1 /* 2 * drivers/base/core.c - core driver model code (device registration, etc) 3 * 4 * Copyright (c) 2002-3 Patrick Mochel 5 * Copyright (c) 2002-3 Open Source Development Labs 6 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 7 * Copyright (c) 2006 Novell, Inc. 8 * 9 * This file is released under the GPLv2 10 * 11 */ 12 13 #include <linux/device.h> 14 #include <linux/err.h> 15 #include <linux/fwnode.h> 16 #include <linux/init.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/string.h> 20 #include <linux/kdev_t.h> 21 #include <linux/notifier.h> 22 #include <linux/of.h> 23 #include <linux/of_device.h> 24 #include <linux/genhd.h> 25 #include <linux/kallsyms.h> 26 #include <linux/mutex.h> 27 #include <linux/pm_runtime.h> 28 #include <linux/netdevice.h> 29 #include <linux/sysfs.h> 30 31 #include "base.h" 32 #include "power/power.h" 33 34 #ifdef CONFIG_SYSFS_DEPRECATED 35 #ifdef CONFIG_SYSFS_DEPRECATED_V2 36 long sysfs_deprecated = 1; 37 #else 38 long sysfs_deprecated = 0; 39 #endif 40 static int __init sysfs_deprecated_setup(char *arg) 41 { 42 return kstrtol(arg, 10, &sysfs_deprecated); 43 } 44 early_param("sysfs.deprecated", sysfs_deprecated_setup); 45 #endif 46 47 /* Device links support. */ 48 49 #ifdef CONFIG_SRCU 50 static DEFINE_MUTEX(device_links_lock); 51 DEFINE_STATIC_SRCU(device_links_srcu); 52 53 static inline void device_links_write_lock(void) 54 { 55 mutex_lock(&device_links_lock); 56 } 57 58 static inline void device_links_write_unlock(void) 59 { 60 mutex_unlock(&device_links_lock); 61 } 62 63 int device_links_read_lock(void) 64 { 65 return srcu_read_lock(&device_links_srcu); 66 } 67 68 void device_links_read_unlock(int idx) 69 { 70 srcu_read_unlock(&device_links_srcu, idx); 71 } 72 #else /* !CONFIG_SRCU */ 73 static DECLARE_RWSEM(device_links_lock); 74 75 static inline void device_links_write_lock(void) 76 { 77 down_write(&device_links_lock); 78 } 79 80 static inline void device_links_write_unlock(void) 81 { 82 up_write(&device_links_lock); 83 } 84 85 int device_links_read_lock(void) 86 { 87 down_read(&device_links_lock); 88 return 0; 89 } 90 91 void device_links_read_unlock(int not_used) 92 { 93 up_read(&device_links_lock); 94 } 95 #endif /* !CONFIG_SRCU */ 96 97 /** 98 * device_is_dependent - Check if one device depends on another one 99 * @dev: Device to check dependencies for. 100 * @target: Device to check against. 101 * 102 * Check if @target depends on @dev or any device dependent on it (its child or 103 * its consumer etc). Return 1 if that is the case or 0 otherwise. 104 */ 105 static int device_is_dependent(struct device *dev, void *target) 106 { 107 struct device_link *link; 108 int ret; 109 110 if (WARN_ON(dev == target)) 111 return 1; 112 113 ret = device_for_each_child(dev, target, device_is_dependent); 114 if (ret) 115 return ret; 116 117 list_for_each_entry(link, &dev->links.consumers, s_node) { 118 if (WARN_ON(link->consumer == target)) 119 return 1; 120 121 ret = device_is_dependent(link->consumer, target); 122 if (ret) 123 break; 124 } 125 return ret; 126 } 127 128 static int device_reorder_to_tail(struct device *dev, void *not_used) 129 { 130 struct device_link *link; 131 132 /* 133 * Devices that have not been registered yet will be put to the ends 134 * of the lists during the registration, so skip them here. 135 */ 136 if (device_is_registered(dev)) 137 devices_kset_move_last(dev); 138 139 if (device_pm_initialized(dev)) 140 device_pm_move_last(dev); 141 142 device_for_each_child(dev, NULL, device_reorder_to_tail); 143 list_for_each_entry(link, &dev->links.consumers, s_node) 144 device_reorder_to_tail(link->consumer, NULL); 145 146 return 0; 147 } 148 149 /** 150 * device_link_add - Create a link between two devices. 151 * @consumer: Consumer end of the link. 152 * @supplier: Supplier end of the link. 153 * @flags: Link flags. 154 * 155 * The caller is responsible for the proper synchronization of the link creation 156 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 157 * runtime PM framework to take the link into account. Second, if the 158 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 159 * be forced into the active metastate and reference-counted upon the creation 160 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 161 * ignored. 162 * 163 * If the DL_FLAG_AUTOREMOVE is set, the link will be removed automatically 164 * when the consumer device driver unbinds from it. The combination of both 165 * DL_FLAG_AUTOREMOVE and DL_FLAG_STATELESS set is invalid and will cause NULL 166 * to be returned. 167 * 168 * A side effect of the link creation is re-ordering of dpm_list and the 169 * devices_kset list by moving the consumer device and all devices depending 170 * on it to the ends of these lists (that does not happen to devices that have 171 * not been registered when this function is called). 172 * 173 * The supplier device is required to be registered when this function is called 174 * and NULL will be returned if that is not the case. The consumer device need 175 * not be registered, however. 176 */ 177 struct device_link *device_link_add(struct device *consumer, 178 struct device *supplier, u32 flags) 179 { 180 struct device_link *link; 181 182 if (!consumer || !supplier || 183 ((flags & DL_FLAG_STATELESS) && (flags & DL_FLAG_AUTOREMOVE))) 184 return NULL; 185 186 device_links_write_lock(); 187 device_pm_lock(); 188 189 /* 190 * If the supplier has not been fully registered yet or there is a 191 * reverse dependency between the consumer and the supplier already in 192 * the graph, return NULL. 193 */ 194 if (!device_pm_initialized(supplier) 195 || device_is_dependent(consumer, supplier)) { 196 link = NULL; 197 goto out; 198 } 199 200 list_for_each_entry(link, &supplier->links.consumers, s_node) 201 if (link->consumer == consumer) 202 goto out; 203 204 link = kzalloc(sizeof(*link), GFP_KERNEL); 205 if (!link) 206 goto out; 207 208 if (flags & DL_FLAG_PM_RUNTIME) { 209 if (flags & DL_FLAG_RPM_ACTIVE) { 210 if (pm_runtime_get_sync(supplier) < 0) { 211 pm_runtime_put_noidle(supplier); 212 kfree(link); 213 link = NULL; 214 goto out; 215 } 216 link->rpm_active = true; 217 } 218 pm_runtime_new_link(consumer); 219 } 220 get_device(supplier); 221 link->supplier = supplier; 222 INIT_LIST_HEAD(&link->s_node); 223 get_device(consumer); 224 link->consumer = consumer; 225 INIT_LIST_HEAD(&link->c_node); 226 link->flags = flags; 227 228 /* Determine the initial link state. */ 229 if (flags & DL_FLAG_STATELESS) { 230 link->status = DL_STATE_NONE; 231 } else { 232 switch (supplier->links.status) { 233 case DL_DEV_DRIVER_BOUND: 234 switch (consumer->links.status) { 235 case DL_DEV_PROBING: 236 /* 237 * Balance the decrementation of the supplier's 238 * runtime PM usage counter after consumer probe 239 * in driver_probe_device(). 240 */ 241 if (flags & DL_FLAG_PM_RUNTIME) 242 pm_runtime_get_sync(supplier); 243 244 link->status = DL_STATE_CONSUMER_PROBE; 245 break; 246 case DL_DEV_DRIVER_BOUND: 247 link->status = DL_STATE_ACTIVE; 248 break; 249 default: 250 link->status = DL_STATE_AVAILABLE; 251 break; 252 } 253 break; 254 case DL_DEV_UNBINDING: 255 link->status = DL_STATE_SUPPLIER_UNBIND; 256 break; 257 default: 258 link->status = DL_STATE_DORMANT; 259 break; 260 } 261 } 262 263 /* 264 * Move the consumer and all of the devices depending on it to the end 265 * of dpm_list and the devices_kset list. 266 * 267 * It is necessary to hold dpm_list locked throughout all that or else 268 * we may end up suspending with a wrong ordering of it. 269 */ 270 device_reorder_to_tail(consumer, NULL); 271 272 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 273 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 274 275 dev_info(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 276 277 out: 278 device_pm_unlock(); 279 device_links_write_unlock(); 280 return link; 281 } 282 EXPORT_SYMBOL_GPL(device_link_add); 283 284 static void device_link_free(struct device_link *link) 285 { 286 put_device(link->consumer); 287 put_device(link->supplier); 288 kfree(link); 289 } 290 291 #ifdef CONFIG_SRCU 292 static void __device_link_free_srcu(struct rcu_head *rhead) 293 { 294 device_link_free(container_of(rhead, struct device_link, rcu_head)); 295 } 296 297 static void __device_link_del(struct device_link *link) 298 { 299 dev_info(link->consumer, "Dropping the link to %s\n", 300 dev_name(link->supplier)); 301 302 if (link->flags & DL_FLAG_PM_RUNTIME) 303 pm_runtime_drop_link(link->consumer); 304 305 list_del_rcu(&link->s_node); 306 list_del_rcu(&link->c_node); 307 call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu); 308 } 309 #else /* !CONFIG_SRCU */ 310 static void __device_link_del(struct device_link *link) 311 { 312 dev_info(link->consumer, "Dropping the link to %s\n", 313 dev_name(link->supplier)); 314 315 list_del(&link->s_node); 316 list_del(&link->c_node); 317 device_link_free(link); 318 } 319 #endif /* !CONFIG_SRCU */ 320 321 /** 322 * device_link_del - Delete a link between two devices. 323 * @link: Device link to delete. 324 * 325 * The caller must ensure proper synchronization of this function with runtime 326 * PM. 327 */ 328 void device_link_del(struct device_link *link) 329 { 330 device_links_write_lock(); 331 device_pm_lock(); 332 __device_link_del(link); 333 device_pm_unlock(); 334 device_links_write_unlock(); 335 } 336 EXPORT_SYMBOL_GPL(device_link_del); 337 338 static void device_links_missing_supplier(struct device *dev) 339 { 340 struct device_link *link; 341 342 list_for_each_entry(link, &dev->links.suppliers, c_node) 343 if (link->status == DL_STATE_CONSUMER_PROBE) 344 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 345 } 346 347 /** 348 * device_links_check_suppliers - Check presence of supplier drivers. 349 * @dev: Consumer device. 350 * 351 * Check links from this device to any suppliers. Walk the list of the device's 352 * links to suppliers and see if all of them are available. If not, simply 353 * return -EPROBE_DEFER. 354 * 355 * We need to guarantee that the supplier will not go away after the check has 356 * been positive here. It only can go away in __device_release_driver() and 357 * that function checks the device's links to consumers. This means we need to 358 * mark the link as "consumer probe in progress" to make the supplier removal 359 * wait for us to complete (or bad things may happen). 360 * 361 * Links with the DL_FLAG_STATELESS flag set are ignored. 362 */ 363 int device_links_check_suppliers(struct device *dev) 364 { 365 struct device_link *link; 366 int ret = 0; 367 368 device_links_write_lock(); 369 370 list_for_each_entry(link, &dev->links.suppliers, c_node) { 371 if (link->flags & DL_FLAG_STATELESS) 372 continue; 373 374 if (link->status != DL_STATE_AVAILABLE) { 375 device_links_missing_supplier(dev); 376 ret = -EPROBE_DEFER; 377 break; 378 } 379 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 380 } 381 dev->links.status = DL_DEV_PROBING; 382 383 device_links_write_unlock(); 384 return ret; 385 } 386 387 /** 388 * device_links_driver_bound - Update device links after probing its driver. 389 * @dev: Device to update the links for. 390 * 391 * The probe has been successful, so update links from this device to any 392 * consumers by changing their status to "available". 393 * 394 * Also change the status of @dev's links to suppliers to "active". 395 * 396 * Links with the DL_FLAG_STATELESS flag set are ignored. 397 */ 398 void device_links_driver_bound(struct device *dev) 399 { 400 struct device_link *link; 401 402 device_links_write_lock(); 403 404 list_for_each_entry(link, &dev->links.consumers, s_node) { 405 if (link->flags & DL_FLAG_STATELESS) 406 continue; 407 408 WARN_ON(link->status != DL_STATE_DORMANT); 409 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 410 } 411 412 list_for_each_entry(link, &dev->links.suppliers, c_node) { 413 if (link->flags & DL_FLAG_STATELESS) 414 continue; 415 416 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 417 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 418 } 419 420 dev->links.status = DL_DEV_DRIVER_BOUND; 421 422 device_links_write_unlock(); 423 } 424 425 /** 426 * __device_links_no_driver - Update links of a device without a driver. 427 * @dev: Device without a drvier. 428 * 429 * Delete all non-persistent links from this device to any suppliers. 430 * 431 * Persistent links stay around, but their status is changed to "available", 432 * unless they already are in the "supplier unbind in progress" state in which 433 * case they need not be updated. 434 * 435 * Links with the DL_FLAG_STATELESS flag set are ignored. 436 */ 437 static void __device_links_no_driver(struct device *dev) 438 { 439 struct device_link *link, *ln; 440 441 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 442 if (link->flags & DL_FLAG_STATELESS) 443 continue; 444 445 if (link->flags & DL_FLAG_AUTOREMOVE) 446 __device_link_del(link); 447 else if (link->status != DL_STATE_SUPPLIER_UNBIND) 448 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 449 } 450 451 dev->links.status = DL_DEV_NO_DRIVER; 452 } 453 454 void device_links_no_driver(struct device *dev) 455 { 456 device_links_write_lock(); 457 __device_links_no_driver(dev); 458 device_links_write_unlock(); 459 } 460 461 /** 462 * device_links_driver_cleanup - Update links after driver removal. 463 * @dev: Device whose driver has just gone away. 464 * 465 * Update links to consumers for @dev by changing their status to "dormant" and 466 * invoke %__device_links_no_driver() to update links to suppliers for it as 467 * appropriate. 468 * 469 * Links with the DL_FLAG_STATELESS flag set are ignored. 470 */ 471 void device_links_driver_cleanup(struct device *dev) 472 { 473 struct device_link *link; 474 475 device_links_write_lock(); 476 477 list_for_each_entry(link, &dev->links.consumers, s_node) { 478 if (link->flags & DL_FLAG_STATELESS) 479 continue; 480 481 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE); 482 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 483 WRITE_ONCE(link->status, DL_STATE_DORMANT); 484 } 485 486 __device_links_no_driver(dev); 487 488 device_links_write_unlock(); 489 } 490 491 /** 492 * device_links_busy - Check if there are any busy links to consumers. 493 * @dev: Device to check. 494 * 495 * Check each consumer of the device and return 'true' if its link's status 496 * is one of "consumer probe" or "active" (meaning that the given consumer is 497 * probing right now or its driver is present). Otherwise, change the link 498 * state to "supplier unbind" to prevent the consumer from being probed 499 * successfully going forward. 500 * 501 * Return 'false' if there are no probing or active consumers. 502 * 503 * Links with the DL_FLAG_STATELESS flag set are ignored. 504 */ 505 bool device_links_busy(struct device *dev) 506 { 507 struct device_link *link; 508 bool ret = false; 509 510 device_links_write_lock(); 511 512 list_for_each_entry(link, &dev->links.consumers, s_node) { 513 if (link->flags & DL_FLAG_STATELESS) 514 continue; 515 516 if (link->status == DL_STATE_CONSUMER_PROBE 517 || link->status == DL_STATE_ACTIVE) { 518 ret = true; 519 break; 520 } 521 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 522 } 523 524 dev->links.status = DL_DEV_UNBINDING; 525 526 device_links_write_unlock(); 527 return ret; 528 } 529 530 /** 531 * device_links_unbind_consumers - Force unbind consumers of the given device. 532 * @dev: Device to unbind the consumers of. 533 * 534 * Walk the list of links to consumers for @dev and if any of them is in the 535 * "consumer probe" state, wait for all device probes in progress to complete 536 * and start over. 537 * 538 * If that's not the case, change the status of the link to "supplier unbind" 539 * and check if the link was in the "active" state. If so, force the consumer 540 * driver to unbind and start over (the consumer will not re-probe as we have 541 * changed the state of the link already). 542 * 543 * Links with the DL_FLAG_STATELESS flag set are ignored. 544 */ 545 void device_links_unbind_consumers(struct device *dev) 546 { 547 struct device_link *link; 548 549 start: 550 device_links_write_lock(); 551 552 list_for_each_entry(link, &dev->links.consumers, s_node) { 553 enum device_link_state status; 554 555 if (link->flags & DL_FLAG_STATELESS) 556 continue; 557 558 status = link->status; 559 if (status == DL_STATE_CONSUMER_PROBE) { 560 device_links_write_unlock(); 561 562 wait_for_device_probe(); 563 goto start; 564 } 565 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 566 if (status == DL_STATE_ACTIVE) { 567 struct device *consumer = link->consumer; 568 569 get_device(consumer); 570 571 device_links_write_unlock(); 572 573 device_release_driver_internal(consumer, NULL, 574 consumer->parent); 575 put_device(consumer); 576 goto start; 577 } 578 } 579 580 device_links_write_unlock(); 581 } 582 583 /** 584 * device_links_purge - Delete existing links to other devices. 585 * @dev: Target device. 586 */ 587 static void device_links_purge(struct device *dev) 588 { 589 struct device_link *link, *ln; 590 591 /* 592 * Delete all of the remaining links from this device to any other 593 * devices (either consumers or suppliers). 594 */ 595 device_links_write_lock(); 596 597 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 598 WARN_ON(link->status == DL_STATE_ACTIVE); 599 __device_link_del(link); 600 } 601 602 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 603 WARN_ON(link->status != DL_STATE_DORMANT && 604 link->status != DL_STATE_NONE); 605 __device_link_del(link); 606 } 607 608 device_links_write_unlock(); 609 } 610 611 /* Device links support end. */ 612 613 int (*platform_notify)(struct device *dev) = NULL; 614 int (*platform_notify_remove)(struct device *dev) = NULL; 615 static struct kobject *dev_kobj; 616 struct kobject *sysfs_dev_char_kobj; 617 struct kobject *sysfs_dev_block_kobj; 618 619 static DEFINE_MUTEX(device_hotplug_lock); 620 621 void lock_device_hotplug(void) 622 { 623 mutex_lock(&device_hotplug_lock); 624 } 625 626 void unlock_device_hotplug(void) 627 { 628 mutex_unlock(&device_hotplug_lock); 629 } 630 631 int lock_device_hotplug_sysfs(void) 632 { 633 if (mutex_trylock(&device_hotplug_lock)) 634 return 0; 635 636 /* Avoid busy looping (5 ms of sleep should do). */ 637 msleep(5); 638 return restart_syscall(); 639 } 640 641 #ifdef CONFIG_BLOCK 642 static inline int device_is_not_partition(struct device *dev) 643 { 644 return !(dev->type == &part_type); 645 } 646 #else 647 static inline int device_is_not_partition(struct device *dev) 648 { 649 return 1; 650 } 651 #endif 652 653 /** 654 * dev_driver_string - Return a device's driver name, if at all possible 655 * @dev: struct device to get the name of 656 * 657 * Will return the device's driver's name if it is bound to a device. If 658 * the device is not bound to a driver, it will return the name of the bus 659 * it is attached to. If it is not attached to a bus either, an empty 660 * string will be returned. 661 */ 662 const char *dev_driver_string(const struct device *dev) 663 { 664 struct device_driver *drv; 665 666 /* dev->driver can change to NULL underneath us because of unbinding, 667 * so be careful about accessing it. dev->bus and dev->class should 668 * never change once they are set, so they don't need special care. 669 */ 670 drv = ACCESS_ONCE(dev->driver); 671 return drv ? drv->name : 672 (dev->bus ? dev->bus->name : 673 (dev->class ? dev->class->name : "")); 674 } 675 EXPORT_SYMBOL(dev_driver_string); 676 677 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 678 679 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 680 char *buf) 681 { 682 struct device_attribute *dev_attr = to_dev_attr(attr); 683 struct device *dev = kobj_to_dev(kobj); 684 ssize_t ret = -EIO; 685 686 if (dev_attr->show) 687 ret = dev_attr->show(dev, dev_attr, buf); 688 if (ret >= (ssize_t)PAGE_SIZE) { 689 print_symbol("dev_attr_show: %s returned bad count\n", 690 (unsigned long)dev_attr->show); 691 } 692 return ret; 693 } 694 695 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 696 const char *buf, size_t count) 697 { 698 struct device_attribute *dev_attr = to_dev_attr(attr); 699 struct device *dev = kobj_to_dev(kobj); 700 ssize_t ret = -EIO; 701 702 if (dev_attr->store) 703 ret = dev_attr->store(dev, dev_attr, buf, count); 704 return ret; 705 } 706 707 static const struct sysfs_ops dev_sysfs_ops = { 708 .show = dev_attr_show, 709 .store = dev_attr_store, 710 }; 711 712 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 713 714 ssize_t device_store_ulong(struct device *dev, 715 struct device_attribute *attr, 716 const char *buf, size_t size) 717 { 718 struct dev_ext_attribute *ea = to_ext_attr(attr); 719 char *end; 720 unsigned long new = simple_strtoul(buf, &end, 0); 721 if (end == buf) 722 return -EINVAL; 723 *(unsigned long *)(ea->var) = new; 724 /* Always return full write size even if we didn't consume all */ 725 return size; 726 } 727 EXPORT_SYMBOL_GPL(device_store_ulong); 728 729 ssize_t device_show_ulong(struct device *dev, 730 struct device_attribute *attr, 731 char *buf) 732 { 733 struct dev_ext_attribute *ea = to_ext_attr(attr); 734 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var)); 735 } 736 EXPORT_SYMBOL_GPL(device_show_ulong); 737 738 ssize_t device_store_int(struct device *dev, 739 struct device_attribute *attr, 740 const char *buf, size_t size) 741 { 742 struct dev_ext_attribute *ea = to_ext_attr(attr); 743 char *end; 744 long new = simple_strtol(buf, &end, 0); 745 if (end == buf || new > INT_MAX || new < INT_MIN) 746 return -EINVAL; 747 *(int *)(ea->var) = new; 748 /* Always return full write size even if we didn't consume all */ 749 return size; 750 } 751 EXPORT_SYMBOL_GPL(device_store_int); 752 753 ssize_t device_show_int(struct device *dev, 754 struct device_attribute *attr, 755 char *buf) 756 { 757 struct dev_ext_attribute *ea = to_ext_attr(attr); 758 759 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var)); 760 } 761 EXPORT_SYMBOL_GPL(device_show_int); 762 763 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 764 const char *buf, size_t size) 765 { 766 struct dev_ext_attribute *ea = to_ext_attr(attr); 767 768 if (strtobool(buf, ea->var) < 0) 769 return -EINVAL; 770 771 return size; 772 } 773 EXPORT_SYMBOL_GPL(device_store_bool); 774 775 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 776 char *buf) 777 { 778 struct dev_ext_attribute *ea = to_ext_attr(attr); 779 780 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var)); 781 } 782 EXPORT_SYMBOL_GPL(device_show_bool); 783 784 /** 785 * device_release - free device structure. 786 * @kobj: device's kobject. 787 * 788 * This is called once the reference count for the object 789 * reaches 0. We forward the call to the device's release 790 * method, which should handle actually freeing the structure. 791 */ 792 static void device_release(struct kobject *kobj) 793 { 794 struct device *dev = kobj_to_dev(kobj); 795 struct device_private *p = dev->p; 796 797 /* 798 * Some platform devices are driven without driver attached 799 * and managed resources may have been acquired. Make sure 800 * all resources are released. 801 * 802 * Drivers still can add resources into device after device 803 * is deleted but alive, so release devres here to avoid 804 * possible memory leak. 805 */ 806 devres_release_all(dev); 807 808 if (dev->release) 809 dev->release(dev); 810 else if (dev->type && dev->type->release) 811 dev->type->release(dev); 812 else if (dev->class && dev->class->dev_release) 813 dev->class->dev_release(dev); 814 else 815 WARN(1, KERN_ERR "Device '%s' does not have a release() " 816 "function, it is broken and must be fixed.\n", 817 dev_name(dev)); 818 kfree(p); 819 } 820 821 static const void *device_namespace(struct kobject *kobj) 822 { 823 struct device *dev = kobj_to_dev(kobj); 824 const void *ns = NULL; 825 826 if (dev->class && dev->class->ns_type) 827 ns = dev->class->namespace(dev); 828 829 return ns; 830 } 831 832 static struct kobj_type device_ktype = { 833 .release = device_release, 834 .sysfs_ops = &dev_sysfs_ops, 835 .namespace = device_namespace, 836 }; 837 838 839 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj) 840 { 841 struct kobj_type *ktype = get_ktype(kobj); 842 843 if (ktype == &device_ktype) { 844 struct device *dev = kobj_to_dev(kobj); 845 if (dev->bus) 846 return 1; 847 if (dev->class) 848 return 1; 849 } 850 return 0; 851 } 852 853 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj) 854 { 855 struct device *dev = kobj_to_dev(kobj); 856 857 if (dev->bus) 858 return dev->bus->name; 859 if (dev->class) 860 return dev->class->name; 861 return NULL; 862 } 863 864 static int dev_uevent(struct kset *kset, struct kobject *kobj, 865 struct kobj_uevent_env *env) 866 { 867 struct device *dev = kobj_to_dev(kobj); 868 int retval = 0; 869 870 /* add device node properties if present */ 871 if (MAJOR(dev->devt)) { 872 const char *tmp; 873 const char *name; 874 umode_t mode = 0; 875 kuid_t uid = GLOBAL_ROOT_UID; 876 kgid_t gid = GLOBAL_ROOT_GID; 877 878 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 879 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 880 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 881 if (name) { 882 add_uevent_var(env, "DEVNAME=%s", name); 883 if (mode) 884 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 885 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 886 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 887 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 888 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 889 kfree(tmp); 890 } 891 } 892 893 if (dev->type && dev->type->name) 894 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 895 896 if (dev->driver) 897 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 898 899 /* Add common DT information about the device */ 900 of_device_uevent(dev, env); 901 902 /* have the bus specific function add its stuff */ 903 if (dev->bus && dev->bus->uevent) { 904 retval = dev->bus->uevent(dev, env); 905 if (retval) 906 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 907 dev_name(dev), __func__, retval); 908 } 909 910 /* have the class specific function add its stuff */ 911 if (dev->class && dev->class->dev_uevent) { 912 retval = dev->class->dev_uevent(dev, env); 913 if (retval) 914 pr_debug("device: '%s': %s: class uevent() " 915 "returned %d\n", dev_name(dev), 916 __func__, retval); 917 } 918 919 /* have the device type specific function add its stuff */ 920 if (dev->type && dev->type->uevent) { 921 retval = dev->type->uevent(dev, env); 922 if (retval) 923 pr_debug("device: '%s': %s: dev_type uevent() " 924 "returned %d\n", dev_name(dev), 925 __func__, retval); 926 } 927 928 return retval; 929 } 930 931 static const struct kset_uevent_ops device_uevent_ops = { 932 .filter = dev_uevent_filter, 933 .name = dev_uevent_name, 934 .uevent = dev_uevent, 935 }; 936 937 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 938 char *buf) 939 { 940 struct kobject *top_kobj; 941 struct kset *kset; 942 struct kobj_uevent_env *env = NULL; 943 int i; 944 size_t count = 0; 945 int retval; 946 947 /* search the kset, the device belongs to */ 948 top_kobj = &dev->kobj; 949 while (!top_kobj->kset && top_kobj->parent) 950 top_kobj = top_kobj->parent; 951 if (!top_kobj->kset) 952 goto out; 953 954 kset = top_kobj->kset; 955 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 956 goto out; 957 958 /* respect filter */ 959 if (kset->uevent_ops && kset->uevent_ops->filter) 960 if (!kset->uevent_ops->filter(kset, &dev->kobj)) 961 goto out; 962 963 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 964 if (!env) 965 return -ENOMEM; 966 967 /* let the kset specific function add its keys */ 968 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env); 969 if (retval) 970 goto out; 971 972 /* copy keys to file */ 973 for (i = 0; i < env->envp_idx; i++) 974 count += sprintf(&buf[count], "%s\n", env->envp[i]); 975 out: 976 kfree(env); 977 return count; 978 } 979 980 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 981 const char *buf, size_t count) 982 { 983 enum kobject_action action; 984 985 if (kobject_action_type(buf, count, &action) == 0) 986 kobject_uevent(&dev->kobj, action); 987 else 988 dev_err(dev, "uevent: unknown action-string\n"); 989 return count; 990 } 991 static DEVICE_ATTR_RW(uevent); 992 993 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 994 char *buf) 995 { 996 bool val; 997 998 device_lock(dev); 999 val = !dev->offline; 1000 device_unlock(dev); 1001 return sprintf(buf, "%u\n", val); 1002 } 1003 1004 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 1005 const char *buf, size_t count) 1006 { 1007 bool val; 1008 int ret; 1009 1010 ret = strtobool(buf, &val); 1011 if (ret < 0) 1012 return ret; 1013 1014 ret = lock_device_hotplug_sysfs(); 1015 if (ret) 1016 return ret; 1017 1018 ret = val ? device_online(dev) : device_offline(dev); 1019 unlock_device_hotplug(); 1020 return ret < 0 ? ret : count; 1021 } 1022 static DEVICE_ATTR_RW(online); 1023 1024 int device_add_groups(struct device *dev, const struct attribute_group **groups) 1025 { 1026 return sysfs_create_groups(&dev->kobj, groups); 1027 } 1028 1029 void device_remove_groups(struct device *dev, 1030 const struct attribute_group **groups) 1031 { 1032 sysfs_remove_groups(&dev->kobj, groups); 1033 } 1034 1035 static int device_add_attrs(struct device *dev) 1036 { 1037 struct class *class = dev->class; 1038 const struct device_type *type = dev->type; 1039 int error; 1040 1041 if (class) { 1042 error = device_add_groups(dev, class->dev_groups); 1043 if (error) 1044 return error; 1045 } 1046 1047 if (type) { 1048 error = device_add_groups(dev, type->groups); 1049 if (error) 1050 goto err_remove_class_groups; 1051 } 1052 1053 error = device_add_groups(dev, dev->groups); 1054 if (error) 1055 goto err_remove_type_groups; 1056 1057 if (device_supports_offline(dev) && !dev->offline_disabled) { 1058 error = device_create_file(dev, &dev_attr_online); 1059 if (error) 1060 goto err_remove_dev_groups; 1061 } 1062 1063 return 0; 1064 1065 err_remove_dev_groups: 1066 device_remove_groups(dev, dev->groups); 1067 err_remove_type_groups: 1068 if (type) 1069 device_remove_groups(dev, type->groups); 1070 err_remove_class_groups: 1071 if (class) 1072 device_remove_groups(dev, class->dev_groups); 1073 1074 return error; 1075 } 1076 1077 static void device_remove_attrs(struct device *dev) 1078 { 1079 struct class *class = dev->class; 1080 const struct device_type *type = dev->type; 1081 1082 device_remove_file(dev, &dev_attr_online); 1083 device_remove_groups(dev, dev->groups); 1084 1085 if (type) 1086 device_remove_groups(dev, type->groups); 1087 1088 if (class) 1089 device_remove_groups(dev, class->dev_groups); 1090 } 1091 1092 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 1093 char *buf) 1094 { 1095 return print_dev_t(buf, dev->devt); 1096 } 1097 static DEVICE_ATTR_RO(dev); 1098 1099 /* /sys/devices/ */ 1100 struct kset *devices_kset; 1101 1102 /** 1103 * devices_kset_move_before - Move device in the devices_kset's list. 1104 * @deva: Device to move. 1105 * @devb: Device @deva should come before. 1106 */ 1107 static void devices_kset_move_before(struct device *deva, struct device *devb) 1108 { 1109 if (!devices_kset) 1110 return; 1111 pr_debug("devices_kset: Moving %s before %s\n", 1112 dev_name(deva), dev_name(devb)); 1113 spin_lock(&devices_kset->list_lock); 1114 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 1115 spin_unlock(&devices_kset->list_lock); 1116 } 1117 1118 /** 1119 * devices_kset_move_after - Move device in the devices_kset's list. 1120 * @deva: Device to move 1121 * @devb: Device @deva should come after. 1122 */ 1123 static void devices_kset_move_after(struct device *deva, struct device *devb) 1124 { 1125 if (!devices_kset) 1126 return; 1127 pr_debug("devices_kset: Moving %s after %s\n", 1128 dev_name(deva), dev_name(devb)); 1129 spin_lock(&devices_kset->list_lock); 1130 list_move(&deva->kobj.entry, &devb->kobj.entry); 1131 spin_unlock(&devices_kset->list_lock); 1132 } 1133 1134 /** 1135 * devices_kset_move_last - move the device to the end of devices_kset's list. 1136 * @dev: device to move 1137 */ 1138 void devices_kset_move_last(struct device *dev) 1139 { 1140 if (!devices_kset) 1141 return; 1142 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 1143 spin_lock(&devices_kset->list_lock); 1144 list_move_tail(&dev->kobj.entry, &devices_kset->list); 1145 spin_unlock(&devices_kset->list_lock); 1146 } 1147 1148 /** 1149 * device_create_file - create sysfs attribute file for device. 1150 * @dev: device. 1151 * @attr: device attribute descriptor. 1152 */ 1153 int device_create_file(struct device *dev, 1154 const struct device_attribute *attr) 1155 { 1156 int error = 0; 1157 1158 if (dev) { 1159 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 1160 "Attribute %s: write permission without 'store'\n", 1161 attr->attr.name); 1162 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 1163 "Attribute %s: read permission without 'show'\n", 1164 attr->attr.name); 1165 error = sysfs_create_file(&dev->kobj, &attr->attr); 1166 } 1167 1168 return error; 1169 } 1170 EXPORT_SYMBOL_GPL(device_create_file); 1171 1172 /** 1173 * device_remove_file - remove sysfs attribute file. 1174 * @dev: device. 1175 * @attr: device attribute descriptor. 1176 */ 1177 void device_remove_file(struct device *dev, 1178 const struct device_attribute *attr) 1179 { 1180 if (dev) 1181 sysfs_remove_file(&dev->kobj, &attr->attr); 1182 } 1183 EXPORT_SYMBOL_GPL(device_remove_file); 1184 1185 /** 1186 * device_remove_file_self - remove sysfs attribute file from its own method. 1187 * @dev: device. 1188 * @attr: device attribute descriptor. 1189 * 1190 * See kernfs_remove_self() for details. 1191 */ 1192 bool device_remove_file_self(struct device *dev, 1193 const struct device_attribute *attr) 1194 { 1195 if (dev) 1196 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 1197 else 1198 return false; 1199 } 1200 EXPORT_SYMBOL_GPL(device_remove_file_self); 1201 1202 /** 1203 * device_create_bin_file - create sysfs binary attribute file for device. 1204 * @dev: device. 1205 * @attr: device binary attribute descriptor. 1206 */ 1207 int device_create_bin_file(struct device *dev, 1208 const struct bin_attribute *attr) 1209 { 1210 int error = -EINVAL; 1211 if (dev) 1212 error = sysfs_create_bin_file(&dev->kobj, attr); 1213 return error; 1214 } 1215 EXPORT_SYMBOL_GPL(device_create_bin_file); 1216 1217 /** 1218 * device_remove_bin_file - remove sysfs binary attribute file 1219 * @dev: device. 1220 * @attr: device binary attribute descriptor. 1221 */ 1222 void device_remove_bin_file(struct device *dev, 1223 const struct bin_attribute *attr) 1224 { 1225 if (dev) 1226 sysfs_remove_bin_file(&dev->kobj, attr); 1227 } 1228 EXPORT_SYMBOL_GPL(device_remove_bin_file); 1229 1230 static void klist_children_get(struct klist_node *n) 1231 { 1232 struct device_private *p = to_device_private_parent(n); 1233 struct device *dev = p->device; 1234 1235 get_device(dev); 1236 } 1237 1238 static void klist_children_put(struct klist_node *n) 1239 { 1240 struct device_private *p = to_device_private_parent(n); 1241 struct device *dev = p->device; 1242 1243 put_device(dev); 1244 } 1245 1246 /** 1247 * device_initialize - init device structure. 1248 * @dev: device. 1249 * 1250 * This prepares the device for use by other layers by initializing 1251 * its fields. 1252 * It is the first half of device_register(), if called by 1253 * that function, though it can also be called separately, so one 1254 * may use @dev's fields. In particular, get_device()/put_device() 1255 * may be used for reference counting of @dev after calling this 1256 * function. 1257 * 1258 * All fields in @dev must be initialized by the caller to 0, except 1259 * for those explicitly set to some other value. The simplest 1260 * approach is to use kzalloc() to allocate the structure containing 1261 * @dev. 1262 * 1263 * NOTE: Use put_device() to give up your reference instead of freeing 1264 * @dev directly once you have called this function. 1265 */ 1266 void device_initialize(struct device *dev) 1267 { 1268 dev->kobj.kset = devices_kset; 1269 kobject_init(&dev->kobj, &device_ktype); 1270 INIT_LIST_HEAD(&dev->dma_pools); 1271 mutex_init(&dev->mutex); 1272 lockdep_set_novalidate_class(&dev->mutex); 1273 spin_lock_init(&dev->devres_lock); 1274 INIT_LIST_HEAD(&dev->devres_head); 1275 device_pm_init(dev); 1276 set_dev_node(dev, -1); 1277 #ifdef CONFIG_GENERIC_MSI_IRQ 1278 INIT_LIST_HEAD(&dev->msi_list); 1279 #endif 1280 INIT_LIST_HEAD(&dev->links.consumers); 1281 INIT_LIST_HEAD(&dev->links.suppliers); 1282 dev->links.status = DL_DEV_NO_DRIVER; 1283 } 1284 EXPORT_SYMBOL_GPL(device_initialize); 1285 1286 struct kobject *virtual_device_parent(struct device *dev) 1287 { 1288 static struct kobject *virtual_dir = NULL; 1289 1290 if (!virtual_dir) 1291 virtual_dir = kobject_create_and_add("virtual", 1292 &devices_kset->kobj); 1293 1294 return virtual_dir; 1295 } 1296 1297 struct class_dir { 1298 struct kobject kobj; 1299 struct class *class; 1300 }; 1301 1302 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 1303 1304 static void class_dir_release(struct kobject *kobj) 1305 { 1306 struct class_dir *dir = to_class_dir(kobj); 1307 kfree(dir); 1308 } 1309 1310 static const 1311 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj) 1312 { 1313 struct class_dir *dir = to_class_dir(kobj); 1314 return dir->class->ns_type; 1315 } 1316 1317 static struct kobj_type class_dir_ktype = { 1318 .release = class_dir_release, 1319 .sysfs_ops = &kobj_sysfs_ops, 1320 .child_ns_type = class_dir_child_ns_type 1321 }; 1322 1323 static struct kobject * 1324 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj) 1325 { 1326 struct class_dir *dir; 1327 int retval; 1328 1329 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 1330 if (!dir) 1331 return NULL; 1332 1333 dir->class = class; 1334 kobject_init(&dir->kobj, &class_dir_ktype); 1335 1336 dir->kobj.kset = &class->p->glue_dirs; 1337 1338 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name); 1339 if (retval < 0) { 1340 kobject_put(&dir->kobj); 1341 return NULL; 1342 } 1343 return &dir->kobj; 1344 } 1345 1346 static DEFINE_MUTEX(gdp_mutex); 1347 1348 static struct kobject *get_device_parent(struct device *dev, 1349 struct device *parent) 1350 { 1351 if (dev->class) { 1352 struct kobject *kobj = NULL; 1353 struct kobject *parent_kobj; 1354 struct kobject *k; 1355 1356 #ifdef CONFIG_BLOCK 1357 /* block disks show up in /sys/block */ 1358 if (sysfs_deprecated && dev->class == &block_class) { 1359 if (parent && parent->class == &block_class) 1360 return &parent->kobj; 1361 return &block_class.p->subsys.kobj; 1362 } 1363 #endif 1364 1365 /* 1366 * If we have no parent, we live in "virtual". 1367 * Class-devices with a non class-device as parent, live 1368 * in a "glue" directory to prevent namespace collisions. 1369 */ 1370 if (parent == NULL) 1371 parent_kobj = virtual_device_parent(dev); 1372 else if (parent->class && !dev->class->ns_type) 1373 return &parent->kobj; 1374 else 1375 parent_kobj = &parent->kobj; 1376 1377 mutex_lock(&gdp_mutex); 1378 1379 /* find our class-directory at the parent and reference it */ 1380 spin_lock(&dev->class->p->glue_dirs.list_lock); 1381 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry) 1382 if (k->parent == parent_kobj) { 1383 kobj = kobject_get(k); 1384 break; 1385 } 1386 spin_unlock(&dev->class->p->glue_dirs.list_lock); 1387 if (kobj) { 1388 mutex_unlock(&gdp_mutex); 1389 return kobj; 1390 } 1391 1392 /* or create a new class-directory at the parent device */ 1393 k = class_dir_create_and_add(dev->class, parent_kobj); 1394 /* do not emit an uevent for this simple "glue" directory */ 1395 mutex_unlock(&gdp_mutex); 1396 return k; 1397 } 1398 1399 /* subsystems can specify a default root directory for their devices */ 1400 if (!parent && dev->bus && dev->bus->dev_root) 1401 return &dev->bus->dev_root->kobj; 1402 1403 if (parent) 1404 return &parent->kobj; 1405 return NULL; 1406 } 1407 1408 static inline bool live_in_glue_dir(struct kobject *kobj, 1409 struct device *dev) 1410 { 1411 if (!kobj || !dev->class || 1412 kobj->kset != &dev->class->p->glue_dirs) 1413 return false; 1414 return true; 1415 } 1416 1417 static inline struct kobject *get_glue_dir(struct device *dev) 1418 { 1419 return dev->kobj.parent; 1420 } 1421 1422 /* 1423 * make sure cleaning up dir as the last step, we need to make 1424 * sure .release handler of kobject is run with holding the 1425 * global lock 1426 */ 1427 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 1428 { 1429 /* see if we live in a "glue" directory */ 1430 if (!live_in_glue_dir(glue_dir, dev)) 1431 return; 1432 1433 mutex_lock(&gdp_mutex); 1434 kobject_put(glue_dir); 1435 mutex_unlock(&gdp_mutex); 1436 } 1437 1438 static int device_add_class_symlinks(struct device *dev) 1439 { 1440 struct device_node *of_node = dev_of_node(dev); 1441 int error; 1442 1443 if (of_node) { 1444 error = sysfs_create_link(&dev->kobj, &of_node->kobj,"of_node"); 1445 if (error) 1446 dev_warn(dev, "Error %d creating of_node link\n",error); 1447 /* An error here doesn't warrant bringing down the device */ 1448 } 1449 1450 if (!dev->class) 1451 return 0; 1452 1453 error = sysfs_create_link(&dev->kobj, 1454 &dev->class->p->subsys.kobj, 1455 "subsystem"); 1456 if (error) 1457 goto out_devnode; 1458 1459 if (dev->parent && device_is_not_partition(dev)) { 1460 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 1461 "device"); 1462 if (error) 1463 goto out_subsys; 1464 } 1465 1466 #ifdef CONFIG_BLOCK 1467 /* /sys/block has directories and does not need symlinks */ 1468 if (sysfs_deprecated && dev->class == &block_class) 1469 return 0; 1470 #endif 1471 1472 /* link in the class directory pointing to the device */ 1473 error = sysfs_create_link(&dev->class->p->subsys.kobj, 1474 &dev->kobj, dev_name(dev)); 1475 if (error) 1476 goto out_device; 1477 1478 return 0; 1479 1480 out_device: 1481 sysfs_remove_link(&dev->kobj, "device"); 1482 1483 out_subsys: 1484 sysfs_remove_link(&dev->kobj, "subsystem"); 1485 out_devnode: 1486 sysfs_remove_link(&dev->kobj, "of_node"); 1487 return error; 1488 } 1489 1490 static void device_remove_class_symlinks(struct device *dev) 1491 { 1492 if (dev_of_node(dev)) 1493 sysfs_remove_link(&dev->kobj, "of_node"); 1494 1495 if (!dev->class) 1496 return; 1497 1498 if (dev->parent && device_is_not_partition(dev)) 1499 sysfs_remove_link(&dev->kobj, "device"); 1500 sysfs_remove_link(&dev->kobj, "subsystem"); 1501 #ifdef CONFIG_BLOCK 1502 if (sysfs_deprecated && dev->class == &block_class) 1503 return; 1504 #endif 1505 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev)); 1506 } 1507 1508 /** 1509 * dev_set_name - set a device name 1510 * @dev: device 1511 * @fmt: format string for the device's name 1512 */ 1513 int dev_set_name(struct device *dev, const char *fmt, ...) 1514 { 1515 va_list vargs; 1516 int err; 1517 1518 va_start(vargs, fmt); 1519 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 1520 va_end(vargs); 1521 return err; 1522 } 1523 EXPORT_SYMBOL_GPL(dev_set_name); 1524 1525 /** 1526 * device_to_dev_kobj - select a /sys/dev/ directory for the device 1527 * @dev: device 1528 * 1529 * By default we select char/ for new entries. Setting class->dev_obj 1530 * to NULL prevents an entry from being created. class->dev_kobj must 1531 * be set (or cleared) before any devices are registered to the class 1532 * otherwise device_create_sys_dev_entry() and 1533 * device_remove_sys_dev_entry() will disagree about the presence of 1534 * the link. 1535 */ 1536 static struct kobject *device_to_dev_kobj(struct device *dev) 1537 { 1538 struct kobject *kobj; 1539 1540 if (dev->class) 1541 kobj = dev->class->dev_kobj; 1542 else 1543 kobj = sysfs_dev_char_kobj; 1544 1545 return kobj; 1546 } 1547 1548 static int device_create_sys_dev_entry(struct device *dev) 1549 { 1550 struct kobject *kobj = device_to_dev_kobj(dev); 1551 int error = 0; 1552 char devt_str[15]; 1553 1554 if (kobj) { 1555 format_dev_t(devt_str, dev->devt); 1556 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 1557 } 1558 1559 return error; 1560 } 1561 1562 static void device_remove_sys_dev_entry(struct device *dev) 1563 { 1564 struct kobject *kobj = device_to_dev_kobj(dev); 1565 char devt_str[15]; 1566 1567 if (kobj) { 1568 format_dev_t(devt_str, dev->devt); 1569 sysfs_remove_link(kobj, devt_str); 1570 } 1571 } 1572 1573 int device_private_init(struct device *dev) 1574 { 1575 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 1576 if (!dev->p) 1577 return -ENOMEM; 1578 dev->p->device = dev; 1579 klist_init(&dev->p->klist_children, klist_children_get, 1580 klist_children_put); 1581 INIT_LIST_HEAD(&dev->p->deferred_probe); 1582 return 0; 1583 } 1584 1585 /** 1586 * device_add - add device to device hierarchy. 1587 * @dev: device. 1588 * 1589 * This is part 2 of device_register(), though may be called 1590 * separately _iff_ device_initialize() has been called separately. 1591 * 1592 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 1593 * to the global and sibling lists for the device, then 1594 * adds it to the other relevant subsystems of the driver model. 1595 * 1596 * Do not call this routine or device_register() more than once for 1597 * any device structure. The driver model core is not designed to work 1598 * with devices that get unregistered and then spring back to life. 1599 * (Among other things, it's very hard to guarantee that all references 1600 * to the previous incarnation of @dev have been dropped.) Allocate 1601 * and register a fresh new struct device instead. 1602 * 1603 * NOTE: _Never_ directly free @dev after calling this function, even 1604 * if it returned an error! Always use put_device() to give up your 1605 * reference instead. 1606 */ 1607 int device_add(struct device *dev) 1608 { 1609 struct device *parent = NULL; 1610 struct kobject *kobj; 1611 struct class_interface *class_intf; 1612 int error = -EINVAL; 1613 struct kobject *glue_dir = NULL; 1614 1615 dev = get_device(dev); 1616 if (!dev) 1617 goto done; 1618 1619 if (!dev->p) { 1620 error = device_private_init(dev); 1621 if (error) 1622 goto done; 1623 } 1624 1625 /* 1626 * for statically allocated devices, which should all be converted 1627 * some day, we need to initialize the name. We prevent reading back 1628 * the name, and force the use of dev_name() 1629 */ 1630 if (dev->init_name) { 1631 dev_set_name(dev, "%s", dev->init_name); 1632 dev->init_name = NULL; 1633 } 1634 1635 /* subsystems can specify simple device enumeration */ 1636 if (!dev_name(dev) && dev->bus && dev->bus->dev_name) 1637 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 1638 1639 if (!dev_name(dev)) { 1640 error = -EINVAL; 1641 goto name_error; 1642 } 1643 1644 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 1645 1646 parent = get_device(dev->parent); 1647 kobj = get_device_parent(dev, parent); 1648 if (kobj) 1649 dev->kobj.parent = kobj; 1650 1651 /* use parent numa_node */ 1652 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 1653 set_dev_node(dev, dev_to_node(parent)); 1654 1655 /* first, register with generic layer. */ 1656 /* we require the name to be set before, and pass NULL */ 1657 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 1658 if (error) { 1659 glue_dir = get_glue_dir(dev); 1660 goto Error; 1661 } 1662 1663 /* notify platform of device entry */ 1664 if (platform_notify) 1665 platform_notify(dev); 1666 1667 error = device_create_file(dev, &dev_attr_uevent); 1668 if (error) 1669 goto attrError; 1670 1671 error = device_add_class_symlinks(dev); 1672 if (error) 1673 goto SymlinkError; 1674 error = device_add_attrs(dev); 1675 if (error) 1676 goto AttrsError; 1677 error = bus_add_device(dev); 1678 if (error) 1679 goto BusError; 1680 error = dpm_sysfs_add(dev); 1681 if (error) 1682 goto DPMError; 1683 device_pm_add(dev); 1684 1685 if (MAJOR(dev->devt)) { 1686 error = device_create_file(dev, &dev_attr_dev); 1687 if (error) 1688 goto DevAttrError; 1689 1690 error = device_create_sys_dev_entry(dev); 1691 if (error) 1692 goto SysEntryError; 1693 1694 devtmpfs_create_node(dev); 1695 } 1696 1697 /* Notify clients of device addition. This call must come 1698 * after dpm_sysfs_add() and before kobject_uevent(). 1699 */ 1700 if (dev->bus) 1701 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 1702 BUS_NOTIFY_ADD_DEVICE, dev); 1703 1704 kobject_uevent(&dev->kobj, KOBJ_ADD); 1705 bus_probe_device(dev); 1706 if (parent) 1707 klist_add_tail(&dev->p->knode_parent, 1708 &parent->p->klist_children); 1709 1710 if (dev->class) { 1711 mutex_lock(&dev->class->p->mutex); 1712 /* tie the class to the device */ 1713 klist_add_tail(&dev->knode_class, 1714 &dev->class->p->klist_devices); 1715 1716 /* notify any interfaces that the device is here */ 1717 list_for_each_entry(class_intf, 1718 &dev->class->p->interfaces, node) 1719 if (class_intf->add_dev) 1720 class_intf->add_dev(dev, class_intf); 1721 mutex_unlock(&dev->class->p->mutex); 1722 } 1723 done: 1724 put_device(dev); 1725 return error; 1726 SysEntryError: 1727 if (MAJOR(dev->devt)) 1728 device_remove_file(dev, &dev_attr_dev); 1729 DevAttrError: 1730 device_pm_remove(dev); 1731 dpm_sysfs_remove(dev); 1732 DPMError: 1733 bus_remove_device(dev); 1734 BusError: 1735 device_remove_attrs(dev); 1736 AttrsError: 1737 device_remove_class_symlinks(dev); 1738 SymlinkError: 1739 device_remove_file(dev, &dev_attr_uevent); 1740 attrError: 1741 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 1742 glue_dir = get_glue_dir(dev); 1743 kobject_del(&dev->kobj); 1744 Error: 1745 cleanup_glue_dir(dev, glue_dir); 1746 put_device(parent); 1747 name_error: 1748 kfree(dev->p); 1749 dev->p = NULL; 1750 goto done; 1751 } 1752 EXPORT_SYMBOL_GPL(device_add); 1753 1754 /** 1755 * device_register - register a device with the system. 1756 * @dev: pointer to the device structure 1757 * 1758 * This happens in two clean steps - initialize the device 1759 * and add it to the system. The two steps can be called 1760 * separately, but this is the easiest and most common. 1761 * I.e. you should only call the two helpers separately if 1762 * have a clearly defined need to use and refcount the device 1763 * before it is added to the hierarchy. 1764 * 1765 * For more information, see the kerneldoc for device_initialize() 1766 * and device_add(). 1767 * 1768 * NOTE: _Never_ directly free @dev after calling this function, even 1769 * if it returned an error! Always use put_device() to give up the 1770 * reference initialized in this function instead. 1771 */ 1772 int device_register(struct device *dev) 1773 { 1774 device_initialize(dev); 1775 return device_add(dev); 1776 } 1777 EXPORT_SYMBOL_GPL(device_register); 1778 1779 /** 1780 * get_device - increment reference count for device. 1781 * @dev: device. 1782 * 1783 * This simply forwards the call to kobject_get(), though 1784 * we do take care to provide for the case that we get a NULL 1785 * pointer passed in. 1786 */ 1787 struct device *get_device(struct device *dev) 1788 { 1789 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 1790 } 1791 EXPORT_SYMBOL_GPL(get_device); 1792 1793 /** 1794 * put_device - decrement reference count. 1795 * @dev: device in question. 1796 */ 1797 void put_device(struct device *dev) 1798 { 1799 /* might_sleep(); */ 1800 if (dev) 1801 kobject_put(&dev->kobj); 1802 } 1803 EXPORT_SYMBOL_GPL(put_device); 1804 1805 /** 1806 * device_del - delete device from system. 1807 * @dev: device. 1808 * 1809 * This is the first part of the device unregistration 1810 * sequence. This removes the device from the lists we control 1811 * from here, has it removed from the other driver model 1812 * subsystems it was added to in device_add(), and removes it 1813 * from the kobject hierarchy. 1814 * 1815 * NOTE: this should be called manually _iff_ device_add() was 1816 * also called manually. 1817 */ 1818 void device_del(struct device *dev) 1819 { 1820 struct device *parent = dev->parent; 1821 struct kobject *glue_dir = NULL; 1822 struct class_interface *class_intf; 1823 1824 /* Notify clients of device removal. This call must come 1825 * before dpm_sysfs_remove(). 1826 */ 1827 if (dev->bus) 1828 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 1829 BUS_NOTIFY_DEL_DEVICE, dev); 1830 1831 device_links_purge(dev); 1832 dpm_sysfs_remove(dev); 1833 if (parent) 1834 klist_del(&dev->p->knode_parent); 1835 if (MAJOR(dev->devt)) { 1836 devtmpfs_delete_node(dev); 1837 device_remove_sys_dev_entry(dev); 1838 device_remove_file(dev, &dev_attr_dev); 1839 } 1840 if (dev->class) { 1841 device_remove_class_symlinks(dev); 1842 1843 mutex_lock(&dev->class->p->mutex); 1844 /* notify any interfaces that the device is now gone */ 1845 list_for_each_entry(class_intf, 1846 &dev->class->p->interfaces, node) 1847 if (class_intf->remove_dev) 1848 class_intf->remove_dev(dev, class_intf); 1849 /* remove the device from the class list */ 1850 klist_del(&dev->knode_class); 1851 mutex_unlock(&dev->class->p->mutex); 1852 } 1853 device_remove_file(dev, &dev_attr_uevent); 1854 device_remove_attrs(dev); 1855 bus_remove_device(dev); 1856 device_pm_remove(dev); 1857 driver_deferred_probe_del(dev); 1858 device_remove_properties(dev); 1859 1860 /* Notify the platform of the removal, in case they 1861 * need to do anything... 1862 */ 1863 if (platform_notify_remove) 1864 platform_notify_remove(dev); 1865 if (dev->bus) 1866 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 1867 BUS_NOTIFY_REMOVED_DEVICE, dev); 1868 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 1869 glue_dir = get_glue_dir(dev); 1870 kobject_del(&dev->kobj); 1871 cleanup_glue_dir(dev, glue_dir); 1872 put_device(parent); 1873 } 1874 EXPORT_SYMBOL_GPL(device_del); 1875 1876 /** 1877 * device_unregister - unregister device from system. 1878 * @dev: device going away. 1879 * 1880 * We do this in two parts, like we do device_register(). First, 1881 * we remove it from all the subsystems with device_del(), then 1882 * we decrement the reference count via put_device(). If that 1883 * is the final reference count, the device will be cleaned up 1884 * via device_release() above. Otherwise, the structure will 1885 * stick around until the final reference to the device is dropped. 1886 */ 1887 void device_unregister(struct device *dev) 1888 { 1889 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 1890 device_del(dev); 1891 put_device(dev); 1892 } 1893 EXPORT_SYMBOL_GPL(device_unregister); 1894 1895 static struct device *prev_device(struct klist_iter *i) 1896 { 1897 struct klist_node *n = klist_prev(i); 1898 struct device *dev = NULL; 1899 struct device_private *p; 1900 1901 if (n) { 1902 p = to_device_private_parent(n); 1903 dev = p->device; 1904 } 1905 return dev; 1906 } 1907 1908 static struct device *next_device(struct klist_iter *i) 1909 { 1910 struct klist_node *n = klist_next(i); 1911 struct device *dev = NULL; 1912 struct device_private *p; 1913 1914 if (n) { 1915 p = to_device_private_parent(n); 1916 dev = p->device; 1917 } 1918 return dev; 1919 } 1920 1921 /** 1922 * device_get_devnode - path of device node file 1923 * @dev: device 1924 * @mode: returned file access mode 1925 * @uid: returned file owner 1926 * @gid: returned file group 1927 * @tmp: possibly allocated string 1928 * 1929 * Return the relative path of a possible device node. 1930 * Non-default names may need to allocate a memory to compose 1931 * a name. This memory is returned in tmp and needs to be 1932 * freed by the caller. 1933 */ 1934 const char *device_get_devnode(struct device *dev, 1935 umode_t *mode, kuid_t *uid, kgid_t *gid, 1936 const char **tmp) 1937 { 1938 char *s; 1939 1940 *tmp = NULL; 1941 1942 /* the device type may provide a specific name */ 1943 if (dev->type && dev->type->devnode) 1944 *tmp = dev->type->devnode(dev, mode, uid, gid); 1945 if (*tmp) 1946 return *tmp; 1947 1948 /* the class may provide a specific name */ 1949 if (dev->class && dev->class->devnode) 1950 *tmp = dev->class->devnode(dev, mode); 1951 if (*tmp) 1952 return *tmp; 1953 1954 /* return name without allocation, tmp == NULL */ 1955 if (strchr(dev_name(dev), '!') == NULL) 1956 return dev_name(dev); 1957 1958 /* replace '!' in the name with '/' */ 1959 s = kstrdup(dev_name(dev), GFP_KERNEL); 1960 if (!s) 1961 return NULL; 1962 strreplace(s, '!', '/'); 1963 return *tmp = s; 1964 } 1965 1966 /** 1967 * device_for_each_child - device child iterator. 1968 * @parent: parent struct device. 1969 * @fn: function to be called for each device. 1970 * @data: data for the callback. 1971 * 1972 * Iterate over @parent's child devices, and call @fn for each, 1973 * passing it @data. 1974 * 1975 * We check the return of @fn each time. If it returns anything 1976 * other than 0, we break out and return that value. 1977 */ 1978 int device_for_each_child(struct device *parent, void *data, 1979 int (*fn)(struct device *dev, void *data)) 1980 { 1981 struct klist_iter i; 1982 struct device *child; 1983 int error = 0; 1984 1985 if (!parent->p) 1986 return 0; 1987 1988 klist_iter_init(&parent->p->klist_children, &i); 1989 while ((child = next_device(&i)) && !error) 1990 error = fn(child, data); 1991 klist_iter_exit(&i); 1992 return error; 1993 } 1994 EXPORT_SYMBOL_GPL(device_for_each_child); 1995 1996 /** 1997 * device_for_each_child_reverse - device child iterator in reversed order. 1998 * @parent: parent struct device. 1999 * @fn: function to be called for each device. 2000 * @data: data for the callback. 2001 * 2002 * Iterate over @parent's child devices, and call @fn for each, 2003 * passing it @data. 2004 * 2005 * We check the return of @fn each time. If it returns anything 2006 * other than 0, we break out and return that value. 2007 */ 2008 int device_for_each_child_reverse(struct device *parent, void *data, 2009 int (*fn)(struct device *dev, void *data)) 2010 { 2011 struct klist_iter i; 2012 struct device *child; 2013 int error = 0; 2014 2015 if (!parent->p) 2016 return 0; 2017 2018 klist_iter_init(&parent->p->klist_children, &i); 2019 while ((child = prev_device(&i)) && !error) 2020 error = fn(child, data); 2021 klist_iter_exit(&i); 2022 return error; 2023 } 2024 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 2025 2026 /** 2027 * device_find_child - device iterator for locating a particular device. 2028 * @parent: parent struct device 2029 * @match: Callback function to check device 2030 * @data: Data to pass to match function 2031 * 2032 * This is similar to the device_for_each_child() function above, but it 2033 * returns a reference to a device that is 'found' for later use, as 2034 * determined by the @match callback. 2035 * 2036 * The callback should return 0 if the device doesn't match and non-zero 2037 * if it does. If the callback returns non-zero and a reference to the 2038 * current device can be obtained, this function will return to the caller 2039 * and not iterate over any more devices. 2040 * 2041 * NOTE: you will need to drop the reference with put_device() after use. 2042 */ 2043 struct device *device_find_child(struct device *parent, void *data, 2044 int (*match)(struct device *dev, void *data)) 2045 { 2046 struct klist_iter i; 2047 struct device *child; 2048 2049 if (!parent) 2050 return NULL; 2051 2052 klist_iter_init(&parent->p->klist_children, &i); 2053 while ((child = next_device(&i))) 2054 if (match(child, data) && get_device(child)) 2055 break; 2056 klist_iter_exit(&i); 2057 return child; 2058 } 2059 EXPORT_SYMBOL_GPL(device_find_child); 2060 2061 int __init devices_init(void) 2062 { 2063 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 2064 if (!devices_kset) 2065 return -ENOMEM; 2066 dev_kobj = kobject_create_and_add("dev", NULL); 2067 if (!dev_kobj) 2068 goto dev_kobj_err; 2069 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 2070 if (!sysfs_dev_block_kobj) 2071 goto block_kobj_err; 2072 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 2073 if (!sysfs_dev_char_kobj) 2074 goto char_kobj_err; 2075 2076 return 0; 2077 2078 char_kobj_err: 2079 kobject_put(sysfs_dev_block_kobj); 2080 block_kobj_err: 2081 kobject_put(dev_kobj); 2082 dev_kobj_err: 2083 kset_unregister(devices_kset); 2084 return -ENOMEM; 2085 } 2086 2087 static int device_check_offline(struct device *dev, void *not_used) 2088 { 2089 int ret; 2090 2091 ret = device_for_each_child(dev, NULL, device_check_offline); 2092 if (ret) 2093 return ret; 2094 2095 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 2096 } 2097 2098 /** 2099 * device_offline - Prepare the device for hot-removal. 2100 * @dev: Device to be put offline. 2101 * 2102 * Execute the device bus type's .offline() callback, if present, to prepare 2103 * the device for a subsequent hot-removal. If that succeeds, the device must 2104 * not be used until either it is removed or its bus type's .online() callback 2105 * is executed. 2106 * 2107 * Call under device_hotplug_lock. 2108 */ 2109 int device_offline(struct device *dev) 2110 { 2111 int ret; 2112 2113 if (dev->offline_disabled) 2114 return -EPERM; 2115 2116 ret = device_for_each_child(dev, NULL, device_check_offline); 2117 if (ret) 2118 return ret; 2119 2120 device_lock(dev); 2121 if (device_supports_offline(dev)) { 2122 if (dev->offline) { 2123 ret = 1; 2124 } else { 2125 ret = dev->bus->offline(dev); 2126 if (!ret) { 2127 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 2128 dev->offline = true; 2129 } 2130 } 2131 } 2132 device_unlock(dev); 2133 2134 return ret; 2135 } 2136 2137 /** 2138 * device_online - Put the device back online after successful device_offline(). 2139 * @dev: Device to be put back online. 2140 * 2141 * If device_offline() has been successfully executed for @dev, but the device 2142 * has not been removed subsequently, execute its bus type's .online() callback 2143 * to indicate that the device can be used again. 2144 * 2145 * Call under device_hotplug_lock. 2146 */ 2147 int device_online(struct device *dev) 2148 { 2149 int ret = 0; 2150 2151 device_lock(dev); 2152 if (device_supports_offline(dev)) { 2153 if (dev->offline) { 2154 ret = dev->bus->online(dev); 2155 if (!ret) { 2156 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 2157 dev->offline = false; 2158 } 2159 } else { 2160 ret = 1; 2161 } 2162 } 2163 device_unlock(dev); 2164 2165 return ret; 2166 } 2167 2168 struct root_device { 2169 struct device dev; 2170 struct module *owner; 2171 }; 2172 2173 static inline struct root_device *to_root_device(struct device *d) 2174 { 2175 return container_of(d, struct root_device, dev); 2176 } 2177 2178 static void root_device_release(struct device *dev) 2179 { 2180 kfree(to_root_device(dev)); 2181 } 2182 2183 /** 2184 * __root_device_register - allocate and register a root device 2185 * @name: root device name 2186 * @owner: owner module of the root device, usually THIS_MODULE 2187 * 2188 * This function allocates a root device and registers it 2189 * using device_register(). In order to free the returned 2190 * device, use root_device_unregister(). 2191 * 2192 * Root devices are dummy devices which allow other devices 2193 * to be grouped under /sys/devices. Use this function to 2194 * allocate a root device and then use it as the parent of 2195 * any device which should appear under /sys/devices/{name} 2196 * 2197 * The /sys/devices/{name} directory will also contain a 2198 * 'module' symlink which points to the @owner directory 2199 * in sysfs. 2200 * 2201 * Returns &struct device pointer on success, or ERR_PTR() on error. 2202 * 2203 * Note: You probably want to use root_device_register(). 2204 */ 2205 struct device *__root_device_register(const char *name, struct module *owner) 2206 { 2207 struct root_device *root; 2208 int err = -ENOMEM; 2209 2210 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 2211 if (!root) 2212 return ERR_PTR(err); 2213 2214 err = dev_set_name(&root->dev, "%s", name); 2215 if (err) { 2216 kfree(root); 2217 return ERR_PTR(err); 2218 } 2219 2220 root->dev.release = root_device_release; 2221 2222 err = device_register(&root->dev); 2223 if (err) { 2224 put_device(&root->dev); 2225 return ERR_PTR(err); 2226 } 2227 2228 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 2229 if (owner) { 2230 struct module_kobject *mk = &owner->mkobj; 2231 2232 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 2233 if (err) { 2234 device_unregister(&root->dev); 2235 return ERR_PTR(err); 2236 } 2237 root->owner = owner; 2238 } 2239 #endif 2240 2241 return &root->dev; 2242 } 2243 EXPORT_SYMBOL_GPL(__root_device_register); 2244 2245 /** 2246 * root_device_unregister - unregister and free a root device 2247 * @dev: device going away 2248 * 2249 * This function unregisters and cleans up a device that was created by 2250 * root_device_register(). 2251 */ 2252 void root_device_unregister(struct device *dev) 2253 { 2254 struct root_device *root = to_root_device(dev); 2255 2256 if (root->owner) 2257 sysfs_remove_link(&root->dev.kobj, "module"); 2258 2259 device_unregister(dev); 2260 } 2261 EXPORT_SYMBOL_GPL(root_device_unregister); 2262 2263 2264 static void device_create_release(struct device *dev) 2265 { 2266 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 2267 kfree(dev); 2268 } 2269 2270 static struct device * 2271 device_create_groups_vargs(struct class *class, struct device *parent, 2272 dev_t devt, void *drvdata, 2273 const struct attribute_group **groups, 2274 const char *fmt, va_list args) 2275 { 2276 struct device *dev = NULL; 2277 int retval = -ENODEV; 2278 2279 if (class == NULL || IS_ERR(class)) 2280 goto error; 2281 2282 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2283 if (!dev) { 2284 retval = -ENOMEM; 2285 goto error; 2286 } 2287 2288 device_initialize(dev); 2289 dev->devt = devt; 2290 dev->class = class; 2291 dev->parent = parent; 2292 dev->groups = groups; 2293 dev->release = device_create_release; 2294 dev_set_drvdata(dev, drvdata); 2295 2296 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 2297 if (retval) 2298 goto error; 2299 2300 retval = device_add(dev); 2301 if (retval) 2302 goto error; 2303 2304 return dev; 2305 2306 error: 2307 put_device(dev); 2308 return ERR_PTR(retval); 2309 } 2310 2311 /** 2312 * device_create_vargs - creates a device and registers it with sysfs 2313 * @class: pointer to the struct class that this device should be registered to 2314 * @parent: pointer to the parent struct device of this new device, if any 2315 * @devt: the dev_t for the char device to be added 2316 * @drvdata: the data to be added to the device for callbacks 2317 * @fmt: string for the device's name 2318 * @args: va_list for the device's name 2319 * 2320 * This function can be used by char device classes. A struct device 2321 * will be created in sysfs, registered to the specified class. 2322 * 2323 * A "dev" file will be created, showing the dev_t for the device, if 2324 * the dev_t is not 0,0. 2325 * If a pointer to a parent struct device is passed in, the newly created 2326 * struct device will be a child of that device in sysfs. 2327 * The pointer to the struct device will be returned from the call. 2328 * Any further sysfs files that might be required can be created using this 2329 * pointer. 2330 * 2331 * Returns &struct device pointer on success, or ERR_PTR() on error. 2332 * 2333 * Note: the struct class passed to this function must have previously 2334 * been created with a call to class_create(). 2335 */ 2336 struct device *device_create_vargs(struct class *class, struct device *parent, 2337 dev_t devt, void *drvdata, const char *fmt, 2338 va_list args) 2339 { 2340 return device_create_groups_vargs(class, parent, devt, drvdata, NULL, 2341 fmt, args); 2342 } 2343 EXPORT_SYMBOL_GPL(device_create_vargs); 2344 2345 /** 2346 * device_create - creates a device and registers it with sysfs 2347 * @class: pointer to the struct class that this device should be registered to 2348 * @parent: pointer to the parent struct device of this new device, if any 2349 * @devt: the dev_t for the char device to be added 2350 * @drvdata: the data to be added to the device for callbacks 2351 * @fmt: string for the device's name 2352 * 2353 * This function can be used by char device classes. A struct device 2354 * will be created in sysfs, registered to the specified class. 2355 * 2356 * A "dev" file will be created, showing the dev_t for the device, if 2357 * the dev_t is not 0,0. 2358 * If a pointer to a parent struct device is passed in, the newly created 2359 * struct device will be a child of that device in sysfs. 2360 * The pointer to the struct device will be returned from the call. 2361 * Any further sysfs files that might be required can be created using this 2362 * pointer. 2363 * 2364 * Returns &struct device pointer on success, or ERR_PTR() on error. 2365 * 2366 * Note: the struct class passed to this function must have previously 2367 * been created with a call to class_create(). 2368 */ 2369 struct device *device_create(struct class *class, struct device *parent, 2370 dev_t devt, void *drvdata, const char *fmt, ...) 2371 { 2372 va_list vargs; 2373 struct device *dev; 2374 2375 va_start(vargs, fmt); 2376 dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs); 2377 va_end(vargs); 2378 return dev; 2379 } 2380 EXPORT_SYMBOL_GPL(device_create); 2381 2382 /** 2383 * device_create_with_groups - creates a device and registers it with sysfs 2384 * @class: pointer to the struct class that this device should be registered to 2385 * @parent: pointer to the parent struct device of this new device, if any 2386 * @devt: the dev_t for the char device to be added 2387 * @drvdata: the data to be added to the device for callbacks 2388 * @groups: NULL-terminated list of attribute groups to be created 2389 * @fmt: string for the device's name 2390 * 2391 * This function can be used by char device classes. A struct device 2392 * will be created in sysfs, registered to the specified class. 2393 * Additional attributes specified in the groups parameter will also 2394 * be created automatically. 2395 * 2396 * A "dev" file will be created, showing the dev_t for the device, if 2397 * the dev_t is not 0,0. 2398 * If a pointer to a parent struct device is passed in, the newly created 2399 * struct device will be a child of that device in sysfs. 2400 * The pointer to the struct device will be returned from the call. 2401 * Any further sysfs files that might be required can be created using this 2402 * pointer. 2403 * 2404 * Returns &struct device pointer on success, or ERR_PTR() on error. 2405 * 2406 * Note: the struct class passed to this function must have previously 2407 * been created with a call to class_create(). 2408 */ 2409 struct device *device_create_with_groups(struct class *class, 2410 struct device *parent, dev_t devt, 2411 void *drvdata, 2412 const struct attribute_group **groups, 2413 const char *fmt, ...) 2414 { 2415 va_list vargs; 2416 struct device *dev; 2417 2418 va_start(vargs, fmt); 2419 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 2420 fmt, vargs); 2421 va_end(vargs); 2422 return dev; 2423 } 2424 EXPORT_SYMBOL_GPL(device_create_with_groups); 2425 2426 static int __match_devt(struct device *dev, const void *data) 2427 { 2428 const dev_t *devt = data; 2429 2430 return dev->devt == *devt; 2431 } 2432 2433 /** 2434 * device_destroy - removes a device that was created with device_create() 2435 * @class: pointer to the struct class that this device was registered with 2436 * @devt: the dev_t of the device that was previously registered 2437 * 2438 * This call unregisters and cleans up a device that was created with a 2439 * call to device_create(). 2440 */ 2441 void device_destroy(struct class *class, dev_t devt) 2442 { 2443 struct device *dev; 2444 2445 dev = class_find_device(class, NULL, &devt, __match_devt); 2446 if (dev) { 2447 put_device(dev); 2448 device_unregister(dev); 2449 } 2450 } 2451 EXPORT_SYMBOL_GPL(device_destroy); 2452 2453 /** 2454 * device_rename - renames a device 2455 * @dev: the pointer to the struct device to be renamed 2456 * @new_name: the new name of the device 2457 * 2458 * It is the responsibility of the caller to provide mutual 2459 * exclusion between two different calls of device_rename 2460 * on the same device to ensure that new_name is valid and 2461 * won't conflict with other devices. 2462 * 2463 * Note: Don't call this function. Currently, the networking layer calls this 2464 * function, but that will change. The following text from Kay Sievers offers 2465 * some insight: 2466 * 2467 * Renaming devices is racy at many levels, symlinks and other stuff are not 2468 * replaced atomically, and you get a "move" uevent, but it's not easy to 2469 * connect the event to the old and new device. Device nodes are not renamed at 2470 * all, there isn't even support for that in the kernel now. 2471 * 2472 * In the meantime, during renaming, your target name might be taken by another 2473 * driver, creating conflicts. Or the old name is taken directly after you 2474 * renamed it -- then you get events for the same DEVPATH, before you even see 2475 * the "move" event. It's just a mess, and nothing new should ever rely on 2476 * kernel device renaming. Besides that, it's not even implemented now for 2477 * other things than (driver-core wise very simple) network devices. 2478 * 2479 * We are currently about to change network renaming in udev to completely 2480 * disallow renaming of devices in the same namespace as the kernel uses, 2481 * because we can't solve the problems properly, that arise with swapping names 2482 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only 2483 * be allowed to some other name than eth[0-9]*, for the aforementioned 2484 * reasons. 2485 * 2486 * Make up a "real" name in the driver before you register anything, or add 2487 * some other attributes for userspace to find the device, or use udev to add 2488 * symlinks -- but never rename kernel devices later, it's a complete mess. We 2489 * don't even want to get into that and try to implement the missing pieces in 2490 * the core. We really have other pieces to fix in the driver core mess. :) 2491 */ 2492 int device_rename(struct device *dev, const char *new_name) 2493 { 2494 struct kobject *kobj = &dev->kobj; 2495 char *old_device_name = NULL; 2496 int error; 2497 2498 dev = get_device(dev); 2499 if (!dev) 2500 return -EINVAL; 2501 2502 dev_dbg(dev, "renaming to %s\n", new_name); 2503 2504 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 2505 if (!old_device_name) { 2506 error = -ENOMEM; 2507 goto out; 2508 } 2509 2510 if (dev->class) { 2511 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj, 2512 kobj, old_device_name, 2513 new_name, kobject_namespace(kobj)); 2514 if (error) 2515 goto out; 2516 } 2517 2518 error = kobject_rename(kobj, new_name); 2519 if (error) 2520 goto out; 2521 2522 out: 2523 put_device(dev); 2524 2525 kfree(old_device_name); 2526 2527 return error; 2528 } 2529 EXPORT_SYMBOL_GPL(device_rename); 2530 2531 static int device_move_class_links(struct device *dev, 2532 struct device *old_parent, 2533 struct device *new_parent) 2534 { 2535 int error = 0; 2536 2537 if (old_parent) 2538 sysfs_remove_link(&dev->kobj, "device"); 2539 if (new_parent) 2540 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 2541 "device"); 2542 return error; 2543 } 2544 2545 /** 2546 * device_move - moves a device to a new parent 2547 * @dev: the pointer to the struct device to be moved 2548 * @new_parent: the new parent of the device (can by NULL) 2549 * @dpm_order: how to reorder the dpm_list 2550 */ 2551 int device_move(struct device *dev, struct device *new_parent, 2552 enum dpm_order dpm_order) 2553 { 2554 int error; 2555 struct device *old_parent; 2556 struct kobject *new_parent_kobj; 2557 2558 dev = get_device(dev); 2559 if (!dev) 2560 return -EINVAL; 2561 2562 device_pm_lock(); 2563 new_parent = get_device(new_parent); 2564 new_parent_kobj = get_device_parent(dev, new_parent); 2565 2566 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 2567 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 2568 error = kobject_move(&dev->kobj, new_parent_kobj); 2569 if (error) { 2570 cleanup_glue_dir(dev, new_parent_kobj); 2571 put_device(new_parent); 2572 goto out; 2573 } 2574 old_parent = dev->parent; 2575 dev->parent = new_parent; 2576 if (old_parent) 2577 klist_remove(&dev->p->knode_parent); 2578 if (new_parent) { 2579 klist_add_tail(&dev->p->knode_parent, 2580 &new_parent->p->klist_children); 2581 set_dev_node(dev, dev_to_node(new_parent)); 2582 } 2583 2584 if (dev->class) { 2585 error = device_move_class_links(dev, old_parent, new_parent); 2586 if (error) { 2587 /* We ignore errors on cleanup since we're hosed anyway... */ 2588 device_move_class_links(dev, new_parent, old_parent); 2589 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 2590 if (new_parent) 2591 klist_remove(&dev->p->knode_parent); 2592 dev->parent = old_parent; 2593 if (old_parent) { 2594 klist_add_tail(&dev->p->knode_parent, 2595 &old_parent->p->klist_children); 2596 set_dev_node(dev, dev_to_node(old_parent)); 2597 } 2598 } 2599 cleanup_glue_dir(dev, new_parent_kobj); 2600 put_device(new_parent); 2601 goto out; 2602 } 2603 } 2604 switch (dpm_order) { 2605 case DPM_ORDER_NONE: 2606 break; 2607 case DPM_ORDER_DEV_AFTER_PARENT: 2608 device_pm_move_after(dev, new_parent); 2609 devices_kset_move_after(dev, new_parent); 2610 break; 2611 case DPM_ORDER_PARENT_BEFORE_DEV: 2612 device_pm_move_before(new_parent, dev); 2613 devices_kset_move_before(new_parent, dev); 2614 break; 2615 case DPM_ORDER_DEV_LAST: 2616 device_pm_move_last(dev); 2617 devices_kset_move_last(dev); 2618 break; 2619 } 2620 2621 put_device(old_parent); 2622 out: 2623 device_pm_unlock(); 2624 put_device(dev); 2625 return error; 2626 } 2627 EXPORT_SYMBOL_GPL(device_move); 2628 2629 /** 2630 * device_shutdown - call ->shutdown() on each device to shutdown. 2631 */ 2632 void device_shutdown(void) 2633 { 2634 struct device *dev, *parent; 2635 2636 spin_lock(&devices_kset->list_lock); 2637 /* 2638 * Walk the devices list backward, shutting down each in turn. 2639 * Beware that device unplug events may also start pulling 2640 * devices offline, even as the system is shutting down. 2641 */ 2642 while (!list_empty(&devices_kset->list)) { 2643 dev = list_entry(devices_kset->list.prev, struct device, 2644 kobj.entry); 2645 2646 /* 2647 * hold reference count of device's parent to 2648 * prevent it from being freed because parent's 2649 * lock is to be held 2650 */ 2651 parent = get_device(dev->parent); 2652 get_device(dev); 2653 /* 2654 * Make sure the device is off the kset list, in the 2655 * event that dev->*->shutdown() doesn't remove it. 2656 */ 2657 list_del_init(&dev->kobj.entry); 2658 spin_unlock(&devices_kset->list_lock); 2659 2660 /* hold lock to avoid race with probe/release */ 2661 if (parent) 2662 device_lock(parent); 2663 device_lock(dev); 2664 2665 /* Don't allow any more runtime suspends */ 2666 pm_runtime_get_noresume(dev); 2667 pm_runtime_barrier(dev); 2668 2669 if (dev->bus && dev->bus->shutdown) { 2670 if (initcall_debug) 2671 dev_info(dev, "shutdown\n"); 2672 dev->bus->shutdown(dev); 2673 } else if (dev->driver && dev->driver->shutdown) { 2674 if (initcall_debug) 2675 dev_info(dev, "shutdown\n"); 2676 dev->driver->shutdown(dev); 2677 } 2678 2679 device_unlock(dev); 2680 if (parent) 2681 device_unlock(parent); 2682 2683 put_device(dev); 2684 put_device(parent); 2685 2686 spin_lock(&devices_kset->list_lock); 2687 } 2688 spin_unlock(&devices_kset->list_lock); 2689 } 2690 2691 /* 2692 * Device logging functions 2693 */ 2694 2695 #ifdef CONFIG_PRINTK 2696 static int 2697 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen) 2698 { 2699 const char *subsys; 2700 size_t pos = 0; 2701 2702 if (dev->class) 2703 subsys = dev->class->name; 2704 else if (dev->bus) 2705 subsys = dev->bus->name; 2706 else 2707 return 0; 2708 2709 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys); 2710 if (pos >= hdrlen) 2711 goto overflow; 2712 2713 /* 2714 * Add device identifier DEVICE=: 2715 * b12:8 block dev_t 2716 * c127:3 char dev_t 2717 * n8 netdev ifindex 2718 * +sound:card0 subsystem:devname 2719 */ 2720 if (MAJOR(dev->devt)) { 2721 char c; 2722 2723 if (strcmp(subsys, "block") == 0) 2724 c = 'b'; 2725 else 2726 c = 'c'; 2727 pos++; 2728 pos += snprintf(hdr + pos, hdrlen - pos, 2729 "DEVICE=%c%u:%u", 2730 c, MAJOR(dev->devt), MINOR(dev->devt)); 2731 } else if (strcmp(subsys, "net") == 0) { 2732 struct net_device *net = to_net_dev(dev); 2733 2734 pos++; 2735 pos += snprintf(hdr + pos, hdrlen - pos, 2736 "DEVICE=n%u", net->ifindex); 2737 } else { 2738 pos++; 2739 pos += snprintf(hdr + pos, hdrlen - pos, 2740 "DEVICE=+%s:%s", subsys, dev_name(dev)); 2741 } 2742 2743 if (pos >= hdrlen) 2744 goto overflow; 2745 2746 return pos; 2747 2748 overflow: 2749 dev_WARN(dev, "device/subsystem name too long"); 2750 return 0; 2751 } 2752 2753 int dev_vprintk_emit(int level, const struct device *dev, 2754 const char *fmt, va_list args) 2755 { 2756 char hdr[128]; 2757 size_t hdrlen; 2758 2759 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr)); 2760 2761 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args); 2762 } 2763 EXPORT_SYMBOL(dev_vprintk_emit); 2764 2765 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 2766 { 2767 va_list args; 2768 int r; 2769 2770 va_start(args, fmt); 2771 2772 r = dev_vprintk_emit(level, dev, fmt, args); 2773 2774 va_end(args); 2775 2776 return r; 2777 } 2778 EXPORT_SYMBOL(dev_printk_emit); 2779 2780 static void __dev_printk(const char *level, const struct device *dev, 2781 struct va_format *vaf) 2782 { 2783 if (dev) 2784 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 2785 dev_driver_string(dev), dev_name(dev), vaf); 2786 else 2787 printk("%s(NULL device *): %pV", level, vaf); 2788 } 2789 2790 void dev_printk(const char *level, const struct device *dev, 2791 const char *fmt, ...) 2792 { 2793 struct va_format vaf; 2794 va_list args; 2795 2796 va_start(args, fmt); 2797 2798 vaf.fmt = fmt; 2799 vaf.va = &args; 2800 2801 __dev_printk(level, dev, &vaf); 2802 2803 va_end(args); 2804 } 2805 EXPORT_SYMBOL(dev_printk); 2806 2807 #define define_dev_printk_level(func, kern_level) \ 2808 void func(const struct device *dev, const char *fmt, ...) \ 2809 { \ 2810 struct va_format vaf; \ 2811 va_list args; \ 2812 \ 2813 va_start(args, fmt); \ 2814 \ 2815 vaf.fmt = fmt; \ 2816 vaf.va = &args; \ 2817 \ 2818 __dev_printk(kern_level, dev, &vaf); \ 2819 \ 2820 va_end(args); \ 2821 } \ 2822 EXPORT_SYMBOL(func); 2823 2824 define_dev_printk_level(dev_emerg, KERN_EMERG); 2825 define_dev_printk_level(dev_alert, KERN_ALERT); 2826 define_dev_printk_level(dev_crit, KERN_CRIT); 2827 define_dev_printk_level(dev_err, KERN_ERR); 2828 define_dev_printk_level(dev_warn, KERN_WARNING); 2829 define_dev_printk_level(dev_notice, KERN_NOTICE); 2830 define_dev_printk_level(_dev_info, KERN_INFO); 2831 2832 #endif 2833 2834 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 2835 { 2836 return fwnode && !IS_ERR(fwnode->secondary); 2837 } 2838 2839 /** 2840 * set_primary_fwnode - Change the primary firmware node of a given device. 2841 * @dev: Device to handle. 2842 * @fwnode: New primary firmware node of the device. 2843 * 2844 * Set the device's firmware node pointer to @fwnode, but if a secondary 2845 * firmware node of the device is present, preserve it. 2846 */ 2847 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 2848 { 2849 if (fwnode) { 2850 struct fwnode_handle *fn = dev->fwnode; 2851 2852 if (fwnode_is_primary(fn)) 2853 fn = fn->secondary; 2854 2855 if (fn) { 2856 WARN_ON(fwnode->secondary); 2857 fwnode->secondary = fn; 2858 } 2859 dev->fwnode = fwnode; 2860 } else { 2861 dev->fwnode = fwnode_is_primary(dev->fwnode) ? 2862 dev->fwnode->secondary : NULL; 2863 } 2864 } 2865 EXPORT_SYMBOL_GPL(set_primary_fwnode); 2866 2867 /** 2868 * set_secondary_fwnode - Change the secondary firmware node of a given device. 2869 * @dev: Device to handle. 2870 * @fwnode: New secondary firmware node of the device. 2871 * 2872 * If a primary firmware node of the device is present, set its secondary 2873 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 2874 * @fwnode. 2875 */ 2876 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 2877 { 2878 if (fwnode) 2879 fwnode->secondary = ERR_PTR(-ENODEV); 2880 2881 if (fwnode_is_primary(dev->fwnode)) 2882 dev->fwnode->secondary = fwnode; 2883 else 2884 dev->fwnode = fwnode; 2885 } 2886