1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/cpufreq.h> 13 #include <linux/device.h> 14 #include <linux/err.h> 15 #include <linux/fwnode.h> 16 #include <linux/init.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/string.h> 20 #include <linux/kdev_t.h> 21 #include <linux/notifier.h> 22 #include <linux/of.h> 23 #include <linux/of_device.h> 24 #include <linux/genhd.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/netdevice.h> 28 #include <linux/sched/signal.h> 29 #include <linux/sysfs.h> 30 31 #include "base.h" 32 #include "power/power.h" 33 34 #ifdef CONFIG_SYSFS_DEPRECATED 35 #ifdef CONFIG_SYSFS_DEPRECATED_V2 36 long sysfs_deprecated = 1; 37 #else 38 long sysfs_deprecated = 0; 39 #endif 40 static int __init sysfs_deprecated_setup(char *arg) 41 { 42 return kstrtol(arg, 10, &sysfs_deprecated); 43 } 44 early_param("sysfs.deprecated", sysfs_deprecated_setup); 45 #endif 46 47 /* Device links support. */ 48 static LIST_HEAD(wait_for_suppliers); 49 static DEFINE_MUTEX(wfs_lock); 50 static LIST_HEAD(deferred_sync); 51 static unsigned int defer_sync_state_count = 1; 52 53 #ifdef CONFIG_SRCU 54 static DEFINE_MUTEX(device_links_lock); 55 DEFINE_STATIC_SRCU(device_links_srcu); 56 57 static inline void device_links_write_lock(void) 58 { 59 mutex_lock(&device_links_lock); 60 } 61 62 static inline void device_links_write_unlock(void) 63 { 64 mutex_unlock(&device_links_lock); 65 } 66 67 int device_links_read_lock(void) 68 { 69 return srcu_read_lock(&device_links_srcu); 70 } 71 72 void device_links_read_unlock(int idx) 73 { 74 srcu_read_unlock(&device_links_srcu, idx); 75 } 76 77 int device_links_read_lock_held(void) 78 { 79 return srcu_read_lock_held(&device_links_srcu); 80 } 81 #else /* !CONFIG_SRCU */ 82 static DECLARE_RWSEM(device_links_lock); 83 84 static inline void device_links_write_lock(void) 85 { 86 down_write(&device_links_lock); 87 } 88 89 static inline void device_links_write_unlock(void) 90 { 91 up_write(&device_links_lock); 92 } 93 94 int device_links_read_lock(void) 95 { 96 down_read(&device_links_lock); 97 return 0; 98 } 99 100 void device_links_read_unlock(int not_used) 101 { 102 up_read(&device_links_lock); 103 } 104 105 #ifdef CONFIG_DEBUG_LOCK_ALLOC 106 int device_links_read_lock_held(void) 107 { 108 return lockdep_is_held(&device_links_lock); 109 } 110 #endif 111 #endif /* !CONFIG_SRCU */ 112 113 /** 114 * device_is_dependent - Check if one device depends on another one 115 * @dev: Device to check dependencies for. 116 * @target: Device to check against. 117 * 118 * Check if @target depends on @dev or any device dependent on it (its child or 119 * its consumer etc). Return 1 if that is the case or 0 otherwise. 120 */ 121 static int device_is_dependent(struct device *dev, void *target) 122 { 123 struct device_link *link; 124 int ret; 125 126 if (dev == target) 127 return 1; 128 129 ret = device_for_each_child(dev, target, device_is_dependent); 130 if (ret) 131 return ret; 132 133 list_for_each_entry(link, &dev->links.consumers, s_node) { 134 if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 135 continue; 136 137 if (link->consumer == target) 138 return 1; 139 140 ret = device_is_dependent(link->consumer, target); 141 if (ret) 142 break; 143 } 144 return ret; 145 } 146 147 static void device_link_init_status(struct device_link *link, 148 struct device *consumer, 149 struct device *supplier) 150 { 151 switch (supplier->links.status) { 152 case DL_DEV_PROBING: 153 switch (consumer->links.status) { 154 case DL_DEV_PROBING: 155 /* 156 * A consumer driver can create a link to a supplier 157 * that has not completed its probing yet as long as it 158 * knows that the supplier is already functional (for 159 * example, it has just acquired some resources from the 160 * supplier). 161 */ 162 link->status = DL_STATE_CONSUMER_PROBE; 163 break; 164 default: 165 link->status = DL_STATE_DORMANT; 166 break; 167 } 168 break; 169 case DL_DEV_DRIVER_BOUND: 170 switch (consumer->links.status) { 171 case DL_DEV_PROBING: 172 link->status = DL_STATE_CONSUMER_PROBE; 173 break; 174 case DL_DEV_DRIVER_BOUND: 175 link->status = DL_STATE_ACTIVE; 176 break; 177 default: 178 link->status = DL_STATE_AVAILABLE; 179 break; 180 } 181 break; 182 case DL_DEV_UNBINDING: 183 link->status = DL_STATE_SUPPLIER_UNBIND; 184 break; 185 default: 186 link->status = DL_STATE_DORMANT; 187 break; 188 } 189 } 190 191 static int device_reorder_to_tail(struct device *dev, void *not_used) 192 { 193 struct device_link *link; 194 195 /* 196 * Devices that have not been registered yet will be put to the ends 197 * of the lists during the registration, so skip them here. 198 */ 199 if (device_is_registered(dev)) 200 devices_kset_move_last(dev); 201 202 if (device_pm_initialized(dev)) 203 device_pm_move_last(dev); 204 205 device_for_each_child(dev, NULL, device_reorder_to_tail); 206 list_for_each_entry(link, &dev->links.consumers, s_node) { 207 if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 208 continue; 209 device_reorder_to_tail(link->consumer, NULL); 210 } 211 212 return 0; 213 } 214 215 /** 216 * device_pm_move_to_tail - Move set of devices to the end of device lists 217 * @dev: Device to move 218 * 219 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 220 * 221 * It moves the @dev along with all of its children and all of its consumers 222 * to the ends of the device_kset and dpm_list, recursively. 223 */ 224 void device_pm_move_to_tail(struct device *dev) 225 { 226 int idx; 227 228 idx = device_links_read_lock(); 229 device_pm_lock(); 230 device_reorder_to_tail(dev, NULL); 231 device_pm_unlock(); 232 device_links_read_unlock(idx); 233 } 234 235 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \ 236 DL_FLAG_AUTOREMOVE_SUPPLIER | \ 237 DL_FLAG_AUTOPROBE_CONSUMER | \ 238 DL_FLAG_SYNC_STATE_ONLY) 239 240 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \ 241 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE) 242 243 /** 244 * device_link_add - Create a link between two devices. 245 * @consumer: Consumer end of the link. 246 * @supplier: Supplier end of the link. 247 * @flags: Link flags. 248 * 249 * The caller is responsible for the proper synchronization of the link creation 250 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 251 * runtime PM framework to take the link into account. Second, if the 252 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 253 * be forced into the active metastate and reference-counted upon the creation 254 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 255 * ignored. 256 * 257 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is 258 * expected to release the link returned by it directly with the help of either 259 * device_link_del() or device_link_remove(). 260 * 261 * If that flag is not set, however, the caller of this function is handing the 262 * management of the link over to the driver core entirely and its return value 263 * can only be used to check whether or not the link is present. In that case, 264 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link 265 * flags can be used to indicate to the driver core when the link can be safely 266 * deleted. Namely, setting one of them in @flags indicates to the driver core 267 * that the link is not going to be used (by the given caller of this function) 268 * after unbinding the consumer or supplier driver, respectively, from its 269 * device, so the link can be deleted at that point. If none of them is set, 270 * the link will be maintained until one of the devices pointed to by it (either 271 * the consumer or the supplier) is unregistered. 272 * 273 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and 274 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent 275 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can 276 * be used to request the driver core to automaticall probe for a consmer 277 * driver after successfully binding a driver to the supplier device. 278 * 279 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER, 280 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at 281 * the same time is invalid and will cause NULL to be returned upfront. 282 * However, if a device link between the given @consumer and @supplier pair 283 * exists already when this function is called for them, the existing link will 284 * be returned regardless of its current type and status (the link's flags may 285 * be modified then). The caller of this function is then expected to treat 286 * the link as though it has just been created, so (in particular) if 287 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released 288 * explicitly when not needed any more (as stated above). 289 * 290 * A side effect of the link creation is re-ordering of dpm_list and the 291 * devices_kset list by moving the consumer device and all devices depending 292 * on it to the ends of these lists (that does not happen to devices that have 293 * not been registered when this function is called). 294 * 295 * The supplier device is required to be registered when this function is called 296 * and NULL will be returned if that is not the case. The consumer device need 297 * not be registered, however. 298 */ 299 struct device_link *device_link_add(struct device *consumer, 300 struct device *supplier, u32 flags) 301 { 302 struct device_link *link; 303 304 if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS || 305 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) || 306 (flags & DL_FLAG_SYNC_STATE_ONLY && 307 flags != DL_FLAG_SYNC_STATE_ONLY) || 308 (flags & DL_FLAG_AUTOPROBE_CONSUMER && 309 flags & (DL_FLAG_AUTOREMOVE_CONSUMER | 310 DL_FLAG_AUTOREMOVE_SUPPLIER))) 311 return NULL; 312 313 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) { 314 if (pm_runtime_get_sync(supplier) < 0) { 315 pm_runtime_put_noidle(supplier); 316 return NULL; 317 } 318 } 319 320 if (!(flags & DL_FLAG_STATELESS)) 321 flags |= DL_FLAG_MANAGED; 322 323 device_links_write_lock(); 324 device_pm_lock(); 325 326 /* 327 * If the supplier has not been fully registered yet or there is a 328 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and 329 * the supplier already in the graph, return NULL. If the link is a 330 * SYNC_STATE_ONLY link, we don't check for reverse dependencies 331 * because it only affects sync_state() callbacks. 332 */ 333 if (!device_pm_initialized(supplier) 334 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) && 335 device_is_dependent(consumer, supplier))) { 336 link = NULL; 337 goto out; 338 } 339 340 /* 341 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed 342 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both 343 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER. 344 */ 345 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 346 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 347 348 list_for_each_entry(link, &supplier->links.consumers, s_node) { 349 if (link->consumer != consumer) 350 continue; 351 352 if (flags & DL_FLAG_PM_RUNTIME) { 353 if (!(link->flags & DL_FLAG_PM_RUNTIME)) { 354 pm_runtime_new_link(consumer); 355 link->flags |= DL_FLAG_PM_RUNTIME; 356 } 357 if (flags & DL_FLAG_RPM_ACTIVE) 358 refcount_inc(&link->rpm_active); 359 } 360 361 if (flags & DL_FLAG_STATELESS) { 362 kref_get(&link->kref); 363 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 364 !(link->flags & DL_FLAG_STATELESS)) { 365 link->flags |= DL_FLAG_STATELESS; 366 goto reorder; 367 } else { 368 goto out; 369 } 370 } 371 372 /* 373 * If the life time of the link following from the new flags is 374 * longer than indicated by the flags of the existing link, 375 * update the existing link to stay around longer. 376 */ 377 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) { 378 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 379 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 380 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER; 381 } 382 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) { 383 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER | 384 DL_FLAG_AUTOREMOVE_SUPPLIER); 385 } 386 if (!(link->flags & DL_FLAG_MANAGED)) { 387 kref_get(&link->kref); 388 link->flags |= DL_FLAG_MANAGED; 389 device_link_init_status(link, consumer, supplier); 390 } 391 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 392 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 393 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY; 394 goto reorder; 395 } 396 397 goto out; 398 } 399 400 link = kzalloc(sizeof(*link), GFP_KERNEL); 401 if (!link) 402 goto out; 403 404 refcount_set(&link->rpm_active, 1); 405 406 if (flags & DL_FLAG_PM_RUNTIME) { 407 if (flags & DL_FLAG_RPM_ACTIVE) 408 refcount_inc(&link->rpm_active); 409 410 pm_runtime_new_link(consumer); 411 } 412 413 get_device(supplier); 414 link->supplier = supplier; 415 INIT_LIST_HEAD(&link->s_node); 416 get_device(consumer); 417 link->consumer = consumer; 418 INIT_LIST_HEAD(&link->c_node); 419 link->flags = flags; 420 kref_init(&link->kref); 421 422 /* Determine the initial link state. */ 423 if (flags & DL_FLAG_STATELESS) 424 link->status = DL_STATE_NONE; 425 else 426 device_link_init_status(link, consumer, supplier); 427 428 /* 429 * Some callers expect the link creation during consumer driver probe to 430 * resume the supplier even without DL_FLAG_RPM_ACTIVE. 431 */ 432 if (link->status == DL_STATE_CONSUMER_PROBE && 433 flags & DL_FLAG_PM_RUNTIME) 434 pm_runtime_resume(supplier); 435 436 if (flags & DL_FLAG_SYNC_STATE_ONLY) { 437 dev_dbg(consumer, 438 "Linked as a sync state only consumer to %s\n", 439 dev_name(supplier)); 440 goto out; 441 } 442 reorder: 443 /* 444 * Move the consumer and all of the devices depending on it to the end 445 * of dpm_list and the devices_kset list. 446 * 447 * It is necessary to hold dpm_list locked throughout all that or else 448 * we may end up suspending with a wrong ordering of it. 449 */ 450 device_reorder_to_tail(consumer, NULL); 451 452 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 453 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 454 455 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 456 457 out: 458 device_pm_unlock(); 459 device_links_write_unlock(); 460 461 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link) 462 pm_runtime_put(supplier); 463 464 return link; 465 } 466 EXPORT_SYMBOL_GPL(device_link_add); 467 468 /** 469 * device_link_wait_for_supplier - Add device to wait_for_suppliers list 470 * @consumer: Consumer device 471 * 472 * Marks the @consumer device as waiting for suppliers to become available by 473 * adding it to the wait_for_suppliers list. The consumer device will never be 474 * probed until it's removed from the wait_for_suppliers list. 475 * 476 * The caller is responsible for adding the links to the supplier devices once 477 * they are available and removing the @consumer device from the 478 * wait_for_suppliers list once links to all the suppliers have been created. 479 * 480 * This function is NOT meant to be called from the probe function of the 481 * consumer but rather from code that creates/adds the consumer device. 482 */ 483 static void device_link_wait_for_supplier(struct device *consumer, 484 bool need_for_probe) 485 { 486 mutex_lock(&wfs_lock); 487 list_add_tail(&consumer->links.needs_suppliers, &wait_for_suppliers); 488 consumer->links.need_for_probe = need_for_probe; 489 mutex_unlock(&wfs_lock); 490 } 491 492 static void device_link_wait_for_mandatory_supplier(struct device *consumer) 493 { 494 device_link_wait_for_supplier(consumer, true); 495 } 496 497 static void device_link_wait_for_optional_supplier(struct device *consumer) 498 { 499 device_link_wait_for_supplier(consumer, false); 500 } 501 502 /** 503 * device_link_add_missing_supplier_links - Add links from consumer devices to 504 * supplier devices, leaving any 505 * consumer with inactive suppliers on 506 * the wait_for_suppliers list 507 * 508 * Loops through all consumers waiting on suppliers and tries to add all their 509 * supplier links. If that succeeds, the consumer device is removed from 510 * wait_for_suppliers list. Otherwise, they are left in the wait_for_suppliers 511 * list. Devices left on the wait_for_suppliers list will not be probed. 512 * 513 * The fwnode add_links callback is expected to return 0 if it has found and 514 * added all the supplier links for the consumer device. It should return an 515 * error if it isn't able to do so. 516 * 517 * The caller of device_link_wait_for_supplier() is expected to call this once 518 * it's aware of potential suppliers becoming available. 519 */ 520 static void device_link_add_missing_supplier_links(void) 521 { 522 struct device *dev, *tmp; 523 524 mutex_lock(&wfs_lock); 525 list_for_each_entry_safe(dev, tmp, &wait_for_suppliers, 526 links.needs_suppliers) 527 if (!fwnode_call_int_op(dev->fwnode, add_links, dev)) 528 list_del_init(&dev->links.needs_suppliers); 529 mutex_unlock(&wfs_lock); 530 } 531 532 static void device_link_free(struct device_link *link) 533 { 534 while (refcount_dec_not_one(&link->rpm_active)) 535 pm_runtime_put(link->supplier); 536 537 put_device(link->consumer); 538 put_device(link->supplier); 539 kfree(link); 540 } 541 542 #ifdef CONFIG_SRCU 543 static void __device_link_free_srcu(struct rcu_head *rhead) 544 { 545 device_link_free(container_of(rhead, struct device_link, rcu_head)); 546 } 547 548 static void __device_link_del(struct kref *kref) 549 { 550 struct device_link *link = container_of(kref, struct device_link, kref); 551 552 dev_dbg(link->consumer, "Dropping the link to %s\n", 553 dev_name(link->supplier)); 554 555 if (link->flags & DL_FLAG_PM_RUNTIME) 556 pm_runtime_drop_link(link->consumer); 557 558 list_del_rcu(&link->s_node); 559 list_del_rcu(&link->c_node); 560 call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu); 561 } 562 #else /* !CONFIG_SRCU */ 563 static void __device_link_del(struct kref *kref) 564 { 565 struct device_link *link = container_of(kref, struct device_link, kref); 566 567 dev_info(link->consumer, "Dropping the link to %s\n", 568 dev_name(link->supplier)); 569 570 if (link->flags & DL_FLAG_PM_RUNTIME) 571 pm_runtime_drop_link(link->consumer); 572 573 list_del(&link->s_node); 574 list_del(&link->c_node); 575 device_link_free(link); 576 } 577 #endif /* !CONFIG_SRCU */ 578 579 static void device_link_put_kref(struct device_link *link) 580 { 581 if (link->flags & DL_FLAG_STATELESS) 582 kref_put(&link->kref, __device_link_del); 583 else 584 WARN(1, "Unable to drop a managed device link reference\n"); 585 } 586 587 /** 588 * device_link_del - Delete a stateless link between two devices. 589 * @link: Device link to delete. 590 * 591 * The caller must ensure proper synchronization of this function with runtime 592 * PM. If the link was added multiple times, it needs to be deleted as often. 593 * Care is required for hotplugged devices: Their links are purged on removal 594 * and calling device_link_del() is then no longer allowed. 595 */ 596 void device_link_del(struct device_link *link) 597 { 598 device_links_write_lock(); 599 device_pm_lock(); 600 device_link_put_kref(link); 601 device_pm_unlock(); 602 device_links_write_unlock(); 603 } 604 EXPORT_SYMBOL_GPL(device_link_del); 605 606 /** 607 * device_link_remove - Delete a stateless link between two devices. 608 * @consumer: Consumer end of the link. 609 * @supplier: Supplier end of the link. 610 * 611 * The caller must ensure proper synchronization of this function with runtime 612 * PM. 613 */ 614 void device_link_remove(void *consumer, struct device *supplier) 615 { 616 struct device_link *link; 617 618 if (WARN_ON(consumer == supplier)) 619 return; 620 621 device_links_write_lock(); 622 device_pm_lock(); 623 624 list_for_each_entry(link, &supplier->links.consumers, s_node) { 625 if (link->consumer == consumer) { 626 device_link_put_kref(link); 627 break; 628 } 629 } 630 631 device_pm_unlock(); 632 device_links_write_unlock(); 633 } 634 EXPORT_SYMBOL_GPL(device_link_remove); 635 636 static void device_links_missing_supplier(struct device *dev) 637 { 638 struct device_link *link; 639 640 list_for_each_entry(link, &dev->links.suppliers, c_node) 641 if (link->status == DL_STATE_CONSUMER_PROBE) 642 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 643 } 644 645 /** 646 * device_links_check_suppliers - Check presence of supplier drivers. 647 * @dev: Consumer device. 648 * 649 * Check links from this device to any suppliers. Walk the list of the device's 650 * links to suppliers and see if all of them are available. If not, simply 651 * return -EPROBE_DEFER. 652 * 653 * We need to guarantee that the supplier will not go away after the check has 654 * been positive here. It only can go away in __device_release_driver() and 655 * that function checks the device's links to consumers. This means we need to 656 * mark the link as "consumer probe in progress" to make the supplier removal 657 * wait for us to complete (or bad things may happen). 658 * 659 * Links without the DL_FLAG_MANAGED flag set are ignored. 660 */ 661 int device_links_check_suppliers(struct device *dev) 662 { 663 struct device_link *link; 664 int ret = 0; 665 666 /* 667 * Device waiting for supplier to become available is not allowed to 668 * probe. 669 */ 670 mutex_lock(&wfs_lock); 671 if (!list_empty(&dev->links.needs_suppliers) && 672 dev->links.need_for_probe) { 673 mutex_unlock(&wfs_lock); 674 return -EPROBE_DEFER; 675 } 676 mutex_unlock(&wfs_lock); 677 678 device_links_write_lock(); 679 680 list_for_each_entry(link, &dev->links.suppliers, c_node) { 681 if (!(link->flags & DL_FLAG_MANAGED) || 682 link->flags & DL_FLAG_SYNC_STATE_ONLY) 683 continue; 684 685 if (link->status != DL_STATE_AVAILABLE) { 686 device_links_missing_supplier(dev); 687 ret = -EPROBE_DEFER; 688 break; 689 } 690 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 691 } 692 dev->links.status = DL_DEV_PROBING; 693 694 device_links_write_unlock(); 695 return ret; 696 } 697 698 /** 699 * __device_links_queue_sync_state - Queue a device for sync_state() callback 700 * @dev: Device to call sync_state() on 701 * @list: List head to queue the @dev on 702 * 703 * Queues a device for a sync_state() callback when the device links write lock 704 * isn't held. This allows the sync_state() execution flow to use device links 705 * APIs. The caller must ensure this function is called with 706 * device_links_write_lock() held. 707 * 708 * This function does a get_device() to make sure the device is not freed while 709 * on this list. 710 * 711 * So the caller must also ensure that device_links_flush_sync_list() is called 712 * as soon as the caller releases device_links_write_lock(). This is necessary 713 * to make sure the sync_state() is called in a timely fashion and the 714 * put_device() is called on this device. 715 */ 716 static void __device_links_queue_sync_state(struct device *dev, 717 struct list_head *list) 718 { 719 struct device_link *link; 720 721 if (dev->state_synced) 722 return; 723 724 list_for_each_entry(link, &dev->links.consumers, s_node) { 725 if (!(link->flags & DL_FLAG_MANAGED)) 726 continue; 727 if (link->status != DL_STATE_ACTIVE) 728 return; 729 } 730 731 /* 732 * Set the flag here to avoid adding the same device to a list more 733 * than once. This can happen if new consumers get added to the device 734 * and probed before the list is flushed. 735 */ 736 dev->state_synced = true; 737 738 if (WARN_ON(!list_empty(&dev->links.defer_sync))) 739 return; 740 741 get_device(dev); 742 list_add_tail(&dev->links.defer_sync, list); 743 } 744 745 /** 746 * device_links_flush_sync_list - Call sync_state() on a list of devices 747 * @list: List of devices to call sync_state() on 748 * 749 * Calls sync_state() on all the devices that have been queued for it. This 750 * function is used in conjunction with __device_links_queue_sync_state(). 751 */ 752 static void device_links_flush_sync_list(struct list_head *list) 753 { 754 struct device *dev, *tmp; 755 756 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) { 757 list_del_init(&dev->links.defer_sync); 758 759 device_lock(dev); 760 761 if (dev->bus->sync_state) 762 dev->bus->sync_state(dev); 763 else if (dev->driver && dev->driver->sync_state) 764 dev->driver->sync_state(dev); 765 766 device_unlock(dev); 767 768 put_device(dev); 769 } 770 } 771 772 void device_links_supplier_sync_state_pause(void) 773 { 774 device_links_write_lock(); 775 defer_sync_state_count++; 776 device_links_write_unlock(); 777 } 778 779 void device_links_supplier_sync_state_resume(void) 780 { 781 struct device *dev, *tmp; 782 LIST_HEAD(sync_list); 783 784 device_links_write_lock(); 785 if (!defer_sync_state_count) { 786 WARN(true, "Unmatched sync_state pause/resume!"); 787 goto out; 788 } 789 defer_sync_state_count--; 790 if (defer_sync_state_count) 791 goto out; 792 793 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) { 794 /* 795 * Delete from deferred_sync list before queuing it to 796 * sync_list because defer_sync is used for both lists. 797 */ 798 list_del_init(&dev->links.defer_sync); 799 __device_links_queue_sync_state(dev, &sync_list); 800 } 801 out: 802 device_links_write_unlock(); 803 804 device_links_flush_sync_list(&sync_list); 805 } 806 807 static int sync_state_resume_initcall(void) 808 { 809 device_links_supplier_sync_state_resume(); 810 return 0; 811 } 812 late_initcall(sync_state_resume_initcall); 813 814 static void __device_links_supplier_defer_sync(struct device *sup) 815 { 816 if (list_empty(&sup->links.defer_sync)) 817 list_add_tail(&sup->links.defer_sync, &deferred_sync); 818 } 819 820 /** 821 * device_links_driver_bound - Update device links after probing its driver. 822 * @dev: Device to update the links for. 823 * 824 * The probe has been successful, so update links from this device to any 825 * consumers by changing their status to "available". 826 * 827 * Also change the status of @dev's links to suppliers to "active". 828 * 829 * Links without the DL_FLAG_MANAGED flag set are ignored. 830 */ 831 void device_links_driver_bound(struct device *dev) 832 { 833 struct device_link *link; 834 LIST_HEAD(sync_list); 835 836 /* 837 * If a device probes successfully, it's expected to have created all 838 * the device links it needs to or make new device links as it needs 839 * them. So, it no longer needs to wait on any suppliers. 840 */ 841 mutex_lock(&wfs_lock); 842 list_del_init(&dev->links.needs_suppliers); 843 mutex_unlock(&wfs_lock); 844 845 device_links_write_lock(); 846 847 list_for_each_entry(link, &dev->links.consumers, s_node) { 848 if (!(link->flags & DL_FLAG_MANAGED)) 849 continue; 850 851 /* 852 * Links created during consumer probe may be in the "consumer 853 * probe" state to start with if the supplier is still probing 854 * when they are created and they may become "active" if the 855 * consumer probe returns first. Skip them here. 856 */ 857 if (link->status == DL_STATE_CONSUMER_PROBE || 858 link->status == DL_STATE_ACTIVE) 859 continue; 860 861 WARN_ON(link->status != DL_STATE_DORMANT); 862 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 863 864 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER) 865 driver_deferred_probe_add(link->consumer); 866 } 867 868 list_for_each_entry(link, &dev->links.suppliers, c_node) { 869 if (!(link->flags & DL_FLAG_MANAGED)) 870 continue; 871 872 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 873 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 874 875 if (defer_sync_state_count) 876 __device_links_supplier_defer_sync(link->supplier); 877 else 878 __device_links_queue_sync_state(link->supplier, 879 &sync_list); 880 } 881 882 dev->links.status = DL_DEV_DRIVER_BOUND; 883 884 device_links_write_unlock(); 885 886 device_links_flush_sync_list(&sync_list); 887 } 888 889 static void device_link_drop_managed(struct device_link *link) 890 { 891 link->flags &= ~DL_FLAG_MANAGED; 892 WRITE_ONCE(link->status, DL_STATE_NONE); 893 kref_put(&link->kref, __device_link_del); 894 } 895 896 /** 897 * __device_links_no_driver - Update links of a device without a driver. 898 * @dev: Device without a drvier. 899 * 900 * Delete all non-persistent links from this device to any suppliers. 901 * 902 * Persistent links stay around, but their status is changed to "available", 903 * unless they already are in the "supplier unbind in progress" state in which 904 * case they need not be updated. 905 * 906 * Links without the DL_FLAG_MANAGED flag set are ignored. 907 */ 908 static void __device_links_no_driver(struct device *dev) 909 { 910 struct device_link *link, *ln; 911 912 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 913 if (!(link->flags & DL_FLAG_MANAGED)) 914 continue; 915 916 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) 917 device_link_drop_managed(link); 918 else if (link->status == DL_STATE_CONSUMER_PROBE || 919 link->status == DL_STATE_ACTIVE) 920 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 921 } 922 923 dev->links.status = DL_DEV_NO_DRIVER; 924 } 925 926 /** 927 * device_links_no_driver - Update links after failing driver probe. 928 * @dev: Device whose driver has just failed to probe. 929 * 930 * Clean up leftover links to consumers for @dev and invoke 931 * %__device_links_no_driver() to update links to suppliers for it as 932 * appropriate. 933 * 934 * Links without the DL_FLAG_MANAGED flag set are ignored. 935 */ 936 void device_links_no_driver(struct device *dev) 937 { 938 struct device_link *link; 939 940 device_links_write_lock(); 941 942 list_for_each_entry(link, &dev->links.consumers, s_node) { 943 if (!(link->flags & DL_FLAG_MANAGED)) 944 continue; 945 946 /* 947 * The probe has failed, so if the status of the link is 948 * "consumer probe" or "active", it must have been added by 949 * a probing consumer while this device was still probing. 950 * Change its state to "dormant", as it represents a valid 951 * relationship, but it is not functionally meaningful. 952 */ 953 if (link->status == DL_STATE_CONSUMER_PROBE || 954 link->status == DL_STATE_ACTIVE) 955 WRITE_ONCE(link->status, DL_STATE_DORMANT); 956 } 957 958 __device_links_no_driver(dev); 959 960 device_links_write_unlock(); 961 } 962 963 /** 964 * device_links_driver_cleanup - Update links after driver removal. 965 * @dev: Device whose driver has just gone away. 966 * 967 * Update links to consumers for @dev by changing their status to "dormant" and 968 * invoke %__device_links_no_driver() to update links to suppliers for it as 969 * appropriate. 970 * 971 * Links without the DL_FLAG_MANAGED flag set are ignored. 972 */ 973 void device_links_driver_cleanup(struct device *dev) 974 { 975 struct device_link *link, *ln; 976 977 device_links_write_lock(); 978 979 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) { 980 if (!(link->flags & DL_FLAG_MANAGED)) 981 continue; 982 983 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER); 984 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 985 986 /* 987 * autoremove the links between this @dev and its consumer 988 * devices that are not active, i.e. where the link state 989 * has moved to DL_STATE_SUPPLIER_UNBIND. 990 */ 991 if (link->status == DL_STATE_SUPPLIER_UNBIND && 992 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 993 device_link_drop_managed(link); 994 995 WRITE_ONCE(link->status, DL_STATE_DORMANT); 996 } 997 998 list_del_init(&dev->links.defer_sync); 999 __device_links_no_driver(dev); 1000 1001 device_links_write_unlock(); 1002 } 1003 1004 /** 1005 * device_links_busy - Check if there are any busy links to consumers. 1006 * @dev: Device to check. 1007 * 1008 * Check each consumer of the device and return 'true' if its link's status 1009 * is one of "consumer probe" or "active" (meaning that the given consumer is 1010 * probing right now or its driver is present). Otherwise, change the link 1011 * state to "supplier unbind" to prevent the consumer from being probed 1012 * successfully going forward. 1013 * 1014 * Return 'false' if there are no probing or active consumers. 1015 * 1016 * Links without the DL_FLAG_MANAGED flag set are ignored. 1017 */ 1018 bool device_links_busy(struct device *dev) 1019 { 1020 struct device_link *link; 1021 bool ret = false; 1022 1023 device_links_write_lock(); 1024 1025 list_for_each_entry(link, &dev->links.consumers, s_node) { 1026 if (!(link->flags & DL_FLAG_MANAGED)) 1027 continue; 1028 1029 if (link->status == DL_STATE_CONSUMER_PROBE 1030 || link->status == DL_STATE_ACTIVE) { 1031 ret = true; 1032 break; 1033 } 1034 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1035 } 1036 1037 dev->links.status = DL_DEV_UNBINDING; 1038 1039 device_links_write_unlock(); 1040 return ret; 1041 } 1042 1043 /** 1044 * device_links_unbind_consumers - Force unbind consumers of the given device. 1045 * @dev: Device to unbind the consumers of. 1046 * 1047 * Walk the list of links to consumers for @dev and if any of them is in the 1048 * "consumer probe" state, wait for all device probes in progress to complete 1049 * and start over. 1050 * 1051 * If that's not the case, change the status of the link to "supplier unbind" 1052 * and check if the link was in the "active" state. If so, force the consumer 1053 * driver to unbind and start over (the consumer will not re-probe as we have 1054 * changed the state of the link already). 1055 * 1056 * Links without the DL_FLAG_MANAGED flag set are ignored. 1057 */ 1058 void device_links_unbind_consumers(struct device *dev) 1059 { 1060 struct device_link *link; 1061 1062 start: 1063 device_links_write_lock(); 1064 1065 list_for_each_entry(link, &dev->links.consumers, s_node) { 1066 enum device_link_state status; 1067 1068 if (!(link->flags & DL_FLAG_MANAGED) || 1069 link->flags & DL_FLAG_SYNC_STATE_ONLY) 1070 continue; 1071 1072 status = link->status; 1073 if (status == DL_STATE_CONSUMER_PROBE) { 1074 device_links_write_unlock(); 1075 1076 wait_for_device_probe(); 1077 goto start; 1078 } 1079 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1080 if (status == DL_STATE_ACTIVE) { 1081 struct device *consumer = link->consumer; 1082 1083 get_device(consumer); 1084 1085 device_links_write_unlock(); 1086 1087 device_release_driver_internal(consumer, NULL, 1088 consumer->parent); 1089 put_device(consumer); 1090 goto start; 1091 } 1092 } 1093 1094 device_links_write_unlock(); 1095 } 1096 1097 /** 1098 * device_links_purge - Delete existing links to other devices. 1099 * @dev: Target device. 1100 */ 1101 static void device_links_purge(struct device *dev) 1102 { 1103 struct device_link *link, *ln; 1104 1105 mutex_lock(&wfs_lock); 1106 list_del(&dev->links.needs_suppliers); 1107 mutex_unlock(&wfs_lock); 1108 1109 /* 1110 * Delete all of the remaining links from this device to any other 1111 * devices (either consumers or suppliers). 1112 */ 1113 device_links_write_lock(); 1114 1115 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1116 WARN_ON(link->status == DL_STATE_ACTIVE); 1117 __device_link_del(&link->kref); 1118 } 1119 1120 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 1121 WARN_ON(link->status != DL_STATE_DORMANT && 1122 link->status != DL_STATE_NONE); 1123 __device_link_del(&link->kref); 1124 } 1125 1126 device_links_write_unlock(); 1127 } 1128 1129 /* Device links support end. */ 1130 1131 int (*platform_notify)(struct device *dev) = NULL; 1132 int (*platform_notify_remove)(struct device *dev) = NULL; 1133 static struct kobject *dev_kobj; 1134 struct kobject *sysfs_dev_char_kobj; 1135 struct kobject *sysfs_dev_block_kobj; 1136 1137 static DEFINE_MUTEX(device_hotplug_lock); 1138 1139 void lock_device_hotplug(void) 1140 { 1141 mutex_lock(&device_hotplug_lock); 1142 } 1143 1144 void unlock_device_hotplug(void) 1145 { 1146 mutex_unlock(&device_hotplug_lock); 1147 } 1148 1149 int lock_device_hotplug_sysfs(void) 1150 { 1151 if (mutex_trylock(&device_hotplug_lock)) 1152 return 0; 1153 1154 /* Avoid busy looping (5 ms of sleep should do). */ 1155 msleep(5); 1156 return restart_syscall(); 1157 } 1158 1159 #ifdef CONFIG_BLOCK 1160 static inline int device_is_not_partition(struct device *dev) 1161 { 1162 return !(dev->type == &part_type); 1163 } 1164 #else 1165 static inline int device_is_not_partition(struct device *dev) 1166 { 1167 return 1; 1168 } 1169 #endif 1170 1171 static int 1172 device_platform_notify(struct device *dev, enum kobject_action action) 1173 { 1174 int ret; 1175 1176 ret = acpi_platform_notify(dev, action); 1177 if (ret) 1178 return ret; 1179 1180 ret = software_node_notify(dev, action); 1181 if (ret) 1182 return ret; 1183 1184 if (platform_notify && action == KOBJ_ADD) 1185 platform_notify(dev); 1186 else if (platform_notify_remove && action == KOBJ_REMOVE) 1187 platform_notify_remove(dev); 1188 return 0; 1189 } 1190 1191 /** 1192 * dev_driver_string - Return a device's driver name, if at all possible 1193 * @dev: struct device to get the name of 1194 * 1195 * Will return the device's driver's name if it is bound to a device. If 1196 * the device is not bound to a driver, it will return the name of the bus 1197 * it is attached to. If it is not attached to a bus either, an empty 1198 * string will be returned. 1199 */ 1200 const char *dev_driver_string(const struct device *dev) 1201 { 1202 struct device_driver *drv; 1203 1204 /* dev->driver can change to NULL underneath us because of unbinding, 1205 * so be careful about accessing it. dev->bus and dev->class should 1206 * never change once they are set, so they don't need special care. 1207 */ 1208 drv = READ_ONCE(dev->driver); 1209 return drv ? drv->name : 1210 (dev->bus ? dev->bus->name : 1211 (dev->class ? dev->class->name : "")); 1212 } 1213 EXPORT_SYMBOL(dev_driver_string); 1214 1215 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 1216 1217 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 1218 char *buf) 1219 { 1220 struct device_attribute *dev_attr = to_dev_attr(attr); 1221 struct device *dev = kobj_to_dev(kobj); 1222 ssize_t ret = -EIO; 1223 1224 if (dev_attr->show) 1225 ret = dev_attr->show(dev, dev_attr, buf); 1226 if (ret >= (ssize_t)PAGE_SIZE) { 1227 printk("dev_attr_show: %pS returned bad count\n", 1228 dev_attr->show); 1229 } 1230 return ret; 1231 } 1232 1233 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 1234 const char *buf, size_t count) 1235 { 1236 struct device_attribute *dev_attr = to_dev_attr(attr); 1237 struct device *dev = kobj_to_dev(kobj); 1238 ssize_t ret = -EIO; 1239 1240 if (dev_attr->store) 1241 ret = dev_attr->store(dev, dev_attr, buf, count); 1242 return ret; 1243 } 1244 1245 static const struct sysfs_ops dev_sysfs_ops = { 1246 .show = dev_attr_show, 1247 .store = dev_attr_store, 1248 }; 1249 1250 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 1251 1252 ssize_t device_store_ulong(struct device *dev, 1253 struct device_attribute *attr, 1254 const char *buf, size_t size) 1255 { 1256 struct dev_ext_attribute *ea = to_ext_attr(attr); 1257 int ret; 1258 unsigned long new; 1259 1260 ret = kstrtoul(buf, 0, &new); 1261 if (ret) 1262 return ret; 1263 *(unsigned long *)(ea->var) = new; 1264 /* Always return full write size even if we didn't consume all */ 1265 return size; 1266 } 1267 EXPORT_SYMBOL_GPL(device_store_ulong); 1268 1269 ssize_t device_show_ulong(struct device *dev, 1270 struct device_attribute *attr, 1271 char *buf) 1272 { 1273 struct dev_ext_attribute *ea = to_ext_attr(attr); 1274 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var)); 1275 } 1276 EXPORT_SYMBOL_GPL(device_show_ulong); 1277 1278 ssize_t device_store_int(struct device *dev, 1279 struct device_attribute *attr, 1280 const char *buf, size_t size) 1281 { 1282 struct dev_ext_attribute *ea = to_ext_attr(attr); 1283 int ret; 1284 long new; 1285 1286 ret = kstrtol(buf, 0, &new); 1287 if (ret) 1288 return ret; 1289 1290 if (new > INT_MAX || new < INT_MIN) 1291 return -EINVAL; 1292 *(int *)(ea->var) = new; 1293 /* Always return full write size even if we didn't consume all */ 1294 return size; 1295 } 1296 EXPORT_SYMBOL_GPL(device_store_int); 1297 1298 ssize_t device_show_int(struct device *dev, 1299 struct device_attribute *attr, 1300 char *buf) 1301 { 1302 struct dev_ext_attribute *ea = to_ext_attr(attr); 1303 1304 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var)); 1305 } 1306 EXPORT_SYMBOL_GPL(device_show_int); 1307 1308 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 1309 const char *buf, size_t size) 1310 { 1311 struct dev_ext_attribute *ea = to_ext_attr(attr); 1312 1313 if (strtobool(buf, ea->var) < 0) 1314 return -EINVAL; 1315 1316 return size; 1317 } 1318 EXPORT_SYMBOL_GPL(device_store_bool); 1319 1320 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 1321 char *buf) 1322 { 1323 struct dev_ext_attribute *ea = to_ext_attr(attr); 1324 1325 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var)); 1326 } 1327 EXPORT_SYMBOL_GPL(device_show_bool); 1328 1329 /** 1330 * device_release - free device structure. 1331 * @kobj: device's kobject. 1332 * 1333 * This is called once the reference count for the object 1334 * reaches 0. We forward the call to the device's release 1335 * method, which should handle actually freeing the structure. 1336 */ 1337 static void device_release(struct kobject *kobj) 1338 { 1339 struct device *dev = kobj_to_dev(kobj); 1340 struct device_private *p = dev->p; 1341 1342 /* 1343 * Some platform devices are driven without driver attached 1344 * and managed resources may have been acquired. Make sure 1345 * all resources are released. 1346 * 1347 * Drivers still can add resources into device after device 1348 * is deleted but alive, so release devres here to avoid 1349 * possible memory leak. 1350 */ 1351 devres_release_all(dev); 1352 1353 if (dev->release) 1354 dev->release(dev); 1355 else if (dev->type && dev->type->release) 1356 dev->type->release(dev); 1357 else if (dev->class && dev->class->dev_release) 1358 dev->class->dev_release(dev); 1359 else 1360 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/kobject.txt.\n", 1361 dev_name(dev)); 1362 kfree(p); 1363 } 1364 1365 static const void *device_namespace(struct kobject *kobj) 1366 { 1367 struct device *dev = kobj_to_dev(kobj); 1368 const void *ns = NULL; 1369 1370 if (dev->class && dev->class->ns_type) 1371 ns = dev->class->namespace(dev); 1372 1373 return ns; 1374 } 1375 1376 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid) 1377 { 1378 struct device *dev = kobj_to_dev(kobj); 1379 1380 if (dev->class && dev->class->get_ownership) 1381 dev->class->get_ownership(dev, uid, gid); 1382 } 1383 1384 static struct kobj_type device_ktype = { 1385 .release = device_release, 1386 .sysfs_ops = &dev_sysfs_ops, 1387 .namespace = device_namespace, 1388 .get_ownership = device_get_ownership, 1389 }; 1390 1391 1392 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj) 1393 { 1394 struct kobj_type *ktype = get_ktype(kobj); 1395 1396 if (ktype == &device_ktype) { 1397 struct device *dev = kobj_to_dev(kobj); 1398 if (dev->bus) 1399 return 1; 1400 if (dev->class) 1401 return 1; 1402 } 1403 return 0; 1404 } 1405 1406 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj) 1407 { 1408 struct device *dev = kobj_to_dev(kobj); 1409 1410 if (dev->bus) 1411 return dev->bus->name; 1412 if (dev->class) 1413 return dev->class->name; 1414 return NULL; 1415 } 1416 1417 static int dev_uevent(struct kset *kset, struct kobject *kobj, 1418 struct kobj_uevent_env *env) 1419 { 1420 struct device *dev = kobj_to_dev(kobj); 1421 int retval = 0; 1422 1423 /* add device node properties if present */ 1424 if (MAJOR(dev->devt)) { 1425 const char *tmp; 1426 const char *name; 1427 umode_t mode = 0; 1428 kuid_t uid = GLOBAL_ROOT_UID; 1429 kgid_t gid = GLOBAL_ROOT_GID; 1430 1431 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 1432 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 1433 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 1434 if (name) { 1435 add_uevent_var(env, "DEVNAME=%s", name); 1436 if (mode) 1437 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 1438 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 1439 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 1440 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 1441 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 1442 kfree(tmp); 1443 } 1444 } 1445 1446 if (dev->type && dev->type->name) 1447 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 1448 1449 if (dev->driver) 1450 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 1451 1452 /* Add common DT information about the device */ 1453 of_device_uevent(dev, env); 1454 1455 /* have the bus specific function add its stuff */ 1456 if (dev->bus && dev->bus->uevent) { 1457 retval = dev->bus->uevent(dev, env); 1458 if (retval) 1459 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 1460 dev_name(dev), __func__, retval); 1461 } 1462 1463 /* have the class specific function add its stuff */ 1464 if (dev->class && dev->class->dev_uevent) { 1465 retval = dev->class->dev_uevent(dev, env); 1466 if (retval) 1467 pr_debug("device: '%s': %s: class uevent() " 1468 "returned %d\n", dev_name(dev), 1469 __func__, retval); 1470 } 1471 1472 /* have the device type specific function add its stuff */ 1473 if (dev->type && dev->type->uevent) { 1474 retval = dev->type->uevent(dev, env); 1475 if (retval) 1476 pr_debug("device: '%s': %s: dev_type uevent() " 1477 "returned %d\n", dev_name(dev), 1478 __func__, retval); 1479 } 1480 1481 return retval; 1482 } 1483 1484 static const struct kset_uevent_ops device_uevent_ops = { 1485 .filter = dev_uevent_filter, 1486 .name = dev_uevent_name, 1487 .uevent = dev_uevent, 1488 }; 1489 1490 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 1491 char *buf) 1492 { 1493 struct kobject *top_kobj; 1494 struct kset *kset; 1495 struct kobj_uevent_env *env = NULL; 1496 int i; 1497 size_t count = 0; 1498 int retval; 1499 1500 /* search the kset, the device belongs to */ 1501 top_kobj = &dev->kobj; 1502 while (!top_kobj->kset && top_kobj->parent) 1503 top_kobj = top_kobj->parent; 1504 if (!top_kobj->kset) 1505 goto out; 1506 1507 kset = top_kobj->kset; 1508 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 1509 goto out; 1510 1511 /* respect filter */ 1512 if (kset->uevent_ops && kset->uevent_ops->filter) 1513 if (!kset->uevent_ops->filter(kset, &dev->kobj)) 1514 goto out; 1515 1516 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 1517 if (!env) 1518 return -ENOMEM; 1519 1520 /* let the kset specific function add its keys */ 1521 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env); 1522 if (retval) 1523 goto out; 1524 1525 /* copy keys to file */ 1526 for (i = 0; i < env->envp_idx; i++) 1527 count += sprintf(&buf[count], "%s\n", env->envp[i]); 1528 out: 1529 kfree(env); 1530 return count; 1531 } 1532 1533 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 1534 const char *buf, size_t count) 1535 { 1536 int rc; 1537 1538 rc = kobject_synth_uevent(&dev->kobj, buf, count); 1539 1540 if (rc) { 1541 dev_err(dev, "uevent: failed to send synthetic uevent\n"); 1542 return rc; 1543 } 1544 1545 return count; 1546 } 1547 static DEVICE_ATTR_RW(uevent); 1548 1549 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 1550 char *buf) 1551 { 1552 bool val; 1553 1554 device_lock(dev); 1555 val = !dev->offline; 1556 device_unlock(dev); 1557 return sprintf(buf, "%u\n", val); 1558 } 1559 1560 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 1561 const char *buf, size_t count) 1562 { 1563 bool val; 1564 int ret; 1565 1566 ret = strtobool(buf, &val); 1567 if (ret < 0) 1568 return ret; 1569 1570 ret = lock_device_hotplug_sysfs(); 1571 if (ret) 1572 return ret; 1573 1574 ret = val ? device_online(dev) : device_offline(dev); 1575 unlock_device_hotplug(); 1576 return ret < 0 ? ret : count; 1577 } 1578 static DEVICE_ATTR_RW(online); 1579 1580 int device_add_groups(struct device *dev, const struct attribute_group **groups) 1581 { 1582 return sysfs_create_groups(&dev->kobj, groups); 1583 } 1584 EXPORT_SYMBOL_GPL(device_add_groups); 1585 1586 void device_remove_groups(struct device *dev, 1587 const struct attribute_group **groups) 1588 { 1589 sysfs_remove_groups(&dev->kobj, groups); 1590 } 1591 EXPORT_SYMBOL_GPL(device_remove_groups); 1592 1593 union device_attr_group_devres { 1594 const struct attribute_group *group; 1595 const struct attribute_group **groups; 1596 }; 1597 1598 static int devm_attr_group_match(struct device *dev, void *res, void *data) 1599 { 1600 return ((union device_attr_group_devres *)res)->group == data; 1601 } 1602 1603 static void devm_attr_group_remove(struct device *dev, void *res) 1604 { 1605 union device_attr_group_devres *devres = res; 1606 const struct attribute_group *group = devres->group; 1607 1608 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 1609 sysfs_remove_group(&dev->kobj, group); 1610 } 1611 1612 static void devm_attr_groups_remove(struct device *dev, void *res) 1613 { 1614 union device_attr_group_devres *devres = res; 1615 const struct attribute_group **groups = devres->groups; 1616 1617 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups); 1618 sysfs_remove_groups(&dev->kobj, groups); 1619 } 1620 1621 /** 1622 * devm_device_add_group - given a device, create a managed attribute group 1623 * @dev: The device to create the group for 1624 * @grp: The attribute group to create 1625 * 1626 * This function creates a group for the first time. It will explicitly 1627 * warn and error if any of the attribute files being created already exist. 1628 * 1629 * Returns 0 on success or error code on failure. 1630 */ 1631 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 1632 { 1633 union device_attr_group_devres *devres; 1634 int error; 1635 1636 devres = devres_alloc(devm_attr_group_remove, 1637 sizeof(*devres), GFP_KERNEL); 1638 if (!devres) 1639 return -ENOMEM; 1640 1641 error = sysfs_create_group(&dev->kobj, grp); 1642 if (error) { 1643 devres_free(devres); 1644 return error; 1645 } 1646 1647 devres->group = grp; 1648 devres_add(dev, devres); 1649 return 0; 1650 } 1651 EXPORT_SYMBOL_GPL(devm_device_add_group); 1652 1653 /** 1654 * devm_device_remove_group: remove a managed group from a device 1655 * @dev: device to remove the group from 1656 * @grp: group to remove 1657 * 1658 * This function removes a group of attributes from a device. The attributes 1659 * previously have to have been created for this group, otherwise it will fail. 1660 */ 1661 void devm_device_remove_group(struct device *dev, 1662 const struct attribute_group *grp) 1663 { 1664 WARN_ON(devres_release(dev, devm_attr_group_remove, 1665 devm_attr_group_match, 1666 /* cast away const */ (void *)grp)); 1667 } 1668 EXPORT_SYMBOL_GPL(devm_device_remove_group); 1669 1670 /** 1671 * devm_device_add_groups - create a bunch of managed attribute groups 1672 * @dev: The device to create the group for 1673 * @groups: The attribute groups to create, NULL terminated 1674 * 1675 * This function creates a bunch of managed attribute groups. If an error 1676 * occurs when creating a group, all previously created groups will be 1677 * removed, unwinding everything back to the original state when this 1678 * function was called. It will explicitly warn and error if any of the 1679 * attribute files being created already exist. 1680 * 1681 * Returns 0 on success or error code from sysfs_create_group on failure. 1682 */ 1683 int devm_device_add_groups(struct device *dev, 1684 const struct attribute_group **groups) 1685 { 1686 union device_attr_group_devres *devres; 1687 int error; 1688 1689 devres = devres_alloc(devm_attr_groups_remove, 1690 sizeof(*devres), GFP_KERNEL); 1691 if (!devres) 1692 return -ENOMEM; 1693 1694 error = sysfs_create_groups(&dev->kobj, groups); 1695 if (error) { 1696 devres_free(devres); 1697 return error; 1698 } 1699 1700 devres->groups = groups; 1701 devres_add(dev, devres); 1702 return 0; 1703 } 1704 EXPORT_SYMBOL_GPL(devm_device_add_groups); 1705 1706 /** 1707 * devm_device_remove_groups - remove a list of managed groups 1708 * 1709 * @dev: The device for the groups to be removed from 1710 * @groups: NULL terminated list of groups to be removed 1711 * 1712 * If groups is not NULL, remove the specified groups from the device. 1713 */ 1714 void devm_device_remove_groups(struct device *dev, 1715 const struct attribute_group **groups) 1716 { 1717 WARN_ON(devres_release(dev, devm_attr_groups_remove, 1718 devm_attr_group_match, 1719 /* cast away const */ (void *)groups)); 1720 } 1721 EXPORT_SYMBOL_GPL(devm_device_remove_groups); 1722 1723 static int device_add_attrs(struct device *dev) 1724 { 1725 struct class *class = dev->class; 1726 const struct device_type *type = dev->type; 1727 int error; 1728 1729 if (class) { 1730 error = device_add_groups(dev, class->dev_groups); 1731 if (error) 1732 return error; 1733 } 1734 1735 if (type) { 1736 error = device_add_groups(dev, type->groups); 1737 if (error) 1738 goto err_remove_class_groups; 1739 } 1740 1741 error = device_add_groups(dev, dev->groups); 1742 if (error) 1743 goto err_remove_type_groups; 1744 1745 if (device_supports_offline(dev) && !dev->offline_disabled) { 1746 error = device_create_file(dev, &dev_attr_online); 1747 if (error) 1748 goto err_remove_dev_groups; 1749 } 1750 1751 return 0; 1752 1753 err_remove_dev_groups: 1754 device_remove_groups(dev, dev->groups); 1755 err_remove_type_groups: 1756 if (type) 1757 device_remove_groups(dev, type->groups); 1758 err_remove_class_groups: 1759 if (class) 1760 device_remove_groups(dev, class->dev_groups); 1761 1762 return error; 1763 } 1764 1765 static void device_remove_attrs(struct device *dev) 1766 { 1767 struct class *class = dev->class; 1768 const struct device_type *type = dev->type; 1769 1770 device_remove_file(dev, &dev_attr_online); 1771 device_remove_groups(dev, dev->groups); 1772 1773 if (type) 1774 device_remove_groups(dev, type->groups); 1775 1776 if (class) 1777 device_remove_groups(dev, class->dev_groups); 1778 } 1779 1780 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 1781 char *buf) 1782 { 1783 return print_dev_t(buf, dev->devt); 1784 } 1785 static DEVICE_ATTR_RO(dev); 1786 1787 /* /sys/devices/ */ 1788 struct kset *devices_kset; 1789 1790 /** 1791 * devices_kset_move_before - Move device in the devices_kset's list. 1792 * @deva: Device to move. 1793 * @devb: Device @deva should come before. 1794 */ 1795 static void devices_kset_move_before(struct device *deva, struct device *devb) 1796 { 1797 if (!devices_kset) 1798 return; 1799 pr_debug("devices_kset: Moving %s before %s\n", 1800 dev_name(deva), dev_name(devb)); 1801 spin_lock(&devices_kset->list_lock); 1802 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 1803 spin_unlock(&devices_kset->list_lock); 1804 } 1805 1806 /** 1807 * devices_kset_move_after - Move device in the devices_kset's list. 1808 * @deva: Device to move 1809 * @devb: Device @deva should come after. 1810 */ 1811 static void devices_kset_move_after(struct device *deva, struct device *devb) 1812 { 1813 if (!devices_kset) 1814 return; 1815 pr_debug("devices_kset: Moving %s after %s\n", 1816 dev_name(deva), dev_name(devb)); 1817 spin_lock(&devices_kset->list_lock); 1818 list_move(&deva->kobj.entry, &devb->kobj.entry); 1819 spin_unlock(&devices_kset->list_lock); 1820 } 1821 1822 /** 1823 * devices_kset_move_last - move the device to the end of devices_kset's list. 1824 * @dev: device to move 1825 */ 1826 void devices_kset_move_last(struct device *dev) 1827 { 1828 if (!devices_kset) 1829 return; 1830 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 1831 spin_lock(&devices_kset->list_lock); 1832 list_move_tail(&dev->kobj.entry, &devices_kset->list); 1833 spin_unlock(&devices_kset->list_lock); 1834 } 1835 1836 /** 1837 * device_create_file - create sysfs attribute file for device. 1838 * @dev: device. 1839 * @attr: device attribute descriptor. 1840 */ 1841 int device_create_file(struct device *dev, 1842 const struct device_attribute *attr) 1843 { 1844 int error = 0; 1845 1846 if (dev) { 1847 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 1848 "Attribute %s: write permission without 'store'\n", 1849 attr->attr.name); 1850 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 1851 "Attribute %s: read permission without 'show'\n", 1852 attr->attr.name); 1853 error = sysfs_create_file(&dev->kobj, &attr->attr); 1854 } 1855 1856 return error; 1857 } 1858 EXPORT_SYMBOL_GPL(device_create_file); 1859 1860 /** 1861 * device_remove_file - remove sysfs attribute file. 1862 * @dev: device. 1863 * @attr: device attribute descriptor. 1864 */ 1865 void device_remove_file(struct device *dev, 1866 const struct device_attribute *attr) 1867 { 1868 if (dev) 1869 sysfs_remove_file(&dev->kobj, &attr->attr); 1870 } 1871 EXPORT_SYMBOL_GPL(device_remove_file); 1872 1873 /** 1874 * device_remove_file_self - remove sysfs attribute file from its own method. 1875 * @dev: device. 1876 * @attr: device attribute descriptor. 1877 * 1878 * See kernfs_remove_self() for details. 1879 */ 1880 bool device_remove_file_self(struct device *dev, 1881 const struct device_attribute *attr) 1882 { 1883 if (dev) 1884 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 1885 else 1886 return false; 1887 } 1888 EXPORT_SYMBOL_GPL(device_remove_file_self); 1889 1890 /** 1891 * device_create_bin_file - create sysfs binary attribute file for device. 1892 * @dev: device. 1893 * @attr: device binary attribute descriptor. 1894 */ 1895 int device_create_bin_file(struct device *dev, 1896 const struct bin_attribute *attr) 1897 { 1898 int error = -EINVAL; 1899 if (dev) 1900 error = sysfs_create_bin_file(&dev->kobj, attr); 1901 return error; 1902 } 1903 EXPORT_SYMBOL_GPL(device_create_bin_file); 1904 1905 /** 1906 * device_remove_bin_file - remove sysfs binary attribute file 1907 * @dev: device. 1908 * @attr: device binary attribute descriptor. 1909 */ 1910 void device_remove_bin_file(struct device *dev, 1911 const struct bin_attribute *attr) 1912 { 1913 if (dev) 1914 sysfs_remove_bin_file(&dev->kobj, attr); 1915 } 1916 EXPORT_SYMBOL_GPL(device_remove_bin_file); 1917 1918 static void klist_children_get(struct klist_node *n) 1919 { 1920 struct device_private *p = to_device_private_parent(n); 1921 struct device *dev = p->device; 1922 1923 get_device(dev); 1924 } 1925 1926 static void klist_children_put(struct klist_node *n) 1927 { 1928 struct device_private *p = to_device_private_parent(n); 1929 struct device *dev = p->device; 1930 1931 put_device(dev); 1932 } 1933 1934 /** 1935 * device_initialize - init device structure. 1936 * @dev: device. 1937 * 1938 * This prepares the device for use by other layers by initializing 1939 * its fields. 1940 * It is the first half of device_register(), if called by 1941 * that function, though it can also be called separately, so one 1942 * may use @dev's fields. In particular, get_device()/put_device() 1943 * may be used for reference counting of @dev after calling this 1944 * function. 1945 * 1946 * All fields in @dev must be initialized by the caller to 0, except 1947 * for those explicitly set to some other value. The simplest 1948 * approach is to use kzalloc() to allocate the structure containing 1949 * @dev. 1950 * 1951 * NOTE: Use put_device() to give up your reference instead of freeing 1952 * @dev directly once you have called this function. 1953 */ 1954 void device_initialize(struct device *dev) 1955 { 1956 dev->kobj.kset = devices_kset; 1957 kobject_init(&dev->kobj, &device_ktype); 1958 INIT_LIST_HEAD(&dev->dma_pools); 1959 mutex_init(&dev->mutex); 1960 #ifdef CONFIG_PROVE_LOCKING 1961 mutex_init(&dev->lockdep_mutex); 1962 #endif 1963 lockdep_set_novalidate_class(&dev->mutex); 1964 spin_lock_init(&dev->devres_lock); 1965 INIT_LIST_HEAD(&dev->devres_head); 1966 device_pm_init(dev); 1967 set_dev_node(dev, -1); 1968 #ifdef CONFIG_GENERIC_MSI_IRQ 1969 INIT_LIST_HEAD(&dev->msi_list); 1970 #endif 1971 INIT_LIST_HEAD(&dev->links.consumers); 1972 INIT_LIST_HEAD(&dev->links.suppliers); 1973 INIT_LIST_HEAD(&dev->links.needs_suppliers); 1974 INIT_LIST_HEAD(&dev->links.defer_sync); 1975 dev->links.status = DL_DEV_NO_DRIVER; 1976 } 1977 EXPORT_SYMBOL_GPL(device_initialize); 1978 1979 struct kobject *virtual_device_parent(struct device *dev) 1980 { 1981 static struct kobject *virtual_dir = NULL; 1982 1983 if (!virtual_dir) 1984 virtual_dir = kobject_create_and_add("virtual", 1985 &devices_kset->kobj); 1986 1987 return virtual_dir; 1988 } 1989 1990 struct class_dir { 1991 struct kobject kobj; 1992 struct class *class; 1993 }; 1994 1995 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 1996 1997 static void class_dir_release(struct kobject *kobj) 1998 { 1999 struct class_dir *dir = to_class_dir(kobj); 2000 kfree(dir); 2001 } 2002 2003 static const 2004 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj) 2005 { 2006 struct class_dir *dir = to_class_dir(kobj); 2007 return dir->class->ns_type; 2008 } 2009 2010 static struct kobj_type class_dir_ktype = { 2011 .release = class_dir_release, 2012 .sysfs_ops = &kobj_sysfs_ops, 2013 .child_ns_type = class_dir_child_ns_type 2014 }; 2015 2016 static struct kobject * 2017 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj) 2018 { 2019 struct class_dir *dir; 2020 int retval; 2021 2022 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 2023 if (!dir) 2024 return ERR_PTR(-ENOMEM); 2025 2026 dir->class = class; 2027 kobject_init(&dir->kobj, &class_dir_ktype); 2028 2029 dir->kobj.kset = &class->p->glue_dirs; 2030 2031 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name); 2032 if (retval < 0) { 2033 kobject_put(&dir->kobj); 2034 return ERR_PTR(retval); 2035 } 2036 return &dir->kobj; 2037 } 2038 2039 static DEFINE_MUTEX(gdp_mutex); 2040 2041 static struct kobject *get_device_parent(struct device *dev, 2042 struct device *parent) 2043 { 2044 if (dev->class) { 2045 struct kobject *kobj = NULL; 2046 struct kobject *parent_kobj; 2047 struct kobject *k; 2048 2049 #ifdef CONFIG_BLOCK 2050 /* block disks show up in /sys/block */ 2051 if (sysfs_deprecated && dev->class == &block_class) { 2052 if (parent && parent->class == &block_class) 2053 return &parent->kobj; 2054 return &block_class.p->subsys.kobj; 2055 } 2056 #endif 2057 2058 /* 2059 * If we have no parent, we live in "virtual". 2060 * Class-devices with a non class-device as parent, live 2061 * in a "glue" directory to prevent namespace collisions. 2062 */ 2063 if (parent == NULL) 2064 parent_kobj = virtual_device_parent(dev); 2065 else if (parent->class && !dev->class->ns_type) 2066 return &parent->kobj; 2067 else 2068 parent_kobj = &parent->kobj; 2069 2070 mutex_lock(&gdp_mutex); 2071 2072 /* find our class-directory at the parent and reference it */ 2073 spin_lock(&dev->class->p->glue_dirs.list_lock); 2074 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry) 2075 if (k->parent == parent_kobj) { 2076 kobj = kobject_get(k); 2077 break; 2078 } 2079 spin_unlock(&dev->class->p->glue_dirs.list_lock); 2080 if (kobj) { 2081 mutex_unlock(&gdp_mutex); 2082 return kobj; 2083 } 2084 2085 /* or create a new class-directory at the parent device */ 2086 k = class_dir_create_and_add(dev->class, parent_kobj); 2087 /* do not emit an uevent for this simple "glue" directory */ 2088 mutex_unlock(&gdp_mutex); 2089 return k; 2090 } 2091 2092 /* subsystems can specify a default root directory for their devices */ 2093 if (!parent && dev->bus && dev->bus->dev_root) 2094 return &dev->bus->dev_root->kobj; 2095 2096 if (parent) 2097 return &parent->kobj; 2098 return NULL; 2099 } 2100 2101 static inline bool live_in_glue_dir(struct kobject *kobj, 2102 struct device *dev) 2103 { 2104 if (!kobj || !dev->class || 2105 kobj->kset != &dev->class->p->glue_dirs) 2106 return false; 2107 return true; 2108 } 2109 2110 static inline struct kobject *get_glue_dir(struct device *dev) 2111 { 2112 return dev->kobj.parent; 2113 } 2114 2115 /* 2116 * make sure cleaning up dir as the last step, we need to make 2117 * sure .release handler of kobject is run with holding the 2118 * global lock 2119 */ 2120 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 2121 { 2122 unsigned int ref; 2123 2124 /* see if we live in a "glue" directory */ 2125 if (!live_in_glue_dir(glue_dir, dev)) 2126 return; 2127 2128 mutex_lock(&gdp_mutex); 2129 /** 2130 * There is a race condition between removing glue directory 2131 * and adding a new device under the glue directory. 2132 * 2133 * CPU1: CPU2: 2134 * 2135 * device_add() 2136 * get_device_parent() 2137 * class_dir_create_and_add() 2138 * kobject_add_internal() 2139 * create_dir() // create glue_dir 2140 * 2141 * device_add() 2142 * get_device_parent() 2143 * kobject_get() // get glue_dir 2144 * 2145 * device_del() 2146 * cleanup_glue_dir() 2147 * kobject_del(glue_dir) 2148 * 2149 * kobject_add() 2150 * kobject_add_internal() 2151 * create_dir() // in glue_dir 2152 * sysfs_create_dir_ns() 2153 * kernfs_create_dir_ns(sd) 2154 * 2155 * sysfs_remove_dir() // glue_dir->sd=NULL 2156 * sysfs_put() // free glue_dir->sd 2157 * 2158 * // sd is freed 2159 * kernfs_new_node(sd) 2160 * kernfs_get(glue_dir) 2161 * kernfs_add_one() 2162 * kernfs_put() 2163 * 2164 * Before CPU1 remove last child device under glue dir, if CPU2 add 2165 * a new device under glue dir, the glue_dir kobject reference count 2166 * will be increase to 2 in kobject_get(k). And CPU2 has been called 2167 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir() 2168 * and sysfs_put(). This result in glue_dir->sd is freed. 2169 * 2170 * Then the CPU2 will see a stale "empty" but still potentially used 2171 * glue dir around in kernfs_new_node(). 2172 * 2173 * In order to avoid this happening, we also should make sure that 2174 * kernfs_node for glue_dir is released in CPU1 only when refcount 2175 * for glue_dir kobj is 1. 2176 */ 2177 ref = kref_read(&glue_dir->kref); 2178 if (!kobject_has_children(glue_dir) && !--ref) 2179 kobject_del(glue_dir); 2180 kobject_put(glue_dir); 2181 mutex_unlock(&gdp_mutex); 2182 } 2183 2184 static int device_add_class_symlinks(struct device *dev) 2185 { 2186 struct device_node *of_node = dev_of_node(dev); 2187 int error; 2188 2189 if (of_node) { 2190 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 2191 if (error) 2192 dev_warn(dev, "Error %d creating of_node link\n",error); 2193 /* An error here doesn't warrant bringing down the device */ 2194 } 2195 2196 if (!dev->class) 2197 return 0; 2198 2199 error = sysfs_create_link(&dev->kobj, 2200 &dev->class->p->subsys.kobj, 2201 "subsystem"); 2202 if (error) 2203 goto out_devnode; 2204 2205 if (dev->parent && device_is_not_partition(dev)) { 2206 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 2207 "device"); 2208 if (error) 2209 goto out_subsys; 2210 } 2211 2212 #ifdef CONFIG_BLOCK 2213 /* /sys/block has directories and does not need symlinks */ 2214 if (sysfs_deprecated && dev->class == &block_class) 2215 return 0; 2216 #endif 2217 2218 /* link in the class directory pointing to the device */ 2219 error = sysfs_create_link(&dev->class->p->subsys.kobj, 2220 &dev->kobj, dev_name(dev)); 2221 if (error) 2222 goto out_device; 2223 2224 return 0; 2225 2226 out_device: 2227 sysfs_remove_link(&dev->kobj, "device"); 2228 2229 out_subsys: 2230 sysfs_remove_link(&dev->kobj, "subsystem"); 2231 out_devnode: 2232 sysfs_remove_link(&dev->kobj, "of_node"); 2233 return error; 2234 } 2235 2236 static void device_remove_class_symlinks(struct device *dev) 2237 { 2238 if (dev_of_node(dev)) 2239 sysfs_remove_link(&dev->kobj, "of_node"); 2240 2241 if (!dev->class) 2242 return; 2243 2244 if (dev->parent && device_is_not_partition(dev)) 2245 sysfs_remove_link(&dev->kobj, "device"); 2246 sysfs_remove_link(&dev->kobj, "subsystem"); 2247 #ifdef CONFIG_BLOCK 2248 if (sysfs_deprecated && dev->class == &block_class) 2249 return; 2250 #endif 2251 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev)); 2252 } 2253 2254 /** 2255 * dev_set_name - set a device name 2256 * @dev: device 2257 * @fmt: format string for the device's name 2258 */ 2259 int dev_set_name(struct device *dev, const char *fmt, ...) 2260 { 2261 va_list vargs; 2262 int err; 2263 2264 va_start(vargs, fmt); 2265 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 2266 va_end(vargs); 2267 return err; 2268 } 2269 EXPORT_SYMBOL_GPL(dev_set_name); 2270 2271 /** 2272 * device_to_dev_kobj - select a /sys/dev/ directory for the device 2273 * @dev: device 2274 * 2275 * By default we select char/ for new entries. Setting class->dev_obj 2276 * to NULL prevents an entry from being created. class->dev_kobj must 2277 * be set (or cleared) before any devices are registered to the class 2278 * otherwise device_create_sys_dev_entry() and 2279 * device_remove_sys_dev_entry() will disagree about the presence of 2280 * the link. 2281 */ 2282 static struct kobject *device_to_dev_kobj(struct device *dev) 2283 { 2284 struct kobject *kobj; 2285 2286 if (dev->class) 2287 kobj = dev->class->dev_kobj; 2288 else 2289 kobj = sysfs_dev_char_kobj; 2290 2291 return kobj; 2292 } 2293 2294 static int device_create_sys_dev_entry(struct device *dev) 2295 { 2296 struct kobject *kobj = device_to_dev_kobj(dev); 2297 int error = 0; 2298 char devt_str[15]; 2299 2300 if (kobj) { 2301 format_dev_t(devt_str, dev->devt); 2302 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 2303 } 2304 2305 return error; 2306 } 2307 2308 static void device_remove_sys_dev_entry(struct device *dev) 2309 { 2310 struct kobject *kobj = device_to_dev_kobj(dev); 2311 char devt_str[15]; 2312 2313 if (kobj) { 2314 format_dev_t(devt_str, dev->devt); 2315 sysfs_remove_link(kobj, devt_str); 2316 } 2317 } 2318 2319 static int device_private_init(struct device *dev) 2320 { 2321 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 2322 if (!dev->p) 2323 return -ENOMEM; 2324 dev->p->device = dev; 2325 klist_init(&dev->p->klist_children, klist_children_get, 2326 klist_children_put); 2327 INIT_LIST_HEAD(&dev->p->deferred_probe); 2328 return 0; 2329 } 2330 2331 /** 2332 * device_add - add device to device hierarchy. 2333 * @dev: device. 2334 * 2335 * This is part 2 of device_register(), though may be called 2336 * separately _iff_ device_initialize() has been called separately. 2337 * 2338 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 2339 * to the global and sibling lists for the device, then 2340 * adds it to the other relevant subsystems of the driver model. 2341 * 2342 * Do not call this routine or device_register() more than once for 2343 * any device structure. The driver model core is not designed to work 2344 * with devices that get unregistered and then spring back to life. 2345 * (Among other things, it's very hard to guarantee that all references 2346 * to the previous incarnation of @dev have been dropped.) Allocate 2347 * and register a fresh new struct device instead. 2348 * 2349 * NOTE: _Never_ directly free @dev after calling this function, even 2350 * if it returned an error! Always use put_device() to give up your 2351 * reference instead. 2352 * 2353 * Rule of thumb is: if device_add() succeeds, you should call 2354 * device_del() when you want to get rid of it. If device_add() has 2355 * *not* succeeded, use *only* put_device() to drop the reference 2356 * count. 2357 */ 2358 int device_add(struct device *dev) 2359 { 2360 struct device *parent; 2361 struct kobject *kobj; 2362 struct class_interface *class_intf; 2363 int error = -EINVAL, fw_ret; 2364 struct kobject *glue_dir = NULL; 2365 2366 dev = get_device(dev); 2367 if (!dev) 2368 goto done; 2369 2370 if (!dev->p) { 2371 error = device_private_init(dev); 2372 if (error) 2373 goto done; 2374 } 2375 2376 /* 2377 * for statically allocated devices, which should all be converted 2378 * some day, we need to initialize the name. We prevent reading back 2379 * the name, and force the use of dev_name() 2380 */ 2381 if (dev->init_name) { 2382 dev_set_name(dev, "%s", dev->init_name); 2383 dev->init_name = NULL; 2384 } 2385 2386 /* subsystems can specify simple device enumeration */ 2387 if (!dev_name(dev) && dev->bus && dev->bus->dev_name) 2388 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 2389 2390 if (!dev_name(dev)) { 2391 error = -EINVAL; 2392 goto name_error; 2393 } 2394 2395 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 2396 2397 parent = get_device(dev->parent); 2398 kobj = get_device_parent(dev, parent); 2399 if (IS_ERR(kobj)) { 2400 error = PTR_ERR(kobj); 2401 goto parent_error; 2402 } 2403 if (kobj) 2404 dev->kobj.parent = kobj; 2405 2406 /* use parent numa_node */ 2407 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 2408 set_dev_node(dev, dev_to_node(parent)); 2409 2410 /* first, register with generic layer. */ 2411 /* we require the name to be set before, and pass NULL */ 2412 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 2413 if (error) { 2414 glue_dir = get_glue_dir(dev); 2415 goto Error; 2416 } 2417 2418 /* notify platform of device entry */ 2419 error = device_platform_notify(dev, KOBJ_ADD); 2420 if (error) 2421 goto platform_error; 2422 2423 error = device_create_file(dev, &dev_attr_uevent); 2424 if (error) 2425 goto attrError; 2426 2427 error = device_add_class_symlinks(dev); 2428 if (error) 2429 goto SymlinkError; 2430 error = device_add_attrs(dev); 2431 if (error) 2432 goto AttrsError; 2433 error = bus_add_device(dev); 2434 if (error) 2435 goto BusError; 2436 error = dpm_sysfs_add(dev); 2437 if (error) 2438 goto DPMError; 2439 device_pm_add(dev); 2440 2441 if (MAJOR(dev->devt)) { 2442 error = device_create_file(dev, &dev_attr_dev); 2443 if (error) 2444 goto DevAttrError; 2445 2446 error = device_create_sys_dev_entry(dev); 2447 if (error) 2448 goto SysEntryError; 2449 2450 devtmpfs_create_node(dev); 2451 } 2452 2453 /* Notify clients of device addition. This call must come 2454 * after dpm_sysfs_add() and before kobject_uevent(). 2455 */ 2456 if (dev->bus) 2457 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 2458 BUS_NOTIFY_ADD_DEVICE, dev); 2459 2460 kobject_uevent(&dev->kobj, KOBJ_ADD); 2461 2462 if (dev->fwnode && !dev->fwnode->dev) 2463 dev->fwnode->dev = dev; 2464 2465 /* 2466 * Check if any of the other devices (consumers) have been waiting for 2467 * this device (supplier) to be added so that they can create a device 2468 * link to it. 2469 * 2470 * This needs to happen after device_pm_add() because device_link_add() 2471 * requires the supplier be registered before it's called. 2472 * 2473 * But this also needs to happe before bus_probe_device() to make sure 2474 * waiting consumers can link to it before the driver is bound to the 2475 * device and the driver sync_state callback is called for this device. 2476 */ 2477 device_link_add_missing_supplier_links(); 2478 2479 if (fwnode_has_op(dev->fwnode, add_links)) { 2480 fw_ret = fwnode_call_int_op(dev->fwnode, add_links, dev); 2481 if (fw_ret == -ENODEV) 2482 device_link_wait_for_mandatory_supplier(dev); 2483 else if (fw_ret) 2484 device_link_wait_for_optional_supplier(dev); 2485 } 2486 2487 bus_probe_device(dev); 2488 if (parent) 2489 klist_add_tail(&dev->p->knode_parent, 2490 &parent->p->klist_children); 2491 2492 if (dev->class) { 2493 mutex_lock(&dev->class->p->mutex); 2494 /* tie the class to the device */ 2495 klist_add_tail(&dev->p->knode_class, 2496 &dev->class->p->klist_devices); 2497 2498 /* notify any interfaces that the device is here */ 2499 list_for_each_entry(class_intf, 2500 &dev->class->p->interfaces, node) 2501 if (class_intf->add_dev) 2502 class_intf->add_dev(dev, class_intf); 2503 mutex_unlock(&dev->class->p->mutex); 2504 } 2505 done: 2506 put_device(dev); 2507 return error; 2508 SysEntryError: 2509 if (MAJOR(dev->devt)) 2510 device_remove_file(dev, &dev_attr_dev); 2511 DevAttrError: 2512 device_pm_remove(dev); 2513 dpm_sysfs_remove(dev); 2514 DPMError: 2515 bus_remove_device(dev); 2516 BusError: 2517 device_remove_attrs(dev); 2518 AttrsError: 2519 device_remove_class_symlinks(dev); 2520 SymlinkError: 2521 device_remove_file(dev, &dev_attr_uevent); 2522 attrError: 2523 device_platform_notify(dev, KOBJ_REMOVE); 2524 platform_error: 2525 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 2526 glue_dir = get_glue_dir(dev); 2527 kobject_del(&dev->kobj); 2528 Error: 2529 cleanup_glue_dir(dev, glue_dir); 2530 parent_error: 2531 put_device(parent); 2532 name_error: 2533 kfree(dev->p); 2534 dev->p = NULL; 2535 goto done; 2536 } 2537 EXPORT_SYMBOL_GPL(device_add); 2538 2539 /** 2540 * device_register - register a device with the system. 2541 * @dev: pointer to the device structure 2542 * 2543 * This happens in two clean steps - initialize the device 2544 * and add it to the system. The two steps can be called 2545 * separately, but this is the easiest and most common. 2546 * I.e. you should only call the two helpers separately if 2547 * have a clearly defined need to use and refcount the device 2548 * before it is added to the hierarchy. 2549 * 2550 * For more information, see the kerneldoc for device_initialize() 2551 * and device_add(). 2552 * 2553 * NOTE: _Never_ directly free @dev after calling this function, even 2554 * if it returned an error! Always use put_device() to give up the 2555 * reference initialized in this function instead. 2556 */ 2557 int device_register(struct device *dev) 2558 { 2559 device_initialize(dev); 2560 return device_add(dev); 2561 } 2562 EXPORT_SYMBOL_GPL(device_register); 2563 2564 /** 2565 * get_device - increment reference count for device. 2566 * @dev: device. 2567 * 2568 * This simply forwards the call to kobject_get(), though 2569 * we do take care to provide for the case that we get a NULL 2570 * pointer passed in. 2571 */ 2572 struct device *get_device(struct device *dev) 2573 { 2574 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 2575 } 2576 EXPORT_SYMBOL_GPL(get_device); 2577 2578 /** 2579 * put_device - decrement reference count. 2580 * @dev: device in question. 2581 */ 2582 void put_device(struct device *dev) 2583 { 2584 /* might_sleep(); */ 2585 if (dev) 2586 kobject_put(&dev->kobj); 2587 } 2588 EXPORT_SYMBOL_GPL(put_device); 2589 2590 bool kill_device(struct device *dev) 2591 { 2592 /* 2593 * Require the device lock and set the "dead" flag to guarantee that 2594 * the update behavior is consistent with the other bitfields near 2595 * it and that we cannot have an asynchronous probe routine trying 2596 * to run while we are tearing out the bus/class/sysfs from 2597 * underneath the device. 2598 */ 2599 lockdep_assert_held(&dev->mutex); 2600 2601 if (dev->p->dead) 2602 return false; 2603 dev->p->dead = true; 2604 return true; 2605 } 2606 EXPORT_SYMBOL_GPL(kill_device); 2607 2608 /** 2609 * device_del - delete device from system. 2610 * @dev: device. 2611 * 2612 * This is the first part of the device unregistration 2613 * sequence. This removes the device from the lists we control 2614 * from here, has it removed from the other driver model 2615 * subsystems it was added to in device_add(), and removes it 2616 * from the kobject hierarchy. 2617 * 2618 * NOTE: this should be called manually _iff_ device_add() was 2619 * also called manually. 2620 */ 2621 void device_del(struct device *dev) 2622 { 2623 struct device *parent = dev->parent; 2624 struct kobject *glue_dir = NULL; 2625 struct class_interface *class_intf; 2626 2627 device_lock(dev); 2628 kill_device(dev); 2629 device_unlock(dev); 2630 2631 if (dev->fwnode && dev->fwnode->dev == dev) 2632 dev->fwnode->dev = NULL; 2633 2634 /* Notify clients of device removal. This call must come 2635 * before dpm_sysfs_remove(). 2636 */ 2637 if (dev->bus) 2638 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 2639 BUS_NOTIFY_DEL_DEVICE, dev); 2640 2641 dpm_sysfs_remove(dev); 2642 if (parent) 2643 klist_del(&dev->p->knode_parent); 2644 if (MAJOR(dev->devt)) { 2645 devtmpfs_delete_node(dev); 2646 device_remove_sys_dev_entry(dev); 2647 device_remove_file(dev, &dev_attr_dev); 2648 } 2649 if (dev->class) { 2650 device_remove_class_symlinks(dev); 2651 2652 mutex_lock(&dev->class->p->mutex); 2653 /* notify any interfaces that the device is now gone */ 2654 list_for_each_entry(class_intf, 2655 &dev->class->p->interfaces, node) 2656 if (class_intf->remove_dev) 2657 class_intf->remove_dev(dev, class_intf); 2658 /* remove the device from the class list */ 2659 klist_del(&dev->p->knode_class); 2660 mutex_unlock(&dev->class->p->mutex); 2661 } 2662 device_remove_file(dev, &dev_attr_uevent); 2663 device_remove_attrs(dev); 2664 bus_remove_device(dev); 2665 device_pm_remove(dev); 2666 driver_deferred_probe_del(dev); 2667 device_platform_notify(dev, KOBJ_REMOVE); 2668 device_remove_properties(dev); 2669 device_links_purge(dev); 2670 2671 if (dev->bus) 2672 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 2673 BUS_NOTIFY_REMOVED_DEVICE, dev); 2674 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 2675 glue_dir = get_glue_dir(dev); 2676 kobject_del(&dev->kobj); 2677 cleanup_glue_dir(dev, glue_dir); 2678 put_device(parent); 2679 } 2680 EXPORT_SYMBOL_GPL(device_del); 2681 2682 /** 2683 * device_unregister - unregister device from system. 2684 * @dev: device going away. 2685 * 2686 * We do this in two parts, like we do device_register(). First, 2687 * we remove it from all the subsystems with device_del(), then 2688 * we decrement the reference count via put_device(). If that 2689 * is the final reference count, the device will be cleaned up 2690 * via device_release() above. Otherwise, the structure will 2691 * stick around until the final reference to the device is dropped. 2692 */ 2693 void device_unregister(struct device *dev) 2694 { 2695 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 2696 device_del(dev); 2697 put_device(dev); 2698 } 2699 EXPORT_SYMBOL_GPL(device_unregister); 2700 2701 static struct device *prev_device(struct klist_iter *i) 2702 { 2703 struct klist_node *n = klist_prev(i); 2704 struct device *dev = NULL; 2705 struct device_private *p; 2706 2707 if (n) { 2708 p = to_device_private_parent(n); 2709 dev = p->device; 2710 } 2711 return dev; 2712 } 2713 2714 static struct device *next_device(struct klist_iter *i) 2715 { 2716 struct klist_node *n = klist_next(i); 2717 struct device *dev = NULL; 2718 struct device_private *p; 2719 2720 if (n) { 2721 p = to_device_private_parent(n); 2722 dev = p->device; 2723 } 2724 return dev; 2725 } 2726 2727 /** 2728 * device_get_devnode - path of device node file 2729 * @dev: device 2730 * @mode: returned file access mode 2731 * @uid: returned file owner 2732 * @gid: returned file group 2733 * @tmp: possibly allocated string 2734 * 2735 * Return the relative path of a possible device node. 2736 * Non-default names may need to allocate a memory to compose 2737 * a name. This memory is returned in tmp and needs to be 2738 * freed by the caller. 2739 */ 2740 const char *device_get_devnode(struct device *dev, 2741 umode_t *mode, kuid_t *uid, kgid_t *gid, 2742 const char **tmp) 2743 { 2744 char *s; 2745 2746 *tmp = NULL; 2747 2748 /* the device type may provide a specific name */ 2749 if (dev->type && dev->type->devnode) 2750 *tmp = dev->type->devnode(dev, mode, uid, gid); 2751 if (*tmp) 2752 return *tmp; 2753 2754 /* the class may provide a specific name */ 2755 if (dev->class && dev->class->devnode) 2756 *tmp = dev->class->devnode(dev, mode); 2757 if (*tmp) 2758 return *tmp; 2759 2760 /* return name without allocation, tmp == NULL */ 2761 if (strchr(dev_name(dev), '!') == NULL) 2762 return dev_name(dev); 2763 2764 /* replace '!' in the name with '/' */ 2765 s = kstrdup(dev_name(dev), GFP_KERNEL); 2766 if (!s) 2767 return NULL; 2768 strreplace(s, '!', '/'); 2769 return *tmp = s; 2770 } 2771 2772 /** 2773 * device_for_each_child - device child iterator. 2774 * @parent: parent struct device. 2775 * @fn: function to be called for each device. 2776 * @data: data for the callback. 2777 * 2778 * Iterate over @parent's child devices, and call @fn for each, 2779 * passing it @data. 2780 * 2781 * We check the return of @fn each time. If it returns anything 2782 * other than 0, we break out and return that value. 2783 */ 2784 int device_for_each_child(struct device *parent, void *data, 2785 int (*fn)(struct device *dev, void *data)) 2786 { 2787 struct klist_iter i; 2788 struct device *child; 2789 int error = 0; 2790 2791 if (!parent->p) 2792 return 0; 2793 2794 klist_iter_init(&parent->p->klist_children, &i); 2795 while (!error && (child = next_device(&i))) 2796 error = fn(child, data); 2797 klist_iter_exit(&i); 2798 return error; 2799 } 2800 EXPORT_SYMBOL_GPL(device_for_each_child); 2801 2802 /** 2803 * device_for_each_child_reverse - device child iterator in reversed order. 2804 * @parent: parent struct device. 2805 * @fn: function to be called for each device. 2806 * @data: data for the callback. 2807 * 2808 * Iterate over @parent's child devices, and call @fn for each, 2809 * passing it @data. 2810 * 2811 * We check the return of @fn each time. If it returns anything 2812 * other than 0, we break out and return that value. 2813 */ 2814 int device_for_each_child_reverse(struct device *parent, void *data, 2815 int (*fn)(struct device *dev, void *data)) 2816 { 2817 struct klist_iter i; 2818 struct device *child; 2819 int error = 0; 2820 2821 if (!parent->p) 2822 return 0; 2823 2824 klist_iter_init(&parent->p->klist_children, &i); 2825 while ((child = prev_device(&i)) && !error) 2826 error = fn(child, data); 2827 klist_iter_exit(&i); 2828 return error; 2829 } 2830 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 2831 2832 /** 2833 * device_find_child - device iterator for locating a particular device. 2834 * @parent: parent struct device 2835 * @match: Callback function to check device 2836 * @data: Data to pass to match function 2837 * 2838 * This is similar to the device_for_each_child() function above, but it 2839 * returns a reference to a device that is 'found' for later use, as 2840 * determined by the @match callback. 2841 * 2842 * The callback should return 0 if the device doesn't match and non-zero 2843 * if it does. If the callback returns non-zero and a reference to the 2844 * current device can be obtained, this function will return to the caller 2845 * and not iterate over any more devices. 2846 * 2847 * NOTE: you will need to drop the reference with put_device() after use. 2848 */ 2849 struct device *device_find_child(struct device *parent, void *data, 2850 int (*match)(struct device *dev, void *data)) 2851 { 2852 struct klist_iter i; 2853 struct device *child; 2854 2855 if (!parent) 2856 return NULL; 2857 2858 klist_iter_init(&parent->p->klist_children, &i); 2859 while ((child = next_device(&i))) 2860 if (match(child, data) && get_device(child)) 2861 break; 2862 klist_iter_exit(&i); 2863 return child; 2864 } 2865 EXPORT_SYMBOL_GPL(device_find_child); 2866 2867 /** 2868 * device_find_child_by_name - device iterator for locating a child device. 2869 * @parent: parent struct device 2870 * @name: name of the child device 2871 * 2872 * This is similar to the device_find_child() function above, but it 2873 * returns a reference to a device that has the name @name. 2874 * 2875 * NOTE: you will need to drop the reference with put_device() after use. 2876 */ 2877 struct device *device_find_child_by_name(struct device *parent, 2878 const char *name) 2879 { 2880 struct klist_iter i; 2881 struct device *child; 2882 2883 if (!parent) 2884 return NULL; 2885 2886 klist_iter_init(&parent->p->klist_children, &i); 2887 while ((child = next_device(&i))) 2888 if (!strcmp(dev_name(child), name) && get_device(child)) 2889 break; 2890 klist_iter_exit(&i); 2891 return child; 2892 } 2893 EXPORT_SYMBOL_GPL(device_find_child_by_name); 2894 2895 int __init devices_init(void) 2896 { 2897 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 2898 if (!devices_kset) 2899 return -ENOMEM; 2900 dev_kobj = kobject_create_and_add("dev", NULL); 2901 if (!dev_kobj) 2902 goto dev_kobj_err; 2903 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 2904 if (!sysfs_dev_block_kobj) 2905 goto block_kobj_err; 2906 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 2907 if (!sysfs_dev_char_kobj) 2908 goto char_kobj_err; 2909 2910 return 0; 2911 2912 char_kobj_err: 2913 kobject_put(sysfs_dev_block_kobj); 2914 block_kobj_err: 2915 kobject_put(dev_kobj); 2916 dev_kobj_err: 2917 kset_unregister(devices_kset); 2918 return -ENOMEM; 2919 } 2920 2921 static int device_check_offline(struct device *dev, void *not_used) 2922 { 2923 int ret; 2924 2925 ret = device_for_each_child(dev, NULL, device_check_offline); 2926 if (ret) 2927 return ret; 2928 2929 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 2930 } 2931 2932 /** 2933 * device_offline - Prepare the device for hot-removal. 2934 * @dev: Device to be put offline. 2935 * 2936 * Execute the device bus type's .offline() callback, if present, to prepare 2937 * the device for a subsequent hot-removal. If that succeeds, the device must 2938 * not be used until either it is removed or its bus type's .online() callback 2939 * is executed. 2940 * 2941 * Call under device_hotplug_lock. 2942 */ 2943 int device_offline(struct device *dev) 2944 { 2945 int ret; 2946 2947 if (dev->offline_disabled) 2948 return -EPERM; 2949 2950 ret = device_for_each_child(dev, NULL, device_check_offline); 2951 if (ret) 2952 return ret; 2953 2954 device_lock(dev); 2955 if (device_supports_offline(dev)) { 2956 if (dev->offline) { 2957 ret = 1; 2958 } else { 2959 ret = dev->bus->offline(dev); 2960 if (!ret) { 2961 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 2962 dev->offline = true; 2963 } 2964 } 2965 } 2966 device_unlock(dev); 2967 2968 return ret; 2969 } 2970 2971 /** 2972 * device_online - Put the device back online after successful device_offline(). 2973 * @dev: Device to be put back online. 2974 * 2975 * If device_offline() has been successfully executed for @dev, but the device 2976 * has not been removed subsequently, execute its bus type's .online() callback 2977 * to indicate that the device can be used again. 2978 * 2979 * Call under device_hotplug_lock. 2980 */ 2981 int device_online(struct device *dev) 2982 { 2983 int ret = 0; 2984 2985 device_lock(dev); 2986 if (device_supports_offline(dev)) { 2987 if (dev->offline) { 2988 ret = dev->bus->online(dev); 2989 if (!ret) { 2990 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 2991 dev->offline = false; 2992 } 2993 } else { 2994 ret = 1; 2995 } 2996 } 2997 device_unlock(dev); 2998 2999 return ret; 3000 } 3001 3002 struct root_device { 3003 struct device dev; 3004 struct module *owner; 3005 }; 3006 3007 static inline struct root_device *to_root_device(struct device *d) 3008 { 3009 return container_of(d, struct root_device, dev); 3010 } 3011 3012 static void root_device_release(struct device *dev) 3013 { 3014 kfree(to_root_device(dev)); 3015 } 3016 3017 /** 3018 * __root_device_register - allocate and register a root device 3019 * @name: root device name 3020 * @owner: owner module of the root device, usually THIS_MODULE 3021 * 3022 * This function allocates a root device and registers it 3023 * using device_register(). In order to free the returned 3024 * device, use root_device_unregister(). 3025 * 3026 * Root devices are dummy devices which allow other devices 3027 * to be grouped under /sys/devices. Use this function to 3028 * allocate a root device and then use it as the parent of 3029 * any device which should appear under /sys/devices/{name} 3030 * 3031 * The /sys/devices/{name} directory will also contain a 3032 * 'module' symlink which points to the @owner directory 3033 * in sysfs. 3034 * 3035 * Returns &struct device pointer on success, or ERR_PTR() on error. 3036 * 3037 * Note: You probably want to use root_device_register(). 3038 */ 3039 struct device *__root_device_register(const char *name, struct module *owner) 3040 { 3041 struct root_device *root; 3042 int err = -ENOMEM; 3043 3044 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 3045 if (!root) 3046 return ERR_PTR(err); 3047 3048 err = dev_set_name(&root->dev, "%s", name); 3049 if (err) { 3050 kfree(root); 3051 return ERR_PTR(err); 3052 } 3053 3054 root->dev.release = root_device_release; 3055 3056 err = device_register(&root->dev); 3057 if (err) { 3058 put_device(&root->dev); 3059 return ERR_PTR(err); 3060 } 3061 3062 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 3063 if (owner) { 3064 struct module_kobject *mk = &owner->mkobj; 3065 3066 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 3067 if (err) { 3068 device_unregister(&root->dev); 3069 return ERR_PTR(err); 3070 } 3071 root->owner = owner; 3072 } 3073 #endif 3074 3075 return &root->dev; 3076 } 3077 EXPORT_SYMBOL_GPL(__root_device_register); 3078 3079 /** 3080 * root_device_unregister - unregister and free a root device 3081 * @dev: device going away 3082 * 3083 * This function unregisters and cleans up a device that was created by 3084 * root_device_register(). 3085 */ 3086 void root_device_unregister(struct device *dev) 3087 { 3088 struct root_device *root = to_root_device(dev); 3089 3090 if (root->owner) 3091 sysfs_remove_link(&root->dev.kobj, "module"); 3092 3093 device_unregister(dev); 3094 } 3095 EXPORT_SYMBOL_GPL(root_device_unregister); 3096 3097 3098 static void device_create_release(struct device *dev) 3099 { 3100 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3101 kfree(dev); 3102 } 3103 3104 static __printf(6, 0) struct device * 3105 device_create_groups_vargs(struct class *class, struct device *parent, 3106 dev_t devt, void *drvdata, 3107 const struct attribute_group **groups, 3108 const char *fmt, va_list args) 3109 { 3110 struct device *dev = NULL; 3111 int retval = -ENODEV; 3112 3113 if (class == NULL || IS_ERR(class)) 3114 goto error; 3115 3116 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3117 if (!dev) { 3118 retval = -ENOMEM; 3119 goto error; 3120 } 3121 3122 device_initialize(dev); 3123 dev->devt = devt; 3124 dev->class = class; 3125 dev->parent = parent; 3126 dev->groups = groups; 3127 dev->release = device_create_release; 3128 dev_set_drvdata(dev, drvdata); 3129 3130 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 3131 if (retval) 3132 goto error; 3133 3134 retval = device_add(dev); 3135 if (retval) 3136 goto error; 3137 3138 return dev; 3139 3140 error: 3141 put_device(dev); 3142 return ERR_PTR(retval); 3143 } 3144 3145 /** 3146 * device_create_vargs - creates a device and registers it with sysfs 3147 * @class: pointer to the struct class that this device should be registered to 3148 * @parent: pointer to the parent struct device of this new device, if any 3149 * @devt: the dev_t for the char device to be added 3150 * @drvdata: the data to be added to the device for callbacks 3151 * @fmt: string for the device's name 3152 * @args: va_list for the device's name 3153 * 3154 * This function can be used by char device classes. A struct device 3155 * will be created in sysfs, registered to the specified class. 3156 * 3157 * A "dev" file will be created, showing the dev_t for the device, if 3158 * the dev_t is not 0,0. 3159 * If a pointer to a parent struct device is passed in, the newly created 3160 * struct device will be a child of that device in sysfs. 3161 * The pointer to the struct device will be returned from the call. 3162 * Any further sysfs files that might be required can be created using this 3163 * pointer. 3164 * 3165 * Returns &struct device pointer on success, or ERR_PTR() on error. 3166 * 3167 * Note: the struct class passed to this function must have previously 3168 * been created with a call to class_create(). 3169 */ 3170 struct device *device_create_vargs(struct class *class, struct device *parent, 3171 dev_t devt, void *drvdata, const char *fmt, 3172 va_list args) 3173 { 3174 return device_create_groups_vargs(class, parent, devt, drvdata, NULL, 3175 fmt, args); 3176 } 3177 EXPORT_SYMBOL_GPL(device_create_vargs); 3178 3179 /** 3180 * device_create - creates a device and registers it with sysfs 3181 * @class: pointer to the struct class that this device should be registered to 3182 * @parent: pointer to the parent struct device of this new device, if any 3183 * @devt: the dev_t for the char device to be added 3184 * @drvdata: the data to be added to the device for callbacks 3185 * @fmt: string for the device's name 3186 * 3187 * This function can be used by char device classes. A struct device 3188 * will be created in sysfs, registered to the specified class. 3189 * 3190 * A "dev" file will be created, showing the dev_t for the device, if 3191 * the dev_t is not 0,0. 3192 * If a pointer to a parent struct device is passed in, the newly created 3193 * struct device will be a child of that device in sysfs. 3194 * The pointer to the struct device will be returned from the call. 3195 * Any further sysfs files that might be required can be created using this 3196 * pointer. 3197 * 3198 * Returns &struct device pointer on success, or ERR_PTR() on error. 3199 * 3200 * Note: the struct class passed to this function must have previously 3201 * been created with a call to class_create(). 3202 */ 3203 struct device *device_create(struct class *class, struct device *parent, 3204 dev_t devt, void *drvdata, const char *fmt, ...) 3205 { 3206 va_list vargs; 3207 struct device *dev; 3208 3209 va_start(vargs, fmt); 3210 dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs); 3211 va_end(vargs); 3212 return dev; 3213 } 3214 EXPORT_SYMBOL_GPL(device_create); 3215 3216 /** 3217 * device_create_with_groups - creates a device and registers it with sysfs 3218 * @class: pointer to the struct class that this device should be registered to 3219 * @parent: pointer to the parent struct device of this new device, if any 3220 * @devt: the dev_t for the char device to be added 3221 * @drvdata: the data to be added to the device for callbacks 3222 * @groups: NULL-terminated list of attribute groups to be created 3223 * @fmt: string for the device's name 3224 * 3225 * This function can be used by char device classes. A struct device 3226 * will be created in sysfs, registered to the specified class. 3227 * Additional attributes specified in the groups parameter will also 3228 * be created automatically. 3229 * 3230 * A "dev" file will be created, showing the dev_t for the device, if 3231 * the dev_t is not 0,0. 3232 * If a pointer to a parent struct device is passed in, the newly created 3233 * struct device will be a child of that device in sysfs. 3234 * The pointer to the struct device will be returned from the call. 3235 * Any further sysfs files that might be required can be created using this 3236 * pointer. 3237 * 3238 * Returns &struct device pointer on success, or ERR_PTR() on error. 3239 * 3240 * Note: the struct class passed to this function must have previously 3241 * been created with a call to class_create(). 3242 */ 3243 struct device *device_create_with_groups(struct class *class, 3244 struct device *parent, dev_t devt, 3245 void *drvdata, 3246 const struct attribute_group **groups, 3247 const char *fmt, ...) 3248 { 3249 va_list vargs; 3250 struct device *dev; 3251 3252 va_start(vargs, fmt); 3253 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 3254 fmt, vargs); 3255 va_end(vargs); 3256 return dev; 3257 } 3258 EXPORT_SYMBOL_GPL(device_create_with_groups); 3259 3260 /** 3261 * device_destroy - removes a device that was created with device_create() 3262 * @class: pointer to the struct class that this device was registered with 3263 * @devt: the dev_t of the device that was previously registered 3264 * 3265 * This call unregisters and cleans up a device that was created with a 3266 * call to device_create(). 3267 */ 3268 void device_destroy(struct class *class, dev_t devt) 3269 { 3270 struct device *dev; 3271 3272 dev = class_find_device_by_devt(class, devt); 3273 if (dev) { 3274 put_device(dev); 3275 device_unregister(dev); 3276 } 3277 } 3278 EXPORT_SYMBOL_GPL(device_destroy); 3279 3280 /** 3281 * device_rename - renames a device 3282 * @dev: the pointer to the struct device to be renamed 3283 * @new_name: the new name of the device 3284 * 3285 * It is the responsibility of the caller to provide mutual 3286 * exclusion between two different calls of device_rename 3287 * on the same device to ensure that new_name is valid and 3288 * won't conflict with other devices. 3289 * 3290 * Note: Don't call this function. Currently, the networking layer calls this 3291 * function, but that will change. The following text from Kay Sievers offers 3292 * some insight: 3293 * 3294 * Renaming devices is racy at many levels, symlinks and other stuff are not 3295 * replaced atomically, and you get a "move" uevent, but it's not easy to 3296 * connect the event to the old and new device. Device nodes are not renamed at 3297 * all, there isn't even support for that in the kernel now. 3298 * 3299 * In the meantime, during renaming, your target name might be taken by another 3300 * driver, creating conflicts. Or the old name is taken directly after you 3301 * renamed it -- then you get events for the same DEVPATH, before you even see 3302 * the "move" event. It's just a mess, and nothing new should ever rely on 3303 * kernel device renaming. Besides that, it's not even implemented now for 3304 * other things than (driver-core wise very simple) network devices. 3305 * 3306 * We are currently about to change network renaming in udev to completely 3307 * disallow renaming of devices in the same namespace as the kernel uses, 3308 * because we can't solve the problems properly, that arise with swapping names 3309 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only 3310 * be allowed to some other name than eth[0-9]*, for the aforementioned 3311 * reasons. 3312 * 3313 * Make up a "real" name in the driver before you register anything, or add 3314 * some other attributes for userspace to find the device, or use udev to add 3315 * symlinks -- but never rename kernel devices later, it's a complete mess. We 3316 * don't even want to get into that and try to implement the missing pieces in 3317 * the core. We really have other pieces to fix in the driver core mess. :) 3318 */ 3319 int device_rename(struct device *dev, const char *new_name) 3320 { 3321 struct kobject *kobj = &dev->kobj; 3322 char *old_device_name = NULL; 3323 int error; 3324 3325 dev = get_device(dev); 3326 if (!dev) 3327 return -EINVAL; 3328 3329 dev_dbg(dev, "renaming to %s\n", new_name); 3330 3331 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 3332 if (!old_device_name) { 3333 error = -ENOMEM; 3334 goto out; 3335 } 3336 3337 if (dev->class) { 3338 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj, 3339 kobj, old_device_name, 3340 new_name, kobject_namespace(kobj)); 3341 if (error) 3342 goto out; 3343 } 3344 3345 error = kobject_rename(kobj, new_name); 3346 if (error) 3347 goto out; 3348 3349 out: 3350 put_device(dev); 3351 3352 kfree(old_device_name); 3353 3354 return error; 3355 } 3356 EXPORT_SYMBOL_GPL(device_rename); 3357 3358 static int device_move_class_links(struct device *dev, 3359 struct device *old_parent, 3360 struct device *new_parent) 3361 { 3362 int error = 0; 3363 3364 if (old_parent) 3365 sysfs_remove_link(&dev->kobj, "device"); 3366 if (new_parent) 3367 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 3368 "device"); 3369 return error; 3370 } 3371 3372 /** 3373 * device_move - moves a device to a new parent 3374 * @dev: the pointer to the struct device to be moved 3375 * @new_parent: the new parent of the device (can be NULL) 3376 * @dpm_order: how to reorder the dpm_list 3377 */ 3378 int device_move(struct device *dev, struct device *new_parent, 3379 enum dpm_order dpm_order) 3380 { 3381 int error; 3382 struct device *old_parent; 3383 struct kobject *new_parent_kobj; 3384 3385 dev = get_device(dev); 3386 if (!dev) 3387 return -EINVAL; 3388 3389 device_pm_lock(); 3390 new_parent = get_device(new_parent); 3391 new_parent_kobj = get_device_parent(dev, new_parent); 3392 if (IS_ERR(new_parent_kobj)) { 3393 error = PTR_ERR(new_parent_kobj); 3394 put_device(new_parent); 3395 goto out; 3396 } 3397 3398 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 3399 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 3400 error = kobject_move(&dev->kobj, new_parent_kobj); 3401 if (error) { 3402 cleanup_glue_dir(dev, new_parent_kobj); 3403 put_device(new_parent); 3404 goto out; 3405 } 3406 old_parent = dev->parent; 3407 dev->parent = new_parent; 3408 if (old_parent) 3409 klist_remove(&dev->p->knode_parent); 3410 if (new_parent) { 3411 klist_add_tail(&dev->p->knode_parent, 3412 &new_parent->p->klist_children); 3413 set_dev_node(dev, dev_to_node(new_parent)); 3414 } 3415 3416 if (dev->class) { 3417 error = device_move_class_links(dev, old_parent, new_parent); 3418 if (error) { 3419 /* We ignore errors on cleanup since we're hosed anyway... */ 3420 device_move_class_links(dev, new_parent, old_parent); 3421 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 3422 if (new_parent) 3423 klist_remove(&dev->p->knode_parent); 3424 dev->parent = old_parent; 3425 if (old_parent) { 3426 klist_add_tail(&dev->p->knode_parent, 3427 &old_parent->p->klist_children); 3428 set_dev_node(dev, dev_to_node(old_parent)); 3429 } 3430 } 3431 cleanup_glue_dir(dev, new_parent_kobj); 3432 put_device(new_parent); 3433 goto out; 3434 } 3435 } 3436 switch (dpm_order) { 3437 case DPM_ORDER_NONE: 3438 break; 3439 case DPM_ORDER_DEV_AFTER_PARENT: 3440 device_pm_move_after(dev, new_parent); 3441 devices_kset_move_after(dev, new_parent); 3442 break; 3443 case DPM_ORDER_PARENT_BEFORE_DEV: 3444 device_pm_move_before(new_parent, dev); 3445 devices_kset_move_before(new_parent, dev); 3446 break; 3447 case DPM_ORDER_DEV_LAST: 3448 device_pm_move_last(dev); 3449 devices_kset_move_last(dev); 3450 break; 3451 } 3452 3453 put_device(old_parent); 3454 out: 3455 device_pm_unlock(); 3456 put_device(dev); 3457 return error; 3458 } 3459 EXPORT_SYMBOL_GPL(device_move); 3460 3461 /** 3462 * device_shutdown - call ->shutdown() on each device to shutdown. 3463 */ 3464 void device_shutdown(void) 3465 { 3466 struct device *dev, *parent; 3467 3468 wait_for_device_probe(); 3469 device_block_probing(); 3470 3471 cpufreq_suspend(); 3472 3473 spin_lock(&devices_kset->list_lock); 3474 /* 3475 * Walk the devices list backward, shutting down each in turn. 3476 * Beware that device unplug events may also start pulling 3477 * devices offline, even as the system is shutting down. 3478 */ 3479 while (!list_empty(&devices_kset->list)) { 3480 dev = list_entry(devices_kset->list.prev, struct device, 3481 kobj.entry); 3482 3483 /* 3484 * hold reference count of device's parent to 3485 * prevent it from being freed because parent's 3486 * lock is to be held 3487 */ 3488 parent = get_device(dev->parent); 3489 get_device(dev); 3490 /* 3491 * Make sure the device is off the kset list, in the 3492 * event that dev->*->shutdown() doesn't remove it. 3493 */ 3494 list_del_init(&dev->kobj.entry); 3495 spin_unlock(&devices_kset->list_lock); 3496 3497 /* hold lock to avoid race with probe/release */ 3498 if (parent) 3499 device_lock(parent); 3500 device_lock(dev); 3501 3502 /* Don't allow any more runtime suspends */ 3503 pm_runtime_get_noresume(dev); 3504 pm_runtime_barrier(dev); 3505 3506 if (dev->class && dev->class->shutdown_pre) { 3507 if (initcall_debug) 3508 dev_info(dev, "shutdown_pre\n"); 3509 dev->class->shutdown_pre(dev); 3510 } 3511 if (dev->bus && dev->bus->shutdown) { 3512 if (initcall_debug) 3513 dev_info(dev, "shutdown\n"); 3514 dev->bus->shutdown(dev); 3515 } else if (dev->driver && dev->driver->shutdown) { 3516 if (initcall_debug) 3517 dev_info(dev, "shutdown\n"); 3518 dev->driver->shutdown(dev); 3519 } 3520 3521 device_unlock(dev); 3522 if (parent) 3523 device_unlock(parent); 3524 3525 put_device(dev); 3526 put_device(parent); 3527 3528 spin_lock(&devices_kset->list_lock); 3529 } 3530 spin_unlock(&devices_kset->list_lock); 3531 } 3532 3533 /* 3534 * Device logging functions 3535 */ 3536 3537 #ifdef CONFIG_PRINTK 3538 static int 3539 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen) 3540 { 3541 const char *subsys; 3542 size_t pos = 0; 3543 3544 if (dev->class) 3545 subsys = dev->class->name; 3546 else if (dev->bus) 3547 subsys = dev->bus->name; 3548 else 3549 return 0; 3550 3551 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys); 3552 if (pos >= hdrlen) 3553 goto overflow; 3554 3555 /* 3556 * Add device identifier DEVICE=: 3557 * b12:8 block dev_t 3558 * c127:3 char dev_t 3559 * n8 netdev ifindex 3560 * +sound:card0 subsystem:devname 3561 */ 3562 if (MAJOR(dev->devt)) { 3563 char c; 3564 3565 if (strcmp(subsys, "block") == 0) 3566 c = 'b'; 3567 else 3568 c = 'c'; 3569 pos++; 3570 pos += snprintf(hdr + pos, hdrlen - pos, 3571 "DEVICE=%c%u:%u", 3572 c, MAJOR(dev->devt), MINOR(dev->devt)); 3573 } else if (strcmp(subsys, "net") == 0) { 3574 struct net_device *net = to_net_dev(dev); 3575 3576 pos++; 3577 pos += snprintf(hdr + pos, hdrlen - pos, 3578 "DEVICE=n%u", net->ifindex); 3579 } else { 3580 pos++; 3581 pos += snprintf(hdr + pos, hdrlen - pos, 3582 "DEVICE=+%s:%s", subsys, dev_name(dev)); 3583 } 3584 3585 if (pos >= hdrlen) 3586 goto overflow; 3587 3588 return pos; 3589 3590 overflow: 3591 dev_WARN(dev, "device/subsystem name too long"); 3592 return 0; 3593 } 3594 3595 int dev_vprintk_emit(int level, const struct device *dev, 3596 const char *fmt, va_list args) 3597 { 3598 char hdr[128]; 3599 size_t hdrlen; 3600 3601 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr)); 3602 3603 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args); 3604 } 3605 EXPORT_SYMBOL(dev_vprintk_emit); 3606 3607 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 3608 { 3609 va_list args; 3610 int r; 3611 3612 va_start(args, fmt); 3613 3614 r = dev_vprintk_emit(level, dev, fmt, args); 3615 3616 va_end(args); 3617 3618 return r; 3619 } 3620 EXPORT_SYMBOL(dev_printk_emit); 3621 3622 static void __dev_printk(const char *level, const struct device *dev, 3623 struct va_format *vaf) 3624 { 3625 if (dev) 3626 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 3627 dev_driver_string(dev), dev_name(dev), vaf); 3628 else 3629 printk("%s(NULL device *): %pV", level, vaf); 3630 } 3631 3632 void dev_printk(const char *level, const struct device *dev, 3633 const char *fmt, ...) 3634 { 3635 struct va_format vaf; 3636 va_list args; 3637 3638 va_start(args, fmt); 3639 3640 vaf.fmt = fmt; 3641 vaf.va = &args; 3642 3643 __dev_printk(level, dev, &vaf); 3644 3645 va_end(args); 3646 } 3647 EXPORT_SYMBOL(dev_printk); 3648 3649 #define define_dev_printk_level(func, kern_level) \ 3650 void func(const struct device *dev, const char *fmt, ...) \ 3651 { \ 3652 struct va_format vaf; \ 3653 va_list args; \ 3654 \ 3655 va_start(args, fmt); \ 3656 \ 3657 vaf.fmt = fmt; \ 3658 vaf.va = &args; \ 3659 \ 3660 __dev_printk(kern_level, dev, &vaf); \ 3661 \ 3662 va_end(args); \ 3663 } \ 3664 EXPORT_SYMBOL(func); 3665 3666 define_dev_printk_level(_dev_emerg, KERN_EMERG); 3667 define_dev_printk_level(_dev_alert, KERN_ALERT); 3668 define_dev_printk_level(_dev_crit, KERN_CRIT); 3669 define_dev_printk_level(_dev_err, KERN_ERR); 3670 define_dev_printk_level(_dev_warn, KERN_WARNING); 3671 define_dev_printk_level(_dev_notice, KERN_NOTICE); 3672 define_dev_printk_level(_dev_info, KERN_INFO); 3673 3674 #endif 3675 3676 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 3677 { 3678 return fwnode && !IS_ERR(fwnode->secondary); 3679 } 3680 3681 /** 3682 * set_primary_fwnode - Change the primary firmware node of a given device. 3683 * @dev: Device to handle. 3684 * @fwnode: New primary firmware node of the device. 3685 * 3686 * Set the device's firmware node pointer to @fwnode, but if a secondary 3687 * firmware node of the device is present, preserve it. 3688 */ 3689 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 3690 { 3691 if (fwnode) { 3692 struct fwnode_handle *fn = dev->fwnode; 3693 3694 if (fwnode_is_primary(fn)) 3695 fn = fn->secondary; 3696 3697 if (fn) { 3698 WARN_ON(fwnode->secondary); 3699 fwnode->secondary = fn; 3700 } 3701 dev->fwnode = fwnode; 3702 } else { 3703 dev->fwnode = fwnode_is_primary(dev->fwnode) ? 3704 dev->fwnode->secondary : NULL; 3705 } 3706 } 3707 EXPORT_SYMBOL_GPL(set_primary_fwnode); 3708 3709 /** 3710 * set_secondary_fwnode - Change the secondary firmware node of a given device. 3711 * @dev: Device to handle. 3712 * @fwnode: New secondary firmware node of the device. 3713 * 3714 * If a primary firmware node of the device is present, set its secondary 3715 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 3716 * @fwnode. 3717 */ 3718 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 3719 { 3720 if (fwnode) 3721 fwnode->secondary = ERR_PTR(-ENODEV); 3722 3723 if (fwnode_is_primary(dev->fwnode)) 3724 dev->fwnode->secondary = fwnode; 3725 else 3726 dev->fwnode = fwnode; 3727 } 3728 3729 /** 3730 * device_set_of_node_from_dev - reuse device-tree node of another device 3731 * @dev: device whose device-tree node is being set 3732 * @dev2: device whose device-tree node is being reused 3733 * 3734 * Takes another reference to the new device-tree node after first dropping 3735 * any reference held to the old node. 3736 */ 3737 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 3738 { 3739 of_node_put(dev->of_node); 3740 dev->of_node = of_node_get(dev2->of_node); 3741 dev->of_node_reused = true; 3742 } 3743 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 3744 3745 int device_match_name(struct device *dev, const void *name) 3746 { 3747 return sysfs_streq(dev_name(dev), name); 3748 } 3749 EXPORT_SYMBOL_GPL(device_match_name); 3750 3751 int device_match_of_node(struct device *dev, const void *np) 3752 { 3753 return dev->of_node == np; 3754 } 3755 EXPORT_SYMBOL_GPL(device_match_of_node); 3756 3757 int device_match_fwnode(struct device *dev, const void *fwnode) 3758 { 3759 return dev_fwnode(dev) == fwnode; 3760 } 3761 EXPORT_SYMBOL_GPL(device_match_fwnode); 3762 3763 int device_match_devt(struct device *dev, const void *pdevt) 3764 { 3765 return dev->devt == *(dev_t *)pdevt; 3766 } 3767 EXPORT_SYMBOL_GPL(device_match_devt); 3768 3769 int device_match_acpi_dev(struct device *dev, const void *adev) 3770 { 3771 return ACPI_COMPANION(dev) == adev; 3772 } 3773 EXPORT_SYMBOL(device_match_acpi_dev); 3774 3775 int device_match_any(struct device *dev, const void *unused) 3776 { 3777 return 1; 3778 } 3779 EXPORT_SYMBOL_GPL(device_match_any); 3780