_name(dev), GFP_KERNEL);
1960 	if (!s)
1961 		return NULL;
1962 	strreplace(s, '!', '/');
1963 	return *tmp = s;
1964 }
1965 
1966 /**
1967  * device_for_each_child - device child iterator.
1968  * @parent: parent struct device.
1969  * @fn: function to be called for each device.
1970  * @data: data for the callback.
1971  *
1972  * Iterate over @parent's child devices, and call @fn for each,
1973  * passing it @data.
1974  *
1975  * We check the return of @fn each time. If it returns anything
1976  * other than 0, we break out and return that value.
1977  */
1978 int device_for_each_child(struct device *parent, void *data,
1979 			  int (*fn)(struct device *dev, void *data))
1980 {
1981 	struct klist_iter i;
1982 	struct device *child;
1983 	int error = 0;
1984 
1985 	if (!parent->p)
1986 		return 0;
1987 
1988 	klist_iter_init(&parent->p->klist_children, &i);
1989 	while ((child = next_device(&i)) && !error)
1990 		error = fn(child, data);
1991 	klist_iter_exit(&i);
1992 	return error;
1993 }
1994 EXPORT_SYMBOL_GPL(device_for_each_child);
1995 
1996 /**
1997  * device_for_each_child_reverse - device child iterator in reversed order.
1998  * @parent: parent struct device.
1999  * @fn: function to be called for each device.
2000  * @data: data for the callback.
2001  *
2002  * Iterate over @parent's child devices, and call @fn for each,
2003  * passing it @data.
2004  *
2005  * We check the return of @fn each time. If it returns anything
2006  * other than 0, we break out and return that value.
2007  */
2008 int device_for_each_child_reverse(struct device *parent, void *data,
2009 				  int (*fn)(struct device *dev, void *data))
2010 {
2011 	struct klist_iter i;
2012 	struct device *child;
2013 	int error = 0;
2014 
2015 	if (!parent->p)
2016 		return 0;
2017 
2018 	klist_iter_init(&parent->p->klist_children, &i);
2019 	while ((child = prev_device(&i)) && !error)
2020 		error = fn(child, data);
2021 	klist_iter_exit(&i);
2022 	return error;
2023 }
2024 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2025 
2026 /**
2027  * device_find_child - device iterator for locating a particular device.
2028  * @parent: parent struct device
2029  * @match: Callback function to check device
2030  * @data: Data to pass to match function
2031  *
2032  * This is similar to the device_for_each_child() function above, but it
2033  * returns a reference to a device that is 'found' for later use, as
2034  * determined by the @match callback.
2035  *
2036  * The callback should return 0 if the device doesn't match and non-zero
2037  * if it does.  If the callback returns non-zero and a reference to the
2038  * current device can be obtained, this function will return to the caller
2039  * and not iterate over any more devices.
2040  *
2041  * NOTE: you will need to drop the reference with put_device() after use.
2042  */
2043 struct device *device_find_child(struct device *parent, void *data,
2044 				 int (*match)(struct device *dev, void *data))
2045 {
2046 	struct klist_iter i;
2047 	struct device *child;
2048 
2049 	if (!parent)
2050 		return NULL;
2051 
2052 	klist_iter_init(&parent->p->klist_children, &i);
2053 	while ((child = next_device(&i)))
2054 		if (match(child, data) && get_device(child))
2055 			break;
2056 	klist_iter_exit(&i);
2057 	return child;
2058 }
2059 EXPORT_SYMBOL_GPL(device_find_child);
2060 
2061 int __init devices_init(void)
2062 {
2063 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2064 	if (!devices_kset)
2065 		return -ENOMEM;
2066 	dev_kobj = kobject_create_and_add("dev", NULL);
2067 	if (!dev_kobj)
2068 		goto dev_kobj_err;
2069 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2070 	if (!sysfs_dev_block_kobj)
2071 		goto block_kobj_err;
2072 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2073 	if (!sysfs_dev_char_kobj)
2074 		goto char_kobj_err;
2075 
2076 	return 0;
2077 
2078  char_kobj_err:
2079 	kobject_put(sysfs_dev_block_kobj);
2080  block_kobj_err:
2081 	kobject_put(dev_kobj);
2082  dev_kobj_err:
2083 	kset_unregister(devices_kset);
2084 	return -ENOMEM;
2085 }
2086 
2087 static int device_check_offline(struct device *dev, void *not_used)
2088 {
2089 	int ret;
2090 
2091 	ret = device_for_each_child(dev, NULL, device_check_offline);
2092 	if (ret)
2093 		return ret;
2094 
2095 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
2096 }
2097 
2098 /**
2099  * device_offline - Prepare the device for hot-removal.
2100  * @dev: Device to be put offline.
2101  *
2102  * Execute the device bus type's .offline() callback, if present, to prepare
2103  * the device for a subsequent hot-removal.  If that succeeds, the device must
2104  * not be used until either it is removed or its bus type's .online() callback
2105  * is executed.
2106  *
2107  * Call under device_hotplug_lock.
2108  */
2109 int device_offline(struct device *dev)
2110 {
2111 	int ret;
2112 
2113 	if (dev->offline_disabled)
2114 		return -EPERM;
2115 
2116 	ret = device_for_each_child(dev, NULL, device_check_offline);
2117 	if (ret)
2118 		return ret;
2119 
2120 	device_lock(dev);
2121 	if (device_supports_offline(dev)) {
2122 		if (dev->offline) {
2123 			ret = 1;
2124 		} else {
2125 			ret = dev->bus->offline(dev);
2126 			if (!ret) {
2127 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2128 				dev->offline = true;
2129 			}
2130 		}
2131 	}
2132 	device_unlock(dev);
2133 
2134 	return ret;
2135 }
2136 
2137 /**
2138  * device_online - Put the device back online after successful device_offline().
2139  * @dev: Device to be put back online.
2140  *
2141  * If device_offline() has been successfully executed for @dev, but the device
2142  * has not been removed subsequently, execute its bus type's .online() callback
2143  * to indicate that the device can be used again.
2144  *
2145  * Call under device_hotplug_lock.
2146  */
2147 int device_online(struct device *dev)
2148 {
2149 	int ret = 0;
2150 
2151 	device_lock(dev);
2152 	if (device_supports_offline(dev)) {
2153 		if (dev->offline) {
2154 			ret = dev->bus->online(dev);
2155 			if (!ret) {
2156 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2157 				dev->offline = false;
2158 			}
2159 		} else {
2160 			ret = 1;
2161 		}
2162 	}
2163 	device_unlock(dev);
2164 
2165 	return ret;
2166 }
2167 
2168 struct root_device {
2169 	struct device dev;
2170 	struct module *owner;
2171 };
2172 
2173 static inline struct root_device *to_root_device(struct device *d)
2174 {
2175 	return container_of(d, struct root_device, dev);
2176 }
2177 
2178 static void root_device_release(struct device *dev)
2179 {
2180 	kfree(to_root_device(dev));
2181 }
2182 
2183 /**
2184  * __root_device_register - allocate and register a root device
2185  * @name: root device name
2186  * @owner: owner module of the root device, usually THIS_MODULE
2187  *
2188  * This function allocates a root device and registers it
2189  * using device_register(). In order to free the returned
2190  * device, use root_device_unregister().
2191  *
2192  * Root devices are dummy devices which allow other devices
2193  * to be grouped under /sys/devices. Use this function to
2194  * allocate a root device and then use it as the parent of
2195  * any device which should appear under /sys/devices/{name}
2196  *
2197  * The /sys/devices/{name} directory will also contain a
2198  * 'module' symlink which points to the @owner directory
2199  * in sysfs.
2200  *
2201  * Returns &struct device pointer on success, or ERR_PTR() on error.
2202  *
2203  * Note: You probably want to use root_device_register().
2204  */
2205 struct device *__root_device_register(const char *name, struct module *owner)
2206 {
2207 	struct root_device *root;
2208 	int err = -ENOMEM;
2209 
2210 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
2211 	if (!root)
2212 		return ERR_PTR(err);
2213 
2214 	err = dev_set_name(&root->dev, "%s", name);
2215 	if (err) {
2216 		kfree(root);
2217 		return ERR_PTR(err);
2218 	}
2219 
2220 	root->dev.release = root_device_release;
2221 
2222 	err = device_register(&root->dev);
2223 	if (err) {
2224 		put_device(&root->dev);
2225 		return ERR_PTR(err);
2226 	}
2227 
2228 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
2229 	if (owner) {
2230 		struct module_kobject *mk = &owner->mkobj;
2231 
2232 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
2233 		if (err) {
2234 			device_unregister(&root->dev);
2235 			return ERR_PTR(err);
2236 		}
2237 		root->owner = owner;
2238 	}
2239 #endif
2240 
2241 	return &root->dev;
2242 }
2243 EXPORT_SYMBOL_GPL(__root_device_register);
2244 
2245 /**
2246  * root_device_unregister - unregister and free a root device
2247  * @dev: device going away
2248  *
2249  * This function unregisters and cleans up a device that was created by
2250  * root_device_register().
2251  */
2252 void root_device_unregister(struct device *dev)
2253 {
2254 	struct root_device *root = to_root_device(dev);
2255 
2256 	if (root->owner)
2257 		sysfs_remove_link(&root->dev.kobj, "module");
2258 
2259 	device_unregister(dev);
2260 }
2261 EXPORT_SYMBOL_GPL(root_device_unregister);
2262 
2263 
2264 static void device_create_release(struct device *dev)
2265 {
2266 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2267 	kfree(dev);
2268 }
2269 
2270 static struct device *
2271 device_create_groups_vargs(struct class *class, struct device *parent,
2272 			   dev_t devt, void *drvdata,
2273 			   const struct attribute_group **groups,
2274 			   const char *fmt, va_list args)
2275 {
2276 	struct device *dev = NULL;
2277 	int retval = -ENODEV;
2278 
2279 	if (class == NULL || IS_ERR(class))
2280 		goto error;
2281 
2282 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2283 	if (!dev) {
2284 		retval = -ENOMEM;
2285 		goto error;
2286 	}
2287 
2288 	device_initialize(dev);
2289 	dev->devt = devt;
2290 	dev->class = class;
2291 	dev->parent = parent;
2292 	dev->groups = groups;
2293 	dev->release = device_create_release;
2294 	dev_set_drvdata(dev, drvdata);
2295 
2296 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
2297 	if (retval)
2298 		goto error;
2299 
2300 	retval = device_add(dev);
2301 	if (retval)
2302 		goto error;
2303 
2304 	return dev;
2305 
2306 error:
2307 	put_device(dev);
2308 	return ERR_PTR(retval);
2309 }
2310 
2311 /**
2312  * device_create_vargs - creates a device and registers it with sysfs
2313  * @class: pointer to the struct class that this device should be registered to
2314  * @parent: pointer to the parent struct device of this new device, if any
2315  * @devt: the dev_t for the char device to be added
2316  * @drvdata: the data to be added to the device for callbacks
2317  * @fmt: string for the device's name
2318  * @args: va_list for the device's name
2319  *
2320  * This function can be used by char device classes.  A struct device
2321  * will be created in sysfs, registered to the specified class.
2322  *
2323  * A "dev" file will be created, showing the dev_t for the device, if
2324  * the dev_t is not 0,0.
2325  * If a pointer to a parent struct device is passed in, the newly created
2326  * struct device will be a child of that device in sysfs.
2327  * The pointer to the struct device will be returned from the call.
2328  * Any further sysfs files that might be required can be created using this
2329  * pointer.
2330  *
2331  * Returns &struct device pointer on success, or ERR_PTR() on error.
2332  *
2333  * Note: the struct class passed to this function must have previously
2334  * been created with a call to class_create().
2335  */
2336 struct device *device_create_vargs(struct class *class, struct device *parent,
2337 				   dev_t devt, void *drvdata, const char *fmt,
2338 				   va_list args)
2339 {
2340 	return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
2341 					  fmt, args);
2342 }
2343 EXPORT_SYMBOL_GPL(device_create_vargs);
2344 
2345 /**
2346  * device_create - creates a device and registers it with sysfs
2347  * @class: pointer to the struct class that this device should be registered to
2348  * @parent: pointer to the parent struct device of this new device, if any
2349  * @devt: the dev_t for the char device to be added
2350  * @drvdata: the data to be added to the device for callbacks
2351  * @fmt: string for the device's name
2352  *
2353  * This function can be used by char device classes.  A struct device
2354  * will be created in sysfs, registered to the specified class.
2355  *
2356  * A "dev" file will be created, showing the dev_t for the device, if
2357  * the dev_t is not 0,0.
2358  * If a pointer to a parent struct device is passed in, the newly created
2359  * struct device will be a child of that device in sysfs.
2360  * The pointer to the struct device will be returned from the call.
2361  * Any further sysfs files that might be required can be created using this
2362  * pointer.
2363  *
2364  * Returns &struct device pointer on success, or ERR_PTR() on error.
2365  *
2366  * Note: the struct class passed to this function must have previously
2367  * been created with a call to class_create().
2368  */
2369 struct device *device_create(struct class *class, struct device *parent,
2370 			     dev_t devt, void *drvdata, const char *fmt, ...)
2371 {
2372 	va_list vargs;
2373 	struct device *dev;
2374 
2375 	va_start(vargs, fmt);
2376 	dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
2377 	va_end(vargs);
2378 	return dev;
2379 }
2380 EXPORT_SYMBOL_GPL(device_create);
2381 
2382 /**
2383  * device_create_with_groups - creates a device and registers it with sysfs
2384  * @class: pointer to the struct class that this device should be registered to
2385  * @parent: pointer to the parent struct device of this new device, if any
2386  * @devt: the dev_t for the char device to be added
2387  * @drvdata: the data to be added to the device for callbacks
2388  * @groups: NULL-terminated list of attribute groups to be created
2389  * @fmt: string for the device's name
2390  *
2391  * This function can be used by char device classes.  A struct device
2392  * will be created in sysfs, registered to the specified class.
2393  * Additional attributes specified in the groups parameter will also
2394  * be created automatically.
2395  *
2396  * A "dev" file will be created, showing the dev_t for the device, if
2397  * the dev_t is not 0,0.
2398  * If a pointer to a parent struct device is passed in, the newly created
2399  * struct device will be a child of that device in sysfs.
2400  * The pointer to the struct device will be returned from the call.
2401  * Any further sysfs files that might be required can be created using this
2402  * pointer.
2403  *
2404  * Returns &struct device pointer on success, or ERR_PTR() on error.
2405  *
2406  * Note: the struct class passed to this function must have previously
2407  * been created with a call to class_create().
2408  */
2409 struct device *device_create_with_groups(struct class *class,
2410 					 struct device *parent, dev_t devt,
2411 					 void *drvdata,
2412 					 const struct attribute_group **groups,
2413 					 const char *fmt, ...)
2414 {
2415 	va_list vargs;
2416 	struct device *dev;
2417 
2418 	va_start(vargs, fmt);
2419 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
2420 					 fmt, vargs);
2421 	va_end(vargs);
2422 	return dev;
2423 }
2424 EXPORT_SYMBOL_GPL(device_create_with_groups);
2425 
2426 static int __match_devt(struct device *dev, const void *data)
2427 {
2428 	const dev_t *devt = data;
2429 
2430 	return dev->devt == *devt;
2431 }
2432 
2433 /**
2434  * device_destroy - removes a device that was created with device_create()
2435  * @class: pointer to the struct class that this device was registered with
2436  * @devt: the dev_t of the device that was previously registered
2437  *
2438  * This call unregisters and cleans up a device that was created with a
2439  * call to device_create().
2440  */
2441 void device_destroy(struct class *class, dev_t devt)
2442 {
2443 	struct device *dev;
2444 
2445 	dev = class_find_device(class, NULL, &devt, __match_devt);
2446 	if (dev) {
2447 		put_device(dev);
2448 		device_unregister(dev);
2449 	}
2450 }
2451 EXPORT_SYMBOL_GPL(device_destroy);
2452 
2453 /**
2454  * device_rename - renames a device
2455  * @dev: the pointer to the struct device to be renamed
2456  * @new_name: the new name of the device
2457  *
2458  * It is the responsibility of the caller to provide mutual
2459  * exclusion between two different calls of device_rename
2460  * on the same device to ensure that new_name is valid and
2461  * won't conflict with other devices.
2462  *
2463  * Note: Don't call this function.  Currently, the networking layer calls this
2464  * function, but that will change.  The following text from Kay Sievers offers
2465  * some insight:
2466  *
2467  * Renaming devices is racy at many levels, symlinks and other stuff are not
2468  * replaced atomically, and you get a "move" uevent, but it's not easy to
2469  * connect the event to the old and new device. Device nodes are not renamed at
2470  * all, there isn't even support for that in the kernel now.
2471  *
2472  * In the meantime, during renaming, your target name might be taken by another
2473  * driver, creating conflicts. Or the old name is taken directly after you
2474  * renamed it -- then you get events for the same DEVPATH, before you even see
2475  * the "move" event. It's just a mess, and nothing new should ever rely on
2476  * kernel device renaming. Besides that, it's not even implemented now for
2477  * other things than (driver-core wise very simple) network devices.
2478  *
2479  * We are currently about to change network renaming in udev to completely
2480  * disallow renaming of devices in the same namespace as the kernel uses,
2481  * because we can't solve the problems properly, that arise with swapping names
2482  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
2483  * be allowed to some other name than eth[0-9]*, for the aforementioned
2484  * reasons.
2485  *
2486  * Make up a "real" name in the driver before you register anything, or add
2487  * some other attributes for userspace to find the device, or use udev to add
2488  * symlinks -- but never rename kernel devices later, it's a complete mess. We
2489  * don't even want to get into that and try to implement the missing pieces in
2490  * the core. We really have other pieces to fix in the driver core mess. :)
2491  */
2492 int device_rename(struct device *dev, const char *new_name)
2493 {
2494 	struct kobject *kobj = &dev->kobj;
2495 	char *old_device_name = NULL;
2496 	int error;
2497 
2498 	dev = get_device(dev);
2499 	if (!dev)
2500 		return -EINVAL;
2501 
2502 	dev_dbg(dev, "renaming to %s\n", new_name);
2503 
2504 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
2505 	if (!old_device_name) {
2506 		error = -ENOMEM;
2507 		goto out;
2508 	}
2509 
2510 	if (dev->class) {
2511 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
2512 					     kobj, old_device_name,
2513 					     new_name, kobject_namespace(kobj));
2514 		if (error)
2515 			goto out;
2516 	}
2517 
2518 	error = kobject_rename(kobj, new_name);
2519 	if (error)
2520 		goto out;
2521 
2522 out:
2523 	put_device(dev);
2524 
2525 	kfree(old_device_name);
2526 
2527 	return error;
2528 }
2529 EXPORT_SYMBOL_GPL(device_rename);
2530 
2531 static int device_move_class_links(struct device *dev,
2532 				   struct device *old_parent,
2533 				   struct device *new_parent)
2534 {
2535 	int error = 0;
2536 
2537 	if (old_parent)
2538 		sysfs_remove_link(&dev->kobj, "device");
2539 	if (new_parent)
2540 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
2541 					  "device");
2542 	return error;
2543 }
2544 
2545 /**
2546  * device_move - moves a device to a new parent
2547  * @dev: the pointer to the struct device to be moved
2548  * @new_parent: the new parent of the device (can by NULL)
2549  * @dpm_order: how to reorder the dpm_list
2550  */
2551 int device_move(struct device *dev, struct device *new_parent,
2552 		enum dpm_order dpm_order)
2553 {
2554 	int error;
2555 	struct device *old_parent;
2556 	struct kobject *new_parent_kobj;
2557 
2558 	dev = get_device(dev);
2559 	if (!dev)
2560 		return -EINVAL;
2561 
2562 	device_pm_lock();
2563 	new_parent = get_device(new_parent);
2564 	new_parent_kobj = get_device_parent(dev, new_parent);
2565 
2566 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
2567 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
2568 	error = kobject_move(&dev->kobj, new_parent_kobj);
2569 	if (error) {
2570 		cleanup_glue_dir(dev, new_parent_kobj);
2571 		put_device(new_parent);
2572 		goto out;
2573 	}
2574 	old_parent = dev->parent;
2575 	dev->parent = new_parent;
2576 	if (old_parent)
2577 		klist_remove(&dev->p->knode_parent);
2578 	if (new_parent) {
2579 		klist_add_tail(&dev->p->knode_parent,
2580 			       &new_parent->p->klist_children);
2581 		set_dev_node(dev, dev_to_node(new_parent));
2582 	}
2583 
2584 	if (dev->class) {
2585 		error = device_move_class_links(dev, old_parent, new_parent);
2586 		if (error) {
2587 			/* We ignore errors on cleanup since we're hosed anyway... */
2588 			device_move_class_links(dev, new_parent, old_parent);
2589 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
2590 				if (new_parent)
2591 					klist_remove(&dev->p->knode_parent);
2592 				dev->parent = old_parent;
2593 				if (old_parent) {
2594 					klist_add_tail(&dev->p->knode_parent,
2595 						       &old_parent->p->klist_children);
2596 					set_dev_node(dev, dev_to_node(old_parent));
2597 				}
2598 			}
2599 			cleanup_glue_dir(dev, new_parent_kobj);
2600 			put_device(new_parent);
2601 			goto out;
2602 		}
2603 	}
2604 	switch (dpm_order) {
2605 	case DPM_ORDER_NONE:
2606 		break;
2607 	case DPM_ORDER_DEV_AFTER_PARENT:
2608 		device_pm_move_after(dev, new_parent);
2609 		devices_kset_move_after(dev, new_parent);
2610 		break;
2611 	case DPM_ORDER_PARENT_BEFORE_DEV:
2612 		device_pm_move_before(new_parent, dev);
2613 		devices_kset_move_before(new_parent, dev);
2614 		break;
2615 	case DPM_ORDER_DEV_LAST:
2616 		device_pm_move_last(dev);
2617 		devices_kset_move_last(dev);
2618 		break;
2619 	}
2620 
2621 	put_device(old_parent);
2622 out:
2623 	device_pm_unlock();
2624 	put_device(dev);
2625 	return error;
2626 }
2627 EXPORT_SYMBOL_GPL(device_move);
2628 
2629 /**
2630  * device_shutdown - call ->shutdown() on each device to shutdown.
2631  */
2632 void device_shutdown(void)
2633 {
2634 	struct device *dev, *parent;
2635 
2636 	spin_lock(&devices_kset->list_lock);
2637 	/*
2638 	 * Walk the devices list backward, shutting down each in turn.
2639 	 * Beware that device unplug events may also start pulling
2640 	 * devices offline, even as the system is shutting down.
2641 	 */
2642 	while (!list_empty(&devices_kset->list)) {
2643 		dev = list_entry(devices_kset->list.prev, struct device,
2644 				kobj.entry);
2645 
2646 		/*
2647 		 * hold reference count of device's parent to
2648 		 * prevent it from being freed because parent's
2649 		 * lock is to be held
2650 		 */
2651 		parent = get_device(dev->parent);
2652 		get_device(dev);
2653 		/*
2654 		 * Make sure the device is off the kset list, in the
2655 		 * event that dev->*->shutdown() doesn't remove it.
2656 		 */
2657 		list_del_init(&dev->kobj.entry);
2658 		spin_unlock(&devices_kset->list_lock);
2659 
2660 		/* hold lock to avoid race with probe/release */
2661 		if (parent)
2662 			device_lock(parent);
2663 		device_lock(dev);
2664 
2665 		/* Don't allow any more runtime suspends */
2666 		pm_runtime_get_noresume(dev);
2667 		pm_runtime_barrier(dev);
2668 
2669 		if (dev->bus && dev->bus->shutdown) {
2670 			if (initcall_debug)
2671 				dev_info(dev, "shutdown\n");
2672 			dev->bus->shutdown(dev);
2673 		} else if (dev->driver && dev->driver->shutdown) {
2674 			if (initcall_debug)
2675 				dev_info(dev, "shutdown\n");
2676 			dev->driver->shutdown(dev);
2677 		}
2678 
2679 		device_unlock(dev);
2680 		if (parent)
2681 			device_unlock(parent);
2682 
2683 		put_device(dev);
2684 		put_device(parent);
2685 
2686 		spin_lock(&devices_kset->list_lock);
2687 	}
2688 	spin_unlock(&devices_kset->list_lock);
2689 }
2690 
2691 /*
2692  * Device logging functions
2693  */
2694 
2695 #ifdef CONFIG_PRINTK
2696 static int
2697 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
2698 {
2699 	const char *subsys;
2700 	size_t pos = 0;
2701 
2702 	if (dev->class)
2703 		subsys = dev->class->name;
2704 	else if (dev->bus)
2705 		subsys = dev->bus->name;
2706 	else
2707 		return 0;
2708 
2709 	pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
2710 	if (pos >= hdrlen)
2711 		goto overflow;
2712 
2713 	/*
2714 	 * Add device identifier DEVICE=:
2715 	 *   b12:8         block dev_t
2716 	 *   c127:3        char dev_t
2717 	 *   n8            netdev ifindex
2718 	 *   +sound:card0  subsystem:devname
2719 	 */
2720 	if (MAJOR(dev->devt)) {
2721 		char c;
2722 
2723 		if (strcmp(subsys, "block") == 0)
2724 			c = 'b';
2725 		else
2726 			c = 'c';
2727 		pos++;
2728 		pos += snprintf(hdr + pos, hdrlen - pos,
2729 				"DEVICE=%c%u:%u",
2730 				c, MAJOR(dev->devt), MINOR(dev->devt));
2731 	} else if (strcmp(subsys, "net") == 0) {
2732 		struct net_device *net = to_net_dev(dev);
2733 
2734 		pos++;
2735 		pos += snprintf(hdr + pos, hdrlen - pos,
2736 				"DEVICE=n%u", net->ifindex);
2737 	} else {
2738 		pos++;
2739 		pos += snprintf(hdr + pos, hdrlen - pos,
2740 				"DEVICE=+%s:%s", subsys, dev_name(dev));
2741 	}
2742 
2743 	if (pos >= hdrlen)
2744 		goto overflow;
2745 
2746 	return pos;
2747 
2748 overflow:
2749 	dev_WARN(dev, "device/subsystem name too long");
2750 	return 0;
2751 }
2752 
2753 int dev_vprintk_emit(int level, const struct device *dev,
2754 		     const char *fmt, va_list args)
2755 {
2756 	char hdr[128];
2757 	size_t hdrlen;
2758 
2759 	hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
2760 
2761 	return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
2762 }
2763 EXPORT_SYMBOL(dev_vprintk_emit);
2764 
2765 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
2766 {
2767 	va_list args;
2768 	int r;
2769 
2770 	va_start(args, fmt);
2771 
2772 	r = dev_vprintk_emit(level, dev, fmt, args);
2773 
2774 	va_end(args);
2775 
2776 	return r;
2777 }
2778 EXPORT_SYMBOL(dev_printk_emit);
2779 
2780 static void __dev_printk(const char *level, const struct device *dev,
2781 			struct va_format *vaf)
2782 {
2783 	if (dev)
2784 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
2785 				dev_driver_string(dev), dev_name(dev), vaf);
2786 	else
2787 		printk("%s(NULL device *): %pV", level, vaf);
2788 }
2789 
2790 void dev_printk(const char *level, const struct device *dev,
2791 		const char *fmt, ...)
2792 {
2793 	struct va_format vaf;
2794 	va_list args;
2795 
2796 	va_start(args, fmt);
2797 
2798 	vaf.fmt = fmt;
2799 	vaf.va = &args;
2800 
2801 	__dev_printk(level, dev, &vaf);
2802 
2803 	va_end(args);
2804 }
2805 EXPORT_SYMBOL(dev_printk);
2806 
2807 #define define_dev_printk_level(func, kern_level)		\
2808 void func(const struct device *dev, const char *fmt, ...)	\
2809 {								\
2810 	struct va_format vaf;					\
2811 	va_list args;						\
2812 								\
2813 	va_start(args, fmt);					\
2814 								\
2815 	vaf.fmt = fmt;						\
2816 	vaf.va = &args;						\
2817 								\
2818 	__dev_printk(kern_level, dev, &vaf);			\
2819 								\
2820 	va_end(args);						\
2821 }								\
2822 EXPORT_SYMBOL(func);
2823 
2824 define_dev_printk_level(dev_emerg, KERN_EMERG);
2825 define_dev_printk_level(dev_alert, KERN_ALERT);
2826 define_dev_printk_level(dev_crit, KERN_CRIT);
2827 define_dev_printk_level(dev_err, KERN_ERR);
2828 define_dev_printk_level(dev_warn, KERN_WARNING);
2829 define_dev_printk_level(dev_notice, KERN_NOTICE);
2830 define_dev_printk_level(_dev_info, KERN_INFO);
2831 
2832 #endif
2833 
2834 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
2835 {
2836 	return fwnode && !IS_ERR(fwnode->secondary);
2837 }
2838 
2839 /**
2840  * set_primary_fwnode - Change the primary firmware node of a given device.
2841  * @dev: Device to handle.
2842  * @fwnode: New primary firmware node of the device.
2843  *
2844  * Set the device's firmware node pointer to @fwnode, but if a secondary
2845  * firmware node of the device is present, preserve it.
2846  */
2847 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
2848 {
2849 	if (fwnode) {
2850 		struct fwnode_handle *fn = dev->fwnode;
2851 
2852 		if (fwnode_is_primary(fn))
2853 			fn = fn->secondary;
2854 
2855 		if (fn) {
2856 			WARN_ON(fwnode->secondary);
2857 			fwnode->secondary = fn;
2858 		}
2859 		dev->fwnode = fwnode;
2860 	} else {
2861 		dev->fwnode = fwnode_is_primary(dev->fwnode) ?
2862 			dev->fwnode->secondary : NULL;
2863 	}
2864 }
2865 EXPORT_SYMBOL_GPL(set_primary_fwnode);
2866 
2867 /**
2868  * set_secondary_fwnode - Change the secondary firmware node of a given device.
2869  * @dev: Device to handle.
2870  * @fwnode: New secondary firmware node of the device.
2871  *
2872  * If a primary firmware node of the device is present, set its secondary
2873  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
2874  * @fwnode.
2875  */
2876 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
2877 {
2878 	if (fwnode)
2879 		fwnode->secondary = ERR_PTR(-ENODEV);
2880 
2881 	if (fwnode_is_primary(dev->fwnode))
2882 		dev->fwnode->secondary = fwnode;
2883 	else
2884 		dev->fwnode = fwnode;
2885 }
2886