xref: /openbmc/linux/drivers/base/core.c (revision f8a11425)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sched/mm.h>
30 #include <linux/sysfs.h>
31 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
32 
33 #include "base.h"
34 #include "power/power.h"
35 
36 #ifdef CONFIG_SYSFS_DEPRECATED
37 #ifdef CONFIG_SYSFS_DEPRECATED_V2
38 long sysfs_deprecated = 1;
39 #else
40 long sysfs_deprecated = 0;
41 #endif
42 static int __init sysfs_deprecated_setup(char *arg)
43 {
44 	return kstrtol(arg, 10, &sysfs_deprecated);
45 }
46 early_param("sysfs.deprecated", sysfs_deprecated_setup);
47 #endif
48 
49 /* Device links support. */
50 static LIST_HEAD(deferred_sync);
51 static unsigned int defer_sync_state_count = 1;
52 static DEFINE_MUTEX(fwnode_link_lock);
53 static bool fw_devlink_is_permissive(void);
54 static bool fw_devlink_drv_reg_done;
55 
56 /**
57  * fwnode_link_add - Create a link between two fwnode_handles.
58  * @con: Consumer end of the link.
59  * @sup: Supplier end of the link.
60  *
61  * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
62  * represents the detail that the firmware lists @sup fwnode as supplying a
63  * resource to @con.
64  *
65  * The driver core will use the fwnode link to create a device link between the
66  * two device objects corresponding to @con and @sup when they are created. The
67  * driver core will automatically delete the fwnode link between @con and @sup
68  * after doing that.
69  *
70  * Attempts to create duplicate links between the same pair of fwnode handles
71  * are ignored and there is no reference counting.
72  */
73 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
74 {
75 	struct fwnode_link *link;
76 	int ret = 0;
77 
78 	mutex_lock(&fwnode_link_lock);
79 
80 	list_for_each_entry(link, &sup->consumers, s_hook)
81 		if (link->consumer == con)
82 			goto out;
83 
84 	link = kzalloc(sizeof(*link), GFP_KERNEL);
85 	if (!link) {
86 		ret = -ENOMEM;
87 		goto out;
88 	}
89 
90 	link->supplier = sup;
91 	INIT_LIST_HEAD(&link->s_hook);
92 	link->consumer = con;
93 	INIT_LIST_HEAD(&link->c_hook);
94 
95 	list_add(&link->s_hook, &sup->consumers);
96 	list_add(&link->c_hook, &con->suppliers);
97 out:
98 	mutex_unlock(&fwnode_link_lock);
99 
100 	return ret;
101 }
102 
103 /**
104  * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
105  * @fwnode: fwnode whose supplier links need to be deleted
106  *
107  * Deletes all supplier links connecting directly to @fwnode.
108  */
109 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
110 {
111 	struct fwnode_link *link, *tmp;
112 
113 	mutex_lock(&fwnode_link_lock);
114 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
115 		list_del(&link->s_hook);
116 		list_del(&link->c_hook);
117 		kfree(link);
118 	}
119 	mutex_unlock(&fwnode_link_lock);
120 }
121 
122 /**
123  * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
124  * @fwnode: fwnode whose consumer links need to be deleted
125  *
126  * Deletes all consumer links connecting directly to @fwnode.
127  */
128 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
129 {
130 	struct fwnode_link *link, *tmp;
131 
132 	mutex_lock(&fwnode_link_lock);
133 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
134 		list_del(&link->s_hook);
135 		list_del(&link->c_hook);
136 		kfree(link);
137 	}
138 	mutex_unlock(&fwnode_link_lock);
139 }
140 
141 /**
142  * fwnode_links_purge - Delete all links connected to a fwnode_handle.
143  * @fwnode: fwnode whose links needs to be deleted
144  *
145  * Deletes all links connecting directly to a fwnode.
146  */
147 void fwnode_links_purge(struct fwnode_handle *fwnode)
148 {
149 	fwnode_links_purge_suppliers(fwnode);
150 	fwnode_links_purge_consumers(fwnode);
151 }
152 
153 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
154 {
155 	struct fwnode_handle *child;
156 
157 	/* Don't purge consumer links of an added child */
158 	if (fwnode->dev)
159 		return;
160 
161 	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
162 	fwnode_links_purge_consumers(fwnode);
163 
164 	fwnode_for_each_available_child_node(fwnode, child)
165 		fw_devlink_purge_absent_suppliers(child);
166 }
167 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
168 
169 #ifdef CONFIG_SRCU
170 static DEFINE_MUTEX(device_links_lock);
171 DEFINE_STATIC_SRCU(device_links_srcu);
172 
173 static inline void device_links_write_lock(void)
174 {
175 	mutex_lock(&device_links_lock);
176 }
177 
178 static inline void device_links_write_unlock(void)
179 {
180 	mutex_unlock(&device_links_lock);
181 }
182 
183 int device_links_read_lock(void) __acquires(&device_links_srcu)
184 {
185 	return srcu_read_lock(&device_links_srcu);
186 }
187 
188 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
189 {
190 	srcu_read_unlock(&device_links_srcu, idx);
191 }
192 
193 int device_links_read_lock_held(void)
194 {
195 	return srcu_read_lock_held(&device_links_srcu);
196 }
197 #else /* !CONFIG_SRCU */
198 static DECLARE_RWSEM(device_links_lock);
199 
200 static inline void device_links_write_lock(void)
201 {
202 	down_write(&device_links_lock);
203 }
204 
205 static inline void device_links_write_unlock(void)
206 {
207 	up_write(&device_links_lock);
208 }
209 
210 int device_links_read_lock(void)
211 {
212 	down_read(&device_links_lock);
213 	return 0;
214 }
215 
216 void device_links_read_unlock(int not_used)
217 {
218 	up_read(&device_links_lock);
219 }
220 
221 #ifdef CONFIG_DEBUG_LOCK_ALLOC
222 int device_links_read_lock_held(void)
223 {
224 	return lockdep_is_held(&device_links_lock);
225 }
226 #endif
227 #endif /* !CONFIG_SRCU */
228 
229 static bool device_is_ancestor(struct device *dev, struct device *target)
230 {
231 	while (target->parent) {
232 		target = target->parent;
233 		if (dev == target)
234 			return true;
235 	}
236 	return false;
237 }
238 
239 /**
240  * device_is_dependent - Check if one device depends on another one
241  * @dev: Device to check dependencies for.
242  * @target: Device to check against.
243  *
244  * Check if @target depends on @dev or any device dependent on it (its child or
245  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
246  */
247 int device_is_dependent(struct device *dev, void *target)
248 {
249 	struct device_link *link;
250 	int ret;
251 
252 	/*
253 	 * The "ancestors" check is needed to catch the case when the target
254 	 * device has not been completely initialized yet and it is still
255 	 * missing from the list of children of its parent device.
256 	 */
257 	if (dev == target || device_is_ancestor(dev, target))
258 		return 1;
259 
260 	ret = device_for_each_child(dev, target, device_is_dependent);
261 	if (ret)
262 		return ret;
263 
264 	list_for_each_entry(link, &dev->links.consumers, s_node) {
265 		if ((link->flags & ~DL_FLAG_INFERRED) ==
266 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
267 			continue;
268 
269 		if (link->consumer == target)
270 			return 1;
271 
272 		ret = device_is_dependent(link->consumer, target);
273 		if (ret)
274 			break;
275 	}
276 	return ret;
277 }
278 
279 static void device_link_init_status(struct device_link *link,
280 				    struct device *consumer,
281 				    struct device *supplier)
282 {
283 	switch (supplier->links.status) {
284 	case DL_DEV_PROBING:
285 		switch (consumer->links.status) {
286 		case DL_DEV_PROBING:
287 			/*
288 			 * A consumer driver can create a link to a supplier
289 			 * that has not completed its probing yet as long as it
290 			 * knows that the supplier is already functional (for
291 			 * example, it has just acquired some resources from the
292 			 * supplier).
293 			 */
294 			link->status = DL_STATE_CONSUMER_PROBE;
295 			break;
296 		default:
297 			link->status = DL_STATE_DORMANT;
298 			break;
299 		}
300 		break;
301 	case DL_DEV_DRIVER_BOUND:
302 		switch (consumer->links.status) {
303 		case DL_DEV_PROBING:
304 			link->status = DL_STATE_CONSUMER_PROBE;
305 			break;
306 		case DL_DEV_DRIVER_BOUND:
307 			link->status = DL_STATE_ACTIVE;
308 			break;
309 		default:
310 			link->status = DL_STATE_AVAILABLE;
311 			break;
312 		}
313 		break;
314 	case DL_DEV_UNBINDING:
315 		link->status = DL_STATE_SUPPLIER_UNBIND;
316 		break;
317 	default:
318 		link->status = DL_STATE_DORMANT;
319 		break;
320 	}
321 }
322 
323 static int device_reorder_to_tail(struct device *dev, void *not_used)
324 {
325 	struct device_link *link;
326 
327 	/*
328 	 * Devices that have not been registered yet will be put to the ends
329 	 * of the lists during the registration, so skip them here.
330 	 */
331 	if (device_is_registered(dev))
332 		devices_kset_move_last(dev);
333 
334 	if (device_pm_initialized(dev))
335 		device_pm_move_last(dev);
336 
337 	device_for_each_child(dev, NULL, device_reorder_to_tail);
338 	list_for_each_entry(link, &dev->links.consumers, s_node) {
339 		if ((link->flags & ~DL_FLAG_INFERRED) ==
340 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
341 			continue;
342 		device_reorder_to_tail(link->consumer, NULL);
343 	}
344 
345 	return 0;
346 }
347 
348 /**
349  * device_pm_move_to_tail - Move set of devices to the end of device lists
350  * @dev: Device to move
351  *
352  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
353  *
354  * It moves the @dev along with all of its children and all of its consumers
355  * to the ends of the device_kset and dpm_list, recursively.
356  */
357 void device_pm_move_to_tail(struct device *dev)
358 {
359 	int idx;
360 
361 	idx = device_links_read_lock();
362 	device_pm_lock();
363 	device_reorder_to_tail(dev, NULL);
364 	device_pm_unlock();
365 	device_links_read_unlock(idx);
366 }
367 
368 #define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
369 
370 static ssize_t status_show(struct device *dev,
371 			   struct device_attribute *attr, char *buf)
372 {
373 	const char *output;
374 
375 	switch (to_devlink(dev)->status) {
376 	case DL_STATE_NONE:
377 		output = "not tracked";
378 		break;
379 	case DL_STATE_DORMANT:
380 		output = "dormant";
381 		break;
382 	case DL_STATE_AVAILABLE:
383 		output = "available";
384 		break;
385 	case DL_STATE_CONSUMER_PROBE:
386 		output = "consumer probing";
387 		break;
388 	case DL_STATE_ACTIVE:
389 		output = "active";
390 		break;
391 	case DL_STATE_SUPPLIER_UNBIND:
392 		output = "supplier unbinding";
393 		break;
394 	default:
395 		output = "unknown";
396 		break;
397 	}
398 
399 	return sysfs_emit(buf, "%s\n", output);
400 }
401 static DEVICE_ATTR_RO(status);
402 
403 static ssize_t auto_remove_on_show(struct device *dev,
404 				   struct device_attribute *attr, char *buf)
405 {
406 	struct device_link *link = to_devlink(dev);
407 	const char *output;
408 
409 	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
410 		output = "supplier unbind";
411 	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
412 		output = "consumer unbind";
413 	else
414 		output = "never";
415 
416 	return sysfs_emit(buf, "%s\n", output);
417 }
418 static DEVICE_ATTR_RO(auto_remove_on);
419 
420 static ssize_t runtime_pm_show(struct device *dev,
421 			       struct device_attribute *attr, char *buf)
422 {
423 	struct device_link *link = to_devlink(dev);
424 
425 	return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
426 }
427 static DEVICE_ATTR_RO(runtime_pm);
428 
429 static ssize_t sync_state_only_show(struct device *dev,
430 				    struct device_attribute *attr, char *buf)
431 {
432 	struct device_link *link = to_devlink(dev);
433 
434 	return sysfs_emit(buf, "%d\n",
435 			  !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
436 }
437 static DEVICE_ATTR_RO(sync_state_only);
438 
439 static struct attribute *devlink_attrs[] = {
440 	&dev_attr_status.attr,
441 	&dev_attr_auto_remove_on.attr,
442 	&dev_attr_runtime_pm.attr,
443 	&dev_attr_sync_state_only.attr,
444 	NULL,
445 };
446 ATTRIBUTE_GROUPS(devlink);
447 
448 static void device_link_free(struct device_link *link)
449 {
450 	while (refcount_dec_not_one(&link->rpm_active))
451 		pm_runtime_put(link->supplier);
452 
453 	put_device(link->consumer);
454 	put_device(link->supplier);
455 	kfree(link);
456 }
457 
458 #ifdef CONFIG_SRCU
459 static void __device_link_free_srcu(struct rcu_head *rhead)
460 {
461 	device_link_free(container_of(rhead, struct device_link, rcu_head));
462 }
463 
464 static void devlink_dev_release(struct device *dev)
465 {
466 	struct device_link *link = to_devlink(dev);
467 
468 	call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
469 }
470 #else
471 static void devlink_dev_release(struct device *dev)
472 {
473 	device_link_free(to_devlink(dev));
474 }
475 #endif
476 
477 static struct class devlink_class = {
478 	.name = "devlink",
479 	.owner = THIS_MODULE,
480 	.dev_groups = devlink_groups,
481 	.dev_release = devlink_dev_release,
482 };
483 
484 static int devlink_add_symlinks(struct device *dev,
485 				struct class_interface *class_intf)
486 {
487 	int ret;
488 	size_t len;
489 	struct device_link *link = to_devlink(dev);
490 	struct device *sup = link->supplier;
491 	struct device *con = link->consumer;
492 	char *buf;
493 
494 	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
495 		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
496 	len += strlen(":");
497 	len += strlen("supplier:") + 1;
498 	buf = kzalloc(len, GFP_KERNEL);
499 	if (!buf)
500 		return -ENOMEM;
501 
502 	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
503 	if (ret)
504 		goto out;
505 
506 	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
507 	if (ret)
508 		goto err_con;
509 
510 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
511 	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
512 	if (ret)
513 		goto err_con_dev;
514 
515 	snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
516 	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
517 	if (ret)
518 		goto err_sup_dev;
519 
520 	goto out;
521 
522 err_sup_dev:
523 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
524 	sysfs_remove_link(&sup->kobj, buf);
525 err_con_dev:
526 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
527 err_con:
528 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
529 out:
530 	kfree(buf);
531 	return ret;
532 }
533 
534 static void devlink_remove_symlinks(struct device *dev,
535 				   struct class_interface *class_intf)
536 {
537 	struct device_link *link = to_devlink(dev);
538 	size_t len;
539 	struct device *sup = link->supplier;
540 	struct device *con = link->consumer;
541 	char *buf;
542 
543 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
544 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
545 
546 	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
547 		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
548 	len += strlen(":");
549 	len += strlen("supplier:") + 1;
550 	buf = kzalloc(len, GFP_KERNEL);
551 	if (!buf) {
552 		WARN(1, "Unable to properly free device link symlinks!\n");
553 		return;
554 	}
555 
556 	snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
557 	sysfs_remove_link(&con->kobj, buf);
558 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
559 	sysfs_remove_link(&sup->kobj, buf);
560 	kfree(buf);
561 }
562 
563 static struct class_interface devlink_class_intf = {
564 	.class = &devlink_class,
565 	.add_dev = devlink_add_symlinks,
566 	.remove_dev = devlink_remove_symlinks,
567 };
568 
569 static int __init devlink_class_init(void)
570 {
571 	int ret;
572 
573 	ret = class_register(&devlink_class);
574 	if (ret)
575 		return ret;
576 
577 	ret = class_interface_register(&devlink_class_intf);
578 	if (ret)
579 		class_unregister(&devlink_class);
580 
581 	return ret;
582 }
583 postcore_initcall(devlink_class_init);
584 
585 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
586 			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
587 			       DL_FLAG_AUTOPROBE_CONSUMER  | \
588 			       DL_FLAG_SYNC_STATE_ONLY | \
589 			       DL_FLAG_INFERRED)
590 
591 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
592 			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
593 
594 /**
595  * device_link_add - Create a link between two devices.
596  * @consumer: Consumer end of the link.
597  * @supplier: Supplier end of the link.
598  * @flags: Link flags.
599  *
600  * The caller is responsible for the proper synchronization of the link creation
601  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
602  * runtime PM framework to take the link into account.  Second, if the
603  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
604  * be forced into the active meta state and reference-counted upon the creation
605  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
606  * ignored.
607  *
608  * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
609  * expected to release the link returned by it directly with the help of either
610  * device_link_del() or device_link_remove().
611  *
612  * If that flag is not set, however, the caller of this function is handing the
613  * management of the link over to the driver core entirely and its return value
614  * can only be used to check whether or not the link is present.  In that case,
615  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
616  * flags can be used to indicate to the driver core when the link can be safely
617  * deleted.  Namely, setting one of them in @flags indicates to the driver core
618  * that the link is not going to be used (by the given caller of this function)
619  * after unbinding the consumer or supplier driver, respectively, from its
620  * device, so the link can be deleted at that point.  If none of them is set,
621  * the link will be maintained until one of the devices pointed to by it (either
622  * the consumer or the supplier) is unregistered.
623  *
624  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
625  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
626  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
627  * be used to request the driver core to automatically probe for a consumer
628  * driver after successfully binding a driver to the supplier device.
629  *
630  * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
631  * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
632  * the same time is invalid and will cause NULL to be returned upfront.
633  * However, if a device link between the given @consumer and @supplier pair
634  * exists already when this function is called for them, the existing link will
635  * be returned regardless of its current type and status (the link's flags may
636  * be modified then).  The caller of this function is then expected to treat
637  * the link as though it has just been created, so (in particular) if
638  * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
639  * explicitly when not needed any more (as stated above).
640  *
641  * A side effect of the link creation is re-ordering of dpm_list and the
642  * devices_kset list by moving the consumer device and all devices depending
643  * on it to the ends of these lists (that does not happen to devices that have
644  * not been registered when this function is called).
645  *
646  * The supplier device is required to be registered when this function is called
647  * and NULL will be returned if that is not the case.  The consumer device need
648  * not be registered, however.
649  */
650 struct device_link *device_link_add(struct device *consumer,
651 				    struct device *supplier, u32 flags)
652 {
653 	struct device_link *link;
654 
655 	if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
656 	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
657 	    (flags & DL_FLAG_SYNC_STATE_ONLY &&
658 	     (flags & ~DL_FLAG_INFERRED) != DL_FLAG_SYNC_STATE_ONLY) ||
659 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
660 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
661 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
662 		return NULL;
663 
664 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
665 		if (pm_runtime_get_sync(supplier) < 0) {
666 			pm_runtime_put_noidle(supplier);
667 			return NULL;
668 		}
669 	}
670 
671 	if (!(flags & DL_FLAG_STATELESS))
672 		flags |= DL_FLAG_MANAGED;
673 
674 	device_links_write_lock();
675 	device_pm_lock();
676 
677 	/*
678 	 * If the supplier has not been fully registered yet or there is a
679 	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
680 	 * the supplier already in the graph, return NULL. If the link is a
681 	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
682 	 * because it only affects sync_state() callbacks.
683 	 */
684 	if (!device_pm_initialized(supplier)
685 	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
686 		  device_is_dependent(consumer, supplier))) {
687 		link = NULL;
688 		goto out;
689 	}
690 
691 	/*
692 	 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
693 	 * So, only create it if the consumer hasn't probed yet.
694 	 */
695 	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
696 	    consumer->links.status != DL_DEV_NO_DRIVER &&
697 	    consumer->links.status != DL_DEV_PROBING) {
698 		link = NULL;
699 		goto out;
700 	}
701 
702 	/*
703 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
704 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
705 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
706 	 */
707 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
708 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
709 
710 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
711 		if (link->consumer != consumer)
712 			continue;
713 
714 		if (link->flags & DL_FLAG_INFERRED &&
715 		    !(flags & DL_FLAG_INFERRED))
716 			link->flags &= ~DL_FLAG_INFERRED;
717 
718 		if (flags & DL_FLAG_PM_RUNTIME) {
719 			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
720 				pm_runtime_new_link(consumer);
721 				link->flags |= DL_FLAG_PM_RUNTIME;
722 			}
723 			if (flags & DL_FLAG_RPM_ACTIVE)
724 				refcount_inc(&link->rpm_active);
725 		}
726 
727 		if (flags & DL_FLAG_STATELESS) {
728 			kref_get(&link->kref);
729 			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
730 			    !(link->flags & DL_FLAG_STATELESS)) {
731 				link->flags |= DL_FLAG_STATELESS;
732 				goto reorder;
733 			} else {
734 				link->flags |= DL_FLAG_STATELESS;
735 				goto out;
736 			}
737 		}
738 
739 		/*
740 		 * If the life time of the link following from the new flags is
741 		 * longer than indicated by the flags of the existing link,
742 		 * update the existing link to stay around longer.
743 		 */
744 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
745 			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
746 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
747 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
748 			}
749 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
750 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
751 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
752 		}
753 		if (!(link->flags & DL_FLAG_MANAGED)) {
754 			kref_get(&link->kref);
755 			link->flags |= DL_FLAG_MANAGED;
756 			device_link_init_status(link, consumer, supplier);
757 		}
758 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
759 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
760 			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
761 			goto reorder;
762 		}
763 
764 		goto out;
765 	}
766 
767 	link = kzalloc(sizeof(*link), GFP_KERNEL);
768 	if (!link)
769 		goto out;
770 
771 	refcount_set(&link->rpm_active, 1);
772 
773 	get_device(supplier);
774 	link->supplier = supplier;
775 	INIT_LIST_HEAD(&link->s_node);
776 	get_device(consumer);
777 	link->consumer = consumer;
778 	INIT_LIST_HEAD(&link->c_node);
779 	link->flags = flags;
780 	kref_init(&link->kref);
781 
782 	link->link_dev.class = &devlink_class;
783 	device_set_pm_not_required(&link->link_dev);
784 	dev_set_name(&link->link_dev, "%s:%s--%s:%s",
785 		     dev_bus_name(supplier), dev_name(supplier),
786 		     dev_bus_name(consumer), dev_name(consumer));
787 	if (device_register(&link->link_dev)) {
788 		put_device(consumer);
789 		put_device(supplier);
790 		kfree(link);
791 		link = NULL;
792 		goto out;
793 	}
794 
795 	if (flags & DL_FLAG_PM_RUNTIME) {
796 		if (flags & DL_FLAG_RPM_ACTIVE)
797 			refcount_inc(&link->rpm_active);
798 
799 		pm_runtime_new_link(consumer);
800 	}
801 
802 	/* Determine the initial link state. */
803 	if (flags & DL_FLAG_STATELESS)
804 		link->status = DL_STATE_NONE;
805 	else
806 		device_link_init_status(link, consumer, supplier);
807 
808 	/*
809 	 * Some callers expect the link creation during consumer driver probe to
810 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
811 	 */
812 	if (link->status == DL_STATE_CONSUMER_PROBE &&
813 	    flags & DL_FLAG_PM_RUNTIME)
814 		pm_runtime_resume(supplier);
815 
816 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
817 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
818 
819 	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
820 		dev_dbg(consumer,
821 			"Linked as a sync state only consumer to %s\n",
822 			dev_name(supplier));
823 		goto out;
824 	}
825 
826 reorder:
827 	/*
828 	 * Move the consumer and all of the devices depending on it to the end
829 	 * of dpm_list and the devices_kset list.
830 	 *
831 	 * It is necessary to hold dpm_list locked throughout all that or else
832 	 * we may end up suspending with a wrong ordering of it.
833 	 */
834 	device_reorder_to_tail(consumer, NULL);
835 
836 	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
837 
838 out:
839 	device_pm_unlock();
840 	device_links_write_unlock();
841 
842 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
843 		pm_runtime_put(supplier);
844 
845 	return link;
846 }
847 EXPORT_SYMBOL_GPL(device_link_add);
848 
849 #ifdef CONFIG_SRCU
850 static void __device_link_del(struct kref *kref)
851 {
852 	struct device_link *link = container_of(kref, struct device_link, kref);
853 
854 	dev_dbg(link->consumer, "Dropping the link to %s\n",
855 		dev_name(link->supplier));
856 
857 	pm_runtime_drop_link(link);
858 
859 	list_del_rcu(&link->s_node);
860 	list_del_rcu(&link->c_node);
861 	device_unregister(&link->link_dev);
862 }
863 #else /* !CONFIG_SRCU */
864 static void __device_link_del(struct kref *kref)
865 {
866 	struct device_link *link = container_of(kref, struct device_link, kref);
867 
868 	dev_info(link->consumer, "Dropping the link to %s\n",
869 		 dev_name(link->supplier));
870 
871 	pm_runtime_drop_link(link);
872 
873 	list_del(&link->s_node);
874 	list_del(&link->c_node);
875 	device_unregister(&link->link_dev);
876 }
877 #endif /* !CONFIG_SRCU */
878 
879 static void device_link_put_kref(struct device_link *link)
880 {
881 	if (link->flags & DL_FLAG_STATELESS)
882 		kref_put(&link->kref, __device_link_del);
883 	else
884 		WARN(1, "Unable to drop a managed device link reference\n");
885 }
886 
887 /**
888  * device_link_del - Delete a stateless link between two devices.
889  * @link: Device link to delete.
890  *
891  * The caller must ensure proper synchronization of this function with runtime
892  * PM.  If the link was added multiple times, it needs to be deleted as often.
893  * Care is required for hotplugged devices:  Their links are purged on removal
894  * and calling device_link_del() is then no longer allowed.
895  */
896 void device_link_del(struct device_link *link)
897 {
898 	device_links_write_lock();
899 	device_link_put_kref(link);
900 	device_links_write_unlock();
901 }
902 EXPORT_SYMBOL_GPL(device_link_del);
903 
904 /**
905  * device_link_remove - Delete a stateless link between two devices.
906  * @consumer: Consumer end of the link.
907  * @supplier: Supplier end of the link.
908  *
909  * The caller must ensure proper synchronization of this function with runtime
910  * PM.
911  */
912 void device_link_remove(void *consumer, struct device *supplier)
913 {
914 	struct device_link *link;
915 
916 	if (WARN_ON(consumer == supplier))
917 		return;
918 
919 	device_links_write_lock();
920 
921 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
922 		if (link->consumer == consumer) {
923 			device_link_put_kref(link);
924 			break;
925 		}
926 	}
927 
928 	device_links_write_unlock();
929 }
930 EXPORT_SYMBOL_GPL(device_link_remove);
931 
932 static void device_links_missing_supplier(struct device *dev)
933 {
934 	struct device_link *link;
935 
936 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
937 		if (link->status != DL_STATE_CONSUMER_PROBE)
938 			continue;
939 
940 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
941 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
942 		} else {
943 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
944 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
945 		}
946 	}
947 }
948 
949 /**
950  * device_links_check_suppliers - Check presence of supplier drivers.
951  * @dev: Consumer device.
952  *
953  * Check links from this device to any suppliers.  Walk the list of the device's
954  * links to suppliers and see if all of them are available.  If not, simply
955  * return -EPROBE_DEFER.
956  *
957  * We need to guarantee that the supplier will not go away after the check has
958  * been positive here.  It only can go away in __device_release_driver() and
959  * that function  checks the device's links to consumers.  This means we need to
960  * mark the link as "consumer probe in progress" to make the supplier removal
961  * wait for us to complete (or bad things may happen).
962  *
963  * Links without the DL_FLAG_MANAGED flag set are ignored.
964  */
965 int device_links_check_suppliers(struct device *dev)
966 {
967 	struct device_link *link;
968 	int ret = 0;
969 
970 	/*
971 	 * Device waiting for supplier to become available is not allowed to
972 	 * probe.
973 	 */
974 	mutex_lock(&fwnode_link_lock);
975 	if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) &&
976 	    !fw_devlink_is_permissive()) {
977 		dev_dbg(dev, "probe deferral - wait for supplier %pfwP\n",
978 			list_first_entry(&dev->fwnode->suppliers,
979 			struct fwnode_link,
980 			c_hook)->supplier);
981 		mutex_unlock(&fwnode_link_lock);
982 		return -EPROBE_DEFER;
983 	}
984 	mutex_unlock(&fwnode_link_lock);
985 
986 	device_links_write_lock();
987 
988 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
989 		if (!(link->flags & DL_FLAG_MANAGED))
990 			continue;
991 
992 		if (link->status != DL_STATE_AVAILABLE &&
993 		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
994 			device_links_missing_supplier(dev);
995 			dev_dbg(dev, "probe deferral - supplier %s not ready\n",
996 				dev_name(link->supplier));
997 			ret = -EPROBE_DEFER;
998 			break;
999 		}
1000 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1001 	}
1002 	dev->links.status = DL_DEV_PROBING;
1003 
1004 	device_links_write_unlock();
1005 	return ret;
1006 }
1007 
1008 /**
1009  * __device_links_queue_sync_state - Queue a device for sync_state() callback
1010  * @dev: Device to call sync_state() on
1011  * @list: List head to queue the @dev on
1012  *
1013  * Queues a device for a sync_state() callback when the device links write lock
1014  * isn't held. This allows the sync_state() execution flow to use device links
1015  * APIs.  The caller must ensure this function is called with
1016  * device_links_write_lock() held.
1017  *
1018  * This function does a get_device() to make sure the device is not freed while
1019  * on this list.
1020  *
1021  * So the caller must also ensure that device_links_flush_sync_list() is called
1022  * as soon as the caller releases device_links_write_lock().  This is necessary
1023  * to make sure the sync_state() is called in a timely fashion and the
1024  * put_device() is called on this device.
1025  */
1026 static void __device_links_queue_sync_state(struct device *dev,
1027 					    struct list_head *list)
1028 {
1029 	struct device_link *link;
1030 
1031 	if (!dev_has_sync_state(dev))
1032 		return;
1033 	if (dev->state_synced)
1034 		return;
1035 
1036 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1037 		if (!(link->flags & DL_FLAG_MANAGED))
1038 			continue;
1039 		if (link->status != DL_STATE_ACTIVE)
1040 			return;
1041 	}
1042 
1043 	/*
1044 	 * Set the flag here to avoid adding the same device to a list more
1045 	 * than once. This can happen if new consumers get added to the device
1046 	 * and probed before the list is flushed.
1047 	 */
1048 	dev->state_synced = true;
1049 
1050 	if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1051 		return;
1052 
1053 	get_device(dev);
1054 	list_add_tail(&dev->links.defer_sync, list);
1055 }
1056 
1057 /**
1058  * device_links_flush_sync_list - Call sync_state() on a list of devices
1059  * @list: List of devices to call sync_state() on
1060  * @dont_lock_dev: Device for which lock is already held by the caller
1061  *
1062  * Calls sync_state() on all the devices that have been queued for it. This
1063  * function is used in conjunction with __device_links_queue_sync_state(). The
1064  * @dont_lock_dev parameter is useful when this function is called from a
1065  * context where a device lock is already held.
1066  */
1067 static void device_links_flush_sync_list(struct list_head *list,
1068 					 struct device *dont_lock_dev)
1069 {
1070 	struct device *dev, *tmp;
1071 
1072 	list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1073 		list_del_init(&dev->links.defer_sync);
1074 
1075 		if (dev != dont_lock_dev)
1076 			device_lock(dev);
1077 
1078 		if (dev->bus->sync_state)
1079 			dev->bus->sync_state(dev);
1080 		else if (dev->driver && dev->driver->sync_state)
1081 			dev->driver->sync_state(dev);
1082 
1083 		if (dev != dont_lock_dev)
1084 			device_unlock(dev);
1085 
1086 		put_device(dev);
1087 	}
1088 }
1089 
1090 void device_links_supplier_sync_state_pause(void)
1091 {
1092 	device_links_write_lock();
1093 	defer_sync_state_count++;
1094 	device_links_write_unlock();
1095 }
1096 
1097 void device_links_supplier_sync_state_resume(void)
1098 {
1099 	struct device *dev, *tmp;
1100 	LIST_HEAD(sync_list);
1101 
1102 	device_links_write_lock();
1103 	if (!defer_sync_state_count) {
1104 		WARN(true, "Unmatched sync_state pause/resume!");
1105 		goto out;
1106 	}
1107 	defer_sync_state_count--;
1108 	if (defer_sync_state_count)
1109 		goto out;
1110 
1111 	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1112 		/*
1113 		 * Delete from deferred_sync list before queuing it to
1114 		 * sync_list because defer_sync is used for both lists.
1115 		 */
1116 		list_del_init(&dev->links.defer_sync);
1117 		__device_links_queue_sync_state(dev, &sync_list);
1118 	}
1119 out:
1120 	device_links_write_unlock();
1121 
1122 	device_links_flush_sync_list(&sync_list, NULL);
1123 }
1124 
1125 static int sync_state_resume_initcall(void)
1126 {
1127 	device_links_supplier_sync_state_resume();
1128 	return 0;
1129 }
1130 late_initcall(sync_state_resume_initcall);
1131 
1132 static void __device_links_supplier_defer_sync(struct device *sup)
1133 {
1134 	if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1135 		list_add_tail(&sup->links.defer_sync, &deferred_sync);
1136 }
1137 
1138 static void device_link_drop_managed(struct device_link *link)
1139 {
1140 	link->flags &= ~DL_FLAG_MANAGED;
1141 	WRITE_ONCE(link->status, DL_STATE_NONE);
1142 	kref_put(&link->kref, __device_link_del);
1143 }
1144 
1145 static ssize_t waiting_for_supplier_show(struct device *dev,
1146 					 struct device_attribute *attr,
1147 					 char *buf)
1148 {
1149 	bool val;
1150 
1151 	device_lock(dev);
1152 	val = !list_empty(&dev->fwnode->suppliers);
1153 	device_unlock(dev);
1154 	return sysfs_emit(buf, "%u\n", val);
1155 }
1156 static DEVICE_ATTR_RO(waiting_for_supplier);
1157 
1158 /**
1159  * device_links_force_bind - Prepares device to be force bound
1160  * @dev: Consumer device.
1161  *
1162  * device_bind_driver() force binds a device to a driver without calling any
1163  * driver probe functions. So the consumer really isn't going to wait for any
1164  * supplier before it's bound to the driver. We still want the device link
1165  * states to be sensible when this happens.
1166  *
1167  * In preparation for device_bind_driver(), this function goes through each
1168  * supplier device links and checks if the supplier is bound. If it is, then
1169  * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1170  * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1171  */
1172 void device_links_force_bind(struct device *dev)
1173 {
1174 	struct device_link *link, *ln;
1175 
1176 	device_links_write_lock();
1177 
1178 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1179 		if (!(link->flags & DL_FLAG_MANAGED))
1180 			continue;
1181 
1182 		if (link->status != DL_STATE_AVAILABLE) {
1183 			device_link_drop_managed(link);
1184 			continue;
1185 		}
1186 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1187 	}
1188 	dev->links.status = DL_DEV_PROBING;
1189 
1190 	device_links_write_unlock();
1191 }
1192 
1193 /**
1194  * device_links_driver_bound - Update device links after probing its driver.
1195  * @dev: Device to update the links for.
1196  *
1197  * The probe has been successful, so update links from this device to any
1198  * consumers by changing their status to "available".
1199  *
1200  * Also change the status of @dev's links to suppliers to "active".
1201  *
1202  * Links without the DL_FLAG_MANAGED flag set are ignored.
1203  */
1204 void device_links_driver_bound(struct device *dev)
1205 {
1206 	struct device_link *link, *ln;
1207 	LIST_HEAD(sync_list);
1208 
1209 	/*
1210 	 * If a device binds successfully, it's expected to have created all
1211 	 * the device links it needs to or make new device links as it needs
1212 	 * them. So, fw_devlink no longer needs to create device links to any
1213 	 * of the device's suppliers.
1214 	 *
1215 	 * Also, if a child firmware node of this bound device is not added as
1216 	 * a device by now, assume it is never going to be added and make sure
1217 	 * other devices don't defer probe indefinitely by waiting for such a
1218 	 * child device.
1219 	 */
1220 	if (dev->fwnode && dev->fwnode->dev == dev) {
1221 		struct fwnode_handle *child;
1222 		fwnode_links_purge_suppliers(dev->fwnode);
1223 		fwnode_for_each_available_child_node(dev->fwnode, child)
1224 			fw_devlink_purge_absent_suppliers(child);
1225 	}
1226 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1227 
1228 	device_links_write_lock();
1229 
1230 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1231 		if (!(link->flags & DL_FLAG_MANAGED))
1232 			continue;
1233 
1234 		/*
1235 		 * Links created during consumer probe may be in the "consumer
1236 		 * probe" state to start with if the supplier is still probing
1237 		 * when they are created and they may become "active" if the
1238 		 * consumer probe returns first.  Skip them here.
1239 		 */
1240 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1241 		    link->status == DL_STATE_ACTIVE)
1242 			continue;
1243 
1244 		WARN_ON(link->status != DL_STATE_DORMANT);
1245 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1246 
1247 		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1248 			driver_deferred_probe_add(link->consumer);
1249 	}
1250 
1251 	if (defer_sync_state_count)
1252 		__device_links_supplier_defer_sync(dev);
1253 	else
1254 		__device_links_queue_sync_state(dev, &sync_list);
1255 
1256 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1257 		struct device *supplier;
1258 
1259 		if (!(link->flags & DL_FLAG_MANAGED))
1260 			continue;
1261 
1262 		supplier = link->supplier;
1263 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1264 			/*
1265 			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1266 			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1267 			 * save to drop the managed link completely.
1268 			 */
1269 			device_link_drop_managed(link);
1270 		} else {
1271 			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1272 			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1273 		}
1274 
1275 		/*
1276 		 * This needs to be done even for the deleted
1277 		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1278 		 * device link that was preventing the supplier from getting a
1279 		 * sync_state() call.
1280 		 */
1281 		if (defer_sync_state_count)
1282 			__device_links_supplier_defer_sync(supplier);
1283 		else
1284 			__device_links_queue_sync_state(supplier, &sync_list);
1285 	}
1286 
1287 	dev->links.status = DL_DEV_DRIVER_BOUND;
1288 
1289 	device_links_write_unlock();
1290 
1291 	device_links_flush_sync_list(&sync_list, dev);
1292 }
1293 
1294 /**
1295  * __device_links_no_driver - Update links of a device without a driver.
1296  * @dev: Device without a drvier.
1297  *
1298  * Delete all non-persistent links from this device to any suppliers.
1299  *
1300  * Persistent links stay around, but their status is changed to "available",
1301  * unless they already are in the "supplier unbind in progress" state in which
1302  * case they need not be updated.
1303  *
1304  * Links without the DL_FLAG_MANAGED flag set are ignored.
1305  */
1306 static void __device_links_no_driver(struct device *dev)
1307 {
1308 	struct device_link *link, *ln;
1309 
1310 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1311 		if (!(link->flags & DL_FLAG_MANAGED))
1312 			continue;
1313 
1314 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1315 			device_link_drop_managed(link);
1316 			continue;
1317 		}
1318 
1319 		if (link->status != DL_STATE_CONSUMER_PROBE &&
1320 		    link->status != DL_STATE_ACTIVE)
1321 			continue;
1322 
1323 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1324 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1325 		} else {
1326 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1327 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1328 		}
1329 	}
1330 
1331 	dev->links.status = DL_DEV_NO_DRIVER;
1332 }
1333 
1334 /**
1335  * device_links_no_driver - Update links after failing driver probe.
1336  * @dev: Device whose driver has just failed to probe.
1337  *
1338  * Clean up leftover links to consumers for @dev and invoke
1339  * %__device_links_no_driver() to update links to suppliers for it as
1340  * appropriate.
1341  *
1342  * Links without the DL_FLAG_MANAGED flag set are ignored.
1343  */
1344 void device_links_no_driver(struct device *dev)
1345 {
1346 	struct device_link *link;
1347 
1348 	device_links_write_lock();
1349 
1350 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1351 		if (!(link->flags & DL_FLAG_MANAGED))
1352 			continue;
1353 
1354 		/*
1355 		 * The probe has failed, so if the status of the link is
1356 		 * "consumer probe" or "active", it must have been added by
1357 		 * a probing consumer while this device was still probing.
1358 		 * Change its state to "dormant", as it represents a valid
1359 		 * relationship, but it is not functionally meaningful.
1360 		 */
1361 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1362 		    link->status == DL_STATE_ACTIVE)
1363 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1364 	}
1365 
1366 	__device_links_no_driver(dev);
1367 
1368 	device_links_write_unlock();
1369 }
1370 
1371 /**
1372  * device_links_driver_cleanup - Update links after driver removal.
1373  * @dev: Device whose driver has just gone away.
1374  *
1375  * Update links to consumers for @dev by changing their status to "dormant" and
1376  * invoke %__device_links_no_driver() to update links to suppliers for it as
1377  * appropriate.
1378  *
1379  * Links without the DL_FLAG_MANAGED flag set are ignored.
1380  */
1381 void device_links_driver_cleanup(struct device *dev)
1382 {
1383 	struct device_link *link, *ln;
1384 
1385 	device_links_write_lock();
1386 
1387 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1388 		if (!(link->flags & DL_FLAG_MANAGED))
1389 			continue;
1390 
1391 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1392 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1393 
1394 		/*
1395 		 * autoremove the links between this @dev and its consumer
1396 		 * devices that are not active, i.e. where the link state
1397 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1398 		 */
1399 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1400 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1401 			device_link_drop_managed(link);
1402 
1403 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1404 	}
1405 
1406 	list_del_init(&dev->links.defer_sync);
1407 	__device_links_no_driver(dev);
1408 
1409 	device_links_write_unlock();
1410 }
1411 
1412 /**
1413  * device_links_busy - Check if there are any busy links to consumers.
1414  * @dev: Device to check.
1415  *
1416  * Check each consumer of the device and return 'true' if its link's status
1417  * is one of "consumer probe" or "active" (meaning that the given consumer is
1418  * probing right now or its driver is present).  Otherwise, change the link
1419  * state to "supplier unbind" to prevent the consumer from being probed
1420  * successfully going forward.
1421  *
1422  * Return 'false' if there are no probing or active consumers.
1423  *
1424  * Links without the DL_FLAG_MANAGED flag set are ignored.
1425  */
1426 bool device_links_busy(struct device *dev)
1427 {
1428 	struct device_link *link;
1429 	bool ret = false;
1430 
1431 	device_links_write_lock();
1432 
1433 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1434 		if (!(link->flags & DL_FLAG_MANAGED))
1435 			continue;
1436 
1437 		if (link->status == DL_STATE_CONSUMER_PROBE
1438 		    || link->status == DL_STATE_ACTIVE) {
1439 			ret = true;
1440 			break;
1441 		}
1442 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1443 	}
1444 
1445 	dev->links.status = DL_DEV_UNBINDING;
1446 
1447 	device_links_write_unlock();
1448 	return ret;
1449 }
1450 
1451 /**
1452  * device_links_unbind_consumers - Force unbind consumers of the given device.
1453  * @dev: Device to unbind the consumers of.
1454  *
1455  * Walk the list of links to consumers for @dev and if any of them is in the
1456  * "consumer probe" state, wait for all device probes in progress to complete
1457  * and start over.
1458  *
1459  * If that's not the case, change the status of the link to "supplier unbind"
1460  * and check if the link was in the "active" state.  If so, force the consumer
1461  * driver to unbind and start over (the consumer will not re-probe as we have
1462  * changed the state of the link already).
1463  *
1464  * Links without the DL_FLAG_MANAGED flag set are ignored.
1465  */
1466 void device_links_unbind_consumers(struct device *dev)
1467 {
1468 	struct device_link *link;
1469 
1470  start:
1471 	device_links_write_lock();
1472 
1473 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1474 		enum device_link_state status;
1475 
1476 		if (!(link->flags & DL_FLAG_MANAGED) ||
1477 		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1478 			continue;
1479 
1480 		status = link->status;
1481 		if (status == DL_STATE_CONSUMER_PROBE) {
1482 			device_links_write_unlock();
1483 
1484 			wait_for_device_probe();
1485 			goto start;
1486 		}
1487 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1488 		if (status == DL_STATE_ACTIVE) {
1489 			struct device *consumer = link->consumer;
1490 
1491 			get_device(consumer);
1492 
1493 			device_links_write_unlock();
1494 
1495 			device_release_driver_internal(consumer, NULL,
1496 						       consumer->parent);
1497 			put_device(consumer);
1498 			goto start;
1499 		}
1500 	}
1501 
1502 	device_links_write_unlock();
1503 }
1504 
1505 /**
1506  * device_links_purge - Delete existing links to other devices.
1507  * @dev: Target device.
1508  */
1509 static void device_links_purge(struct device *dev)
1510 {
1511 	struct device_link *link, *ln;
1512 
1513 	if (dev->class == &devlink_class)
1514 		return;
1515 
1516 	/*
1517 	 * Delete all of the remaining links from this device to any other
1518 	 * devices (either consumers or suppliers).
1519 	 */
1520 	device_links_write_lock();
1521 
1522 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1523 		WARN_ON(link->status == DL_STATE_ACTIVE);
1524 		__device_link_del(&link->kref);
1525 	}
1526 
1527 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1528 		WARN_ON(link->status != DL_STATE_DORMANT &&
1529 			link->status != DL_STATE_NONE);
1530 		__device_link_del(&link->kref);
1531 	}
1532 
1533 	device_links_write_unlock();
1534 }
1535 
1536 #define FW_DEVLINK_FLAGS_PERMISSIVE	(DL_FLAG_INFERRED | \
1537 					 DL_FLAG_SYNC_STATE_ONLY)
1538 #define FW_DEVLINK_FLAGS_ON		(DL_FLAG_INFERRED | \
1539 					 DL_FLAG_AUTOPROBE_CONSUMER)
1540 #define FW_DEVLINK_FLAGS_RPM		(FW_DEVLINK_FLAGS_ON | \
1541 					 DL_FLAG_PM_RUNTIME)
1542 
1543 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1544 static int __init fw_devlink_setup(char *arg)
1545 {
1546 	if (!arg)
1547 		return -EINVAL;
1548 
1549 	if (strcmp(arg, "off") == 0) {
1550 		fw_devlink_flags = 0;
1551 	} else if (strcmp(arg, "permissive") == 0) {
1552 		fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1553 	} else if (strcmp(arg, "on") == 0) {
1554 		fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1555 	} else if (strcmp(arg, "rpm") == 0) {
1556 		fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1557 	}
1558 	return 0;
1559 }
1560 early_param("fw_devlink", fw_devlink_setup);
1561 
1562 static bool fw_devlink_strict;
1563 static int __init fw_devlink_strict_setup(char *arg)
1564 {
1565 	return strtobool(arg, &fw_devlink_strict);
1566 }
1567 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1568 
1569 u32 fw_devlink_get_flags(void)
1570 {
1571 	return fw_devlink_flags;
1572 }
1573 
1574 static bool fw_devlink_is_permissive(void)
1575 {
1576 	return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1577 }
1578 
1579 bool fw_devlink_is_strict(void)
1580 {
1581 	return fw_devlink_strict && !fw_devlink_is_permissive();
1582 }
1583 
1584 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1585 {
1586 	if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1587 		return;
1588 
1589 	fwnode_call_int_op(fwnode, add_links);
1590 	fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1591 }
1592 
1593 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1594 {
1595 	struct fwnode_handle *child = NULL;
1596 
1597 	fw_devlink_parse_fwnode(fwnode);
1598 
1599 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1600 		fw_devlink_parse_fwtree(child);
1601 }
1602 
1603 static void fw_devlink_relax_link(struct device_link *link)
1604 {
1605 	if (!(link->flags & DL_FLAG_INFERRED))
1606 		return;
1607 
1608 	if (link->flags == (DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE))
1609 		return;
1610 
1611 	pm_runtime_drop_link(link);
1612 	link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1613 	dev_dbg(link->consumer, "Relaxing link with %s\n",
1614 		dev_name(link->supplier));
1615 }
1616 
1617 static int fw_devlink_no_driver(struct device *dev, void *data)
1618 {
1619 	struct device_link *link = to_devlink(dev);
1620 
1621 	if (!link->supplier->can_match)
1622 		fw_devlink_relax_link(link);
1623 
1624 	return 0;
1625 }
1626 
1627 void fw_devlink_drivers_done(void)
1628 {
1629 	fw_devlink_drv_reg_done = true;
1630 	device_links_write_lock();
1631 	class_for_each_device(&devlink_class, NULL, NULL,
1632 			      fw_devlink_no_driver);
1633 	device_links_write_unlock();
1634 }
1635 
1636 static void fw_devlink_unblock_consumers(struct device *dev)
1637 {
1638 	struct device_link *link;
1639 
1640 	if (!fw_devlink_flags || fw_devlink_is_permissive())
1641 		return;
1642 
1643 	device_links_write_lock();
1644 	list_for_each_entry(link, &dev->links.consumers, s_node)
1645 		fw_devlink_relax_link(link);
1646 	device_links_write_unlock();
1647 }
1648 
1649 /**
1650  * fw_devlink_relax_cycle - Convert cyclic links to SYNC_STATE_ONLY links
1651  * @con: Device to check dependencies for.
1652  * @sup: Device to check against.
1653  *
1654  * Check if @sup depends on @con or any device dependent on it (its child or
1655  * its consumer etc).  When such a cyclic dependency is found, convert all
1656  * device links created solely by fw_devlink into SYNC_STATE_ONLY device links.
1657  * This is the equivalent of doing fw_devlink=permissive just between the
1658  * devices in the cycle. We need to do this because, at this point, fw_devlink
1659  * can't tell which of these dependencies is not a real dependency.
1660  *
1661  * Return 1 if a cycle is found. Otherwise, return 0.
1662  */
1663 static int fw_devlink_relax_cycle(struct device *con, void *sup)
1664 {
1665 	struct device_link *link;
1666 	int ret;
1667 
1668 	if (con == sup)
1669 		return 1;
1670 
1671 	ret = device_for_each_child(con, sup, fw_devlink_relax_cycle);
1672 	if (ret)
1673 		return ret;
1674 
1675 	list_for_each_entry(link, &con->links.consumers, s_node) {
1676 		if ((link->flags & ~DL_FLAG_INFERRED) ==
1677 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
1678 			continue;
1679 
1680 		if (!fw_devlink_relax_cycle(link->consumer, sup))
1681 			continue;
1682 
1683 		ret = 1;
1684 
1685 		fw_devlink_relax_link(link);
1686 	}
1687 	return ret;
1688 }
1689 
1690 /**
1691  * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
1692  * @con: consumer device for the device link
1693  * @sup_handle: fwnode handle of supplier
1694  * @flags: devlink flags
1695  *
1696  * This function will try to create a device link between the consumer device
1697  * @con and the supplier device represented by @sup_handle.
1698  *
1699  * The supplier has to be provided as a fwnode because incorrect cycles in
1700  * fwnode links can sometimes cause the supplier device to never be created.
1701  * This function detects such cases and returns an error if it cannot create a
1702  * device link from the consumer to a missing supplier.
1703  *
1704  * Returns,
1705  * 0 on successfully creating a device link
1706  * -EINVAL if the device link cannot be created as expected
1707  * -EAGAIN if the device link cannot be created right now, but it may be
1708  *  possible to do that in the future
1709  */
1710 static int fw_devlink_create_devlink(struct device *con,
1711 				     struct fwnode_handle *sup_handle, u32 flags)
1712 {
1713 	struct device *sup_dev;
1714 	int ret = 0;
1715 
1716 	sup_dev = get_dev_from_fwnode(sup_handle);
1717 	if (sup_dev) {
1718 		/*
1719 		 * If it's one of those drivers that don't actually bind to
1720 		 * their device using driver core, then don't wait on this
1721 		 * supplier device indefinitely.
1722 		 */
1723 		if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
1724 		    sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
1725 			ret = -EINVAL;
1726 			goto out;
1727 		}
1728 
1729 		/*
1730 		 * If this fails, it is due to cycles in device links.  Just
1731 		 * give up on this link and treat it as invalid.
1732 		 */
1733 		if (!device_link_add(con, sup_dev, flags) &&
1734 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
1735 			dev_info(con, "Fixing up cyclic dependency with %s\n",
1736 				 dev_name(sup_dev));
1737 			device_links_write_lock();
1738 			fw_devlink_relax_cycle(con, sup_dev);
1739 			device_links_write_unlock();
1740 			device_link_add(con, sup_dev,
1741 					FW_DEVLINK_FLAGS_PERMISSIVE);
1742 			ret = -EINVAL;
1743 		}
1744 
1745 		goto out;
1746 	}
1747 
1748 	/* Supplier that's already initialized without a struct device. */
1749 	if (sup_handle->flags & FWNODE_FLAG_INITIALIZED)
1750 		return -EINVAL;
1751 
1752 	/*
1753 	 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports
1754 	 * cycles. So cycle detection isn't necessary and shouldn't be
1755 	 * done.
1756 	 */
1757 	if (flags & DL_FLAG_SYNC_STATE_ONLY)
1758 		return -EAGAIN;
1759 
1760 	/*
1761 	 * If we can't find the supplier device from its fwnode, it might be
1762 	 * due to a cyclic dependency between fwnodes. Some of these cycles can
1763 	 * be broken by applying logic. Check for these types of cycles and
1764 	 * break them so that devices in the cycle probe properly.
1765 	 *
1766 	 * If the supplier's parent is dependent on the consumer, then
1767 	 * the consumer-supplier dependency is a false dependency. So,
1768 	 * treat it as an invalid link.
1769 	 */
1770 	sup_dev = fwnode_get_next_parent_dev(sup_handle);
1771 	if (sup_dev && device_is_dependent(con, sup_dev)) {
1772 		dev_dbg(con, "Not linking to %pfwP - False link\n",
1773 			sup_handle);
1774 		ret = -EINVAL;
1775 	} else {
1776 		/*
1777 		 * Can't check for cycles or no cycles. So let's try
1778 		 * again later.
1779 		 */
1780 		ret = -EAGAIN;
1781 	}
1782 
1783 out:
1784 	put_device(sup_dev);
1785 	return ret;
1786 }
1787 
1788 /**
1789  * __fw_devlink_link_to_consumers - Create device links to consumers of a device
1790  * @dev: Device that needs to be linked to its consumers
1791  *
1792  * This function looks at all the consumer fwnodes of @dev and creates device
1793  * links between the consumer device and @dev (supplier).
1794  *
1795  * If the consumer device has not been added yet, then this function creates a
1796  * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
1797  * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
1798  * sync_state() callback before the real consumer device gets to be added and
1799  * then probed.
1800  *
1801  * Once device links are created from the real consumer to @dev (supplier), the
1802  * fwnode links are deleted.
1803  */
1804 static void __fw_devlink_link_to_consumers(struct device *dev)
1805 {
1806 	struct fwnode_handle *fwnode = dev->fwnode;
1807 	struct fwnode_link *link, *tmp;
1808 
1809 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
1810 		u32 dl_flags = fw_devlink_get_flags();
1811 		struct device *con_dev;
1812 		bool own_link = true;
1813 		int ret;
1814 
1815 		con_dev = get_dev_from_fwnode(link->consumer);
1816 		/*
1817 		 * If consumer device is not available yet, make a "proxy"
1818 		 * SYNC_STATE_ONLY link from the consumer's parent device to
1819 		 * the supplier device. This is necessary to make sure the
1820 		 * supplier doesn't get a sync_state() callback before the real
1821 		 * consumer can create a device link to the supplier.
1822 		 *
1823 		 * This proxy link step is needed to handle the case where the
1824 		 * consumer's parent device is added before the supplier.
1825 		 */
1826 		if (!con_dev) {
1827 			con_dev = fwnode_get_next_parent_dev(link->consumer);
1828 			/*
1829 			 * However, if the consumer's parent device is also the
1830 			 * parent of the supplier, don't create a
1831 			 * consumer-supplier link from the parent to its child
1832 			 * device. Such a dependency is impossible.
1833 			 */
1834 			if (con_dev &&
1835 			    fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
1836 				put_device(con_dev);
1837 				con_dev = NULL;
1838 			} else {
1839 				own_link = false;
1840 				dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1841 			}
1842 		}
1843 
1844 		if (!con_dev)
1845 			continue;
1846 
1847 		ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags);
1848 		put_device(con_dev);
1849 		if (!own_link || ret == -EAGAIN)
1850 			continue;
1851 
1852 		list_del(&link->s_hook);
1853 		list_del(&link->c_hook);
1854 		kfree(link);
1855 	}
1856 }
1857 
1858 /**
1859  * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
1860  * @dev: The consumer device that needs to be linked to its suppliers
1861  * @fwnode: Root of the fwnode tree that is used to create device links
1862  *
1863  * This function looks at all the supplier fwnodes of fwnode tree rooted at
1864  * @fwnode and creates device links between @dev (consumer) and all the
1865  * supplier devices of the entire fwnode tree at @fwnode.
1866  *
1867  * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
1868  * and the real suppliers of @dev. Once these device links are created, the
1869  * fwnode links are deleted. When such device links are successfully created,
1870  * this function is called recursively on those supplier devices. This is
1871  * needed to detect and break some invalid cycles in fwnode links.  See
1872  * fw_devlink_create_devlink() for more details.
1873  *
1874  * In addition, it also looks at all the suppliers of the entire fwnode tree
1875  * because some of the child devices of @dev that have not been added yet
1876  * (because @dev hasn't probed) might already have their suppliers added to
1877  * driver core. So, this function creates SYNC_STATE_ONLY device links between
1878  * @dev (consumer) and these suppliers to make sure they don't execute their
1879  * sync_state() callbacks before these child devices have a chance to create
1880  * their device links. The fwnode links that correspond to the child devices
1881  * aren't delete because they are needed later to create the device links
1882  * between the real consumer and supplier devices.
1883  */
1884 static void __fw_devlink_link_to_suppliers(struct device *dev,
1885 					   struct fwnode_handle *fwnode)
1886 {
1887 	bool own_link = (dev->fwnode == fwnode);
1888 	struct fwnode_link *link, *tmp;
1889 	struct fwnode_handle *child = NULL;
1890 	u32 dl_flags;
1891 
1892 	if (own_link)
1893 		dl_flags = fw_devlink_get_flags();
1894 	else
1895 		dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1896 
1897 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
1898 		int ret;
1899 		struct device *sup_dev;
1900 		struct fwnode_handle *sup = link->supplier;
1901 
1902 		ret = fw_devlink_create_devlink(dev, sup, dl_flags);
1903 		if (!own_link || ret == -EAGAIN)
1904 			continue;
1905 
1906 		list_del(&link->s_hook);
1907 		list_del(&link->c_hook);
1908 		kfree(link);
1909 
1910 		/* If no device link was created, nothing more to do. */
1911 		if (ret)
1912 			continue;
1913 
1914 		/*
1915 		 * If a device link was successfully created to a supplier, we
1916 		 * now need to try and link the supplier to all its suppliers.
1917 		 *
1918 		 * This is needed to detect and delete false dependencies in
1919 		 * fwnode links that haven't been converted to a device link
1920 		 * yet. See comments in fw_devlink_create_devlink() for more
1921 		 * details on the false dependency.
1922 		 *
1923 		 * Without deleting these false dependencies, some devices will
1924 		 * never probe because they'll keep waiting for their false
1925 		 * dependency fwnode links to be converted to device links.
1926 		 */
1927 		sup_dev = get_dev_from_fwnode(sup);
1928 		__fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode);
1929 		put_device(sup_dev);
1930 	}
1931 
1932 	/*
1933 	 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
1934 	 * all the descendants. This proxy link step is needed to handle the
1935 	 * case where the supplier is added before the consumer's parent device
1936 	 * (@dev).
1937 	 */
1938 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1939 		__fw_devlink_link_to_suppliers(dev, child);
1940 }
1941 
1942 static void fw_devlink_link_device(struct device *dev)
1943 {
1944 	struct fwnode_handle *fwnode = dev->fwnode;
1945 
1946 	if (!fw_devlink_flags)
1947 		return;
1948 
1949 	fw_devlink_parse_fwtree(fwnode);
1950 
1951 	mutex_lock(&fwnode_link_lock);
1952 	__fw_devlink_link_to_consumers(dev);
1953 	__fw_devlink_link_to_suppliers(dev, fwnode);
1954 	mutex_unlock(&fwnode_link_lock);
1955 }
1956 
1957 /* Device links support end. */
1958 
1959 int (*platform_notify)(struct device *dev) = NULL;
1960 int (*platform_notify_remove)(struct device *dev) = NULL;
1961 static struct kobject *dev_kobj;
1962 struct kobject *sysfs_dev_char_kobj;
1963 struct kobject *sysfs_dev_block_kobj;
1964 
1965 static DEFINE_MUTEX(device_hotplug_lock);
1966 
1967 void lock_device_hotplug(void)
1968 {
1969 	mutex_lock(&device_hotplug_lock);
1970 }
1971 
1972 void unlock_device_hotplug(void)
1973 {
1974 	mutex_unlock(&device_hotplug_lock);
1975 }
1976 
1977 int lock_device_hotplug_sysfs(void)
1978 {
1979 	if (mutex_trylock(&device_hotplug_lock))
1980 		return 0;
1981 
1982 	/* Avoid busy looping (5 ms of sleep should do). */
1983 	msleep(5);
1984 	return restart_syscall();
1985 }
1986 
1987 #ifdef CONFIG_BLOCK
1988 static inline int device_is_not_partition(struct device *dev)
1989 {
1990 	return !(dev->type == &part_type);
1991 }
1992 #else
1993 static inline int device_is_not_partition(struct device *dev)
1994 {
1995 	return 1;
1996 }
1997 #endif
1998 
1999 static int
2000 device_platform_notify(struct device *dev, enum kobject_action action)
2001 {
2002 	int ret;
2003 
2004 	ret = acpi_platform_notify(dev, action);
2005 	if (ret)
2006 		return ret;
2007 
2008 	ret = software_node_notify(dev, action);
2009 	if (ret)
2010 		return ret;
2011 
2012 	if (platform_notify && action == KOBJ_ADD)
2013 		platform_notify(dev);
2014 	else if (platform_notify_remove && action == KOBJ_REMOVE)
2015 		platform_notify_remove(dev);
2016 	return 0;
2017 }
2018 
2019 /**
2020  * dev_driver_string - Return a device's driver name, if at all possible
2021  * @dev: struct device to get the name of
2022  *
2023  * Will return the device's driver's name if it is bound to a device.  If
2024  * the device is not bound to a driver, it will return the name of the bus
2025  * it is attached to.  If it is not attached to a bus either, an empty
2026  * string will be returned.
2027  */
2028 const char *dev_driver_string(const struct device *dev)
2029 {
2030 	struct device_driver *drv;
2031 
2032 	/* dev->driver can change to NULL underneath us because of unbinding,
2033 	 * so be careful about accessing it.  dev->bus and dev->class should
2034 	 * never change once they are set, so they don't need special care.
2035 	 */
2036 	drv = READ_ONCE(dev->driver);
2037 	return drv ? drv->name : dev_bus_name(dev);
2038 }
2039 EXPORT_SYMBOL(dev_driver_string);
2040 
2041 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2042 
2043 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2044 			     char *buf)
2045 {
2046 	struct device_attribute *dev_attr = to_dev_attr(attr);
2047 	struct device *dev = kobj_to_dev(kobj);
2048 	ssize_t ret = -EIO;
2049 
2050 	if (dev_attr->show)
2051 		ret = dev_attr->show(dev, dev_attr, buf);
2052 	if (ret >= (ssize_t)PAGE_SIZE) {
2053 		printk("dev_attr_show: %pS returned bad count\n",
2054 				dev_attr->show);
2055 	}
2056 	return ret;
2057 }
2058 
2059 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2060 			      const char *buf, size_t count)
2061 {
2062 	struct device_attribute *dev_attr = to_dev_attr(attr);
2063 	struct device *dev = kobj_to_dev(kobj);
2064 	ssize_t ret = -EIO;
2065 
2066 	if (dev_attr->store)
2067 		ret = dev_attr->store(dev, dev_attr, buf, count);
2068 	return ret;
2069 }
2070 
2071 static const struct sysfs_ops dev_sysfs_ops = {
2072 	.show	= dev_attr_show,
2073 	.store	= dev_attr_store,
2074 };
2075 
2076 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2077 
2078 ssize_t device_store_ulong(struct device *dev,
2079 			   struct device_attribute *attr,
2080 			   const char *buf, size_t size)
2081 {
2082 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2083 	int ret;
2084 	unsigned long new;
2085 
2086 	ret = kstrtoul(buf, 0, &new);
2087 	if (ret)
2088 		return ret;
2089 	*(unsigned long *)(ea->var) = new;
2090 	/* Always return full write size even if we didn't consume all */
2091 	return size;
2092 }
2093 EXPORT_SYMBOL_GPL(device_store_ulong);
2094 
2095 ssize_t device_show_ulong(struct device *dev,
2096 			  struct device_attribute *attr,
2097 			  char *buf)
2098 {
2099 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2100 	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2101 }
2102 EXPORT_SYMBOL_GPL(device_show_ulong);
2103 
2104 ssize_t device_store_int(struct device *dev,
2105 			 struct device_attribute *attr,
2106 			 const char *buf, size_t size)
2107 {
2108 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2109 	int ret;
2110 	long new;
2111 
2112 	ret = kstrtol(buf, 0, &new);
2113 	if (ret)
2114 		return ret;
2115 
2116 	if (new > INT_MAX || new < INT_MIN)
2117 		return -EINVAL;
2118 	*(int *)(ea->var) = new;
2119 	/* Always return full write size even if we didn't consume all */
2120 	return size;
2121 }
2122 EXPORT_SYMBOL_GPL(device_store_int);
2123 
2124 ssize_t device_show_int(struct device *dev,
2125 			struct device_attribute *attr,
2126 			char *buf)
2127 {
2128 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2129 
2130 	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2131 }
2132 EXPORT_SYMBOL_GPL(device_show_int);
2133 
2134 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2135 			  const char *buf, size_t size)
2136 {
2137 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2138 
2139 	if (strtobool(buf, ea->var) < 0)
2140 		return -EINVAL;
2141 
2142 	return size;
2143 }
2144 EXPORT_SYMBOL_GPL(device_store_bool);
2145 
2146 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2147 			 char *buf)
2148 {
2149 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2150 
2151 	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2152 }
2153 EXPORT_SYMBOL_GPL(device_show_bool);
2154 
2155 /**
2156  * device_release - free device structure.
2157  * @kobj: device's kobject.
2158  *
2159  * This is called once the reference count for the object
2160  * reaches 0. We forward the call to the device's release
2161  * method, which should handle actually freeing the structure.
2162  */
2163 static void device_release(struct kobject *kobj)
2164 {
2165 	struct device *dev = kobj_to_dev(kobj);
2166 	struct device_private *p = dev->p;
2167 
2168 	/*
2169 	 * Some platform devices are driven without driver attached
2170 	 * and managed resources may have been acquired.  Make sure
2171 	 * all resources are released.
2172 	 *
2173 	 * Drivers still can add resources into device after device
2174 	 * is deleted but alive, so release devres here to avoid
2175 	 * possible memory leak.
2176 	 */
2177 	devres_release_all(dev);
2178 
2179 	kfree(dev->dma_range_map);
2180 
2181 	if (dev->release)
2182 		dev->release(dev);
2183 	else if (dev->type && dev->type->release)
2184 		dev->type->release(dev);
2185 	else if (dev->class && dev->class->dev_release)
2186 		dev->class->dev_release(dev);
2187 	else
2188 		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2189 			dev_name(dev));
2190 	kfree(p);
2191 }
2192 
2193 static const void *device_namespace(struct kobject *kobj)
2194 {
2195 	struct device *dev = kobj_to_dev(kobj);
2196 	const void *ns = NULL;
2197 
2198 	if (dev->class && dev->class->ns_type)
2199 		ns = dev->class->namespace(dev);
2200 
2201 	return ns;
2202 }
2203 
2204 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2205 {
2206 	struct device *dev = kobj_to_dev(kobj);
2207 
2208 	if (dev->class && dev->class->get_ownership)
2209 		dev->class->get_ownership(dev, uid, gid);
2210 }
2211 
2212 static struct kobj_type device_ktype = {
2213 	.release	= device_release,
2214 	.sysfs_ops	= &dev_sysfs_ops,
2215 	.namespace	= device_namespace,
2216 	.get_ownership	= device_get_ownership,
2217 };
2218 
2219 
2220 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
2221 {
2222 	struct kobj_type *ktype = get_ktype(kobj);
2223 
2224 	if (ktype == &device_ktype) {
2225 		struct device *dev = kobj_to_dev(kobj);
2226 		if (dev->bus)
2227 			return 1;
2228 		if (dev->class)
2229 			return 1;
2230 	}
2231 	return 0;
2232 }
2233 
2234 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
2235 {
2236 	struct device *dev = kobj_to_dev(kobj);
2237 
2238 	if (dev->bus)
2239 		return dev->bus->name;
2240 	if (dev->class)
2241 		return dev->class->name;
2242 	return NULL;
2243 }
2244 
2245 static int dev_uevent(struct kset *kset, struct kobject *kobj,
2246 		      struct kobj_uevent_env *env)
2247 {
2248 	struct device *dev = kobj_to_dev(kobj);
2249 	int retval = 0;
2250 
2251 	/* add device node properties if present */
2252 	if (MAJOR(dev->devt)) {
2253 		const char *tmp;
2254 		const char *name;
2255 		umode_t mode = 0;
2256 		kuid_t uid = GLOBAL_ROOT_UID;
2257 		kgid_t gid = GLOBAL_ROOT_GID;
2258 
2259 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2260 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2261 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2262 		if (name) {
2263 			add_uevent_var(env, "DEVNAME=%s", name);
2264 			if (mode)
2265 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2266 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
2267 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2268 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
2269 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2270 			kfree(tmp);
2271 		}
2272 	}
2273 
2274 	if (dev->type && dev->type->name)
2275 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2276 
2277 	if (dev->driver)
2278 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2279 
2280 	/* Add common DT information about the device */
2281 	of_device_uevent(dev, env);
2282 
2283 	/* have the bus specific function add its stuff */
2284 	if (dev->bus && dev->bus->uevent) {
2285 		retval = dev->bus->uevent(dev, env);
2286 		if (retval)
2287 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2288 				 dev_name(dev), __func__, retval);
2289 	}
2290 
2291 	/* have the class specific function add its stuff */
2292 	if (dev->class && dev->class->dev_uevent) {
2293 		retval = dev->class->dev_uevent(dev, env);
2294 		if (retval)
2295 			pr_debug("device: '%s': %s: class uevent() "
2296 				 "returned %d\n", dev_name(dev),
2297 				 __func__, retval);
2298 	}
2299 
2300 	/* have the device type specific function add its stuff */
2301 	if (dev->type && dev->type->uevent) {
2302 		retval = dev->type->uevent(dev, env);
2303 		if (retval)
2304 			pr_debug("device: '%s': %s: dev_type uevent() "
2305 				 "returned %d\n", dev_name(dev),
2306 				 __func__, retval);
2307 	}
2308 
2309 	return retval;
2310 }
2311 
2312 static const struct kset_uevent_ops device_uevent_ops = {
2313 	.filter =	dev_uevent_filter,
2314 	.name =		dev_uevent_name,
2315 	.uevent =	dev_uevent,
2316 };
2317 
2318 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2319 			   char *buf)
2320 {
2321 	struct kobject *top_kobj;
2322 	struct kset *kset;
2323 	struct kobj_uevent_env *env = NULL;
2324 	int i;
2325 	int len = 0;
2326 	int retval;
2327 
2328 	/* search the kset, the device belongs to */
2329 	top_kobj = &dev->kobj;
2330 	while (!top_kobj->kset && top_kobj->parent)
2331 		top_kobj = top_kobj->parent;
2332 	if (!top_kobj->kset)
2333 		goto out;
2334 
2335 	kset = top_kobj->kset;
2336 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2337 		goto out;
2338 
2339 	/* respect filter */
2340 	if (kset->uevent_ops && kset->uevent_ops->filter)
2341 		if (!kset->uevent_ops->filter(kset, &dev->kobj))
2342 			goto out;
2343 
2344 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2345 	if (!env)
2346 		return -ENOMEM;
2347 
2348 	/* let the kset specific function add its keys */
2349 	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
2350 	if (retval)
2351 		goto out;
2352 
2353 	/* copy keys to file */
2354 	for (i = 0; i < env->envp_idx; i++)
2355 		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2356 out:
2357 	kfree(env);
2358 	return len;
2359 }
2360 
2361 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2362 			    const char *buf, size_t count)
2363 {
2364 	int rc;
2365 
2366 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
2367 
2368 	if (rc) {
2369 		dev_err(dev, "uevent: failed to send synthetic uevent\n");
2370 		return rc;
2371 	}
2372 
2373 	return count;
2374 }
2375 static DEVICE_ATTR_RW(uevent);
2376 
2377 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2378 			   char *buf)
2379 {
2380 	bool val;
2381 
2382 	device_lock(dev);
2383 	val = !dev->offline;
2384 	device_unlock(dev);
2385 	return sysfs_emit(buf, "%u\n", val);
2386 }
2387 
2388 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2389 			    const char *buf, size_t count)
2390 {
2391 	bool val;
2392 	int ret;
2393 
2394 	ret = strtobool(buf, &val);
2395 	if (ret < 0)
2396 		return ret;
2397 
2398 	ret = lock_device_hotplug_sysfs();
2399 	if (ret)
2400 		return ret;
2401 
2402 	ret = val ? device_online(dev) : device_offline(dev);
2403 	unlock_device_hotplug();
2404 	return ret < 0 ? ret : count;
2405 }
2406 static DEVICE_ATTR_RW(online);
2407 
2408 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2409 {
2410 	return sysfs_create_groups(&dev->kobj, groups);
2411 }
2412 EXPORT_SYMBOL_GPL(device_add_groups);
2413 
2414 void device_remove_groups(struct device *dev,
2415 			  const struct attribute_group **groups)
2416 {
2417 	sysfs_remove_groups(&dev->kobj, groups);
2418 }
2419 EXPORT_SYMBOL_GPL(device_remove_groups);
2420 
2421 union device_attr_group_devres {
2422 	const struct attribute_group *group;
2423 	const struct attribute_group **groups;
2424 };
2425 
2426 static int devm_attr_group_match(struct device *dev, void *res, void *data)
2427 {
2428 	return ((union device_attr_group_devres *)res)->group == data;
2429 }
2430 
2431 static void devm_attr_group_remove(struct device *dev, void *res)
2432 {
2433 	union device_attr_group_devres *devres = res;
2434 	const struct attribute_group *group = devres->group;
2435 
2436 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2437 	sysfs_remove_group(&dev->kobj, group);
2438 }
2439 
2440 static void devm_attr_groups_remove(struct device *dev, void *res)
2441 {
2442 	union device_attr_group_devres *devres = res;
2443 	const struct attribute_group **groups = devres->groups;
2444 
2445 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2446 	sysfs_remove_groups(&dev->kobj, groups);
2447 }
2448 
2449 /**
2450  * devm_device_add_group - given a device, create a managed attribute group
2451  * @dev:	The device to create the group for
2452  * @grp:	The attribute group to create
2453  *
2454  * This function creates a group for the first time.  It will explicitly
2455  * warn and error if any of the attribute files being created already exist.
2456  *
2457  * Returns 0 on success or error code on failure.
2458  */
2459 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2460 {
2461 	union device_attr_group_devres *devres;
2462 	int error;
2463 
2464 	devres = devres_alloc(devm_attr_group_remove,
2465 			      sizeof(*devres), GFP_KERNEL);
2466 	if (!devres)
2467 		return -ENOMEM;
2468 
2469 	error = sysfs_create_group(&dev->kobj, grp);
2470 	if (error) {
2471 		devres_free(devres);
2472 		return error;
2473 	}
2474 
2475 	devres->group = grp;
2476 	devres_add(dev, devres);
2477 	return 0;
2478 }
2479 EXPORT_SYMBOL_GPL(devm_device_add_group);
2480 
2481 /**
2482  * devm_device_remove_group: remove a managed group from a device
2483  * @dev:	device to remove the group from
2484  * @grp:	group to remove
2485  *
2486  * This function removes a group of attributes from a device. The attributes
2487  * previously have to have been created for this group, otherwise it will fail.
2488  */
2489 void devm_device_remove_group(struct device *dev,
2490 			      const struct attribute_group *grp)
2491 {
2492 	WARN_ON(devres_release(dev, devm_attr_group_remove,
2493 			       devm_attr_group_match,
2494 			       /* cast away const */ (void *)grp));
2495 }
2496 EXPORT_SYMBOL_GPL(devm_device_remove_group);
2497 
2498 /**
2499  * devm_device_add_groups - create a bunch of managed attribute groups
2500  * @dev:	The device to create the group for
2501  * @groups:	The attribute groups to create, NULL terminated
2502  *
2503  * This function creates a bunch of managed attribute groups.  If an error
2504  * occurs when creating a group, all previously created groups will be
2505  * removed, unwinding everything back to the original state when this
2506  * function was called.  It will explicitly warn and error if any of the
2507  * attribute files being created already exist.
2508  *
2509  * Returns 0 on success or error code from sysfs_create_group on failure.
2510  */
2511 int devm_device_add_groups(struct device *dev,
2512 			   const struct attribute_group **groups)
2513 {
2514 	union device_attr_group_devres *devres;
2515 	int error;
2516 
2517 	devres = devres_alloc(devm_attr_groups_remove,
2518 			      sizeof(*devres), GFP_KERNEL);
2519 	if (!devres)
2520 		return -ENOMEM;
2521 
2522 	error = sysfs_create_groups(&dev->kobj, groups);
2523 	if (error) {
2524 		devres_free(devres);
2525 		return error;
2526 	}
2527 
2528 	devres->groups = groups;
2529 	devres_add(dev, devres);
2530 	return 0;
2531 }
2532 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2533 
2534 /**
2535  * devm_device_remove_groups - remove a list of managed groups
2536  *
2537  * @dev:	The device for the groups to be removed from
2538  * @groups:	NULL terminated list of groups to be removed
2539  *
2540  * If groups is not NULL, remove the specified groups from the device.
2541  */
2542 void devm_device_remove_groups(struct device *dev,
2543 			       const struct attribute_group **groups)
2544 {
2545 	WARN_ON(devres_release(dev, devm_attr_groups_remove,
2546 			       devm_attr_group_match,
2547 			       /* cast away const */ (void *)groups));
2548 }
2549 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2550 
2551 static int device_add_attrs(struct device *dev)
2552 {
2553 	struct class *class = dev->class;
2554 	const struct device_type *type = dev->type;
2555 	int error;
2556 
2557 	if (class) {
2558 		error = device_add_groups(dev, class->dev_groups);
2559 		if (error)
2560 			return error;
2561 	}
2562 
2563 	if (type) {
2564 		error = device_add_groups(dev, type->groups);
2565 		if (error)
2566 			goto err_remove_class_groups;
2567 	}
2568 
2569 	error = device_add_groups(dev, dev->groups);
2570 	if (error)
2571 		goto err_remove_type_groups;
2572 
2573 	if (device_supports_offline(dev) && !dev->offline_disabled) {
2574 		error = device_create_file(dev, &dev_attr_online);
2575 		if (error)
2576 			goto err_remove_dev_groups;
2577 	}
2578 
2579 	if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2580 		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2581 		if (error)
2582 			goto err_remove_dev_online;
2583 	}
2584 
2585 	return 0;
2586 
2587  err_remove_dev_online:
2588 	device_remove_file(dev, &dev_attr_online);
2589  err_remove_dev_groups:
2590 	device_remove_groups(dev, dev->groups);
2591  err_remove_type_groups:
2592 	if (type)
2593 		device_remove_groups(dev, type->groups);
2594  err_remove_class_groups:
2595 	if (class)
2596 		device_remove_groups(dev, class->dev_groups);
2597 
2598 	return error;
2599 }
2600 
2601 static void device_remove_attrs(struct device *dev)
2602 {
2603 	struct class *class = dev->class;
2604 	const struct device_type *type = dev->type;
2605 
2606 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2607 	device_remove_file(dev, &dev_attr_online);
2608 	device_remove_groups(dev, dev->groups);
2609 
2610 	if (type)
2611 		device_remove_groups(dev, type->groups);
2612 
2613 	if (class)
2614 		device_remove_groups(dev, class->dev_groups);
2615 }
2616 
2617 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2618 			char *buf)
2619 {
2620 	return print_dev_t(buf, dev->devt);
2621 }
2622 static DEVICE_ATTR_RO(dev);
2623 
2624 /* /sys/devices/ */
2625 struct kset *devices_kset;
2626 
2627 /**
2628  * devices_kset_move_before - Move device in the devices_kset's list.
2629  * @deva: Device to move.
2630  * @devb: Device @deva should come before.
2631  */
2632 static void devices_kset_move_before(struct device *deva, struct device *devb)
2633 {
2634 	if (!devices_kset)
2635 		return;
2636 	pr_debug("devices_kset: Moving %s before %s\n",
2637 		 dev_name(deva), dev_name(devb));
2638 	spin_lock(&devices_kset->list_lock);
2639 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2640 	spin_unlock(&devices_kset->list_lock);
2641 }
2642 
2643 /**
2644  * devices_kset_move_after - Move device in the devices_kset's list.
2645  * @deva: Device to move
2646  * @devb: Device @deva should come after.
2647  */
2648 static void devices_kset_move_after(struct device *deva, struct device *devb)
2649 {
2650 	if (!devices_kset)
2651 		return;
2652 	pr_debug("devices_kset: Moving %s after %s\n",
2653 		 dev_name(deva), dev_name(devb));
2654 	spin_lock(&devices_kset->list_lock);
2655 	list_move(&deva->kobj.entry, &devb->kobj.entry);
2656 	spin_unlock(&devices_kset->list_lock);
2657 }
2658 
2659 /**
2660  * devices_kset_move_last - move the device to the end of devices_kset's list.
2661  * @dev: device to move
2662  */
2663 void devices_kset_move_last(struct device *dev)
2664 {
2665 	if (!devices_kset)
2666 		return;
2667 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2668 	spin_lock(&devices_kset->list_lock);
2669 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
2670 	spin_unlock(&devices_kset->list_lock);
2671 }
2672 
2673 /**
2674  * device_create_file - create sysfs attribute file for device.
2675  * @dev: device.
2676  * @attr: device attribute descriptor.
2677  */
2678 int device_create_file(struct device *dev,
2679 		       const struct device_attribute *attr)
2680 {
2681 	int error = 0;
2682 
2683 	if (dev) {
2684 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2685 			"Attribute %s: write permission without 'store'\n",
2686 			attr->attr.name);
2687 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2688 			"Attribute %s: read permission without 'show'\n",
2689 			attr->attr.name);
2690 		error = sysfs_create_file(&dev->kobj, &attr->attr);
2691 	}
2692 
2693 	return error;
2694 }
2695 EXPORT_SYMBOL_GPL(device_create_file);
2696 
2697 /**
2698  * device_remove_file - remove sysfs attribute file.
2699  * @dev: device.
2700  * @attr: device attribute descriptor.
2701  */
2702 void device_remove_file(struct device *dev,
2703 			const struct device_attribute *attr)
2704 {
2705 	if (dev)
2706 		sysfs_remove_file(&dev->kobj, &attr->attr);
2707 }
2708 EXPORT_SYMBOL_GPL(device_remove_file);
2709 
2710 /**
2711  * device_remove_file_self - remove sysfs attribute file from its own method.
2712  * @dev: device.
2713  * @attr: device attribute descriptor.
2714  *
2715  * See kernfs_remove_self() for details.
2716  */
2717 bool device_remove_file_self(struct device *dev,
2718 			     const struct device_attribute *attr)
2719 {
2720 	if (dev)
2721 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2722 	else
2723 		return false;
2724 }
2725 EXPORT_SYMBOL_GPL(device_remove_file_self);
2726 
2727 /**
2728  * device_create_bin_file - create sysfs binary attribute file for device.
2729  * @dev: device.
2730  * @attr: device binary attribute descriptor.
2731  */
2732 int device_create_bin_file(struct device *dev,
2733 			   const struct bin_attribute *attr)
2734 {
2735 	int error = -EINVAL;
2736 	if (dev)
2737 		error = sysfs_create_bin_file(&dev->kobj, attr);
2738 	return error;
2739 }
2740 EXPORT_SYMBOL_GPL(device_create_bin_file);
2741 
2742 /**
2743  * device_remove_bin_file - remove sysfs binary attribute file
2744  * @dev: device.
2745  * @attr: device binary attribute descriptor.
2746  */
2747 void device_remove_bin_file(struct device *dev,
2748 			    const struct bin_attribute *attr)
2749 {
2750 	if (dev)
2751 		sysfs_remove_bin_file(&dev->kobj, attr);
2752 }
2753 EXPORT_SYMBOL_GPL(device_remove_bin_file);
2754 
2755 static void klist_children_get(struct klist_node *n)
2756 {
2757 	struct device_private *p = to_device_private_parent(n);
2758 	struct device *dev = p->device;
2759 
2760 	get_device(dev);
2761 }
2762 
2763 static void klist_children_put(struct klist_node *n)
2764 {
2765 	struct device_private *p = to_device_private_parent(n);
2766 	struct device *dev = p->device;
2767 
2768 	put_device(dev);
2769 }
2770 
2771 /**
2772  * device_initialize - init device structure.
2773  * @dev: device.
2774  *
2775  * This prepares the device for use by other layers by initializing
2776  * its fields.
2777  * It is the first half of device_register(), if called by
2778  * that function, though it can also be called separately, so one
2779  * may use @dev's fields. In particular, get_device()/put_device()
2780  * may be used for reference counting of @dev after calling this
2781  * function.
2782  *
2783  * All fields in @dev must be initialized by the caller to 0, except
2784  * for those explicitly set to some other value.  The simplest
2785  * approach is to use kzalloc() to allocate the structure containing
2786  * @dev.
2787  *
2788  * NOTE: Use put_device() to give up your reference instead of freeing
2789  * @dev directly once you have called this function.
2790  */
2791 void device_initialize(struct device *dev)
2792 {
2793 	dev->kobj.kset = devices_kset;
2794 	kobject_init(&dev->kobj, &device_ktype);
2795 	INIT_LIST_HEAD(&dev->dma_pools);
2796 	mutex_init(&dev->mutex);
2797 #ifdef CONFIG_PROVE_LOCKING
2798 	mutex_init(&dev->lockdep_mutex);
2799 #endif
2800 	lockdep_set_novalidate_class(&dev->mutex);
2801 	spin_lock_init(&dev->devres_lock);
2802 	INIT_LIST_HEAD(&dev->devres_head);
2803 	device_pm_init(dev);
2804 	set_dev_node(dev, -1);
2805 #ifdef CONFIG_GENERIC_MSI_IRQ
2806 	INIT_LIST_HEAD(&dev->msi_list);
2807 #endif
2808 	INIT_LIST_HEAD(&dev->links.consumers);
2809 	INIT_LIST_HEAD(&dev->links.suppliers);
2810 	INIT_LIST_HEAD(&dev->links.defer_sync);
2811 	dev->links.status = DL_DEV_NO_DRIVER;
2812 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
2813     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
2814     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
2815 	dev->dma_coherent = dma_default_coherent;
2816 #endif
2817 }
2818 EXPORT_SYMBOL_GPL(device_initialize);
2819 
2820 struct kobject *virtual_device_parent(struct device *dev)
2821 {
2822 	static struct kobject *virtual_dir = NULL;
2823 
2824 	if (!virtual_dir)
2825 		virtual_dir = kobject_create_and_add("virtual",
2826 						     &devices_kset->kobj);
2827 
2828 	return virtual_dir;
2829 }
2830 
2831 struct class_dir {
2832 	struct kobject kobj;
2833 	struct class *class;
2834 };
2835 
2836 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2837 
2838 static void class_dir_release(struct kobject *kobj)
2839 {
2840 	struct class_dir *dir = to_class_dir(kobj);
2841 	kfree(dir);
2842 }
2843 
2844 static const
2845 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2846 {
2847 	struct class_dir *dir = to_class_dir(kobj);
2848 	return dir->class->ns_type;
2849 }
2850 
2851 static struct kobj_type class_dir_ktype = {
2852 	.release	= class_dir_release,
2853 	.sysfs_ops	= &kobj_sysfs_ops,
2854 	.child_ns_type	= class_dir_child_ns_type
2855 };
2856 
2857 static struct kobject *
2858 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2859 {
2860 	struct class_dir *dir;
2861 	int retval;
2862 
2863 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2864 	if (!dir)
2865 		return ERR_PTR(-ENOMEM);
2866 
2867 	dir->class = class;
2868 	kobject_init(&dir->kobj, &class_dir_ktype);
2869 
2870 	dir->kobj.kset = &class->p->glue_dirs;
2871 
2872 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2873 	if (retval < 0) {
2874 		kobject_put(&dir->kobj);
2875 		return ERR_PTR(retval);
2876 	}
2877 	return &dir->kobj;
2878 }
2879 
2880 static DEFINE_MUTEX(gdp_mutex);
2881 
2882 static struct kobject *get_device_parent(struct device *dev,
2883 					 struct device *parent)
2884 {
2885 	if (dev->class) {
2886 		struct kobject *kobj = NULL;
2887 		struct kobject *parent_kobj;
2888 		struct kobject *k;
2889 
2890 #ifdef CONFIG_BLOCK
2891 		/* block disks show up in /sys/block */
2892 		if (sysfs_deprecated && dev->class == &block_class) {
2893 			if (parent && parent->class == &block_class)
2894 				return &parent->kobj;
2895 			return &block_class.p->subsys.kobj;
2896 		}
2897 #endif
2898 
2899 		/*
2900 		 * If we have no parent, we live in "virtual".
2901 		 * Class-devices with a non class-device as parent, live
2902 		 * in a "glue" directory to prevent namespace collisions.
2903 		 */
2904 		if (parent == NULL)
2905 			parent_kobj = virtual_device_parent(dev);
2906 		else if (parent->class && !dev->class->ns_type)
2907 			return &parent->kobj;
2908 		else
2909 			parent_kobj = &parent->kobj;
2910 
2911 		mutex_lock(&gdp_mutex);
2912 
2913 		/* find our class-directory at the parent and reference it */
2914 		spin_lock(&dev->class->p->glue_dirs.list_lock);
2915 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2916 			if (k->parent == parent_kobj) {
2917 				kobj = kobject_get(k);
2918 				break;
2919 			}
2920 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
2921 		if (kobj) {
2922 			mutex_unlock(&gdp_mutex);
2923 			return kobj;
2924 		}
2925 
2926 		/* or create a new class-directory at the parent device */
2927 		k = class_dir_create_and_add(dev->class, parent_kobj);
2928 		/* do not emit an uevent for this simple "glue" directory */
2929 		mutex_unlock(&gdp_mutex);
2930 		return k;
2931 	}
2932 
2933 	/* subsystems can specify a default root directory for their devices */
2934 	if (!parent && dev->bus && dev->bus->dev_root)
2935 		return &dev->bus->dev_root->kobj;
2936 
2937 	if (parent)
2938 		return &parent->kobj;
2939 	return NULL;
2940 }
2941 
2942 static inline bool live_in_glue_dir(struct kobject *kobj,
2943 				    struct device *dev)
2944 {
2945 	if (!kobj || !dev->class ||
2946 	    kobj->kset != &dev->class->p->glue_dirs)
2947 		return false;
2948 	return true;
2949 }
2950 
2951 static inline struct kobject *get_glue_dir(struct device *dev)
2952 {
2953 	return dev->kobj.parent;
2954 }
2955 
2956 /*
2957  * make sure cleaning up dir as the last step, we need to make
2958  * sure .release handler of kobject is run with holding the
2959  * global lock
2960  */
2961 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
2962 {
2963 	unsigned int ref;
2964 
2965 	/* see if we live in a "glue" directory */
2966 	if (!live_in_glue_dir(glue_dir, dev))
2967 		return;
2968 
2969 	mutex_lock(&gdp_mutex);
2970 	/**
2971 	 * There is a race condition between removing glue directory
2972 	 * and adding a new device under the glue directory.
2973 	 *
2974 	 * CPU1:                                         CPU2:
2975 	 *
2976 	 * device_add()
2977 	 *   get_device_parent()
2978 	 *     class_dir_create_and_add()
2979 	 *       kobject_add_internal()
2980 	 *         create_dir()    // create glue_dir
2981 	 *
2982 	 *                                               device_add()
2983 	 *                                                 get_device_parent()
2984 	 *                                                   kobject_get() // get glue_dir
2985 	 *
2986 	 * device_del()
2987 	 *   cleanup_glue_dir()
2988 	 *     kobject_del(glue_dir)
2989 	 *
2990 	 *                                               kobject_add()
2991 	 *                                                 kobject_add_internal()
2992 	 *                                                   create_dir() // in glue_dir
2993 	 *                                                     sysfs_create_dir_ns()
2994 	 *                                                       kernfs_create_dir_ns(sd)
2995 	 *
2996 	 *       sysfs_remove_dir() // glue_dir->sd=NULL
2997 	 *       sysfs_put()        // free glue_dir->sd
2998 	 *
2999 	 *                                                         // sd is freed
3000 	 *                                                         kernfs_new_node(sd)
3001 	 *                                                           kernfs_get(glue_dir)
3002 	 *                                                           kernfs_add_one()
3003 	 *                                                           kernfs_put()
3004 	 *
3005 	 * Before CPU1 remove last child device under glue dir, if CPU2 add
3006 	 * a new device under glue dir, the glue_dir kobject reference count
3007 	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3008 	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3009 	 * and sysfs_put(). This result in glue_dir->sd is freed.
3010 	 *
3011 	 * Then the CPU2 will see a stale "empty" but still potentially used
3012 	 * glue dir around in kernfs_new_node().
3013 	 *
3014 	 * In order to avoid this happening, we also should make sure that
3015 	 * kernfs_node for glue_dir is released in CPU1 only when refcount
3016 	 * for glue_dir kobj is 1.
3017 	 */
3018 	ref = kref_read(&glue_dir->kref);
3019 	if (!kobject_has_children(glue_dir) && !--ref)
3020 		kobject_del(glue_dir);
3021 	kobject_put(glue_dir);
3022 	mutex_unlock(&gdp_mutex);
3023 }
3024 
3025 static int device_add_class_symlinks(struct device *dev)
3026 {
3027 	struct device_node *of_node = dev_of_node(dev);
3028 	int error;
3029 
3030 	if (of_node) {
3031 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3032 		if (error)
3033 			dev_warn(dev, "Error %d creating of_node link\n",error);
3034 		/* An error here doesn't warrant bringing down the device */
3035 	}
3036 
3037 	if (!dev->class)
3038 		return 0;
3039 
3040 	error = sysfs_create_link(&dev->kobj,
3041 				  &dev->class->p->subsys.kobj,
3042 				  "subsystem");
3043 	if (error)
3044 		goto out_devnode;
3045 
3046 	if (dev->parent && device_is_not_partition(dev)) {
3047 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3048 					  "device");
3049 		if (error)
3050 			goto out_subsys;
3051 	}
3052 
3053 #ifdef CONFIG_BLOCK
3054 	/* /sys/block has directories and does not need symlinks */
3055 	if (sysfs_deprecated && dev->class == &block_class)
3056 		return 0;
3057 #endif
3058 
3059 	/* link in the class directory pointing to the device */
3060 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
3061 				  &dev->kobj, dev_name(dev));
3062 	if (error)
3063 		goto out_device;
3064 
3065 	return 0;
3066 
3067 out_device:
3068 	sysfs_remove_link(&dev->kobj, "device");
3069 
3070 out_subsys:
3071 	sysfs_remove_link(&dev->kobj, "subsystem");
3072 out_devnode:
3073 	sysfs_remove_link(&dev->kobj, "of_node");
3074 	return error;
3075 }
3076 
3077 static void device_remove_class_symlinks(struct device *dev)
3078 {
3079 	if (dev_of_node(dev))
3080 		sysfs_remove_link(&dev->kobj, "of_node");
3081 
3082 	if (!dev->class)
3083 		return;
3084 
3085 	if (dev->parent && device_is_not_partition(dev))
3086 		sysfs_remove_link(&dev->kobj, "device");
3087 	sysfs_remove_link(&dev->kobj, "subsystem");
3088 #ifdef CONFIG_BLOCK
3089 	if (sysfs_deprecated && dev->class == &block_class)
3090 		return;
3091 #endif
3092 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
3093 }
3094 
3095 /**
3096  * dev_set_name - set a device name
3097  * @dev: device
3098  * @fmt: format string for the device's name
3099  */
3100 int dev_set_name(struct device *dev, const char *fmt, ...)
3101 {
3102 	va_list vargs;
3103 	int err;
3104 
3105 	va_start(vargs, fmt);
3106 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3107 	va_end(vargs);
3108 	return err;
3109 }
3110 EXPORT_SYMBOL_GPL(dev_set_name);
3111 
3112 /**
3113  * device_to_dev_kobj - select a /sys/dev/ directory for the device
3114  * @dev: device
3115  *
3116  * By default we select char/ for new entries.  Setting class->dev_obj
3117  * to NULL prevents an entry from being created.  class->dev_kobj must
3118  * be set (or cleared) before any devices are registered to the class
3119  * otherwise device_create_sys_dev_entry() and
3120  * device_remove_sys_dev_entry() will disagree about the presence of
3121  * the link.
3122  */
3123 static struct kobject *device_to_dev_kobj(struct device *dev)
3124 {
3125 	struct kobject *kobj;
3126 
3127 	if (dev->class)
3128 		kobj = dev->class->dev_kobj;
3129 	else
3130 		kobj = sysfs_dev_char_kobj;
3131 
3132 	return kobj;
3133 }
3134 
3135 static int device_create_sys_dev_entry(struct device *dev)
3136 {
3137 	struct kobject *kobj = device_to_dev_kobj(dev);
3138 	int error = 0;
3139 	char devt_str[15];
3140 
3141 	if (kobj) {
3142 		format_dev_t(devt_str, dev->devt);
3143 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3144 	}
3145 
3146 	return error;
3147 }
3148 
3149 static void device_remove_sys_dev_entry(struct device *dev)
3150 {
3151 	struct kobject *kobj = device_to_dev_kobj(dev);
3152 	char devt_str[15];
3153 
3154 	if (kobj) {
3155 		format_dev_t(devt_str, dev->devt);
3156 		sysfs_remove_link(kobj, devt_str);
3157 	}
3158 }
3159 
3160 static int device_private_init(struct device *dev)
3161 {
3162 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3163 	if (!dev->p)
3164 		return -ENOMEM;
3165 	dev->p->device = dev;
3166 	klist_init(&dev->p->klist_children, klist_children_get,
3167 		   klist_children_put);
3168 	INIT_LIST_HEAD(&dev->p->deferred_probe);
3169 	return 0;
3170 }
3171 
3172 /**
3173  * device_add - add device to device hierarchy.
3174  * @dev: device.
3175  *
3176  * This is part 2 of device_register(), though may be called
3177  * separately _iff_ device_initialize() has been called separately.
3178  *
3179  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3180  * to the global and sibling lists for the device, then
3181  * adds it to the other relevant subsystems of the driver model.
3182  *
3183  * Do not call this routine or device_register() more than once for
3184  * any device structure.  The driver model core is not designed to work
3185  * with devices that get unregistered and then spring back to life.
3186  * (Among other things, it's very hard to guarantee that all references
3187  * to the previous incarnation of @dev have been dropped.)  Allocate
3188  * and register a fresh new struct device instead.
3189  *
3190  * NOTE: _Never_ directly free @dev after calling this function, even
3191  * if it returned an error! Always use put_device() to give up your
3192  * reference instead.
3193  *
3194  * Rule of thumb is: if device_add() succeeds, you should call
3195  * device_del() when you want to get rid of it. If device_add() has
3196  * *not* succeeded, use *only* put_device() to drop the reference
3197  * count.
3198  */
3199 int device_add(struct device *dev)
3200 {
3201 	struct device *parent;
3202 	struct kobject *kobj;
3203 	struct class_interface *class_intf;
3204 	int error = -EINVAL;
3205 	struct kobject *glue_dir = NULL;
3206 
3207 	dev = get_device(dev);
3208 	if (!dev)
3209 		goto done;
3210 
3211 	if (!dev->p) {
3212 		error = device_private_init(dev);
3213 		if (error)
3214 			goto done;
3215 	}
3216 
3217 	/*
3218 	 * for statically allocated devices, which should all be converted
3219 	 * some day, we need to initialize the name. We prevent reading back
3220 	 * the name, and force the use of dev_name()
3221 	 */
3222 	if (dev->init_name) {
3223 		dev_set_name(dev, "%s", dev->init_name);
3224 		dev->init_name = NULL;
3225 	}
3226 
3227 	/* subsystems can specify simple device enumeration */
3228 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
3229 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3230 
3231 	if (!dev_name(dev)) {
3232 		error = -EINVAL;
3233 		goto name_error;
3234 	}
3235 
3236 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3237 
3238 	parent = get_device(dev->parent);
3239 	kobj = get_device_parent(dev, parent);
3240 	if (IS_ERR(kobj)) {
3241 		error = PTR_ERR(kobj);
3242 		goto parent_error;
3243 	}
3244 	if (kobj)
3245 		dev->kobj.parent = kobj;
3246 
3247 	/* use parent numa_node */
3248 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3249 		set_dev_node(dev, dev_to_node(parent));
3250 
3251 	/* first, register with generic layer. */
3252 	/* we require the name to be set before, and pass NULL */
3253 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3254 	if (error) {
3255 		glue_dir = get_glue_dir(dev);
3256 		goto Error;
3257 	}
3258 
3259 	/* notify platform of device entry */
3260 	error = device_platform_notify(dev, KOBJ_ADD);
3261 	if (error)
3262 		goto platform_error;
3263 
3264 	error = device_create_file(dev, &dev_attr_uevent);
3265 	if (error)
3266 		goto attrError;
3267 
3268 	error = device_add_class_symlinks(dev);
3269 	if (error)
3270 		goto SymlinkError;
3271 	error = device_add_attrs(dev);
3272 	if (error)
3273 		goto AttrsError;
3274 	error = bus_add_device(dev);
3275 	if (error)
3276 		goto BusError;
3277 	error = dpm_sysfs_add(dev);
3278 	if (error)
3279 		goto DPMError;
3280 	device_pm_add(dev);
3281 
3282 	if (MAJOR(dev->devt)) {
3283 		error = device_create_file(dev, &dev_attr_dev);
3284 		if (error)
3285 			goto DevAttrError;
3286 
3287 		error = device_create_sys_dev_entry(dev);
3288 		if (error)
3289 			goto SysEntryError;
3290 
3291 		devtmpfs_create_node(dev);
3292 	}
3293 
3294 	/* Notify clients of device addition.  This call must come
3295 	 * after dpm_sysfs_add() and before kobject_uevent().
3296 	 */
3297 	if (dev->bus)
3298 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3299 					     BUS_NOTIFY_ADD_DEVICE, dev);
3300 
3301 	kobject_uevent(&dev->kobj, KOBJ_ADD);
3302 
3303 	/*
3304 	 * Check if any of the other devices (consumers) have been waiting for
3305 	 * this device (supplier) to be added so that they can create a device
3306 	 * link to it.
3307 	 *
3308 	 * This needs to happen after device_pm_add() because device_link_add()
3309 	 * requires the supplier be registered before it's called.
3310 	 *
3311 	 * But this also needs to happen before bus_probe_device() to make sure
3312 	 * waiting consumers can link to it before the driver is bound to the
3313 	 * device and the driver sync_state callback is called for this device.
3314 	 */
3315 	if (dev->fwnode && !dev->fwnode->dev) {
3316 		dev->fwnode->dev = dev;
3317 		fw_devlink_link_device(dev);
3318 	}
3319 
3320 	bus_probe_device(dev);
3321 
3322 	/*
3323 	 * If all driver registration is done and a newly added device doesn't
3324 	 * match with any driver, don't block its consumers from probing in
3325 	 * case the consumer device is able to operate without this supplier.
3326 	 */
3327 	if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3328 		fw_devlink_unblock_consumers(dev);
3329 
3330 	if (parent)
3331 		klist_add_tail(&dev->p->knode_parent,
3332 			       &parent->p->klist_children);
3333 
3334 	if (dev->class) {
3335 		mutex_lock(&dev->class->p->mutex);
3336 		/* tie the class to the device */
3337 		klist_add_tail(&dev->p->knode_class,
3338 			       &dev->class->p->klist_devices);
3339 
3340 		/* notify any interfaces that the device is here */
3341 		list_for_each_entry(class_intf,
3342 				    &dev->class->p->interfaces, node)
3343 			if (class_intf->add_dev)
3344 				class_intf->add_dev(dev, class_intf);
3345 		mutex_unlock(&dev->class->p->mutex);
3346 	}
3347 done:
3348 	put_device(dev);
3349 	return error;
3350  SysEntryError:
3351 	if (MAJOR(dev->devt))
3352 		device_remove_file(dev, &dev_attr_dev);
3353  DevAttrError:
3354 	device_pm_remove(dev);
3355 	dpm_sysfs_remove(dev);
3356  DPMError:
3357 	bus_remove_device(dev);
3358  BusError:
3359 	device_remove_attrs(dev);
3360  AttrsError:
3361 	device_remove_class_symlinks(dev);
3362  SymlinkError:
3363 	device_remove_file(dev, &dev_attr_uevent);
3364  attrError:
3365 	device_platform_notify(dev, KOBJ_REMOVE);
3366 platform_error:
3367 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3368 	glue_dir = get_glue_dir(dev);
3369 	kobject_del(&dev->kobj);
3370  Error:
3371 	cleanup_glue_dir(dev, glue_dir);
3372 parent_error:
3373 	put_device(parent);
3374 name_error:
3375 	kfree(dev->p);
3376 	dev->p = NULL;
3377 	goto done;
3378 }
3379 EXPORT_SYMBOL_GPL(device_add);
3380 
3381 /**
3382  * device_register - register a device with the system.
3383  * @dev: pointer to the device structure
3384  *
3385  * This happens in two clean steps - initialize the device
3386  * and add it to the system. The two steps can be called
3387  * separately, but this is the easiest and most common.
3388  * I.e. you should only call the two helpers separately if
3389  * have a clearly defined need to use and refcount the device
3390  * before it is added to the hierarchy.
3391  *
3392  * For more information, see the kerneldoc for device_initialize()
3393  * and device_add().
3394  *
3395  * NOTE: _Never_ directly free @dev after calling this function, even
3396  * if it returned an error! Always use put_device() to give up the
3397  * reference initialized in this function instead.
3398  */
3399 int device_register(struct device *dev)
3400 {
3401 	device_initialize(dev);
3402 	return device_add(dev);
3403 }
3404 EXPORT_SYMBOL_GPL(device_register);
3405 
3406 /**
3407  * get_device - increment reference count for device.
3408  * @dev: device.
3409  *
3410  * This simply forwards the call to kobject_get(), though
3411  * we do take care to provide for the case that we get a NULL
3412  * pointer passed in.
3413  */
3414 struct device *get_device(struct device *dev)
3415 {
3416 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3417 }
3418 EXPORT_SYMBOL_GPL(get_device);
3419 
3420 /**
3421  * put_device - decrement reference count.
3422  * @dev: device in question.
3423  */
3424 void put_device(struct device *dev)
3425 {
3426 	/* might_sleep(); */
3427 	if (dev)
3428 		kobject_put(&dev->kobj);
3429 }
3430 EXPORT_SYMBOL_GPL(put_device);
3431 
3432 bool kill_device(struct device *dev)
3433 {
3434 	/*
3435 	 * Require the device lock and set the "dead" flag to guarantee that
3436 	 * the update behavior is consistent with the other bitfields near
3437 	 * it and that we cannot have an asynchronous probe routine trying
3438 	 * to run while we are tearing out the bus/class/sysfs from
3439 	 * underneath the device.
3440 	 */
3441 	lockdep_assert_held(&dev->mutex);
3442 
3443 	if (dev->p->dead)
3444 		return false;
3445 	dev->p->dead = true;
3446 	return true;
3447 }
3448 EXPORT_SYMBOL_GPL(kill_device);
3449 
3450 /**
3451  * device_del - delete device from system.
3452  * @dev: device.
3453  *
3454  * This is the first part of the device unregistration
3455  * sequence. This removes the device from the lists we control
3456  * from here, has it removed from the other driver model
3457  * subsystems it was added to in device_add(), and removes it
3458  * from the kobject hierarchy.
3459  *
3460  * NOTE: this should be called manually _iff_ device_add() was
3461  * also called manually.
3462  */
3463 void device_del(struct device *dev)
3464 {
3465 	struct device *parent = dev->parent;
3466 	struct kobject *glue_dir = NULL;
3467 	struct class_interface *class_intf;
3468 	unsigned int noio_flag;
3469 
3470 	device_lock(dev);
3471 	kill_device(dev);
3472 	device_unlock(dev);
3473 
3474 	if (dev->fwnode && dev->fwnode->dev == dev)
3475 		dev->fwnode->dev = NULL;
3476 
3477 	/* Notify clients of device removal.  This call must come
3478 	 * before dpm_sysfs_remove().
3479 	 */
3480 	noio_flag = memalloc_noio_save();
3481 	if (dev->bus)
3482 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3483 					     BUS_NOTIFY_DEL_DEVICE, dev);
3484 
3485 	dpm_sysfs_remove(dev);
3486 	if (parent)
3487 		klist_del(&dev->p->knode_parent);
3488 	if (MAJOR(dev->devt)) {
3489 		devtmpfs_delete_node(dev);
3490 		device_remove_sys_dev_entry(dev);
3491 		device_remove_file(dev, &dev_attr_dev);
3492 	}
3493 	if (dev->class) {
3494 		device_remove_class_symlinks(dev);
3495 
3496 		mutex_lock(&dev->class->p->mutex);
3497 		/* notify any interfaces that the device is now gone */
3498 		list_for_each_entry(class_intf,
3499 				    &dev->class->p->interfaces, node)
3500 			if (class_intf->remove_dev)
3501 				class_intf->remove_dev(dev, class_intf);
3502 		/* remove the device from the class list */
3503 		klist_del(&dev->p->knode_class);
3504 		mutex_unlock(&dev->class->p->mutex);
3505 	}
3506 	device_remove_file(dev, &dev_attr_uevent);
3507 	device_remove_attrs(dev);
3508 	bus_remove_device(dev);
3509 	device_pm_remove(dev);
3510 	driver_deferred_probe_del(dev);
3511 	device_platform_notify(dev, KOBJ_REMOVE);
3512 	device_remove_properties(dev);
3513 	device_links_purge(dev);
3514 
3515 	if (dev->bus)
3516 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3517 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
3518 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3519 	glue_dir = get_glue_dir(dev);
3520 	kobject_del(&dev->kobj);
3521 	cleanup_glue_dir(dev, glue_dir);
3522 	memalloc_noio_restore(noio_flag);
3523 	put_device(parent);
3524 }
3525 EXPORT_SYMBOL_GPL(device_del);
3526 
3527 /**
3528  * device_unregister - unregister device from system.
3529  * @dev: device going away.
3530  *
3531  * We do this in two parts, like we do device_register(). First,
3532  * we remove it from all the subsystems with device_del(), then
3533  * we decrement the reference count via put_device(). If that
3534  * is the final reference count, the device will be cleaned up
3535  * via device_release() above. Otherwise, the structure will
3536  * stick around until the final reference to the device is dropped.
3537  */
3538 void device_unregister(struct device *dev)
3539 {
3540 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3541 	device_del(dev);
3542 	put_device(dev);
3543 }
3544 EXPORT_SYMBOL_GPL(device_unregister);
3545 
3546 static struct device *prev_device(struct klist_iter *i)
3547 {
3548 	struct klist_node *n = klist_prev(i);
3549 	struct device *dev = NULL;
3550 	struct device_private *p;
3551 
3552 	if (n) {
3553 		p = to_device_private_parent(n);
3554 		dev = p->device;
3555 	}
3556 	return dev;
3557 }
3558 
3559 static struct device *next_device(struct klist_iter *i)
3560 {
3561 	struct klist_node *n = klist_next(i);
3562 	struct device *dev = NULL;
3563 	struct device_private *p;
3564 
3565 	if (n) {
3566 		p = to_device_private_parent(n);
3567 		dev = p->device;
3568 	}
3569 	return dev;
3570 }
3571 
3572 /**
3573  * device_get_devnode - path of device node file
3574  * @dev: device
3575  * @mode: returned file access mode
3576  * @uid: returned file owner
3577  * @gid: returned file group
3578  * @tmp: possibly allocated string
3579  *
3580  * Return the relative path of a possible device node.
3581  * Non-default names may need to allocate a memory to compose
3582  * a name. This memory is returned in tmp and needs to be
3583  * freed by the caller.
3584  */
3585 const char *device_get_devnode(struct device *dev,
3586 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3587 			       const char **tmp)
3588 {
3589 	char *s;
3590 
3591 	*tmp = NULL;
3592 
3593 	/* the device type may provide a specific name */
3594 	if (dev->type && dev->type->devnode)
3595 		*tmp = dev->type->devnode(dev, mode, uid, gid);
3596 	if (*tmp)
3597 		return *tmp;
3598 
3599 	/* the class may provide a specific name */
3600 	if (dev->class && dev->class->devnode)
3601 		*tmp = dev->class->devnode(dev, mode);
3602 	if (*tmp)
3603 		return *tmp;
3604 
3605 	/* return name without allocation, tmp == NULL */
3606 	if (strchr(dev_name(dev), '!') == NULL)
3607 		return dev_name(dev);
3608 
3609 	/* replace '!' in the name with '/' */
3610 	s = kstrdup(dev_name(dev), GFP_KERNEL);
3611 	if (!s)
3612 		return NULL;
3613 	strreplace(s, '!', '/');
3614 	return *tmp = s;
3615 }
3616 
3617 /**
3618  * device_for_each_child - device child iterator.
3619  * @parent: parent struct device.
3620  * @fn: function to be called for each device.
3621  * @data: data for the callback.
3622  *
3623  * Iterate over @parent's child devices, and call @fn for each,
3624  * passing it @data.
3625  *
3626  * We check the return of @fn each time. If it returns anything
3627  * other than 0, we break out and return that value.
3628  */
3629 int device_for_each_child(struct device *parent, void *data,
3630 			  int (*fn)(struct device *dev, void *data))
3631 {
3632 	struct klist_iter i;
3633 	struct device *child;
3634 	int error = 0;
3635 
3636 	if (!parent->p)
3637 		return 0;
3638 
3639 	klist_iter_init(&parent->p->klist_children, &i);
3640 	while (!error && (child = next_device(&i)))
3641 		error = fn(child, data);
3642 	klist_iter_exit(&i);
3643 	return error;
3644 }
3645 EXPORT_SYMBOL_GPL(device_for_each_child);
3646 
3647 /**
3648  * device_for_each_child_reverse - device child iterator in reversed order.
3649  * @parent: parent struct device.
3650  * @fn: function to be called for each device.
3651  * @data: data for the callback.
3652  *
3653  * Iterate over @parent's child devices, and call @fn for each,
3654  * passing it @data.
3655  *
3656  * We check the return of @fn each time. If it returns anything
3657  * other than 0, we break out and return that value.
3658  */
3659 int device_for_each_child_reverse(struct device *parent, void *data,
3660 				  int (*fn)(struct device *dev, void *data))
3661 {
3662 	struct klist_iter i;
3663 	struct device *child;
3664 	int error = 0;
3665 
3666 	if (!parent->p)
3667 		return 0;
3668 
3669 	klist_iter_init(&parent->p->klist_children, &i);
3670 	while ((child = prev_device(&i)) && !error)
3671 		error = fn(child, data);
3672 	klist_iter_exit(&i);
3673 	return error;
3674 }
3675 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3676 
3677 /**
3678  * device_find_child - device iterator for locating a particular device.
3679  * @parent: parent struct device
3680  * @match: Callback function to check device
3681  * @data: Data to pass to match function
3682  *
3683  * This is similar to the device_for_each_child() function above, but it
3684  * returns a reference to a device that is 'found' for later use, as
3685  * determined by the @match callback.
3686  *
3687  * The callback should return 0 if the device doesn't match and non-zero
3688  * if it does.  If the callback returns non-zero and a reference to the
3689  * current device can be obtained, this function will return to the caller
3690  * and not iterate over any more devices.
3691  *
3692  * NOTE: you will need to drop the reference with put_device() after use.
3693  */
3694 struct device *device_find_child(struct device *parent, void *data,
3695 				 int (*match)(struct device *dev, void *data))
3696 {
3697 	struct klist_iter i;
3698 	struct device *child;
3699 
3700 	if (!parent)
3701 		return NULL;
3702 
3703 	klist_iter_init(&parent->p->klist_children, &i);
3704 	while ((child = next_device(&i)))
3705 		if (match(child, data) && get_device(child))
3706 			break;
3707 	klist_iter_exit(&i);
3708 	return child;
3709 }
3710 EXPORT_SYMBOL_GPL(device_find_child);
3711 
3712 /**
3713  * device_find_child_by_name - device iterator for locating a child device.
3714  * @parent: parent struct device
3715  * @name: name of the child device
3716  *
3717  * This is similar to the device_find_child() function above, but it
3718  * returns a reference to a device that has the name @name.
3719  *
3720  * NOTE: you will need to drop the reference with put_device() after use.
3721  */
3722 struct device *device_find_child_by_name(struct device *parent,
3723 					 const char *name)
3724 {
3725 	struct klist_iter i;
3726 	struct device *child;
3727 
3728 	if (!parent)
3729 		return NULL;
3730 
3731 	klist_iter_init(&parent->p->klist_children, &i);
3732 	while ((child = next_device(&i)))
3733 		if (sysfs_streq(dev_name(child), name) && get_device(child))
3734 			break;
3735 	klist_iter_exit(&i);
3736 	return child;
3737 }
3738 EXPORT_SYMBOL_GPL(device_find_child_by_name);
3739 
3740 int __init devices_init(void)
3741 {
3742 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3743 	if (!devices_kset)
3744 		return -ENOMEM;
3745 	dev_kobj = kobject_create_and_add("dev", NULL);
3746 	if (!dev_kobj)
3747 		goto dev_kobj_err;
3748 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3749 	if (!sysfs_dev_block_kobj)
3750 		goto block_kobj_err;
3751 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3752 	if (!sysfs_dev_char_kobj)
3753 		goto char_kobj_err;
3754 
3755 	return 0;
3756 
3757  char_kobj_err:
3758 	kobject_put(sysfs_dev_block_kobj);
3759  block_kobj_err:
3760 	kobject_put(dev_kobj);
3761  dev_kobj_err:
3762 	kset_unregister(devices_kset);
3763 	return -ENOMEM;
3764 }
3765 
3766 static int device_check_offline(struct device *dev, void *not_used)
3767 {
3768 	int ret;
3769 
3770 	ret = device_for_each_child(dev, NULL, device_check_offline);
3771 	if (ret)
3772 		return ret;
3773 
3774 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3775 }
3776 
3777 /**
3778  * device_offline - Prepare the device for hot-removal.
3779  * @dev: Device to be put offline.
3780  *
3781  * Execute the device bus type's .offline() callback, if present, to prepare
3782  * the device for a subsequent hot-removal.  If that succeeds, the device must
3783  * not be used until either it is removed or its bus type's .online() callback
3784  * is executed.
3785  *
3786  * Call under device_hotplug_lock.
3787  */
3788 int device_offline(struct device *dev)
3789 {
3790 	int ret;
3791 
3792 	if (dev->offline_disabled)
3793 		return -EPERM;
3794 
3795 	ret = device_for_each_child(dev, NULL, device_check_offline);
3796 	if (ret)
3797 		return ret;
3798 
3799 	device_lock(dev);
3800 	if (device_supports_offline(dev)) {
3801 		if (dev->offline) {
3802 			ret = 1;
3803 		} else {
3804 			ret = dev->bus->offline(dev);
3805 			if (!ret) {
3806 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3807 				dev->offline = true;
3808 			}
3809 		}
3810 	}
3811 	device_unlock(dev);
3812 
3813 	return ret;
3814 }
3815 
3816 /**
3817  * device_online - Put the device back online after successful device_offline().
3818  * @dev: Device to be put back online.
3819  *
3820  * If device_offline() has been successfully executed for @dev, but the device
3821  * has not been removed subsequently, execute its bus type's .online() callback
3822  * to indicate that the device can be used again.
3823  *
3824  * Call under device_hotplug_lock.
3825  */
3826 int device_online(struct device *dev)
3827 {
3828 	int ret = 0;
3829 
3830 	device_lock(dev);
3831 	if (device_supports_offline(dev)) {
3832 		if (dev->offline) {
3833 			ret = dev->bus->online(dev);
3834 			if (!ret) {
3835 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3836 				dev->offline = false;
3837 			}
3838 		} else {
3839 			ret = 1;
3840 		}
3841 	}
3842 	device_unlock(dev);
3843 
3844 	return ret;
3845 }
3846 
3847 struct root_device {
3848 	struct device dev;
3849 	struct module *owner;
3850 };
3851 
3852 static inline struct root_device *to_root_device(struct device *d)
3853 {
3854 	return container_of(d, struct root_device, dev);
3855 }
3856 
3857 static void root_device_release(struct device *dev)
3858 {
3859 	kfree(to_root_device(dev));
3860 }
3861 
3862 /**
3863  * __root_device_register - allocate and register a root device
3864  * @name: root device name
3865  * @owner: owner module of the root device, usually THIS_MODULE
3866  *
3867  * This function allocates a root device and registers it
3868  * using device_register(). In order to free the returned
3869  * device, use root_device_unregister().
3870  *
3871  * Root devices are dummy devices which allow other devices
3872  * to be grouped under /sys/devices. Use this function to
3873  * allocate a root device and then use it as the parent of
3874  * any device which should appear under /sys/devices/{name}
3875  *
3876  * The /sys/devices/{name} directory will also contain a
3877  * 'module' symlink which points to the @owner directory
3878  * in sysfs.
3879  *
3880  * Returns &struct device pointer on success, or ERR_PTR() on error.
3881  *
3882  * Note: You probably want to use root_device_register().
3883  */
3884 struct device *__root_device_register(const char *name, struct module *owner)
3885 {
3886 	struct root_device *root;
3887 	int err = -ENOMEM;
3888 
3889 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3890 	if (!root)
3891 		return ERR_PTR(err);
3892 
3893 	err = dev_set_name(&root->dev, "%s", name);
3894 	if (err) {
3895 		kfree(root);
3896 		return ERR_PTR(err);
3897 	}
3898 
3899 	root->dev.release = root_device_release;
3900 
3901 	err = device_register(&root->dev);
3902 	if (err) {
3903 		put_device(&root->dev);
3904 		return ERR_PTR(err);
3905 	}
3906 
3907 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
3908 	if (owner) {
3909 		struct module_kobject *mk = &owner->mkobj;
3910 
3911 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3912 		if (err) {
3913 			device_unregister(&root->dev);
3914 			return ERR_PTR(err);
3915 		}
3916 		root->owner = owner;
3917 	}
3918 #endif
3919 
3920 	return &root->dev;
3921 }
3922 EXPORT_SYMBOL_GPL(__root_device_register);
3923 
3924 /**
3925  * root_device_unregister - unregister and free a root device
3926  * @dev: device going away
3927  *
3928  * This function unregisters and cleans up a device that was created by
3929  * root_device_register().
3930  */
3931 void root_device_unregister(struct device *dev)
3932 {
3933 	struct root_device *root = to_root_device(dev);
3934 
3935 	if (root->owner)
3936 		sysfs_remove_link(&root->dev.kobj, "module");
3937 
3938 	device_unregister(dev);
3939 }
3940 EXPORT_SYMBOL_GPL(root_device_unregister);
3941 
3942 
3943 static void device_create_release(struct device *dev)
3944 {
3945 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3946 	kfree(dev);
3947 }
3948 
3949 static __printf(6, 0) struct device *
3950 device_create_groups_vargs(struct class *class, struct device *parent,
3951 			   dev_t devt, void *drvdata,
3952 			   const struct attribute_group **groups,
3953 			   const char *fmt, va_list args)
3954 {
3955 	struct device *dev = NULL;
3956 	int retval = -ENODEV;
3957 
3958 	if (class == NULL || IS_ERR(class))
3959 		goto error;
3960 
3961 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3962 	if (!dev) {
3963 		retval = -ENOMEM;
3964 		goto error;
3965 	}
3966 
3967 	device_initialize(dev);
3968 	dev->devt = devt;
3969 	dev->class = class;
3970 	dev->parent = parent;
3971 	dev->groups = groups;
3972 	dev->release = device_create_release;
3973 	dev_set_drvdata(dev, drvdata);
3974 
3975 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
3976 	if (retval)
3977 		goto error;
3978 
3979 	retval = device_add(dev);
3980 	if (retval)
3981 		goto error;
3982 
3983 	return dev;
3984 
3985 error:
3986 	put_device(dev);
3987 	return ERR_PTR(retval);
3988 }
3989 
3990 /**
3991  * device_create - creates a device and registers it with sysfs
3992  * @class: pointer to the struct class that this device should be registered to
3993  * @parent: pointer to the parent struct device of this new device, if any
3994  * @devt: the dev_t for the char device to be added
3995  * @drvdata: the data to be added to the device for callbacks
3996  * @fmt: string for the device's name
3997  *
3998  * This function can be used by char device classes.  A struct device
3999  * will be created in sysfs, registered to the specified class.
4000  *
4001  * A "dev" file will be created, showing the dev_t for the device, if
4002  * the dev_t is not 0,0.
4003  * If a pointer to a parent struct device is passed in, the newly created
4004  * struct device will be a child of that device in sysfs.
4005  * The pointer to the struct device will be returned from the call.
4006  * Any further sysfs files that might be required can be created using this
4007  * pointer.
4008  *
4009  * Returns &struct device pointer on success, or ERR_PTR() on error.
4010  *
4011  * Note: the struct class passed to this function must have previously
4012  * been created with a call to class_create().
4013  */
4014 struct device *device_create(struct class *class, struct device *parent,
4015 			     dev_t devt, void *drvdata, const char *fmt, ...)
4016 {
4017 	va_list vargs;
4018 	struct device *dev;
4019 
4020 	va_start(vargs, fmt);
4021 	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4022 					  fmt, vargs);
4023 	va_end(vargs);
4024 	return dev;
4025 }
4026 EXPORT_SYMBOL_GPL(device_create);
4027 
4028 /**
4029  * device_create_with_groups - creates a device and registers it with sysfs
4030  * @class: pointer to the struct class that this device should be registered to
4031  * @parent: pointer to the parent struct device of this new device, if any
4032  * @devt: the dev_t for the char device to be added
4033  * @drvdata: the data to be added to the device for callbacks
4034  * @groups: NULL-terminated list of attribute groups to be created
4035  * @fmt: string for the device's name
4036  *
4037  * This function can be used by char device classes.  A struct device
4038  * will be created in sysfs, registered to the specified class.
4039  * Additional attributes specified in the groups parameter will also
4040  * be created automatically.
4041  *
4042  * A "dev" file will be created, showing the dev_t for the device, if
4043  * the dev_t is not 0,0.
4044  * If a pointer to a parent struct device is passed in, the newly created
4045  * struct device will be a child of that device in sysfs.
4046  * The pointer to the struct device will be returned from the call.
4047  * Any further sysfs files that might be required can be created using this
4048  * pointer.
4049  *
4050  * Returns &struct device pointer on success, or ERR_PTR() on error.
4051  *
4052  * Note: the struct class passed to this function must have previously
4053  * been created with a call to class_create().
4054  */
4055 struct device *device_create_with_groups(struct class *class,
4056 					 struct device *parent, dev_t devt,
4057 					 void *drvdata,
4058 					 const struct attribute_group **groups,
4059 					 const char *fmt, ...)
4060 {
4061 	va_list vargs;
4062 	struct device *dev;
4063 
4064 	va_start(vargs, fmt);
4065 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4066 					 fmt, vargs);
4067 	va_end(vargs);
4068 	return dev;
4069 }
4070 EXPORT_SYMBOL_GPL(device_create_with_groups);
4071 
4072 /**
4073  * device_destroy - removes a device that was created with device_create()
4074  * @class: pointer to the struct class that this device was registered with
4075  * @devt: the dev_t of the device that was previously registered
4076  *
4077  * This call unregisters and cleans up a device that was created with a
4078  * call to device_create().
4079  */
4080 void device_destroy(struct class *class, dev_t devt)
4081 {
4082 	struct device *dev;
4083 
4084 	dev = class_find_device_by_devt(class, devt);
4085 	if (dev) {
4086 		put_device(dev);
4087 		device_unregister(dev);
4088 	}
4089 }
4090 EXPORT_SYMBOL_GPL(device_destroy);
4091 
4092 /**
4093  * device_rename - renames a device
4094  * @dev: the pointer to the struct device to be renamed
4095  * @new_name: the new name of the device
4096  *
4097  * It is the responsibility of the caller to provide mutual
4098  * exclusion between two different calls of device_rename
4099  * on the same device to ensure that new_name is valid and
4100  * won't conflict with other devices.
4101  *
4102  * Note: Don't call this function.  Currently, the networking layer calls this
4103  * function, but that will change.  The following text from Kay Sievers offers
4104  * some insight:
4105  *
4106  * Renaming devices is racy at many levels, symlinks and other stuff are not
4107  * replaced atomically, and you get a "move" uevent, but it's not easy to
4108  * connect the event to the old and new device. Device nodes are not renamed at
4109  * all, there isn't even support for that in the kernel now.
4110  *
4111  * In the meantime, during renaming, your target name might be taken by another
4112  * driver, creating conflicts. Or the old name is taken directly after you
4113  * renamed it -- then you get events for the same DEVPATH, before you even see
4114  * the "move" event. It's just a mess, and nothing new should ever rely on
4115  * kernel device renaming. Besides that, it's not even implemented now for
4116  * other things than (driver-core wise very simple) network devices.
4117  *
4118  * We are currently about to change network renaming in udev to completely
4119  * disallow renaming of devices in the same namespace as the kernel uses,
4120  * because we can't solve the problems properly, that arise with swapping names
4121  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
4122  * be allowed to some other name than eth[0-9]*, for the aforementioned
4123  * reasons.
4124  *
4125  * Make up a "real" name in the driver before you register anything, or add
4126  * some other attributes for userspace to find the device, or use udev to add
4127  * symlinks -- but never rename kernel devices later, it's a complete mess. We
4128  * don't even want to get into that and try to implement the missing pieces in
4129  * the core. We really have other pieces to fix in the driver core mess. :)
4130  */
4131 int device_rename(struct device *dev, const char *new_name)
4132 {
4133 	struct kobject *kobj = &dev->kobj;
4134 	char *old_device_name = NULL;
4135 	int error;
4136 
4137 	dev = get_device(dev);
4138 	if (!dev)
4139 		return -EINVAL;
4140 
4141 	dev_dbg(dev, "renaming to %s\n", new_name);
4142 
4143 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4144 	if (!old_device_name) {
4145 		error = -ENOMEM;
4146 		goto out;
4147 	}
4148 
4149 	if (dev->class) {
4150 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
4151 					     kobj, old_device_name,
4152 					     new_name, kobject_namespace(kobj));
4153 		if (error)
4154 			goto out;
4155 	}
4156 
4157 	error = kobject_rename(kobj, new_name);
4158 	if (error)
4159 		goto out;
4160 
4161 out:
4162 	put_device(dev);
4163 
4164 	kfree(old_device_name);
4165 
4166 	return error;
4167 }
4168 EXPORT_SYMBOL_GPL(device_rename);
4169 
4170 static int device_move_class_links(struct device *dev,
4171 				   struct device *old_parent,
4172 				   struct device *new_parent)
4173 {
4174 	int error = 0;
4175 
4176 	if (old_parent)
4177 		sysfs_remove_link(&dev->kobj, "device");
4178 	if (new_parent)
4179 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4180 					  "device");
4181 	return error;
4182 }
4183 
4184 /**
4185  * device_move - moves a device to a new parent
4186  * @dev: the pointer to the struct device to be moved
4187  * @new_parent: the new parent of the device (can be NULL)
4188  * @dpm_order: how to reorder the dpm_list
4189  */
4190 int device_move(struct device *dev, struct device *new_parent,
4191 		enum dpm_order dpm_order)
4192 {
4193 	int error;
4194 	struct device *old_parent;
4195 	struct kobject *new_parent_kobj;
4196 
4197 	dev = get_device(dev);
4198 	if (!dev)
4199 		return -EINVAL;
4200 
4201 	device_pm_lock();
4202 	new_parent = get_device(new_parent);
4203 	new_parent_kobj = get_device_parent(dev, new_parent);
4204 	if (IS_ERR(new_parent_kobj)) {
4205 		error = PTR_ERR(new_parent_kobj);
4206 		put_device(new_parent);
4207 		goto out;
4208 	}
4209 
4210 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4211 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4212 	error = kobject_move(&dev->kobj, new_parent_kobj);
4213 	if (error) {
4214 		cleanup_glue_dir(dev, new_parent_kobj);
4215 		put_device(new_parent);
4216 		goto out;
4217 	}
4218 	old_parent = dev->parent;
4219 	dev->parent = new_parent;
4220 	if (old_parent)
4221 		klist_remove(&dev->p->knode_parent);
4222 	if (new_parent) {
4223 		klist_add_tail(&dev->p->knode_parent,
4224 			       &new_parent->p->klist_children);
4225 		set_dev_node(dev, dev_to_node(new_parent));
4226 	}
4227 
4228 	if (dev->class) {
4229 		error = device_move_class_links(dev, old_parent, new_parent);
4230 		if (error) {
4231 			/* We ignore errors on cleanup since we're hosed anyway... */
4232 			device_move_class_links(dev, new_parent, old_parent);
4233 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4234 				if (new_parent)
4235 					klist_remove(&dev->p->knode_parent);
4236 				dev->parent = old_parent;
4237 				if (old_parent) {
4238 					klist_add_tail(&dev->p->knode_parent,
4239 						       &old_parent->p->klist_children);
4240 					set_dev_node(dev, dev_to_node(old_parent));
4241 				}
4242 			}
4243 			cleanup_glue_dir(dev, new_parent_kobj);
4244 			put_device(new_parent);
4245 			goto out;
4246 		}
4247 	}
4248 	switch (dpm_order) {
4249 	case DPM_ORDER_NONE:
4250 		break;
4251 	case DPM_ORDER_DEV_AFTER_PARENT:
4252 		device_pm_move_after(dev, new_parent);
4253 		devices_kset_move_after(dev, new_parent);
4254 		break;
4255 	case DPM_ORDER_PARENT_BEFORE_DEV:
4256 		device_pm_move_before(new_parent, dev);
4257 		devices_kset_move_before(new_parent, dev);
4258 		break;
4259 	case DPM_ORDER_DEV_LAST:
4260 		device_pm_move_last(dev);
4261 		devices_kset_move_last(dev);
4262 		break;
4263 	}
4264 
4265 	put_device(old_parent);
4266 out:
4267 	device_pm_unlock();
4268 	put_device(dev);
4269 	return error;
4270 }
4271 EXPORT_SYMBOL_GPL(device_move);
4272 
4273 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4274 				     kgid_t kgid)
4275 {
4276 	struct kobject *kobj = &dev->kobj;
4277 	struct class *class = dev->class;
4278 	const struct device_type *type = dev->type;
4279 	int error;
4280 
4281 	if (class) {
4282 		/*
4283 		 * Change the device groups of the device class for @dev to
4284 		 * @kuid/@kgid.
4285 		 */
4286 		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4287 						  kgid);
4288 		if (error)
4289 			return error;
4290 	}
4291 
4292 	if (type) {
4293 		/*
4294 		 * Change the device groups of the device type for @dev to
4295 		 * @kuid/@kgid.
4296 		 */
4297 		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4298 						  kgid);
4299 		if (error)
4300 			return error;
4301 	}
4302 
4303 	/* Change the device groups of @dev to @kuid/@kgid. */
4304 	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4305 	if (error)
4306 		return error;
4307 
4308 	if (device_supports_offline(dev) && !dev->offline_disabled) {
4309 		/* Change online device attributes of @dev to @kuid/@kgid. */
4310 		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4311 						kuid, kgid);
4312 		if (error)
4313 			return error;
4314 	}
4315 
4316 	return 0;
4317 }
4318 
4319 /**
4320  * device_change_owner - change the owner of an existing device.
4321  * @dev: device.
4322  * @kuid: new owner's kuid
4323  * @kgid: new owner's kgid
4324  *
4325  * This changes the owner of @dev and its corresponding sysfs entries to
4326  * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4327  * core.
4328  *
4329  * Returns 0 on success or error code on failure.
4330  */
4331 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4332 {
4333 	int error;
4334 	struct kobject *kobj = &dev->kobj;
4335 
4336 	dev = get_device(dev);
4337 	if (!dev)
4338 		return -EINVAL;
4339 
4340 	/*
4341 	 * Change the kobject and the default attributes and groups of the
4342 	 * ktype associated with it to @kuid/@kgid.
4343 	 */
4344 	error = sysfs_change_owner(kobj, kuid, kgid);
4345 	if (error)
4346 		goto out;
4347 
4348 	/*
4349 	 * Change the uevent file for @dev to the new owner. The uevent file
4350 	 * was created in a separate step when @dev got added and we mirror
4351 	 * that step here.
4352 	 */
4353 	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4354 					kgid);
4355 	if (error)
4356 		goto out;
4357 
4358 	/*
4359 	 * Change the device groups, the device groups associated with the
4360 	 * device class, and the groups associated with the device type of @dev
4361 	 * to @kuid/@kgid.
4362 	 */
4363 	error = device_attrs_change_owner(dev, kuid, kgid);
4364 	if (error)
4365 		goto out;
4366 
4367 	error = dpm_sysfs_change_owner(dev, kuid, kgid);
4368 	if (error)
4369 		goto out;
4370 
4371 #ifdef CONFIG_BLOCK
4372 	if (sysfs_deprecated && dev->class == &block_class)
4373 		goto out;
4374 #endif
4375 
4376 	/*
4377 	 * Change the owner of the symlink located in the class directory of
4378 	 * the device class associated with @dev which points to the actual
4379 	 * directory entry for @dev to @kuid/@kgid. This ensures that the
4380 	 * symlink shows the same permissions as its target.
4381 	 */
4382 	error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4383 					dev_name(dev), kuid, kgid);
4384 	if (error)
4385 		goto out;
4386 
4387 out:
4388 	put_device(dev);
4389 	return error;
4390 }
4391 EXPORT_SYMBOL_GPL(device_change_owner);
4392 
4393 /**
4394  * device_shutdown - call ->shutdown() on each device to shutdown.
4395  */
4396 void device_shutdown(void)
4397 {
4398 	struct device *dev, *parent;
4399 
4400 	wait_for_device_probe();
4401 	device_block_probing();
4402 
4403 	cpufreq_suspend();
4404 
4405 	spin_lock(&devices_kset->list_lock);
4406 	/*
4407 	 * Walk the devices list backward, shutting down each in turn.
4408 	 * Beware that device unplug events may also start pulling
4409 	 * devices offline, even as the system is shutting down.
4410 	 */
4411 	while (!list_empty(&devices_kset->list)) {
4412 		dev = list_entry(devices_kset->list.prev, struct device,
4413 				kobj.entry);
4414 
4415 		/*
4416 		 * hold reference count of device's parent to
4417 		 * prevent it from being freed because parent's
4418 		 * lock is to be held
4419 		 */
4420 		parent = get_device(dev->parent);
4421 		get_device(dev);
4422 		/*
4423 		 * Make sure the device is off the kset list, in the
4424 		 * event that dev->*->shutdown() doesn't remove it.
4425 		 */
4426 		list_del_init(&dev->kobj.entry);
4427 		spin_unlock(&devices_kset->list_lock);
4428 
4429 		/* hold lock to avoid race with probe/release */
4430 		if (parent)
4431 			device_lock(parent);
4432 		device_lock(dev);
4433 
4434 		/* Don't allow any more runtime suspends */
4435 		pm_runtime_get_noresume(dev);
4436 		pm_runtime_barrier(dev);
4437 
4438 		if (dev->class && dev->class->shutdown_pre) {
4439 			if (initcall_debug)
4440 				dev_info(dev, "shutdown_pre\n");
4441 			dev->class->shutdown_pre(dev);
4442 		}
4443 		if (dev->bus && dev->bus->shutdown) {
4444 			if (initcall_debug)
4445 				dev_info(dev, "shutdown\n");
4446 			dev->bus->shutdown(dev);
4447 		} else if (dev->driver && dev->driver->shutdown) {
4448 			if (initcall_debug)
4449 				dev_info(dev, "shutdown\n");
4450 			dev->driver->shutdown(dev);
4451 		}
4452 
4453 		device_unlock(dev);
4454 		if (parent)
4455 			device_unlock(parent);
4456 
4457 		put_device(dev);
4458 		put_device(parent);
4459 
4460 		spin_lock(&devices_kset->list_lock);
4461 	}
4462 	spin_unlock(&devices_kset->list_lock);
4463 }
4464 
4465 /*
4466  * Device logging functions
4467  */
4468 
4469 #ifdef CONFIG_PRINTK
4470 static void
4471 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4472 {
4473 	const char *subsys;
4474 
4475 	memset(dev_info, 0, sizeof(*dev_info));
4476 
4477 	if (dev->class)
4478 		subsys = dev->class->name;
4479 	else if (dev->bus)
4480 		subsys = dev->bus->name;
4481 	else
4482 		return;
4483 
4484 	strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4485 
4486 	/*
4487 	 * Add device identifier DEVICE=:
4488 	 *   b12:8         block dev_t
4489 	 *   c127:3        char dev_t
4490 	 *   n8            netdev ifindex
4491 	 *   +sound:card0  subsystem:devname
4492 	 */
4493 	if (MAJOR(dev->devt)) {
4494 		char c;
4495 
4496 		if (strcmp(subsys, "block") == 0)
4497 			c = 'b';
4498 		else
4499 			c = 'c';
4500 
4501 		snprintf(dev_info->device, sizeof(dev_info->device),
4502 			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4503 	} else if (strcmp(subsys, "net") == 0) {
4504 		struct net_device *net = to_net_dev(dev);
4505 
4506 		snprintf(dev_info->device, sizeof(dev_info->device),
4507 			 "n%u", net->ifindex);
4508 	} else {
4509 		snprintf(dev_info->device, sizeof(dev_info->device),
4510 			 "+%s:%s", subsys, dev_name(dev));
4511 	}
4512 }
4513 
4514 int dev_vprintk_emit(int level, const struct device *dev,
4515 		     const char *fmt, va_list args)
4516 {
4517 	struct dev_printk_info dev_info;
4518 
4519 	set_dev_info(dev, &dev_info);
4520 
4521 	return vprintk_emit(0, level, &dev_info, fmt, args);
4522 }
4523 EXPORT_SYMBOL(dev_vprintk_emit);
4524 
4525 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4526 {
4527 	va_list args;
4528 	int r;
4529 
4530 	va_start(args, fmt);
4531 
4532 	r = dev_vprintk_emit(level, dev, fmt, args);
4533 
4534 	va_end(args);
4535 
4536 	return r;
4537 }
4538 EXPORT_SYMBOL(dev_printk_emit);
4539 
4540 static void __dev_printk(const char *level, const struct device *dev,
4541 			struct va_format *vaf)
4542 {
4543 	if (dev)
4544 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4545 				dev_driver_string(dev), dev_name(dev), vaf);
4546 	else
4547 		printk("%s(NULL device *): %pV", level, vaf);
4548 }
4549 
4550 void dev_printk(const char *level, const struct device *dev,
4551 		const char *fmt, ...)
4552 {
4553 	struct va_format vaf;
4554 	va_list args;
4555 
4556 	va_start(args, fmt);
4557 
4558 	vaf.fmt = fmt;
4559 	vaf.va = &args;
4560 
4561 	__dev_printk(level, dev, &vaf);
4562 
4563 	va_end(args);
4564 }
4565 EXPORT_SYMBOL(dev_printk);
4566 
4567 #define define_dev_printk_level(func, kern_level)		\
4568 void func(const struct device *dev, const char *fmt, ...)	\
4569 {								\
4570 	struct va_format vaf;					\
4571 	va_list args;						\
4572 								\
4573 	va_start(args, fmt);					\
4574 								\
4575 	vaf.fmt = fmt;						\
4576 	vaf.va = &args;						\
4577 								\
4578 	__dev_printk(kern_level, dev, &vaf);			\
4579 								\
4580 	va_end(args);						\
4581 }								\
4582 EXPORT_SYMBOL(func);
4583 
4584 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4585 define_dev_printk_level(_dev_alert, KERN_ALERT);
4586 define_dev_printk_level(_dev_crit, KERN_CRIT);
4587 define_dev_printk_level(_dev_err, KERN_ERR);
4588 define_dev_printk_level(_dev_warn, KERN_WARNING);
4589 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4590 define_dev_printk_level(_dev_info, KERN_INFO);
4591 
4592 #endif
4593 
4594 /**
4595  * dev_err_probe - probe error check and log helper
4596  * @dev: the pointer to the struct device
4597  * @err: error value to test
4598  * @fmt: printf-style format string
4599  * @...: arguments as specified in the format string
4600  *
4601  * This helper implements common pattern present in probe functions for error
4602  * checking: print debug or error message depending if the error value is
4603  * -EPROBE_DEFER and propagate error upwards.
4604  * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4605  * checked later by reading devices_deferred debugfs attribute.
4606  * It replaces code sequence::
4607  *
4608  * 	if (err != -EPROBE_DEFER)
4609  * 		dev_err(dev, ...);
4610  * 	else
4611  * 		dev_dbg(dev, ...);
4612  * 	return err;
4613  *
4614  * with::
4615  *
4616  * 	return dev_err_probe(dev, err, ...);
4617  *
4618  * Returns @err.
4619  *
4620  */
4621 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4622 {
4623 	struct va_format vaf;
4624 	va_list args;
4625 
4626 	va_start(args, fmt);
4627 	vaf.fmt = fmt;
4628 	vaf.va = &args;
4629 
4630 	if (err != -EPROBE_DEFER) {
4631 		dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4632 	} else {
4633 		device_set_deferred_probe_reason(dev, &vaf);
4634 		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4635 	}
4636 
4637 	va_end(args);
4638 
4639 	return err;
4640 }
4641 EXPORT_SYMBOL_GPL(dev_err_probe);
4642 
4643 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4644 {
4645 	return fwnode && !IS_ERR(fwnode->secondary);
4646 }
4647 
4648 /**
4649  * set_primary_fwnode - Change the primary firmware node of a given device.
4650  * @dev: Device to handle.
4651  * @fwnode: New primary firmware node of the device.
4652  *
4653  * Set the device's firmware node pointer to @fwnode, but if a secondary
4654  * firmware node of the device is present, preserve it.
4655  *
4656  * Valid fwnode cases are:
4657  *  - primary --> secondary --> -ENODEV
4658  *  - primary --> NULL
4659  *  - secondary --> -ENODEV
4660  *  - NULL
4661  */
4662 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4663 {
4664 	struct device *parent = dev->parent;
4665 	struct fwnode_handle *fn = dev->fwnode;
4666 
4667 	if (fwnode) {
4668 		if (fwnode_is_primary(fn))
4669 			fn = fn->secondary;
4670 
4671 		if (fn) {
4672 			WARN_ON(fwnode->secondary);
4673 			fwnode->secondary = fn;
4674 		}
4675 		dev->fwnode = fwnode;
4676 	} else {
4677 		if (fwnode_is_primary(fn)) {
4678 			dev->fwnode = fn->secondary;
4679 			/* Set fn->secondary = NULL, so fn remains the primary fwnode */
4680 			if (!(parent && fn == parent->fwnode))
4681 				fn->secondary = NULL;
4682 		} else {
4683 			dev->fwnode = NULL;
4684 		}
4685 	}
4686 }
4687 EXPORT_SYMBOL_GPL(set_primary_fwnode);
4688 
4689 /**
4690  * set_secondary_fwnode - Change the secondary firmware node of a given device.
4691  * @dev: Device to handle.
4692  * @fwnode: New secondary firmware node of the device.
4693  *
4694  * If a primary firmware node of the device is present, set its secondary
4695  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
4696  * @fwnode.
4697  */
4698 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4699 {
4700 	if (fwnode)
4701 		fwnode->secondary = ERR_PTR(-ENODEV);
4702 
4703 	if (fwnode_is_primary(dev->fwnode))
4704 		dev->fwnode->secondary = fwnode;
4705 	else
4706 		dev->fwnode = fwnode;
4707 }
4708 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4709 
4710 /**
4711  * device_set_of_node_from_dev - reuse device-tree node of another device
4712  * @dev: device whose device-tree node is being set
4713  * @dev2: device whose device-tree node is being reused
4714  *
4715  * Takes another reference to the new device-tree node after first dropping
4716  * any reference held to the old node.
4717  */
4718 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4719 {
4720 	of_node_put(dev->of_node);
4721 	dev->of_node = of_node_get(dev2->of_node);
4722 	dev->of_node_reused = true;
4723 }
4724 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4725 
4726 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
4727 {
4728 	dev->fwnode = fwnode;
4729 	dev->of_node = to_of_node(fwnode);
4730 }
4731 EXPORT_SYMBOL_GPL(device_set_node);
4732 
4733 int device_match_name(struct device *dev, const void *name)
4734 {
4735 	return sysfs_streq(dev_name(dev), name);
4736 }
4737 EXPORT_SYMBOL_GPL(device_match_name);
4738 
4739 int device_match_of_node(struct device *dev, const void *np)
4740 {
4741 	return dev->of_node == np;
4742 }
4743 EXPORT_SYMBOL_GPL(device_match_of_node);
4744 
4745 int device_match_fwnode(struct device *dev, const void *fwnode)
4746 {
4747 	return dev_fwnode(dev) == fwnode;
4748 }
4749 EXPORT_SYMBOL_GPL(device_match_fwnode);
4750 
4751 int device_match_devt(struct device *dev, const void *pdevt)
4752 {
4753 	return dev->devt == *(dev_t *)pdevt;
4754 }
4755 EXPORT_SYMBOL_GPL(device_match_devt);
4756 
4757 int device_match_acpi_dev(struct device *dev, const void *adev)
4758 {
4759 	return ACPI_COMPANION(dev) == adev;
4760 }
4761 EXPORT_SYMBOL(device_match_acpi_dev);
4762 
4763 int device_match_any(struct device *dev, const void *unused)
4764 {
4765 	return 1;
4766 }
4767 EXPORT_SYMBOL_GPL(device_match_any);
4768