1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/cpufreq.h> 13 #include <linux/device.h> 14 #include <linux/err.h> 15 #include <linux/fwnode.h> 16 #include <linux/init.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/string.h> 20 #include <linux/kdev_t.h> 21 #include <linux/notifier.h> 22 #include <linux/of.h> 23 #include <linux/of_device.h> 24 #include <linux/genhd.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/netdevice.h> 28 #include <linux/sched/signal.h> 29 #include <linux/sched/mm.h> 30 #include <linux/sysfs.h> 31 #include <linux/dma-map-ops.h> /* for dma_default_coherent */ 32 33 #include "base.h" 34 #include "power/power.h" 35 36 #ifdef CONFIG_SYSFS_DEPRECATED 37 #ifdef CONFIG_SYSFS_DEPRECATED_V2 38 long sysfs_deprecated = 1; 39 #else 40 long sysfs_deprecated = 0; 41 #endif 42 static int __init sysfs_deprecated_setup(char *arg) 43 { 44 return kstrtol(arg, 10, &sysfs_deprecated); 45 } 46 early_param("sysfs.deprecated", sysfs_deprecated_setup); 47 #endif 48 49 /* Device links support. */ 50 static LIST_HEAD(deferred_sync); 51 static unsigned int defer_sync_state_count = 1; 52 static DEFINE_MUTEX(fwnode_link_lock); 53 static bool fw_devlink_is_permissive(void); 54 static bool fw_devlink_drv_reg_done; 55 56 /** 57 * fwnode_link_add - Create a link between two fwnode_handles. 58 * @con: Consumer end of the link. 59 * @sup: Supplier end of the link. 60 * 61 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link 62 * represents the detail that the firmware lists @sup fwnode as supplying a 63 * resource to @con. 64 * 65 * The driver core will use the fwnode link to create a device link between the 66 * two device objects corresponding to @con and @sup when they are created. The 67 * driver core will automatically delete the fwnode link between @con and @sup 68 * after doing that. 69 * 70 * Attempts to create duplicate links between the same pair of fwnode handles 71 * are ignored and there is no reference counting. 72 */ 73 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup) 74 { 75 struct fwnode_link *link; 76 int ret = 0; 77 78 mutex_lock(&fwnode_link_lock); 79 80 list_for_each_entry(link, &sup->consumers, s_hook) 81 if (link->consumer == con) 82 goto out; 83 84 link = kzalloc(sizeof(*link), GFP_KERNEL); 85 if (!link) { 86 ret = -ENOMEM; 87 goto out; 88 } 89 90 link->supplier = sup; 91 INIT_LIST_HEAD(&link->s_hook); 92 link->consumer = con; 93 INIT_LIST_HEAD(&link->c_hook); 94 95 list_add(&link->s_hook, &sup->consumers); 96 list_add(&link->c_hook, &con->suppliers); 97 out: 98 mutex_unlock(&fwnode_link_lock); 99 100 return ret; 101 } 102 103 /** 104 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle. 105 * @fwnode: fwnode whose supplier links need to be deleted 106 * 107 * Deletes all supplier links connecting directly to @fwnode. 108 */ 109 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode) 110 { 111 struct fwnode_link *link, *tmp; 112 113 mutex_lock(&fwnode_link_lock); 114 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) { 115 list_del(&link->s_hook); 116 list_del(&link->c_hook); 117 kfree(link); 118 } 119 mutex_unlock(&fwnode_link_lock); 120 } 121 122 /** 123 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle. 124 * @fwnode: fwnode whose consumer links need to be deleted 125 * 126 * Deletes all consumer links connecting directly to @fwnode. 127 */ 128 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode) 129 { 130 struct fwnode_link *link, *tmp; 131 132 mutex_lock(&fwnode_link_lock); 133 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) { 134 list_del(&link->s_hook); 135 list_del(&link->c_hook); 136 kfree(link); 137 } 138 mutex_unlock(&fwnode_link_lock); 139 } 140 141 /** 142 * fwnode_links_purge - Delete all links connected to a fwnode_handle. 143 * @fwnode: fwnode whose links needs to be deleted 144 * 145 * Deletes all links connecting directly to a fwnode. 146 */ 147 void fwnode_links_purge(struct fwnode_handle *fwnode) 148 { 149 fwnode_links_purge_suppliers(fwnode); 150 fwnode_links_purge_consumers(fwnode); 151 } 152 153 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode) 154 { 155 struct fwnode_handle *child; 156 157 /* Don't purge consumer links of an added child */ 158 if (fwnode->dev) 159 return; 160 161 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 162 fwnode_links_purge_consumers(fwnode); 163 164 fwnode_for_each_available_child_node(fwnode, child) 165 fw_devlink_purge_absent_suppliers(child); 166 } 167 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers); 168 169 #ifdef CONFIG_SRCU 170 static DEFINE_MUTEX(device_links_lock); 171 DEFINE_STATIC_SRCU(device_links_srcu); 172 173 static inline void device_links_write_lock(void) 174 { 175 mutex_lock(&device_links_lock); 176 } 177 178 static inline void device_links_write_unlock(void) 179 { 180 mutex_unlock(&device_links_lock); 181 } 182 183 int device_links_read_lock(void) __acquires(&device_links_srcu) 184 { 185 return srcu_read_lock(&device_links_srcu); 186 } 187 188 void device_links_read_unlock(int idx) __releases(&device_links_srcu) 189 { 190 srcu_read_unlock(&device_links_srcu, idx); 191 } 192 193 int device_links_read_lock_held(void) 194 { 195 return srcu_read_lock_held(&device_links_srcu); 196 } 197 #else /* !CONFIG_SRCU */ 198 static DECLARE_RWSEM(device_links_lock); 199 200 static inline void device_links_write_lock(void) 201 { 202 down_write(&device_links_lock); 203 } 204 205 static inline void device_links_write_unlock(void) 206 { 207 up_write(&device_links_lock); 208 } 209 210 int device_links_read_lock(void) 211 { 212 down_read(&device_links_lock); 213 return 0; 214 } 215 216 void device_links_read_unlock(int not_used) 217 { 218 up_read(&device_links_lock); 219 } 220 221 #ifdef CONFIG_DEBUG_LOCK_ALLOC 222 int device_links_read_lock_held(void) 223 { 224 return lockdep_is_held(&device_links_lock); 225 } 226 #endif 227 #endif /* !CONFIG_SRCU */ 228 229 static bool device_is_ancestor(struct device *dev, struct device *target) 230 { 231 while (target->parent) { 232 target = target->parent; 233 if (dev == target) 234 return true; 235 } 236 return false; 237 } 238 239 /** 240 * device_is_dependent - Check if one device depends on another one 241 * @dev: Device to check dependencies for. 242 * @target: Device to check against. 243 * 244 * Check if @target depends on @dev or any device dependent on it (its child or 245 * its consumer etc). Return 1 if that is the case or 0 otherwise. 246 */ 247 int device_is_dependent(struct device *dev, void *target) 248 { 249 struct device_link *link; 250 int ret; 251 252 /* 253 * The "ancestors" check is needed to catch the case when the target 254 * device has not been completely initialized yet and it is still 255 * missing from the list of children of its parent device. 256 */ 257 if (dev == target || device_is_ancestor(dev, target)) 258 return 1; 259 260 ret = device_for_each_child(dev, target, device_is_dependent); 261 if (ret) 262 return ret; 263 264 list_for_each_entry(link, &dev->links.consumers, s_node) { 265 if ((link->flags & ~DL_FLAG_INFERRED) == 266 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 267 continue; 268 269 if (link->consumer == target) 270 return 1; 271 272 ret = device_is_dependent(link->consumer, target); 273 if (ret) 274 break; 275 } 276 return ret; 277 } 278 279 static void device_link_init_status(struct device_link *link, 280 struct device *consumer, 281 struct device *supplier) 282 { 283 switch (supplier->links.status) { 284 case DL_DEV_PROBING: 285 switch (consumer->links.status) { 286 case DL_DEV_PROBING: 287 /* 288 * A consumer driver can create a link to a supplier 289 * that has not completed its probing yet as long as it 290 * knows that the supplier is already functional (for 291 * example, it has just acquired some resources from the 292 * supplier). 293 */ 294 link->status = DL_STATE_CONSUMER_PROBE; 295 break; 296 default: 297 link->status = DL_STATE_DORMANT; 298 break; 299 } 300 break; 301 case DL_DEV_DRIVER_BOUND: 302 switch (consumer->links.status) { 303 case DL_DEV_PROBING: 304 link->status = DL_STATE_CONSUMER_PROBE; 305 break; 306 case DL_DEV_DRIVER_BOUND: 307 link->status = DL_STATE_ACTIVE; 308 break; 309 default: 310 link->status = DL_STATE_AVAILABLE; 311 break; 312 } 313 break; 314 case DL_DEV_UNBINDING: 315 link->status = DL_STATE_SUPPLIER_UNBIND; 316 break; 317 default: 318 link->status = DL_STATE_DORMANT; 319 break; 320 } 321 } 322 323 static int device_reorder_to_tail(struct device *dev, void *not_used) 324 { 325 struct device_link *link; 326 327 /* 328 * Devices that have not been registered yet will be put to the ends 329 * of the lists during the registration, so skip them here. 330 */ 331 if (device_is_registered(dev)) 332 devices_kset_move_last(dev); 333 334 if (device_pm_initialized(dev)) 335 device_pm_move_last(dev); 336 337 device_for_each_child(dev, NULL, device_reorder_to_tail); 338 list_for_each_entry(link, &dev->links.consumers, s_node) { 339 if ((link->flags & ~DL_FLAG_INFERRED) == 340 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 341 continue; 342 device_reorder_to_tail(link->consumer, NULL); 343 } 344 345 return 0; 346 } 347 348 /** 349 * device_pm_move_to_tail - Move set of devices to the end of device lists 350 * @dev: Device to move 351 * 352 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 353 * 354 * It moves the @dev along with all of its children and all of its consumers 355 * to the ends of the device_kset and dpm_list, recursively. 356 */ 357 void device_pm_move_to_tail(struct device *dev) 358 { 359 int idx; 360 361 idx = device_links_read_lock(); 362 device_pm_lock(); 363 device_reorder_to_tail(dev, NULL); 364 device_pm_unlock(); 365 device_links_read_unlock(idx); 366 } 367 368 #define to_devlink(dev) container_of((dev), struct device_link, link_dev) 369 370 static ssize_t status_show(struct device *dev, 371 struct device_attribute *attr, char *buf) 372 { 373 const char *output; 374 375 switch (to_devlink(dev)->status) { 376 case DL_STATE_NONE: 377 output = "not tracked"; 378 break; 379 case DL_STATE_DORMANT: 380 output = "dormant"; 381 break; 382 case DL_STATE_AVAILABLE: 383 output = "available"; 384 break; 385 case DL_STATE_CONSUMER_PROBE: 386 output = "consumer probing"; 387 break; 388 case DL_STATE_ACTIVE: 389 output = "active"; 390 break; 391 case DL_STATE_SUPPLIER_UNBIND: 392 output = "supplier unbinding"; 393 break; 394 default: 395 output = "unknown"; 396 break; 397 } 398 399 return sysfs_emit(buf, "%s\n", output); 400 } 401 static DEVICE_ATTR_RO(status); 402 403 static ssize_t auto_remove_on_show(struct device *dev, 404 struct device_attribute *attr, char *buf) 405 { 406 struct device_link *link = to_devlink(dev); 407 const char *output; 408 409 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 410 output = "supplier unbind"; 411 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) 412 output = "consumer unbind"; 413 else 414 output = "never"; 415 416 return sysfs_emit(buf, "%s\n", output); 417 } 418 static DEVICE_ATTR_RO(auto_remove_on); 419 420 static ssize_t runtime_pm_show(struct device *dev, 421 struct device_attribute *attr, char *buf) 422 { 423 struct device_link *link = to_devlink(dev); 424 425 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME)); 426 } 427 static DEVICE_ATTR_RO(runtime_pm); 428 429 static ssize_t sync_state_only_show(struct device *dev, 430 struct device_attribute *attr, char *buf) 431 { 432 struct device_link *link = to_devlink(dev); 433 434 return sysfs_emit(buf, "%d\n", 435 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 436 } 437 static DEVICE_ATTR_RO(sync_state_only); 438 439 static struct attribute *devlink_attrs[] = { 440 &dev_attr_status.attr, 441 &dev_attr_auto_remove_on.attr, 442 &dev_attr_runtime_pm.attr, 443 &dev_attr_sync_state_only.attr, 444 NULL, 445 }; 446 ATTRIBUTE_GROUPS(devlink); 447 448 static void device_link_free(struct device_link *link) 449 { 450 while (refcount_dec_not_one(&link->rpm_active)) 451 pm_runtime_put(link->supplier); 452 453 put_device(link->consumer); 454 put_device(link->supplier); 455 kfree(link); 456 } 457 458 #ifdef CONFIG_SRCU 459 static void __device_link_free_srcu(struct rcu_head *rhead) 460 { 461 device_link_free(container_of(rhead, struct device_link, rcu_head)); 462 } 463 464 static void devlink_dev_release(struct device *dev) 465 { 466 struct device_link *link = to_devlink(dev); 467 468 call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu); 469 } 470 #else 471 static void devlink_dev_release(struct device *dev) 472 { 473 device_link_free(to_devlink(dev)); 474 } 475 #endif 476 477 static struct class devlink_class = { 478 .name = "devlink", 479 .owner = THIS_MODULE, 480 .dev_groups = devlink_groups, 481 .dev_release = devlink_dev_release, 482 }; 483 484 static int devlink_add_symlinks(struct device *dev, 485 struct class_interface *class_intf) 486 { 487 int ret; 488 size_t len; 489 struct device_link *link = to_devlink(dev); 490 struct device *sup = link->supplier; 491 struct device *con = link->consumer; 492 char *buf; 493 494 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 495 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 496 len += strlen(":"); 497 len += strlen("supplier:") + 1; 498 buf = kzalloc(len, GFP_KERNEL); 499 if (!buf) 500 return -ENOMEM; 501 502 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier"); 503 if (ret) 504 goto out; 505 506 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer"); 507 if (ret) 508 goto err_con; 509 510 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 511 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf); 512 if (ret) 513 goto err_con_dev; 514 515 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 516 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf); 517 if (ret) 518 goto err_sup_dev; 519 520 goto out; 521 522 err_sup_dev: 523 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 524 sysfs_remove_link(&sup->kobj, buf); 525 err_con_dev: 526 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 527 err_con: 528 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 529 out: 530 kfree(buf); 531 return ret; 532 } 533 534 static void devlink_remove_symlinks(struct device *dev, 535 struct class_interface *class_intf) 536 { 537 struct device_link *link = to_devlink(dev); 538 size_t len; 539 struct device *sup = link->supplier; 540 struct device *con = link->consumer; 541 char *buf; 542 543 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 544 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 545 546 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 547 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 548 len += strlen(":"); 549 len += strlen("supplier:") + 1; 550 buf = kzalloc(len, GFP_KERNEL); 551 if (!buf) { 552 WARN(1, "Unable to properly free device link symlinks!\n"); 553 return; 554 } 555 556 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 557 sysfs_remove_link(&con->kobj, buf); 558 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 559 sysfs_remove_link(&sup->kobj, buf); 560 kfree(buf); 561 } 562 563 static struct class_interface devlink_class_intf = { 564 .class = &devlink_class, 565 .add_dev = devlink_add_symlinks, 566 .remove_dev = devlink_remove_symlinks, 567 }; 568 569 static int __init devlink_class_init(void) 570 { 571 int ret; 572 573 ret = class_register(&devlink_class); 574 if (ret) 575 return ret; 576 577 ret = class_interface_register(&devlink_class_intf); 578 if (ret) 579 class_unregister(&devlink_class); 580 581 return ret; 582 } 583 postcore_initcall(devlink_class_init); 584 585 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \ 586 DL_FLAG_AUTOREMOVE_SUPPLIER | \ 587 DL_FLAG_AUTOPROBE_CONSUMER | \ 588 DL_FLAG_SYNC_STATE_ONLY | \ 589 DL_FLAG_INFERRED) 590 591 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \ 592 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE) 593 594 /** 595 * device_link_add - Create a link between two devices. 596 * @consumer: Consumer end of the link. 597 * @supplier: Supplier end of the link. 598 * @flags: Link flags. 599 * 600 * The caller is responsible for the proper synchronization of the link creation 601 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 602 * runtime PM framework to take the link into account. Second, if the 603 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 604 * be forced into the active meta state and reference-counted upon the creation 605 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 606 * ignored. 607 * 608 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is 609 * expected to release the link returned by it directly with the help of either 610 * device_link_del() or device_link_remove(). 611 * 612 * If that flag is not set, however, the caller of this function is handing the 613 * management of the link over to the driver core entirely and its return value 614 * can only be used to check whether or not the link is present. In that case, 615 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link 616 * flags can be used to indicate to the driver core when the link can be safely 617 * deleted. Namely, setting one of them in @flags indicates to the driver core 618 * that the link is not going to be used (by the given caller of this function) 619 * after unbinding the consumer or supplier driver, respectively, from its 620 * device, so the link can be deleted at that point. If none of them is set, 621 * the link will be maintained until one of the devices pointed to by it (either 622 * the consumer or the supplier) is unregistered. 623 * 624 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and 625 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent 626 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can 627 * be used to request the driver core to automatically probe for a consumer 628 * driver after successfully binding a driver to the supplier device. 629 * 630 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER, 631 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at 632 * the same time is invalid and will cause NULL to be returned upfront. 633 * However, if a device link between the given @consumer and @supplier pair 634 * exists already when this function is called for them, the existing link will 635 * be returned regardless of its current type and status (the link's flags may 636 * be modified then). The caller of this function is then expected to treat 637 * the link as though it has just been created, so (in particular) if 638 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released 639 * explicitly when not needed any more (as stated above). 640 * 641 * A side effect of the link creation is re-ordering of dpm_list and the 642 * devices_kset list by moving the consumer device and all devices depending 643 * on it to the ends of these lists (that does not happen to devices that have 644 * not been registered when this function is called). 645 * 646 * The supplier device is required to be registered when this function is called 647 * and NULL will be returned if that is not the case. The consumer device need 648 * not be registered, however. 649 */ 650 struct device_link *device_link_add(struct device *consumer, 651 struct device *supplier, u32 flags) 652 { 653 struct device_link *link; 654 655 if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS || 656 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) || 657 (flags & DL_FLAG_SYNC_STATE_ONLY && 658 (flags & ~DL_FLAG_INFERRED) != DL_FLAG_SYNC_STATE_ONLY) || 659 (flags & DL_FLAG_AUTOPROBE_CONSUMER && 660 flags & (DL_FLAG_AUTOREMOVE_CONSUMER | 661 DL_FLAG_AUTOREMOVE_SUPPLIER))) 662 return NULL; 663 664 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) { 665 if (pm_runtime_get_sync(supplier) < 0) { 666 pm_runtime_put_noidle(supplier); 667 return NULL; 668 } 669 } 670 671 if (!(flags & DL_FLAG_STATELESS)) 672 flags |= DL_FLAG_MANAGED; 673 674 device_links_write_lock(); 675 device_pm_lock(); 676 677 /* 678 * If the supplier has not been fully registered yet or there is a 679 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and 680 * the supplier already in the graph, return NULL. If the link is a 681 * SYNC_STATE_ONLY link, we don't check for reverse dependencies 682 * because it only affects sync_state() callbacks. 683 */ 684 if (!device_pm_initialized(supplier) 685 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) && 686 device_is_dependent(consumer, supplier))) { 687 link = NULL; 688 goto out; 689 } 690 691 /* 692 * SYNC_STATE_ONLY links are useless once a consumer device has probed. 693 * So, only create it if the consumer hasn't probed yet. 694 */ 695 if (flags & DL_FLAG_SYNC_STATE_ONLY && 696 consumer->links.status != DL_DEV_NO_DRIVER && 697 consumer->links.status != DL_DEV_PROBING) { 698 link = NULL; 699 goto out; 700 } 701 702 /* 703 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed 704 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both 705 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER. 706 */ 707 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 708 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 709 710 list_for_each_entry(link, &supplier->links.consumers, s_node) { 711 if (link->consumer != consumer) 712 continue; 713 714 if (link->flags & DL_FLAG_INFERRED && 715 !(flags & DL_FLAG_INFERRED)) 716 link->flags &= ~DL_FLAG_INFERRED; 717 718 if (flags & DL_FLAG_PM_RUNTIME) { 719 if (!(link->flags & DL_FLAG_PM_RUNTIME)) { 720 pm_runtime_new_link(consumer); 721 link->flags |= DL_FLAG_PM_RUNTIME; 722 } 723 if (flags & DL_FLAG_RPM_ACTIVE) 724 refcount_inc(&link->rpm_active); 725 } 726 727 if (flags & DL_FLAG_STATELESS) { 728 kref_get(&link->kref); 729 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 730 !(link->flags & DL_FLAG_STATELESS)) { 731 link->flags |= DL_FLAG_STATELESS; 732 goto reorder; 733 } else { 734 link->flags |= DL_FLAG_STATELESS; 735 goto out; 736 } 737 } 738 739 /* 740 * If the life time of the link following from the new flags is 741 * longer than indicated by the flags of the existing link, 742 * update the existing link to stay around longer. 743 */ 744 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) { 745 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 746 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 747 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER; 748 } 749 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) { 750 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER | 751 DL_FLAG_AUTOREMOVE_SUPPLIER); 752 } 753 if (!(link->flags & DL_FLAG_MANAGED)) { 754 kref_get(&link->kref); 755 link->flags |= DL_FLAG_MANAGED; 756 device_link_init_status(link, consumer, supplier); 757 } 758 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 759 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 760 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY; 761 goto reorder; 762 } 763 764 goto out; 765 } 766 767 link = kzalloc(sizeof(*link), GFP_KERNEL); 768 if (!link) 769 goto out; 770 771 refcount_set(&link->rpm_active, 1); 772 773 get_device(supplier); 774 link->supplier = supplier; 775 INIT_LIST_HEAD(&link->s_node); 776 get_device(consumer); 777 link->consumer = consumer; 778 INIT_LIST_HEAD(&link->c_node); 779 link->flags = flags; 780 kref_init(&link->kref); 781 782 link->link_dev.class = &devlink_class; 783 device_set_pm_not_required(&link->link_dev); 784 dev_set_name(&link->link_dev, "%s:%s--%s:%s", 785 dev_bus_name(supplier), dev_name(supplier), 786 dev_bus_name(consumer), dev_name(consumer)); 787 if (device_register(&link->link_dev)) { 788 put_device(consumer); 789 put_device(supplier); 790 kfree(link); 791 link = NULL; 792 goto out; 793 } 794 795 if (flags & DL_FLAG_PM_RUNTIME) { 796 if (flags & DL_FLAG_RPM_ACTIVE) 797 refcount_inc(&link->rpm_active); 798 799 pm_runtime_new_link(consumer); 800 } 801 802 /* Determine the initial link state. */ 803 if (flags & DL_FLAG_STATELESS) 804 link->status = DL_STATE_NONE; 805 else 806 device_link_init_status(link, consumer, supplier); 807 808 /* 809 * Some callers expect the link creation during consumer driver probe to 810 * resume the supplier even without DL_FLAG_RPM_ACTIVE. 811 */ 812 if (link->status == DL_STATE_CONSUMER_PROBE && 813 flags & DL_FLAG_PM_RUNTIME) 814 pm_runtime_resume(supplier); 815 816 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 817 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 818 819 if (flags & DL_FLAG_SYNC_STATE_ONLY) { 820 dev_dbg(consumer, 821 "Linked as a sync state only consumer to %s\n", 822 dev_name(supplier)); 823 goto out; 824 } 825 826 reorder: 827 /* 828 * Move the consumer and all of the devices depending on it to the end 829 * of dpm_list and the devices_kset list. 830 * 831 * It is necessary to hold dpm_list locked throughout all that or else 832 * we may end up suspending with a wrong ordering of it. 833 */ 834 device_reorder_to_tail(consumer, NULL); 835 836 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 837 838 out: 839 device_pm_unlock(); 840 device_links_write_unlock(); 841 842 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link) 843 pm_runtime_put(supplier); 844 845 return link; 846 } 847 EXPORT_SYMBOL_GPL(device_link_add); 848 849 #ifdef CONFIG_SRCU 850 static void __device_link_del(struct kref *kref) 851 { 852 struct device_link *link = container_of(kref, struct device_link, kref); 853 854 dev_dbg(link->consumer, "Dropping the link to %s\n", 855 dev_name(link->supplier)); 856 857 pm_runtime_drop_link(link); 858 859 list_del_rcu(&link->s_node); 860 list_del_rcu(&link->c_node); 861 device_unregister(&link->link_dev); 862 } 863 #else /* !CONFIG_SRCU */ 864 static void __device_link_del(struct kref *kref) 865 { 866 struct device_link *link = container_of(kref, struct device_link, kref); 867 868 dev_info(link->consumer, "Dropping the link to %s\n", 869 dev_name(link->supplier)); 870 871 pm_runtime_drop_link(link); 872 873 list_del(&link->s_node); 874 list_del(&link->c_node); 875 device_unregister(&link->link_dev); 876 } 877 #endif /* !CONFIG_SRCU */ 878 879 static void device_link_put_kref(struct device_link *link) 880 { 881 if (link->flags & DL_FLAG_STATELESS) 882 kref_put(&link->kref, __device_link_del); 883 else 884 WARN(1, "Unable to drop a managed device link reference\n"); 885 } 886 887 /** 888 * device_link_del - Delete a stateless link between two devices. 889 * @link: Device link to delete. 890 * 891 * The caller must ensure proper synchronization of this function with runtime 892 * PM. If the link was added multiple times, it needs to be deleted as often. 893 * Care is required for hotplugged devices: Their links are purged on removal 894 * and calling device_link_del() is then no longer allowed. 895 */ 896 void device_link_del(struct device_link *link) 897 { 898 device_links_write_lock(); 899 device_link_put_kref(link); 900 device_links_write_unlock(); 901 } 902 EXPORT_SYMBOL_GPL(device_link_del); 903 904 /** 905 * device_link_remove - Delete a stateless link between two devices. 906 * @consumer: Consumer end of the link. 907 * @supplier: Supplier end of the link. 908 * 909 * The caller must ensure proper synchronization of this function with runtime 910 * PM. 911 */ 912 void device_link_remove(void *consumer, struct device *supplier) 913 { 914 struct device_link *link; 915 916 if (WARN_ON(consumer == supplier)) 917 return; 918 919 device_links_write_lock(); 920 921 list_for_each_entry(link, &supplier->links.consumers, s_node) { 922 if (link->consumer == consumer) { 923 device_link_put_kref(link); 924 break; 925 } 926 } 927 928 device_links_write_unlock(); 929 } 930 EXPORT_SYMBOL_GPL(device_link_remove); 931 932 static void device_links_missing_supplier(struct device *dev) 933 { 934 struct device_link *link; 935 936 list_for_each_entry(link, &dev->links.suppliers, c_node) { 937 if (link->status != DL_STATE_CONSUMER_PROBE) 938 continue; 939 940 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 941 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 942 } else { 943 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 944 WRITE_ONCE(link->status, DL_STATE_DORMANT); 945 } 946 } 947 } 948 949 /** 950 * device_links_check_suppliers - Check presence of supplier drivers. 951 * @dev: Consumer device. 952 * 953 * Check links from this device to any suppliers. Walk the list of the device's 954 * links to suppliers and see if all of them are available. If not, simply 955 * return -EPROBE_DEFER. 956 * 957 * We need to guarantee that the supplier will not go away after the check has 958 * been positive here. It only can go away in __device_release_driver() and 959 * that function checks the device's links to consumers. This means we need to 960 * mark the link as "consumer probe in progress" to make the supplier removal 961 * wait for us to complete (or bad things may happen). 962 * 963 * Links without the DL_FLAG_MANAGED flag set are ignored. 964 */ 965 int device_links_check_suppliers(struct device *dev) 966 { 967 struct device_link *link; 968 int ret = 0; 969 970 /* 971 * Device waiting for supplier to become available is not allowed to 972 * probe. 973 */ 974 mutex_lock(&fwnode_link_lock); 975 if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) && 976 !fw_devlink_is_permissive()) { 977 dev_dbg(dev, "probe deferral - wait for supplier %pfwP\n", 978 list_first_entry(&dev->fwnode->suppliers, 979 struct fwnode_link, 980 c_hook)->supplier); 981 mutex_unlock(&fwnode_link_lock); 982 return -EPROBE_DEFER; 983 } 984 mutex_unlock(&fwnode_link_lock); 985 986 device_links_write_lock(); 987 988 list_for_each_entry(link, &dev->links.suppliers, c_node) { 989 if (!(link->flags & DL_FLAG_MANAGED)) 990 continue; 991 992 if (link->status != DL_STATE_AVAILABLE && 993 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) { 994 device_links_missing_supplier(dev); 995 dev_dbg(dev, "probe deferral - supplier %s not ready\n", 996 dev_name(link->supplier)); 997 ret = -EPROBE_DEFER; 998 break; 999 } 1000 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1001 } 1002 dev->links.status = DL_DEV_PROBING; 1003 1004 device_links_write_unlock(); 1005 return ret; 1006 } 1007 1008 /** 1009 * __device_links_queue_sync_state - Queue a device for sync_state() callback 1010 * @dev: Device to call sync_state() on 1011 * @list: List head to queue the @dev on 1012 * 1013 * Queues a device for a sync_state() callback when the device links write lock 1014 * isn't held. This allows the sync_state() execution flow to use device links 1015 * APIs. The caller must ensure this function is called with 1016 * device_links_write_lock() held. 1017 * 1018 * This function does a get_device() to make sure the device is not freed while 1019 * on this list. 1020 * 1021 * So the caller must also ensure that device_links_flush_sync_list() is called 1022 * as soon as the caller releases device_links_write_lock(). This is necessary 1023 * to make sure the sync_state() is called in a timely fashion and the 1024 * put_device() is called on this device. 1025 */ 1026 static void __device_links_queue_sync_state(struct device *dev, 1027 struct list_head *list) 1028 { 1029 struct device_link *link; 1030 1031 if (!dev_has_sync_state(dev)) 1032 return; 1033 if (dev->state_synced) 1034 return; 1035 1036 list_for_each_entry(link, &dev->links.consumers, s_node) { 1037 if (!(link->flags & DL_FLAG_MANAGED)) 1038 continue; 1039 if (link->status != DL_STATE_ACTIVE) 1040 return; 1041 } 1042 1043 /* 1044 * Set the flag here to avoid adding the same device to a list more 1045 * than once. This can happen if new consumers get added to the device 1046 * and probed before the list is flushed. 1047 */ 1048 dev->state_synced = true; 1049 1050 if (WARN_ON(!list_empty(&dev->links.defer_sync))) 1051 return; 1052 1053 get_device(dev); 1054 list_add_tail(&dev->links.defer_sync, list); 1055 } 1056 1057 /** 1058 * device_links_flush_sync_list - Call sync_state() on a list of devices 1059 * @list: List of devices to call sync_state() on 1060 * @dont_lock_dev: Device for which lock is already held by the caller 1061 * 1062 * Calls sync_state() on all the devices that have been queued for it. This 1063 * function is used in conjunction with __device_links_queue_sync_state(). The 1064 * @dont_lock_dev parameter is useful when this function is called from a 1065 * context where a device lock is already held. 1066 */ 1067 static void device_links_flush_sync_list(struct list_head *list, 1068 struct device *dont_lock_dev) 1069 { 1070 struct device *dev, *tmp; 1071 1072 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) { 1073 list_del_init(&dev->links.defer_sync); 1074 1075 if (dev != dont_lock_dev) 1076 device_lock(dev); 1077 1078 if (dev->bus->sync_state) 1079 dev->bus->sync_state(dev); 1080 else if (dev->driver && dev->driver->sync_state) 1081 dev->driver->sync_state(dev); 1082 1083 if (dev != dont_lock_dev) 1084 device_unlock(dev); 1085 1086 put_device(dev); 1087 } 1088 } 1089 1090 void device_links_supplier_sync_state_pause(void) 1091 { 1092 device_links_write_lock(); 1093 defer_sync_state_count++; 1094 device_links_write_unlock(); 1095 } 1096 1097 void device_links_supplier_sync_state_resume(void) 1098 { 1099 struct device *dev, *tmp; 1100 LIST_HEAD(sync_list); 1101 1102 device_links_write_lock(); 1103 if (!defer_sync_state_count) { 1104 WARN(true, "Unmatched sync_state pause/resume!"); 1105 goto out; 1106 } 1107 defer_sync_state_count--; 1108 if (defer_sync_state_count) 1109 goto out; 1110 1111 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) { 1112 /* 1113 * Delete from deferred_sync list before queuing it to 1114 * sync_list because defer_sync is used for both lists. 1115 */ 1116 list_del_init(&dev->links.defer_sync); 1117 __device_links_queue_sync_state(dev, &sync_list); 1118 } 1119 out: 1120 device_links_write_unlock(); 1121 1122 device_links_flush_sync_list(&sync_list, NULL); 1123 } 1124 1125 static int sync_state_resume_initcall(void) 1126 { 1127 device_links_supplier_sync_state_resume(); 1128 return 0; 1129 } 1130 late_initcall(sync_state_resume_initcall); 1131 1132 static void __device_links_supplier_defer_sync(struct device *sup) 1133 { 1134 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup)) 1135 list_add_tail(&sup->links.defer_sync, &deferred_sync); 1136 } 1137 1138 static void device_link_drop_managed(struct device_link *link) 1139 { 1140 link->flags &= ~DL_FLAG_MANAGED; 1141 WRITE_ONCE(link->status, DL_STATE_NONE); 1142 kref_put(&link->kref, __device_link_del); 1143 } 1144 1145 static ssize_t waiting_for_supplier_show(struct device *dev, 1146 struct device_attribute *attr, 1147 char *buf) 1148 { 1149 bool val; 1150 1151 device_lock(dev); 1152 val = !list_empty(&dev->fwnode->suppliers); 1153 device_unlock(dev); 1154 return sysfs_emit(buf, "%u\n", val); 1155 } 1156 static DEVICE_ATTR_RO(waiting_for_supplier); 1157 1158 /** 1159 * device_links_force_bind - Prepares device to be force bound 1160 * @dev: Consumer device. 1161 * 1162 * device_bind_driver() force binds a device to a driver without calling any 1163 * driver probe functions. So the consumer really isn't going to wait for any 1164 * supplier before it's bound to the driver. We still want the device link 1165 * states to be sensible when this happens. 1166 * 1167 * In preparation for device_bind_driver(), this function goes through each 1168 * supplier device links and checks if the supplier is bound. If it is, then 1169 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link 1170 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored. 1171 */ 1172 void device_links_force_bind(struct device *dev) 1173 { 1174 struct device_link *link, *ln; 1175 1176 device_links_write_lock(); 1177 1178 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1179 if (!(link->flags & DL_FLAG_MANAGED)) 1180 continue; 1181 1182 if (link->status != DL_STATE_AVAILABLE) { 1183 device_link_drop_managed(link); 1184 continue; 1185 } 1186 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1187 } 1188 dev->links.status = DL_DEV_PROBING; 1189 1190 device_links_write_unlock(); 1191 } 1192 1193 /** 1194 * device_links_driver_bound - Update device links after probing its driver. 1195 * @dev: Device to update the links for. 1196 * 1197 * The probe has been successful, so update links from this device to any 1198 * consumers by changing their status to "available". 1199 * 1200 * Also change the status of @dev's links to suppliers to "active". 1201 * 1202 * Links without the DL_FLAG_MANAGED flag set are ignored. 1203 */ 1204 void device_links_driver_bound(struct device *dev) 1205 { 1206 struct device_link *link, *ln; 1207 LIST_HEAD(sync_list); 1208 1209 /* 1210 * If a device binds successfully, it's expected to have created all 1211 * the device links it needs to or make new device links as it needs 1212 * them. So, fw_devlink no longer needs to create device links to any 1213 * of the device's suppliers. 1214 * 1215 * Also, if a child firmware node of this bound device is not added as 1216 * a device by now, assume it is never going to be added and make sure 1217 * other devices don't defer probe indefinitely by waiting for such a 1218 * child device. 1219 */ 1220 if (dev->fwnode && dev->fwnode->dev == dev) { 1221 struct fwnode_handle *child; 1222 fwnode_links_purge_suppliers(dev->fwnode); 1223 fwnode_for_each_available_child_node(dev->fwnode, child) 1224 fw_devlink_purge_absent_suppliers(child); 1225 } 1226 device_remove_file(dev, &dev_attr_waiting_for_supplier); 1227 1228 device_links_write_lock(); 1229 1230 list_for_each_entry(link, &dev->links.consumers, s_node) { 1231 if (!(link->flags & DL_FLAG_MANAGED)) 1232 continue; 1233 1234 /* 1235 * Links created during consumer probe may be in the "consumer 1236 * probe" state to start with if the supplier is still probing 1237 * when they are created and they may become "active" if the 1238 * consumer probe returns first. Skip them here. 1239 */ 1240 if (link->status == DL_STATE_CONSUMER_PROBE || 1241 link->status == DL_STATE_ACTIVE) 1242 continue; 1243 1244 WARN_ON(link->status != DL_STATE_DORMANT); 1245 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1246 1247 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER) 1248 driver_deferred_probe_add(link->consumer); 1249 } 1250 1251 if (defer_sync_state_count) 1252 __device_links_supplier_defer_sync(dev); 1253 else 1254 __device_links_queue_sync_state(dev, &sync_list); 1255 1256 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1257 struct device *supplier; 1258 1259 if (!(link->flags & DL_FLAG_MANAGED)) 1260 continue; 1261 1262 supplier = link->supplier; 1263 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) { 1264 /* 1265 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no 1266 * other DL_MANAGED_LINK_FLAGS have been set. So, it's 1267 * save to drop the managed link completely. 1268 */ 1269 device_link_drop_managed(link); 1270 } else { 1271 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 1272 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 1273 } 1274 1275 /* 1276 * This needs to be done even for the deleted 1277 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last 1278 * device link that was preventing the supplier from getting a 1279 * sync_state() call. 1280 */ 1281 if (defer_sync_state_count) 1282 __device_links_supplier_defer_sync(supplier); 1283 else 1284 __device_links_queue_sync_state(supplier, &sync_list); 1285 } 1286 1287 dev->links.status = DL_DEV_DRIVER_BOUND; 1288 1289 device_links_write_unlock(); 1290 1291 device_links_flush_sync_list(&sync_list, dev); 1292 } 1293 1294 /** 1295 * __device_links_no_driver - Update links of a device without a driver. 1296 * @dev: Device without a drvier. 1297 * 1298 * Delete all non-persistent links from this device to any suppliers. 1299 * 1300 * Persistent links stay around, but their status is changed to "available", 1301 * unless they already are in the "supplier unbind in progress" state in which 1302 * case they need not be updated. 1303 * 1304 * Links without the DL_FLAG_MANAGED flag set are ignored. 1305 */ 1306 static void __device_links_no_driver(struct device *dev) 1307 { 1308 struct device_link *link, *ln; 1309 1310 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1311 if (!(link->flags & DL_FLAG_MANAGED)) 1312 continue; 1313 1314 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 1315 device_link_drop_managed(link); 1316 continue; 1317 } 1318 1319 if (link->status != DL_STATE_CONSUMER_PROBE && 1320 link->status != DL_STATE_ACTIVE) 1321 continue; 1322 1323 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1324 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1325 } else { 1326 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1327 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1328 } 1329 } 1330 1331 dev->links.status = DL_DEV_NO_DRIVER; 1332 } 1333 1334 /** 1335 * device_links_no_driver - Update links after failing driver probe. 1336 * @dev: Device whose driver has just failed to probe. 1337 * 1338 * Clean up leftover links to consumers for @dev and invoke 1339 * %__device_links_no_driver() to update links to suppliers for it as 1340 * appropriate. 1341 * 1342 * Links without the DL_FLAG_MANAGED flag set are ignored. 1343 */ 1344 void device_links_no_driver(struct device *dev) 1345 { 1346 struct device_link *link; 1347 1348 device_links_write_lock(); 1349 1350 list_for_each_entry(link, &dev->links.consumers, s_node) { 1351 if (!(link->flags & DL_FLAG_MANAGED)) 1352 continue; 1353 1354 /* 1355 * The probe has failed, so if the status of the link is 1356 * "consumer probe" or "active", it must have been added by 1357 * a probing consumer while this device was still probing. 1358 * Change its state to "dormant", as it represents a valid 1359 * relationship, but it is not functionally meaningful. 1360 */ 1361 if (link->status == DL_STATE_CONSUMER_PROBE || 1362 link->status == DL_STATE_ACTIVE) 1363 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1364 } 1365 1366 __device_links_no_driver(dev); 1367 1368 device_links_write_unlock(); 1369 } 1370 1371 /** 1372 * device_links_driver_cleanup - Update links after driver removal. 1373 * @dev: Device whose driver has just gone away. 1374 * 1375 * Update links to consumers for @dev by changing their status to "dormant" and 1376 * invoke %__device_links_no_driver() to update links to suppliers for it as 1377 * appropriate. 1378 * 1379 * Links without the DL_FLAG_MANAGED flag set are ignored. 1380 */ 1381 void device_links_driver_cleanup(struct device *dev) 1382 { 1383 struct device_link *link, *ln; 1384 1385 device_links_write_lock(); 1386 1387 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) { 1388 if (!(link->flags & DL_FLAG_MANAGED)) 1389 continue; 1390 1391 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER); 1392 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 1393 1394 /* 1395 * autoremove the links between this @dev and its consumer 1396 * devices that are not active, i.e. where the link state 1397 * has moved to DL_STATE_SUPPLIER_UNBIND. 1398 */ 1399 if (link->status == DL_STATE_SUPPLIER_UNBIND && 1400 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 1401 device_link_drop_managed(link); 1402 1403 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1404 } 1405 1406 list_del_init(&dev->links.defer_sync); 1407 __device_links_no_driver(dev); 1408 1409 device_links_write_unlock(); 1410 } 1411 1412 /** 1413 * device_links_busy - Check if there are any busy links to consumers. 1414 * @dev: Device to check. 1415 * 1416 * Check each consumer of the device and return 'true' if its link's status 1417 * is one of "consumer probe" or "active" (meaning that the given consumer is 1418 * probing right now or its driver is present). Otherwise, change the link 1419 * state to "supplier unbind" to prevent the consumer from being probed 1420 * successfully going forward. 1421 * 1422 * Return 'false' if there are no probing or active consumers. 1423 * 1424 * Links without the DL_FLAG_MANAGED flag set are ignored. 1425 */ 1426 bool device_links_busy(struct device *dev) 1427 { 1428 struct device_link *link; 1429 bool ret = false; 1430 1431 device_links_write_lock(); 1432 1433 list_for_each_entry(link, &dev->links.consumers, s_node) { 1434 if (!(link->flags & DL_FLAG_MANAGED)) 1435 continue; 1436 1437 if (link->status == DL_STATE_CONSUMER_PROBE 1438 || link->status == DL_STATE_ACTIVE) { 1439 ret = true; 1440 break; 1441 } 1442 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1443 } 1444 1445 dev->links.status = DL_DEV_UNBINDING; 1446 1447 device_links_write_unlock(); 1448 return ret; 1449 } 1450 1451 /** 1452 * device_links_unbind_consumers - Force unbind consumers of the given device. 1453 * @dev: Device to unbind the consumers of. 1454 * 1455 * Walk the list of links to consumers for @dev and if any of them is in the 1456 * "consumer probe" state, wait for all device probes in progress to complete 1457 * and start over. 1458 * 1459 * If that's not the case, change the status of the link to "supplier unbind" 1460 * and check if the link was in the "active" state. If so, force the consumer 1461 * driver to unbind and start over (the consumer will not re-probe as we have 1462 * changed the state of the link already). 1463 * 1464 * Links without the DL_FLAG_MANAGED flag set are ignored. 1465 */ 1466 void device_links_unbind_consumers(struct device *dev) 1467 { 1468 struct device_link *link; 1469 1470 start: 1471 device_links_write_lock(); 1472 1473 list_for_each_entry(link, &dev->links.consumers, s_node) { 1474 enum device_link_state status; 1475 1476 if (!(link->flags & DL_FLAG_MANAGED) || 1477 link->flags & DL_FLAG_SYNC_STATE_ONLY) 1478 continue; 1479 1480 status = link->status; 1481 if (status == DL_STATE_CONSUMER_PROBE) { 1482 device_links_write_unlock(); 1483 1484 wait_for_device_probe(); 1485 goto start; 1486 } 1487 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1488 if (status == DL_STATE_ACTIVE) { 1489 struct device *consumer = link->consumer; 1490 1491 get_device(consumer); 1492 1493 device_links_write_unlock(); 1494 1495 device_release_driver_internal(consumer, NULL, 1496 consumer->parent); 1497 put_device(consumer); 1498 goto start; 1499 } 1500 } 1501 1502 device_links_write_unlock(); 1503 } 1504 1505 /** 1506 * device_links_purge - Delete existing links to other devices. 1507 * @dev: Target device. 1508 */ 1509 static void device_links_purge(struct device *dev) 1510 { 1511 struct device_link *link, *ln; 1512 1513 if (dev->class == &devlink_class) 1514 return; 1515 1516 /* 1517 * Delete all of the remaining links from this device to any other 1518 * devices (either consumers or suppliers). 1519 */ 1520 device_links_write_lock(); 1521 1522 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1523 WARN_ON(link->status == DL_STATE_ACTIVE); 1524 __device_link_del(&link->kref); 1525 } 1526 1527 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 1528 WARN_ON(link->status != DL_STATE_DORMANT && 1529 link->status != DL_STATE_NONE); 1530 __device_link_del(&link->kref); 1531 } 1532 1533 device_links_write_unlock(); 1534 } 1535 1536 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \ 1537 DL_FLAG_SYNC_STATE_ONLY) 1538 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \ 1539 DL_FLAG_AUTOPROBE_CONSUMER) 1540 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \ 1541 DL_FLAG_PM_RUNTIME) 1542 1543 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1544 static int __init fw_devlink_setup(char *arg) 1545 { 1546 if (!arg) 1547 return -EINVAL; 1548 1549 if (strcmp(arg, "off") == 0) { 1550 fw_devlink_flags = 0; 1551 } else if (strcmp(arg, "permissive") == 0) { 1552 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1553 } else if (strcmp(arg, "on") == 0) { 1554 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1555 } else if (strcmp(arg, "rpm") == 0) { 1556 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM; 1557 } 1558 return 0; 1559 } 1560 early_param("fw_devlink", fw_devlink_setup); 1561 1562 static bool fw_devlink_strict; 1563 static int __init fw_devlink_strict_setup(char *arg) 1564 { 1565 return strtobool(arg, &fw_devlink_strict); 1566 } 1567 early_param("fw_devlink.strict", fw_devlink_strict_setup); 1568 1569 u32 fw_devlink_get_flags(void) 1570 { 1571 return fw_devlink_flags; 1572 } 1573 1574 static bool fw_devlink_is_permissive(void) 1575 { 1576 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE; 1577 } 1578 1579 bool fw_devlink_is_strict(void) 1580 { 1581 return fw_devlink_strict && !fw_devlink_is_permissive(); 1582 } 1583 1584 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode) 1585 { 1586 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED) 1587 return; 1588 1589 fwnode_call_int_op(fwnode, add_links); 1590 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED; 1591 } 1592 1593 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode) 1594 { 1595 struct fwnode_handle *child = NULL; 1596 1597 fw_devlink_parse_fwnode(fwnode); 1598 1599 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 1600 fw_devlink_parse_fwtree(child); 1601 } 1602 1603 static void fw_devlink_relax_link(struct device_link *link) 1604 { 1605 if (!(link->flags & DL_FLAG_INFERRED)) 1606 return; 1607 1608 if (link->flags == (DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE)) 1609 return; 1610 1611 pm_runtime_drop_link(link); 1612 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE; 1613 dev_dbg(link->consumer, "Relaxing link with %s\n", 1614 dev_name(link->supplier)); 1615 } 1616 1617 static int fw_devlink_no_driver(struct device *dev, void *data) 1618 { 1619 struct device_link *link = to_devlink(dev); 1620 1621 if (!link->supplier->can_match) 1622 fw_devlink_relax_link(link); 1623 1624 return 0; 1625 } 1626 1627 void fw_devlink_drivers_done(void) 1628 { 1629 fw_devlink_drv_reg_done = true; 1630 device_links_write_lock(); 1631 class_for_each_device(&devlink_class, NULL, NULL, 1632 fw_devlink_no_driver); 1633 device_links_write_unlock(); 1634 } 1635 1636 static void fw_devlink_unblock_consumers(struct device *dev) 1637 { 1638 struct device_link *link; 1639 1640 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1641 return; 1642 1643 device_links_write_lock(); 1644 list_for_each_entry(link, &dev->links.consumers, s_node) 1645 fw_devlink_relax_link(link); 1646 device_links_write_unlock(); 1647 } 1648 1649 /** 1650 * fw_devlink_relax_cycle - Convert cyclic links to SYNC_STATE_ONLY links 1651 * @con: Device to check dependencies for. 1652 * @sup: Device to check against. 1653 * 1654 * Check if @sup depends on @con or any device dependent on it (its child or 1655 * its consumer etc). When such a cyclic dependency is found, convert all 1656 * device links created solely by fw_devlink into SYNC_STATE_ONLY device links. 1657 * This is the equivalent of doing fw_devlink=permissive just between the 1658 * devices in the cycle. We need to do this because, at this point, fw_devlink 1659 * can't tell which of these dependencies is not a real dependency. 1660 * 1661 * Return 1 if a cycle is found. Otherwise, return 0. 1662 */ 1663 static int fw_devlink_relax_cycle(struct device *con, void *sup) 1664 { 1665 struct device_link *link; 1666 int ret; 1667 1668 if (con == sup) 1669 return 1; 1670 1671 ret = device_for_each_child(con, sup, fw_devlink_relax_cycle); 1672 if (ret) 1673 return ret; 1674 1675 list_for_each_entry(link, &con->links.consumers, s_node) { 1676 if ((link->flags & ~DL_FLAG_INFERRED) == 1677 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 1678 continue; 1679 1680 if (!fw_devlink_relax_cycle(link->consumer, sup)) 1681 continue; 1682 1683 ret = 1; 1684 1685 fw_devlink_relax_link(link); 1686 } 1687 return ret; 1688 } 1689 1690 /** 1691 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode 1692 * @con: consumer device for the device link 1693 * @sup_handle: fwnode handle of supplier 1694 * @flags: devlink flags 1695 * 1696 * This function will try to create a device link between the consumer device 1697 * @con and the supplier device represented by @sup_handle. 1698 * 1699 * The supplier has to be provided as a fwnode because incorrect cycles in 1700 * fwnode links can sometimes cause the supplier device to never be created. 1701 * This function detects such cases and returns an error if it cannot create a 1702 * device link from the consumer to a missing supplier. 1703 * 1704 * Returns, 1705 * 0 on successfully creating a device link 1706 * -EINVAL if the device link cannot be created as expected 1707 * -EAGAIN if the device link cannot be created right now, but it may be 1708 * possible to do that in the future 1709 */ 1710 static int fw_devlink_create_devlink(struct device *con, 1711 struct fwnode_handle *sup_handle, u32 flags) 1712 { 1713 struct device *sup_dev; 1714 int ret = 0; 1715 1716 sup_dev = get_dev_from_fwnode(sup_handle); 1717 if (sup_dev) { 1718 /* 1719 * If it's one of those drivers that don't actually bind to 1720 * their device using driver core, then don't wait on this 1721 * supplier device indefinitely. 1722 */ 1723 if (sup_dev->links.status == DL_DEV_NO_DRIVER && 1724 sup_handle->flags & FWNODE_FLAG_INITIALIZED) { 1725 ret = -EINVAL; 1726 goto out; 1727 } 1728 1729 /* 1730 * If this fails, it is due to cycles in device links. Just 1731 * give up on this link and treat it as invalid. 1732 */ 1733 if (!device_link_add(con, sup_dev, flags) && 1734 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 1735 dev_info(con, "Fixing up cyclic dependency with %s\n", 1736 dev_name(sup_dev)); 1737 device_links_write_lock(); 1738 fw_devlink_relax_cycle(con, sup_dev); 1739 device_links_write_unlock(); 1740 device_link_add(con, sup_dev, 1741 FW_DEVLINK_FLAGS_PERMISSIVE); 1742 ret = -EINVAL; 1743 } 1744 1745 goto out; 1746 } 1747 1748 /* Supplier that's already initialized without a struct device. */ 1749 if (sup_handle->flags & FWNODE_FLAG_INITIALIZED) 1750 return -EINVAL; 1751 1752 /* 1753 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports 1754 * cycles. So cycle detection isn't necessary and shouldn't be 1755 * done. 1756 */ 1757 if (flags & DL_FLAG_SYNC_STATE_ONLY) 1758 return -EAGAIN; 1759 1760 /* 1761 * If we can't find the supplier device from its fwnode, it might be 1762 * due to a cyclic dependency between fwnodes. Some of these cycles can 1763 * be broken by applying logic. Check for these types of cycles and 1764 * break them so that devices in the cycle probe properly. 1765 * 1766 * If the supplier's parent is dependent on the consumer, then 1767 * the consumer-supplier dependency is a false dependency. So, 1768 * treat it as an invalid link. 1769 */ 1770 sup_dev = fwnode_get_next_parent_dev(sup_handle); 1771 if (sup_dev && device_is_dependent(con, sup_dev)) { 1772 dev_dbg(con, "Not linking to %pfwP - False link\n", 1773 sup_handle); 1774 ret = -EINVAL; 1775 } else { 1776 /* 1777 * Can't check for cycles or no cycles. So let's try 1778 * again later. 1779 */ 1780 ret = -EAGAIN; 1781 } 1782 1783 out: 1784 put_device(sup_dev); 1785 return ret; 1786 } 1787 1788 /** 1789 * __fw_devlink_link_to_consumers - Create device links to consumers of a device 1790 * @dev: Device that needs to be linked to its consumers 1791 * 1792 * This function looks at all the consumer fwnodes of @dev and creates device 1793 * links between the consumer device and @dev (supplier). 1794 * 1795 * If the consumer device has not been added yet, then this function creates a 1796 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device 1797 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a 1798 * sync_state() callback before the real consumer device gets to be added and 1799 * then probed. 1800 * 1801 * Once device links are created from the real consumer to @dev (supplier), the 1802 * fwnode links are deleted. 1803 */ 1804 static void __fw_devlink_link_to_consumers(struct device *dev) 1805 { 1806 struct fwnode_handle *fwnode = dev->fwnode; 1807 struct fwnode_link *link, *tmp; 1808 1809 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) { 1810 u32 dl_flags = fw_devlink_get_flags(); 1811 struct device *con_dev; 1812 bool own_link = true; 1813 int ret; 1814 1815 con_dev = get_dev_from_fwnode(link->consumer); 1816 /* 1817 * If consumer device is not available yet, make a "proxy" 1818 * SYNC_STATE_ONLY link from the consumer's parent device to 1819 * the supplier device. This is necessary to make sure the 1820 * supplier doesn't get a sync_state() callback before the real 1821 * consumer can create a device link to the supplier. 1822 * 1823 * This proxy link step is needed to handle the case where the 1824 * consumer's parent device is added before the supplier. 1825 */ 1826 if (!con_dev) { 1827 con_dev = fwnode_get_next_parent_dev(link->consumer); 1828 /* 1829 * However, if the consumer's parent device is also the 1830 * parent of the supplier, don't create a 1831 * consumer-supplier link from the parent to its child 1832 * device. Such a dependency is impossible. 1833 */ 1834 if (con_dev && 1835 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) { 1836 put_device(con_dev); 1837 con_dev = NULL; 1838 } else { 1839 own_link = false; 1840 dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1841 } 1842 } 1843 1844 if (!con_dev) 1845 continue; 1846 1847 ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags); 1848 put_device(con_dev); 1849 if (!own_link || ret == -EAGAIN) 1850 continue; 1851 1852 list_del(&link->s_hook); 1853 list_del(&link->c_hook); 1854 kfree(link); 1855 } 1856 } 1857 1858 /** 1859 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device 1860 * @dev: The consumer device that needs to be linked to its suppliers 1861 * @fwnode: Root of the fwnode tree that is used to create device links 1862 * 1863 * This function looks at all the supplier fwnodes of fwnode tree rooted at 1864 * @fwnode and creates device links between @dev (consumer) and all the 1865 * supplier devices of the entire fwnode tree at @fwnode. 1866 * 1867 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev 1868 * and the real suppliers of @dev. Once these device links are created, the 1869 * fwnode links are deleted. When such device links are successfully created, 1870 * this function is called recursively on those supplier devices. This is 1871 * needed to detect and break some invalid cycles in fwnode links. See 1872 * fw_devlink_create_devlink() for more details. 1873 * 1874 * In addition, it also looks at all the suppliers of the entire fwnode tree 1875 * because some of the child devices of @dev that have not been added yet 1876 * (because @dev hasn't probed) might already have their suppliers added to 1877 * driver core. So, this function creates SYNC_STATE_ONLY device links between 1878 * @dev (consumer) and these suppliers to make sure they don't execute their 1879 * sync_state() callbacks before these child devices have a chance to create 1880 * their device links. The fwnode links that correspond to the child devices 1881 * aren't delete because they are needed later to create the device links 1882 * between the real consumer and supplier devices. 1883 */ 1884 static void __fw_devlink_link_to_suppliers(struct device *dev, 1885 struct fwnode_handle *fwnode) 1886 { 1887 bool own_link = (dev->fwnode == fwnode); 1888 struct fwnode_link *link, *tmp; 1889 struct fwnode_handle *child = NULL; 1890 u32 dl_flags; 1891 1892 if (own_link) 1893 dl_flags = fw_devlink_get_flags(); 1894 else 1895 dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1896 1897 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) { 1898 int ret; 1899 struct device *sup_dev; 1900 struct fwnode_handle *sup = link->supplier; 1901 1902 ret = fw_devlink_create_devlink(dev, sup, dl_flags); 1903 if (!own_link || ret == -EAGAIN) 1904 continue; 1905 1906 list_del(&link->s_hook); 1907 list_del(&link->c_hook); 1908 kfree(link); 1909 1910 /* If no device link was created, nothing more to do. */ 1911 if (ret) 1912 continue; 1913 1914 /* 1915 * If a device link was successfully created to a supplier, we 1916 * now need to try and link the supplier to all its suppliers. 1917 * 1918 * This is needed to detect and delete false dependencies in 1919 * fwnode links that haven't been converted to a device link 1920 * yet. See comments in fw_devlink_create_devlink() for more 1921 * details on the false dependency. 1922 * 1923 * Without deleting these false dependencies, some devices will 1924 * never probe because they'll keep waiting for their false 1925 * dependency fwnode links to be converted to device links. 1926 */ 1927 sup_dev = get_dev_from_fwnode(sup); 1928 __fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode); 1929 put_device(sup_dev); 1930 } 1931 1932 /* 1933 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of 1934 * all the descendants. This proxy link step is needed to handle the 1935 * case where the supplier is added before the consumer's parent device 1936 * (@dev). 1937 */ 1938 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 1939 __fw_devlink_link_to_suppliers(dev, child); 1940 } 1941 1942 static void fw_devlink_link_device(struct device *dev) 1943 { 1944 struct fwnode_handle *fwnode = dev->fwnode; 1945 1946 if (!fw_devlink_flags) 1947 return; 1948 1949 fw_devlink_parse_fwtree(fwnode); 1950 1951 mutex_lock(&fwnode_link_lock); 1952 __fw_devlink_link_to_consumers(dev); 1953 __fw_devlink_link_to_suppliers(dev, fwnode); 1954 mutex_unlock(&fwnode_link_lock); 1955 } 1956 1957 /* Device links support end. */ 1958 1959 int (*platform_notify)(struct device *dev) = NULL; 1960 int (*platform_notify_remove)(struct device *dev) = NULL; 1961 static struct kobject *dev_kobj; 1962 struct kobject *sysfs_dev_char_kobj; 1963 struct kobject *sysfs_dev_block_kobj; 1964 1965 static DEFINE_MUTEX(device_hotplug_lock); 1966 1967 void lock_device_hotplug(void) 1968 { 1969 mutex_lock(&device_hotplug_lock); 1970 } 1971 1972 void unlock_device_hotplug(void) 1973 { 1974 mutex_unlock(&device_hotplug_lock); 1975 } 1976 1977 int lock_device_hotplug_sysfs(void) 1978 { 1979 if (mutex_trylock(&device_hotplug_lock)) 1980 return 0; 1981 1982 /* Avoid busy looping (5 ms of sleep should do). */ 1983 msleep(5); 1984 return restart_syscall(); 1985 } 1986 1987 #ifdef CONFIG_BLOCK 1988 static inline int device_is_not_partition(struct device *dev) 1989 { 1990 return !(dev->type == &part_type); 1991 } 1992 #else 1993 static inline int device_is_not_partition(struct device *dev) 1994 { 1995 return 1; 1996 } 1997 #endif 1998 1999 static int 2000 device_platform_notify(struct device *dev, enum kobject_action action) 2001 { 2002 int ret; 2003 2004 ret = acpi_platform_notify(dev, action); 2005 if (ret) 2006 return ret; 2007 2008 ret = software_node_notify(dev, action); 2009 if (ret) 2010 return ret; 2011 2012 if (platform_notify && action == KOBJ_ADD) 2013 platform_notify(dev); 2014 else if (platform_notify_remove && action == KOBJ_REMOVE) 2015 platform_notify_remove(dev); 2016 return 0; 2017 } 2018 2019 /** 2020 * dev_driver_string - Return a device's driver name, if at all possible 2021 * @dev: struct device to get the name of 2022 * 2023 * Will return the device's driver's name if it is bound to a device. If 2024 * the device is not bound to a driver, it will return the name of the bus 2025 * it is attached to. If it is not attached to a bus either, an empty 2026 * string will be returned. 2027 */ 2028 const char *dev_driver_string(const struct device *dev) 2029 { 2030 struct device_driver *drv; 2031 2032 /* dev->driver can change to NULL underneath us because of unbinding, 2033 * so be careful about accessing it. dev->bus and dev->class should 2034 * never change once they are set, so they don't need special care. 2035 */ 2036 drv = READ_ONCE(dev->driver); 2037 return drv ? drv->name : dev_bus_name(dev); 2038 } 2039 EXPORT_SYMBOL(dev_driver_string); 2040 2041 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 2042 2043 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 2044 char *buf) 2045 { 2046 struct device_attribute *dev_attr = to_dev_attr(attr); 2047 struct device *dev = kobj_to_dev(kobj); 2048 ssize_t ret = -EIO; 2049 2050 if (dev_attr->show) 2051 ret = dev_attr->show(dev, dev_attr, buf); 2052 if (ret >= (ssize_t)PAGE_SIZE) { 2053 printk("dev_attr_show: %pS returned bad count\n", 2054 dev_attr->show); 2055 } 2056 return ret; 2057 } 2058 2059 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 2060 const char *buf, size_t count) 2061 { 2062 struct device_attribute *dev_attr = to_dev_attr(attr); 2063 struct device *dev = kobj_to_dev(kobj); 2064 ssize_t ret = -EIO; 2065 2066 if (dev_attr->store) 2067 ret = dev_attr->store(dev, dev_attr, buf, count); 2068 return ret; 2069 } 2070 2071 static const struct sysfs_ops dev_sysfs_ops = { 2072 .show = dev_attr_show, 2073 .store = dev_attr_store, 2074 }; 2075 2076 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 2077 2078 ssize_t device_store_ulong(struct device *dev, 2079 struct device_attribute *attr, 2080 const char *buf, size_t size) 2081 { 2082 struct dev_ext_attribute *ea = to_ext_attr(attr); 2083 int ret; 2084 unsigned long new; 2085 2086 ret = kstrtoul(buf, 0, &new); 2087 if (ret) 2088 return ret; 2089 *(unsigned long *)(ea->var) = new; 2090 /* Always return full write size even if we didn't consume all */ 2091 return size; 2092 } 2093 EXPORT_SYMBOL_GPL(device_store_ulong); 2094 2095 ssize_t device_show_ulong(struct device *dev, 2096 struct device_attribute *attr, 2097 char *buf) 2098 { 2099 struct dev_ext_attribute *ea = to_ext_attr(attr); 2100 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var)); 2101 } 2102 EXPORT_SYMBOL_GPL(device_show_ulong); 2103 2104 ssize_t device_store_int(struct device *dev, 2105 struct device_attribute *attr, 2106 const char *buf, size_t size) 2107 { 2108 struct dev_ext_attribute *ea = to_ext_attr(attr); 2109 int ret; 2110 long new; 2111 2112 ret = kstrtol(buf, 0, &new); 2113 if (ret) 2114 return ret; 2115 2116 if (new > INT_MAX || new < INT_MIN) 2117 return -EINVAL; 2118 *(int *)(ea->var) = new; 2119 /* Always return full write size even if we didn't consume all */ 2120 return size; 2121 } 2122 EXPORT_SYMBOL_GPL(device_store_int); 2123 2124 ssize_t device_show_int(struct device *dev, 2125 struct device_attribute *attr, 2126 char *buf) 2127 { 2128 struct dev_ext_attribute *ea = to_ext_attr(attr); 2129 2130 return sysfs_emit(buf, "%d\n", *(int *)(ea->var)); 2131 } 2132 EXPORT_SYMBOL_GPL(device_show_int); 2133 2134 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 2135 const char *buf, size_t size) 2136 { 2137 struct dev_ext_attribute *ea = to_ext_attr(attr); 2138 2139 if (strtobool(buf, ea->var) < 0) 2140 return -EINVAL; 2141 2142 return size; 2143 } 2144 EXPORT_SYMBOL_GPL(device_store_bool); 2145 2146 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 2147 char *buf) 2148 { 2149 struct dev_ext_attribute *ea = to_ext_attr(attr); 2150 2151 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var)); 2152 } 2153 EXPORT_SYMBOL_GPL(device_show_bool); 2154 2155 /** 2156 * device_release - free device structure. 2157 * @kobj: device's kobject. 2158 * 2159 * This is called once the reference count for the object 2160 * reaches 0. We forward the call to the device's release 2161 * method, which should handle actually freeing the structure. 2162 */ 2163 static void device_release(struct kobject *kobj) 2164 { 2165 struct device *dev = kobj_to_dev(kobj); 2166 struct device_private *p = dev->p; 2167 2168 /* 2169 * Some platform devices are driven without driver attached 2170 * and managed resources may have been acquired. Make sure 2171 * all resources are released. 2172 * 2173 * Drivers still can add resources into device after device 2174 * is deleted but alive, so release devres here to avoid 2175 * possible memory leak. 2176 */ 2177 devres_release_all(dev); 2178 2179 kfree(dev->dma_range_map); 2180 2181 if (dev->release) 2182 dev->release(dev); 2183 else if (dev->type && dev->type->release) 2184 dev->type->release(dev); 2185 else if (dev->class && dev->class->dev_release) 2186 dev->class->dev_release(dev); 2187 else 2188 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n", 2189 dev_name(dev)); 2190 kfree(p); 2191 } 2192 2193 static const void *device_namespace(struct kobject *kobj) 2194 { 2195 struct device *dev = kobj_to_dev(kobj); 2196 const void *ns = NULL; 2197 2198 if (dev->class && dev->class->ns_type) 2199 ns = dev->class->namespace(dev); 2200 2201 return ns; 2202 } 2203 2204 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid) 2205 { 2206 struct device *dev = kobj_to_dev(kobj); 2207 2208 if (dev->class && dev->class->get_ownership) 2209 dev->class->get_ownership(dev, uid, gid); 2210 } 2211 2212 static struct kobj_type device_ktype = { 2213 .release = device_release, 2214 .sysfs_ops = &dev_sysfs_ops, 2215 .namespace = device_namespace, 2216 .get_ownership = device_get_ownership, 2217 }; 2218 2219 2220 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj) 2221 { 2222 struct kobj_type *ktype = get_ktype(kobj); 2223 2224 if (ktype == &device_ktype) { 2225 struct device *dev = kobj_to_dev(kobj); 2226 if (dev->bus) 2227 return 1; 2228 if (dev->class) 2229 return 1; 2230 } 2231 return 0; 2232 } 2233 2234 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj) 2235 { 2236 struct device *dev = kobj_to_dev(kobj); 2237 2238 if (dev->bus) 2239 return dev->bus->name; 2240 if (dev->class) 2241 return dev->class->name; 2242 return NULL; 2243 } 2244 2245 static int dev_uevent(struct kset *kset, struct kobject *kobj, 2246 struct kobj_uevent_env *env) 2247 { 2248 struct device *dev = kobj_to_dev(kobj); 2249 int retval = 0; 2250 2251 /* add device node properties if present */ 2252 if (MAJOR(dev->devt)) { 2253 const char *tmp; 2254 const char *name; 2255 umode_t mode = 0; 2256 kuid_t uid = GLOBAL_ROOT_UID; 2257 kgid_t gid = GLOBAL_ROOT_GID; 2258 2259 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 2260 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 2261 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 2262 if (name) { 2263 add_uevent_var(env, "DEVNAME=%s", name); 2264 if (mode) 2265 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 2266 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 2267 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 2268 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 2269 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 2270 kfree(tmp); 2271 } 2272 } 2273 2274 if (dev->type && dev->type->name) 2275 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 2276 2277 if (dev->driver) 2278 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 2279 2280 /* Add common DT information about the device */ 2281 of_device_uevent(dev, env); 2282 2283 /* have the bus specific function add its stuff */ 2284 if (dev->bus && dev->bus->uevent) { 2285 retval = dev->bus->uevent(dev, env); 2286 if (retval) 2287 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 2288 dev_name(dev), __func__, retval); 2289 } 2290 2291 /* have the class specific function add its stuff */ 2292 if (dev->class && dev->class->dev_uevent) { 2293 retval = dev->class->dev_uevent(dev, env); 2294 if (retval) 2295 pr_debug("device: '%s': %s: class uevent() " 2296 "returned %d\n", dev_name(dev), 2297 __func__, retval); 2298 } 2299 2300 /* have the device type specific function add its stuff */ 2301 if (dev->type && dev->type->uevent) { 2302 retval = dev->type->uevent(dev, env); 2303 if (retval) 2304 pr_debug("device: '%s': %s: dev_type uevent() " 2305 "returned %d\n", dev_name(dev), 2306 __func__, retval); 2307 } 2308 2309 return retval; 2310 } 2311 2312 static const struct kset_uevent_ops device_uevent_ops = { 2313 .filter = dev_uevent_filter, 2314 .name = dev_uevent_name, 2315 .uevent = dev_uevent, 2316 }; 2317 2318 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 2319 char *buf) 2320 { 2321 struct kobject *top_kobj; 2322 struct kset *kset; 2323 struct kobj_uevent_env *env = NULL; 2324 int i; 2325 int len = 0; 2326 int retval; 2327 2328 /* search the kset, the device belongs to */ 2329 top_kobj = &dev->kobj; 2330 while (!top_kobj->kset && top_kobj->parent) 2331 top_kobj = top_kobj->parent; 2332 if (!top_kobj->kset) 2333 goto out; 2334 2335 kset = top_kobj->kset; 2336 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 2337 goto out; 2338 2339 /* respect filter */ 2340 if (kset->uevent_ops && kset->uevent_ops->filter) 2341 if (!kset->uevent_ops->filter(kset, &dev->kobj)) 2342 goto out; 2343 2344 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 2345 if (!env) 2346 return -ENOMEM; 2347 2348 /* let the kset specific function add its keys */ 2349 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env); 2350 if (retval) 2351 goto out; 2352 2353 /* copy keys to file */ 2354 for (i = 0; i < env->envp_idx; i++) 2355 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]); 2356 out: 2357 kfree(env); 2358 return len; 2359 } 2360 2361 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 2362 const char *buf, size_t count) 2363 { 2364 int rc; 2365 2366 rc = kobject_synth_uevent(&dev->kobj, buf, count); 2367 2368 if (rc) { 2369 dev_err(dev, "uevent: failed to send synthetic uevent\n"); 2370 return rc; 2371 } 2372 2373 return count; 2374 } 2375 static DEVICE_ATTR_RW(uevent); 2376 2377 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 2378 char *buf) 2379 { 2380 bool val; 2381 2382 device_lock(dev); 2383 val = !dev->offline; 2384 device_unlock(dev); 2385 return sysfs_emit(buf, "%u\n", val); 2386 } 2387 2388 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 2389 const char *buf, size_t count) 2390 { 2391 bool val; 2392 int ret; 2393 2394 ret = strtobool(buf, &val); 2395 if (ret < 0) 2396 return ret; 2397 2398 ret = lock_device_hotplug_sysfs(); 2399 if (ret) 2400 return ret; 2401 2402 ret = val ? device_online(dev) : device_offline(dev); 2403 unlock_device_hotplug(); 2404 return ret < 0 ? ret : count; 2405 } 2406 static DEVICE_ATTR_RW(online); 2407 2408 int device_add_groups(struct device *dev, const struct attribute_group **groups) 2409 { 2410 return sysfs_create_groups(&dev->kobj, groups); 2411 } 2412 EXPORT_SYMBOL_GPL(device_add_groups); 2413 2414 void device_remove_groups(struct device *dev, 2415 const struct attribute_group **groups) 2416 { 2417 sysfs_remove_groups(&dev->kobj, groups); 2418 } 2419 EXPORT_SYMBOL_GPL(device_remove_groups); 2420 2421 union device_attr_group_devres { 2422 const struct attribute_group *group; 2423 const struct attribute_group **groups; 2424 }; 2425 2426 static int devm_attr_group_match(struct device *dev, void *res, void *data) 2427 { 2428 return ((union device_attr_group_devres *)res)->group == data; 2429 } 2430 2431 static void devm_attr_group_remove(struct device *dev, void *res) 2432 { 2433 union device_attr_group_devres *devres = res; 2434 const struct attribute_group *group = devres->group; 2435 2436 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 2437 sysfs_remove_group(&dev->kobj, group); 2438 } 2439 2440 static void devm_attr_groups_remove(struct device *dev, void *res) 2441 { 2442 union device_attr_group_devres *devres = res; 2443 const struct attribute_group **groups = devres->groups; 2444 2445 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups); 2446 sysfs_remove_groups(&dev->kobj, groups); 2447 } 2448 2449 /** 2450 * devm_device_add_group - given a device, create a managed attribute group 2451 * @dev: The device to create the group for 2452 * @grp: The attribute group to create 2453 * 2454 * This function creates a group for the first time. It will explicitly 2455 * warn and error if any of the attribute files being created already exist. 2456 * 2457 * Returns 0 on success or error code on failure. 2458 */ 2459 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 2460 { 2461 union device_attr_group_devres *devres; 2462 int error; 2463 2464 devres = devres_alloc(devm_attr_group_remove, 2465 sizeof(*devres), GFP_KERNEL); 2466 if (!devres) 2467 return -ENOMEM; 2468 2469 error = sysfs_create_group(&dev->kobj, grp); 2470 if (error) { 2471 devres_free(devres); 2472 return error; 2473 } 2474 2475 devres->group = grp; 2476 devres_add(dev, devres); 2477 return 0; 2478 } 2479 EXPORT_SYMBOL_GPL(devm_device_add_group); 2480 2481 /** 2482 * devm_device_remove_group: remove a managed group from a device 2483 * @dev: device to remove the group from 2484 * @grp: group to remove 2485 * 2486 * This function removes a group of attributes from a device. The attributes 2487 * previously have to have been created for this group, otherwise it will fail. 2488 */ 2489 void devm_device_remove_group(struct device *dev, 2490 const struct attribute_group *grp) 2491 { 2492 WARN_ON(devres_release(dev, devm_attr_group_remove, 2493 devm_attr_group_match, 2494 /* cast away const */ (void *)grp)); 2495 } 2496 EXPORT_SYMBOL_GPL(devm_device_remove_group); 2497 2498 /** 2499 * devm_device_add_groups - create a bunch of managed attribute groups 2500 * @dev: The device to create the group for 2501 * @groups: The attribute groups to create, NULL terminated 2502 * 2503 * This function creates a bunch of managed attribute groups. If an error 2504 * occurs when creating a group, all previously created groups will be 2505 * removed, unwinding everything back to the original state when this 2506 * function was called. It will explicitly warn and error if any of the 2507 * attribute files being created already exist. 2508 * 2509 * Returns 0 on success or error code from sysfs_create_group on failure. 2510 */ 2511 int devm_device_add_groups(struct device *dev, 2512 const struct attribute_group **groups) 2513 { 2514 union device_attr_group_devres *devres; 2515 int error; 2516 2517 devres = devres_alloc(devm_attr_groups_remove, 2518 sizeof(*devres), GFP_KERNEL); 2519 if (!devres) 2520 return -ENOMEM; 2521 2522 error = sysfs_create_groups(&dev->kobj, groups); 2523 if (error) { 2524 devres_free(devres); 2525 return error; 2526 } 2527 2528 devres->groups = groups; 2529 devres_add(dev, devres); 2530 return 0; 2531 } 2532 EXPORT_SYMBOL_GPL(devm_device_add_groups); 2533 2534 /** 2535 * devm_device_remove_groups - remove a list of managed groups 2536 * 2537 * @dev: The device for the groups to be removed from 2538 * @groups: NULL terminated list of groups to be removed 2539 * 2540 * If groups is not NULL, remove the specified groups from the device. 2541 */ 2542 void devm_device_remove_groups(struct device *dev, 2543 const struct attribute_group **groups) 2544 { 2545 WARN_ON(devres_release(dev, devm_attr_groups_remove, 2546 devm_attr_group_match, 2547 /* cast away const */ (void *)groups)); 2548 } 2549 EXPORT_SYMBOL_GPL(devm_device_remove_groups); 2550 2551 static int device_add_attrs(struct device *dev) 2552 { 2553 struct class *class = dev->class; 2554 const struct device_type *type = dev->type; 2555 int error; 2556 2557 if (class) { 2558 error = device_add_groups(dev, class->dev_groups); 2559 if (error) 2560 return error; 2561 } 2562 2563 if (type) { 2564 error = device_add_groups(dev, type->groups); 2565 if (error) 2566 goto err_remove_class_groups; 2567 } 2568 2569 error = device_add_groups(dev, dev->groups); 2570 if (error) 2571 goto err_remove_type_groups; 2572 2573 if (device_supports_offline(dev) && !dev->offline_disabled) { 2574 error = device_create_file(dev, &dev_attr_online); 2575 if (error) 2576 goto err_remove_dev_groups; 2577 } 2578 2579 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) { 2580 error = device_create_file(dev, &dev_attr_waiting_for_supplier); 2581 if (error) 2582 goto err_remove_dev_online; 2583 } 2584 2585 return 0; 2586 2587 err_remove_dev_online: 2588 device_remove_file(dev, &dev_attr_online); 2589 err_remove_dev_groups: 2590 device_remove_groups(dev, dev->groups); 2591 err_remove_type_groups: 2592 if (type) 2593 device_remove_groups(dev, type->groups); 2594 err_remove_class_groups: 2595 if (class) 2596 device_remove_groups(dev, class->dev_groups); 2597 2598 return error; 2599 } 2600 2601 static void device_remove_attrs(struct device *dev) 2602 { 2603 struct class *class = dev->class; 2604 const struct device_type *type = dev->type; 2605 2606 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2607 device_remove_file(dev, &dev_attr_online); 2608 device_remove_groups(dev, dev->groups); 2609 2610 if (type) 2611 device_remove_groups(dev, type->groups); 2612 2613 if (class) 2614 device_remove_groups(dev, class->dev_groups); 2615 } 2616 2617 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 2618 char *buf) 2619 { 2620 return print_dev_t(buf, dev->devt); 2621 } 2622 static DEVICE_ATTR_RO(dev); 2623 2624 /* /sys/devices/ */ 2625 struct kset *devices_kset; 2626 2627 /** 2628 * devices_kset_move_before - Move device in the devices_kset's list. 2629 * @deva: Device to move. 2630 * @devb: Device @deva should come before. 2631 */ 2632 static void devices_kset_move_before(struct device *deva, struct device *devb) 2633 { 2634 if (!devices_kset) 2635 return; 2636 pr_debug("devices_kset: Moving %s before %s\n", 2637 dev_name(deva), dev_name(devb)); 2638 spin_lock(&devices_kset->list_lock); 2639 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 2640 spin_unlock(&devices_kset->list_lock); 2641 } 2642 2643 /** 2644 * devices_kset_move_after - Move device in the devices_kset's list. 2645 * @deva: Device to move 2646 * @devb: Device @deva should come after. 2647 */ 2648 static void devices_kset_move_after(struct device *deva, struct device *devb) 2649 { 2650 if (!devices_kset) 2651 return; 2652 pr_debug("devices_kset: Moving %s after %s\n", 2653 dev_name(deva), dev_name(devb)); 2654 spin_lock(&devices_kset->list_lock); 2655 list_move(&deva->kobj.entry, &devb->kobj.entry); 2656 spin_unlock(&devices_kset->list_lock); 2657 } 2658 2659 /** 2660 * devices_kset_move_last - move the device to the end of devices_kset's list. 2661 * @dev: device to move 2662 */ 2663 void devices_kset_move_last(struct device *dev) 2664 { 2665 if (!devices_kset) 2666 return; 2667 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 2668 spin_lock(&devices_kset->list_lock); 2669 list_move_tail(&dev->kobj.entry, &devices_kset->list); 2670 spin_unlock(&devices_kset->list_lock); 2671 } 2672 2673 /** 2674 * device_create_file - create sysfs attribute file for device. 2675 * @dev: device. 2676 * @attr: device attribute descriptor. 2677 */ 2678 int device_create_file(struct device *dev, 2679 const struct device_attribute *attr) 2680 { 2681 int error = 0; 2682 2683 if (dev) { 2684 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 2685 "Attribute %s: write permission without 'store'\n", 2686 attr->attr.name); 2687 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 2688 "Attribute %s: read permission without 'show'\n", 2689 attr->attr.name); 2690 error = sysfs_create_file(&dev->kobj, &attr->attr); 2691 } 2692 2693 return error; 2694 } 2695 EXPORT_SYMBOL_GPL(device_create_file); 2696 2697 /** 2698 * device_remove_file - remove sysfs attribute file. 2699 * @dev: device. 2700 * @attr: device attribute descriptor. 2701 */ 2702 void device_remove_file(struct device *dev, 2703 const struct device_attribute *attr) 2704 { 2705 if (dev) 2706 sysfs_remove_file(&dev->kobj, &attr->attr); 2707 } 2708 EXPORT_SYMBOL_GPL(device_remove_file); 2709 2710 /** 2711 * device_remove_file_self - remove sysfs attribute file from its own method. 2712 * @dev: device. 2713 * @attr: device attribute descriptor. 2714 * 2715 * See kernfs_remove_self() for details. 2716 */ 2717 bool device_remove_file_self(struct device *dev, 2718 const struct device_attribute *attr) 2719 { 2720 if (dev) 2721 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 2722 else 2723 return false; 2724 } 2725 EXPORT_SYMBOL_GPL(device_remove_file_self); 2726 2727 /** 2728 * device_create_bin_file - create sysfs binary attribute file for device. 2729 * @dev: device. 2730 * @attr: device binary attribute descriptor. 2731 */ 2732 int device_create_bin_file(struct device *dev, 2733 const struct bin_attribute *attr) 2734 { 2735 int error = -EINVAL; 2736 if (dev) 2737 error = sysfs_create_bin_file(&dev->kobj, attr); 2738 return error; 2739 } 2740 EXPORT_SYMBOL_GPL(device_create_bin_file); 2741 2742 /** 2743 * device_remove_bin_file - remove sysfs binary attribute file 2744 * @dev: device. 2745 * @attr: device binary attribute descriptor. 2746 */ 2747 void device_remove_bin_file(struct device *dev, 2748 const struct bin_attribute *attr) 2749 { 2750 if (dev) 2751 sysfs_remove_bin_file(&dev->kobj, attr); 2752 } 2753 EXPORT_SYMBOL_GPL(device_remove_bin_file); 2754 2755 static void klist_children_get(struct klist_node *n) 2756 { 2757 struct device_private *p = to_device_private_parent(n); 2758 struct device *dev = p->device; 2759 2760 get_device(dev); 2761 } 2762 2763 static void klist_children_put(struct klist_node *n) 2764 { 2765 struct device_private *p = to_device_private_parent(n); 2766 struct device *dev = p->device; 2767 2768 put_device(dev); 2769 } 2770 2771 /** 2772 * device_initialize - init device structure. 2773 * @dev: device. 2774 * 2775 * This prepares the device for use by other layers by initializing 2776 * its fields. 2777 * It is the first half of device_register(), if called by 2778 * that function, though it can also be called separately, so one 2779 * may use @dev's fields. In particular, get_device()/put_device() 2780 * may be used for reference counting of @dev after calling this 2781 * function. 2782 * 2783 * All fields in @dev must be initialized by the caller to 0, except 2784 * for those explicitly set to some other value. The simplest 2785 * approach is to use kzalloc() to allocate the structure containing 2786 * @dev. 2787 * 2788 * NOTE: Use put_device() to give up your reference instead of freeing 2789 * @dev directly once you have called this function. 2790 */ 2791 void device_initialize(struct device *dev) 2792 { 2793 dev->kobj.kset = devices_kset; 2794 kobject_init(&dev->kobj, &device_ktype); 2795 INIT_LIST_HEAD(&dev->dma_pools); 2796 mutex_init(&dev->mutex); 2797 #ifdef CONFIG_PROVE_LOCKING 2798 mutex_init(&dev->lockdep_mutex); 2799 #endif 2800 lockdep_set_novalidate_class(&dev->mutex); 2801 spin_lock_init(&dev->devres_lock); 2802 INIT_LIST_HEAD(&dev->devres_head); 2803 device_pm_init(dev); 2804 set_dev_node(dev, -1); 2805 #ifdef CONFIG_GENERIC_MSI_IRQ 2806 INIT_LIST_HEAD(&dev->msi_list); 2807 #endif 2808 INIT_LIST_HEAD(&dev->links.consumers); 2809 INIT_LIST_HEAD(&dev->links.suppliers); 2810 INIT_LIST_HEAD(&dev->links.defer_sync); 2811 dev->links.status = DL_DEV_NO_DRIVER; 2812 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ 2813 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ 2814 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) 2815 dev->dma_coherent = dma_default_coherent; 2816 #endif 2817 } 2818 EXPORT_SYMBOL_GPL(device_initialize); 2819 2820 struct kobject *virtual_device_parent(struct device *dev) 2821 { 2822 static struct kobject *virtual_dir = NULL; 2823 2824 if (!virtual_dir) 2825 virtual_dir = kobject_create_and_add("virtual", 2826 &devices_kset->kobj); 2827 2828 return virtual_dir; 2829 } 2830 2831 struct class_dir { 2832 struct kobject kobj; 2833 struct class *class; 2834 }; 2835 2836 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 2837 2838 static void class_dir_release(struct kobject *kobj) 2839 { 2840 struct class_dir *dir = to_class_dir(kobj); 2841 kfree(dir); 2842 } 2843 2844 static const 2845 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj) 2846 { 2847 struct class_dir *dir = to_class_dir(kobj); 2848 return dir->class->ns_type; 2849 } 2850 2851 static struct kobj_type class_dir_ktype = { 2852 .release = class_dir_release, 2853 .sysfs_ops = &kobj_sysfs_ops, 2854 .child_ns_type = class_dir_child_ns_type 2855 }; 2856 2857 static struct kobject * 2858 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj) 2859 { 2860 struct class_dir *dir; 2861 int retval; 2862 2863 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 2864 if (!dir) 2865 return ERR_PTR(-ENOMEM); 2866 2867 dir->class = class; 2868 kobject_init(&dir->kobj, &class_dir_ktype); 2869 2870 dir->kobj.kset = &class->p->glue_dirs; 2871 2872 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name); 2873 if (retval < 0) { 2874 kobject_put(&dir->kobj); 2875 return ERR_PTR(retval); 2876 } 2877 return &dir->kobj; 2878 } 2879 2880 static DEFINE_MUTEX(gdp_mutex); 2881 2882 static struct kobject *get_device_parent(struct device *dev, 2883 struct device *parent) 2884 { 2885 if (dev->class) { 2886 struct kobject *kobj = NULL; 2887 struct kobject *parent_kobj; 2888 struct kobject *k; 2889 2890 #ifdef CONFIG_BLOCK 2891 /* block disks show up in /sys/block */ 2892 if (sysfs_deprecated && dev->class == &block_class) { 2893 if (parent && parent->class == &block_class) 2894 return &parent->kobj; 2895 return &block_class.p->subsys.kobj; 2896 } 2897 #endif 2898 2899 /* 2900 * If we have no parent, we live in "virtual". 2901 * Class-devices with a non class-device as parent, live 2902 * in a "glue" directory to prevent namespace collisions. 2903 */ 2904 if (parent == NULL) 2905 parent_kobj = virtual_device_parent(dev); 2906 else if (parent->class && !dev->class->ns_type) 2907 return &parent->kobj; 2908 else 2909 parent_kobj = &parent->kobj; 2910 2911 mutex_lock(&gdp_mutex); 2912 2913 /* find our class-directory at the parent and reference it */ 2914 spin_lock(&dev->class->p->glue_dirs.list_lock); 2915 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry) 2916 if (k->parent == parent_kobj) { 2917 kobj = kobject_get(k); 2918 break; 2919 } 2920 spin_unlock(&dev->class->p->glue_dirs.list_lock); 2921 if (kobj) { 2922 mutex_unlock(&gdp_mutex); 2923 return kobj; 2924 } 2925 2926 /* or create a new class-directory at the parent device */ 2927 k = class_dir_create_and_add(dev->class, parent_kobj); 2928 /* do not emit an uevent for this simple "glue" directory */ 2929 mutex_unlock(&gdp_mutex); 2930 return k; 2931 } 2932 2933 /* subsystems can specify a default root directory for their devices */ 2934 if (!parent && dev->bus && dev->bus->dev_root) 2935 return &dev->bus->dev_root->kobj; 2936 2937 if (parent) 2938 return &parent->kobj; 2939 return NULL; 2940 } 2941 2942 static inline bool live_in_glue_dir(struct kobject *kobj, 2943 struct device *dev) 2944 { 2945 if (!kobj || !dev->class || 2946 kobj->kset != &dev->class->p->glue_dirs) 2947 return false; 2948 return true; 2949 } 2950 2951 static inline struct kobject *get_glue_dir(struct device *dev) 2952 { 2953 return dev->kobj.parent; 2954 } 2955 2956 /* 2957 * make sure cleaning up dir as the last step, we need to make 2958 * sure .release handler of kobject is run with holding the 2959 * global lock 2960 */ 2961 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 2962 { 2963 unsigned int ref; 2964 2965 /* see if we live in a "glue" directory */ 2966 if (!live_in_glue_dir(glue_dir, dev)) 2967 return; 2968 2969 mutex_lock(&gdp_mutex); 2970 /** 2971 * There is a race condition between removing glue directory 2972 * and adding a new device under the glue directory. 2973 * 2974 * CPU1: CPU2: 2975 * 2976 * device_add() 2977 * get_device_parent() 2978 * class_dir_create_and_add() 2979 * kobject_add_internal() 2980 * create_dir() // create glue_dir 2981 * 2982 * device_add() 2983 * get_device_parent() 2984 * kobject_get() // get glue_dir 2985 * 2986 * device_del() 2987 * cleanup_glue_dir() 2988 * kobject_del(glue_dir) 2989 * 2990 * kobject_add() 2991 * kobject_add_internal() 2992 * create_dir() // in glue_dir 2993 * sysfs_create_dir_ns() 2994 * kernfs_create_dir_ns(sd) 2995 * 2996 * sysfs_remove_dir() // glue_dir->sd=NULL 2997 * sysfs_put() // free glue_dir->sd 2998 * 2999 * // sd is freed 3000 * kernfs_new_node(sd) 3001 * kernfs_get(glue_dir) 3002 * kernfs_add_one() 3003 * kernfs_put() 3004 * 3005 * Before CPU1 remove last child device under glue dir, if CPU2 add 3006 * a new device under glue dir, the glue_dir kobject reference count 3007 * will be increase to 2 in kobject_get(k). And CPU2 has been called 3008 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir() 3009 * and sysfs_put(). This result in glue_dir->sd is freed. 3010 * 3011 * Then the CPU2 will see a stale "empty" but still potentially used 3012 * glue dir around in kernfs_new_node(). 3013 * 3014 * In order to avoid this happening, we also should make sure that 3015 * kernfs_node for glue_dir is released in CPU1 only when refcount 3016 * for glue_dir kobj is 1. 3017 */ 3018 ref = kref_read(&glue_dir->kref); 3019 if (!kobject_has_children(glue_dir) && !--ref) 3020 kobject_del(glue_dir); 3021 kobject_put(glue_dir); 3022 mutex_unlock(&gdp_mutex); 3023 } 3024 3025 static int device_add_class_symlinks(struct device *dev) 3026 { 3027 struct device_node *of_node = dev_of_node(dev); 3028 int error; 3029 3030 if (of_node) { 3031 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 3032 if (error) 3033 dev_warn(dev, "Error %d creating of_node link\n",error); 3034 /* An error here doesn't warrant bringing down the device */ 3035 } 3036 3037 if (!dev->class) 3038 return 0; 3039 3040 error = sysfs_create_link(&dev->kobj, 3041 &dev->class->p->subsys.kobj, 3042 "subsystem"); 3043 if (error) 3044 goto out_devnode; 3045 3046 if (dev->parent && device_is_not_partition(dev)) { 3047 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 3048 "device"); 3049 if (error) 3050 goto out_subsys; 3051 } 3052 3053 #ifdef CONFIG_BLOCK 3054 /* /sys/block has directories and does not need symlinks */ 3055 if (sysfs_deprecated && dev->class == &block_class) 3056 return 0; 3057 #endif 3058 3059 /* link in the class directory pointing to the device */ 3060 error = sysfs_create_link(&dev->class->p->subsys.kobj, 3061 &dev->kobj, dev_name(dev)); 3062 if (error) 3063 goto out_device; 3064 3065 return 0; 3066 3067 out_device: 3068 sysfs_remove_link(&dev->kobj, "device"); 3069 3070 out_subsys: 3071 sysfs_remove_link(&dev->kobj, "subsystem"); 3072 out_devnode: 3073 sysfs_remove_link(&dev->kobj, "of_node"); 3074 return error; 3075 } 3076 3077 static void device_remove_class_symlinks(struct device *dev) 3078 { 3079 if (dev_of_node(dev)) 3080 sysfs_remove_link(&dev->kobj, "of_node"); 3081 3082 if (!dev->class) 3083 return; 3084 3085 if (dev->parent && device_is_not_partition(dev)) 3086 sysfs_remove_link(&dev->kobj, "device"); 3087 sysfs_remove_link(&dev->kobj, "subsystem"); 3088 #ifdef CONFIG_BLOCK 3089 if (sysfs_deprecated && dev->class == &block_class) 3090 return; 3091 #endif 3092 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev)); 3093 } 3094 3095 /** 3096 * dev_set_name - set a device name 3097 * @dev: device 3098 * @fmt: format string for the device's name 3099 */ 3100 int dev_set_name(struct device *dev, const char *fmt, ...) 3101 { 3102 va_list vargs; 3103 int err; 3104 3105 va_start(vargs, fmt); 3106 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 3107 va_end(vargs); 3108 return err; 3109 } 3110 EXPORT_SYMBOL_GPL(dev_set_name); 3111 3112 /** 3113 * device_to_dev_kobj - select a /sys/dev/ directory for the device 3114 * @dev: device 3115 * 3116 * By default we select char/ for new entries. Setting class->dev_obj 3117 * to NULL prevents an entry from being created. class->dev_kobj must 3118 * be set (or cleared) before any devices are registered to the class 3119 * otherwise device_create_sys_dev_entry() and 3120 * device_remove_sys_dev_entry() will disagree about the presence of 3121 * the link. 3122 */ 3123 static struct kobject *device_to_dev_kobj(struct device *dev) 3124 { 3125 struct kobject *kobj; 3126 3127 if (dev->class) 3128 kobj = dev->class->dev_kobj; 3129 else 3130 kobj = sysfs_dev_char_kobj; 3131 3132 return kobj; 3133 } 3134 3135 static int device_create_sys_dev_entry(struct device *dev) 3136 { 3137 struct kobject *kobj = device_to_dev_kobj(dev); 3138 int error = 0; 3139 char devt_str[15]; 3140 3141 if (kobj) { 3142 format_dev_t(devt_str, dev->devt); 3143 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 3144 } 3145 3146 return error; 3147 } 3148 3149 static void device_remove_sys_dev_entry(struct device *dev) 3150 { 3151 struct kobject *kobj = device_to_dev_kobj(dev); 3152 char devt_str[15]; 3153 3154 if (kobj) { 3155 format_dev_t(devt_str, dev->devt); 3156 sysfs_remove_link(kobj, devt_str); 3157 } 3158 } 3159 3160 static int device_private_init(struct device *dev) 3161 { 3162 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 3163 if (!dev->p) 3164 return -ENOMEM; 3165 dev->p->device = dev; 3166 klist_init(&dev->p->klist_children, klist_children_get, 3167 klist_children_put); 3168 INIT_LIST_HEAD(&dev->p->deferred_probe); 3169 return 0; 3170 } 3171 3172 /** 3173 * device_add - add device to device hierarchy. 3174 * @dev: device. 3175 * 3176 * This is part 2 of device_register(), though may be called 3177 * separately _iff_ device_initialize() has been called separately. 3178 * 3179 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 3180 * to the global and sibling lists for the device, then 3181 * adds it to the other relevant subsystems of the driver model. 3182 * 3183 * Do not call this routine or device_register() more than once for 3184 * any device structure. The driver model core is not designed to work 3185 * with devices that get unregistered and then spring back to life. 3186 * (Among other things, it's very hard to guarantee that all references 3187 * to the previous incarnation of @dev have been dropped.) Allocate 3188 * and register a fresh new struct device instead. 3189 * 3190 * NOTE: _Never_ directly free @dev after calling this function, even 3191 * if it returned an error! Always use put_device() to give up your 3192 * reference instead. 3193 * 3194 * Rule of thumb is: if device_add() succeeds, you should call 3195 * device_del() when you want to get rid of it. If device_add() has 3196 * *not* succeeded, use *only* put_device() to drop the reference 3197 * count. 3198 */ 3199 int device_add(struct device *dev) 3200 { 3201 struct device *parent; 3202 struct kobject *kobj; 3203 struct class_interface *class_intf; 3204 int error = -EINVAL; 3205 struct kobject *glue_dir = NULL; 3206 3207 dev = get_device(dev); 3208 if (!dev) 3209 goto done; 3210 3211 if (!dev->p) { 3212 error = device_private_init(dev); 3213 if (error) 3214 goto done; 3215 } 3216 3217 /* 3218 * for statically allocated devices, which should all be converted 3219 * some day, we need to initialize the name. We prevent reading back 3220 * the name, and force the use of dev_name() 3221 */ 3222 if (dev->init_name) { 3223 dev_set_name(dev, "%s", dev->init_name); 3224 dev->init_name = NULL; 3225 } 3226 3227 /* subsystems can specify simple device enumeration */ 3228 if (!dev_name(dev) && dev->bus && dev->bus->dev_name) 3229 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 3230 3231 if (!dev_name(dev)) { 3232 error = -EINVAL; 3233 goto name_error; 3234 } 3235 3236 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3237 3238 parent = get_device(dev->parent); 3239 kobj = get_device_parent(dev, parent); 3240 if (IS_ERR(kobj)) { 3241 error = PTR_ERR(kobj); 3242 goto parent_error; 3243 } 3244 if (kobj) 3245 dev->kobj.parent = kobj; 3246 3247 /* use parent numa_node */ 3248 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 3249 set_dev_node(dev, dev_to_node(parent)); 3250 3251 /* first, register with generic layer. */ 3252 /* we require the name to be set before, and pass NULL */ 3253 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 3254 if (error) { 3255 glue_dir = get_glue_dir(dev); 3256 goto Error; 3257 } 3258 3259 /* notify platform of device entry */ 3260 error = device_platform_notify(dev, KOBJ_ADD); 3261 if (error) 3262 goto platform_error; 3263 3264 error = device_create_file(dev, &dev_attr_uevent); 3265 if (error) 3266 goto attrError; 3267 3268 error = device_add_class_symlinks(dev); 3269 if (error) 3270 goto SymlinkError; 3271 error = device_add_attrs(dev); 3272 if (error) 3273 goto AttrsError; 3274 error = bus_add_device(dev); 3275 if (error) 3276 goto BusError; 3277 error = dpm_sysfs_add(dev); 3278 if (error) 3279 goto DPMError; 3280 device_pm_add(dev); 3281 3282 if (MAJOR(dev->devt)) { 3283 error = device_create_file(dev, &dev_attr_dev); 3284 if (error) 3285 goto DevAttrError; 3286 3287 error = device_create_sys_dev_entry(dev); 3288 if (error) 3289 goto SysEntryError; 3290 3291 devtmpfs_create_node(dev); 3292 } 3293 3294 /* Notify clients of device addition. This call must come 3295 * after dpm_sysfs_add() and before kobject_uevent(). 3296 */ 3297 if (dev->bus) 3298 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 3299 BUS_NOTIFY_ADD_DEVICE, dev); 3300 3301 kobject_uevent(&dev->kobj, KOBJ_ADD); 3302 3303 /* 3304 * Check if any of the other devices (consumers) have been waiting for 3305 * this device (supplier) to be added so that they can create a device 3306 * link to it. 3307 * 3308 * This needs to happen after device_pm_add() because device_link_add() 3309 * requires the supplier be registered before it's called. 3310 * 3311 * But this also needs to happen before bus_probe_device() to make sure 3312 * waiting consumers can link to it before the driver is bound to the 3313 * device and the driver sync_state callback is called for this device. 3314 */ 3315 if (dev->fwnode && !dev->fwnode->dev) { 3316 dev->fwnode->dev = dev; 3317 fw_devlink_link_device(dev); 3318 } 3319 3320 bus_probe_device(dev); 3321 3322 /* 3323 * If all driver registration is done and a newly added device doesn't 3324 * match with any driver, don't block its consumers from probing in 3325 * case the consumer device is able to operate without this supplier. 3326 */ 3327 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match) 3328 fw_devlink_unblock_consumers(dev); 3329 3330 if (parent) 3331 klist_add_tail(&dev->p->knode_parent, 3332 &parent->p->klist_children); 3333 3334 if (dev->class) { 3335 mutex_lock(&dev->class->p->mutex); 3336 /* tie the class to the device */ 3337 klist_add_tail(&dev->p->knode_class, 3338 &dev->class->p->klist_devices); 3339 3340 /* notify any interfaces that the device is here */ 3341 list_for_each_entry(class_intf, 3342 &dev->class->p->interfaces, node) 3343 if (class_intf->add_dev) 3344 class_intf->add_dev(dev, class_intf); 3345 mutex_unlock(&dev->class->p->mutex); 3346 } 3347 done: 3348 put_device(dev); 3349 return error; 3350 SysEntryError: 3351 if (MAJOR(dev->devt)) 3352 device_remove_file(dev, &dev_attr_dev); 3353 DevAttrError: 3354 device_pm_remove(dev); 3355 dpm_sysfs_remove(dev); 3356 DPMError: 3357 bus_remove_device(dev); 3358 BusError: 3359 device_remove_attrs(dev); 3360 AttrsError: 3361 device_remove_class_symlinks(dev); 3362 SymlinkError: 3363 device_remove_file(dev, &dev_attr_uevent); 3364 attrError: 3365 device_platform_notify(dev, KOBJ_REMOVE); 3366 platform_error: 3367 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3368 glue_dir = get_glue_dir(dev); 3369 kobject_del(&dev->kobj); 3370 Error: 3371 cleanup_glue_dir(dev, glue_dir); 3372 parent_error: 3373 put_device(parent); 3374 name_error: 3375 kfree(dev->p); 3376 dev->p = NULL; 3377 goto done; 3378 } 3379 EXPORT_SYMBOL_GPL(device_add); 3380 3381 /** 3382 * device_register - register a device with the system. 3383 * @dev: pointer to the device structure 3384 * 3385 * This happens in two clean steps - initialize the device 3386 * and add it to the system. The two steps can be called 3387 * separately, but this is the easiest and most common. 3388 * I.e. you should only call the two helpers separately if 3389 * have a clearly defined need to use and refcount the device 3390 * before it is added to the hierarchy. 3391 * 3392 * For more information, see the kerneldoc for device_initialize() 3393 * and device_add(). 3394 * 3395 * NOTE: _Never_ directly free @dev after calling this function, even 3396 * if it returned an error! Always use put_device() to give up the 3397 * reference initialized in this function instead. 3398 */ 3399 int device_register(struct device *dev) 3400 { 3401 device_initialize(dev); 3402 return device_add(dev); 3403 } 3404 EXPORT_SYMBOL_GPL(device_register); 3405 3406 /** 3407 * get_device - increment reference count for device. 3408 * @dev: device. 3409 * 3410 * This simply forwards the call to kobject_get(), though 3411 * we do take care to provide for the case that we get a NULL 3412 * pointer passed in. 3413 */ 3414 struct device *get_device(struct device *dev) 3415 { 3416 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 3417 } 3418 EXPORT_SYMBOL_GPL(get_device); 3419 3420 /** 3421 * put_device - decrement reference count. 3422 * @dev: device in question. 3423 */ 3424 void put_device(struct device *dev) 3425 { 3426 /* might_sleep(); */ 3427 if (dev) 3428 kobject_put(&dev->kobj); 3429 } 3430 EXPORT_SYMBOL_GPL(put_device); 3431 3432 bool kill_device(struct device *dev) 3433 { 3434 /* 3435 * Require the device lock and set the "dead" flag to guarantee that 3436 * the update behavior is consistent with the other bitfields near 3437 * it and that we cannot have an asynchronous probe routine trying 3438 * to run while we are tearing out the bus/class/sysfs from 3439 * underneath the device. 3440 */ 3441 lockdep_assert_held(&dev->mutex); 3442 3443 if (dev->p->dead) 3444 return false; 3445 dev->p->dead = true; 3446 return true; 3447 } 3448 EXPORT_SYMBOL_GPL(kill_device); 3449 3450 /** 3451 * device_del - delete device from system. 3452 * @dev: device. 3453 * 3454 * This is the first part of the device unregistration 3455 * sequence. This removes the device from the lists we control 3456 * from here, has it removed from the other driver model 3457 * subsystems it was added to in device_add(), and removes it 3458 * from the kobject hierarchy. 3459 * 3460 * NOTE: this should be called manually _iff_ device_add() was 3461 * also called manually. 3462 */ 3463 void device_del(struct device *dev) 3464 { 3465 struct device *parent = dev->parent; 3466 struct kobject *glue_dir = NULL; 3467 struct class_interface *class_intf; 3468 unsigned int noio_flag; 3469 3470 device_lock(dev); 3471 kill_device(dev); 3472 device_unlock(dev); 3473 3474 if (dev->fwnode && dev->fwnode->dev == dev) 3475 dev->fwnode->dev = NULL; 3476 3477 /* Notify clients of device removal. This call must come 3478 * before dpm_sysfs_remove(). 3479 */ 3480 noio_flag = memalloc_noio_save(); 3481 if (dev->bus) 3482 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 3483 BUS_NOTIFY_DEL_DEVICE, dev); 3484 3485 dpm_sysfs_remove(dev); 3486 if (parent) 3487 klist_del(&dev->p->knode_parent); 3488 if (MAJOR(dev->devt)) { 3489 devtmpfs_delete_node(dev); 3490 device_remove_sys_dev_entry(dev); 3491 device_remove_file(dev, &dev_attr_dev); 3492 } 3493 if (dev->class) { 3494 device_remove_class_symlinks(dev); 3495 3496 mutex_lock(&dev->class->p->mutex); 3497 /* notify any interfaces that the device is now gone */ 3498 list_for_each_entry(class_intf, 3499 &dev->class->p->interfaces, node) 3500 if (class_intf->remove_dev) 3501 class_intf->remove_dev(dev, class_intf); 3502 /* remove the device from the class list */ 3503 klist_del(&dev->p->knode_class); 3504 mutex_unlock(&dev->class->p->mutex); 3505 } 3506 device_remove_file(dev, &dev_attr_uevent); 3507 device_remove_attrs(dev); 3508 bus_remove_device(dev); 3509 device_pm_remove(dev); 3510 driver_deferred_probe_del(dev); 3511 device_platform_notify(dev, KOBJ_REMOVE); 3512 device_remove_properties(dev); 3513 device_links_purge(dev); 3514 3515 if (dev->bus) 3516 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 3517 BUS_NOTIFY_REMOVED_DEVICE, dev); 3518 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3519 glue_dir = get_glue_dir(dev); 3520 kobject_del(&dev->kobj); 3521 cleanup_glue_dir(dev, glue_dir); 3522 memalloc_noio_restore(noio_flag); 3523 put_device(parent); 3524 } 3525 EXPORT_SYMBOL_GPL(device_del); 3526 3527 /** 3528 * device_unregister - unregister device from system. 3529 * @dev: device going away. 3530 * 3531 * We do this in two parts, like we do device_register(). First, 3532 * we remove it from all the subsystems with device_del(), then 3533 * we decrement the reference count via put_device(). If that 3534 * is the final reference count, the device will be cleaned up 3535 * via device_release() above. Otherwise, the structure will 3536 * stick around until the final reference to the device is dropped. 3537 */ 3538 void device_unregister(struct device *dev) 3539 { 3540 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3541 device_del(dev); 3542 put_device(dev); 3543 } 3544 EXPORT_SYMBOL_GPL(device_unregister); 3545 3546 static struct device *prev_device(struct klist_iter *i) 3547 { 3548 struct klist_node *n = klist_prev(i); 3549 struct device *dev = NULL; 3550 struct device_private *p; 3551 3552 if (n) { 3553 p = to_device_private_parent(n); 3554 dev = p->device; 3555 } 3556 return dev; 3557 } 3558 3559 static struct device *next_device(struct klist_iter *i) 3560 { 3561 struct klist_node *n = klist_next(i); 3562 struct device *dev = NULL; 3563 struct device_private *p; 3564 3565 if (n) { 3566 p = to_device_private_parent(n); 3567 dev = p->device; 3568 } 3569 return dev; 3570 } 3571 3572 /** 3573 * device_get_devnode - path of device node file 3574 * @dev: device 3575 * @mode: returned file access mode 3576 * @uid: returned file owner 3577 * @gid: returned file group 3578 * @tmp: possibly allocated string 3579 * 3580 * Return the relative path of a possible device node. 3581 * Non-default names may need to allocate a memory to compose 3582 * a name. This memory is returned in tmp and needs to be 3583 * freed by the caller. 3584 */ 3585 const char *device_get_devnode(struct device *dev, 3586 umode_t *mode, kuid_t *uid, kgid_t *gid, 3587 const char **tmp) 3588 { 3589 char *s; 3590 3591 *tmp = NULL; 3592 3593 /* the device type may provide a specific name */ 3594 if (dev->type && dev->type->devnode) 3595 *tmp = dev->type->devnode(dev, mode, uid, gid); 3596 if (*tmp) 3597 return *tmp; 3598 3599 /* the class may provide a specific name */ 3600 if (dev->class && dev->class->devnode) 3601 *tmp = dev->class->devnode(dev, mode); 3602 if (*tmp) 3603 return *tmp; 3604 3605 /* return name without allocation, tmp == NULL */ 3606 if (strchr(dev_name(dev), '!') == NULL) 3607 return dev_name(dev); 3608 3609 /* replace '!' in the name with '/' */ 3610 s = kstrdup(dev_name(dev), GFP_KERNEL); 3611 if (!s) 3612 return NULL; 3613 strreplace(s, '!', '/'); 3614 return *tmp = s; 3615 } 3616 3617 /** 3618 * device_for_each_child - device child iterator. 3619 * @parent: parent struct device. 3620 * @fn: function to be called for each device. 3621 * @data: data for the callback. 3622 * 3623 * Iterate over @parent's child devices, and call @fn for each, 3624 * passing it @data. 3625 * 3626 * We check the return of @fn each time. If it returns anything 3627 * other than 0, we break out and return that value. 3628 */ 3629 int device_for_each_child(struct device *parent, void *data, 3630 int (*fn)(struct device *dev, void *data)) 3631 { 3632 struct klist_iter i; 3633 struct device *child; 3634 int error = 0; 3635 3636 if (!parent->p) 3637 return 0; 3638 3639 klist_iter_init(&parent->p->klist_children, &i); 3640 while (!error && (child = next_device(&i))) 3641 error = fn(child, data); 3642 klist_iter_exit(&i); 3643 return error; 3644 } 3645 EXPORT_SYMBOL_GPL(device_for_each_child); 3646 3647 /** 3648 * device_for_each_child_reverse - device child iterator in reversed order. 3649 * @parent: parent struct device. 3650 * @fn: function to be called for each device. 3651 * @data: data for the callback. 3652 * 3653 * Iterate over @parent's child devices, and call @fn for each, 3654 * passing it @data. 3655 * 3656 * We check the return of @fn each time. If it returns anything 3657 * other than 0, we break out and return that value. 3658 */ 3659 int device_for_each_child_reverse(struct device *parent, void *data, 3660 int (*fn)(struct device *dev, void *data)) 3661 { 3662 struct klist_iter i; 3663 struct device *child; 3664 int error = 0; 3665 3666 if (!parent->p) 3667 return 0; 3668 3669 klist_iter_init(&parent->p->klist_children, &i); 3670 while ((child = prev_device(&i)) && !error) 3671 error = fn(child, data); 3672 klist_iter_exit(&i); 3673 return error; 3674 } 3675 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 3676 3677 /** 3678 * device_find_child - device iterator for locating a particular device. 3679 * @parent: parent struct device 3680 * @match: Callback function to check device 3681 * @data: Data to pass to match function 3682 * 3683 * This is similar to the device_for_each_child() function above, but it 3684 * returns a reference to a device that is 'found' for later use, as 3685 * determined by the @match callback. 3686 * 3687 * The callback should return 0 if the device doesn't match and non-zero 3688 * if it does. If the callback returns non-zero and a reference to the 3689 * current device can be obtained, this function will return to the caller 3690 * and not iterate over any more devices. 3691 * 3692 * NOTE: you will need to drop the reference with put_device() after use. 3693 */ 3694 struct device *device_find_child(struct device *parent, void *data, 3695 int (*match)(struct device *dev, void *data)) 3696 { 3697 struct klist_iter i; 3698 struct device *child; 3699 3700 if (!parent) 3701 return NULL; 3702 3703 klist_iter_init(&parent->p->klist_children, &i); 3704 while ((child = next_device(&i))) 3705 if (match(child, data) && get_device(child)) 3706 break; 3707 klist_iter_exit(&i); 3708 return child; 3709 } 3710 EXPORT_SYMBOL_GPL(device_find_child); 3711 3712 /** 3713 * device_find_child_by_name - device iterator for locating a child device. 3714 * @parent: parent struct device 3715 * @name: name of the child device 3716 * 3717 * This is similar to the device_find_child() function above, but it 3718 * returns a reference to a device that has the name @name. 3719 * 3720 * NOTE: you will need to drop the reference with put_device() after use. 3721 */ 3722 struct device *device_find_child_by_name(struct device *parent, 3723 const char *name) 3724 { 3725 struct klist_iter i; 3726 struct device *child; 3727 3728 if (!parent) 3729 return NULL; 3730 3731 klist_iter_init(&parent->p->klist_children, &i); 3732 while ((child = next_device(&i))) 3733 if (sysfs_streq(dev_name(child), name) && get_device(child)) 3734 break; 3735 klist_iter_exit(&i); 3736 return child; 3737 } 3738 EXPORT_SYMBOL_GPL(device_find_child_by_name); 3739 3740 int __init devices_init(void) 3741 { 3742 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 3743 if (!devices_kset) 3744 return -ENOMEM; 3745 dev_kobj = kobject_create_and_add("dev", NULL); 3746 if (!dev_kobj) 3747 goto dev_kobj_err; 3748 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 3749 if (!sysfs_dev_block_kobj) 3750 goto block_kobj_err; 3751 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 3752 if (!sysfs_dev_char_kobj) 3753 goto char_kobj_err; 3754 3755 return 0; 3756 3757 char_kobj_err: 3758 kobject_put(sysfs_dev_block_kobj); 3759 block_kobj_err: 3760 kobject_put(dev_kobj); 3761 dev_kobj_err: 3762 kset_unregister(devices_kset); 3763 return -ENOMEM; 3764 } 3765 3766 static int device_check_offline(struct device *dev, void *not_used) 3767 { 3768 int ret; 3769 3770 ret = device_for_each_child(dev, NULL, device_check_offline); 3771 if (ret) 3772 return ret; 3773 3774 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 3775 } 3776 3777 /** 3778 * device_offline - Prepare the device for hot-removal. 3779 * @dev: Device to be put offline. 3780 * 3781 * Execute the device bus type's .offline() callback, if present, to prepare 3782 * the device for a subsequent hot-removal. If that succeeds, the device must 3783 * not be used until either it is removed or its bus type's .online() callback 3784 * is executed. 3785 * 3786 * Call under device_hotplug_lock. 3787 */ 3788 int device_offline(struct device *dev) 3789 { 3790 int ret; 3791 3792 if (dev->offline_disabled) 3793 return -EPERM; 3794 3795 ret = device_for_each_child(dev, NULL, device_check_offline); 3796 if (ret) 3797 return ret; 3798 3799 device_lock(dev); 3800 if (device_supports_offline(dev)) { 3801 if (dev->offline) { 3802 ret = 1; 3803 } else { 3804 ret = dev->bus->offline(dev); 3805 if (!ret) { 3806 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 3807 dev->offline = true; 3808 } 3809 } 3810 } 3811 device_unlock(dev); 3812 3813 return ret; 3814 } 3815 3816 /** 3817 * device_online - Put the device back online after successful device_offline(). 3818 * @dev: Device to be put back online. 3819 * 3820 * If device_offline() has been successfully executed for @dev, but the device 3821 * has not been removed subsequently, execute its bus type's .online() callback 3822 * to indicate that the device can be used again. 3823 * 3824 * Call under device_hotplug_lock. 3825 */ 3826 int device_online(struct device *dev) 3827 { 3828 int ret = 0; 3829 3830 device_lock(dev); 3831 if (device_supports_offline(dev)) { 3832 if (dev->offline) { 3833 ret = dev->bus->online(dev); 3834 if (!ret) { 3835 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 3836 dev->offline = false; 3837 } 3838 } else { 3839 ret = 1; 3840 } 3841 } 3842 device_unlock(dev); 3843 3844 return ret; 3845 } 3846 3847 struct root_device { 3848 struct device dev; 3849 struct module *owner; 3850 }; 3851 3852 static inline struct root_device *to_root_device(struct device *d) 3853 { 3854 return container_of(d, struct root_device, dev); 3855 } 3856 3857 static void root_device_release(struct device *dev) 3858 { 3859 kfree(to_root_device(dev)); 3860 } 3861 3862 /** 3863 * __root_device_register - allocate and register a root device 3864 * @name: root device name 3865 * @owner: owner module of the root device, usually THIS_MODULE 3866 * 3867 * This function allocates a root device and registers it 3868 * using device_register(). In order to free the returned 3869 * device, use root_device_unregister(). 3870 * 3871 * Root devices are dummy devices which allow other devices 3872 * to be grouped under /sys/devices. Use this function to 3873 * allocate a root device and then use it as the parent of 3874 * any device which should appear under /sys/devices/{name} 3875 * 3876 * The /sys/devices/{name} directory will also contain a 3877 * 'module' symlink which points to the @owner directory 3878 * in sysfs. 3879 * 3880 * Returns &struct device pointer on success, or ERR_PTR() on error. 3881 * 3882 * Note: You probably want to use root_device_register(). 3883 */ 3884 struct device *__root_device_register(const char *name, struct module *owner) 3885 { 3886 struct root_device *root; 3887 int err = -ENOMEM; 3888 3889 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 3890 if (!root) 3891 return ERR_PTR(err); 3892 3893 err = dev_set_name(&root->dev, "%s", name); 3894 if (err) { 3895 kfree(root); 3896 return ERR_PTR(err); 3897 } 3898 3899 root->dev.release = root_device_release; 3900 3901 err = device_register(&root->dev); 3902 if (err) { 3903 put_device(&root->dev); 3904 return ERR_PTR(err); 3905 } 3906 3907 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 3908 if (owner) { 3909 struct module_kobject *mk = &owner->mkobj; 3910 3911 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 3912 if (err) { 3913 device_unregister(&root->dev); 3914 return ERR_PTR(err); 3915 } 3916 root->owner = owner; 3917 } 3918 #endif 3919 3920 return &root->dev; 3921 } 3922 EXPORT_SYMBOL_GPL(__root_device_register); 3923 3924 /** 3925 * root_device_unregister - unregister and free a root device 3926 * @dev: device going away 3927 * 3928 * This function unregisters and cleans up a device that was created by 3929 * root_device_register(). 3930 */ 3931 void root_device_unregister(struct device *dev) 3932 { 3933 struct root_device *root = to_root_device(dev); 3934 3935 if (root->owner) 3936 sysfs_remove_link(&root->dev.kobj, "module"); 3937 3938 device_unregister(dev); 3939 } 3940 EXPORT_SYMBOL_GPL(root_device_unregister); 3941 3942 3943 static void device_create_release(struct device *dev) 3944 { 3945 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3946 kfree(dev); 3947 } 3948 3949 static __printf(6, 0) struct device * 3950 device_create_groups_vargs(struct class *class, struct device *parent, 3951 dev_t devt, void *drvdata, 3952 const struct attribute_group **groups, 3953 const char *fmt, va_list args) 3954 { 3955 struct device *dev = NULL; 3956 int retval = -ENODEV; 3957 3958 if (class == NULL || IS_ERR(class)) 3959 goto error; 3960 3961 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3962 if (!dev) { 3963 retval = -ENOMEM; 3964 goto error; 3965 } 3966 3967 device_initialize(dev); 3968 dev->devt = devt; 3969 dev->class = class; 3970 dev->parent = parent; 3971 dev->groups = groups; 3972 dev->release = device_create_release; 3973 dev_set_drvdata(dev, drvdata); 3974 3975 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 3976 if (retval) 3977 goto error; 3978 3979 retval = device_add(dev); 3980 if (retval) 3981 goto error; 3982 3983 return dev; 3984 3985 error: 3986 put_device(dev); 3987 return ERR_PTR(retval); 3988 } 3989 3990 /** 3991 * device_create - creates a device and registers it with sysfs 3992 * @class: pointer to the struct class that this device should be registered to 3993 * @parent: pointer to the parent struct device of this new device, if any 3994 * @devt: the dev_t for the char device to be added 3995 * @drvdata: the data to be added to the device for callbacks 3996 * @fmt: string for the device's name 3997 * 3998 * This function can be used by char device classes. A struct device 3999 * will be created in sysfs, registered to the specified class. 4000 * 4001 * A "dev" file will be created, showing the dev_t for the device, if 4002 * the dev_t is not 0,0. 4003 * If a pointer to a parent struct device is passed in, the newly created 4004 * struct device will be a child of that device in sysfs. 4005 * The pointer to the struct device will be returned from the call. 4006 * Any further sysfs files that might be required can be created using this 4007 * pointer. 4008 * 4009 * Returns &struct device pointer on success, or ERR_PTR() on error. 4010 * 4011 * Note: the struct class passed to this function must have previously 4012 * been created with a call to class_create(). 4013 */ 4014 struct device *device_create(struct class *class, struct device *parent, 4015 dev_t devt, void *drvdata, const char *fmt, ...) 4016 { 4017 va_list vargs; 4018 struct device *dev; 4019 4020 va_start(vargs, fmt); 4021 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL, 4022 fmt, vargs); 4023 va_end(vargs); 4024 return dev; 4025 } 4026 EXPORT_SYMBOL_GPL(device_create); 4027 4028 /** 4029 * device_create_with_groups - creates a device and registers it with sysfs 4030 * @class: pointer to the struct class that this device should be registered to 4031 * @parent: pointer to the parent struct device of this new device, if any 4032 * @devt: the dev_t for the char device to be added 4033 * @drvdata: the data to be added to the device for callbacks 4034 * @groups: NULL-terminated list of attribute groups to be created 4035 * @fmt: string for the device's name 4036 * 4037 * This function can be used by char device classes. A struct device 4038 * will be created in sysfs, registered to the specified class. 4039 * Additional attributes specified in the groups parameter will also 4040 * be created automatically. 4041 * 4042 * A "dev" file will be created, showing the dev_t for the device, if 4043 * the dev_t is not 0,0. 4044 * If a pointer to a parent struct device is passed in, the newly created 4045 * struct device will be a child of that device in sysfs. 4046 * The pointer to the struct device will be returned from the call. 4047 * Any further sysfs files that might be required can be created using this 4048 * pointer. 4049 * 4050 * Returns &struct device pointer on success, or ERR_PTR() on error. 4051 * 4052 * Note: the struct class passed to this function must have previously 4053 * been created with a call to class_create(). 4054 */ 4055 struct device *device_create_with_groups(struct class *class, 4056 struct device *parent, dev_t devt, 4057 void *drvdata, 4058 const struct attribute_group **groups, 4059 const char *fmt, ...) 4060 { 4061 va_list vargs; 4062 struct device *dev; 4063 4064 va_start(vargs, fmt); 4065 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 4066 fmt, vargs); 4067 va_end(vargs); 4068 return dev; 4069 } 4070 EXPORT_SYMBOL_GPL(device_create_with_groups); 4071 4072 /** 4073 * device_destroy - removes a device that was created with device_create() 4074 * @class: pointer to the struct class that this device was registered with 4075 * @devt: the dev_t of the device that was previously registered 4076 * 4077 * This call unregisters and cleans up a device that was created with a 4078 * call to device_create(). 4079 */ 4080 void device_destroy(struct class *class, dev_t devt) 4081 { 4082 struct device *dev; 4083 4084 dev = class_find_device_by_devt(class, devt); 4085 if (dev) { 4086 put_device(dev); 4087 device_unregister(dev); 4088 } 4089 } 4090 EXPORT_SYMBOL_GPL(device_destroy); 4091 4092 /** 4093 * device_rename - renames a device 4094 * @dev: the pointer to the struct device to be renamed 4095 * @new_name: the new name of the device 4096 * 4097 * It is the responsibility of the caller to provide mutual 4098 * exclusion between two different calls of device_rename 4099 * on the same device to ensure that new_name is valid and 4100 * won't conflict with other devices. 4101 * 4102 * Note: Don't call this function. Currently, the networking layer calls this 4103 * function, but that will change. The following text from Kay Sievers offers 4104 * some insight: 4105 * 4106 * Renaming devices is racy at many levels, symlinks and other stuff are not 4107 * replaced atomically, and you get a "move" uevent, but it's not easy to 4108 * connect the event to the old and new device. Device nodes are not renamed at 4109 * all, there isn't even support for that in the kernel now. 4110 * 4111 * In the meantime, during renaming, your target name might be taken by another 4112 * driver, creating conflicts. Or the old name is taken directly after you 4113 * renamed it -- then you get events for the same DEVPATH, before you even see 4114 * the "move" event. It's just a mess, and nothing new should ever rely on 4115 * kernel device renaming. Besides that, it's not even implemented now for 4116 * other things than (driver-core wise very simple) network devices. 4117 * 4118 * We are currently about to change network renaming in udev to completely 4119 * disallow renaming of devices in the same namespace as the kernel uses, 4120 * because we can't solve the problems properly, that arise with swapping names 4121 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only 4122 * be allowed to some other name than eth[0-9]*, for the aforementioned 4123 * reasons. 4124 * 4125 * Make up a "real" name in the driver before you register anything, or add 4126 * some other attributes for userspace to find the device, or use udev to add 4127 * symlinks -- but never rename kernel devices later, it's a complete mess. We 4128 * don't even want to get into that and try to implement the missing pieces in 4129 * the core. We really have other pieces to fix in the driver core mess. :) 4130 */ 4131 int device_rename(struct device *dev, const char *new_name) 4132 { 4133 struct kobject *kobj = &dev->kobj; 4134 char *old_device_name = NULL; 4135 int error; 4136 4137 dev = get_device(dev); 4138 if (!dev) 4139 return -EINVAL; 4140 4141 dev_dbg(dev, "renaming to %s\n", new_name); 4142 4143 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 4144 if (!old_device_name) { 4145 error = -ENOMEM; 4146 goto out; 4147 } 4148 4149 if (dev->class) { 4150 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj, 4151 kobj, old_device_name, 4152 new_name, kobject_namespace(kobj)); 4153 if (error) 4154 goto out; 4155 } 4156 4157 error = kobject_rename(kobj, new_name); 4158 if (error) 4159 goto out; 4160 4161 out: 4162 put_device(dev); 4163 4164 kfree(old_device_name); 4165 4166 return error; 4167 } 4168 EXPORT_SYMBOL_GPL(device_rename); 4169 4170 static int device_move_class_links(struct device *dev, 4171 struct device *old_parent, 4172 struct device *new_parent) 4173 { 4174 int error = 0; 4175 4176 if (old_parent) 4177 sysfs_remove_link(&dev->kobj, "device"); 4178 if (new_parent) 4179 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 4180 "device"); 4181 return error; 4182 } 4183 4184 /** 4185 * device_move - moves a device to a new parent 4186 * @dev: the pointer to the struct device to be moved 4187 * @new_parent: the new parent of the device (can be NULL) 4188 * @dpm_order: how to reorder the dpm_list 4189 */ 4190 int device_move(struct device *dev, struct device *new_parent, 4191 enum dpm_order dpm_order) 4192 { 4193 int error; 4194 struct device *old_parent; 4195 struct kobject *new_parent_kobj; 4196 4197 dev = get_device(dev); 4198 if (!dev) 4199 return -EINVAL; 4200 4201 device_pm_lock(); 4202 new_parent = get_device(new_parent); 4203 new_parent_kobj = get_device_parent(dev, new_parent); 4204 if (IS_ERR(new_parent_kobj)) { 4205 error = PTR_ERR(new_parent_kobj); 4206 put_device(new_parent); 4207 goto out; 4208 } 4209 4210 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 4211 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 4212 error = kobject_move(&dev->kobj, new_parent_kobj); 4213 if (error) { 4214 cleanup_glue_dir(dev, new_parent_kobj); 4215 put_device(new_parent); 4216 goto out; 4217 } 4218 old_parent = dev->parent; 4219 dev->parent = new_parent; 4220 if (old_parent) 4221 klist_remove(&dev->p->knode_parent); 4222 if (new_parent) { 4223 klist_add_tail(&dev->p->knode_parent, 4224 &new_parent->p->klist_children); 4225 set_dev_node(dev, dev_to_node(new_parent)); 4226 } 4227 4228 if (dev->class) { 4229 error = device_move_class_links(dev, old_parent, new_parent); 4230 if (error) { 4231 /* We ignore errors on cleanup since we're hosed anyway... */ 4232 device_move_class_links(dev, new_parent, old_parent); 4233 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 4234 if (new_parent) 4235 klist_remove(&dev->p->knode_parent); 4236 dev->parent = old_parent; 4237 if (old_parent) { 4238 klist_add_tail(&dev->p->knode_parent, 4239 &old_parent->p->klist_children); 4240 set_dev_node(dev, dev_to_node(old_parent)); 4241 } 4242 } 4243 cleanup_glue_dir(dev, new_parent_kobj); 4244 put_device(new_parent); 4245 goto out; 4246 } 4247 } 4248 switch (dpm_order) { 4249 case DPM_ORDER_NONE: 4250 break; 4251 case DPM_ORDER_DEV_AFTER_PARENT: 4252 device_pm_move_after(dev, new_parent); 4253 devices_kset_move_after(dev, new_parent); 4254 break; 4255 case DPM_ORDER_PARENT_BEFORE_DEV: 4256 device_pm_move_before(new_parent, dev); 4257 devices_kset_move_before(new_parent, dev); 4258 break; 4259 case DPM_ORDER_DEV_LAST: 4260 device_pm_move_last(dev); 4261 devices_kset_move_last(dev); 4262 break; 4263 } 4264 4265 put_device(old_parent); 4266 out: 4267 device_pm_unlock(); 4268 put_device(dev); 4269 return error; 4270 } 4271 EXPORT_SYMBOL_GPL(device_move); 4272 4273 static int device_attrs_change_owner(struct device *dev, kuid_t kuid, 4274 kgid_t kgid) 4275 { 4276 struct kobject *kobj = &dev->kobj; 4277 struct class *class = dev->class; 4278 const struct device_type *type = dev->type; 4279 int error; 4280 4281 if (class) { 4282 /* 4283 * Change the device groups of the device class for @dev to 4284 * @kuid/@kgid. 4285 */ 4286 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid, 4287 kgid); 4288 if (error) 4289 return error; 4290 } 4291 4292 if (type) { 4293 /* 4294 * Change the device groups of the device type for @dev to 4295 * @kuid/@kgid. 4296 */ 4297 error = sysfs_groups_change_owner(kobj, type->groups, kuid, 4298 kgid); 4299 if (error) 4300 return error; 4301 } 4302 4303 /* Change the device groups of @dev to @kuid/@kgid. */ 4304 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid); 4305 if (error) 4306 return error; 4307 4308 if (device_supports_offline(dev) && !dev->offline_disabled) { 4309 /* Change online device attributes of @dev to @kuid/@kgid. */ 4310 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name, 4311 kuid, kgid); 4312 if (error) 4313 return error; 4314 } 4315 4316 return 0; 4317 } 4318 4319 /** 4320 * device_change_owner - change the owner of an existing device. 4321 * @dev: device. 4322 * @kuid: new owner's kuid 4323 * @kgid: new owner's kgid 4324 * 4325 * This changes the owner of @dev and its corresponding sysfs entries to 4326 * @kuid/@kgid. This function closely mirrors how @dev was added via driver 4327 * core. 4328 * 4329 * Returns 0 on success or error code on failure. 4330 */ 4331 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid) 4332 { 4333 int error; 4334 struct kobject *kobj = &dev->kobj; 4335 4336 dev = get_device(dev); 4337 if (!dev) 4338 return -EINVAL; 4339 4340 /* 4341 * Change the kobject and the default attributes and groups of the 4342 * ktype associated with it to @kuid/@kgid. 4343 */ 4344 error = sysfs_change_owner(kobj, kuid, kgid); 4345 if (error) 4346 goto out; 4347 4348 /* 4349 * Change the uevent file for @dev to the new owner. The uevent file 4350 * was created in a separate step when @dev got added and we mirror 4351 * that step here. 4352 */ 4353 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid, 4354 kgid); 4355 if (error) 4356 goto out; 4357 4358 /* 4359 * Change the device groups, the device groups associated with the 4360 * device class, and the groups associated with the device type of @dev 4361 * to @kuid/@kgid. 4362 */ 4363 error = device_attrs_change_owner(dev, kuid, kgid); 4364 if (error) 4365 goto out; 4366 4367 error = dpm_sysfs_change_owner(dev, kuid, kgid); 4368 if (error) 4369 goto out; 4370 4371 #ifdef CONFIG_BLOCK 4372 if (sysfs_deprecated && dev->class == &block_class) 4373 goto out; 4374 #endif 4375 4376 /* 4377 * Change the owner of the symlink located in the class directory of 4378 * the device class associated with @dev which points to the actual 4379 * directory entry for @dev to @kuid/@kgid. This ensures that the 4380 * symlink shows the same permissions as its target. 4381 */ 4382 error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj, 4383 dev_name(dev), kuid, kgid); 4384 if (error) 4385 goto out; 4386 4387 out: 4388 put_device(dev); 4389 return error; 4390 } 4391 EXPORT_SYMBOL_GPL(device_change_owner); 4392 4393 /** 4394 * device_shutdown - call ->shutdown() on each device to shutdown. 4395 */ 4396 void device_shutdown(void) 4397 { 4398 struct device *dev, *parent; 4399 4400 wait_for_device_probe(); 4401 device_block_probing(); 4402 4403 cpufreq_suspend(); 4404 4405 spin_lock(&devices_kset->list_lock); 4406 /* 4407 * Walk the devices list backward, shutting down each in turn. 4408 * Beware that device unplug events may also start pulling 4409 * devices offline, even as the system is shutting down. 4410 */ 4411 while (!list_empty(&devices_kset->list)) { 4412 dev = list_entry(devices_kset->list.prev, struct device, 4413 kobj.entry); 4414 4415 /* 4416 * hold reference count of device's parent to 4417 * prevent it from being freed because parent's 4418 * lock is to be held 4419 */ 4420 parent = get_device(dev->parent); 4421 get_device(dev); 4422 /* 4423 * Make sure the device is off the kset list, in the 4424 * event that dev->*->shutdown() doesn't remove it. 4425 */ 4426 list_del_init(&dev->kobj.entry); 4427 spin_unlock(&devices_kset->list_lock); 4428 4429 /* hold lock to avoid race with probe/release */ 4430 if (parent) 4431 device_lock(parent); 4432 device_lock(dev); 4433 4434 /* Don't allow any more runtime suspends */ 4435 pm_runtime_get_noresume(dev); 4436 pm_runtime_barrier(dev); 4437 4438 if (dev->class && dev->class->shutdown_pre) { 4439 if (initcall_debug) 4440 dev_info(dev, "shutdown_pre\n"); 4441 dev->class->shutdown_pre(dev); 4442 } 4443 if (dev->bus && dev->bus->shutdown) { 4444 if (initcall_debug) 4445 dev_info(dev, "shutdown\n"); 4446 dev->bus->shutdown(dev); 4447 } else if (dev->driver && dev->driver->shutdown) { 4448 if (initcall_debug) 4449 dev_info(dev, "shutdown\n"); 4450 dev->driver->shutdown(dev); 4451 } 4452 4453 device_unlock(dev); 4454 if (parent) 4455 device_unlock(parent); 4456 4457 put_device(dev); 4458 put_device(parent); 4459 4460 spin_lock(&devices_kset->list_lock); 4461 } 4462 spin_unlock(&devices_kset->list_lock); 4463 } 4464 4465 /* 4466 * Device logging functions 4467 */ 4468 4469 #ifdef CONFIG_PRINTK 4470 static void 4471 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info) 4472 { 4473 const char *subsys; 4474 4475 memset(dev_info, 0, sizeof(*dev_info)); 4476 4477 if (dev->class) 4478 subsys = dev->class->name; 4479 else if (dev->bus) 4480 subsys = dev->bus->name; 4481 else 4482 return; 4483 4484 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem)); 4485 4486 /* 4487 * Add device identifier DEVICE=: 4488 * b12:8 block dev_t 4489 * c127:3 char dev_t 4490 * n8 netdev ifindex 4491 * +sound:card0 subsystem:devname 4492 */ 4493 if (MAJOR(dev->devt)) { 4494 char c; 4495 4496 if (strcmp(subsys, "block") == 0) 4497 c = 'b'; 4498 else 4499 c = 'c'; 4500 4501 snprintf(dev_info->device, sizeof(dev_info->device), 4502 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt)); 4503 } else if (strcmp(subsys, "net") == 0) { 4504 struct net_device *net = to_net_dev(dev); 4505 4506 snprintf(dev_info->device, sizeof(dev_info->device), 4507 "n%u", net->ifindex); 4508 } else { 4509 snprintf(dev_info->device, sizeof(dev_info->device), 4510 "+%s:%s", subsys, dev_name(dev)); 4511 } 4512 } 4513 4514 int dev_vprintk_emit(int level, const struct device *dev, 4515 const char *fmt, va_list args) 4516 { 4517 struct dev_printk_info dev_info; 4518 4519 set_dev_info(dev, &dev_info); 4520 4521 return vprintk_emit(0, level, &dev_info, fmt, args); 4522 } 4523 EXPORT_SYMBOL(dev_vprintk_emit); 4524 4525 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 4526 { 4527 va_list args; 4528 int r; 4529 4530 va_start(args, fmt); 4531 4532 r = dev_vprintk_emit(level, dev, fmt, args); 4533 4534 va_end(args); 4535 4536 return r; 4537 } 4538 EXPORT_SYMBOL(dev_printk_emit); 4539 4540 static void __dev_printk(const char *level, const struct device *dev, 4541 struct va_format *vaf) 4542 { 4543 if (dev) 4544 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 4545 dev_driver_string(dev), dev_name(dev), vaf); 4546 else 4547 printk("%s(NULL device *): %pV", level, vaf); 4548 } 4549 4550 void dev_printk(const char *level, const struct device *dev, 4551 const char *fmt, ...) 4552 { 4553 struct va_format vaf; 4554 va_list args; 4555 4556 va_start(args, fmt); 4557 4558 vaf.fmt = fmt; 4559 vaf.va = &args; 4560 4561 __dev_printk(level, dev, &vaf); 4562 4563 va_end(args); 4564 } 4565 EXPORT_SYMBOL(dev_printk); 4566 4567 #define define_dev_printk_level(func, kern_level) \ 4568 void func(const struct device *dev, const char *fmt, ...) \ 4569 { \ 4570 struct va_format vaf; \ 4571 va_list args; \ 4572 \ 4573 va_start(args, fmt); \ 4574 \ 4575 vaf.fmt = fmt; \ 4576 vaf.va = &args; \ 4577 \ 4578 __dev_printk(kern_level, dev, &vaf); \ 4579 \ 4580 va_end(args); \ 4581 } \ 4582 EXPORT_SYMBOL(func); 4583 4584 define_dev_printk_level(_dev_emerg, KERN_EMERG); 4585 define_dev_printk_level(_dev_alert, KERN_ALERT); 4586 define_dev_printk_level(_dev_crit, KERN_CRIT); 4587 define_dev_printk_level(_dev_err, KERN_ERR); 4588 define_dev_printk_level(_dev_warn, KERN_WARNING); 4589 define_dev_printk_level(_dev_notice, KERN_NOTICE); 4590 define_dev_printk_level(_dev_info, KERN_INFO); 4591 4592 #endif 4593 4594 /** 4595 * dev_err_probe - probe error check and log helper 4596 * @dev: the pointer to the struct device 4597 * @err: error value to test 4598 * @fmt: printf-style format string 4599 * @...: arguments as specified in the format string 4600 * 4601 * This helper implements common pattern present in probe functions for error 4602 * checking: print debug or error message depending if the error value is 4603 * -EPROBE_DEFER and propagate error upwards. 4604 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be 4605 * checked later by reading devices_deferred debugfs attribute. 4606 * It replaces code sequence:: 4607 * 4608 * if (err != -EPROBE_DEFER) 4609 * dev_err(dev, ...); 4610 * else 4611 * dev_dbg(dev, ...); 4612 * return err; 4613 * 4614 * with:: 4615 * 4616 * return dev_err_probe(dev, err, ...); 4617 * 4618 * Returns @err. 4619 * 4620 */ 4621 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...) 4622 { 4623 struct va_format vaf; 4624 va_list args; 4625 4626 va_start(args, fmt); 4627 vaf.fmt = fmt; 4628 vaf.va = &args; 4629 4630 if (err != -EPROBE_DEFER) { 4631 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 4632 } else { 4633 device_set_deferred_probe_reason(dev, &vaf); 4634 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 4635 } 4636 4637 va_end(args); 4638 4639 return err; 4640 } 4641 EXPORT_SYMBOL_GPL(dev_err_probe); 4642 4643 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 4644 { 4645 return fwnode && !IS_ERR(fwnode->secondary); 4646 } 4647 4648 /** 4649 * set_primary_fwnode - Change the primary firmware node of a given device. 4650 * @dev: Device to handle. 4651 * @fwnode: New primary firmware node of the device. 4652 * 4653 * Set the device's firmware node pointer to @fwnode, but if a secondary 4654 * firmware node of the device is present, preserve it. 4655 * 4656 * Valid fwnode cases are: 4657 * - primary --> secondary --> -ENODEV 4658 * - primary --> NULL 4659 * - secondary --> -ENODEV 4660 * - NULL 4661 */ 4662 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 4663 { 4664 struct device *parent = dev->parent; 4665 struct fwnode_handle *fn = dev->fwnode; 4666 4667 if (fwnode) { 4668 if (fwnode_is_primary(fn)) 4669 fn = fn->secondary; 4670 4671 if (fn) { 4672 WARN_ON(fwnode->secondary); 4673 fwnode->secondary = fn; 4674 } 4675 dev->fwnode = fwnode; 4676 } else { 4677 if (fwnode_is_primary(fn)) { 4678 dev->fwnode = fn->secondary; 4679 /* Set fn->secondary = NULL, so fn remains the primary fwnode */ 4680 if (!(parent && fn == parent->fwnode)) 4681 fn->secondary = NULL; 4682 } else { 4683 dev->fwnode = NULL; 4684 } 4685 } 4686 } 4687 EXPORT_SYMBOL_GPL(set_primary_fwnode); 4688 4689 /** 4690 * set_secondary_fwnode - Change the secondary firmware node of a given device. 4691 * @dev: Device to handle. 4692 * @fwnode: New secondary firmware node of the device. 4693 * 4694 * If a primary firmware node of the device is present, set its secondary 4695 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 4696 * @fwnode. 4697 */ 4698 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 4699 { 4700 if (fwnode) 4701 fwnode->secondary = ERR_PTR(-ENODEV); 4702 4703 if (fwnode_is_primary(dev->fwnode)) 4704 dev->fwnode->secondary = fwnode; 4705 else 4706 dev->fwnode = fwnode; 4707 } 4708 EXPORT_SYMBOL_GPL(set_secondary_fwnode); 4709 4710 /** 4711 * device_set_of_node_from_dev - reuse device-tree node of another device 4712 * @dev: device whose device-tree node is being set 4713 * @dev2: device whose device-tree node is being reused 4714 * 4715 * Takes another reference to the new device-tree node after first dropping 4716 * any reference held to the old node. 4717 */ 4718 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 4719 { 4720 of_node_put(dev->of_node); 4721 dev->of_node = of_node_get(dev2->of_node); 4722 dev->of_node_reused = true; 4723 } 4724 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 4725 4726 int device_match_name(struct device *dev, const void *name) 4727 { 4728 return sysfs_streq(dev_name(dev), name); 4729 } 4730 EXPORT_SYMBOL_GPL(device_match_name); 4731 4732 int device_match_of_node(struct device *dev, const void *np) 4733 { 4734 return dev->of_node == np; 4735 } 4736 EXPORT_SYMBOL_GPL(device_match_of_node); 4737 4738 int device_match_fwnode(struct device *dev, const void *fwnode) 4739 { 4740 return dev_fwnode(dev) == fwnode; 4741 } 4742 EXPORT_SYMBOL_GPL(device_match_fwnode); 4743 4744 int device_match_devt(struct device *dev, const void *pdevt) 4745 { 4746 return dev->devt == *(dev_t *)pdevt; 4747 } 4748 EXPORT_SYMBOL_GPL(device_match_devt); 4749 4750 int device_match_acpi_dev(struct device *dev, const void *adev) 4751 { 4752 return ACPI_COMPANION(dev) == adev; 4753 } 4754 EXPORT_SYMBOL(device_match_acpi_dev); 4755 4756 int device_match_any(struct device *dev, const void *unused) 4757 { 4758 return 1; 4759 } 4760 EXPORT_SYMBOL_GPL(device_match_any); 4761