xref: /openbmc/linux/drivers/base/core.c (revision e1e38ea1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/device.h>
12 #include <linux/err.h>
13 #include <linux/fwnode.h>
14 #include <linux/init.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/string.h>
18 #include <linux/kdev_t.h>
19 #include <linux/notifier.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/genhd.h>
23 #include <linux/mutex.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/netdevice.h>
26 #include <linux/sched/signal.h>
27 #include <linux/sysfs.h>
28 
29 #include "base.h"
30 #include "power/power.h"
31 
32 #ifdef CONFIG_SYSFS_DEPRECATED
33 #ifdef CONFIG_SYSFS_DEPRECATED_V2
34 long sysfs_deprecated = 1;
35 #else
36 long sysfs_deprecated = 0;
37 #endif
38 static int __init sysfs_deprecated_setup(char *arg)
39 {
40 	return kstrtol(arg, 10, &sysfs_deprecated);
41 }
42 early_param("sysfs.deprecated", sysfs_deprecated_setup);
43 #endif
44 
45 /* Device links support. */
46 
47 #ifdef CONFIG_SRCU
48 static DEFINE_MUTEX(device_links_lock);
49 DEFINE_STATIC_SRCU(device_links_srcu);
50 
51 static inline void device_links_write_lock(void)
52 {
53 	mutex_lock(&device_links_lock);
54 }
55 
56 static inline void device_links_write_unlock(void)
57 {
58 	mutex_unlock(&device_links_lock);
59 }
60 
61 int device_links_read_lock(void)
62 {
63 	return srcu_read_lock(&device_links_srcu);
64 }
65 
66 void device_links_read_unlock(int idx)
67 {
68 	srcu_read_unlock(&device_links_srcu, idx);
69 }
70 #else /* !CONFIG_SRCU */
71 static DECLARE_RWSEM(device_links_lock);
72 
73 static inline void device_links_write_lock(void)
74 {
75 	down_write(&device_links_lock);
76 }
77 
78 static inline void device_links_write_unlock(void)
79 {
80 	up_write(&device_links_lock);
81 }
82 
83 int device_links_read_lock(void)
84 {
85 	down_read(&device_links_lock);
86 	return 0;
87 }
88 
89 void device_links_read_unlock(int not_used)
90 {
91 	up_read(&device_links_lock);
92 }
93 #endif /* !CONFIG_SRCU */
94 
95 /**
96  * device_is_dependent - Check if one device depends on another one
97  * @dev: Device to check dependencies for.
98  * @target: Device to check against.
99  *
100  * Check if @target depends on @dev or any device dependent on it (its child or
101  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
102  */
103 static int device_is_dependent(struct device *dev, void *target)
104 {
105 	struct device_link *link;
106 	int ret;
107 
108 	if (dev == target)
109 		return 1;
110 
111 	ret = device_for_each_child(dev, target, device_is_dependent);
112 	if (ret)
113 		return ret;
114 
115 	list_for_each_entry(link, &dev->links.consumers, s_node) {
116 		if (link->consumer == target)
117 			return 1;
118 
119 		ret = device_is_dependent(link->consumer, target);
120 		if (ret)
121 			break;
122 	}
123 	return ret;
124 }
125 
126 static int device_reorder_to_tail(struct device *dev, void *not_used)
127 {
128 	struct device_link *link;
129 
130 	/*
131 	 * Devices that have not been registered yet will be put to the ends
132 	 * of the lists during the registration, so skip them here.
133 	 */
134 	if (device_is_registered(dev))
135 		devices_kset_move_last(dev);
136 
137 	if (device_pm_initialized(dev))
138 		device_pm_move_last(dev);
139 
140 	device_for_each_child(dev, NULL, device_reorder_to_tail);
141 	list_for_each_entry(link, &dev->links.consumers, s_node)
142 		device_reorder_to_tail(link->consumer, NULL);
143 
144 	return 0;
145 }
146 
147 /**
148  * device_pm_move_to_tail - Move set of devices to the end of device lists
149  * @dev: Device to move
150  *
151  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
152  *
153  * It moves the @dev along with all of its children and all of its consumers
154  * to the ends of the device_kset and dpm_list, recursively.
155  */
156 void device_pm_move_to_tail(struct device *dev)
157 {
158 	int idx;
159 
160 	idx = device_links_read_lock();
161 	device_pm_lock();
162 	device_reorder_to_tail(dev, NULL);
163 	device_pm_unlock();
164 	device_links_read_unlock(idx);
165 }
166 
167 /**
168  * device_link_add - Create a link between two devices.
169  * @consumer: Consumer end of the link.
170  * @supplier: Supplier end of the link.
171  * @flags: Link flags.
172  *
173  * The caller is responsible for the proper synchronization of the link creation
174  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
175  * runtime PM framework to take the link into account.  Second, if the
176  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
177  * be forced into the active metastate and reference-counted upon the creation
178  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
179  * ignored.
180  *
181  * If the DL_FLAG_AUTOREMOVE_CONSUMER is set, the link will be removed
182  * automatically when the consumer device driver unbinds from it.
183  * The combination of both DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_STATELESS
184  * set is invalid and will cause NULL to be returned.
185  *
186  * A side effect of the link creation is re-ordering of dpm_list and the
187  * devices_kset list by moving the consumer device and all devices depending
188  * on it to the ends of these lists (that does not happen to devices that have
189  * not been registered when this function is called).
190  *
191  * The supplier device is required to be registered when this function is called
192  * and NULL will be returned if that is not the case.  The consumer device need
193  * not be registered, however.
194  */
195 struct device_link *device_link_add(struct device *consumer,
196 				    struct device *supplier, u32 flags)
197 {
198 	struct device_link *link;
199 
200 	if (!consumer || !supplier ||
201 	    ((flags & DL_FLAG_STATELESS) &&
202 	     (flags & DL_FLAG_AUTOREMOVE_CONSUMER)))
203 		return NULL;
204 
205 	device_links_write_lock();
206 	device_pm_lock();
207 
208 	/*
209 	 * If the supplier has not been fully registered yet or there is a
210 	 * reverse dependency between the consumer and the supplier already in
211 	 * the graph, return NULL.
212 	 */
213 	if (!device_pm_initialized(supplier)
214 	    || device_is_dependent(consumer, supplier)) {
215 		link = NULL;
216 		goto out;
217 	}
218 
219 	list_for_each_entry(link, &supplier->links.consumers, s_node)
220 		if (link->consumer == consumer) {
221 			kref_get(&link->kref);
222 			goto out;
223 		}
224 
225 	link = kzalloc(sizeof(*link), GFP_KERNEL);
226 	if (!link)
227 		goto out;
228 
229 	if (flags & DL_FLAG_PM_RUNTIME) {
230 		if (flags & DL_FLAG_RPM_ACTIVE) {
231 			if (pm_runtime_get_sync(supplier) < 0) {
232 				pm_runtime_put_noidle(supplier);
233 				kfree(link);
234 				link = NULL;
235 				goto out;
236 			}
237 			link->rpm_active = true;
238 		}
239 		pm_runtime_new_link(consumer);
240 		/*
241 		 * If the link is being added by the consumer driver at probe
242 		 * time, balance the decrementation of the supplier's runtime PM
243 		 * usage counter after consumer probe in driver_probe_device().
244 		 */
245 		if (consumer->links.status == DL_DEV_PROBING)
246 			pm_runtime_get_noresume(supplier);
247 	}
248 	get_device(supplier);
249 	link->supplier = supplier;
250 	INIT_LIST_HEAD(&link->s_node);
251 	get_device(consumer);
252 	link->consumer = consumer;
253 	INIT_LIST_HEAD(&link->c_node);
254 	link->flags = flags;
255 	kref_init(&link->kref);
256 
257 	/* Determine the initial link state. */
258 	if (flags & DL_FLAG_STATELESS) {
259 		link->status = DL_STATE_NONE;
260 	} else {
261 		switch (supplier->links.status) {
262 		case DL_DEV_DRIVER_BOUND:
263 			switch (consumer->links.status) {
264 			case DL_DEV_PROBING:
265 				/*
266 				 * Some callers expect the link creation during
267 				 * consumer driver probe to resume the supplier
268 				 * even without DL_FLAG_RPM_ACTIVE.
269 				 */
270 				if (flags & DL_FLAG_PM_RUNTIME)
271 					pm_runtime_resume(supplier);
272 
273 				link->status = DL_STATE_CONSUMER_PROBE;
274 				break;
275 			case DL_DEV_DRIVER_BOUND:
276 				link->status = DL_STATE_ACTIVE;
277 				break;
278 			default:
279 				link->status = DL_STATE_AVAILABLE;
280 				break;
281 			}
282 			break;
283 		case DL_DEV_UNBINDING:
284 			link->status = DL_STATE_SUPPLIER_UNBIND;
285 			break;
286 		default:
287 			link->status = DL_STATE_DORMANT;
288 			break;
289 		}
290 	}
291 
292 	/*
293 	 * Move the consumer and all of the devices depending on it to the end
294 	 * of dpm_list and the devices_kset list.
295 	 *
296 	 * It is necessary to hold dpm_list locked throughout all that or else
297 	 * we may end up suspending with a wrong ordering of it.
298 	 */
299 	device_reorder_to_tail(consumer, NULL);
300 
301 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
302 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
303 
304 	dev_info(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
305 
306  out:
307 	device_pm_unlock();
308 	device_links_write_unlock();
309 	return link;
310 }
311 EXPORT_SYMBOL_GPL(device_link_add);
312 
313 static void device_link_free(struct device_link *link)
314 {
315 	put_device(link->consumer);
316 	put_device(link->supplier);
317 	kfree(link);
318 }
319 
320 #ifdef CONFIG_SRCU
321 static void __device_link_free_srcu(struct rcu_head *rhead)
322 {
323 	device_link_free(container_of(rhead, struct device_link, rcu_head));
324 }
325 
326 static void __device_link_del(struct kref *kref)
327 {
328 	struct device_link *link = container_of(kref, struct device_link, kref);
329 
330 	dev_info(link->consumer, "Dropping the link to %s\n",
331 		 dev_name(link->supplier));
332 
333 	if (link->flags & DL_FLAG_PM_RUNTIME)
334 		pm_runtime_drop_link(link->consumer);
335 
336 	list_del_rcu(&link->s_node);
337 	list_del_rcu(&link->c_node);
338 	call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
339 }
340 #else /* !CONFIG_SRCU */
341 static void __device_link_del(struct kref *kref)
342 {
343 	struct device_link *link = container_of(kref, struct device_link, kref);
344 
345 	dev_info(link->consumer, "Dropping the link to %s\n",
346 		 dev_name(link->supplier));
347 
348 	if (link->flags & DL_FLAG_PM_RUNTIME)
349 		pm_runtime_drop_link(link->consumer);
350 
351 	list_del(&link->s_node);
352 	list_del(&link->c_node);
353 	device_link_free(link);
354 }
355 #endif /* !CONFIG_SRCU */
356 
357 /**
358  * device_link_del - Delete a link between two devices.
359  * @link: Device link to delete.
360  *
361  * The caller must ensure proper synchronization of this function with runtime
362  * PM.  If the link was added multiple times, it needs to be deleted as often.
363  * Care is required for hotplugged devices:  Their links are purged on removal
364  * and calling device_link_del() is then no longer allowed.
365  */
366 void device_link_del(struct device_link *link)
367 {
368 	device_links_write_lock();
369 	device_pm_lock();
370 	kref_put(&link->kref, __device_link_del);
371 	device_pm_unlock();
372 	device_links_write_unlock();
373 }
374 EXPORT_SYMBOL_GPL(device_link_del);
375 
376 /**
377  * device_link_remove - remove a link between two devices.
378  * @consumer: Consumer end of the link.
379  * @supplier: Supplier end of the link.
380  *
381  * The caller must ensure proper synchronization of this function with runtime
382  * PM.
383  */
384 void device_link_remove(void *consumer, struct device *supplier)
385 {
386 	struct device_link *link;
387 
388 	if (WARN_ON(consumer == supplier))
389 		return;
390 
391 	device_links_write_lock();
392 	device_pm_lock();
393 
394 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
395 		if (link->consumer == consumer) {
396 			kref_put(&link->kref, __device_link_del);
397 			break;
398 		}
399 	}
400 
401 	device_pm_unlock();
402 	device_links_write_unlock();
403 }
404 EXPORT_SYMBOL_GPL(device_link_remove);
405 
406 static void device_links_missing_supplier(struct device *dev)
407 {
408 	struct device_link *link;
409 
410 	list_for_each_entry(link, &dev->links.suppliers, c_node)
411 		if (link->status == DL_STATE_CONSUMER_PROBE)
412 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
413 }
414 
415 /**
416  * device_links_check_suppliers - Check presence of supplier drivers.
417  * @dev: Consumer device.
418  *
419  * Check links from this device to any suppliers.  Walk the list of the device's
420  * links to suppliers and see if all of them are available.  If not, simply
421  * return -EPROBE_DEFER.
422  *
423  * We need to guarantee that the supplier will not go away after the check has
424  * been positive here.  It only can go away in __device_release_driver() and
425  * that function  checks the device's links to consumers.  This means we need to
426  * mark the link as "consumer probe in progress" to make the supplier removal
427  * wait for us to complete (or bad things may happen).
428  *
429  * Links with the DL_FLAG_STATELESS flag set are ignored.
430  */
431 int device_links_check_suppliers(struct device *dev)
432 {
433 	struct device_link *link;
434 	int ret = 0;
435 
436 	device_links_write_lock();
437 
438 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
439 		if (link->flags & DL_FLAG_STATELESS)
440 			continue;
441 
442 		if (link->status != DL_STATE_AVAILABLE) {
443 			device_links_missing_supplier(dev);
444 			ret = -EPROBE_DEFER;
445 			break;
446 		}
447 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
448 	}
449 	dev->links.status = DL_DEV_PROBING;
450 
451 	device_links_write_unlock();
452 	return ret;
453 }
454 
455 /**
456  * device_links_driver_bound - Update device links after probing its driver.
457  * @dev: Device to update the links for.
458  *
459  * The probe has been successful, so update links from this device to any
460  * consumers by changing their status to "available".
461  *
462  * Also change the status of @dev's links to suppliers to "active".
463  *
464  * Links with the DL_FLAG_STATELESS flag set are ignored.
465  */
466 void device_links_driver_bound(struct device *dev)
467 {
468 	struct device_link *link;
469 
470 	device_links_write_lock();
471 
472 	list_for_each_entry(link, &dev->links.consumers, s_node) {
473 		if (link->flags & DL_FLAG_STATELESS)
474 			continue;
475 
476 		WARN_ON(link->status != DL_STATE_DORMANT);
477 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
478 	}
479 
480 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
481 		if (link->flags & DL_FLAG_STATELESS)
482 			continue;
483 
484 		WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
485 		WRITE_ONCE(link->status, DL_STATE_ACTIVE);
486 	}
487 
488 	dev->links.status = DL_DEV_DRIVER_BOUND;
489 
490 	device_links_write_unlock();
491 }
492 
493 /**
494  * __device_links_no_driver - Update links of a device without a driver.
495  * @dev: Device without a drvier.
496  *
497  * Delete all non-persistent links from this device to any suppliers.
498  *
499  * Persistent links stay around, but their status is changed to "available",
500  * unless they already are in the "supplier unbind in progress" state in which
501  * case they need not be updated.
502  *
503  * Links with the DL_FLAG_STATELESS flag set are ignored.
504  */
505 static void __device_links_no_driver(struct device *dev)
506 {
507 	struct device_link *link, *ln;
508 
509 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
510 		if (link->flags & DL_FLAG_STATELESS)
511 			continue;
512 
513 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
514 			kref_put(&link->kref, __device_link_del);
515 		else if (link->status != DL_STATE_SUPPLIER_UNBIND)
516 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
517 	}
518 
519 	dev->links.status = DL_DEV_NO_DRIVER;
520 }
521 
522 void device_links_no_driver(struct device *dev)
523 {
524 	device_links_write_lock();
525 	__device_links_no_driver(dev);
526 	device_links_write_unlock();
527 }
528 
529 /**
530  * device_links_driver_cleanup - Update links after driver removal.
531  * @dev: Device whose driver has just gone away.
532  *
533  * Update links to consumers for @dev by changing their status to "dormant" and
534  * invoke %__device_links_no_driver() to update links to suppliers for it as
535  * appropriate.
536  *
537  * Links with the DL_FLAG_STATELESS flag set are ignored.
538  */
539 void device_links_driver_cleanup(struct device *dev)
540 {
541 	struct device_link *link;
542 
543 	device_links_write_lock();
544 
545 	list_for_each_entry(link, &dev->links.consumers, s_node) {
546 		if (link->flags & DL_FLAG_STATELESS)
547 			continue;
548 
549 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
550 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
551 
552 		/*
553 		 * autoremove the links between this @dev and its consumer
554 		 * devices that are not active, i.e. where the link state
555 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
556 		 */
557 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
558 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
559 			kref_put(&link->kref, __device_link_del);
560 
561 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
562 	}
563 
564 	__device_links_no_driver(dev);
565 
566 	device_links_write_unlock();
567 }
568 
569 /**
570  * device_links_busy - Check if there are any busy links to consumers.
571  * @dev: Device to check.
572  *
573  * Check each consumer of the device and return 'true' if its link's status
574  * is one of "consumer probe" or "active" (meaning that the given consumer is
575  * probing right now or its driver is present).  Otherwise, change the link
576  * state to "supplier unbind" to prevent the consumer from being probed
577  * successfully going forward.
578  *
579  * Return 'false' if there are no probing or active consumers.
580  *
581  * Links with the DL_FLAG_STATELESS flag set are ignored.
582  */
583 bool device_links_busy(struct device *dev)
584 {
585 	struct device_link *link;
586 	bool ret = false;
587 
588 	device_links_write_lock();
589 
590 	list_for_each_entry(link, &dev->links.consumers, s_node) {
591 		if (link->flags & DL_FLAG_STATELESS)
592 			continue;
593 
594 		if (link->status == DL_STATE_CONSUMER_PROBE
595 		    || link->status == DL_STATE_ACTIVE) {
596 			ret = true;
597 			break;
598 		}
599 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
600 	}
601 
602 	dev->links.status = DL_DEV_UNBINDING;
603 
604 	device_links_write_unlock();
605 	return ret;
606 }
607 
608 /**
609  * device_links_unbind_consumers - Force unbind consumers of the given device.
610  * @dev: Device to unbind the consumers of.
611  *
612  * Walk the list of links to consumers for @dev and if any of them is in the
613  * "consumer probe" state, wait for all device probes in progress to complete
614  * and start over.
615  *
616  * If that's not the case, change the status of the link to "supplier unbind"
617  * and check if the link was in the "active" state.  If so, force the consumer
618  * driver to unbind and start over (the consumer will not re-probe as we have
619  * changed the state of the link already).
620  *
621  * Links with the DL_FLAG_STATELESS flag set are ignored.
622  */
623 void device_links_unbind_consumers(struct device *dev)
624 {
625 	struct device_link *link;
626 
627  start:
628 	device_links_write_lock();
629 
630 	list_for_each_entry(link, &dev->links.consumers, s_node) {
631 		enum device_link_state status;
632 
633 		if (link->flags & DL_FLAG_STATELESS)
634 			continue;
635 
636 		status = link->status;
637 		if (status == DL_STATE_CONSUMER_PROBE) {
638 			device_links_write_unlock();
639 
640 			wait_for_device_probe();
641 			goto start;
642 		}
643 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
644 		if (status == DL_STATE_ACTIVE) {
645 			struct device *consumer = link->consumer;
646 
647 			get_device(consumer);
648 
649 			device_links_write_unlock();
650 
651 			device_release_driver_internal(consumer, NULL,
652 						       consumer->parent);
653 			put_device(consumer);
654 			goto start;
655 		}
656 	}
657 
658 	device_links_write_unlock();
659 }
660 
661 /**
662  * device_links_purge - Delete existing links to other devices.
663  * @dev: Target device.
664  */
665 static void device_links_purge(struct device *dev)
666 {
667 	struct device_link *link, *ln;
668 
669 	/*
670 	 * Delete all of the remaining links from this device to any other
671 	 * devices (either consumers or suppliers).
672 	 */
673 	device_links_write_lock();
674 
675 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
676 		WARN_ON(link->status == DL_STATE_ACTIVE);
677 		__device_link_del(&link->kref);
678 	}
679 
680 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
681 		WARN_ON(link->status != DL_STATE_DORMANT &&
682 			link->status != DL_STATE_NONE);
683 		__device_link_del(&link->kref);
684 	}
685 
686 	device_links_write_unlock();
687 }
688 
689 /* Device links support end. */
690 
691 int (*platform_notify)(struct device *dev) = NULL;
692 int (*platform_notify_remove)(struct device *dev) = NULL;
693 static struct kobject *dev_kobj;
694 struct kobject *sysfs_dev_char_kobj;
695 struct kobject *sysfs_dev_block_kobj;
696 
697 static DEFINE_MUTEX(device_hotplug_lock);
698 
699 void lock_device_hotplug(void)
700 {
701 	mutex_lock(&device_hotplug_lock);
702 }
703 
704 void unlock_device_hotplug(void)
705 {
706 	mutex_unlock(&device_hotplug_lock);
707 }
708 
709 int lock_device_hotplug_sysfs(void)
710 {
711 	if (mutex_trylock(&device_hotplug_lock))
712 		return 0;
713 
714 	/* Avoid busy looping (5 ms of sleep should do). */
715 	msleep(5);
716 	return restart_syscall();
717 }
718 
719 #ifdef CONFIG_BLOCK
720 static inline int device_is_not_partition(struct device *dev)
721 {
722 	return !(dev->type == &part_type);
723 }
724 #else
725 static inline int device_is_not_partition(struct device *dev)
726 {
727 	return 1;
728 }
729 #endif
730 
731 /**
732  * dev_driver_string - Return a device's driver name, if at all possible
733  * @dev: struct device to get the name of
734  *
735  * Will return the device's driver's name if it is bound to a device.  If
736  * the device is not bound to a driver, it will return the name of the bus
737  * it is attached to.  If it is not attached to a bus either, an empty
738  * string will be returned.
739  */
740 const char *dev_driver_string(const struct device *dev)
741 {
742 	struct device_driver *drv;
743 
744 	/* dev->driver can change to NULL underneath us because of unbinding,
745 	 * so be careful about accessing it.  dev->bus and dev->class should
746 	 * never change once they are set, so they don't need special care.
747 	 */
748 	drv = READ_ONCE(dev->driver);
749 	return drv ? drv->name :
750 			(dev->bus ? dev->bus->name :
751 			(dev->class ? dev->class->name : ""));
752 }
753 EXPORT_SYMBOL(dev_driver_string);
754 
755 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
756 
757 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
758 			     char *buf)
759 {
760 	struct device_attribute *dev_attr = to_dev_attr(attr);
761 	struct device *dev = kobj_to_dev(kobj);
762 	ssize_t ret = -EIO;
763 
764 	if (dev_attr->show)
765 		ret = dev_attr->show(dev, dev_attr, buf);
766 	if (ret >= (ssize_t)PAGE_SIZE) {
767 		printk("dev_attr_show: %pS returned bad count\n",
768 				dev_attr->show);
769 	}
770 	return ret;
771 }
772 
773 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
774 			      const char *buf, size_t count)
775 {
776 	struct device_attribute *dev_attr = to_dev_attr(attr);
777 	struct device *dev = kobj_to_dev(kobj);
778 	ssize_t ret = -EIO;
779 
780 	if (dev_attr->store)
781 		ret = dev_attr->store(dev, dev_attr, buf, count);
782 	return ret;
783 }
784 
785 static const struct sysfs_ops dev_sysfs_ops = {
786 	.show	= dev_attr_show,
787 	.store	= dev_attr_store,
788 };
789 
790 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
791 
792 ssize_t device_store_ulong(struct device *dev,
793 			   struct device_attribute *attr,
794 			   const char *buf, size_t size)
795 {
796 	struct dev_ext_attribute *ea = to_ext_attr(attr);
797 	char *end;
798 	unsigned long new = simple_strtoul(buf, &end, 0);
799 	if (end == buf)
800 		return -EINVAL;
801 	*(unsigned long *)(ea->var) = new;
802 	/* Always return full write size even if we didn't consume all */
803 	return size;
804 }
805 EXPORT_SYMBOL_GPL(device_store_ulong);
806 
807 ssize_t device_show_ulong(struct device *dev,
808 			  struct device_attribute *attr,
809 			  char *buf)
810 {
811 	struct dev_ext_attribute *ea = to_ext_attr(attr);
812 	return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
813 }
814 EXPORT_SYMBOL_GPL(device_show_ulong);
815 
816 ssize_t device_store_int(struct device *dev,
817 			 struct device_attribute *attr,
818 			 const char *buf, size_t size)
819 {
820 	struct dev_ext_attribute *ea = to_ext_attr(attr);
821 	char *end;
822 	long new = simple_strtol(buf, &end, 0);
823 	if (end == buf || new > INT_MAX || new < INT_MIN)
824 		return -EINVAL;
825 	*(int *)(ea->var) = new;
826 	/* Always return full write size even if we didn't consume all */
827 	return size;
828 }
829 EXPORT_SYMBOL_GPL(device_store_int);
830 
831 ssize_t device_show_int(struct device *dev,
832 			struct device_attribute *attr,
833 			char *buf)
834 {
835 	struct dev_ext_attribute *ea = to_ext_attr(attr);
836 
837 	return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
838 }
839 EXPORT_SYMBOL_GPL(device_show_int);
840 
841 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
842 			  const char *buf, size_t size)
843 {
844 	struct dev_ext_attribute *ea = to_ext_attr(attr);
845 
846 	if (strtobool(buf, ea->var) < 0)
847 		return -EINVAL;
848 
849 	return size;
850 }
851 EXPORT_SYMBOL_GPL(device_store_bool);
852 
853 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
854 			 char *buf)
855 {
856 	struct dev_ext_attribute *ea = to_ext_attr(attr);
857 
858 	return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
859 }
860 EXPORT_SYMBOL_GPL(device_show_bool);
861 
862 /**
863  * device_release - free device structure.
864  * @kobj: device's kobject.
865  *
866  * This is called once the reference count for the object
867  * reaches 0. We forward the call to the device's release
868  * method, which should handle actually freeing the structure.
869  */
870 static void device_release(struct kobject *kobj)
871 {
872 	struct device *dev = kobj_to_dev(kobj);
873 	struct device_private *p = dev->p;
874 
875 	/*
876 	 * Some platform devices are driven without driver attached
877 	 * and managed resources may have been acquired.  Make sure
878 	 * all resources are released.
879 	 *
880 	 * Drivers still can add resources into device after device
881 	 * is deleted but alive, so release devres here to avoid
882 	 * possible memory leak.
883 	 */
884 	devres_release_all(dev);
885 
886 	if (dev->release)
887 		dev->release(dev);
888 	else if (dev->type && dev->type->release)
889 		dev->type->release(dev);
890 	else if (dev->class && dev->class->dev_release)
891 		dev->class->dev_release(dev);
892 	else
893 		WARN(1, KERN_ERR "Device '%s' does not have a release() "
894 			"function, it is broken and must be fixed.\n",
895 			dev_name(dev));
896 	kfree(p);
897 }
898 
899 static const void *device_namespace(struct kobject *kobj)
900 {
901 	struct device *dev = kobj_to_dev(kobj);
902 	const void *ns = NULL;
903 
904 	if (dev->class && dev->class->ns_type)
905 		ns = dev->class->namespace(dev);
906 
907 	return ns;
908 }
909 
910 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
911 {
912 	struct device *dev = kobj_to_dev(kobj);
913 
914 	if (dev->class && dev->class->get_ownership)
915 		dev->class->get_ownership(dev, uid, gid);
916 }
917 
918 static struct kobj_type device_ktype = {
919 	.release	= device_release,
920 	.sysfs_ops	= &dev_sysfs_ops,
921 	.namespace	= device_namespace,
922 	.get_ownership	= device_get_ownership,
923 };
924 
925 
926 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
927 {
928 	struct kobj_type *ktype = get_ktype(kobj);
929 
930 	if (ktype == &device_ktype) {
931 		struct device *dev = kobj_to_dev(kobj);
932 		if (dev->bus)
933 			return 1;
934 		if (dev->class)
935 			return 1;
936 	}
937 	return 0;
938 }
939 
940 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
941 {
942 	struct device *dev = kobj_to_dev(kobj);
943 
944 	if (dev->bus)
945 		return dev->bus->name;
946 	if (dev->class)
947 		return dev->class->name;
948 	return NULL;
949 }
950 
951 static int dev_uevent(struct kset *kset, struct kobject *kobj,
952 		      struct kobj_uevent_env *env)
953 {
954 	struct device *dev = kobj_to_dev(kobj);
955 	int retval = 0;
956 
957 	/* add device node properties if present */
958 	if (MAJOR(dev->devt)) {
959 		const char *tmp;
960 		const char *name;
961 		umode_t mode = 0;
962 		kuid_t uid = GLOBAL_ROOT_UID;
963 		kgid_t gid = GLOBAL_ROOT_GID;
964 
965 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
966 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
967 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
968 		if (name) {
969 			add_uevent_var(env, "DEVNAME=%s", name);
970 			if (mode)
971 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
972 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
973 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
974 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
975 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
976 			kfree(tmp);
977 		}
978 	}
979 
980 	if (dev->type && dev->type->name)
981 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
982 
983 	if (dev->driver)
984 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
985 
986 	/* Add common DT information about the device */
987 	of_device_uevent(dev, env);
988 
989 	/* have the bus specific function add its stuff */
990 	if (dev->bus && dev->bus->uevent) {
991 		retval = dev->bus->uevent(dev, env);
992 		if (retval)
993 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
994 				 dev_name(dev), __func__, retval);
995 	}
996 
997 	/* have the class specific function add its stuff */
998 	if (dev->class && dev->class->dev_uevent) {
999 		retval = dev->class->dev_uevent(dev, env);
1000 		if (retval)
1001 			pr_debug("device: '%s': %s: class uevent() "
1002 				 "returned %d\n", dev_name(dev),
1003 				 __func__, retval);
1004 	}
1005 
1006 	/* have the device type specific function add its stuff */
1007 	if (dev->type && dev->type->uevent) {
1008 		retval = dev->type->uevent(dev, env);
1009 		if (retval)
1010 			pr_debug("device: '%s': %s: dev_type uevent() "
1011 				 "returned %d\n", dev_name(dev),
1012 				 __func__, retval);
1013 	}
1014 
1015 	return retval;
1016 }
1017 
1018 static const struct kset_uevent_ops device_uevent_ops = {
1019 	.filter =	dev_uevent_filter,
1020 	.name =		dev_uevent_name,
1021 	.uevent =	dev_uevent,
1022 };
1023 
1024 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
1025 			   char *buf)
1026 {
1027 	struct kobject *top_kobj;
1028 	struct kset *kset;
1029 	struct kobj_uevent_env *env = NULL;
1030 	int i;
1031 	size_t count = 0;
1032 	int retval;
1033 
1034 	/* search the kset, the device belongs to */
1035 	top_kobj = &dev->kobj;
1036 	while (!top_kobj->kset && top_kobj->parent)
1037 		top_kobj = top_kobj->parent;
1038 	if (!top_kobj->kset)
1039 		goto out;
1040 
1041 	kset = top_kobj->kset;
1042 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
1043 		goto out;
1044 
1045 	/* respect filter */
1046 	if (kset->uevent_ops && kset->uevent_ops->filter)
1047 		if (!kset->uevent_ops->filter(kset, &dev->kobj))
1048 			goto out;
1049 
1050 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1051 	if (!env)
1052 		return -ENOMEM;
1053 
1054 	/* let the kset specific function add its keys */
1055 	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
1056 	if (retval)
1057 		goto out;
1058 
1059 	/* copy keys to file */
1060 	for (i = 0; i < env->envp_idx; i++)
1061 		count += sprintf(&buf[count], "%s\n", env->envp[i]);
1062 out:
1063 	kfree(env);
1064 	return count;
1065 }
1066 
1067 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
1068 			    const char *buf, size_t count)
1069 {
1070 	if (kobject_synth_uevent(&dev->kobj, buf, count))
1071 		dev_err(dev, "uevent: failed to send synthetic uevent\n");
1072 
1073 	return count;
1074 }
1075 static DEVICE_ATTR_RW(uevent);
1076 
1077 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1078 			   char *buf)
1079 {
1080 	bool val;
1081 
1082 	device_lock(dev);
1083 	val = !dev->offline;
1084 	device_unlock(dev);
1085 	return sprintf(buf, "%u\n", val);
1086 }
1087 
1088 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1089 			    const char *buf, size_t count)
1090 {
1091 	bool val;
1092 	int ret;
1093 
1094 	ret = strtobool(buf, &val);
1095 	if (ret < 0)
1096 		return ret;
1097 
1098 	ret = lock_device_hotplug_sysfs();
1099 	if (ret)
1100 		return ret;
1101 
1102 	ret = val ? device_online(dev) : device_offline(dev);
1103 	unlock_device_hotplug();
1104 	return ret < 0 ? ret : count;
1105 }
1106 static DEVICE_ATTR_RW(online);
1107 
1108 int device_add_groups(struct device *dev, const struct attribute_group **groups)
1109 {
1110 	return sysfs_create_groups(&dev->kobj, groups);
1111 }
1112 EXPORT_SYMBOL_GPL(device_add_groups);
1113 
1114 void device_remove_groups(struct device *dev,
1115 			  const struct attribute_group **groups)
1116 {
1117 	sysfs_remove_groups(&dev->kobj, groups);
1118 }
1119 EXPORT_SYMBOL_GPL(device_remove_groups);
1120 
1121 union device_attr_group_devres {
1122 	const struct attribute_group *group;
1123 	const struct attribute_group **groups;
1124 };
1125 
1126 static int devm_attr_group_match(struct device *dev, void *res, void *data)
1127 {
1128 	return ((union device_attr_group_devres *)res)->group == data;
1129 }
1130 
1131 static void devm_attr_group_remove(struct device *dev, void *res)
1132 {
1133 	union device_attr_group_devres *devres = res;
1134 	const struct attribute_group *group = devres->group;
1135 
1136 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
1137 	sysfs_remove_group(&dev->kobj, group);
1138 }
1139 
1140 static void devm_attr_groups_remove(struct device *dev, void *res)
1141 {
1142 	union device_attr_group_devres *devres = res;
1143 	const struct attribute_group **groups = devres->groups;
1144 
1145 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
1146 	sysfs_remove_groups(&dev->kobj, groups);
1147 }
1148 
1149 /**
1150  * devm_device_add_group - given a device, create a managed attribute group
1151  * @dev:	The device to create the group for
1152  * @grp:	The attribute group to create
1153  *
1154  * This function creates a group for the first time.  It will explicitly
1155  * warn and error if any of the attribute files being created already exist.
1156  *
1157  * Returns 0 on success or error code on failure.
1158  */
1159 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
1160 {
1161 	union device_attr_group_devres *devres;
1162 	int error;
1163 
1164 	devres = devres_alloc(devm_attr_group_remove,
1165 			      sizeof(*devres), GFP_KERNEL);
1166 	if (!devres)
1167 		return -ENOMEM;
1168 
1169 	error = sysfs_create_group(&dev->kobj, grp);
1170 	if (error) {
1171 		devres_free(devres);
1172 		return error;
1173 	}
1174 
1175 	devres->group = grp;
1176 	devres_add(dev, devres);
1177 	return 0;
1178 }
1179 EXPORT_SYMBOL_GPL(devm_device_add_group);
1180 
1181 /**
1182  * devm_device_remove_group: remove a managed group from a device
1183  * @dev:	device to remove the group from
1184  * @grp:	group to remove
1185  *
1186  * This function removes a group of attributes from a device. The attributes
1187  * previously have to have been created for this group, otherwise it will fail.
1188  */
1189 void devm_device_remove_group(struct device *dev,
1190 			      const struct attribute_group *grp)
1191 {
1192 	WARN_ON(devres_release(dev, devm_attr_group_remove,
1193 			       devm_attr_group_match,
1194 			       /* cast away const */ (void *)grp));
1195 }
1196 EXPORT_SYMBOL_GPL(devm_device_remove_group);
1197 
1198 /**
1199  * devm_device_add_groups - create a bunch of managed attribute groups
1200  * @dev:	The device to create the group for
1201  * @groups:	The attribute groups to create, NULL terminated
1202  *
1203  * This function creates a bunch of managed attribute groups.  If an error
1204  * occurs when creating a group, all previously created groups will be
1205  * removed, unwinding everything back to the original state when this
1206  * function was called.  It will explicitly warn and error if any of the
1207  * attribute files being created already exist.
1208  *
1209  * Returns 0 on success or error code from sysfs_create_group on failure.
1210  */
1211 int devm_device_add_groups(struct device *dev,
1212 			   const struct attribute_group **groups)
1213 {
1214 	union device_attr_group_devres *devres;
1215 	int error;
1216 
1217 	devres = devres_alloc(devm_attr_groups_remove,
1218 			      sizeof(*devres), GFP_KERNEL);
1219 	if (!devres)
1220 		return -ENOMEM;
1221 
1222 	error = sysfs_create_groups(&dev->kobj, groups);
1223 	if (error) {
1224 		devres_free(devres);
1225 		return error;
1226 	}
1227 
1228 	devres->groups = groups;
1229 	devres_add(dev, devres);
1230 	return 0;
1231 }
1232 EXPORT_SYMBOL_GPL(devm_device_add_groups);
1233 
1234 /**
1235  * devm_device_remove_groups - remove a list of managed groups
1236  *
1237  * @dev:	The device for the groups to be removed from
1238  * @groups:	NULL terminated list of groups to be removed
1239  *
1240  * If groups is not NULL, remove the specified groups from the device.
1241  */
1242 void devm_device_remove_groups(struct device *dev,
1243 			       const struct attribute_group **groups)
1244 {
1245 	WARN_ON(devres_release(dev, devm_attr_groups_remove,
1246 			       devm_attr_group_match,
1247 			       /* cast away const */ (void *)groups));
1248 }
1249 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
1250 
1251 static int device_add_attrs(struct device *dev)
1252 {
1253 	struct class *class = dev->class;
1254 	const struct device_type *type = dev->type;
1255 	int error;
1256 
1257 	if (class) {
1258 		error = device_add_groups(dev, class->dev_groups);
1259 		if (error)
1260 			return error;
1261 	}
1262 
1263 	if (type) {
1264 		error = device_add_groups(dev, type->groups);
1265 		if (error)
1266 			goto err_remove_class_groups;
1267 	}
1268 
1269 	error = device_add_groups(dev, dev->groups);
1270 	if (error)
1271 		goto err_remove_type_groups;
1272 
1273 	if (device_supports_offline(dev) && !dev->offline_disabled) {
1274 		error = device_create_file(dev, &dev_attr_online);
1275 		if (error)
1276 			goto err_remove_dev_groups;
1277 	}
1278 
1279 	return 0;
1280 
1281  err_remove_dev_groups:
1282 	device_remove_groups(dev, dev->groups);
1283  err_remove_type_groups:
1284 	if (type)
1285 		device_remove_groups(dev, type->groups);
1286  err_remove_class_groups:
1287 	if (class)
1288 		device_remove_groups(dev, class->dev_groups);
1289 
1290 	return error;
1291 }
1292 
1293 static void device_remove_attrs(struct device *dev)
1294 {
1295 	struct class *class = dev->class;
1296 	const struct device_type *type = dev->type;
1297 
1298 	device_remove_file(dev, &dev_attr_online);
1299 	device_remove_groups(dev, dev->groups);
1300 
1301 	if (type)
1302 		device_remove_groups(dev, type->groups);
1303 
1304 	if (class)
1305 		device_remove_groups(dev, class->dev_groups);
1306 }
1307 
1308 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1309 			char *buf)
1310 {
1311 	return print_dev_t(buf, dev->devt);
1312 }
1313 static DEVICE_ATTR_RO(dev);
1314 
1315 /* /sys/devices/ */
1316 struct kset *devices_kset;
1317 
1318 /**
1319  * devices_kset_move_before - Move device in the devices_kset's list.
1320  * @deva: Device to move.
1321  * @devb: Device @deva should come before.
1322  */
1323 static void devices_kset_move_before(struct device *deva, struct device *devb)
1324 {
1325 	if (!devices_kset)
1326 		return;
1327 	pr_debug("devices_kset: Moving %s before %s\n",
1328 		 dev_name(deva), dev_name(devb));
1329 	spin_lock(&devices_kset->list_lock);
1330 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1331 	spin_unlock(&devices_kset->list_lock);
1332 }
1333 
1334 /**
1335  * devices_kset_move_after - Move device in the devices_kset's list.
1336  * @deva: Device to move
1337  * @devb: Device @deva should come after.
1338  */
1339 static void devices_kset_move_after(struct device *deva, struct device *devb)
1340 {
1341 	if (!devices_kset)
1342 		return;
1343 	pr_debug("devices_kset: Moving %s after %s\n",
1344 		 dev_name(deva), dev_name(devb));
1345 	spin_lock(&devices_kset->list_lock);
1346 	list_move(&deva->kobj.entry, &devb->kobj.entry);
1347 	spin_unlock(&devices_kset->list_lock);
1348 }
1349 
1350 /**
1351  * devices_kset_move_last - move the device to the end of devices_kset's list.
1352  * @dev: device to move
1353  */
1354 void devices_kset_move_last(struct device *dev)
1355 {
1356 	if (!devices_kset)
1357 		return;
1358 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1359 	spin_lock(&devices_kset->list_lock);
1360 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
1361 	spin_unlock(&devices_kset->list_lock);
1362 }
1363 
1364 /**
1365  * device_create_file - create sysfs attribute file for device.
1366  * @dev: device.
1367  * @attr: device attribute descriptor.
1368  */
1369 int device_create_file(struct device *dev,
1370 		       const struct device_attribute *attr)
1371 {
1372 	int error = 0;
1373 
1374 	if (dev) {
1375 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1376 			"Attribute %s: write permission without 'store'\n",
1377 			attr->attr.name);
1378 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1379 			"Attribute %s: read permission without 'show'\n",
1380 			attr->attr.name);
1381 		error = sysfs_create_file(&dev->kobj, &attr->attr);
1382 	}
1383 
1384 	return error;
1385 }
1386 EXPORT_SYMBOL_GPL(device_create_file);
1387 
1388 /**
1389  * device_remove_file - remove sysfs attribute file.
1390  * @dev: device.
1391  * @attr: device attribute descriptor.
1392  */
1393 void device_remove_file(struct device *dev,
1394 			const struct device_attribute *attr)
1395 {
1396 	if (dev)
1397 		sysfs_remove_file(&dev->kobj, &attr->attr);
1398 }
1399 EXPORT_SYMBOL_GPL(device_remove_file);
1400 
1401 /**
1402  * device_remove_file_self - remove sysfs attribute file from its own method.
1403  * @dev: device.
1404  * @attr: device attribute descriptor.
1405  *
1406  * See kernfs_remove_self() for details.
1407  */
1408 bool device_remove_file_self(struct device *dev,
1409 			     const struct device_attribute *attr)
1410 {
1411 	if (dev)
1412 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1413 	else
1414 		return false;
1415 }
1416 EXPORT_SYMBOL_GPL(device_remove_file_self);
1417 
1418 /**
1419  * device_create_bin_file - create sysfs binary attribute file for device.
1420  * @dev: device.
1421  * @attr: device binary attribute descriptor.
1422  */
1423 int device_create_bin_file(struct device *dev,
1424 			   const struct bin_attribute *attr)
1425 {
1426 	int error = -EINVAL;
1427 	if (dev)
1428 		error = sysfs_create_bin_file(&dev->kobj, attr);
1429 	return error;
1430 }
1431 EXPORT_SYMBOL_GPL(device_create_bin_file);
1432 
1433 /**
1434  * device_remove_bin_file - remove sysfs binary attribute file
1435  * @dev: device.
1436  * @attr: device binary attribute descriptor.
1437  */
1438 void device_remove_bin_file(struct device *dev,
1439 			    const struct bin_attribute *attr)
1440 {
1441 	if (dev)
1442 		sysfs_remove_bin_file(&dev->kobj, attr);
1443 }
1444 EXPORT_SYMBOL_GPL(device_remove_bin_file);
1445 
1446 static void klist_children_get(struct klist_node *n)
1447 {
1448 	struct device_private *p = to_device_private_parent(n);
1449 	struct device *dev = p->device;
1450 
1451 	get_device(dev);
1452 }
1453 
1454 static void klist_children_put(struct klist_node *n)
1455 {
1456 	struct device_private *p = to_device_private_parent(n);
1457 	struct device *dev = p->device;
1458 
1459 	put_device(dev);
1460 }
1461 
1462 /**
1463  * device_initialize - init device structure.
1464  * @dev: device.
1465  *
1466  * This prepares the device for use by other layers by initializing
1467  * its fields.
1468  * It is the first half of device_register(), if called by
1469  * that function, though it can also be called separately, so one
1470  * may use @dev's fields. In particular, get_device()/put_device()
1471  * may be used for reference counting of @dev after calling this
1472  * function.
1473  *
1474  * All fields in @dev must be initialized by the caller to 0, except
1475  * for those explicitly set to some other value.  The simplest
1476  * approach is to use kzalloc() to allocate the structure containing
1477  * @dev.
1478  *
1479  * NOTE: Use put_device() to give up your reference instead of freeing
1480  * @dev directly once you have called this function.
1481  */
1482 void device_initialize(struct device *dev)
1483 {
1484 	dev->kobj.kset = devices_kset;
1485 	kobject_init(&dev->kobj, &device_ktype);
1486 	INIT_LIST_HEAD(&dev->dma_pools);
1487 	mutex_init(&dev->mutex);
1488 	lockdep_set_novalidate_class(&dev->mutex);
1489 	spin_lock_init(&dev->devres_lock);
1490 	INIT_LIST_HEAD(&dev->devres_head);
1491 	device_pm_init(dev);
1492 	set_dev_node(dev, -1);
1493 #ifdef CONFIG_GENERIC_MSI_IRQ
1494 	INIT_LIST_HEAD(&dev->msi_list);
1495 #endif
1496 	INIT_LIST_HEAD(&dev->links.consumers);
1497 	INIT_LIST_HEAD(&dev->links.suppliers);
1498 	dev->links.status = DL_DEV_NO_DRIVER;
1499 }
1500 EXPORT_SYMBOL_GPL(device_initialize);
1501 
1502 struct kobject *virtual_device_parent(struct device *dev)
1503 {
1504 	static struct kobject *virtual_dir = NULL;
1505 
1506 	if (!virtual_dir)
1507 		virtual_dir = kobject_create_and_add("virtual",
1508 						     &devices_kset->kobj);
1509 
1510 	return virtual_dir;
1511 }
1512 
1513 struct class_dir {
1514 	struct kobject kobj;
1515 	struct class *class;
1516 };
1517 
1518 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
1519 
1520 static void class_dir_release(struct kobject *kobj)
1521 {
1522 	struct class_dir *dir = to_class_dir(kobj);
1523 	kfree(dir);
1524 }
1525 
1526 static const
1527 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
1528 {
1529 	struct class_dir *dir = to_class_dir(kobj);
1530 	return dir->class->ns_type;
1531 }
1532 
1533 static struct kobj_type class_dir_ktype = {
1534 	.release	= class_dir_release,
1535 	.sysfs_ops	= &kobj_sysfs_ops,
1536 	.child_ns_type	= class_dir_child_ns_type
1537 };
1538 
1539 static struct kobject *
1540 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
1541 {
1542 	struct class_dir *dir;
1543 	int retval;
1544 
1545 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
1546 	if (!dir)
1547 		return ERR_PTR(-ENOMEM);
1548 
1549 	dir->class = class;
1550 	kobject_init(&dir->kobj, &class_dir_ktype);
1551 
1552 	dir->kobj.kset = &class->p->glue_dirs;
1553 
1554 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
1555 	if (retval < 0) {
1556 		kobject_put(&dir->kobj);
1557 		return ERR_PTR(retval);
1558 	}
1559 	return &dir->kobj;
1560 }
1561 
1562 static DEFINE_MUTEX(gdp_mutex);
1563 
1564 static struct kobject *get_device_parent(struct device *dev,
1565 					 struct device *parent)
1566 {
1567 	if (dev->class) {
1568 		struct kobject *kobj = NULL;
1569 		struct kobject *parent_kobj;
1570 		struct kobject *k;
1571 
1572 #ifdef CONFIG_BLOCK
1573 		/* block disks show up in /sys/block */
1574 		if (sysfs_deprecated && dev->class == &block_class) {
1575 			if (parent && parent->class == &block_class)
1576 				return &parent->kobj;
1577 			return &block_class.p->subsys.kobj;
1578 		}
1579 #endif
1580 
1581 		/*
1582 		 * If we have no parent, we live in "virtual".
1583 		 * Class-devices with a non class-device as parent, live
1584 		 * in a "glue" directory to prevent namespace collisions.
1585 		 */
1586 		if (parent == NULL)
1587 			parent_kobj = virtual_device_parent(dev);
1588 		else if (parent->class && !dev->class->ns_type)
1589 			return &parent->kobj;
1590 		else
1591 			parent_kobj = &parent->kobj;
1592 
1593 		mutex_lock(&gdp_mutex);
1594 
1595 		/* find our class-directory at the parent and reference it */
1596 		spin_lock(&dev->class->p->glue_dirs.list_lock);
1597 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
1598 			if (k->parent == parent_kobj) {
1599 				kobj = kobject_get(k);
1600 				break;
1601 			}
1602 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
1603 		if (kobj) {
1604 			mutex_unlock(&gdp_mutex);
1605 			return kobj;
1606 		}
1607 
1608 		/* or create a new class-directory at the parent device */
1609 		k = class_dir_create_and_add(dev->class, parent_kobj);
1610 		/* do not emit an uevent for this simple "glue" directory */
1611 		mutex_unlock(&gdp_mutex);
1612 		return k;
1613 	}
1614 
1615 	/* subsystems can specify a default root directory for their devices */
1616 	if (!parent && dev->bus && dev->bus->dev_root)
1617 		return &dev->bus->dev_root->kobj;
1618 
1619 	if (parent)
1620 		return &parent->kobj;
1621 	return NULL;
1622 }
1623 
1624 static inline bool live_in_glue_dir(struct kobject *kobj,
1625 				    struct device *dev)
1626 {
1627 	if (!kobj || !dev->class ||
1628 	    kobj->kset != &dev->class->p->glue_dirs)
1629 		return false;
1630 	return true;
1631 }
1632 
1633 static inline struct kobject *get_glue_dir(struct device *dev)
1634 {
1635 	return dev->kobj.parent;
1636 }
1637 
1638 /*
1639  * make sure cleaning up dir as the last step, we need to make
1640  * sure .release handler of kobject is run with holding the
1641  * global lock
1642  */
1643 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
1644 {
1645 	/* see if we live in a "glue" directory */
1646 	if (!live_in_glue_dir(glue_dir, dev))
1647 		return;
1648 
1649 	mutex_lock(&gdp_mutex);
1650 	if (!kobject_has_children(glue_dir))
1651 		kobject_del(glue_dir);
1652 	kobject_put(glue_dir);
1653 	mutex_unlock(&gdp_mutex);
1654 }
1655 
1656 static int device_add_class_symlinks(struct device *dev)
1657 {
1658 	struct device_node *of_node = dev_of_node(dev);
1659 	int error;
1660 
1661 	if (of_node) {
1662 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
1663 		if (error)
1664 			dev_warn(dev, "Error %d creating of_node link\n",error);
1665 		/* An error here doesn't warrant bringing down the device */
1666 	}
1667 
1668 	if (!dev->class)
1669 		return 0;
1670 
1671 	error = sysfs_create_link(&dev->kobj,
1672 				  &dev->class->p->subsys.kobj,
1673 				  "subsystem");
1674 	if (error)
1675 		goto out_devnode;
1676 
1677 	if (dev->parent && device_is_not_partition(dev)) {
1678 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
1679 					  "device");
1680 		if (error)
1681 			goto out_subsys;
1682 	}
1683 
1684 #ifdef CONFIG_BLOCK
1685 	/* /sys/block has directories and does not need symlinks */
1686 	if (sysfs_deprecated && dev->class == &block_class)
1687 		return 0;
1688 #endif
1689 
1690 	/* link in the class directory pointing to the device */
1691 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
1692 				  &dev->kobj, dev_name(dev));
1693 	if (error)
1694 		goto out_device;
1695 
1696 	return 0;
1697 
1698 out_device:
1699 	sysfs_remove_link(&dev->kobj, "device");
1700 
1701 out_subsys:
1702 	sysfs_remove_link(&dev->kobj, "subsystem");
1703 out_devnode:
1704 	sysfs_remove_link(&dev->kobj, "of_node");
1705 	return error;
1706 }
1707 
1708 static void device_remove_class_symlinks(struct device *dev)
1709 {
1710 	if (dev_of_node(dev))
1711 		sysfs_remove_link(&dev->kobj, "of_node");
1712 
1713 	if (!dev->class)
1714 		return;
1715 
1716 	if (dev->parent && device_is_not_partition(dev))
1717 		sysfs_remove_link(&dev->kobj, "device");
1718 	sysfs_remove_link(&dev->kobj, "subsystem");
1719 #ifdef CONFIG_BLOCK
1720 	if (sysfs_deprecated && dev->class == &block_class)
1721 		return;
1722 #endif
1723 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
1724 }
1725 
1726 /**
1727  * dev_set_name - set a device name
1728  * @dev: device
1729  * @fmt: format string for the device's name
1730  */
1731 int dev_set_name(struct device *dev, const char *fmt, ...)
1732 {
1733 	va_list vargs;
1734 	int err;
1735 
1736 	va_start(vargs, fmt);
1737 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
1738 	va_end(vargs);
1739 	return err;
1740 }
1741 EXPORT_SYMBOL_GPL(dev_set_name);
1742 
1743 /**
1744  * device_to_dev_kobj - select a /sys/dev/ directory for the device
1745  * @dev: device
1746  *
1747  * By default we select char/ for new entries.  Setting class->dev_obj
1748  * to NULL prevents an entry from being created.  class->dev_kobj must
1749  * be set (or cleared) before any devices are registered to the class
1750  * otherwise device_create_sys_dev_entry() and
1751  * device_remove_sys_dev_entry() will disagree about the presence of
1752  * the link.
1753  */
1754 static struct kobject *device_to_dev_kobj(struct device *dev)
1755 {
1756 	struct kobject *kobj;
1757 
1758 	if (dev->class)
1759 		kobj = dev->class->dev_kobj;
1760 	else
1761 		kobj = sysfs_dev_char_kobj;
1762 
1763 	return kobj;
1764 }
1765 
1766 static int device_create_sys_dev_entry(struct device *dev)
1767 {
1768 	struct kobject *kobj = device_to_dev_kobj(dev);
1769 	int error = 0;
1770 	char devt_str[15];
1771 
1772 	if (kobj) {
1773 		format_dev_t(devt_str, dev->devt);
1774 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
1775 	}
1776 
1777 	return error;
1778 }
1779 
1780 static void device_remove_sys_dev_entry(struct device *dev)
1781 {
1782 	struct kobject *kobj = device_to_dev_kobj(dev);
1783 	char devt_str[15];
1784 
1785 	if (kobj) {
1786 		format_dev_t(devt_str, dev->devt);
1787 		sysfs_remove_link(kobj, devt_str);
1788 	}
1789 }
1790 
1791 static int device_private_init(struct device *dev)
1792 {
1793 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
1794 	if (!dev->p)
1795 		return -ENOMEM;
1796 	dev->p->device = dev;
1797 	klist_init(&dev->p->klist_children, klist_children_get,
1798 		   klist_children_put);
1799 	INIT_LIST_HEAD(&dev->p->deferred_probe);
1800 	return 0;
1801 }
1802 
1803 /**
1804  * device_add - add device to device hierarchy.
1805  * @dev: device.
1806  *
1807  * This is part 2 of device_register(), though may be called
1808  * separately _iff_ device_initialize() has been called separately.
1809  *
1810  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
1811  * to the global and sibling lists for the device, then
1812  * adds it to the other relevant subsystems of the driver model.
1813  *
1814  * Do not call this routine or device_register() more than once for
1815  * any device structure.  The driver model core is not designed to work
1816  * with devices that get unregistered and then spring back to life.
1817  * (Among other things, it's very hard to guarantee that all references
1818  * to the previous incarnation of @dev have been dropped.)  Allocate
1819  * and register a fresh new struct device instead.
1820  *
1821  * NOTE: _Never_ directly free @dev after calling this function, even
1822  * if it returned an error! Always use put_device() to give up your
1823  * reference instead.
1824  */
1825 int device_add(struct device *dev)
1826 {
1827 	struct device *parent;
1828 	struct kobject *kobj;
1829 	struct class_interface *class_intf;
1830 	int error = -EINVAL;
1831 	struct kobject *glue_dir = NULL;
1832 
1833 	dev = get_device(dev);
1834 	if (!dev)
1835 		goto done;
1836 
1837 	if (!dev->p) {
1838 		error = device_private_init(dev);
1839 		if (error)
1840 			goto done;
1841 	}
1842 
1843 	/*
1844 	 * for statically allocated devices, which should all be converted
1845 	 * some day, we need to initialize the name. We prevent reading back
1846 	 * the name, and force the use of dev_name()
1847 	 */
1848 	if (dev->init_name) {
1849 		dev_set_name(dev, "%s", dev->init_name);
1850 		dev->init_name = NULL;
1851 	}
1852 
1853 	/* subsystems can specify simple device enumeration */
1854 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
1855 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
1856 
1857 	if (!dev_name(dev)) {
1858 		error = -EINVAL;
1859 		goto name_error;
1860 	}
1861 
1862 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1863 
1864 	parent = get_device(dev->parent);
1865 	kobj = get_device_parent(dev, parent);
1866 	if (IS_ERR(kobj)) {
1867 		error = PTR_ERR(kobj);
1868 		goto parent_error;
1869 	}
1870 	if (kobj)
1871 		dev->kobj.parent = kobj;
1872 
1873 	/* use parent numa_node */
1874 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
1875 		set_dev_node(dev, dev_to_node(parent));
1876 
1877 	/* first, register with generic layer. */
1878 	/* we require the name to be set before, and pass NULL */
1879 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
1880 	if (error) {
1881 		glue_dir = get_glue_dir(dev);
1882 		goto Error;
1883 	}
1884 
1885 	/* notify platform of device entry */
1886 	if (platform_notify)
1887 		platform_notify(dev);
1888 
1889 	error = device_create_file(dev, &dev_attr_uevent);
1890 	if (error)
1891 		goto attrError;
1892 
1893 	error = device_add_class_symlinks(dev);
1894 	if (error)
1895 		goto SymlinkError;
1896 	error = device_add_attrs(dev);
1897 	if (error)
1898 		goto AttrsError;
1899 	error = bus_add_device(dev);
1900 	if (error)
1901 		goto BusError;
1902 	error = dpm_sysfs_add(dev);
1903 	if (error)
1904 		goto DPMError;
1905 	device_pm_add(dev);
1906 
1907 	if (MAJOR(dev->devt)) {
1908 		error = device_create_file(dev, &dev_attr_dev);
1909 		if (error)
1910 			goto DevAttrError;
1911 
1912 		error = device_create_sys_dev_entry(dev);
1913 		if (error)
1914 			goto SysEntryError;
1915 
1916 		devtmpfs_create_node(dev);
1917 	}
1918 
1919 	/* Notify clients of device addition.  This call must come
1920 	 * after dpm_sysfs_add() and before kobject_uevent().
1921 	 */
1922 	if (dev->bus)
1923 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1924 					     BUS_NOTIFY_ADD_DEVICE, dev);
1925 
1926 	kobject_uevent(&dev->kobj, KOBJ_ADD);
1927 	bus_probe_device(dev);
1928 	if (parent)
1929 		klist_add_tail(&dev->p->knode_parent,
1930 			       &parent->p->klist_children);
1931 
1932 	if (dev->class) {
1933 		mutex_lock(&dev->class->p->mutex);
1934 		/* tie the class to the device */
1935 		klist_add_tail(&dev->knode_class,
1936 			       &dev->class->p->klist_devices);
1937 
1938 		/* notify any interfaces that the device is here */
1939 		list_for_each_entry(class_intf,
1940 				    &dev->class->p->interfaces, node)
1941 			if (class_intf->add_dev)
1942 				class_intf->add_dev(dev, class_intf);
1943 		mutex_unlock(&dev->class->p->mutex);
1944 	}
1945 done:
1946 	put_device(dev);
1947 	return error;
1948  SysEntryError:
1949 	if (MAJOR(dev->devt))
1950 		device_remove_file(dev, &dev_attr_dev);
1951  DevAttrError:
1952 	device_pm_remove(dev);
1953 	dpm_sysfs_remove(dev);
1954  DPMError:
1955 	bus_remove_device(dev);
1956  BusError:
1957 	device_remove_attrs(dev);
1958  AttrsError:
1959 	device_remove_class_symlinks(dev);
1960  SymlinkError:
1961 	device_remove_file(dev, &dev_attr_uevent);
1962  attrError:
1963 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1964 	glue_dir = get_glue_dir(dev);
1965 	kobject_del(&dev->kobj);
1966  Error:
1967 	cleanup_glue_dir(dev, glue_dir);
1968 parent_error:
1969 	put_device(parent);
1970 name_error:
1971 	kfree(dev->p);
1972 	dev->p = NULL;
1973 	goto done;
1974 }
1975 EXPORT_SYMBOL_GPL(device_add);
1976 
1977 /**
1978  * device_register - register a device with the system.
1979  * @dev: pointer to the device structure
1980  *
1981  * This happens in two clean steps - initialize the device
1982  * and add it to the system. The two steps can be called
1983  * separately, but this is the easiest and most common.
1984  * I.e. you should only call the two helpers separately if
1985  * have a clearly defined need to use and refcount the device
1986  * before it is added to the hierarchy.
1987  *
1988  * For more information, see the kerneldoc for device_initialize()
1989  * and device_add().
1990  *
1991  * NOTE: _Never_ directly free @dev after calling this function, even
1992  * if it returned an error! Always use put_device() to give up the
1993  * reference initialized in this function instead.
1994  */
1995 int device_register(struct device *dev)
1996 {
1997 	device_initialize(dev);
1998 	return device_add(dev);
1999 }
2000 EXPORT_SYMBOL_GPL(device_register);
2001 
2002 /**
2003  * get_device - increment reference count for device.
2004  * @dev: device.
2005  *
2006  * This simply forwards the call to kobject_get(), though
2007  * we do take care to provide for the case that we get a NULL
2008  * pointer passed in.
2009  */
2010 struct device *get_device(struct device *dev)
2011 {
2012 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
2013 }
2014 EXPORT_SYMBOL_GPL(get_device);
2015 
2016 /**
2017  * put_device - decrement reference count.
2018  * @dev: device in question.
2019  */
2020 void put_device(struct device *dev)
2021 {
2022 	/* might_sleep(); */
2023 	if (dev)
2024 		kobject_put(&dev->kobj);
2025 }
2026 EXPORT_SYMBOL_GPL(put_device);
2027 
2028 /**
2029  * device_del - delete device from system.
2030  * @dev: device.
2031  *
2032  * This is the first part of the device unregistration
2033  * sequence. This removes the device from the lists we control
2034  * from here, has it removed from the other driver model
2035  * subsystems it was added to in device_add(), and removes it
2036  * from the kobject hierarchy.
2037  *
2038  * NOTE: this should be called manually _iff_ device_add() was
2039  * also called manually.
2040  */
2041 void device_del(struct device *dev)
2042 {
2043 	struct device *parent = dev->parent;
2044 	struct kobject *glue_dir = NULL;
2045 	struct class_interface *class_intf;
2046 
2047 	/* Notify clients of device removal.  This call must come
2048 	 * before dpm_sysfs_remove().
2049 	 */
2050 	if (dev->bus)
2051 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2052 					     BUS_NOTIFY_DEL_DEVICE, dev);
2053 
2054 	dpm_sysfs_remove(dev);
2055 	if (parent)
2056 		klist_del(&dev->p->knode_parent);
2057 	if (MAJOR(dev->devt)) {
2058 		devtmpfs_delete_node(dev);
2059 		device_remove_sys_dev_entry(dev);
2060 		device_remove_file(dev, &dev_attr_dev);
2061 	}
2062 	if (dev->class) {
2063 		device_remove_class_symlinks(dev);
2064 
2065 		mutex_lock(&dev->class->p->mutex);
2066 		/* notify any interfaces that the device is now gone */
2067 		list_for_each_entry(class_intf,
2068 				    &dev->class->p->interfaces, node)
2069 			if (class_intf->remove_dev)
2070 				class_intf->remove_dev(dev, class_intf);
2071 		/* remove the device from the class list */
2072 		klist_del(&dev->knode_class);
2073 		mutex_unlock(&dev->class->p->mutex);
2074 	}
2075 	device_remove_file(dev, &dev_attr_uevent);
2076 	device_remove_attrs(dev);
2077 	bus_remove_device(dev);
2078 	device_pm_remove(dev);
2079 	driver_deferred_probe_del(dev);
2080 	device_remove_properties(dev);
2081 	device_links_purge(dev);
2082 
2083 	/* Notify the platform of the removal, in case they
2084 	 * need to do anything...
2085 	 */
2086 	if (platform_notify_remove)
2087 		platform_notify_remove(dev);
2088 	if (dev->bus)
2089 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2090 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
2091 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2092 	glue_dir = get_glue_dir(dev);
2093 	kobject_del(&dev->kobj);
2094 	cleanup_glue_dir(dev, glue_dir);
2095 	put_device(parent);
2096 }
2097 EXPORT_SYMBOL_GPL(device_del);
2098 
2099 /**
2100  * device_unregister - unregister device from system.
2101  * @dev: device going away.
2102  *
2103  * We do this in two parts, like we do device_register(). First,
2104  * we remove it from all the subsystems with device_del(), then
2105  * we decrement the reference count via put_device(). If that
2106  * is the final reference count, the device will be cleaned up
2107  * via device_release() above. Otherwise, the structure will
2108  * stick around until the final reference to the device is dropped.
2109  */
2110 void device_unregister(struct device *dev)
2111 {
2112 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2113 	device_del(dev);
2114 	put_device(dev);
2115 }
2116 EXPORT_SYMBOL_GPL(device_unregister);
2117 
2118 static struct device *prev_device(struct klist_iter *i)
2119 {
2120 	struct klist_node *n = klist_prev(i);
2121 	struct device *dev = NULL;
2122 	struct device_private *p;
2123 
2124 	if (n) {
2125 		p = to_device_private_parent(n);
2126 		dev = p->device;
2127 	}
2128 	return dev;
2129 }
2130 
2131 static struct device *next_device(struct klist_iter *i)
2132 {
2133 	struct klist_node *n = klist_next(i);
2134 	struct device *dev = NULL;
2135 	struct device_private *p;
2136 
2137 	if (n) {
2138 		p = to_device_private_parent(n);
2139 		dev = p->device;
2140 	}
2141 	return dev;
2142 }
2143 
2144 /**
2145  * device_get_devnode - path of device node file
2146  * @dev: device
2147  * @mode: returned file access mode
2148  * @uid: returned file owner
2149  * @gid: returned file group
2150  * @tmp: possibly allocated string
2151  *
2152  * Return the relative path of a possible device node.
2153  * Non-default names may need to allocate a memory to compose
2154  * a name. This memory is returned in tmp and needs to be
2155  * freed by the caller.
2156  */
2157 const char *device_get_devnode(struct device *dev,
2158 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
2159 			       const char **tmp)
2160 {
2161 	char *s;
2162 
2163 	*tmp = NULL;
2164 
2165 	/* the device type may provide a specific name */
2166 	if (dev->type && dev->type->devnode)
2167 		*tmp = dev->type->devnode(dev, mode, uid, gid);
2168 	if (*tmp)
2169 		return *tmp;
2170 
2171 	/* the class may provide a specific name */
2172 	if (dev->class && dev->class->devnode)
2173 		*tmp = dev->class->devnode(dev, mode);
2174 	if (*tmp)
2175 		return *tmp;
2176 
2177 	/* return name without allocation, tmp == NULL */
2178 	if (strchr(dev_name(dev), '!') == NULL)
2179 		return dev_name(dev);
2180 
2181 	/* replace '!' in the name with '/' */
2182 	s = kstrdup(dev_name(dev), GFP_KERNEL);
2183 	if (!s)
2184 		return NULL;
2185 	strreplace(s, '!', '/');
2186 	return *tmp = s;
2187 }
2188 
2189 /**
2190  * device_for_each_child - device child iterator.
2191  * @parent: parent struct device.
2192  * @fn: function to be called for each device.
2193  * @data: data for the callback.
2194  *
2195  * Iterate over @parent's child devices, and call @fn for each,
2196  * passing it @data.
2197  *
2198  * We check the return of @fn each time. If it returns anything
2199  * other than 0, we break out and return that value.
2200  */
2201 int device_for_each_child(struct device *parent, void *data,
2202 			  int (*fn)(struct device *dev, void *data))
2203 {
2204 	struct klist_iter i;
2205 	struct device *child;
2206 	int error = 0;
2207 
2208 	if (!parent->p)
2209 		return 0;
2210 
2211 	klist_iter_init(&parent->p->klist_children, &i);
2212 	while (!error && (child = next_device(&i)))
2213 		error = fn(child, data);
2214 	klist_iter_exit(&i);
2215 	return error;
2216 }
2217 EXPORT_SYMBOL_GPL(device_for_each_child);
2218 
2219 /**
2220  * device_for_each_child_reverse - device child iterator in reversed order.
2221  * @parent: parent struct device.
2222  * @fn: function to be called for each device.
2223  * @data: data for the callback.
2224  *
2225  * Iterate over @parent's child devices, and call @fn for each,
2226  * passing it @data.
2227  *
2228  * We check the return of @fn each time. If it returns anything
2229  * other than 0, we break out and return that value.
2230  */
2231 int device_for_each_child_reverse(struct device *parent, void *data,
2232 				  int (*fn)(struct device *dev, void *data))
2233 {
2234 	struct klist_iter i;
2235 	struct device *child;
2236 	int error = 0;
2237 
2238 	if (!parent->p)
2239 		return 0;
2240 
2241 	klist_iter_init(&parent->p->klist_children, &i);
2242 	while ((child = prev_device(&i)) && !error)
2243 		error = fn(child, data);
2244 	klist_iter_exit(&i);
2245 	return error;
2246 }
2247 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2248 
2249 /**
2250  * device_find_child - device iterator for locating a particular device.
2251  * @parent: parent struct device
2252  * @match: Callback function to check device
2253  * @data: Data to pass to match function
2254  *
2255  * This is similar to the device_for_each_child() function above, but it
2256  * returns a reference to a device that is 'found' for later use, as
2257  * determined by the @match callback.
2258  *
2259  * The callback should return 0 if the device doesn't match and non-zero
2260  * if it does.  If the callback returns non-zero and a reference to the
2261  * current device can be obtained, this function will return to the caller
2262  * and not iterate over any more devices.
2263  *
2264  * NOTE: you will need to drop the reference with put_device() after use.
2265  */
2266 struct device *device_find_child(struct device *parent, void *data,
2267 				 int (*match)(struct device *dev, void *data))
2268 {
2269 	struct klist_iter i;
2270 	struct device *child;
2271 
2272 	if (!parent)
2273 		return NULL;
2274 
2275 	klist_iter_init(&parent->p->klist_children, &i);
2276 	while ((child = next_device(&i)))
2277 		if (match(child, data) && get_device(child))
2278 			break;
2279 	klist_iter_exit(&i);
2280 	return child;
2281 }
2282 EXPORT_SYMBOL_GPL(device_find_child);
2283 
2284 int __init devices_init(void)
2285 {
2286 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2287 	if (!devices_kset)
2288 		return -ENOMEM;
2289 	dev_kobj = kobject_create_and_add("dev", NULL);
2290 	if (!dev_kobj)
2291 		goto dev_kobj_err;
2292 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2293 	if (!sysfs_dev_block_kobj)
2294 		goto block_kobj_err;
2295 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2296 	if (!sysfs_dev_char_kobj)
2297 		goto char_kobj_err;
2298 
2299 	return 0;
2300 
2301  char_kobj_err:
2302 	kobject_put(sysfs_dev_block_kobj);
2303  block_kobj_err:
2304 	kobject_put(dev_kobj);
2305  dev_kobj_err:
2306 	kset_unregister(devices_kset);
2307 	return -ENOMEM;
2308 }
2309 
2310 static int device_check_offline(struct device *dev, void *not_used)
2311 {
2312 	int ret;
2313 
2314 	ret = device_for_each_child(dev, NULL, device_check_offline);
2315 	if (ret)
2316 		return ret;
2317 
2318 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
2319 }
2320 
2321 /**
2322  * device_offline - Prepare the device for hot-removal.
2323  * @dev: Device to be put offline.
2324  *
2325  * Execute the device bus type's .offline() callback, if present, to prepare
2326  * the device for a subsequent hot-removal.  If that succeeds, the device must
2327  * not be used until either it is removed or its bus type's .online() callback
2328  * is executed.
2329  *
2330  * Call under device_hotplug_lock.
2331  */
2332 int device_offline(struct device *dev)
2333 {
2334 	int ret;
2335 
2336 	if (dev->offline_disabled)
2337 		return -EPERM;
2338 
2339 	ret = device_for_each_child(dev, NULL, device_check_offline);
2340 	if (ret)
2341 		return ret;
2342 
2343 	device_lock(dev);
2344 	if (device_supports_offline(dev)) {
2345 		if (dev->offline) {
2346 			ret = 1;
2347 		} else {
2348 			ret = dev->bus->offline(dev);
2349 			if (!ret) {
2350 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2351 				dev->offline = true;
2352 			}
2353 		}
2354 	}
2355 	device_unlock(dev);
2356 
2357 	return ret;
2358 }
2359 
2360 /**
2361  * device_online - Put the device back online after successful device_offline().
2362  * @dev: Device to be put back online.
2363  *
2364  * If device_offline() has been successfully executed for @dev, but the device
2365  * has not been removed subsequently, execute its bus type's .online() callback
2366  * to indicate that the device can be used again.
2367  *
2368  * Call under device_hotplug_lock.
2369  */
2370 int device_online(struct device *dev)
2371 {
2372 	int ret = 0;
2373 
2374 	device_lock(dev);
2375 	if (device_supports_offline(dev)) {
2376 		if (dev->offline) {
2377 			ret = dev->bus->online(dev);
2378 			if (!ret) {
2379 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2380 				dev->offline = false;
2381 			}
2382 		} else {
2383 			ret = 1;
2384 		}
2385 	}
2386 	device_unlock(dev);
2387 
2388 	return ret;
2389 }
2390 
2391 struct root_device {
2392 	struct device dev;
2393 	struct module *owner;
2394 };
2395 
2396 static inline struct root_device *to_root_device(struct device *d)
2397 {
2398 	return container_of(d, struct root_device, dev);
2399 }
2400 
2401 static void root_device_release(struct device *dev)
2402 {
2403 	kfree(to_root_device(dev));
2404 }
2405 
2406 /**
2407  * __root_device_register - allocate and register a root device
2408  * @name: root device name
2409  * @owner: owner module of the root device, usually THIS_MODULE
2410  *
2411  * This function allocates a root device and registers it
2412  * using device_register(). In order to free the returned
2413  * device, use root_device_unregister().
2414  *
2415  * Root devices are dummy devices which allow other devices
2416  * to be grouped under /sys/devices. Use this function to
2417  * allocate a root device and then use it as the parent of
2418  * any device which should appear under /sys/devices/{name}
2419  *
2420  * The /sys/devices/{name} directory will also contain a
2421  * 'module' symlink which points to the @owner directory
2422  * in sysfs.
2423  *
2424  * Returns &struct device pointer on success, or ERR_PTR() on error.
2425  *
2426  * Note: You probably want to use root_device_register().
2427  */
2428 struct device *__root_device_register(const char *name, struct module *owner)
2429 {
2430 	struct root_device *root;
2431 	int err = -ENOMEM;
2432 
2433 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
2434 	if (!root)
2435 		return ERR_PTR(err);
2436 
2437 	err = dev_set_name(&root->dev, "%s", name);
2438 	if (err) {
2439 		kfree(root);
2440 		return ERR_PTR(err);
2441 	}
2442 
2443 	root->dev.release = root_device_release;
2444 
2445 	err = device_register(&root->dev);
2446 	if (err) {
2447 		put_device(&root->dev);
2448 		return ERR_PTR(err);
2449 	}
2450 
2451 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
2452 	if (owner) {
2453 		struct module_kobject *mk = &owner->mkobj;
2454 
2455 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
2456 		if (err) {
2457 			device_unregister(&root->dev);
2458 			return ERR_PTR(err);
2459 		}
2460 		root->owner = owner;
2461 	}
2462 #endif
2463 
2464 	return &root->dev;
2465 }
2466 EXPORT_SYMBOL_GPL(__root_device_register);
2467 
2468 /**
2469  * root_device_unregister - unregister and free a root device
2470  * @dev: device going away
2471  *
2472  * This function unregisters and cleans up a device that was created by
2473  * root_device_register().
2474  */
2475 void root_device_unregister(struct device *dev)
2476 {
2477 	struct root_device *root = to_root_device(dev);
2478 
2479 	if (root->owner)
2480 		sysfs_remove_link(&root->dev.kobj, "module");
2481 
2482 	device_unregister(dev);
2483 }
2484 EXPORT_SYMBOL_GPL(root_device_unregister);
2485 
2486 
2487 static void device_create_release(struct device *dev)
2488 {
2489 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2490 	kfree(dev);
2491 }
2492 
2493 static __printf(6, 0) struct device *
2494 device_create_groups_vargs(struct class *class, struct device *parent,
2495 			   dev_t devt, void *drvdata,
2496 			   const struct attribute_group **groups,
2497 			   const char *fmt, va_list args)
2498 {
2499 	struct device *dev = NULL;
2500 	int retval = -ENODEV;
2501 
2502 	if (class == NULL || IS_ERR(class))
2503 		goto error;
2504 
2505 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2506 	if (!dev) {
2507 		retval = -ENOMEM;
2508 		goto error;
2509 	}
2510 
2511 	device_initialize(dev);
2512 	dev->devt = devt;
2513 	dev->class = class;
2514 	dev->parent = parent;
2515 	dev->groups = groups;
2516 	dev->release = device_create_release;
2517 	dev_set_drvdata(dev, drvdata);
2518 
2519 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
2520 	if (retval)
2521 		goto error;
2522 
2523 	retval = device_add(dev);
2524 	if (retval)
2525 		goto error;
2526 
2527 	return dev;
2528 
2529 error:
2530 	put_device(dev);
2531 	return ERR_PTR(retval);
2532 }
2533 
2534 /**
2535  * device_create_vargs - creates a device and registers it with sysfs
2536  * @class: pointer to the struct class that this device should be registered to
2537  * @parent: pointer to the parent struct device of this new device, if any
2538  * @devt: the dev_t for the char device to be added
2539  * @drvdata: the data to be added to the device for callbacks
2540  * @fmt: string for the device's name
2541  * @args: va_list for the device's name
2542  *
2543  * This function can be used by char device classes.  A struct device
2544  * will be created in sysfs, registered to the specified class.
2545  *
2546  * A "dev" file will be created, showing the dev_t for the device, if
2547  * the dev_t is not 0,0.
2548  * If a pointer to a parent struct device is passed in, the newly created
2549  * struct device will be a child of that device in sysfs.
2550  * The pointer to the struct device will be returned from the call.
2551  * Any further sysfs files that might be required can be created using this
2552  * pointer.
2553  *
2554  * Returns &struct device pointer on success, or ERR_PTR() on error.
2555  *
2556  * Note: the struct class passed to this function must have previously
2557  * been created with a call to class_create().
2558  */
2559 struct device *device_create_vargs(struct class *class, struct device *parent,
2560 				   dev_t devt, void *drvdata, const char *fmt,
2561 				   va_list args)
2562 {
2563 	return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
2564 					  fmt, args);
2565 }
2566 EXPORT_SYMBOL_GPL(device_create_vargs);
2567 
2568 /**
2569  * device_create - creates a device and registers it with sysfs
2570  * @class: pointer to the struct class that this device should be registered to
2571  * @parent: pointer to the parent struct device of this new device, if any
2572  * @devt: the dev_t for the char device to be added
2573  * @drvdata: the data to be added to the device for callbacks
2574  * @fmt: string for the device's name
2575  *
2576  * This function can be used by char device classes.  A struct device
2577  * will be created in sysfs, registered to the specified class.
2578  *
2579  * A "dev" file will be created, showing the dev_t for the device, if
2580  * the dev_t is not 0,0.
2581  * If a pointer to a parent struct device is passed in, the newly created
2582  * struct device will be a child of that device in sysfs.
2583  * The pointer to the struct device will be returned from the call.
2584  * Any further sysfs files that might be required can be created using this
2585  * pointer.
2586  *
2587  * Returns &struct device pointer on success, or ERR_PTR() on error.
2588  *
2589  * Note: the struct class passed to this function must have previously
2590  * been created with a call to class_create().
2591  */
2592 struct device *device_create(struct class *class, struct device *parent,
2593 			     dev_t devt, void *drvdata, const char *fmt, ...)
2594 {
2595 	va_list vargs;
2596 	struct device *dev;
2597 
2598 	va_start(vargs, fmt);
2599 	dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
2600 	va_end(vargs);
2601 	return dev;
2602 }
2603 EXPORT_SYMBOL_GPL(device_create);
2604 
2605 /**
2606  * device_create_with_groups - creates a device and registers it with sysfs
2607  * @class: pointer to the struct class that this device should be registered to
2608  * @parent: pointer to the parent struct device of this new device, if any
2609  * @devt: the dev_t for the char device to be added
2610  * @drvdata: the data to be added to the device for callbacks
2611  * @groups: NULL-terminated list of attribute groups to be created
2612  * @fmt: string for the device's name
2613  *
2614  * This function can be used by char device classes.  A struct device
2615  * will be created in sysfs, registered to the specified class.
2616  * Additional attributes specified in the groups parameter will also
2617  * be created automatically.
2618  *
2619  * A "dev" file will be created, showing the dev_t for the device, if
2620  * the dev_t is not 0,0.
2621  * If a pointer to a parent struct device is passed in, the newly created
2622  * struct device will be a child of that device in sysfs.
2623  * The pointer to the struct device will be returned from the call.
2624  * Any further sysfs files that might be required can be created using this
2625  * pointer.
2626  *
2627  * Returns &struct device pointer on success, or ERR_PTR() on error.
2628  *
2629  * Note: the struct class passed to this function must have previously
2630  * been created with a call to class_create().
2631  */
2632 struct device *device_create_with_groups(struct class *class,
2633 					 struct device *parent, dev_t devt,
2634 					 void *drvdata,
2635 					 const struct attribute_group **groups,
2636 					 const char *fmt, ...)
2637 {
2638 	va_list vargs;
2639 	struct device *dev;
2640 
2641 	va_start(vargs, fmt);
2642 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
2643 					 fmt, vargs);
2644 	va_end(vargs);
2645 	return dev;
2646 }
2647 EXPORT_SYMBOL_GPL(device_create_with_groups);
2648 
2649 static int __match_devt(struct device *dev, const void *data)
2650 {
2651 	const dev_t *devt = data;
2652 
2653 	return dev->devt == *devt;
2654 }
2655 
2656 /**
2657  * device_destroy - removes a device that was created with device_create()
2658  * @class: pointer to the struct class that this device was registered with
2659  * @devt: the dev_t of the device that was previously registered
2660  *
2661  * This call unregisters and cleans up a device that was created with a
2662  * call to device_create().
2663  */
2664 void device_destroy(struct class *class, dev_t devt)
2665 {
2666 	struct device *dev;
2667 
2668 	dev = class_find_device(class, NULL, &devt, __match_devt);
2669 	if (dev) {
2670 		put_device(dev);
2671 		device_unregister(dev);
2672 	}
2673 }
2674 EXPORT_SYMBOL_GPL(device_destroy);
2675 
2676 /**
2677  * device_rename - renames a device
2678  * @dev: the pointer to the struct device to be renamed
2679  * @new_name: the new name of the device
2680  *
2681  * It is the responsibility of the caller to provide mutual
2682  * exclusion between two different calls of device_rename
2683  * on the same device to ensure that new_name is valid and
2684  * won't conflict with other devices.
2685  *
2686  * Note: Don't call this function.  Currently, the networking layer calls this
2687  * function, but that will change.  The following text from Kay Sievers offers
2688  * some insight:
2689  *
2690  * Renaming devices is racy at many levels, symlinks and other stuff are not
2691  * replaced atomically, and you get a "move" uevent, but it's not easy to
2692  * connect the event to the old and new device. Device nodes are not renamed at
2693  * all, there isn't even support for that in the kernel now.
2694  *
2695  * In the meantime, during renaming, your target name might be taken by another
2696  * driver, creating conflicts. Or the old name is taken directly after you
2697  * renamed it -- then you get events for the same DEVPATH, before you even see
2698  * the "move" event. It's just a mess, and nothing new should ever rely on
2699  * kernel device renaming. Besides that, it's not even implemented now for
2700  * other things than (driver-core wise very simple) network devices.
2701  *
2702  * We are currently about to change network renaming in udev to completely
2703  * disallow renaming of devices in the same namespace as the kernel uses,
2704  * because we can't solve the problems properly, that arise with swapping names
2705  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
2706  * be allowed to some other name than eth[0-9]*, for the aforementioned
2707  * reasons.
2708  *
2709  * Make up a "real" name in the driver before you register anything, or add
2710  * some other attributes for userspace to find the device, or use udev to add
2711  * symlinks -- but never rename kernel devices later, it's a complete mess. We
2712  * don't even want to get into that and try to implement the missing pieces in
2713  * the core. We really have other pieces to fix in the driver core mess. :)
2714  */
2715 int device_rename(struct device *dev, const char *new_name)
2716 {
2717 	struct kobject *kobj = &dev->kobj;
2718 	char *old_device_name = NULL;
2719 	int error;
2720 
2721 	dev = get_device(dev);
2722 	if (!dev)
2723 		return -EINVAL;
2724 
2725 	dev_dbg(dev, "renaming to %s\n", new_name);
2726 
2727 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
2728 	if (!old_device_name) {
2729 		error = -ENOMEM;
2730 		goto out;
2731 	}
2732 
2733 	if (dev->class) {
2734 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
2735 					     kobj, old_device_name,
2736 					     new_name, kobject_namespace(kobj));
2737 		if (error)
2738 			goto out;
2739 	}
2740 
2741 	error = kobject_rename(kobj, new_name);
2742 	if (error)
2743 		goto out;
2744 
2745 out:
2746 	put_device(dev);
2747 
2748 	kfree(old_device_name);
2749 
2750 	return error;
2751 }
2752 EXPORT_SYMBOL_GPL(device_rename);
2753 
2754 static int device_move_class_links(struct device *dev,
2755 				   struct device *old_parent,
2756 				   struct device *new_parent)
2757 {
2758 	int error = 0;
2759 
2760 	if (old_parent)
2761 		sysfs_remove_link(&dev->kobj, "device");
2762 	if (new_parent)
2763 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
2764 					  "device");
2765 	return error;
2766 }
2767 
2768 /**
2769  * device_move - moves a device to a new parent
2770  * @dev: the pointer to the struct device to be moved
2771  * @new_parent: the new parent of the device (can be NULL)
2772  * @dpm_order: how to reorder the dpm_list
2773  */
2774 int device_move(struct device *dev, struct device *new_parent,
2775 		enum dpm_order dpm_order)
2776 {
2777 	int error;
2778 	struct device *old_parent;
2779 	struct kobject *new_parent_kobj;
2780 
2781 	dev = get_device(dev);
2782 	if (!dev)
2783 		return -EINVAL;
2784 
2785 	device_pm_lock();
2786 	new_parent = get_device(new_parent);
2787 	new_parent_kobj = get_device_parent(dev, new_parent);
2788 	if (IS_ERR(new_parent_kobj)) {
2789 		error = PTR_ERR(new_parent_kobj);
2790 		put_device(new_parent);
2791 		goto out;
2792 	}
2793 
2794 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
2795 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
2796 	error = kobject_move(&dev->kobj, new_parent_kobj);
2797 	if (error) {
2798 		cleanup_glue_dir(dev, new_parent_kobj);
2799 		put_device(new_parent);
2800 		goto out;
2801 	}
2802 	old_parent = dev->parent;
2803 	dev->parent = new_parent;
2804 	if (old_parent)
2805 		klist_remove(&dev->p->knode_parent);
2806 	if (new_parent) {
2807 		klist_add_tail(&dev->p->knode_parent,
2808 			       &new_parent->p->klist_children);
2809 		set_dev_node(dev, dev_to_node(new_parent));
2810 	}
2811 
2812 	if (dev->class) {
2813 		error = device_move_class_links(dev, old_parent, new_parent);
2814 		if (error) {
2815 			/* We ignore errors on cleanup since we're hosed anyway... */
2816 			device_move_class_links(dev, new_parent, old_parent);
2817 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
2818 				if (new_parent)
2819 					klist_remove(&dev->p->knode_parent);
2820 				dev->parent = old_parent;
2821 				if (old_parent) {
2822 					klist_add_tail(&dev->p->knode_parent,
2823 						       &old_parent->p->klist_children);
2824 					set_dev_node(dev, dev_to_node(old_parent));
2825 				}
2826 			}
2827 			cleanup_glue_dir(dev, new_parent_kobj);
2828 			put_device(new_parent);
2829 			goto out;
2830 		}
2831 	}
2832 	switch (dpm_order) {
2833 	case DPM_ORDER_NONE:
2834 		break;
2835 	case DPM_ORDER_DEV_AFTER_PARENT:
2836 		device_pm_move_after(dev, new_parent);
2837 		devices_kset_move_after(dev, new_parent);
2838 		break;
2839 	case DPM_ORDER_PARENT_BEFORE_DEV:
2840 		device_pm_move_before(new_parent, dev);
2841 		devices_kset_move_before(new_parent, dev);
2842 		break;
2843 	case DPM_ORDER_DEV_LAST:
2844 		device_pm_move_last(dev);
2845 		devices_kset_move_last(dev);
2846 		break;
2847 	}
2848 
2849 	put_device(old_parent);
2850 out:
2851 	device_pm_unlock();
2852 	put_device(dev);
2853 	return error;
2854 }
2855 EXPORT_SYMBOL_GPL(device_move);
2856 
2857 /**
2858  * device_shutdown - call ->shutdown() on each device to shutdown.
2859  */
2860 void device_shutdown(void)
2861 {
2862 	struct device *dev, *parent;
2863 
2864 	wait_for_device_probe();
2865 	device_block_probing();
2866 
2867 	spin_lock(&devices_kset->list_lock);
2868 	/*
2869 	 * Walk the devices list backward, shutting down each in turn.
2870 	 * Beware that device unplug events may also start pulling
2871 	 * devices offline, even as the system is shutting down.
2872 	 */
2873 	while (!list_empty(&devices_kset->list)) {
2874 		dev = list_entry(devices_kset->list.prev, struct device,
2875 				kobj.entry);
2876 
2877 		/*
2878 		 * hold reference count of device's parent to
2879 		 * prevent it from being freed because parent's
2880 		 * lock is to be held
2881 		 */
2882 		parent = get_device(dev->parent);
2883 		get_device(dev);
2884 		/*
2885 		 * Make sure the device is off the kset list, in the
2886 		 * event that dev->*->shutdown() doesn't remove it.
2887 		 */
2888 		list_del_init(&dev->kobj.entry);
2889 		spin_unlock(&devices_kset->list_lock);
2890 
2891 		/* hold lock to avoid race with probe/release */
2892 		if (parent)
2893 			device_lock(parent);
2894 		device_lock(dev);
2895 
2896 		/* Don't allow any more runtime suspends */
2897 		pm_runtime_get_noresume(dev);
2898 		pm_runtime_barrier(dev);
2899 
2900 		if (dev->class && dev->class->shutdown_pre) {
2901 			if (initcall_debug)
2902 				dev_info(dev, "shutdown_pre\n");
2903 			dev->class->shutdown_pre(dev);
2904 		}
2905 		if (dev->bus && dev->bus->shutdown) {
2906 			if (initcall_debug)
2907 				dev_info(dev, "shutdown\n");
2908 			dev->bus->shutdown(dev);
2909 		} else if (dev->driver && dev->driver->shutdown) {
2910 			if (initcall_debug)
2911 				dev_info(dev, "shutdown\n");
2912 			dev->driver->shutdown(dev);
2913 		}
2914 
2915 		device_unlock(dev);
2916 		if (parent)
2917 			device_unlock(parent);
2918 
2919 		put_device(dev);
2920 		put_device(parent);
2921 
2922 		spin_lock(&devices_kset->list_lock);
2923 	}
2924 	spin_unlock(&devices_kset->list_lock);
2925 }
2926 
2927 /*
2928  * Device logging functions
2929  */
2930 
2931 #ifdef CONFIG_PRINTK
2932 static int
2933 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
2934 {
2935 	const char *subsys;
2936 	size_t pos = 0;
2937 
2938 	if (dev->class)
2939 		subsys = dev->class->name;
2940 	else if (dev->bus)
2941 		subsys = dev->bus->name;
2942 	else
2943 		return 0;
2944 
2945 	pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
2946 	if (pos >= hdrlen)
2947 		goto overflow;
2948 
2949 	/*
2950 	 * Add device identifier DEVICE=:
2951 	 *   b12:8         block dev_t
2952 	 *   c127:3        char dev_t
2953 	 *   n8            netdev ifindex
2954 	 *   +sound:card0  subsystem:devname
2955 	 */
2956 	if (MAJOR(dev->devt)) {
2957 		char c;
2958 
2959 		if (strcmp(subsys, "block") == 0)
2960 			c = 'b';
2961 		else
2962 			c = 'c';
2963 		pos++;
2964 		pos += snprintf(hdr + pos, hdrlen - pos,
2965 				"DEVICE=%c%u:%u",
2966 				c, MAJOR(dev->devt), MINOR(dev->devt));
2967 	} else if (strcmp(subsys, "net") == 0) {
2968 		struct net_device *net = to_net_dev(dev);
2969 
2970 		pos++;
2971 		pos += snprintf(hdr + pos, hdrlen - pos,
2972 				"DEVICE=n%u", net->ifindex);
2973 	} else {
2974 		pos++;
2975 		pos += snprintf(hdr + pos, hdrlen - pos,
2976 				"DEVICE=+%s:%s", subsys, dev_name(dev));
2977 	}
2978 
2979 	if (pos >= hdrlen)
2980 		goto overflow;
2981 
2982 	return pos;
2983 
2984 overflow:
2985 	dev_WARN(dev, "device/subsystem name too long");
2986 	return 0;
2987 }
2988 
2989 int dev_vprintk_emit(int level, const struct device *dev,
2990 		     const char *fmt, va_list args)
2991 {
2992 	char hdr[128];
2993 	size_t hdrlen;
2994 
2995 	hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
2996 
2997 	return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
2998 }
2999 EXPORT_SYMBOL(dev_vprintk_emit);
3000 
3001 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
3002 {
3003 	va_list args;
3004 	int r;
3005 
3006 	va_start(args, fmt);
3007 
3008 	r = dev_vprintk_emit(level, dev, fmt, args);
3009 
3010 	va_end(args);
3011 
3012 	return r;
3013 }
3014 EXPORT_SYMBOL(dev_printk_emit);
3015 
3016 static void __dev_printk(const char *level, const struct device *dev,
3017 			struct va_format *vaf)
3018 {
3019 	if (dev)
3020 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
3021 				dev_driver_string(dev), dev_name(dev), vaf);
3022 	else
3023 		printk("%s(NULL device *): %pV", level, vaf);
3024 }
3025 
3026 void dev_printk(const char *level, const struct device *dev,
3027 		const char *fmt, ...)
3028 {
3029 	struct va_format vaf;
3030 	va_list args;
3031 
3032 	va_start(args, fmt);
3033 
3034 	vaf.fmt = fmt;
3035 	vaf.va = &args;
3036 
3037 	__dev_printk(level, dev, &vaf);
3038 
3039 	va_end(args);
3040 }
3041 EXPORT_SYMBOL(dev_printk);
3042 
3043 #define define_dev_printk_level(func, kern_level)		\
3044 void func(const struct device *dev, const char *fmt, ...)	\
3045 {								\
3046 	struct va_format vaf;					\
3047 	va_list args;						\
3048 								\
3049 	va_start(args, fmt);					\
3050 								\
3051 	vaf.fmt = fmt;						\
3052 	vaf.va = &args;						\
3053 								\
3054 	__dev_printk(kern_level, dev, &vaf);			\
3055 								\
3056 	va_end(args);						\
3057 }								\
3058 EXPORT_SYMBOL(func);
3059 
3060 define_dev_printk_level(_dev_emerg, KERN_EMERG);
3061 define_dev_printk_level(_dev_alert, KERN_ALERT);
3062 define_dev_printk_level(_dev_crit, KERN_CRIT);
3063 define_dev_printk_level(_dev_err, KERN_ERR);
3064 define_dev_printk_level(_dev_warn, KERN_WARNING);
3065 define_dev_printk_level(_dev_notice, KERN_NOTICE);
3066 define_dev_printk_level(_dev_info, KERN_INFO);
3067 
3068 #endif
3069 
3070 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
3071 {
3072 	return fwnode && !IS_ERR(fwnode->secondary);
3073 }
3074 
3075 /**
3076  * set_primary_fwnode - Change the primary firmware node of a given device.
3077  * @dev: Device to handle.
3078  * @fwnode: New primary firmware node of the device.
3079  *
3080  * Set the device's firmware node pointer to @fwnode, but if a secondary
3081  * firmware node of the device is present, preserve it.
3082  */
3083 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3084 {
3085 	if (fwnode) {
3086 		struct fwnode_handle *fn = dev->fwnode;
3087 
3088 		if (fwnode_is_primary(fn))
3089 			fn = fn->secondary;
3090 
3091 		if (fn) {
3092 			WARN_ON(fwnode->secondary);
3093 			fwnode->secondary = fn;
3094 		}
3095 		dev->fwnode = fwnode;
3096 	} else {
3097 		dev->fwnode = fwnode_is_primary(dev->fwnode) ?
3098 			dev->fwnode->secondary : NULL;
3099 	}
3100 }
3101 EXPORT_SYMBOL_GPL(set_primary_fwnode);
3102 
3103 /**
3104  * set_secondary_fwnode - Change the secondary firmware node of a given device.
3105  * @dev: Device to handle.
3106  * @fwnode: New secondary firmware node of the device.
3107  *
3108  * If a primary firmware node of the device is present, set its secondary
3109  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
3110  * @fwnode.
3111  */
3112 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3113 {
3114 	if (fwnode)
3115 		fwnode->secondary = ERR_PTR(-ENODEV);
3116 
3117 	if (fwnode_is_primary(dev->fwnode))
3118 		dev->fwnode->secondary = fwnode;
3119 	else
3120 		dev->fwnode = fwnode;
3121 }
3122 
3123 /**
3124  * device_set_of_node_from_dev - reuse device-tree node of another device
3125  * @dev: device whose device-tree node is being set
3126  * @dev2: device whose device-tree node is being reused
3127  *
3128  * Takes another reference to the new device-tree node after first dropping
3129  * any reference held to the old node.
3130  */
3131 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
3132 {
3133 	of_node_put(dev->of_node);
3134 	dev->of_node = of_node_get(dev2->of_node);
3135 	dev->of_node_reused = true;
3136 }
3137 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
3138