xref: /openbmc/linux/drivers/base/core.c (revision f5ad1c74)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sched/mm.h>
30 #include <linux/sysfs.h>
31 
32 #include "base.h"
33 #include "power/power.h"
34 
35 #ifdef CONFIG_SYSFS_DEPRECATED
36 #ifdef CONFIG_SYSFS_DEPRECATED_V2
37 long sysfs_deprecated = 1;
38 #else
39 long sysfs_deprecated = 0;
40 #endif
41 static int __init sysfs_deprecated_setup(char *arg)
42 {
43 	return kstrtol(arg, 10, &sysfs_deprecated);
44 }
45 early_param("sysfs.deprecated", sysfs_deprecated_setup);
46 #endif
47 
48 /* Device links support. */
49 static LIST_HEAD(deferred_sync);
50 static unsigned int defer_sync_state_count = 1;
51 static DEFINE_MUTEX(fwnode_link_lock);
52 static bool fw_devlink_is_permissive(void);
53 
54 /**
55  * fwnode_link_add - Create a link between two fwnode_handles.
56  * @con: Consumer end of the link.
57  * @sup: Supplier end of the link.
58  *
59  * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
60  * represents the detail that the firmware lists @sup fwnode as supplying a
61  * resource to @con.
62  *
63  * The driver core will use the fwnode link to create a device link between the
64  * two device objects corresponding to @con and @sup when they are created. The
65  * driver core will automatically delete the fwnode link between @con and @sup
66  * after doing that.
67  *
68  * Attempts to create duplicate links between the same pair of fwnode handles
69  * are ignored and there is no reference counting.
70  */
71 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
72 {
73 	struct fwnode_link *link;
74 	int ret = 0;
75 
76 	mutex_lock(&fwnode_link_lock);
77 
78 	list_for_each_entry(link, &sup->consumers, s_hook)
79 		if (link->consumer == con)
80 			goto out;
81 
82 	link = kzalloc(sizeof(*link), GFP_KERNEL);
83 	if (!link) {
84 		ret = -ENOMEM;
85 		goto out;
86 	}
87 
88 	link->supplier = sup;
89 	INIT_LIST_HEAD(&link->s_hook);
90 	link->consumer = con;
91 	INIT_LIST_HEAD(&link->c_hook);
92 
93 	list_add(&link->s_hook, &sup->consumers);
94 	list_add(&link->c_hook, &con->suppliers);
95 out:
96 	mutex_unlock(&fwnode_link_lock);
97 
98 	return ret;
99 }
100 
101 /**
102  * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
103  * @fwnode: fwnode whose supplier links need to be deleted
104  *
105  * Deletes all supplier links connecting directly to @fwnode.
106  */
107 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
108 {
109 	struct fwnode_link *link, *tmp;
110 
111 	mutex_lock(&fwnode_link_lock);
112 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
113 		list_del(&link->s_hook);
114 		list_del(&link->c_hook);
115 		kfree(link);
116 	}
117 	mutex_unlock(&fwnode_link_lock);
118 }
119 
120 /**
121  * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
122  * @fwnode: fwnode whose consumer links need to be deleted
123  *
124  * Deletes all consumer links connecting directly to @fwnode.
125  */
126 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
127 {
128 	struct fwnode_link *link, *tmp;
129 
130 	mutex_lock(&fwnode_link_lock);
131 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
132 		list_del(&link->s_hook);
133 		list_del(&link->c_hook);
134 		kfree(link);
135 	}
136 	mutex_unlock(&fwnode_link_lock);
137 }
138 
139 /**
140  * fwnode_links_purge - Delete all links connected to a fwnode_handle.
141  * @fwnode: fwnode whose links needs to be deleted
142  *
143  * Deletes all links connecting directly to a fwnode.
144  */
145 void fwnode_links_purge(struct fwnode_handle *fwnode)
146 {
147 	fwnode_links_purge_suppliers(fwnode);
148 	fwnode_links_purge_consumers(fwnode);
149 }
150 
151 #ifdef CONFIG_SRCU
152 static DEFINE_MUTEX(device_links_lock);
153 DEFINE_STATIC_SRCU(device_links_srcu);
154 
155 static inline void device_links_write_lock(void)
156 {
157 	mutex_lock(&device_links_lock);
158 }
159 
160 static inline void device_links_write_unlock(void)
161 {
162 	mutex_unlock(&device_links_lock);
163 }
164 
165 int device_links_read_lock(void) __acquires(&device_links_srcu)
166 {
167 	return srcu_read_lock(&device_links_srcu);
168 }
169 
170 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
171 {
172 	srcu_read_unlock(&device_links_srcu, idx);
173 }
174 
175 int device_links_read_lock_held(void)
176 {
177 	return srcu_read_lock_held(&device_links_srcu);
178 }
179 #else /* !CONFIG_SRCU */
180 static DECLARE_RWSEM(device_links_lock);
181 
182 static inline void device_links_write_lock(void)
183 {
184 	down_write(&device_links_lock);
185 }
186 
187 static inline void device_links_write_unlock(void)
188 {
189 	up_write(&device_links_lock);
190 }
191 
192 int device_links_read_lock(void)
193 {
194 	down_read(&device_links_lock);
195 	return 0;
196 }
197 
198 void device_links_read_unlock(int not_used)
199 {
200 	up_read(&device_links_lock);
201 }
202 
203 #ifdef CONFIG_DEBUG_LOCK_ALLOC
204 int device_links_read_lock_held(void)
205 {
206 	return lockdep_is_held(&device_links_lock);
207 }
208 #endif
209 #endif /* !CONFIG_SRCU */
210 
211 /**
212  * device_is_dependent - Check if one device depends on another one
213  * @dev: Device to check dependencies for.
214  * @target: Device to check against.
215  *
216  * Check if @target depends on @dev or any device dependent on it (its child or
217  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
218  */
219 int device_is_dependent(struct device *dev, void *target)
220 {
221 	struct device_link *link;
222 	int ret;
223 
224 	if (dev == target)
225 		return 1;
226 
227 	ret = device_for_each_child(dev, target, device_is_dependent);
228 	if (ret)
229 		return ret;
230 
231 	list_for_each_entry(link, &dev->links.consumers, s_node) {
232 		if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
233 			continue;
234 
235 		if (link->consumer == target)
236 			return 1;
237 
238 		ret = device_is_dependent(link->consumer, target);
239 		if (ret)
240 			break;
241 	}
242 	return ret;
243 }
244 
245 static void device_link_init_status(struct device_link *link,
246 				    struct device *consumer,
247 				    struct device *supplier)
248 {
249 	switch (supplier->links.status) {
250 	case DL_DEV_PROBING:
251 		switch (consumer->links.status) {
252 		case DL_DEV_PROBING:
253 			/*
254 			 * A consumer driver can create a link to a supplier
255 			 * that has not completed its probing yet as long as it
256 			 * knows that the supplier is already functional (for
257 			 * example, it has just acquired some resources from the
258 			 * supplier).
259 			 */
260 			link->status = DL_STATE_CONSUMER_PROBE;
261 			break;
262 		default:
263 			link->status = DL_STATE_DORMANT;
264 			break;
265 		}
266 		break;
267 	case DL_DEV_DRIVER_BOUND:
268 		switch (consumer->links.status) {
269 		case DL_DEV_PROBING:
270 			link->status = DL_STATE_CONSUMER_PROBE;
271 			break;
272 		case DL_DEV_DRIVER_BOUND:
273 			link->status = DL_STATE_ACTIVE;
274 			break;
275 		default:
276 			link->status = DL_STATE_AVAILABLE;
277 			break;
278 		}
279 		break;
280 	case DL_DEV_UNBINDING:
281 		link->status = DL_STATE_SUPPLIER_UNBIND;
282 		break;
283 	default:
284 		link->status = DL_STATE_DORMANT;
285 		break;
286 	}
287 }
288 
289 static int device_reorder_to_tail(struct device *dev, void *not_used)
290 {
291 	struct device_link *link;
292 
293 	/*
294 	 * Devices that have not been registered yet will be put to the ends
295 	 * of the lists during the registration, so skip them here.
296 	 */
297 	if (device_is_registered(dev))
298 		devices_kset_move_last(dev);
299 
300 	if (device_pm_initialized(dev))
301 		device_pm_move_last(dev);
302 
303 	device_for_each_child(dev, NULL, device_reorder_to_tail);
304 	list_for_each_entry(link, &dev->links.consumers, s_node) {
305 		if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
306 			continue;
307 		device_reorder_to_tail(link->consumer, NULL);
308 	}
309 
310 	return 0;
311 }
312 
313 /**
314  * device_pm_move_to_tail - Move set of devices to the end of device lists
315  * @dev: Device to move
316  *
317  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
318  *
319  * It moves the @dev along with all of its children and all of its consumers
320  * to the ends of the device_kset and dpm_list, recursively.
321  */
322 void device_pm_move_to_tail(struct device *dev)
323 {
324 	int idx;
325 
326 	idx = device_links_read_lock();
327 	device_pm_lock();
328 	device_reorder_to_tail(dev, NULL);
329 	device_pm_unlock();
330 	device_links_read_unlock(idx);
331 }
332 
333 #define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
334 
335 static ssize_t status_show(struct device *dev,
336 			   struct device_attribute *attr, char *buf)
337 {
338 	const char *output;
339 
340 	switch (to_devlink(dev)->status) {
341 	case DL_STATE_NONE:
342 		output = "not tracked";
343 		break;
344 	case DL_STATE_DORMANT:
345 		output = "dormant";
346 		break;
347 	case DL_STATE_AVAILABLE:
348 		output = "available";
349 		break;
350 	case DL_STATE_CONSUMER_PROBE:
351 		output = "consumer probing";
352 		break;
353 	case DL_STATE_ACTIVE:
354 		output = "active";
355 		break;
356 	case DL_STATE_SUPPLIER_UNBIND:
357 		output = "supplier unbinding";
358 		break;
359 	default:
360 		output = "unknown";
361 		break;
362 	}
363 
364 	return sysfs_emit(buf, "%s\n", output);
365 }
366 static DEVICE_ATTR_RO(status);
367 
368 static ssize_t auto_remove_on_show(struct device *dev,
369 				   struct device_attribute *attr, char *buf)
370 {
371 	struct device_link *link = to_devlink(dev);
372 	const char *output;
373 
374 	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
375 		output = "supplier unbind";
376 	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
377 		output = "consumer unbind";
378 	else
379 		output = "never";
380 
381 	return sysfs_emit(buf, "%s\n", output);
382 }
383 static DEVICE_ATTR_RO(auto_remove_on);
384 
385 static ssize_t runtime_pm_show(struct device *dev,
386 			       struct device_attribute *attr, char *buf)
387 {
388 	struct device_link *link = to_devlink(dev);
389 
390 	return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
391 }
392 static DEVICE_ATTR_RO(runtime_pm);
393 
394 static ssize_t sync_state_only_show(struct device *dev,
395 				    struct device_attribute *attr, char *buf)
396 {
397 	struct device_link *link = to_devlink(dev);
398 
399 	return sysfs_emit(buf, "%d\n",
400 			  !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
401 }
402 static DEVICE_ATTR_RO(sync_state_only);
403 
404 static struct attribute *devlink_attrs[] = {
405 	&dev_attr_status.attr,
406 	&dev_attr_auto_remove_on.attr,
407 	&dev_attr_runtime_pm.attr,
408 	&dev_attr_sync_state_only.attr,
409 	NULL,
410 };
411 ATTRIBUTE_GROUPS(devlink);
412 
413 static void device_link_free(struct device_link *link)
414 {
415 	while (refcount_dec_not_one(&link->rpm_active))
416 		pm_runtime_put(link->supplier);
417 
418 	put_device(link->consumer);
419 	put_device(link->supplier);
420 	kfree(link);
421 }
422 
423 #ifdef CONFIG_SRCU
424 static void __device_link_free_srcu(struct rcu_head *rhead)
425 {
426 	device_link_free(container_of(rhead, struct device_link, rcu_head));
427 }
428 
429 static void devlink_dev_release(struct device *dev)
430 {
431 	struct device_link *link = to_devlink(dev);
432 
433 	call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
434 }
435 #else
436 static void devlink_dev_release(struct device *dev)
437 {
438 	device_link_free(to_devlink(dev));
439 }
440 #endif
441 
442 static struct class devlink_class = {
443 	.name = "devlink",
444 	.owner = THIS_MODULE,
445 	.dev_groups = devlink_groups,
446 	.dev_release = devlink_dev_release,
447 };
448 
449 static int devlink_add_symlinks(struct device *dev,
450 				struct class_interface *class_intf)
451 {
452 	int ret;
453 	size_t len;
454 	struct device_link *link = to_devlink(dev);
455 	struct device *sup = link->supplier;
456 	struct device *con = link->consumer;
457 	char *buf;
458 
459 	len = max(strlen(dev_name(sup)), strlen(dev_name(con)));
460 	len += strlen("supplier:") + 1;
461 	buf = kzalloc(len, GFP_KERNEL);
462 	if (!buf)
463 		return -ENOMEM;
464 
465 	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
466 	if (ret)
467 		goto out;
468 
469 	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
470 	if (ret)
471 		goto err_con;
472 
473 	snprintf(buf, len, "consumer:%s", dev_name(con));
474 	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
475 	if (ret)
476 		goto err_con_dev;
477 
478 	snprintf(buf, len, "supplier:%s", dev_name(sup));
479 	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
480 	if (ret)
481 		goto err_sup_dev;
482 
483 	goto out;
484 
485 err_sup_dev:
486 	snprintf(buf, len, "consumer:%s", dev_name(con));
487 	sysfs_remove_link(&sup->kobj, buf);
488 err_con_dev:
489 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
490 err_con:
491 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
492 out:
493 	kfree(buf);
494 	return ret;
495 }
496 
497 static void devlink_remove_symlinks(struct device *dev,
498 				   struct class_interface *class_intf)
499 {
500 	struct device_link *link = to_devlink(dev);
501 	size_t len;
502 	struct device *sup = link->supplier;
503 	struct device *con = link->consumer;
504 	char *buf;
505 
506 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
507 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
508 
509 	len = max(strlen(dev_name(sup)), strlen(dev_name(con)));
510 	len += strlen("supplier:") + 1;
511 	buf = kzalloc(len, GFP_KERNEL);
512 	if (!buf) {
513 		WARN(1, "Unable to properly free device link symlinks!\n");
514 		return;
515 	}
516 
517 	snprintf(buf, len, "supplier:%s", dev_name(sup));
518 	sysfs_remove_link(&con->kobj, buf);
519 	snprintf(buf, len, "consumer:%s", dev_name(con));
520 	sysfs_remove_link(&sup->kobj, buf);
521 	kfree(buf);
522 }
523 
524 static struct class_interface devlink_class_intf = {
525 	.class = &devlink_class,
526 	.add_dev = devlink_add_symlinks,
527 	.remove_dev = devlink_remove_symlinks,
528 };
529 
530 static int __init devlink_class_init(void)
531 {
532 	int ret;
533 
534 	ret = class_register(&devlink_class);
535 	if (ret)
536 		return ret;
537 
538 	ret = class_interface_register(&devlink_class_intf);
539 	if (ret)
540 		class_unregister(&devlink_class);
541 
542 	return ret;
543 }
544 postcore_initcall(devlink_class_init);
545 
546 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
547 			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
548 			       DL_FLAG_AUTOPROBE_CONSUMER  | \
549 			       DL_FLAG_SYNC_STATE_ONLY)
550 
551 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
552 			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
553 
554 /**
555  * device_link_add - Create a link between two devices.
556  * @consumer: Consumer end of the link.
557  * @supplier: Supplier end of the link.
558  * @flags: Link flags.
559  *
560  * The caller is responsible for the proper synchronization of the link creation
561  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
562  * runtime PM framework to take the link into account.  Second, if the
563  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
564  * be forced into the active meta state and reference-counted upon the creation
565  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
566  * ignored.
567  *
568  * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
569  * expected to release the link returned by it directly with the help of either
570  * device_link_del() or device_link_remove().
571  *
572  * If that flag is not set, however, the caller of this function is handing the
573  * management of the link over to the driver core entirely and its return value
574  * can only be used to check whether or not the link is present.  In that case,
575  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
576  * flags can be used to indicate to the driver core when the link can be safely
577  * deleted.  Namely, setting one of them in @flags indicates to the driver core
578  * that the link is not going to be used (by the given caller of this function)
579  * after unbinding the consumer or supplier driver, respectively, from its
580  * device, so the link can be deleted at that point.  If none of them is set,
581  * the link will be maintained until one of the devices pointed to by it (either
582  * the consumer or the supplier) is unregistered.
583  *
584  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
585  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
586  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
587  * be used to request the driver core to automatically probe for a consumer
588  * driver after successfully binding a driver to the supplier device.
589  *
590  * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
591  * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
592  * the same time is invalid and will cause NULL to be returned upfront.
593  * However, if a device link between the given @consumer and @supplier pair
594  * exists already when this function is called for them, the existing link will
595  * be returned regardless of its current type and status (the link's flags may
596  * be modified then).  The caller of this function is then expected to treat
597  * the link as though it has just been created, so (in particular) if
598  * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
599  * explicitly when not needed any more (as stated above).
600  *
601  * A side effect of the link creation is re-ordering of dpm_list and the
602  * devices_kset list by moving the consumer device and all devices depending
603  * on it to the ends of these lists (that does not happen to devices that have
604  * not been registered when this function is called).
605  *
606  * The supplier device is required to be registered when this function is called
607  * and NULL will be returned if that is not the case.  The consumer device need
608  * not be registered, however.
609  */
610 struct device_link *device_link_add(struct device *consumer,
611 				    struct device *supplier, u32 flags)
612 {
613 	struct device_link *link;
614 
615 	if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
616 	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
617 	    (flags & DL_FLAG_SYNC_STATE_ONLY &&
618 	     flags != DL_FLAG_SYNC_STATE_ONLY) ||
619 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
620 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
621 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
622 		return NULL;
623 
624 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
625 		if (pm_runtime_get_sync(supplier) < 0) {
626 			pm_runtime_put_noidle(supplier);
627 			return NULL;
628 		}
629 	}
630 
631 	if (!(flags & DL_FLAG_STATELESS))
632 		flags |= DL_FLAG_MANAGED;
633 
634 	device_links_write_lock();
635 	device_pm_lock();
636 
637 	/*
638 	 * If the supplier has not been fully registered yet or there is a
639 	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
640 	 * the supplier already in the graph, return NULL. If the link is a
641 	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
642 	 * because it only affects sync_state() callbacks.
643 	 */
644 	if (!device_pm_initialized(supplier)
645 	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
646 		  device_is_dependent(consumer, supplier))) {
647 		link = NULL;
648 		goto out;
649 	}
650 
651 	/*
652 	 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
653 	 * So, only create it if the consumer hasn't probed yet.
654 	 */
655 	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
656 	    consumer->links.status != DL_DEV_NO_DRIVER &&
657 	    consumer->links.status != DL_DEV_PROBING) {
658 		link = NULL;
659 		goto out;
660 	}
661 
662 	/*
663 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
664 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
665 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
666 	 */
667 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
668 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
669 
670 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
671 		if (link->consumer != consumer)
672 			continue;
673 
674 		if (flags & DL_FLAG_PM_RUNTIME) {
675 			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
676 				pm_runtime_new_link(consumer);
677 				link->flags |= DL_FLAG_PM_RUNTIME;
678 			}
679 			if (flags & DL_FLAG_RPM_ACTIVE)
680 				refcount_inc(&link->rpm_active);
681 		}
682 
683 		if (flags & DL_FLAG_STATELESS) {
684 			kref_get(&link->kref);
685 			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
686 			    !(link->flags & DL_FLAG_STATELESS)) {
687 				link->flags |= DL_FLAG_STATELESS;
688 				goto reorder;
689 			} else {
690 				link->flags |= DL_FLAG_STATELESS;
691 				goto out;
692 			}
693 		}
694 
695 		/*
696 		 * If the life time of the link following from the new flags is
697 		 * longer than indicated by the flags of the existing link,
698 		 * update the existing link to stay around longer.
699 		 */
700 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
701 			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
702 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
703 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
704 			}
705 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
706 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
707 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
708 		}
709 		if (!(link->flags & DL_FLAG_MANAGED)) {
710 			kref_get(&link->kref);
711 			link->flags |= DL_FLAG_MANAGED;
712 			device_link_init_status(link, consumer, supplier);
713 		}
714 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
715 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
716 			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
717 			goto reorder;
718 		}
719 
720 		goto out;
721 	}
722 
723 	link = kzalloc(sizeof(*link), GFP_KERNEL);
724 	if (!link)
725 		goto out;
726 
727 	refcount_set(&link->rpm_active, 1);
728 
729 	get_device(supplier);
730 	link->supplier = supplier;
731 	INIT_LIST_HEAD(&link->s_node);
732 	get_device(consumer);
733 	link->consumer = consumer;
734 	INIT_LIST_HEAD(&link->c_node);
735 	link->flags = flags;
736 	kref_init(&link->kref);
737 
738 	link->link_dev.class = &devlink_class;
739 	device_set_pm_not_required(&link->link_dev);
740 	dev_set_name(&link->link_dev, "%s--%s",
741 		     dev_name(supplier), dev_name(consumer));
742 	if (device_register(&link->link_dev)) {
743 		put_device(consumer);
744 		put_device(supplier);
745 		kfree(link);
746 		link = NULL;
747 		goto out;
748 	}
749 
750 	if (flags & DL_FLAG_PM_RUNTIME) {
751 		if (flags & DL_FLAG_RPM_ACTIVE)
752 			refcount_inc(&link->rpm_active);
753 
754 		pm_runtime_new_link(consumer);
755 	}
756 
757 	/* Determine the initial link state. */
758 	if (flags & DL_FLAG_STATELESS)
759 		link->status = DL_STATE_NONE;
760 	else
761 		device_link_init_status(link, consumer, supplier);
762 
763 	/*
764 	 * Some callers expect the link creation during consumer driver probe to
765 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
766 	 */
767 	if (link->status == DL_STATE_CONSUMER_PROBE &&
768 	    flags & DL_FLAG_PM_RUNTIME)
769 		pm_runtime_resume(supplier);
770 
771 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
772 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
773 
774 	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
775 		dev_dbg(consumer,
776 			"Linked as a sync state only consumer to %s\n",
777 			dev_name(supplier));
778 		goto out;
779 	}
780 
781 reorder:
782 	/*
783 	 * Move the consumer and all of the devices depending on it to the end
784 	 * of dpm_list and the devices_kset list.
785 	 *
786 	 * It is necessary to hold dpm_list locked throughout all that or else
787 	 * we may end up suspending with a wrong ordering of it.
788 	 */
789 	device_reorder_to_tail(consumer, NULL);
790 
791 	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
792 
793 out:
794 	device_pm_unlock();
795 	device_links_write_unlock();
796 
797 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
798 		pm_runtime_put(supplier);
799 
800 	return link;
801 }
802 EXPORT_SYMBOL_GPL(device_link_add);
803 
804 #ifdef CONFIG_SRCU
805 static void __device_link_del(struct kref *kref)
806 {
807 	struct device_link *link = container_of(kref, struct device_link, kref);
808 
809 	dev_dbg(link->consumer, "Dropping the link to %s\n",
810 		dev_name(link->supplier));
811 
812 	pm_runtime_drop_link(link);
813 
814 	list_del_rcu(&link->s_node);
815 	list_del_rcu(&link->c_node);
816 	device_unregister(&link->link_dev);
817 }
818 #else /* !CONFIG_SRCU */
819 static void __device_link_del(struct kref *kref)
820 {
821 	struct device_link *link = container_of(kref, struct device_link, kref);
822 
823 	dev_info(link->consumer, "Dropping the link to %s\n",
824 		 dev_name(link->supplier));
825 
826 	pm_runtime_drop_link(link);
827 
828 	list_del(&link->s_node);
829 	list_del(&link->c_node);
830 	device_unregister(&link->link_dev);
831 }
832 #endif /* !CONFIG_SRCU */
833 
834 static void device_link_put_kref(struct device_link *link)
835 {
836 	if (link->flags & DL_FLAG_STATELESS)
837 		kref_put(&link->kref, __device_link_del);
838 	else
839 		WARN(1, "Unable to drop a managed device link reference\n");
840 }
841 
842 /**
843  * device_link_del - Delete a stateless link between two devices.
844  * @link: Device link to delete.
845  *
846  * The caller must ensure proper synchronization of this function with runtime
847  * PM.  If the link was added multiple times, it needs to be deleted as often.
848  * Care is required for hotplugged devices:  Their links are purged on removal
849  * and calling device_link_del() is then no longer allowed.
850  */
851 void device_link_del(struct device_link *link)
852 {
853 	device_links_write_lock();
854 	device_link_put_kref(link);
855 	device_links_write_unlock();
856 }
857 EXPORT_SYMBOL_GPL(device_link_del);
858 
859 /**
860  * device_link_remove - Delete a stateless link between two devices.
861  * @consumer: Consumer end of the link.
862  * @supplier: Supplier end of the link.
863  *
864  * The caller must ensure proper synchronization of this function with runtime
865  * PM.
866  */
867 void device_link_remove(void *consumer, struct device *supplier)
868 {
869 	struct device_link *link;
870 
871 	if (WARN_ON(consumer == supplier))
872 		return;
873 
874 	device_links_write_lock();
875 
876 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
877 		if (link->consumer == consumer) {
878 			device_link_put_kref(link);
879 			break;
880 		}
881 	}
882 
883 	device_links_write_unlock();
884 }
885 EXPORT_SYMBOL_GPL(device_link_remove);
886 
887 static void device_links_missing_supplier(struct device *dev)
888 {
889 	struct device_link *link;
890 
891 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
892 		if (link->status != DL_STATE_CONSUMER_PROBE)
893 			continue;
894 
895 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
896 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
897 		} else {
898 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
899 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
900 		}
901 	}
902 }
903 
904 /**
905  * device_links_check_suppliers - Check presence of supplier drivers.
906  * @dev: Consumer device.
907  *
908  * Check links from this device to any suppliers.  Walk the list of the device's
909  * links to suppliers and see if all of them are available.  If not, simply
910  * return -EPROBE_DEFER.
911  *
912  * We need to guarantee that the supplier will not go away after the check has
913  * been positive here.  It only can go away in __device_release_driver() and
914  * that function  checks the device's links to consumers.  This means we need to
915  * mark the link as "consumer probe in progress" to make the supplier removal
916  * wait for us to complete (or bad things may happen).
917  *
918  * Links without the DL_FLAG_MANAGED flag set are ignored.
919  */
920 int device_links_check_suppliers(struct device *dev)
921 {
922 	struct device_link *link;
923 	int ret = 0;
924 
925 	/*
926 	 * Device waiting for supplier to become available is not allowed to
927 	 * probe.
928 	 */
929 	mutex_lock(&fwnode_link_lock);
930 	if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) &&
931 	    !fw_devlink_is_permissive()) {
932 		mutex_unlock(&fwnode_link_lock);
933 		return -EPROBE_DEFER;
934 	}
935 	mutex_unlock(&fwnode_link_lock);
936 
937 	device_links_write_lock();
938 
939 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
940 		if (!(link->flags & DL_FLAG_MANAGED))
941 			continue;
942 
943 		if (link->status != DL_STATE_AVAILABLE &&
944 		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
945 			device_links_missing_supplier(dev);
946 			ret = -EPROBE_DEFER;
947 			break;
948 		}
949 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
950 	}
951 	dev->links.status = DL_DEV_PROBING;
952 
953 	device_links_write_unlock();
954 	return ret;
955 }
956 
957 /**
958  * __device_links_queue_sync_state - Queue a device for sync_state() callback
959  * @dev: Device to call sync_state() on
960  * @list: List head to queue the @dev on
961  *
962  * Queues a device for a sync_state() callback when the device links write lock
963  * isn't held. This allows the sync_state() execution flow to use device links
964  * APIs.  The caller must ensure this function is called with
965  * device_links_write_lock() held.
966  *
967  * This function does a get_device() to make sure the device is not freed while
968  * on this list.
969  *
970  * So the caller must also ensure that device_links_flush_sync_list() is called
971  * as soon as the caller releases device_links_write_lock().  This is necessary
972  * to make sure the sync_state() is called in a timely fashion and the
973  * put_device() is called on this device.
974  */
975 static void __device_links_queue_sync_state(struct device *dev,
976 					    struct list_head *list)
977 {
978 	struct device_link *link;
979 
980 	if (!dev_has_sync_state(dev))
981 		return;
982 	if (dev->state_synced)
983 		return;
984 
985 	list_for_each_entry(link, &dev->links.consumers, s_node) {
986 		if (!(link->flags & DL_FLAG_MANAGED))
987 			continue;
988 		if (link->status != DL_STATE_ACTIVE)
989 			return;
990 	}
991 
992 	/*
993 	 * Set the flag here to avoid adding the same device to a list more
994 	 * than once. This can happen if new consumers get added to the device
995 	 * and probed before the list is flushed.
996 	 */
997 	dev->state_synced = true;
998 
999 	if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1000 		return;
1001 
1002 	get_device(dev);
1003 	list_add_tail(&dev->links.defer_sync, list);
1004 }
1005 
1006 /**
1007  * device_links_flush_sync_list - Call sync_state() on a list of devices
1008  * @list: List of devices to call sync_state() on
1009  * @dont_lock_dev: Device for which lock is already held by the caller
1010  *
1011  * Calls sync_state() on all the devices that have been queued for it. This
1012  * function is used in conjunction with __device_links_queue_sync_state(). The
1013  * @dont_lock_dev parameter is useful when this function is called from a
1014  * context where a device lock is already held.
1015  */
1016 static void device_links_flush_sync_list(struct list_head *list,
1017 					 struct device *dont_lock_dev)
1018 {
1019 	struct device *dev, *tmp;
1020 
1021 	list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1022 		list_del_init(&dev->links.defer_sync);
1023 
1024 		if (dev != dont_lock_dev)
1025 			device_lock(dev);
1026 
1027 		if (dev->bus->sync_state)
1028 			dev->bus->sync_state(dev);
1029 		else if (dev->driver && dev->driver->sync_state)
1030 			dev->driver->sync_state(dev);
1031 
1032 		if (dev != dont_lock_dev)
1033 			device_unlock(dev);
1034 
1035 		put_device(dev);
1036 	}
1037 }
1038 
1039 void device_links_supplier_sync_state_pause(void)
1040 {
1041 	device_links_write_lock();
1042 	defer_sync_state_count++;
1043 	device_links_write_unlock();
1044 }
1045 
1046 void device_links_supplier_sync_state_resume(void)
1047 {
1048 	struct device *dev, *tmp;
1049 	LIST_HEAD(sync_list);
1050 
1051 	device_links_write_lock();
1052 	if (!defer_sync_state_count) {
1053 		WARN(true, "Unmatched sync_state pause/resume!");
1054 		goto out;
1055 	}
1056 	defer_sync_state_count--;
1057 	if (defer_sync_state_count)
1058 		goto out;
1059 
1060 	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1061 		/*
1062 		 * Delete from deferred_sync list before queuing it to
1063 		 * sync_list because defer_sync is used for both lists.
1064 		 */
1065 		list_del_init(&dev->links.defer_sync);
1066 		__device_links_queue_sync_state(dev, &sync_list);
1067 	}
1068 out:
1069 	device_links_write_unlock();
1070 
1071 	device_links_flush_sync_list(&sync_list, NULL);
1072 }
1073 
1074 static int sync_state_resume_initcall(void)
1075 {
1076 	device_links_supplier_sync_state_resume();
1077 	return 0;
1078 }
1079 late_initcall(sync_state_resume_initcall);
1080 
1081 static void __device_links_supplier_defer_sync(struct device *sup)
1082 {
1083 	if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1084 		list_add_tail(&sup->links.defer_sync, &deferred_sync);
1085 }
1086 
1087 static void device_link_drop_managed(struct device_link *link)
1088 {
1089 	link->flags &= ~DL_FLAG_MANAGED;
1090 	WRITE_ONCE(link->status, DL_STATE_NONE);
1091 	kref_put(&link->kref, __device_link_del);
1092 }
1093 
1094 static ssize_t waiting_for_supplier_show(struct device *dev,
1095 					 struct device_attribute *attr,
1096 					 char *buf)
1097 {
1098 	bool val;
1099 
1100 	device_lock(dev);
1101 	val = !list_empty(&dev->fwnode->suppliers);
1102 	device_unlock(dev);
1103 	return sysfs_emit(buf, "%u\n", val);
1104 }
1105 static DEVICE_ATTR_RO(waiting_for_supplier);
1106 
1107 /**
1108  * device_links_driver_bound - Update device links after probing its driver.
1109  * @dev: Device to update the links for.
1110  *
1111  * The probe has been successful, so update links from this device to any
1112  * consumers by changing their status to "available".
1113  *
1114  * Also change the status of @dev's links to suppliers to "active".
1115  *
1116  * Links without the DL_FLAG_MANAGED flag set are ignored.
1117  */
1118 void device_links_driver_bound(struct device *dev)
1119 {
1120 	struct device_link *link, *ln;
1121 	LIST_HEAD(sync_list);
1122 
1123 	/*
1124 	 * If a device probes successfully, it's expected to have created all
1125 	 * the device links it needs to or make new device links as it needs
1126 	 * them. So, it no longer needs to wait on any suppliers.
1127 	 */
1128 	if (dev->fwnode && dev->fwnode->dev == dev)
1129 		fwnode_links_purge_suppliers(dev->fwnode);
1130 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1131 
1132 	device_links_write_lock();
1133 
1134 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1135 		if (!(link->flags & DL_FLAG_MANAGED))
1136 			continue;
1137 
1138 		/*
1139 		 * Links created during consumer probe may be in the "consumer
1140 		 * probe" state to start with if the supplier is still probing
1141 		 * when they are created and they may become "active" if the
1142 		 * consumer probe returns first.  Skip them here.
1143 		 */
1144 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1145 		    link->status == DL_STATE_ACTIVE)
1146 			continue;
1147 
1148 		WARN_ON(link->status != DL_STATE_DORMANT);
1149 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1150 
1151 		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1152 			driver_deferred_probe_add(link->consumer);
1153 	}
1154 
1155 	if (defer_sync_state_count)
1156 		__device_links_supplier_defer_sync(dev);
1157 	else
1158 		__device_links_queue_sync_state(dev, &sync_list);
1159 
1160 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1161 		struct device *supplier;
1162 
1163 		if (!(link->flags & DL_FLAG_MANAGED))
1164 			continue;
1165 
1166 		supplier = link->supplier;
1167 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1168 			/*
1169 			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1170 			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1171 			 * save to drop the managed link completely.
1172 			 */
1173 			device_link_drop_managed(link);
1174 		} else {
1175 			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1176 			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1177 		}
1178 
1179 		/*
1180 		 * This needs to be done even for the deleted
1181 		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1182 		 * device link that was preventing the supplier from getting a
1183 		 * sync_state() call.
1184 		 */
1185 		if (defer_sync_state_count)
1186 			__device_links_supplier_defer_sync(supplier);
1187 		else
1188 			__device_links_queue_sync_state(supplier, &sync_list);
1189 	}
1190 
1191 	dev->links.status = DL_DEV_DRIVER_BOUND;
1192 
1193 	device_links_write_unlock();
1194 
1195 	device_links_flush_sync_list(&sync_list, dev);
1196 }
1197 
1198 /**
1199  * __device_links_no_driver - Update links of a device without a driver.
1200  * @dev: Device without a drvier.
1201  *
1202  * Delete all non-persistent links from this device to any suppliers.
1203  *
1204  * Persistent links stay around, but their status is changed to "available",
1205  * unless they already are in the "supplier unbind in progress" state in which
1206  * case they need not be updated.
1207  *
1208  * Links without the DL_FLAG_MANAGED flag set are ignored.
1209  */
1210 static void __device_links_no_driver(struct device *dev)
1211 {
1212 	struct device_link *link, *ln;
1213 
1214 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1215 		if (!(link->flags & DL_FLAG_MANAGED))
1216 			continue;
1217 
1218 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1219 			device_link_drop_managed(link);
1220 			continue;
1221 		}
1222 
1223 		if (link->status != DL_STATE_CONSUMER_PROBE &&
1224 		    link->status != DL_STATE_ACTIVE)
1225 			continue;
1226 
1227 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1228 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1229 		} else {
1230 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1231 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1232 		}
1233 	}
1234 
1235 	dev->links.status = DL_DEV_NO_DRIVER;
1236 }
1237 
1238 /**
1239  * device_links_no_driver - Update links after failing driver probe.
1240  * @dev: Device whose driver has just failed to probe.
1241  *
1242  * Clean up leftover links to consumers for @dev and invoke
1243  * %__device_links_no_driver() to update links to suppliers for it as
1244  * appropriate.
1245  *
1246  * Links without the DL_FLAG_MANAGED flag set are ignored.
1247  */
1248 void device_links_no_driver(struct device *dev)
1249 {
1250 	struct device_link *link;
1251 
1252 	device_links_write_lock();
1253 
1254 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1255 		if (!(link->flags & DL_FLAG_MANAGED))
1256 			continue;
1257 
1258 		/*
1259 		 * The probe has failed, so if the status of the link is
1260 		 * "consumer probe" or "active", it must have been added by
1261 		 * a probing consumer while this device was still probing.
1262 		 * Change its state to "dormant", as it represents a valid
1263 		 * relationship, but it is not functionally meaningful.
1264 		 */
1265 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1266 		    link->status == DL_STATE_ACTIVE)
1267 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1268 	}
1269 
1270 	__device_links_no_driver(dev);
1271 
1272 	device_links_write_unlock();
1273 }
1274 
1275 /**
1276  * device_links_driver_cleanup - Update links after driver removal.
1277  * @dev: Device whose driver has just gone away.
1278  *
1279  * Update links to consumers for @dev by changing their status to "dormant" and
1280  * invoke %__device_links_no_driver() to update links to suppliers for it as
1281  * appropriate.
1282  *
1283  * Links without the DL_FLAG_MANAGED flag set are ignored.
1284  */
1285 void device_links_driver_cleanup(struct device *dev)
1286 {
1287 	struct device_link *link, *ln;
1288 
1289 	device_links_write_lock();
1290 
1291 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1292 		if (!(link->flags & DL_FLAG_MANAGED))
1293 			continue;
1294 
1295 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1296 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1297 
1298 		/*
1299 		 * autoremove the links between this @dev and its consumer
1300 		 * devices that are not active, i.e. where the link state
1301 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1302 		 */
1303 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1304 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1305 			device_link_drop_managed(link);
1306 
1307 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1308 	}
1309 
1310 	list_del_init(&dev->links.defer_sync);
1311 	__device_links_no_driver(dev);
1312 
1313 	device_links_write_unlock();
1314 }
1315 
1316 /**
1317  * device_links_busy - Check if there are any busy links to consumers.
1318  * @dev: Device to check.
1319  *
1320  * Check each consumer of the device and return 'true' if its link's status
1321  * is one of "consumer probe" or "active" (meaning that the given consumer is
1322  * probing right now or its driver is present).  Otherwise, change the link
1323  * state to "supplier unbind" to prevent the consumer from being probed
1324  * successfully going forward.
1325  *
1326  * Return 'false' if there are no probing or active consumers.
1327  *
1328  * Links without the DL_FLAG_MANAGED flag set are ignored.
1329  */
1330 bool device_links_busy(struct device *dev)
1331 {
1332 	struct device_link *link;
1333 	bool ret = false;
1334 
1335 	device_links_write_lock();
1336 
1337 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1338 		if (!(link->flags & DL_FLAG_MANAGED))
1339 			continue;
1340 
1341 		if (link->status == DL_STATE_CONSUMER_PROBE
1342 		    || link->status == DL_STATE_ACTIVE) {
1343 			ret = true;
1344 			break;
1345 		}
1346 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1347 	}
1348 
1349 	dev->links.status = DL_DEV_UNBINDING;
1350 
1351 	device_links_write_unlock();
1352 	return ret;
1353 }
1354 
1355 /**
1356  * device_links_unbind_consumers - Force unbind consumers of the given device.
1357  * @dev: Device to unbind the consumers of.
1358  *
1359  * Walk the list of links to consumers for @dev and if any of them is in the
1360  * "consumer probe" state, wait for all device probes in progress to complete
1361  * and start over.
1362  *
1363  * If that's not the case, change the status of the link to "supplier unbind"
1364  * and check if the link was in the "active" state.  If so, force the consumer
1365  * driver to unbind and start over (the consumer will not re-probe as we have
1366  * changed the state of the link already).
1367  *
1368  * Links without the DL_FLAG_MANAGED flag set are ignored.
1369  */
1370 void device_links_unbind_consumers(struct device *dev)
1371 {
1372 	struct device_link *link;
1373 
1374  start:
1375 	device_links_write_lock();
1376 
1377 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1378 		enum device_link_state status;
1379 
1380 		if (!(link->flags & DL_FLAG_MANAGED) ||
1381 		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1382 			continue;
1383 
1384 		status = link->status;
1385 		if (status == DL_STATE_CONSUMER_PROBE) {
1386 			device_links_write_unlock();
1387 
1388 			wait_for_device_probe();
1389 			goto start;
1390 		}
1391 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1392 		if (status == DL_STATE_ACTIVE) {
1393 			struct device *consumer = link->consumer;
1394 
1395 			get_device(consumer);
1396 
1397 			device_links_write_unlock();
1398 
1399 			device_release_driver_internal(consumer, NULL,
1400 						       consumer->parent);
1401 			put_device(consumer);
1402 			goto start;
1403 		}
1404 	}
1405 
1406 	device_links_write_unlock();
1407 }
1408 
1409 /**
1410  * device_links_purge - Delete existing links to other devices.
1411  * @dev: Target device.
1412  */
1413 static void device_links_purge(struct device *dev)
1414 {
1415 	struct device_link *link, *ln;
1416 
1417 	if (dev->class == &devlink_class)
1418 		return;
1419 
1420 	/*
1421 	 * Delete all of the remaining links from this device to any other
1422 	 * devices (either consumers or suppliers).
1423 	 */
1424 	device_links_write_lock();
1425 
1426 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1427 		WARN_ON(link->status == DL_STATE_ACTIVE);
1428 		__device_link_del(&link->kref);
1429 	}
1430 
1431 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1432 		WARN_ON(link->status != DL_STATE_DORMANT &&
1433 			link->status != DL_STATE_NONE);
1434 		__device_link_del(&link->kref);
1435 	}
1436 
1437 	device_links_write_unlock();
1438 }
1439 
1440 static u32 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
1441 static int __init fw_devlink_setup(char *arg)
1442 {
1443 	if (!arg)
1444 		return -EINVAL;
1445 
1446 	if (strcmp(arg, "off") == 0) {
1447 		fw_devlink_flags = 0;
1448 	} else if (strcmp(arg, "permissive") == 0) {
1449 		fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
1450 	} else if (strcmp(arg, "on") == 0) {
1451 		fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER;
1452 	} else if (strcmp(arg, "rpm") == 0) {
1453 		fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER |
1454 				   DL_FLAG_PM_RUNTIME;
1455 	}
1456 	return 0;
1457 }
1458 early_param("fw_devlink", fw_devlink_setup);
1459 
1460 u32 fw_devlink_get_flags(void)
1461 {
1462 	return fw_devlink_flags;
1463 }
1464 
1465 static bool fw_devlink_is_permissive(void)
1466 {
1467 	return fw_devlink_flags == DL_FLAG_SYNC_STATE_ONLY;
1468 }
1469 
1470 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1471 {
1472 	if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1473 		return;
1474 
1475 	fwnode_call_int_op(fwnode, add_links);
1476 	fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1477 }
1478 
1479 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1480 {
1481 	struct fwnode_handle *child = NULL;
1482 
1483 	fw_devlink_parse_fwnode(fwnode);
1484 
1485 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1486 		fw_devlink_parse_fwtree(child);
1487 }
1488 
1489 /**
1490  * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
1491  * @con - Consumer device for the device link
1492  * @sup_handle - fwnode handle of supplier
1493  *
1494  * This function will try to create a device link between the consumer device
1495  * @con and the supplier device represented by @sup_handle.
1496  *
1497  * The supplier has to be provided as a fwnode because incorrect cycles in
1498  * fwnode links can sometimes cause the supplier device to never be created.
1499  * This function detects such cases and returns an error if it cannot create a
1500  * device link from the consumer to a missing supplier.
1501  *
1502  * Returns,
1503  * 0 on successfully creating a device link
1504  * -EINVAL if the device link cannot be created as expected
1505  * -EAGAIN if the device link cannot be created right now, but it may be
1506  *  possible to do that in the future
1507  */
1508 static int fw_devlink_create_devlink(struct device *con,
1509 				     struct fwnode_handle *sup_handle, u32 flags)
1510 {
1511 	struct device *sup_dev;
1512 	int ret = 0;
1513 
1514 	sup_dev = get_dev_from_fwnode(sup_handle);
1515 	if (sup_dev) {
1516 		/*
1517 		 * If this fails, it is due to cycles in device links.  Just
1518 		 * give up on this link and treat it as invalid.
1519 		 */
1520 		if (!device_link_add(con, sup_dev, flags))
1521 			ret = -EINVAL;
1522 
1523 		goto out;
1524 	}
1525 
1526 	/*
1527 	 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports
1528 	 * cycles. So cycle detection isn't necessary and shouldn't be
1529 	 * done.
1530 	 */
1531 	if (flags & DL_FLAG_SYNC_STATE_ONLY)
1532 		return -EAGAIN;
1533 
1534 	/*
1535 	 * If we can't find the supplier device from its fwnode, it might be
1536 	 * due to a cyclic dependency between fwnodes. Some of these cycles can
1537 	 * be broken by applying logic. Check for these types of cycles and
1538 	 * break them so that devices in the cycle probe properly.
1539 	 *
1540 	 * If the supplier's parent is dependent on the consumer, then
1541 	 * the consumer-supplier dependency is a false dependency. So,
1542 	 * treat it as an invalid link.
1543 	 */
1544 	sup_dev = fwnode_get_next_parent_dev(sup_handle);
1545 	if (sup_dev && device_is_dependent(con, sup_dev)) {
1546 		dev_dbg(con, "Not linking to %pfwP - False link\n",
1547 			sup_handle);
1548 		ret = -EINVAL;
1549 	} else {
1550 		/*
1551 		 * Can't check for cycles or no cycles. So let's try
1552 		 * again later.
1553 		 */
1554 		ret = -EAGAIN;
1555 	}
1556 
1557 out:
1558 	put_device(sup_dev);
1559 	return ret;
1560 }
1561 
1562 /**
1563  * __fw_devlink_link_to_consumers - Create device links to consumers of a device
1564  * @dev - Device that needs to be linked to its consumers
1565  *
1566  * This function looks at all the consumer fwnodes of @dev and creates device
1567  * links between the consumer device and @dev (supplier).
1568  *
1569  * If the consumer device has not been added yet, then this function creates a
1570  * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
1571  * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
1572  * sync_state() callback before the real consumer device gets to be added and
1573  * then probed.
1574  *
1575  * Once device links are created from the real consumer to @dev (supplier), the
1576  * fwnode links are deleted.
1577  */
1578 static void __fw_devlink_link_to_consumers(struct device *dev)
1579 {
1580 	struct fwnode_handle *fwnode = dev->fwnode;
1581 	struct fwnode_link *link, *tmp;
1582 
1583 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
1584 		u32 dl_flags = fw_devlink_get_flags();
1585 		struct device *con_dev;
1586 		bool own_link = true;
1587 		int ret;
1588 
1589 		con_dev = get_dev_from_fwnode(link->consumer);
1590 		/*
1591 		 * If consumer device is not available yet, make a "proxy"
1592 		 * SYNC_STATE_ONLY link from the consumer's parent device to
1593 		 * the supplier device. This is necessary to make sure the
1594 		 * supplier doesn't get a sync_state() callback before the real
1595 		 * consumer can create a device link to the supplier.
1596 		 *
1597 		 * This proxy link step is needed to handle the case where the
1598 		 * consumer's parent device is added before the supplier.
1599 		 */
1600 		if (!con_dev) {
1601 			con_dev = fwnode_get_next_parent_dev(link->consumer);
1602 			/*
1603 			 * However, if the consumer's parent device is also the
1604 			 * parent of the supplier, don't create a
1605 			 * consumer-supplier link from the parent to its child
1606 			 * device. Such a dependency is impossible.
1607 			 */
1608 			if (con_dev &&
1609 			    fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
1610 				put_device(con_dev);
1611 				con_dev = NULL;
1612 			} else {
1613 				own_link = false;
1614 				dl_flags = DL_FLAG_SYNC_STATE_ONLY;
1615 			}
1616 		}
1617 
1618 		if (!con_dev)
1619 			continue;
1620 
1621 		ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags);
1622 		put_device(con_dev);
1623 		if (!own_link || ret == -EAGAIN)
1624 			continue;
1625 
1626 		list_del(&link->s_hook);
1627 		list_del(&link->c_hook);
1628 		kfree(link);
1629 	}
1630 }
1631 
1632 /**
1633  * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
1634  * @dev - The consumer device that needs to be linked to its suppliers
1635  * @fwnode - Root of the fwnode tree that is used to create device links
1636  *
1637  * This function looks at all the supplier fwnodes of fwnode tree rooted at
1638  * @fwnode and creates device links between @dev (consumer) and all the
1639  * supplier devices of the entire fwnode tree at @fwnode.
1640  *
1641  * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
1642  * and the real suppliers of @dev. Once these device links are created, the
1643  * fwnode links are deleted. When such device links are successfully created,
1644  * this function is called recursively on those supplier devices. This is
1645  * needed to detect and break some invalid cycles in fwnode links.  See
1646  * fw_devlink_create_devlink() for more details.
1647  *
1648  * In addition, it also looks at all the suppliers of the entire fwnode tree
1649  * because some of the child devices of @dev that have not been added yet
1650  * (because @dev hasn't probed) might already have their suppliers added to
1651  * driver core. So, this function creates SYNC_STATE_ONLY device links between
1652  * @dev (consumer) and these suppliers to make sure they don't execute their
1653  * sync_state() callbacks before these child devices have a chance to create
1654  * their device links. The fwnode links that correspond to the child devices
1655  * aren't delete because they are needed later to create the device links
1656  * between the real consumer and supplier devices.
1657  */
1658 static void __fw_devlink_link_to_suppliers(struct device *dev,
1659 					   struct fwnode_handle *fwnode)
1660 {
1661 	bool own_link = (dev->fwnode == fwnode);
1662 	struct fwnode_link *link, *tmp;
1663 	struct fwnode_handle *child = NULL;
1664 	u32 dl_flags;
1665 
1666 	if (own_link)
1667 		dl_flags = fw_devlink_get_flags();
1668 	else
1669 		dl_flags = DL_FLAG_SYNC_STATE_ONLY;
1670 
1671 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
1672 		int ret;
1673 		struct device *sup_dev;
1674 		struct fwnode_handle *sup = link->supplier;
1675 
1676 		ret = fw_devlink_create_devlink(dev, sup, dl_flags);
1677 		if (!own_link || ret == -EAGAIN)
1678 			continue;
1679 
1680 		list_del(&link->s_hook);
1681 		list_del(&link->c_hook);
1682 		kfree(link);
1683 
1684 		/* If no device link was created, nothing more to do. */
1685 		if (ret)
1686 			continue;
1687 
1688 		/*
1689 		 * If a device link was successfully created to a supplier, we
1690 		 * now need to try and link the supplier to all its suppliers.
1691 		 *
1692 		 * This is needed to detect and delete false dependencies in
1693 		 * fwnode links that haven't been converted to a device link
1694 		 * yet. See comments in fw_devlink_create_devlink() for more
1695 		 * details on the false dependency.
1696 		 *
1697 		 * Without deleting these false dependencies, some devices will
1698 		 * never probe because they'll keep waiting for their false
1699 		 * dependency fwnode links to be converted to device links.
1700 		 */
1701 		sup_dev = get_dev_from_fwnode(sup);
1702 		__fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode);
1703 		put_device(sup_dev);
1704 	}
1705 
1706 	/*
1707 	 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
1708 	 * all the descendants. This proxy link step is needed to handle the
1709 	 * case where the supplier is added before the consumer's parent device
1710 	 * (@dev).
1711 	 */
1712 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1713 		__fw_devlink_link_to_suppliers(dev, child);
1714 }
1715 
1716 static void fw_devlink_link_device(struct device *dev)
1717 {
1718 	struct fwnode_handle *fwnode = dev->fwnode;
1719 
1720 	if (!fw_devlink_flags)
1721 		return;
1722 
1723 	fw_devlink_parse_fwtree(fwnode);
1724 
1725 	mutex_lock(&fwnode_link_lock);
1726 	__fw_devlink_link_to_consumers(dev);
1727 	__fw_devlink_link_to_suppliers(dev, fwnode);
1728 	mutex_unlock(&fwnode_link_lock);
1729 }
1730 
1731 /* Device links support end. */
1732 
1733 int (*platform_notify)(struct device *dev) = NULL;
1734 int (*platform_notify_remove)(struct device *dev) = NULL;
1735 static struct kobject *dev_kobj;
1736 struct kobject *sysfs_dev_char_kobj;
1737 struct kobject *sysfs_dev_block_kobj;
1738 
1739 static DEFINE_MUTEX(device_hotplug_lock);
1740 
1741 void lock_device_hotplug(void)
1742 {
1743 	mutex_lock(&device_hotplug_lock);
1744 }
1745 
1746 void unlock_device_hotplug(void)
1747 {
1748 	mutex_unlock(&device_hotplug_lock);
1749 }
1750 
1751 int lock_device_hotplug_sysfs(void)
1752 {
1753 	if (mutex_trylock(&device_hotplug_lock))
1754 		return 0;
1755 
1756 	/* Avoid busy looping (5 ms of sleep should do). */
1757 	msleep(5);
1758 	return restart_syscall();
1759 }
1760 
1761 #ifdef CONFIG_BLOCK
1762 static inline int device_is_not_partition(struct device *dev)
1763 {
1764 	return !(dev->type == &part_type);
1765 }
1766 #else
1767 static inline int device_is_not_partition(struct device *dev)
1768 {
1769 	return 1;
1770 }
1771 #endif
1772 
1773 static int
1774 device_platform_notify(struct device *dev, enum kobject_action action)
1775 {
1776 	int ret;
1777 
1778 	ret = acpi_platform_notify(dev, action);
1779 	if (ret)
1780 		return ret;
1781 
1782 	ret = software_node_notify(dev, action);
1783 	if (ret)
1784 		return ret;
1785 
1786 	if (platform_notify && action == KOBJ_ADD)
1787 		platform_notify(dev);
1788 	else if (platform_notify_remove && action == KOBJ_REMOVE)
1789 		platform_notify_remove(dev);
1790 	return 0;
1791 }
1792 
1793 /**
1794  * dev_driver_string - Return a device's driver name, if at all possible
1795  * @dev: struct device to get the name of
1796  *
1797  * Will return the device's driver's name if it is bound to a device.  If
1798  * the device is not bound to a driver, it will return the name of the bus
1799  * it is attached to.  If it is not attached to a bus either, an empty
1800  * string will be returned.
1801  */
1802 const char *dev_driver_string(const struct device *dev)
1803 {
1804 	struct device_driver *drv;
1805 
1806 	/* dev->driver can change to NULL underneath us because of unbinding,
1807 	 * so be careful about accessing it.  dev->bus and dev->class should
1808 	 * never change once they are set, so they don't need special care.
1809 	 */
1810 	drv = READ_ONCE(dev->driver);
1811 	return drv ? drv->name :
1812 			(dev->bus ? dev->bus->name :
1813 			(dev->class ? dev->class->name : ""));
1814 }
1815 EXPORT_SYMBOL(dev_driver_string);
1816 
1817 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
1818 
1819 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
1820 			     char *buf)
1821 {
1822 	struct device_attribute *dev_attr = to_dev_attr(attr);
1823 	struct device *dev = kobj_to_dev(kobj);
1824 	ssize_t ret = -EIO;
1825 
1826 	if (dev_attr->show)
1827 		ret = dev_attr->show(dev, dev_attr, buf);
1828 	if (ret >= (ssize_t)PAGE_SIZE) {
1829 		printk("dev_attr_show: %pS returned bad count\n",
1830 				dev_attr->show);
1831 	}
1832 	return ret;
1833 }
1834 
1835 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
1836 			      const char *buf, size_t count)
1837 {
1838 	struct device_attribute *dev_attr = to_dev_attr(attr);
1839 	struct device *dev = kobj_to_dev(kobj);
1840 	ssize_t ret = -EIO;
1841 
1842 	if (dev_attr->store)
1843 		ret = dev_attr->store(dev, dev_attr, buf, count);
1844 	return ret;
1845 }
1846 
1847 static const struct sysfs_ops dev_sysfs_ops = {
1848 	.show	= dev_attr_show,
1849 	.store	= dev_attr_store,
1850 };
1851 
1852 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
1853 
1854 ssize_t device_store_ulong(struct device *dev,
1855 			   struct device_attribute *attr,
1856 			   const char *buf, size_t size)
1857 {
1858 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1859 	int ret;
1860 	unsigned long new;
1861 
1862 	ret = kstrtoul(buf, 0, &new);
1863 	if (ret)
1864 		return ret;
1865 	*(unsigned long *)(ea->var) = new;
1866 	/* Always return full write size even if we didn't consume all */
1867 	return size;
1868 }
1869 EXPORT_SYMBOL_GPL(device_store_ulong);
1870 
1871 ssize_t device_show_ulong(struct device *dev,
1872 			  struct device_attribute *attr,
1873 			  char *buf)
1874 {
1875 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1876 	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
1877 }
1878 EXPORT_SYMBOL_GPL(device_show_ulong);
1879 
1880 ssize_t device_store_int(struct device *dev,
1881 			 struct device_attribute *attr,
1882 			 const char *buf, size_t size)
1883 {
1884 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1885 	int ret;
1886 	long new;
1887 
1888 	ret = kstrtol(buf, 0, &new);
1889 	if (ret)
1890 		return ret;
1891 
1892 	if (new > INT_MAX || new < INT_MIN)
1893 		return -EINVAL;
1894 	*(int *)(ea->var) = new;
1895 	/* Always return full write size even if we didn't consume all */
1896 	return size;
1897 }
1898 EXPORT_SYMBOL_GPL(device_store_int);
1899 
1900 ssize_t device_show_int(struct device *dev,
1901 			struct device_attribute *attr,
1902 			char *buf)
1903 {
1904 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1905 
1906 	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
1907 }
1908 EXPORT_SYMBOL_GPL(device_show_int);
1909 
1910 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
1911 			  const char *buf, size_t size)
1912 {
1913 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1914 
1915 	if (strtobool(buf, ea->var) < 0)
1916 		return -EINVAL;
1917 
1918 	return size;
1919 }
1920 EXPORT_SYMBOL_GPL(device_store_bool);
1921 
1922 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
1923 			 char *buf)
1924 {
1925 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1926 
1927 	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
1928 }
1929 EXPORT_SYMBOL_GPL(device_show_bool);
1930 
1931 /**
1932  * device_release - free device structure.
1933  * @kobj: device's kobject.
1934  *
1935  * This is called once the reference count for the object
1936  * reaches 0. We forward the call to the device's release
1937  * method, which should handle actually freeing the structure.
1938  */
1939 static void device_release(struct kobject *kobj)
1940 {
1941 	struct device *dev = kobj_to_dev(kobj);
1942 	struct device_private *p = dev->p;
1943 
1944 	/*
1945 	 * Some platform devices are driven without driver attached
1946 	 * and managed resources may have been acquired.  Make sure
1947 	 * all resources are released.
1948 	 *
1949 	 * Drivers still can add resources into device after device
1950 	 * is deleted but alive, so release devres here to avoid
1951 	 * possible memory leak.
1952 	 */
1953 	devres_release_all(dev);
1954 
1955 	kfree(dev->dma_range_map);
1956 
1957 	if (dev->release)
1958 		dev->release(dev);
1959 	else if (dev->type && dev->type->release)
1960 		dev->type->release(dev);
1961 	else if (dev->class && dev->class->dev_release)
1962 		dev->class->dev_release(dev);
1963 	else
1964 		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
1965 			dev_name(dev));
1966 	kfree(p);
1967 }
1968 
1969 static const void *device_namespace(struct kobject *kobj)
1970 {
1971 	struct device *dev = kobj_to_dev(kobj);
1972 	const void *ns = NULL;
1973 
1974 	if (dev->class && dev->class->ns_type)
1975 		ns = dev->class->namespace(dev);
1976 
1977 	return ns;
1978 }
1979 
1980 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
1981 {
1982 	struct device *dev = kobj_to_dev(kobj);
1983 
1984 	if (dev->class && dev->class->get_ownership)
1985 		dev->class->get_ownership(dev, uid, gid);
1986 }
1987 
1988 static struct kobj_type device_ktype = {
1989 	.release	= device_release,
1990 	.sysfs_ops	= &dev_sysfs_ops,
1991 	.namespace	= device_namespace,
1992 	.get_ownership	= device_get_ownership,
1993 };
1994 
1995 
1996 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
1997 {
1998 	struct kobj_type *ktype = get_ktype(kobj);
1999 
2000 	if (ktype == &device_ktype) {
2001 		struct device *dev = kobj_to_dev(kobj);
2002 		if (dev->bus)
2003 			return 1;
2004 		if (dev->class)
2005 			return 1;
2006 	}
2007 	return 0;
2008 }
2009 
2010 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
2011 {
2012 	struct device *dev = kobj_to_dev(kobj);
2013 
2014 	if (dev->bus)
2015 		return dev->bus->name;
2016 	if (dev->class)
2017 		return dev->class->name;
2018 	return NULL;
2019 }
2020 
2021 static int dev_uevent(struct kset *kset, struct kobject *kobj,
2022 		      struct kobj_uevent_env *env)
2023 {
2024 	struct device *dev = kobj_to_dev(kobj);
2025 	int retval = 0;
2026 
2027 	/* add device node properties if present */
2028 	if (MAJOR(dev->devt)) {
2029 		const char *tmp;
2030 		const char *name;
2031 		umode_t mode = 0;
2032 		kuid_t uid = GLOBAL_ROOT_UID;
2033 		kgid_t gid = GLOBAL_ROOT_GID;
2034 
2035 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2036 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2037 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2038 		if (name) {
2039 			add_uevent_var(env, "DEVNAME=%s", name);
2040 			if (mode)
2041 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2042 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
2043 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2044 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
2045 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2046 			kfree(tmp);
2047 		}
2048 	}
2049 
2050 	if (dev->type && dev->type->name)
2051 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2052 
2053 	if (dev->driver)
2054 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2055 
2056 	/* Add common DT information about the device */
2057 	of_device_uevent(dev, env);
2058 
2059 	/* have the bus specific function add its stuff */
2060 	if (dev->bus && dev->bus->uevent) {
2061 		retval = dev->bus->uevent(dev, env);
2062 		if (retval)
2063 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2064 				 dev_name(dev), __func__, retval);
2065 	}
2066 
2067 	/* have the class specific function add its stuff */
2068 	if (dev->class && dev->class->dev_uevent) {
2069 		retval = dev->class->dev_uevent(dev, env);
2070 		if (retval)
2071 			pr_debug("device: '%s': %s: class uevent() "
2072 				 "returned %d\n", dev_name(dev),
2073 				 __func__, retval);
2074 	}
2075 
2076 	/* have the device type specific function add its stuff */
2077 	if (dev->type && dev->type->uevent) {
2078 		retval = dev->type->uevent(dev, env);
2079 		if (retval)
2080 			pr_debug("device: '%s': %s: dev_type uevent() "
2081 				 "returned %d\n", dev_name(dev),
2082 				 __func__, retval);
2083 	}
2084 
2085 	return retval;
2086 }
2087 
2088 static const struct kset_uevent_ops device_uevent_ops = {
2089 	.filter =	dev_uevent_filter,
2090 	.name =		dev_uevent_name,
2091 	.uevent =	dev_uevent,
2092 };
2093 
2094 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2095 			   char *buf)
2096 {
2097 	struct kobject *top_kobj;
2098 	struct kset *kset;
2099 	struct kobj_uevent_env *env = NULL;
2100 	int i;
2101 	int len = 0;
2102 	int retval;
2103 
2104 	/* search the kset, the device belongs to */
2105 	top_kobj = &dev->kobj;
2106 	while (!top_kobj->kset && top_kobj->parent)
2107 		top_kobj = top_kobj->parent;
2108 	if (!top_kobj->kset)
2109 		goto out;
2110 
2111 	kset = top_kobj->kset;
2112 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2113 		goto out;
2114 
2115 	/* respect filter */
2116 	if (kset->uevent_ops && kset->uevent_ops->filter)
2117 		if (!kset->uevent_ops->filter(kset, &dev->kobj))
2118 			goto out;
2119 
2120 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2121 	if (!env)
2122 		return -ENOMEM;
2123 
2124 	/* let the kset specific function add its keys */
2125 	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
2126 	if (retval)
2127 		goto out;
2128 
2129 	/* copy keys to file */
2130 	for (i = 0; i < env->envp_idx; i++)
2131 		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2132 out:
2133 	kfree(env);
2134 	return len;
2135 }
2136 
2137 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2138 			    const char *buf, size_t count)
2139 {
2140 	int rc;
2141 
2142 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
2143 
2144 	if (rc) {
2145 		dev_err(dev, "uevent: failed to send synthetic uevent\n");
2146 		return rc;
2147 	}
2148 
2149 	return count;
2150 }
2151 static DEVICE_ATTR_RW(uevent);
2152 
2153 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2154 			   char *buf)
2155 {
2156 	bool val;
2157 
2158 	device_lock(dev);
2159 	val = !dev->offline;
2160 	device_unlock(dev);
2161 	return sysfs_emit(buf, "%u\n", val);
2162 }
2163 
2164 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2165 			    const char *buf, size_t count)
2166 {
2167 	bool val;
2168 	int ret;
2169 
2170 	ret = strtobool(buf, &val);
2171 	if (ret < 0)
2172 		return ret;
2173 
2174 	ret = lock_device_hotplug_sysfs();
2175 	if (ret)
2176 		return ret;
2177 
2178 	ret = val ? device_online(dev) : device_offline(dev);
2179 	unlock_device_hotplug();
2180 	return ret < 0 ? ret : count;
2181 }
2182 static DEVICE_ATTR_RW(online);
2183 
2184 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2185 {
2186 	return sysfs_create_groups(&dev->kobj, groups);
2187 }
2188 EXPORT_SYMBOL_GPL(device_add_groups);
2189 
2190 void device_remove_groups(struct device *dev,
2191 			  const struct attribute_group **groups)
2192 {
2193 	sysfs_remove_groups(&dev->kobj, groups);
2194 }
2195 EXPORT_SYMBOL_GPL(device_remove_groups);
2196 
2197 union device_attr_group_devres {
2198 	const struct attribute_group *group;
2199 	const struct attribute_group **groups;
2200 };
2201 
2202 static int devm_attr_group_match(struct device *dev, void *res, void *data)
2203 {
2204 	return ((union device_attr_group_devres *)res)->group == data;
2205 }
2206 
2207 static void devm_attr_group_remove(struct device *dev, void *res)
2208 {
2209 	union device_attr_group_devres *devres = res;
2210 	const struct attribute_group *group = devres->group;
2211 
2212 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2213 	sysfs_remove_group(&dev->kobj, group);
2214 }
2215 
2216 static void devm_attr_groups_remove(struct device *dev, void *res)
2217 {
2218 	union device_attr_group_devres *devres = res;
2219 	const struct attribute_group **groups = devres->groups;
2220 
2221 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2222 	sysfs_remove_groups(&dev->kobj, groups);
2223 }
2224 
2225 /**
2226  * devm_device_add_group - given a device, create a managed attribute group
2227  * @dev:	The device to create the group for
2228  * @grp:	The attribute group to create
2229  *
2230  * This function creates a group for the first time.  It will explicitly
2231  * warn and error if any of the attribute files being created already exist.
2232  *
2233  * Returns 0 on success or error code on failure.
2234  */
2235 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2236 {
2237 	union device_attr_group_devres *devres;
2238 	int error;
2239 
2240 	devres = devres_alloc(devm_attr_group_remove,
2241 			      sizeof(*devres), GFP_KERNEL);
2242 	if (!devres)
2243 		return -ENOMEM;
2244 
2245 	error = sysfs_create_group(&dev->kobj, grp);
2246 	if (error) {
2247 		devres_free(devres);
2248 		return error;
2249 	}
2250 
2251 	devres->group = grp;
2252 	devres_add(dev, devres);
2253 	return 0;
2254 }
2255 EXPORT_SYMBOL_GPL(devm_device_add_group);
2256 
2257 /**
2258  * devm_device_remove_group: remove a managed group from a device
2259  * @dev:	device to remove the group from
2260  * @grp:	group to remove
2261  *
2262  * This function removes a group of attributes from a device. The attributes
2263  * previously have to have been created for this group, otherwise it will fail.
2264  */
2265 void devm_device_remove_group(struct device *dev,
2266 			      const struct attribute_group *grp)
2267 {
2268 	WARN_ON(devres_release(dev, devm_attr_group_remove,
2269 			       devm_attr_group_match,
2270 			       /* cast away const */ (void *)grp));
2271 }
2272 EXPORT_SYMBOL_GPL(devm_device_remove_group);
2273 
2274 /**
2275  * devm_device_add_groups - create a bunch of managed attribute groups
2276  * @dev:	The device to create the group for
2277  * @groups:	The attribute groups to create, NULL terminated
2278  *
2279  * This function creates a bunch of managed attribute groups.  If an error
2280  * occurs when creating a group, all previously created groups will be
2281  * removed, unwinding everything back to the original state when this
2282  * function was called.  It will explicitly warn and error if any of the
2283  * attribute files being created already exist.
2284  *
2285  * Returns 0 on success or error code from sysfs_create_group on failure.
2286  */
2287 int devm_device_add_groups(struct device *dev,
2288 			   const struct attribute_group **groups)
2289 {
2290 	union device_attr_group_devres *devres;
2291 	int error;
2292 
2293 	devres = devres_alloc(devm_attr_groups_remove,
2294 			      sizeof(*devres), GFP_KERNEL);
2295 	if (!devres)
2296 		return -ENOMEM;
2297 
2298 	error = sysfs_create_groups(&dev->kobj, groups);
2299 	if (error) {
2300 		devres_free(devres);
2301 		return error;
2302 	}
2303 
2304 	devres->groups = groups;
2305 	devres_add(dev, devres);
2306 	return 0;
2307 }
2308 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2309 
2310 /**
2311  * devm_device_remove_groups - remove a list of managed groups
2312  *
2313  * @dev:	The device for the groups to be removed from
2314  * @groups:	NULL terminated list of groups to be removed
2315  *
2316  * If groups is not NULL, remove the specified groups from the device.
2317  */
2318 void devm_device_remove_groups(struct device *dev,
2319 			       const struct attribute_group **groups)
2320 {
2321 	WARN_ON(devres_release(dev, devm_attr_groups_remove,
2322 			       devm_attr_group_match,
2323 			       /* cast away const */ (void *)groups));
2324 }
2325 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2326 
2327 static int device_add_attrs(struct device *dev)
2328 {
2329 	struct class *class = dev->class;
2330 	const struct device_type *type = dev->type;
2331 	int error;
2332 
2333 	if (class) {
2334 		error = device_add_groups(dev, class->dev_groups);
2335 		if (error)
2336 			return error;
2337 	}
2338 
2339 	if (type) {
2340 		error = device_add_groups(dev, type->groups);
2341 		if (error)
2342 			goto err_remove_class_groups;
2343 	}
2344 
2345 	error = device_add_groups(dev, dev->groups);
2346 	if (error)
2347 		goto err_remove_type_groups;
2348 
2349 	if (device_supports_offline(dev) && !dev->offline_disabled) {
2350 		error = device_create_file(dev, &dev_attr_online);
2351 		if (error)
2352 			goto err_remove_dev_groups;
2353 	}
2354 
2355 	if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2356 		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2357 		if (error)
2358 			goto err_remove_dev_online;
2359 	}
2360 
2361 	return 0;
2362 
2363  err_remove_dev_online:
2364 	device_remove_file(dev, &dev_attr_online);
2365  err_remove_dev_groups:
2366 	device_remove_groups(dev, dev->groups);
2367  err_remove_type_groups:
2368 	if (type)
2369 		device_remove_groups(dev, type->groups);
2370  err_remove_class_groups:
2371 	if (class)
2372 		device_remove_groups(dev, class->dev_groups);
2373 
2374 	return error;
2375 }
2376 
2377 static void device_remove_attrs(struct device *dev)
2378 {
2379 	struct class *class = dev->class;
2380 	const struct device_type *type = dev->type;
2381 
2382 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2383 	device_remove_file(dev, &dev_attr_online);
2384 	device_remove_groups(dev, dev->groups);
2385 
2386 	if (type)
2387 		device_remove_groups(dev, type->groups);
2388 
2389 	if (class)
2390 		device_remove_groups(dev, class->dev_groups);
2391 }
2392 
2393 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2394 			char *buf)
2395 {
2396 	return print_dev_t(buf, dev->devt);
2397 }
2398 static DEVICE_ATTR_RO(dev);
2399 
2400 /* /sys/devices/ */
2401 struct kset *devices_kset;
2402 
2403 /**
2404  * devices_kset_move_before - Move device in the devices_kset's list.
2405  * @deva: Device to move.
2406  * @devb: Device @deva should come before.
2407  */
2408 static void devices_kset_move_before(struct device *deva, struct device *devb)
2409 {
2410 	if (!devices_kset)
2411 		return;
2412 	pr_debug("devices_kset: Moving %s before %s\n",
2413 		 dev_name(deva), dev_name(devb));
2414 	spin_lock(&devices_kset->list_lock);
2415 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2416 	spin_unlock(&devices_kset->list_lock);
2417 }
2418 
2419 /**
2420  * devices_kset_move_after - Move device in the devices_kset's list.
2421  * @deva: Device to move
2422  * @devb: Device @deva should come after.
2423  */
2424 static void devices_kset_move_after(struct device *deva, struct device *devb)
2425 {
2426 	if (!devices_kset)
2427 		return;
2428 	pr_debug("devices_kset: Moving %s after %s\n",
2429 		 dev_name(deva), dev_name(devb));
2430 	spin_lock(&devices_kset->list_lock);
2431 	list_move(&deva->kobj.entry, &devb->kobj.entry);
2432 	spin_unlock(&devices_kset->list_lock);
2433 }
2434 
2435 /**
2436  * devices_kset_move_last - move the device to the end of devices_kset's list.
2437  * @dev: device to move
2438  */
2439 void devices_kset_move_last(struct device *dev)
2440 {
2441 	if (!devices_kset)
2442 		return;
2443 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2444 	spin_lock(&devices_kset->list_lock);
2445 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
2446 	spin_unlock(&devices_kset->list_lock);
2447 }
2448 
2449 /**
2450  * device_create_file - create sysfs attribute file for device.
2451  * @dev: device.
2452  * @attr: device attribute descriptor.
2453  */
2454 int device_create_file(struct device *dev,
2455 		       const struct device_attribute *attr)
2456 {
2457 	int error = 0;
2458 
2459 	if (dev) {
2460 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2461 			"Attribute %s: write permission without 'store'\n",
2462 			attr->attr.name);
2463 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2464 			"Attribute %s: read permission without 'show'\n",
2465 			attr->attr.name);
2466 		error = sysfs_create_file(&dev->kobj, &attr->attr);
2467 	}
2468 
2469 	return error;
2470 }
2471 EXPORT_SYMBOL_GPL(device_create_file);
2472 
2473 /**
2474  * device_remove_file - remove sysfs attribute file.
2475  * @dev: device.
2476  * @attr: device attribute descriptor.
2477  */
2478 void device_remove_file(struct device *dev,
2479 			const struct device_attribute *attr)
2480 {
2481 	if (dev)
2482 		sysfs_remove_file(&dev->kobj, &attr->attr);
2483 }
2484 EXPORT_SYMBOL_GPL(device_remove_file);
2485 
2486 /**
2487  * device_remove_file_self - remove sysfs attribute file from its own method.
2488  * @dev: device.
2489  * @attr: device attribute descriptor.
2490  *
2491  * See kernfs_remove_self() for details.
2492  */
2493 bool device_remove_file_self(struct device *dev,
2494 			     const struct device_attribute *attr)
2495 {
2496 	if (dev)
2497 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2498 	else
2499 		return false;
2500 }
2501 EXPORT_SYMBOL_GPL(device_remove_file_self);
2502 
2503 /**
2504  * device_create_bin_file - create sysfs binary attribute file for device.
2505  * @dev: device.
2506  * @attr: device binary attribute descriptor.
2507  */
2508 int device_create_bin_file(struct device *dev,
2509 			   const struct bin_attribute *attr)
2510 {
2511 	int error = -EINVAL;
2512 	if (dev)
2513 		error = sysfs_create_bin_file(&dev->kobj, attr);
2514 	return error;
2515 }
2516 EXPORT_SYMBOL_GPL(device_create_bin_file);
2517 
2518 /**
2519  * device_remove_bin_file - remove sysfs binary attribute file
2520  * @dev: device.
2521  * @attr: device binary attribute descriptor.
2522  */
2523 void device_remove_bin_file(struct device *dev,
2524 			    const struct bin_attribute *attr)
2525 {
2526 	if (dev)
2527 		sysfs_remove_bin_file(&dev->kobj, attr);
2528 }
2529 EXPORT_SYMBOL_GPL(device_remove_bin_file);
2530 
2531 static void klist_children_get(struct klist_node *n)
2532 {
2533 	struct device_private *p = to_device_private_parent(n);
2534 	struct device *dev = p->device;
2535 
2536 	get_device(dev);
2537 }
2538 
2539 static void klist_children_put(struct klist_node *n)
2540 {
2541 	struct device_private *p = to_device_private_parent(n);
2542 	struct device *dev = p->device;
2543 
2544 	put_device(dev);
2545 }
2546 
2547 /**
2548  * device_initialize - init device structure.
2549  * @dev: device.
2550  *
2551  * This prepares the device for use by other layers by initializing
2552  * its fields.
2553  * It is the first half of device_register(), if called by
2554  * that function, though it can also be called separately, so one
2555  * may use @dev's fields. In particular, get_device()/put_device()
2556  * may be used for reference counting of @dev after calling this
2557  * function.
2558  *
2559  * All fields in @dev must be initialized by the caller to 0, except
2560  * for those explicitly set to some other value.  The simplest
2561  * approach is to use kzalloc() to allocate the structure containing
2562  * @dev.
2563  *
2564  * NOTE: Use put_device() to give up your reference instead of freeing
2565  * @dev directly once you have called this function.
2566  */
2567 void device_initialize(struct device *dev)
2568 {
2569 	dev->kobj.kset = devices_kset;
2570 	kobject_init(&dev->kobj, &device_ktype);
2571 	INIT_LIST_HEAD(&dev->dma_pools);
2572 	mutex_init(&dev->mutex);
2573 #ifdef CONFIG_PROVE_LOCKING
2574 	mutex_init(&dev->lockdep_mutex);
2575 #endif
2576 	lockdep_set_novalidate_class(&dev->mutex);
2577 	spin_lock_init(&dev->devres_lock);
2578 	INIT_LIST_HEAD(&dev->devres_head);
2579 	device_pm_init(dev);
2580 	set_dev_node(dev, -1);
2581 #ifdef CONFIG_GENERIC_MSI_IRQ
2582 	INIT_LIST_HEAD(&dev->msi_list);
2583 #endif
2584 	INIT_LIST_HEAD(&dev->links.consumers);
2585 	INIT_LIST_HEAD(&dev->links.suppliers);
2586 	INIT_LIST_HEAD(&dev->links.defer_sync);
2587 	dev->links.status = DL_DEV_NO_DRIVER;
2588 }
2589 EXPORT_SYMBOL_GPL(device_initialize);
2590 
2591 struct kobject *virtual_device_parent(struct device *dev)
2592 {
2593 	static struct kobject *virtual_dir = NULL;
2594 
2595 	if (!virtual_dir)
2596 		virtual_dir = kobject_create_and_add("virtual",
2597 						     &devices_kset->kobj);
2598 
2599 	return virtual_dir;
2600 }
2601 
2602 struct class_dir {
2603 	struct kobject kobj;
2604 	struct class *class;
2605 };
2606 
2607 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2608 
2609 static void class_dir_release(struct kobject *kobj)
2610 {
2611 	struct class_dir *dir = to_class_dir(kobj);
2612 	kfree(dir);
2613 }
2614 
2615 static const
2616 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2617 {
2618 	struct class_dir *dir = to_class_dir(kobj);
2619 	return dir->class->ns_type;
2620 }
2621 
2622 static struct kobj_type class_dir_ktype = {
2623 	.release	= class_dir_release,
2624 	.sysfs_ops	= &kobj_sysfs_ops,
2625 	.child_ns_type	= class_dir_child_ns_type
2626 };
2627 
2628 static struct kobject *
2629 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2630 {
2631 	struct class_dir *dir;
2632 	int retval;
2633 
2634 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2635 	if (!dir)
2636 		return ERR_PTR(-ENOMEM);
2637 
2638 	dir->class = class;
2639 	kobject_init(&dir->kobj, &class_dir_ktype);
2640 
2641 	dir->kobj.kset = &class->p->glue_dirs;
2642 
2643 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2644 	if (retval < 0) {
2645 		kobject_put(&dir->kobj);
2646 		return ERR_PTR(retval);
2647 	}
2648 	return &dir->kobj;
2649 }
2650 
2651 static DEFINE_MUTEX(gdp_mutex);
2652 
2653 static struct kobject *get_device_parent(struct device *dev,
2654 					 struct device *parent)
2655 {
2656 	if (dev->class) {
2657 		struct kobject *kobj = NULL;
2658 		struct kobject *parent_kobj;
2659 		struct kobject *k;
2660 
2661 #ifdef CONFIG_BLOCK
2662 		/* block disks show up in /sys/block */
2663 		if (sysfs_deprecated && dev->class == &block_class) {
2664 			if (parent && parent->class == &block_class)
2665 				return &parent->kobj;
2666 			return &block_class.p->subsys.kobj;
2667 		}
2668 #endif
2669 
2670 		/*
2671 		 * If we have no parent, we live in "virtual".
2672 		 * Class-devices with a non class-device as parent, live
2673 		 * in a "glue" directory to prevent namespace collisions.
2674 		 */
2675 		if (parent == NULL)
2676 			parent_kobj = virtual_device_parent(dev);
2677 		else if (parent->class && !dev->class->ns_type)
2678 			return &parent->kobj;
2679 		else
2680 			parent_kobj = &parent->kobj;
2681 
2682 		mutex_lock(&gdp_mutex);
2683 
2684 		/* find our class-directory at the parent and reference it */
2685 		spin_lock(&dev->class->p->glue_dirs.list_lock);
2686 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2687 			if (k->parent == parent_kobj) {
2688 				kobj = kobject_get(k);
2689 				break;
2690 			}
2691 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
2692 		if (kobj) {
2693 			mutex_unlock(&gdp_mutex);
2694 			return kobj;
2695 		}
2696 
2697 		/* or create a new class-directory at the parent device */
2698 		k = class_dir_create_and_add(dev->class, parent_kobj);
2699 		/* do not emit an uevent for this simple "glue" directory */
2700 		mutex_unlock(&gdp_mutex);
2701 		return k;
2702 	}
2703 
2704 	/* subsystems can specify a default root directory for their devices */
2705 	if (!parent && dev->bus && dev->bus->dev_root)
2706 		return &dev->bus->dev_root->kobj;
2707 
2708 	if (parent)
2709 		return &parent->kobj;
2710 	return NULL;
2711 }
2712 
2713 static inline bool live_in_glue_dir(struct kobject *kobj,
2714 				    struct device *dev)
2715 {
2716 	if (!kobj || !dev->class ||
2717 	    kobj->kset != &dev->class->p->glue_dirs)
2718 		return false;
2719 	return true;
2720 }
2721 
2722 static inline struct kobject *get_glue_dir(struct device *dev)
2723 {
2724 	return dev->kobj.parent;
2725 }
2726 
2727 /*
2728  * make sure cleaning up dir as the last step, we need to make
2729  * sure .release handler of kobject is run with holding the
2730  * global lock
2731  */
2732 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
2733 {
2734 	unsigned int ref;
2735 
2736 	/* see if we live in a "glue" directory */
2737 	if (!live_in_glue_dir(glue_dir, dev))
2738 		return;
2739 
2740 	mutex_lock(&gdp_mutex);
2741 	/**
2742 	 * There is a race condition between removing glue directory
2743 	 * and adding a new device under the glue directory.
2744 	 *
2745 	 * CPU1:                                         CPU2:
2746 	 *
2747 	 * device_add()
2748 	 *   get_device_parent()
2749 	 *     class_dir_create_and_add()
2750 	 *       kobject_add_internal()
2751 	 *         create_dir()    // create glue_dir
2752 	 *
2753 	 *                                               device_add()
2754 	 *                                                 get_device_parent()
2755 	 *                                                   kobject_get() // get glue_dir
2756 	 *
2757 	 * device_del()
2758 	 *   cleanup_glue_dir()
2759 	 *     kobject_del(glue_dir)
2760 	 *
2761 	 *                                               kobject_add()
2762 	 *                                                 kobject_add_internal()
2763 	 *                                                   create_dir() // in glue_dir
2764 	 *                                                     sysfs_create_dir_ns()
2765 	 *                                                       kernfs_create_dir_ns(sd)
2766 	 *
2767 	 *       sysfs_remove_dir() // glue_dir->sd=NULL
2768 	 *       sysfs_put()        // free glue_dir->sd
2769 	 *
2770 	 *                                                         // sd is freed
2771 	 *                                                         kernfs_new_node(sd)
2772 	 *                                                           kernfs_get(glue_dir)
2773 	 *                                                           kernfs_add_one()
2774 	 *                                                           kernfs_put()
2775 	 *
2776 	 * Before CPU1 remove last child device under glue dir, if CPU2 add
2777 	 * a new device under glue dir, the glue_dir kobject reference count
2778 	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
2779 	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
2780 	 * and sysfs_put(). This result in glue_dir->sd is freed.
2781 	 *
2782 	 * Then the CPU2 will see a stale "empty" but still potentially used
2783 	 * glue dir around in kernfs_new_node().
2784 	 *
2785 	 * In order to avoid this happening, we also should make sure that
2786 	 * kernfs_node for glue_dir is released in CPU1 only when refcount
2787 	 * for glue_dir kobj is 1.
2788 	 */
2789 	ref = kref_read(&glue_dir->kref);
2790 	if (!kobject_has_children(glue_dir) && !--ref)
2791 		kobject_del(glue_dir);
2792 	kobject_put(glue_dir);
2793 	mutex_unlock(&gdp_mutex);
2794 }
2795 
2796 static int device_add_class_symlinks(struct device *dev)
2797 {
2798 	struct device_node *of_node = dev_of_node(dev);
2799 	int error;
2800 
2801 	if (of_node) {
2802 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
2803 		if (error)
2804 			dev_warn(dev, "Error %d creating of_node link\n",error);
2805 		/* An error here doesn't warrant bringing down the device */
2806 	}
2807 
2808 	if (!dev->class)
2809 		return 0;
2810 
2811 	error = sysfs_create_link(&dev->kobj,
2812 				  &dev->class->p->subsys.kobj,
2813 				  "subsystem");
2814 	if (error)
2815 		goto out_devnode;
2816 
2817 	if (dev->parent && device_is_not_partition(dev)) {
2818 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
2819 					  "device");
2820 		if (error)
2821 			goto out_subsys;
2822 	}
2823 
2824 #ifdef CONFIG_BLOCK
2825 	/* /sys/block has directories and does not need symlinks */
2826 	if (sysfs_deprecated && dev->class == &block_class)
2827 		return 0;
2828 #endif
2829 
2830 	/* link in the class directory pointing to the device */
2831 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
2832 				  &dev->kobj, dev_name(dev));
2833 	if (error)
2834 		goto out_device;
2835 
2836 	return 0;
2837 
2838 out_device:
2839 	sysfs_remove_link(&dev->kobj, "device");
2840 
2841 out_subsys:
2842 	sysfs_remove_link(&dev->kobj, "subsystem");
2843 out_devnode:
2844 	sysfs_remove_link(&dev->kobj, "of_node");
2845 	return error;
2846 }
2847 
2848 static void device_remove_class_symlinks(struct device *dev)
2849 {
2850 	if (dev_of_node(dev))
2851 		sysfs_remove_link(&dev->kobj, "of_node");
2852 
2853 	if (!dev->class)
2854 		return;
2855 
2856 	if (dev->parent && device_is_not_partition(dev))
2857 		sysfs_remove_link(&dev->kobj, "device");
2858 	sysfs_remove_link(&dev->kobj, "subsystem");
2859 #ifdef CONFIG_BLOCK
2860 	if (sysfs_deprecated && dev->class == &block_class)
2861 		return;
2862 #endif
2863 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
2864 }
2865 
2866 /**
2867  * dev_set_name - set a device name
2868  * @dev: device
2869  * @fmt: format string for the device's name
2870  */
2871 int dev_set_name(struct device *dev, const char *fmt, ...)
2872 {
2873 	va_list vargs;
2874 	int err;
2875 
2876 	va_start(vargs, fmt);
2877 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
2878 	va_end(vargs);
2879 	return err;
2880 }
2881 EXPORT_SYMBOL_GPL(dev_set_name);
2882 
2883 /**
2884  * device_to_dev_kobj - select a /sys/dev/ directory for the device
2885  * @dev: device
2886  *
2887  * By default we select char/ for new entries.  Setting class->dev_obj
2888  * to NULL prevents an entry from being created.  class->dev_kobj must
2889  * be set (or cleared) before any devices are registered to the class
2890  * otherwise device_create_sys_dev_entry() and
2891  * device_remove_sys_dev_entry() will disagree about the presence of
2892  * the link.
2893  */
2894 static struct kobject *device_to_dev_kobj(struct device *dev)
2895 {
2896 	struct kobject *kobj;
2897 
2898 	if (dev->class)
2899 		kobj = dev->class->dev_kobj;
2900 	else
2901 		kobj = sysfs_dev_char_kobj;
2902 
2903 	return kobj;
2904 }
2905 
2906 static int device_create_sys_dev_entry(struct device *dev)
2907 {
2908 	struct kobject *kobj = device_to_dev_kobj(dev);
2909 	int error = 0;
2910 	char devt_str[15];
2911 
2912 	if (kobj) {
2913 		format_dev_t(devt_str, dev->devt);
2914 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
2915 	}
2916 
2917 	return error;
2918 }
2919 
2920 static void device_remove_sys_dev_entry(struct device *dev)
2921 {
2922 	struct kobject *kobj = device_to_dev_kobj(dev);
2923 	char devt_str[15];
2924 
2925 	if (kobj) {
2926 		format_dev_t(devt_str, dev->devt);
2927 		sysfs_remove_link(kobj, devt_str);
2928 	}
2929 }
2930 
2931 static int device_private_init(struct device *dev)
2932 {
2933 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
2934 	if (!dev->p)
2935 		return -ENOMEM;
2936 	dev->p->device = dev;
2937 	klist_init(&dev->p->klist_children, klist_children_get,
2938 		   klist_children_put);
2939 	INIT_LIST_HEAD(&dev->p->deferred_probe);
2940 	return 0;
2941 }
2942 
2943 /**
2944  * device_add - add device to device hierarchy.
2945  * @dev: device.
2946  *
2947  * This is part 2 of device_register(), though may be called
2948  * separately _iff_ device_initialize() has been called separately.
2949  *
2950  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
2951  * to the global and sibling lists for the device, then
2952  * adds it to the other relevant subsystems of the driver model.
2953  *
2954  * Do not call this routine or device_register() more than once for
2955  * any device structure.  The driver model core is not designed to work
2956  * with devices that get unregistered and then spring back to life.
2957  * (Among other things, it's very hard to guarantee that all references
2958  * to the previous incarnation of @dev have been dropped.)  Allocate
2959  * and register a fresh new struct device instead.
2960  *
2961  * NOTE: _Never_ directly free @dev after calling this function, even
2962  * if it returned an error! Always use put_device() to give up your
2963  * reference instead.
2964  *
2965  * Rule of thumb is: if device_add() succeeds, you should call
2966  * device_del() when you want to get rid of it. If device_add() has
2967  * *not* succeeded, use *only* put_device() to drop the reference
2968  * count.
2969  */
2970 int device_add(struct device *dev)
2971 {
2972 	struct device *parent;
2973 	struct kobject *kobj;
2974 	struct class_interface *class_intf;
2975 	int error = -EINVAL;
2976 	struct kobject *glue_dir = NULL;
2977 
2978 	dev = get_device(dev);
2979 	if (!dev)
2980 		goto done;
2981 
2982 	if (!dev->p) {
2983 		error = device_private_init(dev);
2984 		if (error)
2985 			goto done;
2986 	}
2987 
2988 	/*
2989 	 * for statically allocated devices, which should all be converted
2990 	 * some day, we need to initialize the name. We prevent reading back
2991 	 * the name, and force the use of dev_name()
2992 	 */
2993 	if (dev->init_name) {
2994 		dev_set_name(dev, "%s", dev->init_name);
2995 		dev->init_name = NULL;
2996 	}
2997 
2998 	/* subsystems can specify simple device enumeration */
2999 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
3000 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3001 
3002 	if (!dev_name(dev)) {
3003 		error = -EINVAL;
3004 		goto name_error;
3005 	}
3006 
3007 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3008 
3009 	parent = get_device(dev->parent);
3010 	kobj = get_device_parent(dev, parent);
3011 	if (IS_ERR(kobj)) {
3012 		error = PTR_ERR(kobj);
3013 		goto parent_error;
3014 	}
3015 	if (kobj)
3016 		dev->kobj.parent = kobj;
3017 
3018 	/* use parent numa_node */
3019 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3020 		set_dev_node(dev, dev_to_node(parent));
3021 
3022 	/* first, register with generic layer. */
3023 	/* we require the name to be set before, and pass NULL */
3024 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3025 	if (error) {
3026 		glue_dir = get_glue_dir(dev);
3027 		goto Error;
3028 	}
3029 
3030 	/* notify platform of device entry */
3031 	error = device_platform_notify(dev, KOBJ_ADD);
3032 	if (error)
3033 		goto platform_error;
3034 
3035 	error = device_create_file(dev, &dev_attr_uevent);
3036 	if (error)
3037 		goto attrError;
3038 
3039 	error = device_add_class_symlinks(dev);
3040 	if (error)
3041 		goto SymlinkError;
3042 	error = device_add_attrs(dev);
3043 	if (error)
3044 		goto AttrsError;
3045 	error = bus_add_device(dev);
3046 	if (error)
3047 		goto BusError;
3048 	error = dpm_sysfs_add(dev);
3049 	if (error)
3050 		goto DPMError;
3051 	device_pm_add(dev);
3052 
3053 	if (MAJOR(dev->devt)) {
3054 		error = device_create_file(dev, &dev_attr_dev);
3055 		if (error)
3056 			goto DevAttrError;
3057 
3058 		error = device_create_sys_dev_entry(dev);
3059 		if (error)
3060 			goto SysEntryError;
3061 
3062 		devtmpfs_create_node(dev);
3063 	}
3064 
3065 	/* Notify clients of device addition.  This call must come
3066 	 * after dpm_sysfs_add() and before kobject_uevent().
3067 	 */
3068 	if (dev->bus)
3069 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3070 					     BUS_NOTIFY_ADD_DEVICE, dev);
3071 
3072 	kobject_uevent(&dev->kobj, KOBJ_ADD);
3073 
3074 	/*
3075 	 * Check if any of the other devices (consumers) have been waiting for
3076 	 * this device (supplier) to be added so that they can create a device
3077 	 * link to it.
3078 	 *
3079 	 * This needs to happen after device_pm_add() because device_link_add()
3080 	 * requires the supplier be registered before it's called.
3081 	 *
3082 	 * But this also needs to happen before bus_probe_device() to make sure
3083 	 * waiting consumers can link to it before the driver is bound to the
3084 	 * device and the driver sync_state callback is called for this device.
3085 	 */
3086 	if (dev->fwnode && !dev->fwnode->dev) {
3087 		dev->fwnode->dev = dev;
3088 		fw_devlink_link_device(dev);
3089 	}
3090 
3091 	bus_probe_device(dev);
3092 	if (parent)
3093 		klist_add_tail(&dev->p->knode_parent,
3094 			       &parent->p->klist_children);
3095 
3096 	if (dev->class) {
3097 		mutex_lock(&dev->class->p->mutex);
3098 		/* tie the class to the device */
3099 		klist_add_tail(&dev->p->knode_class,
3100 			       &dev->class->p->klist_devices);
3101 
3102 		/* notify any interfaces that the device is here */
3103 		list_for_each_entry(class_intf,
3104 				    &dev->class->p->interfaces, node)
3105 			if (class_intf->add_dev)
3106 				class_intf->add_dev(dev, class_intf);
3107 		mutex_unlock(&dev->class->p->mutex);
3108 	}
3109 done:
3110 	put_device(dev);
3111 	return error;
3112  SysEntryError:
3113 	if (MAJOR(dev->devt))
3114 		device_remove_file(dev, &dev_attr_dev);
3115  DevAttrError:
3116 	device_pm_remove(dev);
3117 	dpm_sysfs_remove(dev);
3118  DPMError:
3119 	bus_remove_device(dev);
3120  BusError:
3121 	device_remove_attrs(dev);
3122  AttrsError:
3123 	device_remove_class_symlinks(dev);
3124  SymlinkError:
3125 	device_remove_file(dev, &dev_attr_uevent);
3126  attrError:
3127 	device_platform_notify(dev, KOBJ_REMOVE);
3128 platform_error:
3129 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3130 	glue_dir = get_glue_dir(dev);
3131 	kobject_del(&dev->kobj);
3132  Error:
3133 	cleanup_glue_dir(dev, glue_dir);
3134 parent_error:
3135 	put_device(parent);
3136 name_error:
3137 	kfree(dev->p);
3138 	dev->p = NULL;
3139 	goto done;
3140 }
3141 EXPORT_SYMBOL_GPL(device_add);
3142 
3143 /**
3144  * device_register - register a device with the system.
3145  * @dev: pointer to the device structure
3146  *
3147  * This happens in two clean steps - initialize the device
3148  * and add it to the system. The two steps can be called
3149  * separately, but this is the easiest and most common.
3150  * I.e. you should only call the two helpers separately if
3151  * have a clearly defined need to use and refcount the device
3152  * before it is added to the hierarchy.
3153  *
3154  * For more information, see the kerneldoc for device_initialize()
3155  * and device_add().
3156  *
3157  * NOTE: _Never_ directly free @dev after calling this function, even
3158  * if it returned an error! Always use put_device() to give up the
3159  * reference initialized in this function instead.
3160  */
3161 int device_register(struct device *dev)
3162 {
3163 	device_initialize(dev);
3164 	return device_add(dev);
3165 }
3166 EXPORT_SYMBOL_GPL(device_register);
3167 
3168 /**
3169  * get_device - increment reference count for device.
3170  * @dev: device.
3171  *
3172  * This simply forwards the call to kobject_get(), though
3173  * we do take care to provide for the case that we get a NULL
3174  * pointer passed in.
3175  */
3176 struct device *get_device(struct device *dev)
3177 {
3178 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3179 }
3180 EXPORT_SYMBOL_GPL(get_device);
3181 
3182 /**
3183  * put_device - decrement reference count.
3184  * @dev: device in question.
3185  */
3186 void put_device(struct device *dev)
3187 {
3188 	/* might_sleep(); */
3189 	if (dev)
3190 		kobject_put(&dev->kobj);
3191 }
3192 EXPORT_SYMBOL_GPL(put_device);
3193 
3194 bool kill_device(struct device *dev)
3195 {
3196 	/*
3197 	 * Require the device lock and set the "dead" flag to guarantee that
3198 	 * the update behavior is consistent with the other bitfields near
3199 	 * it and that we cannot have an asynchronous probe routine trying
3200 	 * to run while we are tearing out the bus/class/sysfs from
3201 	 * underneath the device.
3202 	 */
3203 	lockdep_assert_held(&dev->mutex);
3204 
3205 	if (dev->p->dead)
3206 		return false;
3207 	dev->p->dead = true;
3208 	return true;
3209 }
3210 EXPORT_SYMBOL_GPL(kill_device);
3211 
3212 /**
3213  * device_del - delete device from system.
3214  * @dev: device.
3215  *
3216  * This is the first part of the device unregistration
3217  * sequence. This removes the device from the lists we control
3218  * from here, has it removed from the other driver model
3219  * subsystems it was added to in device_add(), and removes it
3220  * from the kobject hierarchy.
3221  *
3222  * NOTE: this should be called manually _iff_ device_add() was
3223  * also called manually.
3224  */
3225 void device_del(struct device *dev)
3226 {
3227 	struct device *parent = dev->parent;
3228 	struct kobject *glue_dir = NULL;
3229 	struct class_interface *class_intf;
3230 	unsigned int noio_flag;
3231 
3232 	device_lock(dev);
3233 	kill_device(dev);
3234 	device_unlock(dev);
3235 
3236 	if (dev->fwnode && dev->fwnode->dev == dev)
3237 		dev->fwnode->dev = NULL;
3238 
3239 	/* Notify clients of device removal.  This call must come
3240 	 * before dpm_sysfs_remove().
3241 	 */
3242 	noio_flag = memalloc_noio_save();
3243 	if (dev->bus)
3244 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3245 					     BUS_NOTIFY_DEL_DEVICE, dev);
3246 
3247 	dpm_sysfs_remove(dev);
3248 	if (parent)
3249 		klist_del(&dev->p->knode_parent);
3250 	if (MAJOR(dev->devt)) {
3251 		devtmpfs_delete_node(dev);
3252 		device_remove_sys_dev_entry(dev);
3253 		device_remove_file(dev, &dev_attr_dev);
3254 	}
3255 	if (dev->class) {
3256 		device_remove_class_symlinks(dev);
3257 
3258 		mutex_lock(&dev->class->p->mutex);
3259 		/* notify any interfaces that the device is now gone */
3260 		list_for_each_entry(class_intf,
3261 				    &dev->class->p->interfaces, node)
3262 			if (class_intf->remove_dev)
3263 				class_intf->remove_dev(dev, class_intf);
3264 		/* remove the device from the class list */
3265 		klist_del(&dev->p->knode_class);
3266 		mutex_unlock(&dev->class->p->mutex);
3267 	}
3268 	device_remove_file(dev, &dev_attr_uevent);
3269 	device_remove_attrs(dev);
3270 	bus_remove_device(dev);
3271 	device_pm_remove(dev);
3272 	driver_deferred_probe_del(dev);
3273 	device_platform_notify(dev, KOBJ_REMOVE);
3274 	device_remove_properties(dev);
3275 	device_links_purge(dev);
3276 
3277 	if (dev->bus)
3278 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3279 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
3280 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3281 	glue_dir = get_glue_dir(dev);
3282 	kobject_del(&dev->kobj);
3283 	cleanup_glue_dir(dev, glue_dir);
3284 	memalloc_noio_restore(noio_flag);
3285 	put_device(parent);
3286 }
3287 EXPORT_SYMBOL_GPL(device_del);
3288 
3289 /**
3290  * device_unregister - unregister device from system.
3291  * @dev: device going away.
3292  *
3293  * We do this in two parts, like we do device_register(). First,
3294  * we remove it from all the subsystems with device_del(), then
3295  * we decrement the reference count via put_device(). If that
3296  * is the final reference count, the device will be cleaned up
3297  * via device_release() above. Otherwise, the structure will
3298  * stick around until the final reference to the device is dropped.
3299  */
3300 void device_unregister(struct device *dev)
3301 {
3302 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3303 	device_del(dev);
3304 	put_device(dev);
3305 }
3306 EXPORT_SYMBOL_GPL(device_unregister);
3307 
3308 static struct device *prev_device(struct klist_iter *i)
3309 {
3310 	struct klist_node *n = klist_prev(i);
3311 	struct device *dev = NULL;
3312 	struct device_private *p;
3313 
3314 	if (n) {
3315 		p = to_device_private_parent(n);
3316 		dev = p->device;
3317 	}
3318 	return dev;
3319 }
3320 
3321 static struct device *next_device(struct klist_iter *i)
3322 {
3323 	struct klist_node *n = klist_next(i);
3324 	struct device *dev = NULL;
3325 	struct device_private *p;
3326 
3327 	if (n) {
3328 		p = to_device_private_parent(n);
3329 		dev = p->device;
3330 	}
3331 	return dev;
3332 }
3333 
3334 /**
3335  * device_get_devnode - path of device node file
3336  * @dev: device
3337  * @mode: returned file access mode
3338  * @uid: returned file owner
3339  * @gid: returned file group
3340  * @tmp: possibly allocated string
3341  *
3342  * Return the relative path of a possible device node.
3343  * Non-default names may need to allocate a memory to compose
3344  * a name. This memory is returned in tmp and needs to be
3345  * freed by the caller.
3346  */
3347 const char *device_get_devnode(struct device *dev,
3348 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3349 			       const char **tmp)
3350 {
3351 	char *s;
3352 
3353 	*tmp = NULL;
3354 
3355 	/* the device type may provide a specific name */
3356 	if (dev->type && dev->type->devnode)
3357 		*tmp = dev->type->devnode(dev, mode, uid, gid);
3358 	if (*tmp)
3359 		return *tmp;
3360 
3361 	/* the class may provide a specific name */
3362 	if (dev->class && dev->class->devnode)
3363 		*tmp = dev->class->devnode(dev, mode);
3364 	if (*tmp)
3365 		return *tmp;
3366 
3367 	/* return name without allocation, tmp == NULL */
3368 	if (strchr(dev_name(dev), '!') == NULL)
3369 		return dev_name(dev);
3370 
3371 	/* replace '!' in the name with '/' */
3372 	s = kstrdup(dev_name(dev), GFP_KERNEL);
3373 	if (!s)
3374 		return NULL;
3375 	strreplace(s, '!', '/');
3376 	return *tmp = s;
3377 }
3378 
3379 /**
3380  * device_for_each_child - device child iterator.
3381  * @parent: parent struct device.
3382  * @fn: function to be called for each device.
3383  * @data: data for the callback.
3384  *
3385  * Iterate over @parent's child devices, and call @fn for each,
3386  * passing it @data.
3387  *
3388  * We check the return of @fn each time. If it returns anything
3389  * other than 0, we break out and return that value.
3390  */
3391 int device_for_each_child(struct device *parent, void *data,
3392 			  int (*fn)(struct device *dev, void *data))
3393 {
3394 	struct klist_iter i;
3395 	struct device *child;
3396 	int error = 0;
3397 
3398 	if (!parent->p)
3399 		return 0;
3400 
3401 	klist_iter_init(&parent->p->klist_children, &i);
3402 	while (!error && (child = next_device(&i)))
3403 		error = fn(child, data);
3404 	klist_iter_exit(&i);
3405 	return error;
3406 }
3407 EXPORT_SYMBOL_GPL(device_for_each_child);
3408 
3409 /**
3410  * device_for_each_child_reverse - device child iterator in reversed order.
3411  * @parent: parent struct device.
3412  * @fn: function to be called for each device.
3413  * @data: data for the callback.
3414  *
3415  * Iterate over @parent's child devices, and call @fn for each,
3416  * passing it @data.
3417  *
3418  * We check the return of @fn each time. If it returns anything
3419  * other than 0, we break out and return that value.
3420  */
3421 int device_for_each_child_reverse(struct device *parent, void *data,
3422 				  int (*fn)(struct device *dev, void *data))
3423 {
3424 	struct klist_iter i;
3425 	struct device *child;
3426 	int error = 0;
3427 
3428 	if (!parent->p)
3429 		return 0;
3430 
3431 	klist_iter_init(&parent->p->klist_children, &i);
3432 	while ((child = prev_device(&i)) && !error)
3433 		error = fn(child, data);
3434 	klist_iter_exit(&i);
3435 	return error;
3436 }
3437 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3438 
3439 /**
3440  * device_find_child - device iterator for locating a particular device.
3441  * @parent: parent struct device
3442  * @match: Callback function to check device
3443  * @data: Data to pass to match function
3444  *
3445  * This is similar to the device_for_each_child() function above, but it
3446  * returns a reference to a device that is 'found' for later use, as
3447  * determined by the @match callback.
3448  *
3449  * The callback should return 0 if the device doesn't match and non-zero
3450  * if it does.  If the callback returns non-zero and a reference to the
3451  * current device can be obtained, this function will return to the caller
3452  * and not iterate over any more devices.
3453  *
3454  * NOTE: you will need to drop the reference with put_device() after use.
3455  */
3456 struct device *device_find_child(struct device *parent, void *data,
3457 				 int (*match)(struct device *dev, void *data))
3458 {
3459 	struct klist_iter i;
3460 	struct device *child;
3461 
3462 	if (!parent)
3463 		return NULL;
3464 
3465 	klist_iter_init(&parent->p->klist_children, &i);
3466 	while ((child = next_device(&i)))
3467 		if (match(child, data) && get_device(child))
3468 			break;
3469 	klist_iter_exit(&i);
3470 	return child;
3471 }
3472 EXPORT_SYMBOL_GPL(device_find_child);
3473 
3474 /**
3475  * device_find_child_by_name - device iterator for locating a child device.
3476  * @parent: parent struct device
3477  * @name: name of the child device
3478  *
3479  * This is similar to the device_find_child() function above, but it
3480  * returns a reference to a device that has the name @name.
3481  *
3482  * NOTE: you will need to drop the reference with put_device() after use.
3483  */
3484 struct device *device_find_child_by_name(struct device *parent,
3485 					 const char *name)
3486 {
3487 	struct klist_iter i;
3488 	struct device *child;
3489 
3490 	if (!parent)
3491 		return NULL;
3492 
3493 	klist_iter_init(&parent->p->klist_children, &i);
3494 	while ((child = next_device(&i)))
3495 		if (sysfs_streq(dev_name(child), name) && get_device(child))
3496 			break;
3497 	klist_iter_exit(&i);
3498 	return child;
3499 }
3500 EXPORT_SYMBOL_GPL(device_find_child_by_name);
3501 
3502 int __init devices_init(void)
3503 {
3504 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3505 	if (!devices_kset)
3506 		return -ENOMEM;
3507 	dev_kobj = kobject_create_and_add("dev", NULL);
3508 	if (!dev_kobj)
3509 		goto dev_kobj_err;
3510 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3511 	if (!sysfs_dev_block_kobj)
3512 		goto block_kobj_err;
3513 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3514 	if (!sysfs_dev_char_kobj)
3515 		goto char_kobj_err;
3516 
3517 	return 0;
3518 
3519  char_kobj_err:
3520 	kobject_put(sysfs_dev_block_kobj);
3521  block_kobj_err:
3522 	kobject_put(dev_kobj);
3523  dev_kobj_err:
3524 	kset_unregister(devices_kset);
3525 	return -ENOMEM;
3526 }
3527 
3528 static int device_check_offline(struct device *dev, void *not_used)
3529 {
3530 	int ret;
3531 
3532 	ret = device_for_each_child(dev, NULL, device_check_offline);
3533 	if (ret)
3534 		return ret;
3535 
3536 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3537 }
3538 
3539 /**
3540  * device_offline - Prepare the device for hot-removal.
3541  * @dev: Device to be put offline.
3542  *
3543  * Execute the device bus type's .offline() callback, if present, to prepare
3544  * the device for a subsequent hot-removal.  If that succeeds, the device must
3545  * not be used until either it is removed or its bus type's .online() callback
3546  * is executed.
3547  *
3548  * Call under device_hotplug_lock.
3549  */
3550 int device_offline(struct device *dev)
3551 {
3552 	int ret;
3553 
3554 	if (dev->offline_disabled)
3555 		return -EPERM;
3556 
3557 	ret = device_for_each_child(dev, NULL, device_check_offline);
3558 	if (ret)
3559 		return ret;
3560 
3561 	device_lock(dev);
3562 	if (device_supports_offline(dev)) {
3563 		if (dev->offline) {
3564 			ret = 1;
3565 		} else {
3566 			ret = dev->bus->offline(dev);
3567 			if (!ret) {
3568 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3569 				dev->offline = true;
3570 			}
3571 		}
3572 	}
3573 	device_unlock(dev);
3574 
3575 	return ret;
3576 }
3577 
3578 /**
3579  * device_online - Put the device back online after successful device_offline().
3580  * @dev: Device to be put back online.
3581  *
3582  * If device_offline() has been successfully executed for @dev, but the device
3583  * has not been removed subsequently, execute its bus type's .online() callback
3584  * to indicate that the device can be used again.
3585  *
3586  * Call under device_hotplug_lock.
3587  */
3588 int device_online(struct device *dev)
3589 {
3590 	int ret = 0;
3591 
3592 	device_lock(dev);
3593 	if (device_supports_offline(dev)) {
3594 		if (dev->offline) {
3595 			ret = dev->bus->online(dev);
3596 			if (!ret) {
3597 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3598 				dev->offline = false;
3599 			}
3600 		} else {
3601 			ret = 1;
3602 		}
3603 	}
3604 	device_unlock(dev);
3605 
3606 	return ret;
3607 }
3608 
3609 struct root_device {
3610 	struct device dev;
3611 	struct module *owner;
3612 };
3613 
3614 static inline struct root_device *to_root_device(struct device *d)
3615 {
3616 	return container_of(d, struct root_device, dev);
3617 }
3618 
3619 static void root_device_release(struct device *dev)
3620 {
3621 	kfree(to_root_device(dev));
3622 }
3623 
3624 /**
3625  * __root_device_register - allocate and register a root device
3626  * @name: root device name
3627  * @owner: owner module of the root device, usually THIS_MODULE
3628  *
3629  * This function allocates a root device and registers it
3630  * using device_register(). In order to free the returned
3631  * device, use root_device_unregister().
3632  *
3633  * Root devices are dummy devices which allow other devices
3634  * to be grouped under /sys/devices. Use this function to
3635  * allocate a root device and then use it as the parent of
3636  * any device which should appear under /sys/devices/{name}
3637  *
3638  * The /sys/devices/{name} directory will also contain a
3639  * 'module' symlink which points to the @owner directory
3640  * in sysfs.
3641  *
3642  * Returns &struct device pointer on success, or ERR_PTR() on error.
3643  *
3644  * Note: You probably want to use root_device_register().
3645  */
3646 struct device *__root_device_register(const char *name, struct module *owner)
3647 {
3648 	struct root_device *root;
3649 	int err = -ENOMEM;
3650 
3651 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3652 	if (!root)
3653 		return ERR_PTR(err);
3654 
3655 	err = dev_set_name(&root->dev, "%s", name);
3656 	if (err) {
3657 		kfree(root);
3658 		return ERR_PTR(err);
3659 	}
3660 
3661 	root->dev.release = root_device_release;
3662 
3663 	err = device_register(&root->dev);
3664 	if (err) {
3665 		put_device(&root->dev);
3666 		return ERR_PTR(err);
3667 	}
3668 
3669 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
3670 	if (owner) {
3671 		struct module_kobject *mk = &owner->mkobj;
3672 
3673 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3674 		if (err) {
3675 			device_unregister(&root->dev);
3676 			return ERR_PTR(err);
3677 		}
3678 		root->owner = owner;
3679 	}
3680 #endif
3681 
3682 	return &root->dev;
3683 }
3684 EXPORT_SYMBOL_GPL(__root_device_register);
3685 
3686 /**
3687  * root_device_unregister - unregister and free a root device
3688  * @dev: device going away
3689  *
3690  * This function unregisters and cleans up a device that was created by
3691  * root_device_register().
3692  */
3693 void root_device_unregister(struct device *dev)
3694 {
3695 	struct root_device *root = to_root_device(dev);
3696 
3697 	if (root->owner)
3698 		sysfs_remove_link(&root->dev.kobj, "module");
3699 
3700 	device_unregister(dev);
3701 }
3702 EXPORT_SYMBOL_GPL(root_device_unregister);
3703 
3704 
3705 static void device_create_release(struct device *dev)
3706 {
3707 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3708 	kfree(dev);
3709 }
3710 
3711 static __printf(6, 0) struct device *
3712 device_create_groups_vargs(struct class *class, struct device *parent,
3713 			   dev_t devt, void *drvdata,
3714 			   const struct attribute_group **groups,
3715 			   const char *fmt, va_list args)
3716 {
3717 	struct device *dev = NULL;
3718 	int retval = -ENODEV;
3719 
3720 	if (class == NULL || IS_ERR(class))
3721 		goto error;
3722 
3723 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3724 	if (!dev) {
3725 		retval = -ENOMEM;
3726 		goto error;
3727 	}
3728 
3729 	device_initialize(dev);
3730 	dev->devt = devt;
3731 	dev->class = class;
3732 	dev->parent = parent;
3733 	dev->groups = groups;
3734 	dev->release = device_create_release;
3735 	dev_set_drvdata(dev, drvdata);
3736 
3737 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
3738 	if (retval)
3739 		goto error;
3740 
3741 	retval = device_add(dev);
3742 	if (retval)
3743 		goto error;
3744 
3745 	return dev;
3746 
3747 error:
3748 	put_device(dev);
3749 	return ERR_PTR(retval);
3750 }
3751 
3752 /**
3753  * device_create - creates a device and registers it with sysfs
3754  * @class: pointer to the struct class that this device should be registered to
3755  * @parent: pointer to the parent struct device of this new device, if any
3756  * @devt: the dev_t for the char device to be added
3757  * @drvdata: the data to be added to the device for callbacks
3758  * @fmt: string for the device's name
3759  *
3760  * This function can be used by char device classes.  A struct device
3761  * will be created in sysfs, registered to the specified class.
3762  *
3763  * A "dev" file will be created, showing the dev_t for the device, if
3764  * the dev_t is not 0,0.
3765  * If a pointer to a parent struct device is passed in, the newly created
3766  * struct device will be a child of that device in sysfs.
3767  * The pointer to the struct device will be returned from the call.
3768  * Any further sysfs files that might be required can be created using this
3769  * pointer.
3770  *
3771  * Returns &struct device pointer on success, or ERR_PTR() on error.
3772  *
3773  * Note: the struct class passed to this function must have previously
3774  * been created with a call to class_create().
3775  */
3776 struct device *device_create(struct class *class, struct device *parent,
3777 			     dev_t devt, void *drvdata, const char *fmt, ...)
3778 {
3779 	va_list vargs;
3780 	struct device *dev;
3781 
3782 	va_start(vargs, fmt);
3783 	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
3784 					  fmt, vargs);
3785 	va_end(vargs);
3786 	return dev;
3787 }
3788 EXPORT_SYMBOL_GPL(device_create);
3789 
3790 /**
3791  * device_create_with_groups - creates a device and registers it with sysfs
3792  * @class: pointer to the struct class that this device should be registered to
3793  * @parent: pointer to the parent struct device of this new device, if any
3794  * @devt: the dev_t for the char device to be added
3795  * @drvdata: the data to be added to the device for callbacks
3796  * @groups: NULL-terminated list of attribute groups to be created
3797  * @fmt: string for the device's name
3798  *
3799  * This function can be used by char device classes.  A struct device
3800  * will be created in sysfs, registered to the specified class.
3801  * Additional attributes specified in the groups parameter will also
3802  * be created automatically.
3803  *
3804  * A "dev" file will be created, showing the dev_t for the device, if
3805  * the dev_t is not 0,0.
3806  * If a pointer to a parent struct device is passed in, the newly created
3807  * struct device will be a child of that device in sysfs.
3808  * The pointer to the struct device will be returned from the call.
3809  * Any further sysfs files that might be required can be created using this
3810  * pointer.
3811  *
3812  * Returns &struct device pointer on success, or ERR_PTR() on error.
3813  *
3814  * Note: the struct class passed to this function must have previously
3815  * been created with a call to class_create().
3816  */
3817 struct device *device_create_with_groups(struct class *class,
3818 					 struct device *parent, dev_t devt,
3819 					 void *drvdata,
3820 					 const struct attribute_group **groups,
3821 					 const char *fmt, ...)
3822 {
3823 	va_list vargs;
3824 	struct device *dev;
3825 
3826 	va_start(vargs, fmt);
3827 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
3828 					 fmt, vargs);
3829 	va_end(vargs);
3830 	return dev;
3831 }
3832 EXPORT_SYMBOL_GPL(device_create_with_groups);
3833 
3834 /**
3835  * device_destroy - removes a device that was created with device_create()
3836  * @class: pointer to the struct class that this device was registered with
3837  * @devt: the dev_t of the device that was previously registered
3838  *
3839  * This call unregisters and cleans up a device that was created with a
3840  * call to device_create().
3841  */
3842 void device_destroy(struct class *class, dev_t devt)
3843 {
3844 	struct device *dev;
3845 
3846 	dev = class_find_device_by_devt(class, devt);
3847 	if (dev) {
3848 		put_device(dev);
3849 		device_unregister(dev);
3850 	}
3851 }
3852 EXPORT_SYMBOL_GPL(device_destroy);
3853 
3854 /**
3855  * device_rename - renames a device
3856  * @dev: the pointer to the struct device to be renamed
3857  * @new_name: the new name of the device
3858  *
3859  * It is the responsibility of the caller to provide mutual
3860  * exclusion between two different calls of device_rename
3861  * on the same device to ensure that new_name is valid and
3862  * won't conflict with other devices.
3863  *
3864  * Note: Don't call this function.  Currently, the networking layer calls this
3865  * function, but that will change.  The following text from Kay Sievers offers
3866  * some insight:
3867  *
3868  * Renaming devices is racy at many levels, symlinks and other stuff are not
3869  * replaced atomically, and you get a "move" uevent, but it's not easy to
3870  * connect the event to the old and new device. Device nodes are not renamed at
3871  * all, there isn't even support for that in the kernel now.
3872  *
3873  * In the meantime, during renaming, your target name might be taken by another
3874  * driver, creating conflicts. Or the old name is taken directly after you
3875  * renamed it -- then you get events for the same DEVPATH, before you even see
3876  * the "move" event. It's just a mess, and nothing new should ever rely on
3877  * kernel device renaming. Besides that, it's not even implemented now for
3878  * other things than (driver-core wise very simple) network devices.
3879  *
3880  * We are currently about to change network renaming in udev to completely
3881  * disallow renaming of devices in the same namespace as the kernel uses,
3882  * because we can't solve the problems properly, that arise with swapping names
3883  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
3884  * be allowed to some other name than eth[0-9]*, for the aforementioned
3885  * reasons.
3886  *
3887  * Make up a "real" name in the driver before you register anything, or add
3888  * some other attributes for userspace to find the device, or use udev to add
3889  * symlinks -- but never rename kernel devices later, it's a complete mess. We
3890  * don't even want to get into that and try to implement the missing pieces in
3891  * the core. We really have other pieces to fix in the driver core mess. :)
3892  */
3893 int device_rename(struct device *dev, const char *new_name)
3894 {
3895 	struct kobject *kobj = &dev->kobj;
3896 	char *old_device_name = NULL;
3897 	int error;
3898 
3899 	dev = get_device(dev);
3900 	if (!dev)
3901 		return -EINVAL;
3902 
3903 	dev_dbg(dev, "renaming to %s\n", new_name);
3904 
3905 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
3906 	if (!old_device_name) {
3907 		error = -ENOMEM;
3908 		goto out;
3909 	}
3910 
3911 	if (dev->class) {
3912 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
3913 					     kobj, old_device_name,
3914 					     new_name, kobject_namespace(kobj));
3915 		if (error)
3916 			goto out;
3917 	}
3918 
3919 	error = kobject_rename(kobj, new_name);
3920 	if (error)
3921 		goto out;
3922 
3923 out:
3924 	put_device(dev);
3925 
3926 	kfree(old_device_name);
3927 
3928 	return error;
3929 }
3930 EXPORT_SYMBOL_GPL(device_rename);
3931 
3932 static int device_move_class_links(struct device *dev,
3933 				   struct device *old_parent,
3934 				   struct device *new_parent)
3935 {
3936 	int error = 0;
3937 
3938 	if (old_parent)
3939 		sysfs_remove_link(&dev->kobj, "device");
3940 	if (new_parent)
3941 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
3942 					  "device");
3943 	return error;
3944 }
3945 
3946 /**
3947  * device_move - moves a device to a new parent
3948  * @dev: the pointer to the struct device to be moved
3949  * @new_parent: the new parent of the device (can be NULL)
3950  * @dpm_order: how to reorder the dpm_list
3951  */
3952 int device_move(struct device *dev, struct device *new_parent,
3953 		enum dpm_order dpm_order)
3954 {
3955 	int error;
3956 	struct device *old_parent;
3957 	struct kobject *new_parent_kobj;
3958 
3959 	dev = get_device(dev);
3960 	if (!dev)
3961 		return -EINVAL;
3962 
3963 	device_pm_lock();
3964 	new_parent = get_device(new_parent);
3965 	new_parent_kobj = get_device_parent(dev, new_parent);
3966 	if (IS_ERR(new_parent_kobj)) {
3967 		error = PTR_ERR(new_parent_kobj);
3968 		put_device(new_parent);
3969 		goto out;
3970 	}
3971 
3972 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
3973 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
3974 	error = kobject_move(&dev->kobj, new_parent_kobj);
3975 	if (error) {
3976 		cleanup_glue_dir(dev, new_parent_kobj);
3977 		put_device(new_parent);
3978 		goto out;
3979 	}
3980 	old_parent = dev->parent;
3981 	dev->parent = new_parent;
3982 	if (old_parent)
3983 		klist_remove(&dev->p->knode_parent);
3984 	if (new_parent) {
3985 		klist_add_tail(&dev->p->knode_parent,
3986 			       &new_parent->p->klist_children);
3987 		set_dev_node(dev, dev_to_node(new_parent));
3988 	}
3989 
3990 	if (dev->class) {
3991 		error = device_move_class_links(dev, old_parent, new_parent);
3992 		if (error) {
3993 			/* We ignore errors on cleanup since we're hosed anyway... */
3994 			device_move_class_links(dev, new_parent, old_parent);
3995 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
3996 				if (new_parent)
3997 					klist_remove(&dev->p->knode_parent);
3998 				dev->parent = old_parent;
3999 				if (old_parent) {
4000 					klist_add_tail(&dev->p->knode_parent,
4001 						       &old_parent->p->klist_children);
4002 					set_dev_node(dev, dev_to_node(old_parent));
4003 				}
4004 			}
4005 			cleanup_glue_dir(dev, new_parent_kobj);
4006 			put_device(new_parent);
4007 			goto out;
4008 		}
4009 	}
4010 	switch (dpm_order) {
4011 	case DPM_ORDER_NONE:
4012 		break;
4013 	case DPM_ORDER_DEV_AFTER_PARENT:
4014 		device_pm_move_after(dev, new_parent);
4015 		devices_kset_move_after(dev, new_parent);
4016 		break;
4017 	case DPM_ORDER_PARENT_BEFORE_DEV:
4018 		device_pm_move_before(new_parent, dev);
4019 		devices_kset_move_before(new_parent, dev);
4020 		break;
4021 	case DPM_ORDER_DEV_LAST:
4022 		device_pm_move_last(dev);
4023 		devices_kset_move_last(dev);
4024 		break;
4025 	}
4026 
4027 	put_device(old_parent);
4028 out:
4029 	device_pm_unlock();
4030 	put_device(dev);
4031 	return error;
4032 }
4033 EXPORT_SYMBOL_GPL(device_move);
4034 
4035 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4036 				     kgid_t kgid)
4037 {
4038 	struct kobject *kobj = &dev->kobj;
4039 	struct class *class = dev->class;
4040 	const struct device_type *type = dev->type;
4041 	int error;
4042 
4043 	if (class) {
4044 		/*
4045 		 * Change the device groups of the device class for @dev to
4046 		 * @kuid/@kgid.
4047 		 */
4048 		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4049 						  kgid);
4050 		if (error)
4051 			return error;
4052 	}
4053 
4054 	if (type) {
4055 		/*
4056 		 * Change the device groups of the device type for @dev to
4057 		 * @kuid/@kgid.
4058 		 */
4059 		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4060 						  kgid);
4061 		if (error)
4062 			return error;
4063 	}
4064 
4065 	/* Change the device groups of @dev to @kuid/@kgid. */
4066 	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4067 	if (error)
4068 		return error;
4069 
4070 	if (device_supports_offline(dev) && !dev->offline_disabled) {
4071 		/* Change online device attributes of @dev to @kuid/@kgid. */
4072 		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4073 						kuid, kgid);
4074 		if (error)
4075 			return error;
4076 	}
4077 
4078 	return 0;
4079 }
4080 
4081 /**
4082  * device_change_owner - change the owner of an existing device.
4083  * @dev: device.
4084  * @kuid: new owner's kuid
4085  * @kgid: new owner's kgid
4086  *
4087  * This changes the owner of @dev and its corresponding sysfs entries to
4088  * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4089  * core.
4090  *
4091  * Returns 0 on success or error code on failure.
4092  */
4093 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4094 {
4095 	int error;
4096 	struct kobject *kobj = &dev->kobj;
4097 
4098 	dev = get_device(dev);
4099 	if (!dev)
4100 		return -EINVAL;
4101 
4102 	/*
4103 	 * Change the kobject and the default attributes and groups of the
4104 	 * ktype associated with it to @kuid/@kgid.
4105 	 */
4106 	error = sysfs_change_owner(kobj, kuid, kgid);
4107 	if (error)
4108 		goto out;
4109 
4110 	/*
4111 	 * Change the uevent file for @dev to the new owner. The uevent file
4112 	 * was created in a separate step when @dev got added and we mirror
4113 	 * that step here.
4114 	 */
4115 	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4116 					kgid);
4117 	if (error)
4118 		goto out;
4119 
4120 	/*
4121 	 * Change the device groups, the device groups associated with the
4122 	 * device class, and the groups associated with the device type of @dev
4123 	 * to @kuid/@kgid.
4124 	 */
4125 	error = device_attrs_change_owner(dev, kuid, kgid);
4126 	if (error)
4127 		goto out;
4128 
4129 	error = dpm_sysfs_change_owner(dev, kuid, kgid);
4130 	if (error)
4131 		goto out;
4132 
4133 #ifdef CONFIG_BLOCK
4134 	if (sysfs_deprecated && dev->class == &block_class)
4135 		goto out;
4136 #endif
4137 
4138 	/*
4139 	 * Change the owner of the symlink located in the class directory of
4140 	 * the device class associated with @dev which points to the actual
4141 	 * directory entry for @dev to @kuid/@kgid. This ensures that the
4142 	 * symlink shows the same permissions as its target.
4143 	 */
4144 	error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4145 					dev_name(dev), kuid, kgid);
4146 	if (error)
4147 		goto out;
4148 
4149 out:
4150 	put_device(dev);
4151 	return error;
4152 }
4153 EXPORT_SYMBOL_GPL(device_change_owner);
4154 
4155 /**
4156  * device_shutdown - call ->shutdown() on each device to shutdown.
4157  */
4158 void device_shutdown(void)
4159 {
4160 	struct device *dev, *parent;
4161 
4162 	wait_for_device_probe();
4163 	device_block_probing();
4164 
4165 	cpufreq_suspend();
4166 
4167 	spin_lock(&devices_kset->list_lock);
4168 	/*
4169 	 * Walk the devices list backward, shutting down each in turn.
4170 	 * Beware that device unplug events may also start pulling
4171 	 * devices offline, even as the system is shutting down.
4172 	 */
4173 	while (!list_empty(&devices_kset->list)) {
4174 		dev = list_entry(devices_kset->list.prev, struct device,
4175 				kobj.entry);
4176 
4177 		/*
4178 		 * hold reference count of device's parent to
4179 		 * prevent it from being freed because parent's
4180 		 * lock is to be held
4181 		 */
4182 		parent = get_device(dev->parent);
4183 		get_device(dev);
4184 		/*
4185 		 * Make sure the device is off the kset list, in the
4186 		 * event that dev->*->shutdown() doesn't remove it.
4187 		 */
4188 		list_del_init(&dev->kobj.entry);
4189 		spin_unlock(&devices_kset->list_lock);
4190 
4191 		/* hold lock to avoid race with probe/release */
4192 		if (parent)
4193 			device_lock(parent);
4194 		device_lock(dev);
4195 
4196 		/* Don't allow any more runtime suspends */
4197 		pm_runtime_get_noresume(dev);
4198 		pm_runtime_barrier(dev);
4199 
4200 		if (dev->class && dev->class->shutdown_pre) {
4201 			if (initcall_debug)
4202 				dev_info(dev, "shutdown_pre\n");
4203 			dev->class->shutdown_pre(dev);
4204 		}
4205 		if (dev->bus && dev->bus->shutdown) {
4206 			if (initcall_debug)
4207 				dev_info(dev, "shutdown\n");
4208 			dev->bus->shutdown(dev);
4209 		} else if (dev->driver && dev->driver->shutdown) {
4210 			if (initcall_debug)
4211 				dev_info(dev, "shutdown\n");
4212 			dev->driver->shutdown(dev);
4213 		}
4214 
4215 		device_unlock(dev);
4216 		if (parent)
4217 			device_unlock(parent);
4218 
4219 		put_device(dev);
4220 		put_device(parent);
4221 
4222 		spin_lock(&devices_kset->list_lock);
4223 	}
4224 	spin_unlock(&devices_kset->list_lock);
4225 }
4226 
4227 /*
4228  * Device logging functions
4229  */
4230 
4231 #ifdef CONFIG_PRINTK
4232 static void
4233 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4234 {
4235 	const char *subsys;
4236 
4237 	memset(dev_info, 0, sizeof(*dev_info));
4238 
4239 	if (dev->class)
4240 		subsys = dev->class->name;
4241 	else if (dev->bus)
4242 		subsys = dev->bus->name;
4243 	else
4244 		return;
4245 
4246 	strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4247 
4248 	/*
4249 	 * Add device identifier DEVICE=:
4250 	 *   b12:8         block dev_t
4251 	 *   c127:3        char dev_t
4252 	 *   n8            netdev ifindex
4253 	 *   +sound:card0  subsystem:devname
4254 	 */
4255 	if (MAJOR(dev->devt)) {
4256 		char c;
4257 
4258 		if (strcmp(subsys, "block") == 0)
4259 			c = 'b';
4260 		else
4261 			c = 'c';
4262 
4263 		snprintf(dev_info->device, sizeof(dev_info->device),
4264 			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4265 	} else if (strcmp(subsys, "net") == 0) {
4266 		struct net_device *net = to_net_dev(dev);
4267 
4268 		snprintf(dev_info->device, sizeof(dev_info->device),
4269 			 "n%u", net->ifindex);
4270 	} else {
4271 		snprintf(dev_info->device, sizeof(dev_info->device),
4272 			 "+%s:%s", subsys, dev_name(dev));
4273 	}
4274 }
4275 
4276 int dev_vprintk_emit(int level, const struct device *dev,
4277 		     const char *fmt, va_list args)
4278 {
4279 	struct dev_printk_info dev_info;
4280 
4281 	set_dev_info(dev, &dev_info);
4282 
4283 	return vprintk_emit(0, level, &dev_info, fmt, args);
4284 }
4285 EXPORT_SYMBOL(dev_vprintk_emit);
4286 
4287 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4288 {
4289 	va_list args;
4290 	int r;
4291 
4292 	va_start(args, fmt);
4293 
4294 	r = dev_vprintk_emit(level, dev, fmt, args);
4295 
4296 	va_end(args);
4297 
4298 	return r;
4299 }
4300 EXPORT_SYMBOL(dev_printk_emit);
4301 
4302 static void __dev_printk(const char *level, const struct device *dev,
4303 			struct va_format *vaf)
4304 {
4305 	if (dev)
4306 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4307 				dev_driver_string(dev), dev_name(dev), vaf);
4308 	else
4309 		printk("%s(NULL device *): %pV", level, vaf);
4310 }
4311 
4312 void dev_printk(const char *level, const struct device *dev,
4313 		const char *fmt, ...)
4314 {
4315 	struct va_format vaf;
4316 	va_list args;
4317 
4318 	va_start(args, fmt);
4319 
4320 	vaf.fmt = fmt;
4321 	vaf.va = &args;
4322 
4323 	__dev_printk(level, dev, &vaf);
4324 
4325 	va_end(args);
4326 }
4327 EXPORT_SYMBOL(dev_printk);
4328 
4329 #define define_dev_printk_level(func, kern_level)		\
4330 void func(const struct device *dev, const char *fmt, ...)	\
4331 {								\
4332 	struct va_format vaf;					\
4333 	va_list args;						\
4334 								\
4335 	va_start(args, fmt);					\
4336 								\
4337 	vaf.fmt = fmt;						\
4338 	vaf.va = &args;						\
4339 								\
4340 	__dev_printk(kern_level, dev, &vaf);			\
4341 								\
4342 	va_end(args);						\
4343 }								\
4344 EXPORT_SYMBOL(func);
4345 
4346 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4347 define_dev_printk_level(_dev_alert, KERN_ALERT);
4348 define_dev_printk_level(_dev_crit, KERN_CRIT);
4349 define_dev_printk_level(_dev_err, KERN_ERR);
4350 define_dev_printk_level(_dev_warn, KERN_WARNING);
4351 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4352 define_dev_printk_level(_dev_info, KERN_INFO);
4353 
4354 #endif
4355 
4356 /**
4357  * dev_err_probe - probe error check and log helper
4358  * @dev: the pointer to the struct device
4359  * @err: error value to test
4360  * @fmt: printf-style format string
4361  * @...: arguments as specified in the format string
4362  *
4363  * This helper implements common pattern present in probe functions for error
4364  * checking: print debug or error message depending if the error value is
4365  * -EPROBE_DEFER and propagate error upwards.
4366  * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4367  * checked later by reading devices_deferred debugfs attribute.
4368  * It replaces code sequence::
4369  *
4370  * 	if (err != -EPROBE_DEFER)
4371  * 		dev_err(dev, ...);
4372  * 	else
4373  * 		dev_dbg(dev, ...);
4374  * 	return err;
4375  *
4376  * with::
4377  *
4378  * 	return dev_err_probe(dev, err, ...);
4379  *
4380  * Returns @err.
4381  *
4382  */
4383 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4384 {
4385 	struct va_format vaf;
4386 	va_list args;
4387 
4388 	va_start(args, fmt);
4389 	vaf.fmt = fmt;
4390 	vaf.va = &args;
4391 
4392 	if (err != -EPROBE_DEFER) {
4393 		dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4394 	} else {
4395 		device_set_deferred_probe_reason(dev, &vaf);
4396 		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4397 	}
4398 
4399 	va_end(args);
4400 
4401 	return err;
4402 }
4403 EXPORT_SYMBOL_GPL(dev_err_probe);
4404 
4405 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4406 {
4407 	return fwnode && !IS_ERR(fwnode->secondary);
4408 }
4409 
4410 /**
4411  * set_primary_fwnode - Change the primary firmware node of a given device.
4412  * @dev: Device to handle.
4413  * @fwnode: New primary firmware node of the device.
4414  *
4415  * Set the device's firmware node pointer to @fwnode, but if a secondary
4416  * firmware node of the device is present, preserve it.
4417  */
4418 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4419 {
4420 	struct device *parent = dev->parent;
4421 	struct fwnode_handle *fn = dev->fwnode;
4422 
4423 	if (fwnode) {
4424 		if (fwnode_is_primary(fn))
4425 			fn = fn->secondary;
4426 
4427 		if (fn) {
4428 			WARN_ON(fwnode->secondary);
4429 			fwnode->secondary = fn;
4430 		}
4431 		dev->fwnode = fwnode;
4432 	} else {
4433 		if (fwnode_is_primary(fn)) {
4434 			dev->fwnode = fn->secondary;
4435 			if (!(parent && fn == parent->fwnode))
4436 				fn->secondary = ERR_PTR(-ENODEV);
4437 		} else {
4438 			dev->fwnode = NULL;
4439 		}
4440 	}
4441 }
4442 EXPORT_SYMBOL_GPL(set_primary_fwnode);
4443 
4444 /**
4445  * set_secondary_fwnode - Change the secondary firmware node of a given device.
4446  * @dev: Device to handle.
4447  * @fwnode: New secondary firmware node of the device.
4448  *
4449  * If a primary firmware node of the device is present, set its secondary
4450  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
4451  * @fwnode.
4452  */
4453 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4454 {
4455 	if (fwnode)
4456 		fwnode->secondary = ERR_PTR(-ENODEV);
4457 
4458 	if (fwnode_is_primary(dev->fwnode))
4459 		dev->fwnode->secondary = fwnode;
4460 	else
4461 		dev->fwnode = fwnode;
4462 }
4463 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4464 
4465 /**
4466  * device_set_of_node_from_dev - reuse device-tree node of another device
4467  * @dev: device whose device-tree node is being set
4468  * @dev2: device whose device-tree node is being reused
4469  *
4470  * Takes another reference to the new device-tree node after first dropping
4471  * any reference held to the old node.
4472  */
4473 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4474 {
4475 	of_node_put(dev->of_node);
4476 	dev->of_node = of_node_get(dev2->of_node);
4477 	dev->of_node_reused = true;
4478 }
4479 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4480 
4481 int device_match_name(struct device *dev, const void *name)
4482 {
4483 	return sysfs_streq(dev_name(dev), name);
4484 }
4485 EXPORT_SYMBOL_GPL(device_match_name);
4486 
4487 int device_match_of_node(struct device *dev, const void *np)
4488 {
4489 	return dev->of_node == np;
4490 }
4491 EXPORT_SYMBOL_GPL(device_match_of_node);
4492 
4493 int device_match_fwnode(struct device *dev, const void *fwnode)
4494 {
4495 	return dev_fwnode(dev) == fwnode;
4496 }
4497 EXPORT_SYMBOL_GPL(device_match_fwnode);
4498 
4499 int device_match_devt(struct device *dev, const void *pdevt)
4500 {
4501 	return dev->devt == *(dev_t *)pdevt;
4502 }
4503 EXPORT_SYMBOL_GPL(device_match_devt);
4504 
4505 int device_match_acpi_dev(struct device *dev, const void *adev)
4506 {
4507 	return ACPI_COMPANION(dev) == adev;
4508 }
4509 EXPORT_SYMBOL(device_match_acpi_dev);
4510 
4511 int device_match_any(struct device *dev, const void *unused)
4512 {
4513 	return 1;
4514 }
4515 EXPORT_SYMBOL_GPL(device_match_any);
4516