xref: /openbmc/linux/drivers/base/core.c (revision e5c86679)
1 /*
2  * drivers/base/core.c - core driver model code (device registration, etc)
3  *
4  * Copyright (c) 2002-3 Patrick Mochel
5  * Copyright (c) 2002-3 Open Source Development Labs
6  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
7  * Copyright (c) 2006 Novell, Inc.
8  *
9  * This file is released under the GPLv2
10  *
11  */
12 
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/kallsyms.h>
26 #include <linux/mutex.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/netdevice.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sysfs.h>
31 
32 #include "base.h"
33 #include "power/power.h"
34 
35 #ifdef CONFIG_SYSFS_DEPRECATED
36 #ifdef CONFIG_SYSFS_DEPRECATED_V2
37 long sysfs_deprecated = 1;
38 #else
39 long sysfs_deprecated = 0;
40 #endif
41 static int __init sysfs_deprecated_setup(char *arg)
42 {
43 	return kstrtol(arg, 10, &sysfs_deprecated);
44 }
45 early_param("sysfs.deprecated", sysfs_deprecated_setup);
46 #endif
47 
48 /* Device links support. */
49 
50 #ifdef CONFIG_SRCU
51 static DEFINE_MUTEX(device_links_lock);
52 DEFINE_STATIC_SRCU(device_links_srcu);
53 
54 static inline void device_links_write_lock(void)
55 {
56 	mutex_lock(&device_links_lock);
57 }
58 
59 static inline void device_links_write_unlock(void)
60 {
61 	mutex_unlock(&device_links_lock);
62 }
63 
64 int device_links_read_lock(void)
65 {
66 	return srcu_read_lock(&device_links_srcu);
67 }
68 
69 void device_links_read_unlock(int idx)
70 {
71 	srcu_read_unlock(&device_links_srcu, idx);
72 }
73 #else /* !CONFIG_SRCU */
74 static DECLARE_RWSEM(device_links_lock);
75 
76 static inline void device_links_write_lock(void)
77 {
78 	down_write(&device_links_lock);
79 }
80 
81 static inline void device_links_write_unlock(void)
82 {
83 	up_write(&device_links_lock);
84 }
85 
86 int device_links_read_lock(void)
87 {
88 	down_read(&device_links_lock);
89 	return 0;
90 }
91 
92 void device_links_read_unlock(int not_used)
93 {
94 	up_read(&device_links_lock);
95 }
96 #endif /* !CONFIG_SRCU */
97 
98 /**
99  * device_is_dependent - Check if one device depends on another one
100  * @dev: Device to check dependencies for.
101  * @target: Device to check against.
102  *
103  * Check if @target depends on @dev or any device dependent on it (its child or
104  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
105  */
106 static int device_is_dependent(struct device *dev, void *target)
107 {
108 	struct device_link *link;
109 	int ret;
110 
111 	if (WARN_ON(dev == target))
112 		return 1;
113 
114 	ret = device_for_each_child(dev, target, device_is_dependent);
115 	if (ret)
116 		return ret;
117 
118 	list_for_each_entry(link, &dev->links.consumers, s_node) {
119 		if (WARN_ON(link->consumer == target))
120 			return 1;
121 
122 		ret = device_is_dependent(link->consumer, target);
123 		if (ret)
124 			break;
125 	}
126 	return ret;
127 }
128 
129 static int device_reorder_to_tail(struct device *dev, void *not_used)
130 {
131 	struct device_link *link;
132 
133 	/*
134 	 * Devices that have not been registered yet will be put to the ends
135 	 * of the lists during the registration, so skip them here.
136 	 */
137 	if (device_is_registered(dev))
138 		devices_kset_move_last(dev);
139 
140 	if (device_pm_initialized(dev))
141 		device_pm_move_last(dev);
142 
143 	device_for_each_child(dev, NULL, device_reorder_to_tail);
144 	list_for_each_entry(link, &dev->links.consumers, s_node)
145 		device_reorder_to_tail(link->consumer, NULL);
146 
147 	return 0;
148 }
149 
150 /**
151  * device_link_add - Create a link between two devices.
152  * @consumer: Consumer end of the link.
153  * @supplier: Supplier end of the link.
154  * @flags: Link flags.
155  *
156  * The caller is responsible for the proper synchronization of the link creation
157  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
158  * runtime PM framework to take the link into account.  Second, if the
159  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
160  * be forced into the active metastate and reference-counted upon the creation
161  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
162  * ignored.
163  *
164  * If the DL_FLAG_AUTOREMOVE is set, the link will be removed automatically
165  * when the consumer device driver unbinds from it.  The combination of both
166  * DL_FLAG_AUTOREMOVE and DL_FLAG_STATELESS set is invalid and will cause NULL
167  * to be returned.
168  *
169  * A side effect of the link creation is re-ordering of dpm_list and the
170  * devices_kset list by moving the consumer device and all devices depending
171  * on it to the ends of these lists (that does not happen to devices that have
172  * not been registered when this function is called).
173  *
174  * The supplier device is required to be registered when this function is called
175  * and NULL will be returned if that is not the case.  The consumer device need
176  * not be registered, however.
177  */
178 struct device_link *device_link_add(struct device *consumer,
179 				    struct device *supplier, u32 flags)
180 {
181 	struct device_link *link;
182 
183 	if (!consumer || !supplier ||
184 	    ((flags & DL_FLAG_STATELESS) && (flags & DL_FLAG_AUTOREMOVE)))
185 		return NULL;
186 
187 	device_links_write_lock();
188 	device_pm_lock();
189 
190 	/*
191 	 * If the supplier has not been fully registered yet or there is a
192 	 * reverse dependency between the consumer and the supplier already in
193 	 * the graph, return NULL.
194 	 */
195 	if (!device_pm_initialized(supplier)
196 	    || device_is_dependent(consumer, supplier)) {
197 		link = NULL;
198 		goto out;
199 	}
200 
201 	list_for_each_entry(link, &supplier->links.consumers, s_node)
202 		if (link->consumer == consumer)
203 			goto out;
204 
205 	link = kzalloc(sizeof(*link), GFP_KERNEL);
206 	if (!link)
207 		goto out;
208 
209 	if (flags & DL_FLAG_PM_RUNTIME) {
210 		if (flags & DL_FLAG_RPM_ACTIVE) {
211 			if (pm_runtime_get_sync(supplier) < 0) {
212 				pm_runtime_put_noidle(supplier);
213 				kfree(link);
214 				link = NULL;
215 				goto out;
216 			}
217 			link->rpm_active = true;
218 		}
219 		pm_runtime_new_link(consumer);
220 	}
221 	get_device(supplier);
222 	link->supplier = supplier;
223 	INIT_LIST_HEAD(&link->s_node);
224 	get_device(consumer);
225 	link->consumer = consumer;
226 	INIT_LIST_HEAD(&link->c_node);
227 	link->flags = flags;
228 
229 	/* Determine the initial link state. */
230 	if (flags & DL_FLAG_STATELESS) {
231 		link->status = DL_STATE_NONE;
232 	} else {
233 		switch (supplier->links.status) {
234 		case DL_DEV_DRIVER_BOUND:
235 			switch (consumer->links.status) {
236 			case DL_DEV_PROBING:
237 				/*
238 				 * Balance the decrementation of the supplier's
239 				 * runtime PM usage counter after consumer probe
240 				 * in driver_probe_device().
241 				 */
242 				if (flags & DL_FLAG_PM_RUNTIME)
243 					pm_runtime_get_sync(supplier);
244 
245 				link->status = DL_STATE_CONSUMER_PROBE;
246 				break;
247 			case DL_DEV_DRIVER_BOUND:
248 				link->status = DL_STATE_ACTIVE;
249 				break;
250 			default:
251 				link->status = DL_STATE_AVAILABLE;
252 				break;
253 			}
254 			break;
255 		case DL_DEV_UNBINDING:
256 			link->status = DL_STATE_SUPPLIER_UNBIND;
257 			break;
258 		default:
259 			link->status = DL_STATE_DORMANT;
260 			break;
261 		}
262 	}
263 
264 	/*
265 	 * Move the consumer and all of the devices depending on it to the end
266 	 * of dpm_list and the devices_kset list.
267 	 *
268 	 * It is necessary to hold dpm_list locked throughout all that or else
269 	 * we may end up suspending with a wrong ordering of it.
270 	 */
271 	device_reorder_to_tail(consumer, NULL);
272 
273 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
274 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
275 
276 	dev_info(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
277 
278  out:
279 	device_pm_unlock();
280 	device_links_write_unlock();
281 	return link;
282 }
283 EXPORT_SYMBOL_GPL(device_link_add);
284 
285 static void device_link_free(struct device_link *link)
286 {
287 	put_device(link->consumer);
288 	put_device(link->supplier);
289 	kfree(link);
290 }
291 
292 #ifdef CONFIG_SRCU
293 static void __device_link_free_srcu(struct rcu_head *rhead)
294 {
295 	device_link_free(container_of(rhead, struct device_link, rcu_head));
296 }
297 
298 static void __device_link_del(struct device_link *link)
299 {
300 	dev_info(link->consumer, "Dropping the link to %s\n",
301 		 dev_name(link->supplier));
302 
303 	if (link->flags & DL_FLAG_PM_RUNTIME)
304 		pm_runtime_drop_link(link->consumer);
305 
306 	list_del_rcu(&link->s_node);
307 	list_del_rcu(&link->c_node);
308 	call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
309 }
310 #else /* !CONFIG_SRCU */
311 static void __device_link_del(struct device_link *link)
312 {
313 	dev_info(link->consumer, "Dropping the link to %s\n",
314 		 dev_name(link->supplier));
315 
316 	list_del(&link->s_node);
317 	list_del(&link->c_node);
318 	device_link_free(link);
319 }
320 #endif /* !CONFIG_SRCU */
321 
322 /**
323  * device_link_del - Delete a link between two devices.
324  * @link: Device link to delete.
325  *
326  * The caller must ensure proper synchronization of this function with runtime
327  * PM.
328  */
329 void device_link_del(struct device_link *link)
330 {
331 	device_links_write_lock();
332 	device_pm_lock();
333 	__device_link_del(link);
334 	device_pm_unlock();
335 	device_links_write_unlock();
336 }
337 EXPORT_SYMBOL_GPL(device_link_del);
338 
339 static void device_links_missing_supplier(struct device *dev)
340 {
341 	struct device_link *link;
342 
343 	list_for_each_entry(link, &dev->links.suppliers, c_node)
344 		if (link->status == DL_STATE_CONSUMER_PROBE)
345 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
346 }
347 
348 /**
349  * device_links_check_suppliers - Check presence of supplier drivers.
350  * @dev: Consumer device.
351  *
352  * Check links from this device to any suppliers.  Walk the list of the device's
353  * links to suppliers and see if all of them are available.  If not, simply
354  * return -EPROBE_DEFER.
355  *
356  * We need to guarantee that the supplier will not go away after the check has
357  * been positive here.  It only can go away in __device_release_driver() and
358  * that function  checks the device's links to consumers.  This means we need to
359  * mark the link as "consumer probe in progress" to make the supplier removal
360  * wait for us to complete (or bad things may happen).
361  *
362  * Links with the DL_FLAG_STATELESS flag set are ignored.
363  */
364 int device_links_check_suppliers(struct device *dev)
365 {
366 	struct device_link *link;
367 	int ret = 0;
368 
369 	device_links_write_lock();
370 
371 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
372 		if (link->flags & DL_FLAG_STATELESS)
373 			continue;
374 
375 		if (link->status != DL_STATE_AVAILABLE) {
376 			device_links_missing_supplier(dev);
377 			ret = -EPROBE_DEFER;
378 			break;
379 		}
380 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
381 	}
382 	dev->links.status = DL_DEV_PROBING;
383 
384 	device_links_write_unlock();
385 	return ret;
386 }
387 
388 /**
389  * device_links_driver_bound - Update device links after probing its driver.
390  * @dev: Device to update the links for.
391  *
392  * The probe has been successful, so update links from this device to any
393  * consumers by changing their status to "available".
394  *
395  * Also change the status of @dev's links to suppliers to "active".
396  *
397  * Links with the DL_FLAG_STATELESS flag set are ignored.
398  */
399 void device_links_driver_bound(struct device *dev)
400 {
401 	struct device_link *link;
402 
403 	device_links_write_lock();
404 
405 	list_for_each_entry(link, &dev->links.consumers, s_node) {
406 		if (link->flags & DL_FLAG_STATELESS)
407 			continue;
408 
409 		WARN_ON(link->status != DL_STATE_DORMANT);
410 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
411 	}
412 
413 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
414 		if (link->flags & DL_FLAG_STATELESS)
415 			continue;
416 
417 		WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
418 		WRITE_ONCE(link->status, DL_STATE_ACTIVE);
419 	}
420 
421 	dev->links.status = DL_DEV_DRIVER_BOUND;
422 
423 	device_links_write_unlock();
424 }
425 
426 /**
427  * __device_links_no_driver - Update links of a device without a driver.
428  * @dev: Device without a drvier.
429  *
430  * Delete all non-persistent links from this device to any suppliers.
431  *
432  * Persistent links stay around, but their status is changed to "available",
433  * unless they already are in the "supplier unbind in progress" state in which
434  * case they need not be updated.
435  *
436  * Links with the DL_FLAG_STATELESS flag set are ignored.
437  */
438 static void __device_links_no_driver(struct device *dev)
439 {
440 	struct device_link *link, *ln;
441 
442 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
443 		if (link->flags & DL_FLAG_STATELESS)
444 			continue;
445 
446 		if (link->flags & DL_FLAG_AUTOREMOVE)
447 			__device_link_del(link);
448 		else if (link->status != DL_STATE_SUPPLIER_UNBIND)
449 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
450 	}
451 
452 	dev->links.status = DL_DEV_NO_DRIVER;
453 }
454 
455 void device_links_no_driver(struct device *dev)
456 {
457 	device_links_write_lock();
458 	__device_links_no_driver(dev);
459 	device_links_write_unlock();
460 }
461 
462 /**
463  * device_links_driver_cleanup - Update links after driver removal.
464  * @dev: Device whose driver has just gone away.
465  *
466  * Update links to consumers for @dev by changing their status to "dormant" and
467  * invoke %__device_links_no_driver() to update links to suppliers for it as
468  * appropriate.
469  *
470  * Links with the DL_FLAG_STATELESS flag set are ignored.
471  */
472 void device_links_driver_cleanup(struct device *dev)
473 {
474 	struct device_link *link;
475 
476 	device_links_write_lock();
477 
478 	list_for_each_entry(link, &dev->links.consumers, s_node) {
479 		if (link->flags & DL_FLAG_STATELESS)
480 			continue;
481 
482 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE);
483 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
484 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
485 	}
486 
487 	__device_links_no_driver(dev);
488 
489 	device_links_write_unlock();
490 }
491 
492 /**
493  * device_links_busy - Check if there are any busy links to consumers.
494  * @dev: Device to check.
495  *
496  * Check each consumer of the device and return 'true' if its link's status
497  * is one of "consumer probe" or "active" (meaning that the given consumer is
498  * probing right now or its driver is present).  Otherwise, change the link
499  * state to "supplier unbind" to prevent the consumer from being probed
500  * successfully going forward.
501  *
502  * Return 'false' if there are no probing or active consumers.
503  *
504  * Links with the DL_FLAG_STATELESS flag set are ignored.
505  */
506 bool device_links_busy(struct device *dev)
507 {
508 	struct device_link *link;
509 	bool ret = false;
510 
511 	device_links_write_lock();
512 
513 	list_for_each_entry(link, &dev->links.consumers, s_node) {
514 		if (link->flags & DL_FLAG_STATELESS)
515 			continue;
516 
517 		if (link->status == DL_STATE_CONSUMER_PROBE
518 		    || link->status == DL_STATE_ACTIVE) {
519 			ret = true;
520 			break;
521 		}
522 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
523 	}
524 
525 	dev->links.status = DL_DEV_UNBINDING;
526 
527 	device_links_write_unlock();
528 	return ret;
529 }
530 
531 /**
532  * device_links_unbind_consumers - Force unbind consumers of the given device.
533  * @dev: Device to unbind the consumers of.
534  *
535  * Walk the list of links to consumers for @dev and if any of them is in the
536  * "consumer probe" state, wait for all device probes in progress to complete
537  * and start over.
538  *
539  * If that's not the case, change the status of the link to "supplier unbind"
540  * and check if the link was in the "active" state.  If so, force the consumer
541  * driver to unbind and start over (the consumer will not re-probe as we have
542  * changed the state of the link already).
543  *
544  * Links with the DL_FLAG_STATELESS flag set are ignored.
545  */
546 void device_links_unbind_consumers(struct device *dev)
547 {
548 	struct device_link *link;
549 
550  start:
551 	device_links_write_lock();
552 
553 	list_for_each_entry(link, &dev->links.consumers, s_node) {
554 		enum device_link_state status;
555 
556 		if (link->flags & DL_FLAG_STATELESS)
557 			continue;
558 
559 		status = link->status;
560 		if (status == DL_STATE_CONSUMER_PROBE) {
561 			device_links_write_unlock();
562 
563 			wait_for_device_probe();
564 			goto start;
565 		}
566 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
567 		if (status == DL_STATE_ACTIVE) {
568 			struct device *consumer = link->consumer;
569 
570 			get_device(consumer);
571 
572 			device_links_write_unlock();
573 
574 			device_release_driver_internal(consumer, NULL,
575 						       consumer->parent);
576 			put_device(consumer);
577 			goto start;
578 		}
579 	}
580 
581 	device_links_write_unlock();
582 }
583 
584 /**
585  * device_links_purge - Delete existing links to other devices.
586  * @dev: Target device.
587  */
588 static void device_links_purge(struct device *dev)
589 {
590 	struct device_link *link, *ln;
591 
592 	/*
593 	 * Delete all of the remaining links from this device to any other
594 	 * devices (either consumers or suppliers).
595 	 */
596 	device_links_write_lock();
597 
598 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
599 		WARN_ON(link->status == DL_STATE_ACTIVE);
600 		__device_link_del(link);
601 	}
602 
603 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
604 		WARN_ON(link->status != DL_STATE_DORMANT &&
605 			link->status != DL_STATE_NONE);
606 		__device_link_del(link);
607 	}
608 
609 	device_links_write_unlock();
610 }
611 
612 /* Device links support end. */
613 
614 int (*platform_notify)(struct device *dev) = NULL;
615 int (*platform_notify_remove)(struct device *dev) = NULL;
616 static struct kobject *dev_kobj;
617 struct kobject *sysfs_dev_char_kobj;
618 struct kobject *sysfs_dev_block_kobj;
619 
620 static DEFINE_MUTEX(device_hotplug_lock);
621 
622 void lock_device_hotplug(void)
623 {
624 	mutex_lock(&device_hotplug_lock);
625 }
626 
627 void unlock_device_hotplug(void)
628 {
629 	mutex_unlock(&device_hotplug_lock);
630 }
631 
632 int lock_device_hotplug_sysfs(void)
633 {
634 	if (mutex_trylock(&device_hotplug_lock))
635 		return 0;
636 
637 	/* Avoid busy looping (5 ms of sleep should do). */
638 	msleep(5);
639 	return restart_syscall();
640 }
641 
642 #ifdef CONFIG_BLOCK
643 static inline int device_is_not_partition(struct device *dev)
644 {
645 	return !(dev->type == &part_type);
646 }
647 #else
648 static inline int device_is_not_partition(struct device *dev)
649 {
650 	return 1;
651 }
652 #endif
653 
654 /**
655  * dev_driver_string - Return a device's driver name, if at all possible
656  * @dev: struct device to get the name of
657  *
658  * Will return the device's driver's name if it is bound to a device.  If
659  * the device is not bound to a driver, it will return the name of the bus
660  * it is attached to.  If it is not attached to a bus either, an empty
661  * string will be returned.
662  */
663 const char *dev_driver_string(const struct device *dev)
664 {
665 	struct device_driver *drv;
666 
667 	/* dev->driver can change to NULL underneath us because of unbinding,
668 	 * so be careful about accessing it.  dev->bus and dev->class should
669 	 * never change once they are set, so they don't need special care.
670 	 */
671 	drv = ACCESS_ONCE(dev->driver);
672 	return drv ? drv->name :
673 			(dev->bus ? dev->bus->name :
674 			(dev->class ? dev->class->name : ""));
675 }
676 EXPORT_SYMBOL(dev_driver_string);
677 
678 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
679 
680 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
681 			     char *buf)
682 {
683 	struct device_attribute *dev_attr = to_dev_attr(attr);
684 	struct device *dev = kobj_to_dev(kobj);
685 	ssize_t ret = -EIO;
686 
687 	if (dev_attr->show)
688 		ret = dev_attr->show(dev, dev_attr, buf);
689 	if (ret >= (ssize_t)PAGE_SIZE) {
690 		print_symbol("dev_attr_show: %s returned bad count\n",
691 				(unsigned long)dev_attr->show);
692 	}
693 	return ret;
694 }
695 
696 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
697 			      const char *buf, size_t count)
698 {
699 	struct device_attribute *dev_attr = to_dev_attr(attr);
700 	struct device *dev = kobj_to_dev(kobj);
701 	ssize_t ret = -EIO;
702 
703 	if (dev_attr->store)
704 		ret = dev_attr->store(dev, dev_attr, buf, count);
705 	return ret;
706 }
707 
708 static const struct sysfs_ops dev_sysfs_ops = {
709 	.show	= dev_attr_show,
710 	.store	= dev_attr_store,
711 };
712 
713 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
714 
715 ssize_t device_store_ulong(struct device *dev,
716 			   struct device_attribute *attr,
717 			   const char *buf, size_t size)
718 {
719 	struct dev_ext_attribute *ea = to_ext_attr(attr);
720 	char *end;
721 	unsigned long new = simple_strtoul(buf, &end, 0);
722 	if (end == buf)
723 		return -EINVAL;
724 	*(unsigned long *)(ea->var) = new;
725 	/* Always return full write size even if we didn't consume all */
726 	return size;
727 }
728 EXPORT_SYMBOL_GPL(device_store_ulong);
729 
730 ssize_t device_show_ulong(struct device *dev,
731 			  struct device_attribute *attr,
732 			  char *buf)
733 {
734 	struct dev_ext_attribute *ea = to_ext_attr(attr);
735 	return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
736 }
737 EXPORT_SYMBOL_GPL(device_show_ulong);
738 
739 ssize_t device_store_int(struct device *dev,
740 			 struct device_attribute *attr,
741 			 const char *buf, size_t size)
742 {
743 	struct dev_ext_attribute *ea = to_ext_attr(attr);
744 	char *end;
745 	long new = simple_strtol(buf, &end, 0);
746 	if (end == buf || new > INT_MAX || new < INT_MIN)
747 		return -EINVAL;
748 	*(int *)(ea->var) = new;
749 	/* Always return full write size even if we didn't consume all */
750 	return size;
751 }
752 EXPORT_SYMBOL_GPL(device_store_int);
753 
754 ssize_t device_show_int(struct device *dev,
755 			struct device_attribute *attr,
756 			char *buf)
757 {
758 	struct dev_ext_attribute *ea = to_ext_attr(attr);
759 
760 	return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
761 }
762 EXPORT_SYMBOL_GPL(device_show_int);
763 
764 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
765 			  const char *buf, size_t size)
766 {
767 	struct dev_ext_attribute *ea = to_ext_attr(attr);
768 
769 	if (strtobool(buf, ea->var) < 0)
770 		return -EINVAL;
771 
772 	return size;
773 }
774 EXPORT_SYMBOL_GPL(device_store_bool);
775 
776 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
777 			 char *buf)
778 {
779 	struct dev_ext_attribute *ea = to_ext_attr(attr);
780 
781 	return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
782 }
783 EXPORT_SYMBOL_GPL(device_show_bool);
784 
785 /**
786  * device_release - free device structure.
787  * @kobj: device's kobject.
788  *
789  * This is called once the reference count for the object
790  * reaches 0. We forward the call to the device's release
791  * method, which should handle actually freeing the structure.
792  */
793 static void device_release(struct kobject *kobj)
794 {
795 	struct device *dev = kobj_to_dev(kobj);
796 	struct device_private *p = dev->p;
797 
798 	/*
799 	 * Some platform devices are driven without driver attached
800 	 * and managed resources may have been acquired.  Make sure
801 	 * all resources are released.
802 	 *
803 	 * Drivers still can add resources into device after device
804 	 * is deleted but alive, so release devres here to avoid
805 	 * possible memory leak.
806 	 */
807 	devres_release_all(dev);
808 
809 	if (dev->release)
810 		dev->release(dev);
811 	else if (dev->type && dev->type->release)
812 		dev->type->release(dev);
813 	else if (dev->class && dev->class->dev_release)
814 		dev->class->dev_release(dev);
815 	else
816 		WARN(1, KERN_ERR "Device '%s' does not have a release() "
817 			"function, it is broken and must be fixed.\n",
818 			dev_name(dev));
819 	kfree(p);
820 }
821 
822 static const void *device_namespace(struct kobject *kobj)
823 {
824 	struct device *dev = kobj_to_dev(kobj);
825 	const void *ns = NULL;
826 
827 	if (dev->class && dev->class->ns_type)
828 		ns = dev->class->namespace(dev);
829 
830 	return ns;
831 }
832 
833 static struct kobj_type device_ktype = {
834 	.release	= device_release,
835 	.sysfs_ops	= &dev_sysfs_ops,
836 	.namespace	= device_namespace,
837 };
838 
839 
840 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
841 {
842 	struct kobj_type *ktype = get_ktype(kobj);
843 
844 	if (ktype == &device_ktype) {
845 		struct device *dev = kobj_to_dev(kobj);
846 		if (dev->bus)
847 			return 1;
848 		if (dev->class)
849 			return 1;
850 	}
851 	return 0;
852 }
853 
854 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
855 {
856 	struct device *dev = kobj_to_dev(kobj);
857 
858 	if (dev->bus)
859 		return dev->bus->name;
860 	if (dev->class)
861 		return dev->class->name;
862 	return NULL;
863 }
864 
865 static int dev_uevent(struct kset *kset, struct kobject *kobj,
866 		      struct kobj_uevent_env *env)
867 {
868 	struct device *dev = kobj_to_dev(kobj);
869 	int retval = 0;
870 
871 	/* add device node properties if present */
872 	if (MAJOR(dev->devt)) {
873 		const char *tmp;
874 		const char *name;
875 		umode_t mode = 0;
876 		kuid_t uid = GLOBAL_ROOT_UID;
877 		kgid_t gid = GLOBAL_ROOT_GID;
878 
879 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
880 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
881 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
882 		if (name) {
883 			add_uevent_var(env, "DEVNAME=%s", name);
884 			if (mode)
885 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
886 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
887 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
888 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
889 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
890 			kfree(tmp);
891 		}
892 	}
893 
894 	if (dev->type && dev->type->name)
895 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
896 
897 	if (dev->driver)
898 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
899 
900 	/* Add common DT information about the device */
901 	of_device_uevent(dev, env);
902 
903 	/* have the bus specific function add its stuff */
904 	if (dev->bus && dev->bus->uevent) {
905 		retval = dev->bus->uevent(dev, env);
906 		if (retval)
907 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
908 				 dev_name(dev), __func__, retval);
909 	}
910 
911 	/* have the class specific function add its stuff */
912 	if (dev->class && dev->class->dev_uevent) {
913 		retval = dev->class->dev_uevent(dev, env);
914 		if (retval)
915 			pr_debug("device: '%s': %s: class uevent() "
916 				 "returned %d\n", dev_name(dev),
917 				 __func__, retval);
918 	}
919 
920 	/* have the device type specific function add its stuff */
921 	if (dev->type && dev->type->uevent) {
922 		retval = dev->type->uevent(dev, env);
923 		if (retval)
924 			pr_debug("device: '%s': %s: dev_type uevent() "
925 				 "returned %d\n", dev_name(dev),
926 				 __func__, retval);
927 	}
928 
929 	return retval;
930 }
931 
932 static const struct kset_uevent_ops device_uevent_ops = {
933 	.filter =	dev_uevent_filter,
934 	.name =		dev_uevent_name,
935 	.uevent =	dev_uevent,
936 };
937 
938 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
939 			   char *buf)
940 {
941 	struct kobject *top_kobj;
942 	struct kset *kset;
943 	struct kobj_uevent_env *env = NULL;
944 	int i;
945 	size_t count = 0;
946 	int retval;
947 
948 	/* search the kset, the device belongs to */
949 	top_kobj = &dev->kobj;
950 	while (!top_kobj->kset && top_kobj->parent)
951 		top_kobj = top_kobj->parent;
952 	if (!top_kobj->kset)
953 		goto out;
954 
955 	kset = top_kobj->kset;
956 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
957 		goto out;
958 
959 	/* respect filter */
960 	if (kset->uevent_ops && kset->uevent_ops->filter)
961 		if (!kset->uevent_ops->filter(kset, &dev->kobj))
962 			goto out;
963 
964 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
965 	if (!env)
966 		return -ENOMEM;
967 
968 	/* let the kset specific function add its keys */
969 	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
970 	if (retval)
971 		goto out;
972 
973 	/* copy keys to file */
974 	for (i = 0; i < env->envp_idx; i++)
975 		count += sprintf(&buf[count], "%s\n", env->envp[i]);
976 out:
977 	kfree(env);
978 	return count;
979 }
980 
981 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
982 			    const char *buf, size_t count)
983 {
984 	enum kobject_action action;
985 
986 	if (kobject_action_type(buf, count, &action) == 0)
987 		kobject_uevent(&dev->kobj, action);
988 	else
989 		dev_err(dev, "uevent: unknown action-string\n");
990 	return count;
991 }
992 static DEVICE_ATTR_RW(uevent);
993 
994 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
995 			   char *buf)
996 {
997 	bool val;
998 
999 	device_lock(dev);
1000 	val = !dev->offline;
1001 	device_unlock(dev);
1002 	return sprintf(buf, "%u\n", val);
1003 }
1004 
1005 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1006 			    const char *buf, size_t count)
1007 {
1008 	bool val;
1009 	int ret;
1010 
1011 	ret = strtobool(buf, &val);
1012 	if (ret < 0)
1013 		return ret;
1014 
1015 	ret = lock_device_hotplug_sysfs();
1016 	if (ret)
1017 		return ret;
1018 
1019 	ret = val ? device_online(dev) : device_offline(dev);
1020 	unlock_device_hotplug();
1021 	return ret < 0 ? ret : count;
1022 }
1023 static DEVICE_ATTR_RW(online);
1024 
1025 int device_add_groups(struct device *dev, const struct attribute_group **groups)
1026 {
1027 	return sysfs_create_groups(&dev->kobj, groups);
1028 }
1029 
1030 void device_remove_groups(struct device *dev,
1031 			  const struct attribute_group **groups)
1032 {
1033 	sysfs_remove_groups(&dev->kobj, groups);
1034 }
1035 
1036 static int device_add_attrs(struct device *dev)
1037 {
1038 	struct class *class = dev->class;
1039 	const struct device_type *type = dev->type;
1040 	int error;
1041 
1042 	if (class) {
1043 		error = device_add_groups(dev, class->dev_groups);
1044 		if (error)
1045 			return error;
1046 	}
1047 
1048 	if (type) {
1049 		error = device_add_groups(dev, type->groups);
1050 		if (error)
1051 			goto err_remove_class_groups;
1052 	}
1053 
1054 	error = device_add_groups(dev, dev->groups);
1055 	if (error)
1056 		goto err_remove_type_groups;
1057 
1058 	if (device_supports_offline(dev) && !dev->offline_disabled) {
1059 		error = device_create_file(dev, &dev_attr_online);
1060 		if (error)
1061 			goto err_remove_dev_groups;
1062 	}
1063 
1064 	return 0;
1065 
1066  err_remove_dev_groups:
1067 	device_remove_groups(dev, dev->groups);
1068  err_remove_type_groups:
1069 	if (type)
1070 		device_remove_groups(dev, type->groups);
1071  err_remove_class_groups:
1072 	if (class)
1073 		device_remove_groups(dev, class->dev_groups);
1074 
1075 	return error;
1076 }
1077 
1078 static void device_remove_attrs(struct device *dev)
1079 {
1080 	struct class *class = dev->class;
1081 	const struct device_type *type = dev->type;
1082 
1083 	device_remove_file(dev, &dev_attr_online);
1084 	device_remove_groups(dev, dev->groups);
1085 
1086 	if (type)
1087 		device_remove_groups(dev, type->groups);
1088 
1089 	if (class)
1090 		device_remove_groups(dev, class->dev_groups);
1091 }
1092 
1093 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1094 			char *buf)
1095 {
1096 	return print_dev_t(buf, dev->devt);
1097 }
1098 static DEVICE_ATTR_RO(dev);
1099 
1100 /* /sys/devices/ */
1101 struct kset *devices_kset;
1102 
1103 /**
1104  * devices_kset_move_before - Move device in the devices_kset's list.
1105  * @deva: Device to move.
1106  * @devb: Device @deva should come before.
1107  */
1108 static void devices_kset_move_before(struct device *deva, struct device *devb)
1109 {
1110 	if (!devices_kset)
1111 		return;
1112 	pr_debug("devices_kset: Moving %s before %s\n",
1113 		 dev_name(deva), dev_name(devb));
1114 	spin_lock(&devices_kset->list_lock);
1115 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1116 	spin_unlock(&devices_kset->list_lock);
1117 }
1118 
1119 /**
1120  * devices_kset_move_after - Move device in the devices_kset's list.
1121  * @deva: Device to move
1122  * @devb: Device @deva should come after.
1123  */
1124 static void devices_kset_move_after(struct device *deva, struct device *devb)
1125 {
1126 	if (!devices_kset)
1127 		return;
1128 	pr_debug("devices_kset: Moving %s after %s\n",
1129 		 dev_name(deva), dev_name(devb));
1130 	spin_lock(&devices_kset->list_lock);
1131 	list_move(&deva->kobj.entry, &devb->kobj.entry);
1132 	spin_unlock(&devices_kset->list_lock);
1133 }
1134 
1135 /**
1136  * devices_kset_move_last - move the device to the end of devices_kset's list.
1137  * @dev: device to move
1138  */
1139 void devices_kset_move_last(struct device *dev)
1140 {
1141 	if (!devices_kset)
1142 		return;
1143 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1144 	spin_lock(&devices_kset->list_lock);
1145 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
1146 	spin_unlock(&devices_kset->list_lock);
1147 }
1148 
1149 /**
1150  * device_create_file - create sysfs attribute file for device.
1151  * @dev: device.
1152  * @attr: device attribute descriptor.
1153  */
1154 int device_create_file(struct device *dev,
1155 		       const struct device_attribute *attr)
1156 {
1157 	int error = 0;
1158 
1159 	if (dev) {
1160 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1161 			"Attribute %s: write permission without 'store'\n",
1162 			attr->attr.name);
1163 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1164 			"Attribute %s: read permission without 'show'\n",
1165 			attr->attr.name);
1166 		error = sysfs_create_file(&dev->kobj, &attr->attr);
1167 	}
1168 
1169 	return error;
1170 }
1171 EXPORT_SYMBOL_GPL(device_create_file);
1172 
1173 /**
1174  * device_remove_file - remove sysfs attribute file.
1175  * @dev: device.
1176  * @attr: device attribute descriptor.
1177  */
1178 void device_remove_file(struct device *dev,
1179 			const struct device_attribute *attr)
1180 {
1181 	if (dev)
1182 		sysfs_remove_file(&dev->kobj, &attr->attr);
1183 }
1184 EXPORT_SYMBOL_GPL(device_remove_file);
1185 
1186 /**
1187  * device_remove_file_self - remove sysfs attribute file from its own method.
1188  * @dev: device.
1189  * @attr: device attribute descriptor.
1190  *
1191  * See kernfs_remove_self() for details.
1192  */
1193 bool device_remove_file_self(struct device *dev,
1194 			     const struct device_attribute *attr)
1195 {
1196 	if (dev)
1197 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1198 	else
1199 		return false;
1200 }
1201 EXPORT_SYMBOL_GPL(device_remove_file_self);
1202 
1203 /**
1204  * device_create_bin_file - create sysfs binary attribute file for device.
1205  * @dev: device.
1206  * @attr: device binary attribute descriptor.
1207  */
1208 int device_create_bin_file(struct device *dev,
1209 			   const struct bin_attribute *attr)
1210 {
1211 	int error = -EINVAL;
1212 	if (dev)
1213 		error = sysfs_create_bin_file(&dev->kobj, attr);
1214 	return error;
1215 }
1216 EXPORT_SYMBOL_GPL(device_create_bin_file);
1217 
1218 /**
1219  * device_remove_bin_file - remove sysfs binary attribute file
1220  * @dev: device.
1221  * @attr: device binary attribute descriptor.
1222  */
1223 void device_remove_bin_file(struct device *dev,
1224 			    const struct bin_attribute *attr)
1225 {
1226 	if (dev)
1227 		sysfs_remove_bin_file(&dev->kobj, attr);
1228 }
1229 EXPORT_SYMBOL_GPL(device_remove_bin_file);
1230 
1231 static void klist_children_get(struct klist_node *n)
1232 {
1233 	struct device_private *p = to_device_private_parent(n);
1234 	struct device *dev = p->device;
1235 
1236 	get_device(dev);
1237 }
1238 
1239 static void klist_children_put(struct klist_node *n)
1240 {
1241 	struct device_private *p = to_device_private_parent(n);
1242 	struct device *dev = p->device;
1243 
1244 	put_device(dev);
1245 }
1246 
1247 /**
1248  * device_initialize - init device structure.
1249  * @dev: device.
1250  *
1251  * This prepares the device for use by other layers by initializing
1252  * its fields.
1253  * It is the first half of device_register(), if called by
1254  * that function, though it can also be called separately, so one
1255  * may use @dev's fields. In particular, get_device()/put_device()
1256  * may be used for reference counting of @dev after calling this
1257  * function.
1258  *
1259  * All fields in @dev must be initialized by the caller to 0, except
1260  * for those explicitly set to some other value.  The simplest
1261  * approach is to use kzalloc() to allocate the structure containing
1262  * @dev.
1263  *
1264  * NOTE: Use put_device() to give up your reference instead of freeing
1265  * @dev directly once you have called this function.
1266  */
1267 void device_initialize(struct device *dev)
1268 {
1269 	dev->kobj.kset = devices_kset;
1270 	kobject_init(&dev->kobj, &device_ktype);
1271 	INIT_LIST_HEAD(&dev->dma_pools);
1272 	mutex_init(&dev->mutex);
1273 	lockdep_set_novalidate_class(&dev->mutex);
1274 	spin_lock_init(&dev->devres_lock);
1275 	INIT_LIST_HEAD(&dev->devres_head);
1276 	device_pm_init(dev);
1277 	set_dev_node(dev, -1);
1278 #ifdef CONFIG_GENERIC_MSI_IRQ
1279 	INIT_LIST_HEAD(&dev->msi_list);
1280 #endif
1281 	INIT_LIST_HEAD(&dev->links.consumers);
1282 	INIT_LIST_HEAD(&dev->links.suppliers);
1283 	dev->links.status = DL_DEV_NO_DRIVER;
1284 }
1285 EXPORT_SYMBOL_GPL(device_initialize);
1286 
1287 struct kobject *virtual_device_parent(struct device *dev)
1288 {
1289 	static struct kobject *virtual_dir = NULL;
1290 
1291 	if (!virtual_dir)
1292 		virtual_dir = kobject_create_and_add("virtual",
1293 						     &devices_kset->kobj);
1294 
1295 	return virtual_dir;
1296 }
1297 
1298 struct class_dir {
1299 	struct kobject kobj;
1300 	struct class *class;
1301 };
1302 
1303 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
1304 
1305 static void class_dir_release(struct kobject *kobj)
1306 {
1307 	struct class_dir *dir = to_class_dir(kobj);
1308 	kfree(dir);
1309 }
1310 
1311 static const
1312 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
1313 {
1314 	struct class_dir *dir = to_class_dir(kobj);
1315 	return dir->class->ns_type;
1316 }
1317 
1318 static struct kobj_type class_dir_ktype = {
1319 	.release	= class_dir_release,
1320 	.sysfs_ops	= &kobj_sysfs_ops,
1321 	.child_ns_type	= class_dir_child_ns_type
1322 };
1323 
1324 static struct kobject *
1325 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
1326 {
1327 	struct class_dir *dir;
1328 	int retval;
1329 
1330 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
1331 	if (!dir)
1332 		return NULL;
1333 
1334 	dir->class = class;
1335 	kobject_init(&dir->kobj, &class_dir_ktype);
1336 
1337 	dir->kobj.kset = &class->p->glue_dirs;
1338 
1339 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
1340 	if (retval < 0) {
1341 		kobject_put(&dir->kobj);
1342 		return NULL;
1343 	}
1344 	return &dir->kobj;
1345 }
1346 
1347 static DEFINE_MUTEX(gdp_mutex);
1348 
1349 static struct kobject *get_device_parent(struct device *dev,
1350 					 struct device *parent)
1351 {
1352 	if (dev->class) {
1353 		struct kobject *kobj = NULL;
1354 		struct kobject *parent_kobj;
1355 		struct kobject *k;
1356 
1357 #ifdef CONFIG_BLOCK
1358 		/* block disks show up in /sys/block */
1359 		if (sysfs_deprecated && dev->class == &block_class) {
1360 			if (parent && parent->class == &block_class)
1361 				return &parent->kobj;
1362 			return &block_class.p->subsys.kobj;
1363 		}
1364 #endif
1365 
1366 		/*
1367 		 * If we have no parent, we live in "virtual".
1368 		 * Class-devices with a non class-device as parent, live
1369 		 * in a "glue" directory to prevent namespace collisions.
1370 		 */
1371 		if (parent == NULL)
1372 			parent_kobj = virtual_device_parent(dev);
1373 		else if (parent->class && !dev->class->ns_type)
1374 			return &parent->kobj;
1375 		else
1376 			parent_kobj = &parent->kobj;
1377 
1378 		mutex_lock(&gdp_mutex);
1379 
1380 		/* find our class-directory at the parent and reference it */
1381 		spin_lock(&dev->class->p->glue_dirs.list_lock);
1382 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
1383 			if (k->parent == parent_kobj) {
1384 				kobj = kobject_get(k);
1385 				break;
1386 			}
1387 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
1388 		if (kobj) {
1389 			mutex_unlock(&gdp_mutex);
1390 			return kobj;
1391 		}
1392 
1393 		/* or create a new class-directory at the parent device */
1394 		k = class_dir_create_and_add(dev->class, parent_kobj);
1395 		/* do not emit an uevent for this simple "glue" directory */
1396 		mutex_unlock(&gdp_mutex);
1397 		return k;
1398 	}
1399 
1400 	/* subsystems can specify a default root directory for their devices */
1401 	if (!parent && dev->bus && dev->bus->dev_root)
1402 		return &dev->bus->dev_root->kobj;
1403 
1404 	if (parent)
1405 		return &parent->kobj;
1406 	return NULL;
1407 }
1408 
1409 static inline bool live_in_glue_dir(struct kobject *kobj,
1410 				    struct device *dev)
1411 {
1412 	if (!kobj || !dev->class ||
1413 	    kobj->kset != &dev->class->p->glue_dirs)
1414 		return false;
1415 	return true;
1416 }
1417 
1418 static inline struct kobject *get_glue_dir(struct device *dev)
1419 {
1420 	return dev->kobj.parent;
1421 }
1422 
1423 /*
1424  * make sure cleaning up dir as the last step, we need to make
1425  * sure .release handler of kobject is run with holding the
1426  * global lock
1427  */
1428 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
1429 {
1430 	/* see if we live in a "glue" directory */
1431 	if (!live_in_glue_dir(glue_dir, dev))
1432 		return;
1433 
1434 	mutex_lock(&gdp_mutex);
1435 	kobject_put(glue_dir);
1436 	mutex_unlock(&gdp_mutex);
1437 }
1438 
1439 static int device_add_class_symlinks(struct device *dev)
1440 {
1441 	struct device_node *of_node = dev_of_node(dev);
1442 	int error;
1443 
1444 	if (of_node) {
1445 		error = sysfs_create_link(&dev->kobj, &of_node->kobj,"of_node");
1446 		if (error)
1447 			dev_warn(dev, "Error %d creating of_node link\n",error);
1448 		/* An error here doesn't warrant bringing down the device */
1449 	}
1450 
1451 	if (!dev->class)
1452 		return 0;
1453 
1454 	error = sysfs_create_link(&dev->kobj,
1455 				  &dev->class->p->subsys.kobj,
1456 				  "subsystem");
1457 	if (error)
1458 		goto out_devnode;
1459 
1460 	if (dev->parent && device_is_not_partition(dev)) {
1461 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
1462 					  "device");
1463 		if (error)
1464 			goto out_subsys;
1465 	}
1466 
1467 #ifdef CONFIG_BLOCK
1468 	/* /sys/block has directories and does not need symlinks */
1469 	if (sysfs_deprecated && dev->class == &block_class)
1470 		return 0;
1471 #endif
1472 
1473 	/* link in the class directory pointing to the device */
1474 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
1475 				  &dev->kobj, dev_name(dev));
1476 	if (error)
1477 		goto out_device;
1478 
1479 	return 0;
1480 
1481 out_device:
1482 	sysfs_remove_link(&dev->kobj, "device");
1483 
1484 out_subsys:
1485 	sysfs_remove_link(&dev->kobj, "subsystem");
1486 out_devnode:
1487 	sysfs_remove_link(&dev->kobj, "of_node");
1488 	return error;
1489 }
1490 
1491 static void device_remove_class_symlinks(struct device *dev)
1492 {
1493 	if (dev_of_node(dev))
1494 		sysfs_remove_link(&dev->kobj, "of_node");
1495 
1496 	if (!dev->class)
1497 		return;
1498 
1499 	if (dev->parent && device_is_not_partition(dev))
1500 		sysfs_remove_link(&dev->kobj, "device");
1501 	sysfs_remove_link(&dev->kobj, "subsystem");
1502 #ifdef CONFIG_BLOCK
1503 	if (sysfs_deprecated && dev->class == &block_class)
1504 		return;
1505 #endif
1506 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
1507 }
1508 
1509 /**
1510  * dev_set_name - set a device name
1511  * @dev: device
1512  * @fmt: format string for the device's name
1513  */
1514 int dev_set_name(struct device *dev, const char *fmt, ...)
1515 {
1516 	va_list vargs;
1517 	int err;
1518 
1519 	va_start(vargs, fmt);
1520 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
1521 	va_end(vargs);
1522 	return err;
1523 }
1524 EXPORT_SYMBOL_GPL(dev_set_name);
1525 
1526 /**
1527  * device_to_dev_kobj - select a /sys/dev/ directory for the device
1528  * @dev: device
1529  *
1530  * By default we select char/ for new entries.  Setting class->dev_obj
1531  * to NULL prevents an entry from being created.  class->dev_kobj must
1532  * be set (or cleared) before any devices are registered to the class
1533  * otherwise device_create_sys_dev_entry() and
1534  * device_remove_sys_dev_entry() will disagree about the presence of
1535  * the link.
1536  */
1537 static struct kobject *device_to_dev_kobj(struct device *dev)
1538 {
1539 	struct kobject *kobj;
1540 
1541 	if (dev->class)
1542 		kobj = dev->class->dev_kobj;
1543 	else
1544 		kobj = sysfs_dev_char_kobj;
1545 
1546 	return kobj;
1547 }
1548 
1549 static int device_create_sys_dev_entry(struct device *dev)
1550 {
1551 	struct kobject *kobj = device_to_dev_kobj(dev);
1552 	int error = 0;
1553 	char devt_str[15];
1554 
1555 	if (kobj) {
1556 		format_dev_t(devt_str, dev->devt);
1557 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
1558 	}
1559 
1560 	return error;
1561 }
1562 
1563 static void device_remove_sys_dev_entry(struct device *dev)
1564 {
1565 	struct kobject *kobj = device_to_dev_kobj(dev);
1566 	char devt_str[15];
1567 
1568 	if (kobj) {
1569 		format_dev_t(devt_str, dev->devt);
1570 		sysfs_remove_link(kobj, devt_str);
1571 	}
1572 }
1573 
1574 int device_private_init(struct device *dev)
1575 {
1576 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
1577 	if (!dev->p)
1578 		return -ENOMEM;
1579 	dev->p->device = dev;
1580 	klist_init(&dev->p->klist_children, klist_children_get,
1581 		   klist_children_put);
1582 	INIT_LIST_HEAD(&dev->p->deferred_probe);
1583 	return 0;
1584 }
1585 
1586 /**
1587  * device_add - add device to device hierarchy.
1588  * @dev: device.
1589  *
1590  * This is part 2 of device_register(), though may be called
1591  * separately _iff_ device_initialize() has been called separately.
1592  *
1593  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
1594  * to the global and sibling lists for the device, then
1595  * adds it to the other relevant subsystems of the driver model.
1596  *
1597  * Do not call this routine or device_register() more than once for
1598  * any device structure.  The driver model core is not designed to work
1599  * with devices that get unregistered and then spring back to life.
1600  * (Among other things, it's very hard to guarantee that all references
1601  * to the previous incarnation of @dev have been dropped.)  Allocate
1602  * and register a fresh new struct device instead.
1603  *
1604  * NOTE: _Never_ directly free @dev after calling this function, even
1605  * if it returned an error! Always use put_device() to give up your
1606  * reference instead.
1607  */
1608 int device_add(struct device *dev)
1609 {
1610 	struct device *parent = NULL;
1611 	struct kobject *kobj;
1612 	struct class_interface *class_intf;
1613 	int error = -EINVAL;
1614 	struct kobject *glue_dir = NULL;
1615 
1616 	dev = get_device(dev);
1617 	if (!dev)
1618 		goto done;
1619 
1620 	if (!dev->p) {
1621 		error = device_private_init(dev);
1622 		if (error)
1623 			goto done;
1624 	}
1625 
1626 	/*
1627 	 * for statically allocated devices, which should all be converted
1628 	 * some day, we need to initialize the name. We prevent reading back
1629 	 * the name, and force the use of dev_name()
1630 	 */
1631 	if (dev->init_name) {
1632 		dev_set_name(dev, "%s", dev->init_name);
1633 		dev->init_name = NULL;
1634 	}
1635 
1636 	/* subsystems can specify simple device enumeration */
1637 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
1638 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
1639 
1640 	if (!dev_name(dev)) {
1641 		error = -EINVAL;
1642 		goto name_error;
1643 	}
1644 
1645 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1646 
1647 	parent = get_device(dev->parent);
1648 	kobj = get_device_parent(dev, parent);
1649 	if (kobj)
1650 		dev->kobj.parent = kobj;
1651 
1652 	/* use parent numa_node */
1653 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
1654 		set_dev_node(dev, dev_to_node(parent));
1655 
1656 	/* first, register with generic layer. */
1657 	/* we require the name to be set before, and pass NULL */
1658 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
1659 	if (error) {
1660 		glue_dir = get_glue_dir(dev);
1661 		goto Error;
1662 	}
1663 
1664 	/* notify platform of device entry */
1665 	if (platform_notify)
1666 		platform_notify(dev);
1667 
1668 	error = device_create_file(dev, &dev_attr_uevent);
1669 	if (error)
1670 		goto attrError;
1671 
1672 	error = device_add_class_symlinks(dev);
1673 	if (error)
1674 		goto SymlinkError;
1675 	error = device_add_attrs(dev);
1676 	if (error)
1677 		goto AttrsError;
1678 	error = bus_add_device(dev);
1679 	if (error)
1680 		goto BusError;
1681 	error = dpm_sysfs_add(dev);
1682 	if (error)
1683 		goto DPMError;
1684 	device_pm_add(dev);
1685 
1686 	if (MAJOR(dev->devt)) {
1687 		error = device_create_file(dev, &dev_attr_dev);
1688 		if (error)
1689 			goto DevAttrError;
1690 
1691 		error = device_create_sys_dev_entry(dev);
1692 		if (error)
1693 			goto SysEntryError;
1694 
1695 		devtmpfs_create_node(dev);
1696 	}
1697 
1698 	/* Notify clients of device addition.  This call must come
1699 	 * after dpm_sysfs_add() and before kobject_uevent().
1700 	 */
1701 	if (dev->bus)
1702 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1703 					     BUS_NOTIFY_ADD_DEVICE, dev);
1704 
1705 	kobject_uevent(&dev->kobj, KOBJ_ADD);
1706 	bus_probe_device(dev);
1707 	if (parent)
1708 		klist_add_tail(&dev->p->knode_parent,
1709 			       &parent->p->klist_children);
1710 
1711 	if (dev->class) {
1712 		mutex_lock(&dev->class->p->mutex);
1713 		/* tie the class to the device */
1714 		klist_add_tail(&dev->knode_class,
1715 			       &dev->class->p->klist_devices);
1716 
1717 		/* notify any interfaces that the device is here */
1718 		list_for_each_entry(class_intf,
1719 				    &dev->class->p->interfaces, node)
1720 			if (class_intf->add_dev)
1721 				class_intf->add_dev(dev, class_intf);
1722 		mutex_unlock(&dev->class->p->mutex);
1723 	}
1724 done:
1725 	put_device(dev);
1726 	return error;
1727  SysEntryError:
1728 	if (MAJOR(dev->devt))
1729 		device_remove_file(dev, &dev_attr_dev);
1730  DevAttrError:
1731 	device_pm_remove(dev);
1732 	dpm_sysfs_remove(dev);
1733  DPMError:
1734 	bus_remove_device(dev);
1735  BusError:
1736 	device_remove_attrs(dev);
1737  AttrsError:
1738 	device_remove_class_symlinks(dev);
1739  SymlinkError:
1740 	device_remove_file(dev, &dev_attr_uevent);
1741  attrError:
1742 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1743 	glue_dir = get_glue_dir(dev);
1744 	kobject_del(&dev->kobj);
1745  Error:
1746 	cleanup_glue_dir(dev, glue_dir);
1747 	put_device(parent);
1748 name_error:
1749 	kfree(dev->p);
1750 	dev->p = NULL;
1751 	goto done;
1752 }
1753 EXPORT_SYMBOL_GPL(device_add);
1754 
1755 /**
1756  * device_register - register a device with the system.
1757  * @dev: pointer to the device structure
1758  *
1759  * This happens in two clean steps - initialize the device
1760  * and add it to the system. The two steps can be called
1761  * separately, but this is the easiest and most common.
1762  * I.e. you should only call the two helpers separately if
1763  * have a clearly defined need to use and refcount the device
1764  * before it is added to the hierarchy.
1765  *
1766  * For more information, see the kerneldoc for device_initialize()
1767  * and device_add().
1768  *
1769  * NOTE: _Never_ directly free @dev after calling this function, even
1770  * if it returned an error! Always use put_device() to give up the
1771  * reference initialized in this function instead.
1772  */
1773 int device_register(struct device *dev)
1774 {
1775 	device_initialize(dev);
1776 	return device_add(dev);
1777 }
1778 EXPORT_SYMBOL_GPL(device_register);
1779 
1780 /**
1781  * get_device - increment reference count for device.
1782  * @dev: device.
1783  *
1784  * This simply forwards the call to kobject_get(), though
1785  * we do take care to provide for the case that we get a NULL
1786  * pointer passed in.
1787  */
1788 struct device *get_device(struct device *dev)
1789 {
1790 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
1791 }
1792 EXPORT_SYMBOL_GPL(get_device);
1793 
1794 /**
1795  * put_device - decrement reference count.
1796  * @dev: device in question.
1797  */
1798 void put_device(struct device *dev)
1799 {
1800 	/* might_sleep(); */
1801 	if (dev)
1802 		kobject_put(&dev->kobj);
1803 }
1804 EXPORT_SYMBOL_GPL(put_device);
1805 
1806 /**
1807  * device_del - delete device from system.
1808  * @dev: device.
1809  *
1810  * This is the first part of the device unregistration
1811  * sequence. This removes the device from the lists we control
1812  * from here, has it removed from the other driver model
1813  * subsystems it was added to in device_add(), and removes it
1814  * from the kobject hierarchy.
1815  *
1816  * NOTE: this should be called manually _iff_ device_add() was
1817  * also called manually.
1818  */
1819 void device_del(struct device *dev)
1820 {
1821 	struct device *parent = dev->parent;
1822 	struct kobject *glue_dir = NULL;
1823 	struct class_interface *class_intf;
1824 
1825 	/* Notify clients of device removal.  This call must come
1826 	 * before dpm_sysfs_remove().
1827 	 */
1828 	if (dev->bus)
1829 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1830 					     BUS_NOTIFY_DEL_DEVICE, dev);
1831 
1832 	device_links_purge(dev);
1833 	dpm_sysfs_remove(dev);
1834 	if (parent)
1835 		klist_del(&dev->p->knode_parent);
1836 	if (MAJOR(dev->devt)) {
1837 		devtmpfs_delete_node(dev);
1838 		device_remove_sys_dev_entry(dev);
1839 		device_remove_file(dev, &dev_attr_dev);
1840 	}
1841 	if (dev->class) {
1842 		device_remove_class_symlinks(dev);
1843 
1844 		mutex_lock(&dev->class->p->mutex);
1845 		/* notify any interfaces that the device is now gone */
1846 		list_for_each_entry(class_intf,
1847 				    &dev->class->p->interfaces, node)
1848 			if (class_intf->remove_dev)
1849 				class_intf->remove_dev(dev, class_intf);
1850 		/* remove the device from the class list */
1851 		klist_del(&dev->knode_class);
1852 		mutex_unlock(&dev->class->p->mutex);
1853 	}
1854 	device_remove_file(dev, &dev_attr_uevent);
1855 	device_remove_attrs(dev);
1856 	bus_remove_device(dev);
1857 	device_pm_remove(dev);
1858 	driver_deferred_probe_del(dev);
1859 	device_remove_properties(dev);
1860 
1861 	/* Notify the platform of the removal, in case they
1862 	 * need to do anything...
1863 	 */
1864 	if (platform_notify_remove)
1865 		platform_notify_remove(dev);
1866 	if (dev->bus)
1867 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1868 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
1869 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1870 	glue_dir = get_glue_dir(dev);
1871 	kobject_del(&dev->kobj);
1872 	cleanup_glue_dir(dev, glue_dir);
1873 	put_device(parent);
1874 }
1875 EXPORT_SYMBOL_GPL(device_del);
1876 
1877 /**
1878  * device_unregister - unregister device from system.
1879  * @dev: device going away.
1880  *
1881  * We do this in two parts, like we do device_register(). First,
1882  * we remove it from all the subsystems with device_del(), then
1883  * we decrement the reference count via put_device(). If that
1884  * is the final reference count, the device will be cleaned up
1885  * via device_release() above. Otherwise, the structure will
1886  * stick around until the final reference to the device is dropped.
1887  */
1888 void device_unregister(struct device *dev)
1889 {
1890 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1891 	device_del(dev);
1892 	put_device(dev);
1893 }
1894 EXPORT_SYMBOL_GPL(device_unregister);
1895 
1896 static struct device *prev_device(struct klist_iter *i)
1897 {
1898 	struct klist_node *n = klist_prev(i);
1899 	struct device *dev = NULL;
1900 	struct device_private *p;
1901 
1902 	if (n) {
1903 		p = to_device_private_parent(n);
1904 		dev = p->device;
1905 	}
1906 	return dev;
1907 }
1908 
1909 static struct device *next_device(struct klist_iter *i)
1910 {
1911 	struct klist_node *n = klist_next(i);
1912 	struct device *dev = NULL;
1913 	struct device_private *p;
1914 
1915 	if (n) {
1916 		p = to_device_private_parent(n);
1917 		dev = p->device;
1918 	}
1919 	return dev;
1920 }
1921 
1922 /**
1923  * device_get_devnode - path of device node file
1924  * @dev: device
1925  * @mode: returned file access mode
1926  * @uid: returned file owner
1927  * @gid: returned file group
1928  * @tmp: possibly allocated string
1929  *
1930  * Return the relative path of a possible device node.
1931  * Non-default names may need to allocate a memory to compose
1932  * a name. This memory is returned in tmp and needs to be
1933  * freed by the caller.
1934  */
1935 const char *device_get_devnode(struct device *dev,
1936 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
1937 			       const char **tmp)
1938 {
1939 	char *s;
1940 
1941 	*tmp = NULL;
1942 
1943 	/* the device type may provide a specific name */
1944 	if (dev->type && dev->type->devnode)
1945 		*tmp = dev->type->devnode(dev, mode, uid, gid);
1946 	if (*tmp)
1947 		return *tmp;
1948 
1949 	/* the class may provide a specific name */
1950 	if (dev->class && dev->class->devnode)
1951 		*tmp = dev->class->devnode(dev, mode);
1952 	if (*tmp)
1953 		return *tmp;
1954 
1955 	/* return name without allocation, tmp == NULL */
1956 	if (strchr(dev_name(dev), '!') == NULL)
1957 		return dev_name(dev);
1958 
1959 	/* replace '!' in the name with '/' */
1960 	s = kstrdup(dev_name(dev), GFP_KERNEL);
1961 	if (!s)
1962 		return NULL;
1963 	strreplace(s, '!', '/');
1964 	return *tmp = s;
1965 }
1966 
1967 /**
1968  * device_for_each_child - device child iterator.
1969  * @parent: parent struct device.
1970  * @fn: function to be called for each device.
1971  * @data: data for the callback.
1972  *
1973  * Iterate over @parent's child devices, and call @fn for each,
1974  * passing it @data.
1975  *
1976  * We check the return of @fn each time. If it returns anything
1977  * other than 0, we break out and return that value.
1978  */
1979 int device_for_each_child(struct device *parent, void *data,
1980 			  int (*fn)(struct device *dev, void *data))
1981 {
1982 	struct klist_iter i;
1983 	struct device *child;
1984 	int error = 0;
1985 
1986 	if (!parent->p)
1987 		return 0;
1988 
1989 	klist_iter_init(&parent->p->klist_children, &i);
1990 	while ((child = next_device(&i)) && !error)
1991 		error = fn(child, data);
1992 	klist_iter_exit(&i);
1993 	return error;
1994 }
1995 EXPORT_SYMBOL_GPL(device_for_each_child);
1996 
1997 /**
1998  * device_for_each_child_reverse - device child iterator in reversed order.
1999  * @parent: parent struct device.
2000  * @fn: function to be called for each device.
2001  * @data: data for the callback.
2002  *
2003  * Iterate over @parent's child devices, and call @fn for each,
2004  * passing it @data.
2005  *
2006  * We check the return of @fn each time. If it returns anything
2007  * other than 0, we break out and return that value.
2008  */
2009 int device_for_each_child_reverse(struct device *parent, void *data,
2010 				  int (*fn)(struct device *dev, void *data))
2011 {
2012 	struct klist_iter i;
2013 	struct device *child;
2014 	int error = 0;
2015 
2016 	if (!parent->p)
2017 		return 0;
2018 
2019 	klist_iter_init(&parent->p->klist_children, &i);
2020 	while ((child = prev_device(&i)) && !error)
2021 		error = fn(child, data);
2022 	klist_iter_exit(&i);
2023 	return error;
2024 }
2025 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2026 
2027 /**
2028  * device_find_child - device iterator for locating a particular device.
2029  * @parent: parent struct device
2030  * @match: Callback function to check device
2031  * @data: Data to pass to match function
2032  *
2033  * This is similar to the device_for_each_child() function above, but it
2034  * returns a reference to a device that is 'found' for later use, as
2035  * determined by the @match callback.
2036  *
2037  * The callback should return 0 if the device doesn't match and non-zero
2038  * if it does.  If the callback returns non-zero and a reference to the
2039  * current device can be obtained, this function will return to the caller
2040  * and not iterate over any more devices.
2041  *
2042  * NOTE: you will need to drop the reference with put_device() after use.
2043  */
2044 struct device *device_find_child(struct device *parent, void *data,
2045 				 int (*match)(struct device *dev, void *data))
2046 {
2047 	struct klist_iter i;
2048 	struct device *child;
2049 
2050 	if (!parent)
2051 		return NULL;
2052 
2053 	klist_iter_init(&parent->p->klist_children, &i);
2054 	while ((child = next_device(&i)))
2055 		if (match(child, data) && get_device(child))
2056 			break;
2057 	klist_iter_exit(&i);
2058 	return child;
2059 }
2060 EXPORT_SYMBOL_GPL(device_find_child);
2061 
2062 int __init devices_init(void)
2063 {
2064 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2065 	if (!devices_kset)
2066 		return -ENOMEM;
2067 	dev_kobj = kobject_create_and_add("dev", NULL);
2068 	if (!dev_kobj)
2069 		goto dev_kobj_err;
2070 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2071 	if (!sysfs_dev_block_kobj)
2072 		goto block_kobj_err;
2073 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2074 	if (!sysfs_dev_char_kobj)
2075 		goto char_kobj_err;
2076 
2077 	return 0;
2078 
2079  char_kobj_err:
2080 	kobject_put(sysfs_dev_block_kobj);
2081  block_kobj_err:
2082 	kobject_put(dev_kobj);
2083  dev_kobj_err:
2084 	kset_unregister(devices_kset);
2085 	return -ENOMEM;
2086 }
2087 
2088 static int device_check_offline(struct device *dev, void *not_used)
2089 {
2090 	int ret;
2091 
2092 	ret = device_for_each_child(dev, NULL, device_check_offline);
2093 	if (ret)
2094 		return ret;
2095 
2096 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
2097 }
2098 
2099 /**
2100  * device_offline - Prepare the device for hot-removal.
2101  * @dev: Device to be put offline.
2102  *
2103  * Execute the device bus type's .offline() callback, if present, to prepare
2104  * the device for a subsequent hot-removal.  If that succeeds, the device must
2105  * not be used until either it is removed or its bus type's .online() callback
2106  * is executed.
2107  *
2108  * Call under device_hotplug_lock.
2109  */
2110 int device_offline(struct device *dev)
2111 {
2112 	int ret;
2113 
2114 	if (dev->offline_disabled)
2115 		return -EPERM;
2116 
2117 	ret = device_for_each_child(dev, NULL, device_check_offline);
2118 	if (ret)
2119 		return ret;
2120 
2121 	device_lock(dev);
2122 	if (device_supports_offline(dev)) {
2123 		if (dev->offline) {
2124 			ret = 1;
2125 		} else {
2126 			ret = dev->bus->offline(dev);
2127 			if (!ret) {
2128 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2129 				dev->offline = true;
2130 			}
2131 		}
2132 	}
2133 	device_unlock(dev);
2134 
2135 	return ret;
2136 }
2137 
2138 /**
2139  * device_online - Put the device back online after successful device_offline().
2140  * @dev: Device to be put back online.
2141  *
2142  * If device_offline() has been successfully executed for @dev, but the device
2143  * has not been removed subsequently, execute its bus type's .online() callback
2144  * to indicate that the device can be used again.
2145  *
2146  * Call under device_hotplug_lock.
2147  */
2148 int device_online(struct device *dev)
2149 {
2150 	int ret = 0;
2151 
2152 	device_lock(dev);
2153 	if (device_supports_offline(dev)) {
2154 		if (dev->offline) {
2155 			ret = dev->bus->online(dev);
2156 			if (!ret) {
2157 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2158 				dev->offline = false;
2159 			}
2160 		} else {
2161 			ret = 1;
2162 		}
2163 	}
2164 	device_unlock(dev);
2165 
2166 	return ret;
2167 }
2168 
2169 struct root_device {
2170 	struct device dev;
2171 	struct module *owner;
2172 };
2173 
2174 static inline struct root_device *to_root_device(struct device *d)
2175 {
2176 	return container_of(d, struct root_device, dev);
2177 }
2178 
2179 static void root_device_release(struct device *dev)
2180 {
2181 	kfree(to_root_device(dev));
2182 }
2183 
2184 /**
2185  * __root_device_register - allocate and register a root device
2186  * @name: root device name
2187  * @owner: owner module of the root device, usually THIS_MODULE
2188  *
2189  * This function allocates a root device and registers it
2190  * using device_register(). In order to free the returned
2191  * device, use root_device_unregister().
2192  *
2193  * Root devices are dummy devices which allow other devices
2194  * to be grouped under /sys/devices. Use this function to
2195  * allocate a root device and then use it as the parent of
2196  * any device which should appear under /sys/devices/{name}
2197  *
2198  * The /sys/devices/{name} directory will also contain a
2199  * 'module' symlink which points to the @owner directory
2200  * in sysfs.
2201  *
2202  * Returns &struct device pointer on success, or ERR_PTR() on error.
2203  *
2204  * Note: You probably want to use root_device_register().
2205  */
2206 struct device *__root_device_register(const char *name, struct module *owner)
2207 {
2208 	struct root_device *root;
2209 	int err = -ENOMEM;
2210 
2211 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
2212 	if (!root)
2213 		return ERR_PTR(err);
2214 
2215 	err = dev_set_name(&root->dev, "%s", name);
2216 	if (err) {
2217 		kfree(root);
2218 		return ERR_PTR(err);
2219 	}
2220 
2221 	root->dev.release = root_device_release;
2222 
2223 	err = device_register(&root->dev);
2224 	if (err) {
2225 		put_device(&root->dev);
2226 		return ERR_PTR(err);
2227 	}
2228 
2229 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
2230 	if (owner) {
2231 		struct module_kobject *mk = &owner->mkobj;
2232 
2233 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
2234 		if (err) {
2235 			device_unregister(&root->dev);
2236 			return ERR_PTR(err);
2237 		}
2238 		root->owner = owner;
2239 	}
2240 #endif
2241 
2242 	return &root->dev;
2243 }
2244 EXPORT_SYMBOL_GPL(__root_device_register);
2245 
2246 /**
2247  * root_device_unregister - unregister and free a root device
2248  * @dev: device going away
2249  *
2250  * This function unregisters and cleans up a device that was created by
2251  * root_device_register().
2252  */
2253 void root_device_unregister(struct device *dev)
2254 {
2255 	struct root_device *root = to_root_device(dev);
2256 
2257 	if (root->owner)
2258 		sysfs_remove_link(&root->dev.kobj, "module");
2259 
2260 	device_unregister(dev);
2261 }
2262 EXPORT_SYMBOL_GPL(root_device_unregister);
2263 
2264 
2265 static void device_create_release(struct device *dev)
2266 {
2267 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2268 	kfree(dev);
2269 }
2270 
2271 static struct device *
2272 device_create_groups_vargs(struct class *class, struct device *parent,
2273 			   dev_t devt, void *drvdata,
2274 			   const struct attribute_group **groups,
2275 			   const char *fmt, va_list args)
2276 {
2277 	struct device *dev = NULL;
2278 	int retval = -ENODEV;
2279 
2280 	if (class == NULL || IS_ERR(class))
2281 		goto error;
2282 
2283 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2284 	if (!dev) {
2285 		retval = -ENOMEM;
2286 		goto error;
2287 	}
2288 
2289 	device_initialize(dev);
2290 	dev->devt = devt;
2291 	dev->class = class;
2292 	dev->parent = parent;
2293 	dev->groups = groups;
2294 	dev->release = device_create_release;
2295 	dev_set_drvdata(dev, drvdata);
2296 
2297 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
2298 	if (retval)
2299 		goto error;
2300 
2301 	retval = device_add(dev);
2302 	if (retval)
2303 		goto error;
2304 
2305 	return dev;
2306 
2307 error:
2308 	put_device(dev);
2309 	return ERR_PTR(retval);
2310 }
2311 
2312 /**
2313  * device_create_vargs - creates a device and registers it with sysfs
2314  * @class: pointer to the struct class that this device should be registered to
2315  * @parent: pointer to the parent struct device of this new device, if any
2316  * @devt: the dev_t for the char device to be added
2317  * @drvdata: the data to be added to the device for callbacks
2318  * @fmt: string for the device's name
2319  * @args: va_list for the device's name
2320  *
2321  * This function can be used by char device classes.  A struct device
2322  * will be created in sysfs, registered to the specified class.
2323  *
2324  * A "dev" file will be created, showing the dev_t for the device, if
2325  * the dev_t is not 0,0.
2326  * If a pointer to a parent struct device is passed in, the newly created
2327  * struct device will be a child of that device in sysfs.
2328  * The pointer to the struct device will be returned from the call.
2329  * Any further sysfs files that might be required can be created using this
2330  * pointer.
2331  *
2332  * Returns &struct device pointer on success, or ERR_PTR() on error.
2333  *
2334  * Note: the struct class passed to this function must have previously
2335  * been created with a call to class_create().
2336  */
2337 struct device *device_create_vargs(struct class *class, struct device *parent,
2338 				   dev_t devt, void *drvdata, const char *fmt,
2339 				   va_list args)
2340 {
2341 	return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
2342 					  fmt, args);
2343 }
2344 EXPORT_SYMBOL_GPL(device_create_vargs);
2345 
2346 /**
2347  * device_create - creates a device and registers it with sysfs
2348  * @class: pointer to the struct class that this device should be registered to
2349  * @parent: pointer to the parent struct device of this new device, if any
2350  * @devt: the dev_t for the char device to be added
2351  * @drvdata: the data to be added to the device for callbacks
2352  * @fmt: string for the device's name
2353  *
2354  * This function can be used by char device classes.  A struct device
2355  * will be created in sysfs, registered to the specified class.
2356  *
2357  * A "dev" file will be created, showing the dev_t for the device, if
2358  * the dev_t is not 0,0.
2359  * If a pointer to a parent struct device is passed in, the newly created
2360  * struct device will be a child of that device in sysfs.
2361  * The pointer to the struct device will be returned from the call.
2362  * Any further sysfs files that might be required can be created using this
2363  * pointer.
2364  *
2365  * Returns &struct device pointer on success, or ERR_PTR() on error.
2366  *
2367  * Note: the struct class passed to this function must have previously
2368  * been created with a call to class_create().
2369  */
2370 struct device *device_create(struct class *class, struct device *parent,
2371 			     dev_t devt, void *drvdata, const char *fmt, ...)
2372 {
2373 	va_list vargs;
2374 	struct device *dev;
2375 
2376 	va_start(vargs, fmt);
2377 	dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
2378 	va_end(vargs);
2379 	return dev;
2380 }
2381 EXPORT_SYMBOL_GPL(device_create);
2382 
2383 /**
2384  * device_create_with_groups - creates a device and registers it with sysfs
2385  * @class: pointer to the struct class that this device should be registered to
2386  * @parent: pointer to the parent struct device of this new device, if any
2387  * @devt: the dev_t for the char device to be added
2388  * @drvdata: the data to be added to the device for callbacks
2389  * @groups: NULL-terminated list of attribute groups to be created
2390  * @fmt: string for the device's name
2391  *
2392  * This function can be used by char device classes.  A struct device
2393  * will be created in sysfs, registered to the specified class.
2394  * Additional attributes specified in the groups parameter will also
2395  * be created automatically.
2396  *
2397  * A "dev" file will be created, showing the dev_t for the device, if
2398  * the dev_t is not 0,0.
2399  * If a pointer to a parent struct device is passed in, the newly created
2400  * struct device will be a child of that device in sysfs.
2401  * The pointer to the struct device will be returned from the call.
2402  * Any further sysfs files that might be required can be created using this
2403  * pointer.
2404  *
2405  * Returns &struct device pointer on success, or ERR_PTR() on error.
2406  *
2407  * Note: the struct class passed to this function must have previously
2408  * been created with a call to class_create().
2409  */
2410 struct device *device_create_with_groups(struct class *class,
2411 					 struct device *parent, dev_t devt,
2412 					 void *drvdata,
2413 					 const struct attribute_group **groups,
2414 					 const char *fmt, ...)
2415 {
2416 	va_list vargs;
2417 	struct device *dev;
2418 
2419 	va_start(vargs, fmt);
2420 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
2421 					 fmt, vargs);
2422 	va_end(vargs);
2423 	return dev;
2424 }
2425 EXPORT_SYMBOL_GPL(device_create_with_groups);
2426 
2427 static int __match_devt(struct device *dev, const void *data)
2428 {
2429 	const dev_t *devt = data;
2430 
2431 	return dev->devt == *devt;
2432 }
2433 
2434 /**
2435  * device_destroy - removes a device that was created with device_create()
2436  * @class: pointer to the struct class that this device was registered with
2437  * @devt: the dev_t of the device that was previously registered
2438  *
2439  * This call unregisters and cleans up a device that was created with a
2440  * call to device_create().
2441  */
2442 void device_destroy(struct class *class, dev_t devt)
2443 {
2444 	struct device *dev;
2445 
2446 	dev = class_find_device(class, NULL, &devt, __match_devt);
2447 	if (dev) {
2448 		put_device(dev);
2449 		device_unregister(dev);
2450 	}
2451 }
2452 EXPORT_SYMBOL_GPL(device_destroy);
2453 
2454 /**
2455  * device_rename - renames a device
2456  * @dev: the pointer to the struct device to be renamed
2457  * @new_name: the new name of the device
2458  *
2459  * It is the responsibility of the caller to provide mutual
2460  * exclusion between two different calls of device_rename
2461  * on the same device to ensure that new_name is valid and
2462  * won't conflict with other devices.
2463  *
2464  * Note: Don't call this function.  Currently, the networking layer calls this
2465  * function, but that will change.  The following text from Kay Sievers offers
2466  * some insight:
2467  *
2468  * Renaming devices is racy at many levels, symlinks and other stuff are not
2469  * replaced atomically, and you get a "move" uevent, but it's not easy to
2470  * connect the event to the old and new device. Device nodes are not renamed at
2471  * all, there isn't even support for that in the kernel now.
2472  *
2473  * In the meantime, during renaming, your target name might be taken by another
2474  * driver, creating conflicts. Or the old name is taken directly after you
2475  * renamed it -- then you get events for the same DEVPATH, before you even see
2476  * the "move" event. It's just a mess, and nothing new should ever rely on
2477  * kernel device renaming. Besides that, it's not even implemented now for
2478  * other things than (driver-core wise very simple) network devices.
2479  *
2480  * We are currently about to change network renaming in udev to completely
2481  * disallow renaming of devices in the same namespace as the kernel uses,
2482  * because we can't solve the problems properly, that arise with swapping names
2483  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
2484  * be allowed to some other name than eth[0-9]*, for the aforementioned
2485  * reasons.
2486  *
2487  * Make up a "real" name in the driver before you register anything, or add
2488  * some other attributes for userspace to find the device, or use udev to add
2489  * symlinks -- but never rename kernel devices later, it's a complete mess. We
2490  * don't even want to get into that and try to implement the missing pieces in
2491  * the core. We really have other pieces to fix in the driver core mess. :)
2492  */
2493 int device_rename(struct device *dev, const char *new_name)
2494 {
2495 	struct kobject *kobj = &dev->kobj;
2496 	char *old_device_name = NULL;
2497 	int error;
2498 
2499 	dev = get_device(dev);
2500 	if (!dev)
2501 		return -EINVAL;
2502 
2503 	dev_dbg(dev, "renaming to %s\n", new_name);
2504 
2505 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
2506 	if (!old_device_name) {
2507 		error = -ENOMEM;
2508 		goto out;
2509 	}
2510 
2511 	if (dev->class) {
2512 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
2513 					     kobj, old_device_name,
2514 					     new_name, kobject_namespace(kobj));
2515 		if (error)
2516 			goto out;
2517 	}
2518 
2519 	error = kobject_rename(kobj, new_name);
2520 	if (error)
2521 		goto out;
2522 
2523 out:
2524 	put_device(dev);
2525 
2526 	kfree(old_device_name);
2527 
2528 	return error;
2529 }
2530 EXPORT_SYMBOL_GPL(device_rename);
2531 
2532 static int device_move_class_links(struct device *dev,
2533 				   struct device *old_parent,
2534 				   struct device *new_parent)
2535 {
2536 	int error = 0;
2537 
2538 	if (old_parent)
2539 		sysfs_remove_link(&dev->kobj, "device");
2540 	if (new_parent)
2541 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
2542 					  "device");
2543 	return error;
2544 }
2545 
2546 /**
2547  * device_move - moves a device to a new parent
2548  * @dev: the pointer to the struct device to be moved
2549  * @new_parent: the new parent of the device (can by NULL)
2550  * @dpm_order: how to reorder the dpm_list
2551  */
2552 int device_move(struct device *dev, struct device *new_parent,
2553 		enum dpm_order dpm_order)
2554 {
2555 	int error;
2556 	struct device *old_parent;
2557 	struct kobject *new_parent_kobj;
2558 
2559 	dev = get_device(dev);
2560 	if (!dev)
2561 		return -EINVAL;
2562 
2563 	device_pm_lock();
2564 	new_parent = get_device(new_parent);
2565 	new_parent_kobj = get_device_parent(dev, new_parent);
2566 
2567 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
2568 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
2569 	error = kobject_move(&dev->kobj, new_parent_kobj);
2570 	if (error) {
2571 		cleanup_glue_dir(dev, new_parent_kobj);
2572 		put_device(new_parent);
2573 		goto out;
2574 	}
2575 	old_parent = dev->parent;
2576 	dev->parent = new_parent;
2577 	if (old_parent)
2578 		klist_remove(&dev->p->knode_parent);
2579 	if (new_parent) {
2580 		klist_add_tail(&dev->p->knode_parent,
2581 			       &new_parent->p->klist_children);
2582 		set_dev_node(dev, dev_to_node(new_parent));
2583 	}
2584 
2585 	if (dev->class) {
2586 		error = device_move_class_links(dev, old_parent, new_parent);
2587 		if (error) {
2588 			/* We ignore errors on cleanup since we're hosed anyway... */
2589 			device_move_class_links(dev, new_parent, old_parent);
2590 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
2591 				if (new_parent)
2592 					klist_remove(&dev->p->knode_parent);
2593 				dev->parent = old_parent;
2594 				if (old_parent) {
2595 					klist_add_tail(&dev->p->knode_parent,
2596 						       &old_parent->p->klist_children);
2597 					set_dev_node(dev, dev_to_node(old_parent));
2598 				}
2599 			}
2600 			cleanup_glue_dir(dev, new_parent_kobj);
2601 			put_device(new_parent);
2602 			goto out;
2603 		}
2604 	}
2605 	switch (dpm_order) {
2606 	case DPM_ORDER_NONE:
2607 		break;
2608 	case DPM_ORDER_DEV_AFTER_PARENT:
2609 		device_pm_move_after(dev, new_parent);
2610 		devices_kset_move_after(dev, new_parent);
2611 		break;
2612 	case DPM_ORDER_PARENT_BEFORE_DEV:
2613 		device_pm_move_before(new_parent, dev);
2614 		devices_kset_move_before(new_parent, dev);
2615 		break;
2616 	case DPM_ORDER_DEV_LAST:
2617 		device_pm_move_last(dev);
2618 		devices_kset_move_last(dev);
2619 		break;
2620 	}
2621 
2622 	put_device(old_parent);
2623 out:
2624 	device_pm_unlock();
2625 	put_device(dev);
2626 	return error;
2627 }
2628 EXPORT_SYMBOL_GPL(device_move);
2629 
2630 /**
2631  * device_shutdown - call ->shutdown() on each device to shutdown.
2632  */
2633 void device_shutdown(void)
2634 {
2635 	struct device *dev, *parent;
2636 
2637 	spin_lock(&devices_kset->list_lock);
2638 	/*
2639 	 * Walk the devices list backward, shutting down each in turn.
2640 	 * Beware that device unplug events may also start pulling
2641 	 * devices offline, even as the system is shutting down.
2642 	 */
2643 	while (!list_empty(&devices_kset->list)) {
2644 		dev = list_entry(devices_kset->list.prev, struct device,
2645 				kobj.entry);
2646 
2647 		/*
2648 		 * hold reference count of device's parent to
2649 		 * prevent it from being freed because parent's
2650 		 * lock is to be held
2651 		 */
2652 		parent = get_device(dev->parent);
2653 		get_device(dev);
2654 		/*
2655 		 * Make sure the device is off the kset list, in the
2656 		 * event that dev->*->shutdown() doesn't remove it.
2657 		 */
2658 		list_del_init(&dev->kobj.entry);
2659 		spin_unlock(&devices_kset->list_lock);
2660 
2661 		/* hold lock to avoid race with probe/release */
2662 		if (parent)
2663 			device_lock(parent);
2664 		device_lock(dev);
2665 
2666 		/* Don't allow any more runtime suspends */
2667 		pm_runtime_get_noresume(dev);
2668 		pm_runtime_barrier(dev);
2669 
2670 		if (dev->bus && dev->bus->shutdown) {
2671 			if (initcall_debug)
2672 				dev_info(dev, "shutdown\n");
2673 			dev->bus->shutdown(dev);
2674 		} else if (dev->driver && dev->driver->shutdown) {
2675 			if (initcall_debug)
2676 				dev_info(dev, "shutdown\n");
2677 			dev->driver->shutdown(dev);
2678 		}
2679 
2680 		device_unlock(dev);
2681 		if (parent)
2682 			device_unlock(parent);
2683 
2684 		put_device(dev);
2685 		put_device(parent);
2686 
2687 		spin_lock(&devices_kset->list_lock);
2688 	}
2689 	spin_unlock(&devices_kset->list_lock);
2690 }
2691 
2692 /*
2693  * Device logging functions
2694  */
2695 
2696 #ifdef CONFIG_PRINTK
2697 static int
2698 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
2699 {
2700 	const char *subsys;
2701 	size_t pos = 0;
2702 
2703 	if (dev->class)
2704 		subsys = dev->class->name;
2705 	else if (dev->bus)
2706 		subsys = dev->bus->name;
2707 	else
2708 		return 0;
2709 
2710 	pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
2711 	if (pos >= hdrlen)
2712 		goto overflow;
2713 
2714 	/*
2715 	 * Add device identifier DEVICE=:
2716 	 *   b12:8         block dev_t
2717 	 *   c127:3        char dev_t
2718 	 *   n8            netdev ifindex
2719 	 *   +sound:card0  subsystem:devname
2720 	 */
2721 	if (MAJOR(dev->devt)) {
2722 		char c;
2723 
2724 		if (strcmp(subsys, "block") == 0)
2725 			c = 'b';
2726 		else
2727 			c = 'c';
2728 		pos++;
2729 		pos += snprintf(hdr + pos, hdrlen - pos,
2730 				"DEVICE=%c%u:%u",
2731 				c, MAJOR(dev->devt), MINOR(dev->devt));
2732 	} else if (strcmp(subsys, "net") == 0) {
2733 		struct net_device *net = to_net_dev(dev);
2734 
2735 		pos++;
2736 		pos += snprintf(hdr + pos, hdrlen - pos,
2737 				"DEVICE=n%u", net->ifindex);
2738 	} else {
2739 		pos++;
2740 		pos += snprintf(hdr + pos, hdrlen - pos,
2741 				"DEVICE=+%s:%s", subsys, dev_name(dev));
2742 	}
2743 
2744 	if (pos >= hdrlen)
2745 		goto overflow;
2746 
2747 	return pos;
2748 
2749 overflow:
2750 	dev_WARN(dev, "device/subsystem name too long");
2751 	return 0;
2752 }
2753 
2754 int dev_vprintk_emit(int level, const struct device *dev,
2755 		     const char *fmt, va_list args)
2756 {
2757 	char hdr[128];
2758 	size_t hdrlen;
2759 
2760 	hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
2761 
2762 	return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
2763 }
2764 EXPORT_SYMBOL(dev_vprintk_emit);
2765 
2766 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
2767 {
2768 	va_list args;
2769 	int r;
2770 
2771 	va_start(args, fmt);
2772 
2773 	r = dev_vprintk_emit(level, dev, fmt, args);
2774 
2775 	va_end(args);
2776 
2777 	return r;
2778 }
2779 EXPORT_SYMBOL(dev_printk_emit);
2780 
2781 static void __dev_printk(const char *level, const struct device *dev,
2782 			struct va_format *vaf)
2783 {
2784 	if (dev)
2785 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
2786 				dev_driver_string(dev), dev_name(dev), vaf);
2787 	else
2788 		printk("%s(NULL device *): %pV", level, vaf);
2789 }
2790 
2791 void dev_printk(const char *level, const struct device *dev,
2792 		const char *fmt, ...)
2793 {
2794 	struct va_format vaf;
2795 	va_list args;
2796 
2797 	va_start(args, fmt);
2798 
2799 	vaf.fmt = fmt;
2800 	vaf.va = &args;
2801 
2802 	__dev_printk(level, dev, &vaf);
2803 
2804 	va_end(args);
2805 }
2806 EXPORT_SYMBOL(dev_printk);
2807 
2808 #define define_dev_printk_level(func, kern_level)		\
2809 void func(const struct device *dev, const char *fmt, ...)	\
2810 {								\
2811 	struct va_format vaf;					\
2812 	va_list args;						\
2813 								\
2814 	va_start(args, fmt);					\
2815 								\
2816 	vaf.fmt = fmt;						\
2817 	vaf.va = &args;						\
2818 								\
2819 	__dev_printk(kern_level, dev, &vaf);			\
2820 								\
2821 	va_end(args);						\
2822 }								\
2823 EXPORT_SYMBOL(func);
2824 
2825 define_dev_printk_level(dev_emerg, KERN_EMERG);
2826 define_dev_printk_level(dev_alert, KERN_ALERT);
2827 define_dev_printk_level(dev_crit, KERN_CRIT);
2828 define_dev_printk_level(dev_err, KERN_ERR);
2829 define_dev_printk_level(dev_warn, KERN_WARNING);
2830 define_dev_printk_level(dev_notice, KERN_NOTICE);
2831 define_dev_printk_level(_dev_info, KERN_INFO);
2832 
2833 #endif
2834 
2835 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
2836 {
2837 	return fwnode && !IS_ERR(fwnode->secondary);
2838 }
2839 
2840 /**
2841  * set_primary_fwnode - Change the primary firmware node of a given device.
2842  * @dev: Device to handle.
2843  * @fwnode: New primary firmware node of the device.
2844  *
2845  * Set the device's firmware node pointer to @fwnode, but if a secondary
2846  * firmware node of the device is present, preserve it.
2847  */
2848 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
2849 {
2850 	if (fwnode) {
2851 		struct fwnode_handle *fn = dev->fwnode;
2852 
2853 		if (fwnode_is_primary(fn))
2854 			fn = fn->secondary;
2855 
2856 		if (fn) {
2857 			WARN_ON(fwnode->secondary);
2858 			fwnode->secondary = fn;
2859 		}
2860 		dev->fwnode = fwnode;
2861 	} else {
2862 		dev->fwnode = fwnode_is_primary(dev->fwnode) ?
2863 			dev->fwnode->secondary : NULL;
2864 	}
2865 }
2866 EXPORT_SYMBOL_GPL(set_primary_fwnode);
2867 
2868 /**
2869  * set_secondary_fwnode - Change the secondary firmware node of a given device.
2870  * @dev: Device to handle.
2871  * @fwnode: New secondary firmware node of the device.
2872  *
2873  * If a primary firmware node of the device is present, set its secondary
2874  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
2875  * @fwnode.
2876  */
2877 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
2878 {
2879 	if (fwnode)
2880 		fwnode->secondary = ERR_PTR(-ENODEV);
2881 
2882 	if (fwnode_is_primary(dev->fwnode))
2883 		dev->fwnode->secondary = fwnode;
2884 	else
2885 		dev->fwnode = fwnode;
2886 }
2887