xref: /openbmc/linux/drivers/base/core.c (revision e9839402)
1 /*
2  * drivers/base/core.c - core driver model code (device registration, etc)
3  *
4  * Copyright (c) 2002-3 Patrick Mochel
5  * Copyright (c) 2002-3 Open Source Development Labs
6  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
7  * Copyright (c) 2006 Novell, Inc.
8  *
9  * This file is released under the GPLv2
10  *
11  */
12 
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/kallsyms.h>
26 #include <linux/mutex.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/netdevice.h>
29 #include <linux/sysfs.h>
30 
31 #include "base.h"
32 #include "power/power.h"
33 
34 #ifdef CONFIG_SYSFS_DEPRECATED
35 #ifdef CONFIG_SYSFS_DEPRECATED_V2
36 long sysfs_deprecated = 1;
37 #else
38 long sysfs_deprecated = 0;
39 #endif
40 static int __init sysfs_deprecated_setup(char *arg)
41 {
42 	return kstrtol(arg, 10, &sysfs_deprecated);
43 }
44 early_param("sysfs.deprecated", sysfs_deprecated_setup);
45 #endif
46 
47 int (*platform_notify)(struct device *dev) = NULL;
48 int (*platform_notify_remove)(struct device *dev) = NULL;
49 static struct kobject *dev_kobj;
50 struct kobject *sysfs_dev_char_kobj;
51 struct kobject *sysfs_dev_block_kobj;
52 
53 static DEFINE_MUTEX(device_hotplug_lock);
54 
55 void lock_device_hotplug(void)
56 {
57 	mutex_lock(&device_hotplug_lock);
58 }
59 
60 void unlock_device_hotplug(void)
61 {
62 	mutex_unlock(&device_hotplug_lock);
63 }
64 
65 int lock_device_hotplug_sysfs(void)
66 {
67 	if (mutex_trylock(&device_hotplug_lock))
68 		return 0;
69 
70 	/* Avoid busy looping (5 ms of sleep should do). */
71 	msleep(5);
72 	return restart_syscall();
73 }
74 
75 #ifdef CONFIG_BLOCK
76 static inline int device_is_not_partition(struct device *dev)
77 {
78 	return !(dev->type == &part_type);
79 }
80 #else
81 static inline int device_is_not_partition(struct device *dev)
82 {
83 	return 1;
84 }
85 #endif
86 
87 /**
88  * dev_driver_string - Return a device's driver name, if at all possible
89  * @dev: struct device to get the name of
90  *
91  * Will return the device's driver's name if it is bound to a device.  If
92  * the device is not bound to a driver, it will return the name of the bus
93  * it is attached to.  If it is not attached to a bus either, an empty
94  * string will be returned.
95  */
96 const char *dev_driver_string(const struct device *dev)
97 {
98 	struct device_driver *drv;
99 
100 	/* dev->driver can change to NULL underneath us because of unbinding,
101 	 * so be careful about accessing it.  dev->bus and dev->class should
102 	 * never change once they are set, so they don't need special care.
103 	 */
104 	drv = ACCESS_ONCE(dev->driver);
105 	return drv ? drv->name :
106 			(dev->bus ? dev->bus->name :
107 			(dev->class ? dev->class->name : ""));
108 }
109 EXPORT_SYMBOL(dev_driver_string);
110 
111 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
112 
113 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
114 			     char *buf)
115 {
116 	struct device_attribute *dev_attr = to_dev_attr(attr);
117 	struct device *dev = kobj_to_dev(kobj);
118 	ssize_t ret = -EIO;
119 
120 	if (dev_attr->show)
121 		ret = dev_attr->show(dev, dev_attr, buf);
122 	if (ret >= (ssize_t)PAGE_SIZE) {
123 		print_symbol("dev_attr_show: %s returned bad count\n",
124 				(unsigned long)dev_attr->show);
125 	}
126 	return ret;
127 }
128 
129 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
130 			      const char *buf, size_t count)
131 {
132 	struct device_attribute *dev_attr = to_dev_attr(attr);
133 	struct device *dev = kobj_to_dev(kobj);
134 	ssize_t ret = -EIO;
135 
136 	if (dev_attr->store)
137 		ret = dev_attr->store(dev, dev_attr, buf, count);
138 	return ret;
139 }
140 
141 static const struct sysfs_ops dev_sysfs_ops = {
142 	.show	= dev_attr_show,
143 	.store	= dev_attr_store,
144 };
145 
146 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
147 
148 ssize_t device_store_ulong(struct device *dev,
149 			   struct device_attribute *attr,
150 			   const char *buf, size_t size)
151 {
152 	struct dev_ext_attribute *ea = to_ext_attr(attr);
153 	char *end;
154 	unsigned long new = simple_strtoul(buf, &end, 0);
155 	if (end == buf)
156 		return -EINVAL;
157 	*(unsigned long *)(ea->var) = new;
158 	/* Always return full write size even if we didn't consume all */
159 	return size;
160 }
161 EXPORT_SYMBOL_GPL(device_store_ulong);
162 
163 ssize_t device_show_ulong(struct device *dev,
164 			  struct device_attribute *attr,
165 			  char *buf)
166 {
167 	struct dev_ext_attribute *ea = to_ext_attr(attr);
168 	return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
169 }
170 EXPORT_SYMBOL_GPL(device_show_ulong);
171 
172 ssize_t device_store_int(struct device *dev,
173 			 struct device_attribute *attr,
174 			 const char *buf, size_t size)
175 {
176 	struct dev_ext_attribute *ea = to_ext_attr(attr);
177 	char *end;
178 	long new = simple_strtol(buf, &end, 0);
179 	if (end == buf || new > INT_MAX || new < INT_MIN)
180 		return -EINVAL;
181 	*(int *)(ea->var) = new;
182 	/* Always return full write size even if we didn't consume all */
183 	return size;
184 }
185 EXPORT_SYMBOL_GPL(device_store_int);
186 
187 ssize_t device_show_int(struct device *dev,
188 			struct device_attribute *attr,
189 			char *buf)
190 {
191 	struct dev_ext_attribute *ea = to_ext_attr(attr);
192 
193 	return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
194 }
195 EXPORT_SYMBOL_GPL(device_show_int);
196 
197 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
198 			  const char *buf, size_t size)
199 {
200 	struct dev_ext_attribute *ea = to_ext_attr(attr);
201 
202 	if (strtobool(buf, ea->var) < 0)
203 		return -EINVAL;
204 
205 	return size;
206 }
207 EXPORT_SYMBOL_GPL(device_store_bool);
208 
209 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
210 			 char *buf)
211 {
212 	struct dev_ext_attribute *ea = to_ext_attr(attr);
213 
214 	return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
215 }
216 EXPORT_SYMBOL_GPL(device_show_bool);
217 
218 /**
219  * device_release - free device structure.
220  * @kobj: device's kobject.
221  *
222  * This is called once the reference count for the object
223  * reaches 0. We forward the call to the device's release
224  * method, which should handle actually freeing the structure.
225  */
226 static void device_release(struct kobject *kobj)
227 {
228 	struct device *dev = kobj_to_dev(kobj);
229 	struct device_private *p = dev->p;
230 
231 	/*
232 	 * Some platform devices are driven without driver attached
233 	 * and managed resources may have been acquired.  Make sure
234 	 * all resources are released.
235 	 *
236 	 * Drivers still can add resources into device after device
237 	 * is deleted but alive, so release devres here to avoid
238 	 * possible memory leak.
239 	 */
240 	devres_release_all(dev);
241 
242 	if (dev->release)
243 		dev->release(dev);
244 	else if (dev->type && dev->type->release)
245 		dev->type->release(dev);
246 	else if (dev->class && dev->class->dev_release)
247 		dev->class->dev_release(dev);
248 	else
249 		WARN(1, KERN_ERR "Device '%s' does not have a release() "
250 			"function, it is broken and must be fixed.\n",
251 			dev_name(dev));
252 	kfree(p);
253 }
254 
255 static const void *device_namespace(struct kobject *kobj)
256 {
257 	struct device *dev = kobj_to_dev(kobj);
258 	const void *ns = NULL;
259 
260 	if (dev->class && dev->class->ns_type)
261 		ns = dev->class->namespace(dev);
262 
263 	return ns;
264 }
265 
266 static struct kobj_type device_ktype = {
267 	.release	= device_release,
268 	.sysfs_ops	= &dev_sysfs_ops,
269 	.namespace	= device_namespace,
270 };
271 
272 
273 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
274 {
275 	struct kobj_type *ktype = get_ktype(kobj);
276 
277 	if (ktype == &device_ktype) {
278 		struct device *dev = kobj_to_dev(kobj);
279 		if (dev->bus)
280 			return 1;
281 		if (dev->class)
282 			return 1;
283 	}
284 	return 0;
285 }
286 
287 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
288 {
289 	struct device *dev = kobj_to_dev(kobj);
290 
291 	if (dev->bus)
292 		return dev->bus->name;
293 	if (dev->class)
294 		return dev->class->name;
295 	return NULL;
296 }
297 
298 static int dev_uevent(struct kset *kset, struct kobject *kobj,
299 		      struct kobj_uevent_env *env)
300 {
301 	struct device *dev = kobj_to_dev(kobj);
302 	int retval = 0;
303 
304 	/* add device node properties if present */
305 	if (MAJOR(dev->devt)) {
306 		const char *tmp;
307 		const char *name;
308 		umode_t mode = 0;
309 		kuid_t uid = GLOBAL_ROOT_UID;
310 		kgid_t gid = GLOBAL_ROOT_GID;
311 
312 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
313 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
314 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
315 		if (name) {
316 			add_uevent_var(env, "DEVNAME=%s", name);
317 			if (mode)
318 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
319 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
320 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
321 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
322 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
323 			kfree(tmp);
324 		}
325 	}
326 
327 	if (dev->type && dev->type->name)
328 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
329 
330 	if (dev->driver)
331 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
332 
333 	/* Add common DT information about the device */
334 	of_device_uevent(dev, env);
335 
336 	/* have the bus specific function add its stuff */
337 	if (dev->bus && dev->bus->uevent) {
338 		retval = dev->bus->uevent(dev, env);
339 		if (retval)
340 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
341 				 dev_name(dev), __func__, retval);
342 	}
343 
344 	/* have the class specific function add its stuff */
345 	if (dev->class && dev->class->dev_uevent) {
346 		retval = dev->class->dev_uevent(dev, env);
347 		if (retval)
348 			pr_debug("device: '%s': %s: class uevent() "
349 				 "returned %d\n", dev_name(dev),
350 				 __func__, retval);
351 	}
352 
353 	/* have the device type specific function add its stuff */
354 	if (dev->type && dev->type->uevent) {
355 		retval = dev->type->uevent(dev, env);
356 		if (retval)
357 			pr_debug("device: '%s': %s: dev_type uevent() "
358 				 "returned %d\n", dev_name(dev),
359 				 __func__, retval);
360 	}
361 
362 	return retval;
363 }
364 
365 static const struct kset_uevent_ops device_uevent_ops = {
366 	.filter =	dev_uevent_filter,
367 	.name =		dev_uevent_name,
368 	.uevent =	dev_uevent,
369 };
370 
371 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
372 			   char *buf)
373 {
374 	struct kobject *top_kobj;
375 	struct kset *kset;
376 	struct kobj_uevent_env *env = NULL;
377 	int i;
378 	size_t count = 0;
379 	int retval;
380 
381 	/* search the kset, the device belongs to */
382 	top_kobj = &dev->kobj;
383 	while (!top_kobj->kset && top_kobj->parent)
384 		top_kobj = top_kobj->parent;
385 	if (!top_kobj->kset)
386 		goto out;
387 
388 	kset = top_kobj->kset;
389 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
390 		goto out;
391 
392 	/* respect filter */
393 	if (kset->uevent_ops && kset->uevent_ops->filter)
394 		if (!kset->uevent_ops->filter(kset, &dev->kobj))
395 			goto out;
396 
397 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
398 	if (!env)
399 		return -ENOMEM;
400 
401 	/* let the kset specific function add its keys */
402 	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
403 	if (retval)
404 		goto out;
405 
406 	/* copy keys to file */
407 	for (i = 0; i < env->envp_idx; i++)
408 		count += sprintf(&buf[count], "%s\n", env->envp[i]);
409 out:
410 	kfree(env);
411 	return count;
412 }
413 
414 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
415 			    const char *buf, size_t count)
416 {
417 	enum kobject_action action;
418 
419 	if (kobject_action_type(buf, count, &action) == 0)
420 		kobject_uevent(&dev->kobj, action);
421 	else
422 		dev_err(dev, "uevent: unknown action-string\n");
423 	return count;
424 }
425 static DEVICE_ATTR_RW(uevent);
426 
427 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
428 			   char *buf)
429 {
430 	bool val;
431 
432 	device_lock(dev);
433 	val = !dev->offline;
434 	device_unlock(dev);
435 	return sprintf(buf, "%u\n", val);
436 }
437 
438 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
439 			    const char *buf, size_t count)
440 {
441 	bool val;
442 	int ret;
443 
444 	ret = strtobool(buf, &val);
445 	if (ret < 0)
446 		return ret;
447 
448 	ret = lock_device_hotplug_sysfs();
449 	if (ret)
450 		return ret;
451 
452 	ret = val ? device_online(dev) : device_offline(dev);
453 	unlock_device_hotplug();
454 	return ret < 0 ? ret : count;
455 }
456 static DEVICE_ATTR_RW(online);
457 
458 int device_add_groups(struct device *dev, const struct attribute_group **groups)
459 {
460 	return sysfs_create_groups(&dev->kobj, groups);
461 }
462 
463 void device_remove_groups(struct device *dev,
464 			  const struct attribute_group **groups)
465 {
466 	sysfs_remove_groups(&dev->kobj, groups);
467 }
468 
469 static int device_add_attrs(struct device *dev)
470 {
471 	struct class *class = dev->class;
472 	const struct device_type *type = dev->type;
473 	int error;
474 
475 	if (class) {
476 		error = device_add_groups(dev, class->dev_groups);
477 		if (error)
478 			return error;
479 	}
480 
481 	if (type) {
482 		error = device_add_groups(dev, type->groups);
483 		if (error)
484 			goto err_remove_class_groups;
485 	}
486 
487 	error = device_add_groups(dev, dev->groups);
488 	if (error)
489 		goto err_remove_type_groups;
490 
491 	if (device_supports_offline(dev) && !dev->offline_disabled) {
492 		error = device_create_file(dev, &dev_attr_online);
493 		if (error)
494 			goto err_remove_dev_groups;
495 	}
496 
497 	return 0;
498 
499  err_remove_dev_groups:
500 	device_remove_groups(dev, dev->groups);
501  err_remove_type_groups:
502 	if (type)
503 		device_remove_groups(dev, type->groups);
504  err_remove_class_groups:
505 	if (class)
506 		device_remove_groups(dev, class->dev_groups);
507 
508 	return error;
509 }
510 
511 static void device_remove_attrs(struct device *dev)
512 {
513 	struct class *class = dev->class;
514 	const struct device_type *type = dev->type;
515 
516 	device_remove_file(dev, &dev_attr_online);
517 	device_remove_groups(dev, dev->groups);
518 
519 	if (type)
520 		device_remove_groups(dev, type->groups);
521 
522 	if (class)
523 		device_remove_groups(dev, class->dev_groups);
524 }
525 
526 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
527 			char *buf)
528 {
529 	return print_dev_t(buf, dev->devt);
530 }
531 static DEVICE_ATTR_RO(dev);
532 
533 /* /sys/devices/ */
534 struct kset *devices_kset;
535 
536 /**
537  * devices_kset_move_before - Move device in the devices_kset's list.
538  * @deva: Device to move.
539  * @devb: Device @deva should come before.
540  */
541 static void devices_kset_move_before(struct device *deva, struct device *devb)
542 {
543 	if (!devices_kset)
544 		return;
545 	pr_debug("devices_kset: Moving %s before %s\n",
546 		 dev_name(deva), dev_name(devb));
547 	spin_lock(&devices_kset->list_lock);
548 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
549 	spin_unlock(&devices_kset->list_lock);
550 }
551 
552 /**
553  * devices_kset_move_after - Move device in the devices_kset's list.
554  * @deva: Device to move
555  * @devb: Device @deva should come after.
556  */
557 static void devices_kset_move_after(struct device *deva, struct device *devb)
558 {
559 	if (!devices_kset)
560 		return;
561 	pr_debug("devices_kset: Moving %s after %s\n",
562 		 dev_name(deva), dev_name(devb));
563 	spin_lock(&devices_kset->list_lock);
564 	list_move(&deva->kobj.entry, &devb->kobj.entry);
565 	spin_unlock(&devices_kset->list_lock);
566 }
567 
568 /**
569  * devices_kset_move_last - move the device to the end of devices_kset's list.
570  * @dev: device to move
571  */
572 void devices_kset_move_last(struct device *dev)
573 {
574 	if (!devices_kset)
575 		return;
576 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
577 	spin_lock(&devices_kset->list_lock);
578 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
579 	spin_unlock(&devices_kset->list_lock);
580 }
581 
582 /**
583  * device_create_file - create sysfs attribute file for device.
584  * @dev: device.
585  * @attr: device attribute descriptor.
586  */
587 int device_create_file(struct device *dev,
588 		       const struct device_attribute *attr)
589 {
590 	int error = 0;
591 
592 	if (dev) {
593 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
594 			"Attribute %s: write permission without 'store'\n",
595 			attr->attr.name);
596 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
597 			"Attribute %s: read permission without 'show'\n",
598 			attr->attr.name);
599 		error = sysfs_create_file(&dev->kobj, &attr->attr);
600 	}
601 
602 	return error;
603 }
604 EXPORT_SYMBOL_GPL(device_create_file);
605 
606 /**
607  * device_remove_file - remove sysfs attribute file.
608  * @dev: device.
609  * @attr: device attribute descriptor.
610  */
611 void device_remove_file(struct device *dev,
612 			const struct device_attribute *attr)
613 {
614 	if (dev)
615 		sysfs_remove_file(&dev->kobj, &attr->attr);
616 }
617 EXPORT_SYMBOL_GPL(device_remove_file);
618 
619 /**
620  * device_remove_file_self - remove sysfs attribute file from its own method.
621  * @dev: device.
622  * @attr: device attribute descriptor.
623  *
624  * See kernfs_remove_self() for details.
625  */
626 bool device_remove_file_self(struct device *dev,
627 			     const struct device_attribute *attr)
628 {
629 	if (dev)
630 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
631 	else
632 		return false;
633 }
634 EXPORT_SYMBOL_GPL(device_remove_file_self);
635 
636 /**
637  * device_create_bin_file - create sysfs binary attribute file for device.
638  * @dev: device.
639  * @attr: device binary attribute descriptor.
640  */
641 int device_create_bin_file(struct device *dev,
642 			   const struct bin_attribute *attr)
643 {
644 	int error = -EINVAL;
645 	if (dev)
646 		error = sysfs_create_bin_file(&dev->kobj, attr);
647 	return error;
648 }
649 EXPORT_SYMBOL_GPL(device_create_bin_file);
650 
651 /**
652  * device_remove_bin_file - remove sysfs binary attribute file
653  * @dev: device.
654  * @attr: device binary attribute descriptor.
655  */
656 void device_remove_bin_file(struct device *dev,
657 			    const struct bin_attribute *attr)
658 {
659 	if (dev)
660 		sysfs_remove_bin_file(&dev->kobj, attr);
661 }
662 EXPORT_SYMBOL_GPL(device_remove_bin_file);
663 
664 static void klist_children_get(struct klist_node *n)
665 {
666 	struct device_private *p = to_device_private_parent(n);
667 	struct device *dev = p->device;
668 
669 	get_device(dev);
670 }
671 
672 static void klist_children_put(struct klist_node *n)
673 {
674 	struct device_private *p = to_device_private_parent(n);
675 	struct device *dev = p->device;
676 
677 	put_device(dev);
678 }
679 
680 /**
681  * device_initialize - init device structure.
682  * @dev: device.
683  *
684  * This prepares the device for use by other layers by initializing
685  * its fields.
686  * It is the first half of device_register(), if called by
687  * that function, though it can also be called separately, so one
688  * may use @dev's fields. In particular, get_device()/put_device()
689  * may be used for reference counting of @dev after calling this
690  * function.
691  *
692  * All fields in @dev must be initialized by the caller to 0, except
693  * for those explicitly set to some other value.  The simplest
694  * approach is to use kzalloc() to allocate the structure containing
695  * @dev.
696  *
697  * NOTE: Use put_device() to give up your reference instead of freeing
698  * @dev directly once you have called this function.
699  */
700 void device_initialize(struct device *dev)
701 {
702 	dev->kobj.kset = devices_kset;
703 	kobject_init(&dev->kobj, &device_ktype);
704 	INIT_LIST_HEAD(&dev->dma_pools);
705 	mutex_init(&dev->mutex);
706 	lockdep_set_novalidate_class(&dev->mutex);
707 	spin_lock_init(&dev->devres_lock);
708 	INIT_LIST_HEAD(&dev->devres_head);
709 	device_pm_init(dev);
710 	set_dev_node(dev, -1);
711 #ifdef CONFIG_GENERIC_MSI_IRQ
712 	INIT_LIST_HEAD(&dev->msi_list);
713 #endif
714 }
715 EXPORT_SYMBOL_GPL(device_initialize);
716 
717 struct kobject *virtual_device_parent(struct device *dev)
718 {
719 	static struct kobject *virtual_dir = NULL;
720 
721 	if (!virtual_dir)
722 		virtual_dir = kobject_create_and_add("virtual",
723 						     &devices_kset->kobj);
724 
725 	return virtual_dir;
726 }
727 
728 struct class_dir {
729 	struct kobject kobj;
730 	struct class *class;
731 };
732 
733 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
734 
735 static void class_dir_release(struct kobject *kobj)
736 {
737 	struct class_dir *dir = to_class_dir(kobj);
738 	kfree(dir);
739 }
740 
741 static const
742 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
743 {
744 	struct class_dir *dir = to_class_dir(kobj);
745 	return dir->class->ns_type;
746 }
747 
748 static struct kobj_type class_dir_ktype = {
749 	.release	= class_dir_release,
750 	.sysfs_ops	= &kobj_sysfs_ops,
751 	.child_ns_type	= class_dir_child_ns_type
752 };
753 
754 static struct kobject *
755 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
756 {
757 	struct class_dir *dir;
758 	int retval;
759 
760 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
761 	if (!dir)
762 		return NULL;
763 
764 	dir->class = class;
765 	kobject_init(&dir->kobj, &class_dir_ktype);
766 
767 	dir->kobj.kset = &class->p->glue_dirs;
768 
769 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
770 	if (retval < 0) {
771 		kobject_put(&dir->kobj);
772 		return NULL;
773 	}
774 	return &dir->kobj;
775 }
776 
777 static DEFINE_MUTEX(gdp_mutex);
778 
779 static struct kobject *get_device_parent(struct device *dev,
780 					 struct device *parent)
781 {
782 	if (dev->class) {
783 		struct kobject *kobj = NULL;
784 		struct kobject *parent_kobj;
785 		struct kobject *k;
786 
787 #ifdef CONFIG_BLOCK
788 		/* block disks show up in /sys/block */
789 		if (sysfs_deprecated && dev->class == &block_class) {
790 			if (parent && parent->class == &block_class)
791 				return &parent->kobj;
792 			return &block_class.p->subsys.kobj;
793 		}
794 #endif
795 
796 		/*
797 		 * If we have no parent, we live in "virtual".
798 		 * Class-devices with a non class-device as parent, live
799 		 * in a "glue" directory to prevent namespace collisions.
800 		 */
801 		if (parent == NULL)
802 			parent_kobj = virtual_device_parent(dev);
803 		else if (parent->class && !dev->class->ns_type)
804 			return &parent->kobj;
805 		else
806 			parent_kobj = &parent->kobj;
807 
808 		mutex_lock(&gdp_mutex);
809 
810 		/* find our class-directory at the parent and reference it */
811 		spin_lock(&dev->class->p->glue_dirs.list_lock);
812 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
813 			if (k->parent == parent_kobj) {
814 				kobj = kobject_get(k);
815 				break;
816 			}
817 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
818 		if (kobj) {
819 			mutex_unlock(&gdp_mutex);
820 			return kobj;
821 		}
822 
823 		/* or create a new class-directory at the parent device */
824 		k = class_dir_create_and_add(dev->class, parent_kobj);
825 		/* do not emit an uevent for this simple "glue" directory */
826 		mutex_unlock(&gdp_mutex);
827 		return k;
828 	}
829 
830 	/* subsystems can specify a default root directory for their devices */
831 	if (!parent && dev->bus && dev->bus->dev_root)
832 		return &dev->bus->dev_root->kobj;
833 
834 	if (parent)
835 		return &parent->kobj;
836 	return NULL;
837 }
838 
839 static inline bool live_in_glue_dir(struct kobject *kobj,
840 				    struct device *dev)
841 {
842 	if (!kobj || !dev->class ||
843 	    kobj->kset != &dev->class->p->glue_dirs)
844 		return false;
845 	return true;
846 }
847 
848 static inline struct kobject *get_glue_dir(struct device *dev)
849 {
850 	return dev->kobj.parent;
851 }
852 
853 /*
854  * make sure cleaning up dir as the last step, we need to make
855  * sure .release handler of kobject is run with holding the
856  * global lock
857  */
858 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
859 {
860 	/* see if we live in a "glue" directory */
861 	if (!live_in_glue_dir(glue_dir, dev))
862 		return;
863 
864 	mutex_lock(&gdp_mutex);
865 	kobject_put(glue_dir);
866 	mutex_unlock(&gdp_mutex);
867 }
868 
869 static int device_add_class_symlinks(struct device *dev)
870 {
871 	struct device_node *of_node = dev_of_node(dev);
872 	int error;
873 
874 	if (of_node) {
875 		error = sysfs_create_link(&dev->kobj, &of_node->kobj,"of_node");
876 		if (error)
877 			dev_warn(dev, "Error %d creating of_node link\n",error);
878 		/* An error here doesn't warrant bringing down the device */
879 	}
880 
881 	if (!dev->class)
882 		return 0;
883 
884 	error = sysfs_create_link(&dev->kobj,
885 				  &dev->class->p->subsys.kobj,
886 				  "subsystem");
887 	if (error)
888 		goto out_devnode;
889 
890 	if (dev->parent && device_is_not_partition(dev)) {
891 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
892 					  "device");
893 		if (error)
894 			goto out_subsys;
895 	}
896 
897 #ifdef CONFIG_BLOCK
898 	/* /sys/block has directories and does not need symlinks */
899 	if (sysfs_deprecated && dev->class == &block_class)
900 		return 0;
901 #endif
902 
903 	/* link in the class directory pointing to the device */
904 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
905 				  &dev->kobj, dev_name(dev));
906 	if (error)
907 		goto out_device;
908 
909 	return 0;
910 
911 out_device:
912 	sysfs_remove_link(&dev->kobj, "device");
913 
914 out_subsys:
915 	sysfs_remove_link(&dev->kobj, "subsystem");
916 out_devnode:
917 	sysfs_remove_link(&dev->kobj, "of_node");
918 	return error;
919 }
920 
921 static void device_remove_class_symlinks(struct device *dev)
922 {
923 	if (dev_of_node(dev))
924 		sysfs_remove_link(&dev->kobj, "of_node");
925 
926 	if (!dev->class)
927 		return;
928 
929 	if (dev->parent && device_is_not_partition(dev))
930 		sysfs_remove_link(&dev->kobj, "device");
931 	sysfs_remove_link(&dev->kobj, "subsystem");
932 #ifdef CONFIG_BLOCK
933 	if (sysfs_deprecated && dev->class == &block_class)
934 		return;
935 #endif
936 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
937 }
938 
939 /**
940  * dev_set_name - set a device name
941  * @dev: device
942  * @fmt: format string for the device's name
943  */
944 int dev_set_name(struct device *dev, const char *fmt, ...)
945 {
946 	va_list vargs;
947 	int err;
948 
949 	va_start(vargs, fmt);
950 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
951 	va_end(vargs);
952 	return err;
953 }
954 EXPORT_SYMBOL_GPL(dev_set_name);
955 
956 /**
957  * device_to_dev_kobj - select a /sys/dev/ directory for the device
958  * @dev: device
959  *
960  * By default we select char/ for new entries.  Setting class->dev_obj
961  * to NULL prevents an entry from being created.  class->dev_kobj must
962  * be set (or cleared) before any devices are registered to the class
963  * otherwise device_create_sys_dev_entry() and
964  * device_remove_sys_dev_entry() will disagree about the presence of
965  * the link.
966  */
967 static struct kobject *device_to_dev_kobj(struct device *dev)
968 {
969 	struct kobject *kobj;
970 
971 	if (dev->class)
972 		kobj = dev->class->dev_kobj;
973 	else
974 		kobj = sysfs_dev_char_kobj;
975 
976 	return kobj;
977 }
978 
979 static int device_create_sys_dev_entry(struct device *dev)
980 {
981 	struct kobject *kobj = device_to_dev_kobj(dev);
982 	int error = 0;
983 	char devt_str[15];
984 
985 	if (kobj) {
986 		format_dev_t(devt_str, dev->devt);
987 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
988 	}
989 
990 	return error;
991 }
992 
993 static void device_remove_sys_dev_entry(struct device *dev)
994 {
995 	struct kobject *kobj = device_to_dev_kobj(dev);
996 	char devt_str[15];
997 
998 	if (kobj) {
999 		format_dev_t(devt_str, dev->devt);
1000 		sysfs_remove_link(kobj, devt_str);
1001 	}
1002 }
1003 
1004 int device_private_init(struct device *dev)
1005 {
1006 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
1007 	if (!dev->p)
1008 		return -ENOMEM;
1009 	dev->p->device = dev;
1010 	klist_init(&dev->p->klist_children, klist_children_get,
1011 		   klist_children_put);
1012 	INIT_LIST_HEAD(&dev->p->deferred_probe);
1013 	return 0;
1014 }
1015 
1016 /**
1017  * device_add - add device to device hierarchy.
1018  * @dev: device.
1019  *
1020  * This is part 2 of device_register(), though may be called
1021  * separately _iff_ device_initialize() has been called separately.
1022  *
1023  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
1024  * to the global and sibling lists for the device, then
1025  * adds it to the other relevant subsystems of the driver model.
1026  *
1027  * Do not call this routine or device_register() more than once for
1028  * any device structure.  The driver model core is not designed to work
1029  * with devices that get unregistered and then spring back to life.
1030  * (Among other things, it's very hard to guarantee that all references
1031  * to the previous incarnation of @dev have been dropped.)  Allocate
1032  * and register a fresh new struct device instead.
1033  *
1034  * NOTE: _Never_ directly free @dev after calling this function, even
1035  * if it returned an error! Always use put_device() to give up your
1036  * reference instead.
1037  */
1038 int device_add(struct device *dev)
1039 {
1040 	struct device *parent = NULL;
1041 	struct kobject *kobj;
1042 	struct class_interface *class_intf;
1043 	int error = -EINVAL;
1044 	struct kobject *glue_dir = NULL;
1045 
1046 	dev = get_device(dev);
1047 	if (!dev)
1048 		goto done;
1049 
1050 	if (!dev->p) {
1051 		error = device_private_init(dev);
1052 		if (error)
1053 			goto done;
1054 	}
1055 
1056 	/*
1057 	 * for statically allocated devices, which should all be converted
1058 	 * some day, we need to initialize the name. We prevent reading back
1059 	 * the name, and force the use of dev_name()
1060 	 */
1061 	if (dev->init_name) {
1062 		dev_set_name(dev, "%s", dev->init_name);
1063 		dev->init_name = NULL;
1064 	}
1065 
1066 	/* subsystems can specify simple device enumeration */
1067 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
1068 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
1069 
1070 	if (!dev_name(dev)) {
1071 		error = -EINVAL;
1072 		goto name_error;
1073 	}
1074 
1075 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1076 
1077 	parent = get_device(dev->parent);
1078 	kobj = get_device_parent(dev, parent);
1079 	if (kobj)
1080 		dev->kobj.parent = kobj;
1081 
1082 	/* use parent numa_node */
1083 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
1084 		set_dev_node(dev, dev_to_node(parent));
1085 
1086 	/* first, register with generic layer. */
1087 	/* we require the name to be set before, and pass NULL */
1088 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
1089 	if (error) {
1090 		glue_dir = get_glue_dir(dev);
1091 		goto Error;
1092 	}
1093 
1094 	/* notify platform of device entry */
1095 	if (platform_notify)
1096 		platform_notify(dev);
1097 
1098 	error = device_create_file(dev, &dev_attr_uevent);
1099 	if (error)
1100 		goto attrError;
1101 
1102 	error = device_add_class_symlinks(dev);
1103 	if (error)
1104 		goto SymlinkError;
1105 	error = device_add_attrs(dev);
1106 	if (error)
1107 		goto AttrsError;
1108 	error = bus_add_device(dev);
1109 	if (error)
1110 		goto BusError;
1111 	error = dpm_sysfs_add(dev);
1112 	if (error)
1113 		goto DPMError;
1114 	device_pm_add(dev);
1115 
1116 	if (MAJOR(dev->devt)) {
1117 		error = device_create_file(dev, &dev_attr_dev);
1118 		if (error)
1119 			goto DevAttrError;
1120 
1121 		error = device_create_sys_dev_entry(dev);
1122 		if (error)
1123 			goto SysEntryError;
1124 
1125 		devtmpfs_create_node(dev);
1126 	}
1127 
1128 	/* Notify clients of device addition.  This call must come
1129 	 * after dpm_sysfs_add() and before kobject_uevent().
1130 	 */
1131 	if (dev->bus)
1132 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1133 					     BUS_NOTIFY_ADD_DEVICE, dev);
1134 
1135 	kobject_uevent(&dev->kobj, KOBJ_ADD);
1136 	bus_probe_device(dev);
1137 	if (parent)
1138 		klist_add_tail(&dev->p->knode_parent,
1139 			       &parent->p->klist_children);
1140 
1141 	if (dev->class) {
1142 		mutex_lock(&dev->class->p->mutex);
1143 		/* tie the class to the device */
1144 		klist_add_tail(&dev->knode_class,
1145 			       &dev->class->p->klist_devices);
1146 
1147 		/* notify any interfaces that the device is here */
1148 		list_for_each_entry(class_intf,
1149 				    &dev->class->p->interfaces, node)
1150 			if (class_intf->add_dev)
1151 				class_intf->add_dev(dev, class_intf);
1152 		mutex_unlock(&dev->class->p->mutex);
1153 	}
1154 done:
1155 	put_device(dev);
1156 	return error;
1157  SysEntryError:
1158 	if (MAJOR(dev->devt))
1159 		device_remove_file(dev, &dev_attr_dev);
1160  DevAttrError:
1161 	device_pm_remove(dev);
1162 	dpm_sysfs_remove(dev);
1163  DPMError:
1164 	bus_remove_device(dev);
1165  BusError:
1166 	device_remove_attrs(dev);
1167  AttrsError:
1168 	device_remove_class_symlinks(dev);
1169  SymlinkError:
1170 	device_remove_file(dev, &dev_attr_uevent);
1171  attrError:
1172 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1173 	glue_dir = get_glue_dir(dev);
1174 	kobject_del(&dev->kobj);
1175  Error:
1176 	cleanup_glue_dir(dev, glue_dir);
1177 	put_device(parent);
1178 name_error:
1179 	kfree(dev->p);
1180 	dev->p = NULL;
1181 	goto done;
1182 }
1183 EXPORT_SYMBOL_GPL(device_add);
1184 
1185 /**
1186  * device_register - register a device with the system.
1187  * @dev: pointer to the device structure
1188  *
1189  * This happens in two clean steps - initialize the device
1190  * and add it to the system. The two steps can be called
1191  * separately, but this is the easiest and most common.
1192  * I.e. you should only call the two helpers separately if
1193  * have a clearly defined need to use and refcount the device
1194  * before it is added to the hierarchy.
1195  *
1196  * For more information, see the kerneldoc for device_initialize()
1197  * and device_add().
1198  *
1199  * NOTE: _Never_ directly free @dev after calling this function, even
1200  * if it returned an error! Always use put_device() to give up the
1201  * reference initialized in this function instead.
1202  */
1203 int device_register(struct device *dev)
1204 {
1205 	device_initialize(dev);
1206 	return device_add(dev);
1207 }
1208 EXPORT_SYMBOL_GPL(device_register);
1209 
1210 /**
1211  * get_device - increment reference count for device.
1212  * @dev: device.
1213  *
1214  * This simply forwards the call to kobject_get(), though
1215  * we do take care to provide for the case that we get a NULL
1216  * pointer passed in.
1217  */
1218 struct device *get_device(struct device *dev)
1219 {
1220 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
1221 }
1222 EXPORT_SYMBOL_GPL(get_device);
1223 
1224 /**
1225  * put_device - decrement reference count.
1226  * @dev: device in question.
1227  */
1228 void put_device(struct device *dev)
1229 {
1230 	/* might_sleep(); */
1231 	if (dev)
1232 		kobject_put(&dev->kobj);
1233 }
1234 EXPORT_SYMBOL_GPL(put_device);
1235 
1236 /**
1237  * device_del - delete device from system.
1238  * @dev: device.
1239  *
1240  * This is the first part of the device unregistration
1241  * sequence. This removes the device from the lists we control
1242  * from here, has it removed from the other driver model
1243  * subsystems it was added to in device_add(), and removes it
1244  * from the kobject hierarchy.
1245  *
1246  * NOTE: this should be called manually _iff_ device_add() was
1247  * also called manually.
1248  */
1249 void device_del(struct device *dev)
1250 {
1251 	struct device *parent = dev->parent;
1252 	struct kobject *glue_dir = NULL;
1253 	struct class_interface *class_intf;
1254 
1255 	/* Notify clients of device removal.  This call must come
1256 	 * before dpm_sysfs_remove().
1257 	 */
1258 	if (dev->bus)
1259 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1260 					     BUS_NOTIFY_DEL_DEVICE, dev);
1261 	dpm_sysfs_remove(dev);
1262 	if (parent)
1263 		klist_del(&dev->p->knode_parent);
1264 	if (MAJOR(dev->devt)) {
1265 		devtmpfs_delete_node(dev);
1266 		device_remove_sys_dev_entry(dev);
1267 		device_remove_file(dev, &dev_attr_dev);
1268 	}
1269 	if (dev->class) {
1270 		device_remove_class_symlinks(dev);
1271 
1272 		mutex_lock(&dev->class->p->mutex);
1273 		/* notify any interfaces that the device is now gone */
1274 		list_for_each_entry(class_intf,
1275 				    &dev->class->p->interfaces, node)
1276 			if (class_intf->remove_dev)
1277 				class_intf->remove_dev(dev, class_intf);
1278 		/* remove the device from the class list */
1279 		klist_del(&dev->knode_class);
1280 		mutex_unlock(&dev->class->p->mutex);
1281 	}
1282 	device_remove_file(dev, &dev_attr_uevent);
1283 	device_remove_attrs(dev);
1284 	bus_remove_device(dev);
1285 	device_pm_remove(dev);
1286 	driver_deferred_probe_del(dev);
1287 	device_remove_properties(dev);
1288 
1289 	/* Notify the platform of the removal, in case they
1290 	 * need to do anything...
1291 	 */
1292 	if (platform_notify_remove)
1293 		platform_notify_remove(dev);
1294 	if (dev->bus)
1295 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1296 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
1297 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1298 	glue_dir = get_glue_dir(dev);
1299 	kobject_del(&dev->kobj);
1300 	cleanup_glue_dir(dev, glue_dir);
1301 	put_device(parent);
1302 }
1303 EXPORT_SYMBOL_GPL(device_del);
1304 
1305 /**
1306  * device_unregister - unregister device from system.
1307  * @dev: device going away.
1308  *
1309  * We do this in two parts, like we do device_register(). First,
1310  * we remove it from all the subsystems with device_del(), then
1311  * we decrement the reference count via put_device(). If that
1312  * is the final reference count, the device will be cleaned up
1313  * via device_release() above. Otherwise, the structure will
1314  * stick around until the final reference to the device is dropped.
1315  */
1316 void device_unregister(struct device *dev)
1317 {
1318 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1319 	device_del(dev);
1320 	put_device(dev);
1321 }
1322 EXPORT_SYMBOL_GPL(device_unregister);
1323 
1324 static struct device *prev_device(struct klist_iter *i)
1325 {
1326 	struct klist_node *n = klist_prev(i);
1327 	struct device *dev = NULL;
1328 	struct device_private *p;
1329 
1330 	if (n) {
1331 		p = to_device_private_parent(n);
1332 		dev = p->device;
1333 	}
1334 	return dev;
1335 }
1336 
1337 static struct device *next_device(struct klist_iter *i)
1338 {
1339 	struct klist_node *n = klist_next(i);
1340 	struct device *dev = NULL;
1341 	struct device_private *p;
1342 
1343 	if (n) {
1344 		p = to_device_private_parent(n);
1345 		dev = p->device;
1346 	}
1347 	return dev;
1348 }
1349 
1350 /**
1351  * device_get_devnode - path of device node file
1352  * @dev: device
1353  * @mode: returned file access mode
1354  * @uid: returned file owner
1355  * @gid: returned file group
1356  * @tmp: possibly allocated string
1357  *
1358  * Return the relative path of a possible device node.
1359  * Non-default names may need to allocate a memory to compose
1360  * a name. This memory is returned in tmp and needs to be
1361  * freed by the caller.
1362  */
1363 const char *device_get_devnode(struct device *dev,
1364 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
1365 			       const char **tmp)
1366 {
1367 	char *s;
1368 
1369 	*tmp = NULL;
1370 
1371 	/* the device type may provide a specific name */
1372 	if (dev->type && dev->type->devnode)
1373 		*tmp = dev->type->devnode(dev, mode, uid, gid);
1374 	if (*tmp)
1375 		return *tmp;
1376 
1377 	/* the class may provide a specific name */
1378 	if (dev->class && dev->class->devnode)
1379 		*tmp = dev->class->devnode(dev, mode);
1380 	if (*tmp)
1381 		return *tmp;
1382 
1383 	/* return name without allocation, tmp == NULL */
1384 	if (strchr(dev_name(dev), '!') == NULL)
1385 		return dev_name(dev);
1386 
1387 	/* replace '!' in the name with '/' */
1388 	s = kstrdup(dev_name(dev), GFP_KERNEL);
1389 	if (!s)
1390 		return NULL;
1391 	strreplace(s, '!', '/');
1392 	return *tmp = s;
1393 }
1394 
1395 /**
1396  * device_for_each_child - device child iterator.
1397  * @parent: parent struct device.
1398  * @fn: function to be called for each device.
1399  * @data: data for the callback.
1400  *
1401  * Iterate over @parent's child devices, and call @fn for each,
1402  * passing it @data.
1403  *
1404  * We check the return of @fn each time. If it returns anything
1405  * other than 0, we break out and return that value.
1406  */
1407 int device_for_each_child(struct device *parent, void *data,
1408 			  int (*fn)(struct device *dev, void *data))
1409 {
1410 	struct klist_iter i;
1411 	struct device *child;
1412 	int error = 0;
1413 
1414 	if (!parent->p)
1415 		return 0;
1416 
1417 	klist_iter_init(&parent->p->klist_children, &i);
1418 	while ((child = next_device(&i)) && !error)
1419 		error = fn(child, data);
1420 	klist_iter_exit(&i);
1421 	return error;
1422 }
1423 EXPORT_SYMBOL_GPL(device_for_each_child);
1424 
1425 /**
1426  * device_for_each_child_reverse - device child iterator in reversed order.
1427  * @parent: parent struct device.
1428  * @fn: function to be called for each device.
1429  * @data: data for the callback.
1430  *
1431  * Iterate over @parent's child devices, and call @fn for each,
1432  * passing it @data.
1433  *
1434  * We check the return of @fn each time. If it returns anything
1435  * other than 0, we break out and return that value.
1436  */
1437 int device_for_each_child_reverse(struct device *parent, void *data,
1438 				  int (*fn)(struct device *dev, void *data))
1439 {
1440 	struct klist_iter i;
1441 	struct device *child;
1442 	int error = 0;
1443 
1444 	if (!parent->p)
1445 		return 0;
1446 
1447 	klist_iter_init(&parent->p->klist_children, &i);
1448 	while ((child = prev_device(&i)) && !error)
1449 		error = fn(child, data);
1450 	klist_iter_exit(&i);
1451 	return error;
1452 }
1453 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
1454 
1455 /**
1456  * device_find_child - device iterator for locating a particular device.
1457  * @parent: parent struct device
1458  * @match: Callback function to check device
1459  * @data: Data to pass to match function
1460  *
1461  * This is similar to the device_for_each_child() function above, but it
1462  * returns a reference to a device that is 'found' for later use, as
1463  * determined by the @match callback.
1464  *
1465  * The callback should return 0 if the device doesn't match and non-zero
1466  * if it does.  If the callback returns non-zero and a reference to the
1467  * current device can be obtained, this function will return to the caller
1468  * and not iterate over any more devices.
1469  *
1470  * NOTE: you will need to drop the reference with put_device() after use.
1471  */
1472 struct device *device_find_child(struct device *parent, void *data,
1473 				 int (*match)(struct device *dev, void *data))
1474 {
1475 	struct klist_iter i;
1476 	struct device *child;
1477 
1478 	if (!parent)
1479 		return NULL;
1480 
1481 	klist_iter_init(&parent->p->klist_children, &i);
1482 	while ((child = next_device(&i)))
1483 		if (match(child, data) && get_device(child))
1484 			break;
1485 	klist_iter_exit(&i);
1486 	return child;
1487 }
1488 EXPORT_SYMBOL_GPL(device_find_child);
1489 
1490 int __init devices_init(void)
1491 {
1492 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
1493 	if (!devices_kset)
1494 		return -ENOMEM;
1495 	dev_kobj = kobject_create_and_add("dev", NULL);
1496 	if (!dev_kobj)
1497 		goto dev_kobj_err;
1498 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
1499 	if (!sysfs_dev_block_kobj)
1500 		goto block_kobj_err;
1501 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
1502 	if (!sysfs_dev_char_kobj)
1503 		goto char_kobj_err;
1504 
1505 	return 0;
1506 
1507  char_kobj_err:
1508 	kobject_put(sysfs_dev_block_kobj);
1509  block_kobj_err:
1510 	kobject_put(dev_kobj);
1511  dev_kobj_err:
1512 	kset_unregister(devices_kset);
1513 	return -ENOMEM;
1514 }
1515 
1516 static int device_check_offline(struct device *dev, void *not_used)
1517 {
1518 	int ret;
1519 
1520 	ret = device_for_each_child(dev, NULL, device_check_offline);
1521 	if (ret)
1522 		return ret;
1523 
1524 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
1525 }
1526 
1527 /**
1528  * device_offline - Prepare the device for hot-removal.
1529  * @dev: Device to be put offline.
1530  *
1531  * Execute the device bus type's .offline() callback, if present, to prepare
1532  * the device for a subsequent hot-removal.  If that succeeds, the device must
1533  * not be used until either it is removed or its bus type's .online() callback
1534  * is executed.
1535  *
1536  * Call under device_hotplug_lock.
1537  */
1538 int device_offline(struct device *dev)
1539 {
1540 	int ret;
1541 
1542 	if (dev->offline_disabled)
1543 		return -EPERM;
1544 
1545 	ret = device_for_each_child(dev, NULL, device_check_offline);
1546 	if (ret)
1547 		return ret;
1548 
1549 	device_lock(dev);
1550 	if (device_supports_offline(dev)) {
1551 		if (dev->offline) {
1552 			ret = 1;
1553 		} else {
1554 			ret = dev->bus->offline(dev);
1555 			if (!ret) {
1556 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
1557 				dev->offline = true;
1558 			}
1559 		}
1560 	}
1561 	device_unlock(dev);
1562 
1563 	return ret;
1564 }
1565 
1566 /**
1567  * device_online - Put the device back online after successful device_offline().
1568  * @dev: Device to be put back online.
1569  *
1570  * If device_offline() has been successfully executed for @dev, but the device
1571  * has not been removed subsequently, execute its bus type's .online() callback
1572  * to indicate that the device can be used again.
1573  *
1574  * Call under device_hotplug_lock.
1575  */
1576 int device_online(struct device *dev)
1577 {
1578 	int ret = 0;
1579 
1580 	device_lock(dev);
1581 	if (device_supports_offline(dev)) {
1582 		if (dev->offline) {
1583 			ret = dev->bus->online(dev);
1584 			if (!ret) {
1585 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
1586 				dev->offline = false;
1587 			}
1588 		} else {
1589 			ret = 1;
1590 		}
1591 	}
1592 	device_unlock(dev);
1593 
1594 	return ret;
1595 }
1596 
1597 struct root_device {
1598 	struct device dev;
1599 	struct module *owner;
1600 };
1601 
1602 static inline struct root_device *to_root_device(struct device *d)
1603 {
1604 	return container_of(d, struct root_device, dev);
1605 }
1606 
1607 static void root_device_release(struct device *dev)
1608 {
1609 	kfree(to_root_device(dev));
1610 }
1611 
1612 /**
1613  * __root_device_register - allocate and register a root device
1614  * @name: root device name
1615  * @owner: owner module of the root device, usually THIS_MODULE
1616  *
1617  * This function allocates a root device and registers it
1618  * using device_register(). In order to free the returned
1619  * device, use root_device_unregister().
1620  *
1621  * Root devices are dummy devices which allow other devices
1622  * to be grouped under /sys/devices. Use this function to
1623  * allocate a root device and then use it as the parent of
1624  * any device which should appear under /sys/devices/{name}
1625  *
1626  * The /sys/devices/{name} directory will also contain a
1627  * 'module' symlink which points to the @owner directory
1628  * in sysfs.
1629  *
1630  * Returns &struct device pointer on success, or ERR_PTR() on error.
1631  *
1632  * Note: You probably want to use root_device_register().
1633  */
1634 struct device *__root_device_register(const char *name, struct module *owner)
1635 {
1636 	struct root_device *root;
1637 	int err = -ENOMEM;
1638 
1639 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
1640 	if (!root)
1641 		return ERR_PTR(err);
1642 
1643 	err = dev_set_name(&root->dev, "%s", name);
1644 	if (err) {
1645 		kfree(root);
1646 		return ERR_PTR(err);
1647 	}
1648 
1649 	root->dev.release = root_device_release;
1650 
1651 	err = device_register(&root->dev);
1652 	if (err) {
1653 		put_device(&root->dev);
1654 		return ERR_PTR(err);
1655 	}
1656 
1657 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
1658 	if (owner) {
1659 		struct module_kobject *mk = &owner->mkobj;
1660 
1661 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
1662 		if (err) {
1663 			device_unregister(&root->dev);
1664 			return ERR_PTR(err);
1665 		}
1666 		root->owner = owner;
1667 	}
1668 #endif
1669 
1670 	return &root->dev;
1671 }
1672 EXPORT_SYMBOL_GPL(__root_device_register);
1673 
1674 /**
1675  * root_device_unregister - unregister and free a root device
1676  * @dev: device going away
1677  *
1678  * This function unregisters and cleans up a device that was created by
1679  * root_device_register().
1680  */
1681 void root_device_unregister(struct device *dev)
1682 {
1683 	struct root_device *root = to_root_device(dev);
1684 
1685 	if (root->owner)
1686 		sysfs_remove_link(&root->dev.kobj, "module");
1687 
1688 	device_unregister(dev);
1689 }
1690 EXPORT_SYMBOL_GPL(root_device_unregister);
1691 
1692 
1693 static void device_create_release(struct device *dev)
1694 {
1695 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1696 	kfree(dev);
1697 }
1698 
1699 static struct device *
1700 device_create_groups_vargs(struct class *class, struct device *parent,
1701 			   dev_t devt, void *drvdata,
1702 			   const struct attribute_group **groups,
1703 			   const char *fmt, va_list args)
1704 {
1705 	struct device *dev = NULL;
1706 	int retval = -ENODEV;
1707 
1708 	if (class == NULL || IS_ERR(class))
1709 		goto error;
1710 
1711 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1712 	if (!dev) {
1713 		retval = -ENOMEM;
1714 		goto error;
1715 	}
1716 
1717 	device_initialize(dev);
1718 	dev->devt = devt;
1719 	dev->class = class;
1720 	dev->parent = parent;
1721 	dev->groups = groups;
1722 	dev->release = device_create_release;
1723 	dev_set_drvdata(dev, drvdata);
1724 
1725 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
1726 	if (retval)
1727 		goto error;
1728 
1729 	retval = device_add(dev);
1730 	if (retval)
1731 		goto error;
1732 
1733 	return dev;
1734 
1735 error:
1736 	put_device(dev);
1737 	return ERR_PTR(retval);
1738 }
1739 
1740 /**
1741  * device_create_vargs - creates a device and registers it with sysfs
1742  * @class: pointer to the struct class that this device should be registered to
1743  * @parent: pointer to the parent struct device of this new device, if any
1744  * @devt: the dev_t for the char device to be added
1745  * @drvdata: the data to be added to the device for callbacks
1746  * @fmt: string for the device's name
1747  * @args: va_list for the device's name
1748  *
1749  * This function can be used by char device classes.  A struct device
1750  * will be created in sysfs, registered to the specified class.
1751  *
1752  * A "dev" file will be created, showing the dev_t for the device, if
1753  * the dev_t is not 0,0.
1754  * If a pointer to a parent struct device is passed in, the newly created
1755  * struct device will be a child of that device in sysfs.
1756  * The pointer to the struct device will be returned from the call.
1757  * Any further sysfs files that might be required can be created using this
1758  * pointer.
1759  *
1760  * Returns &struct device pointer on success, or ERR_PTR() on error.
1761  *
1762  * Note: the struct class passed to this function must have previously
1763  * been created with a call to class_create().
1764  */
1765 struct device *device_create_vargs(struct class *class, struct device *parent,
1766 				   dev_t devt, void *drvdata, const char *fmt,
1767 				   va_list args)
1768 {
1769 	return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
1770 					  fmt, args);
1771 }
1772 EXPORT_SYMBOL_GPL(device_create_vargs);
1773 
1774 /**
1775  * device_create - creates a device and registers it with sysfs
1776  * @class: pointer to the struct class that this device should be registered to
1777  * @parent: pointer to the parent struct device of this new device, if any
1778  * @devt: the dev_t for the char device to be added
1779  * @drvdata: the data to be added to the device for callbacks
1780  * @fmt: string for the device's name
1781  *
1782  * This function can be used by char device classes.  A struct device
1783  * will be created in sysfs, registered to the specified class.
1784  *
1785  * A "dev" file will be created, showing the dev_t for the device, if
1786  * the dev_t is not 0,0.
1787  * If a pointer to a parent struct device is passed in, the newly created
1788  * struct device will be a child of that device in sysfs.
1789  * The pointer to the struct device will be returned from the call.
1790  * Any further sysfs files that might be required can be created using this
1791  * pointer.
1792  *
1793  * Returns &struct device pointer on success, or ERR_PTR() on error.
1794  *
1795  * Note: the struct class passed to this function must have previously
1796  * been created with a call to class_create().
1797  */
1798 struct device *device_create(struct class *class, struct device *parent,
1799 			     dev_t devt, void *drvdata, const char *fmt, ...)
1800 {
1801 	va_list vargs;
1802 	struct device *dev;
1803 
1804 	va_start(vargs, fmt);
1805 	dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
1806 	va_end(vargs);
1807 	return dev;
1808 }
1809 EXPORT_SYMBOL_GPL(device_create);
1810 
1811 /**
1812  * device_create_with_groups - creates a device and registers it with sysfs
1813  * @class: pointer to the struct class that this device should be registered to
1814  * @parent: pointer to the parent struct device of this new device, if any
1815  * @devt: the dev_t for the char device to be added
1816  * @drvdata: the data to be added to the device for callbacks
1817  * @groups: NULL-terminated list of attribute groups to be created
1818  * @fmt: string for the device's name
1819  *
1820  * This function can be used by char device classes.  A struct device
1821  * will be created in sysfs, registered to the specified class.
1822  * Additional attributes specified in the groups parameter will also
1823  * be created automatically.
1824  *
1825  * A "dev" file will be created, showing the dev_t for the device, if
1826  * the dev_t is not 0,0.
1827  * If a pointer to a parent struct device is passed in, the newly created
1828  * struct device will be a child of that device in sysfs.
1829  * The pointer to the struct device will be returned from the call.
1830  * Any further sysfs files that might be required can be created using this
1831  * pointer.
1832  *
1833  * Returns &struct device pointer on success, or ERR_PTR() on error.
1834  *
1835  * Note: the struct class passed to this function must have previously
1836  * been created with a call to class_create().
1837  */
1838 struct device *device_create_with_groups(struct class *class,
1839 					 struct device *parent, dev_t devt,
1840 					 void *drvdata,
1841 					 const struct attribute_group **groups,
1842 					 const char *fmt, ...)
1843 {
1844 	va_list vargs;
1845 	struct device *dev;
1846 
1847 	va_start(vargs, fmt);
1848 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
1849 					 fmt, vargs);
1850 	va_end(vargs);
1851 	return dev;
1852 }
1853 EXPORT_SYMBOL_GPL(device_create_with_groups);
1854 
1855 static int __match_devt(struct device *dev, const void *data)
1856 {
1857 	const dev_t *devt = data;
1858 
1859 	return dev->devt == *devt;
1860 }
1861 
1862 /**
1863  * device_destroy - removes a device that was created with device_create()
1864  * @class: pointer to the struct class that this device was registered with
1865  * @devt: the dev_t of the device that was previously registered
1866  *
1867  * This call unregisters and cleans up a device that was created with a
1868  * call to device_create().
1869  */
1870 void device_destroy(struct class *class, dev_t devt)
1871 {
1872 	struct device *dev;
1873 
1874 	dev = class_find_device(class, NULL, &devt, __match_devt);
1875 	if (dev) {
1876 		put_device(dev);
1877 		device_unregister(dev);
1878 	}
1879 }
1880 EXPORT_SYMBOL_GPL(device_destroy);
1881 
1882 /**
1883  * device_rename - renames a device
1884  * @dev: the pointer to the struct device to be renamed
1885  * @new_name: the new name of the device
1886  *
1887  * It is the responsibility of the caller to provide mutual
1888  * exclusion between two different calls of device_rename
1889  * on the same device to ensure that new_name is valid and
1890  * won't conflict with other devices.
1891  *
1892  * Note: Don't call this function.  Currently, the networking layer calls this
1893  * function, but that will change.  The following text from Kay Sievers offers
1894  * some insight:
1895  *
1896  * Renaming devices is racy at many levels, symlinks and other stuff are not
1897  * replaced atomically, and you get a "move" uevent, but it's not easy to
1898  * connect the event to the old and new device. Device nodes are not renamed at
1899  * all, there isn't even support for that in the kernel now.
1900  *
1901  * In the meantime, during renaming, your target name might be taken by another
1902  * driver, creating conflicts. Or the old name is taken directly after you
1903  * renamed it -- then you get events for the same DEVPATH, before you even see
1904  * the "move" event. It's just a mess, and nothing new should ever rely on
1905  * kernel device renaming. Besides that, it's not even implemented now for
1906  * other things than (driver-core wise very simple) network devices.
1907  *
1908  * We are currently about to change network renaming in udev to completely
1909  * disallow renaming of devices in the same namespace as the kernel uses,
1910  * because we can't solve the problems properly, that arise with swapping names
1911  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
1912  * be allowed to some other name than eth[0-9]*, for the aforementioned
1913  * reasons.
1914  *
1915  * Make up a "real" name in the driver before you register anything, or add
1916  * some other attributes for userspace to find the device, or use udev to add
1917  * symlinks -- but never rename kernel devices later, it's a complete mess. We
1918  * don't even want to get into that and try to implement the missing pieces in
1919  * the core. We really have other pieces to fix in the driver core mess. :)
1920  */
1921 int device_rename(struct device *dev, const char *new_name)
1922 {
1923 	struct kobject *kobj = &dev->kobj;
1924 	char *old_device_name = NULL;
1925 	int error;
1926 
1927 	dev = get_device(dev);
1928 	if (!dev)
1929 		return -EINVAL;
1930 
1931 	dev_dbg(dev, "renaming to %s\n", new_name);
1932 
1933 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
1934 	if (!old_device_name) {
1935 		error = -ENOMEM;
1936 		goto out;
1937 	}
1938 
1939 	if (dev->class) {
1940 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
1941 					     kobj, old_device_name,
1942 					     new_name, kobject_namespace(kobj));
1943 		if (error)
1944 			goto out;
1945 	}
1946 
1947 	error = kobject_rename(kobj, new_name);
1948 	if (error)
1949 		goto out;
1950 
1951 out:
1952 	put_device(dev);
1953 
1954 	kfree(old_device_name);
1955 
1956 	return error;
1957 }
1958 EXPORT_SYMBOL_GPL(device_rename);
1959 
1960 static int device_move_class_links(struct device *dev,
1961 				   struct device *old_parent,
1962 				   struct device *new_parent)
1963 {
1964 	int error = 0;
1965 
1966 	if (old_parent)
1967 		sysfs_remove_link(&dev->kobj, "device");
1968 	if (new_parent)
1969 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
1970 					  "device");
1971 	return error;
1972 }
1973 
1974 /**
1975  * device_move - moves a device to a new parent
1976  * @dev: the pointer to the struct device to be moved
1977  * @new_parent: the new parent of the device (can by NULL)
1978  * @dpm_order: how to reorder the dpm_list
1979  */
1980 int device_move(struct device *dev, struct device *new_parent,
1981 		enum dpm_order dpm_order)
1982 {
1983 	int error;
1984 	struct device *old_parent;
1985 	struct kobject *new_parent_kobj;
1986 
1987 	dev = get_device(dev);
1988 	if (!dev)
1989 		return -EINVAL;
1990 
1991 	device_pm_lock();
1992 	new_parent = get_device(new_parent);
1993 	new_parent_kobj = get_device_parent(dev, new_parent);
1994 
1995 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
1996 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
1997 	error = kobject_move(&dev->kobj, new_parent_kobj);
1998 	if (error) {
1999 		cleanup_glue_dir(dev, new_parent_kobj);
2000 		put_device(new_parent);
2001 		goto out;
2002 	}
2003 	old_parent = dev->parent;
2004 	dev->parent = new_parent;
2005 	if (old_parent)
2006 		klist_remove(&dev->p->knode_parent);
2007 	if (new_parent) {
2008 		klist_add_tail(&dev->p->knode_parent,
2009 			       &new_parent->p->klist_children);
2010 		set_dev_node(dev, dev_to_node(new_parent));
2011 	}
2012 
2013 	if (dev->class) {
2014 		error = device_move_class_links(dev, old_parent, new_parent);
2015 		if (error) {
2016 			/* We ignore errors on cleanup since we're hosed anyway... */
2017 			device_move_class_links(dev, new_parent, old_parent);
2018 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
2019 				if (new_parent)
2020 					klist_remove(&dev->p->knode_parent);
2021 				dev->parent = old_parent;
2022 				if (old_parent) {
2023 					klist_add_tail(&dev->p->knode_parent,
2024 						       &old_parent->p->klist_children);
2025 					set_dev_node(dev, dev_to_node(old_parent));
2026 				}
2027 			}
2028 			cleanup_glue_dir(dev, new_parent_kobj);
2029 			put_device(new_parent);
2030 			goto out;
2031 		}
2032 	}
2033 	switch (dpm_order) {
2034 	case DPM_ORDER_NONE:
2035 		break;
2036 	case DPM_ORDER_DEV_AFTER_PARENT:
2037 		device_pm_move_after(dev, new_parent);
2038 		devices_kset_move_after(dev, new_parent);
2039 		break;
2040 	case DPM_ORDER_PARENT_BEFORE_DEV:
2041 		device_pm_move_before(new_parent, dev);
2042 		devices_kset_move_before(new_parent, dev);
2043 		break;
2044 	case DPM_ORDER_DEV_LAST:
2045 		device_pm_move_last(dev);
2046 		devices_kset_move_last(dev);
2047 		break;
2048 	}
2049 
2050 	put_device(old_parent);
2051 out:
2052 	device_pm_unlock();
2053 	put_device(dev);
2054 	return error;
2055 }
2056 EXPORT_SYMBOL_GPL(device_move);
2057 
2058 /**
2059  * device_shutdown - call ->shutdown() on each device to shutdown.
2060  */
2061 void device_shutdown(void)
2062 {
2063 	struct device *dev, *parent;
2064 
2065 	spin_lock(&devices_kset->list_lock);
2066 	/*
2067 	 * Walk the devices list backward, shutting down each in turn.
2068 	 * Beware that device unplug events may also start pulling
2069 	 * devices offline, even as the system is shutting down.
2070 	 */
2071 	while (!list_empty(&devices_kset->list)) {
2072 		dev = list_entry(devices_kset->list.prev, struct device,
2073 				kobj.entry);
2074 
2075 		/*
2076 		 * hold reference count of device's parent to
2077 		 * prevent it from being freed because parent's
2078 		 * lock is to be held
2079 		 */
2080 		parent = get_device(dev->parent);
2081 		get_device(dev);
2082 		/*
2083 		 * Make sure the device is off the kset list, in the
2084 		 * event that dev->*->shutdown() doesn't remove it.
2085 		 */
2086 		list_del_init(&dev->kobj.entry);
2087 		spin_unlock(&devices_kset->list_lock);
2088 
2089 		/* hold lock to avoid race with probe/release */
2090 		if (parent)
2091 			device_lock(parent);
2092 		device_lock(dev);
2093 
2094 		/* Don't allow any more runtime suspends */
2095 		pm_runtime_get_noresume(dev);
2096 		pm_runtime_barrier(dev);
2097 
2098 		if (dev->bus && dev->bus->shutdown) {
2099 			if (initcall_debug)
2100 				dev_info(dev, "shutdown\n");
2101 			dev->bus->shutdown(dev);
2102 		} else if (dev->driver && dev->driver->shutdown) {
2103 			if (initcall_debug)
2104 				dev_info(dev, "shutdown\n");
2105 			dev->driver->shutdown(dev);
2106 		}
2107 
2108 		device_unlock(dev);
2109 		if (parent)
2110 			device_unlock(parent);
2111 
2112 		put_device(dev);
2113 		put_device(parent);
2114 
2115 		spin_lock(&devices_kset->list_lock);
2116 	}
2117 	spin_unlock(&devices_kset->list_lock);
2118 }
2119 
2120 /*
2121  * Device logging functions
2122  */
2123 
2124 #ifdef CONFIG_PRINTK
2125 static int
2126 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
2127 {
2128 	const char *subsys;
2129 	size_t pos = 0;
2130 
2131 	if (dev->class)
2132 		subsys = dev->class->name;
2133 	else if (dev->bus)
2134 		subsys = dev->bus->name;
2135 	else
2136 		return 0;
2137 
2138 	pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
2139 	if (pos >= hdrlen)
2140 		goto overflow;
2141 
2142 	/*
2143 	 * Add device identifier DEVICE=:
2144 	 *   b12:8         block dev_t
2145 	 *   c127:3        char dev_t
2146 	 *   n8            netdev ifindex
2147 	 *   +sound:card0  subsystem:devname
2148 	 */
2149 	if (MAJOR(dev->devt)) {
2150 		char c;
2151 
2152 		if (strcmp(subsys, "block") == 0)
2153 			c = 'b';
2154 		else
2155 			c = 'c';
2156 		pos++;
2157 		pos += snprintf(hdr + pos, hdrlen - pos,
2158 				"DEVICE=%c%u:%u",
2159 				c, MAJOR(dev->devt), MINOR(dev->devt));
2160 	} else if (strcmp(subsys, "net") == 0) {
2161 		struct net_device *net = to_net_dev(dev);
2162 
2163 		pos++;
2164 		pos += snprintf(hdr + pos, hdrlen - pos,
2165 				"DEVICE=n%u", net->ifindex);
2166 	} else {
2167 		pos++;
2168 		pos += snprintf(hdr + pos, hdrlen - pos,
2169 				"DEVICE=+%s:%s", subsys, dev_name(dev));
2170 	}
2171 
2172 	if (pos >= hdrlen)
2173 		goto overflow;
2174 
2175 	return pos;
2176 
2177 overflow:
2178 	dev_WARN(dev, "device/subsystem name too long");
2179 	return 0;
2180 }
2181 
2182 int dev_vprintk_emit(int level, const struct device *dev,
2183 		     const char *fmt, va_list args)
2184 {
2185 	char hdr[128];
2186 	size_t hdrlen;
2187 
2188 	hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
2189 
2190 	return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
2191 }
2192 EXPORT_SYMBOL(dev_vprintk_emit);
2193 
2194 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
2195 {
2196 	va_list args;
2197 	int r;
2198 
2199 	va_start(args, fmt);
2200 
2201 	r = dev_vprintk_emit(level, dev, fmt, args);
2202 
2203 	va_end(args);
2204 
2205 	return r;
2206 }
2207 EXPORT_SYMBOL(dev_printk_emit);
2208 
2209 static void __dev_printk(const char *level, const struct device *dev,
2210 			struct va_format *vaf)
2211 {
2212 	if (dev)
2213 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
2214 				dev_driver_string(dev), dev_name(dev), vaf);
2215 	else
2216 		printk("%s(NULL device *): %pV", level, vaf);
2217 }
2218 
2219 void dev_printk(const char *level, const struct device *dev,
2220 		const char *fmt, ...)
2221 {
2222 	struct va_format vaf;
2223 	va_list args;
2224 
2225 	va_start(args, fmt);
2226 
2227 	vaf.fmt = fmt;
2228 	vaf.va = &args;
2229 
2230 	__dev_printk(level, dev, &vaf);
2231 
2232 	va_end(args);
2233 }
2234 EXPORT_SYMBOL(dev_printk);
2235 
2236 #define define_dev_printk_level(func, kern_level)		\
2237 void func(const struct device *dev, const char *fmt, ...)	\
2238 {								\
2239 	struct va_format vaf;					\
2240 	va_list args;						\
2241 								\
2242 	va_start(args, fmt);					\
2243 								\
2244 	vaf.fmt = fmt;						\
2245 	vaf.va = &args;						\
2246 								\
2247 	__dev_printk(kern_level, dev, &vaf);			\
2248 								\
2249 	va_end(args);						\
2250 }								\
2251 EXPORT_SYMBOL(func);
2252 
2253 define_dev_printk_level(dev_emerg, KERN_EMERG);
2254 define_dev_printk_level(dev_alert, KERN_ALERT);
2255 define_dev_printk_level(dev_crit, KERN_CRIT);
2256 define_dev_printk_level(dev_err, KERN_ERR);
2257 define_dev_printk_level(dev_warn, KERN_WARNING);
2258 define_dev_printk_level(dev_notice, KERN_NOTICE);
2259 define_dev_printk_level(_dev_info, KERN_INFO);
2260 
2261 #endif
2262 
2263 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
2264 {
2265 	return fwnode && !IS_ERR(fwnode->secondary);
2266 }
2267 
2268 /**
2269  * set_primary_fwnode - Change the primary firmware node of a given device.
2270  * @dev: Device to handle.
2271  * @fwnode: New primary firmware node of the device.
2272  *
2273  * Set the device's firmware node pointer to @fwnode, but if a secondary
2274  * firmware node of the device is present, preserve it.
2275  */
2276 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
2277 {
2278 	if (fwnode) {
2279 		struct fwnode_handle *fn = dev->fwnode;
2280 
2281 		if (fwnode_is_primary(fn))
2282 			fn = fn->secondary;
2283 
2284 		if (fn) {
2285 			WARN_ON(fwnode->secondary);
2286 			fwnode->secondary = fn;
2287 		}
2288 		dev->fwnode = fwnode;
2289 	} else {
2290 		dev->fwnode = fwnode_is_primary(dev->fwnode) ?
2291 			dev->fwnode->secondary : NULL;
2292 	}
2293 }
2294 EXPORT_SYMBOL_GPL(set_primary_fwnode);
2295 
2296 /**
2297  * set_secondary_fwnode - Change the secondary firmware node of a given device.
2298  * @dev: Device to handle.
2299  * @fwnode: New secondary firmware node of the device.
2300  *
2301  * If a primary firmware node of the device is present, set its secondary
2302  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
2303  * @fwnode.
2304  */
2305 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
2306 {
2307 	if (fwnode)
2308 		fwnode->secondary = ERR_PTR(-ENODEV);
2309 
2310 	if (fwnode_is_primary(dev->fwnode))
2311 		dev->fwnode->secondary = fwnode;
2312 	else
2313 		dev->fwnode = fwnode;
2314 }
2315