xref: /openbmc/linux/drivers/base/core.c (revision e15a5365)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sched/mm.h>
30 #include <linux/sysfs.h>
31 
32 #include "base.h"
33 #include "power/power.h"
34 
35 #ifdef CONFIG_SYSFS_DEPRECATED
36 #ifdef CONFIG_SYSFS_DEPRECATED_V2
37 long sysfs_deprecated = 1;
38 #else
39 long sysfs_deprecated = 0;
40 #endif
41 static int __init sysfs_deprecated_setup(char *arg)
42 {
43 	return kstrtol(arg, 10, &sysfs_deprecated);
44 }
45 early_param("sysfs.deprecated", sysfs_deprecated_setup);
46 #endif
47 
48 /* Device links support. */
49 static LIST_HEAD(wait_for_suppliers);
50 static DEFINE_MUTEX(wfs_lock);
51 static LIST_HEAD(deferred_sync);
52 static unsigned int defer_sync_state_count = 1;
53 static unsigned int defer_fw_devlink_count;
54 static LIST_HEAD(deferred_fw_devlink);
55 static DEFINE_MUTEX(defer_fw_devlink_lock);
56 static bool fw_devlink_is_permissive(void);
57 
58 #ifdef CONFIG_SRCU
59 static DEFINE_MUTEX(device_links_lock);
60 DEFINE_STATIC_SRCU(device_links_srcu);
61 
62 static inline void device_links_write_lock(void)
63 {
64 	mutex_lock(&device_links_lock);
65 }
66 
67 static inline void device_links_write_unlock(void)
68 {
69 	mutex_unlock(&device_links_lock);
70 }
71 
72 int device_links_read_lock(void) __acquires(&device_links_srcu)
73 {
74 	return srcu_read_lock(&device_links_srcu);
75 }
76 
77 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
78 {
79 	srcu_read_unlock(&device_links_srcu, idx);
80 }
81 
82 int device_links_read_lock_held(void)
83 {
84 	return srcu_read_lock_held(&device_links_srcu);
85 }
86 #else /* !CONFIG_SRCU */
87 static DECLARE_RWSEM(device_links_lock);
88 
89 static inline void device_links_write_lock(void)
90 {
91 	down_write(&device_links_lock);
92 }
93 
94 static inline void device_links_write_unlock(void)
95 {
96 	up_write(&device_links_lock);
97 }
98 
99 int device_links_read_lock(void)
100 {
101 	down_read(&device_links_lock);
102 	return 0;
103 }
104 
105 void device_links_read_unlock(int not_used)
106 {
107 	up_read(&device_links_lock);
108 }
109 
110 #ifdef CONFIG_DEBUG_LOCK_ALLOC
111 int device_links_read_lock_held(void)
112 {
113 	return lockdep_is_held(&device_links_lock);
114 }
115 #endif
116 #endif /* !CONFIG_SRCU */
117 
118 /**
119  * device_is_dependent - Check if one device depends on another one
120  * @dev: Device to check dependencies for.
121  * @target: Device to check against.
122  *
123  * Check if @target depends on @dev or any device dependent on it (its child or
124  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
125  */
126 int device_is_dependent(struct device *dev, void *target)
127 {
128 	struct device_link *link;
129 	int ret;
130 
131 	if (dev == target)
132 		return 1;
133 
134 	ret = device_for_each_child(dev, target, device_is_dependent);
135 	if (ret)
136 		return ret;
137 
138 	list_for_each_entry(link, &dev->links.consumers, s_node) {
139 		if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
140 			continue;
141 
142 		if (link->consumer == target)
143 			return 1;
144 
145 		ret = device_is_dependent(link->consumer, target);
146 		if (ret)
147 			break;
148 	}
149 	return ret;
150 }
151 
152 static void device_link_init_status(struct device_link *link,
153 				    struct device *consumer,
154 				    struct device *supplier)
155 {
156 	switch (supplier->links.status) {
157 	case DL_DEV_PROBING:
158 		switch (consumer->links.status) {
159 		case DL_DEV_PROBING:
160 			/*
161 			 * A consumer driver can create a link to a supplier
162 			 * that has not completed its probing yet as long as it
163 			 * knows that the supplier is already functional (for
164 			 * example, it has just acquired some resources from the
165 			 * supplier).
166 			 */
167 			link->status = DL_STATE_CONSUMER_PROBE;
168 			break;
169 		default:
170 			link->status = DL_STATE_DORMANT;
171 			break;
172 		}
173 		break;
174 	case DL_DEV_DRIVER_BOUND:
175 		switch (consumer->links.status) {
176 		case DL_DEV_PROBING:
177 			link->status = DL_STATE_CONSUMER_PROBE;
178 			break;
179 		case DL_DEV_DRIVER_BOUND:
180 			link->status = DL_STATE_ACTIVE;
181 			break;
182 		default:
183 			link->status = DL_STATE_AVAILABLE;
184 			break;
185 		}
186 		break;
187 	case DL_DEV_UNBINDING:
188 		link->status = DL_STATE_SUPPLIER_UNBIND;
189 		break;
190 	default:
191 		link->status = DL_STATE_DORMANT;
192 		break;
193 	}
194 }
195 
196 static int device_reorder_to_tail(struct device *dev, void *not_used)
197 {
198 	struct device_link *link;
199 
200 	/*
201 	 * Devices that have not been registered yet will be put to the ends
202 	 * of the lists during the registration, so skip them here.
203 	 */
204 	if (device_is_registered(dev))
205 		devices_kset_move_last(dev);
206 
207 	if (device_pm_initialized(dev))
208 		device_pm_move_last(dev);
209 
210 	device_for_each_child(dev, NULL, device_reorder_to_tail);
211 	list_for_each_entry(link, &dev->links.consumers, s_node) {
212 		if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
213 			continue;
214 		device_reorder_to_tail(link->consumer, NULL);
215 	}
216 
217 	return 0;
218 }
219 
220 /**
221  * device_pm_move_to_tail - Move set of devices to the end of device lists
222  * @dev: Device to move
223  *
224  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
225  *
226  * It moves the @dev along with all of its children and all of its consumers
227  * to the ends of the device_kset and dpm_list, recursively.
228  */
229 void device_pm_move_to_tail(struct device *dev)
230 {
231 	int idx;
232 
233 	idx = device_links_read_lock();
234 	device_pm_lock();
235 	device_reorder_to_tail(dev, NULL);
236 	device_pm_unlock();
237 	device_links_read_unlock(idx);
238 }
239 
240 #define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
241 
242 static ssize_t status_show(struct device *dev,
243 			   struct device_attribute *attr, char *buf)
244 {
245 	const char *output;
246 
247 	switch (to_devlink(dev)->status) {
248 	case DL_STATE_NONE:
249 		output = "not tracked";
250 		break;
251 	case DL_STATE_DORMANT:
252 		output = "dormant";
253 		break;
254 	case DL_STATE_AVAILABLE:
255 		output = "available";
256 		break;
257 	case DL_STATE_CONSUMER_PROBE:
258 		output = "consumer probing";
259 		break;
260 	case DL_STATE_ACTIVE:
261 		output = "active";
262 		break;
263 	case DL_STATE_SUPPLIER_UNBIND:
264 		output = "supplier unbinding";
265 		break;
266 	default:
267 		output = "unknown";
268 		break;
269 	}
270 
271 	return sysfs_emit(buf, "%s\n", output);
272 }
273 static DEVICE_ATTR_RO(status);
274 
275 static ssize_t auto_remove_on_show(struct device *dev,
276 				   struct device_attribute *attr, char *buf)
277 {
278 	struct device_link *link = to_devlink(dev);
279 	const char *output;
280 
281 	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
282 		output = "supplier unbind";
283 	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
284 		output = "consumer unbind";
285 	else
286 		output = "never";
287 
288 	return sysfs_emit(buf, "%s\n", output);
289 }
290 static DEVICE_ATTR_RO(auto_remove_on);
291 
292 static ssize_t runtime_pm_show(struct device *dev,
293 			       struct device_attribute *attr, char *buf)
294 {
295 	struct device_link *link = to_devlink(dev);
296 
297 	return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
298 }
299 static DEVICE_ATTR_RO(runtime_pm);
300 
301 static ssize_t sync_state_only_show(struct device *dev,
302 				    struct device_attribute *attr, char *buf)
303 {
304 	struct device_link *link = to_devlink(dev);
305 
306 	return sysfs_emit(buf, "%d\n",
307 			  !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
308 }
309 static DEVICE_ATTR_RO(sync_state_only);
310 
311 static struct attribute *devlink_attrs[] = {
312 	&dev_attr_status.attr,
313 	&dev_attr_auto_remove_on.attr,
314 	&dev_attr_runtime_pm.attr,
315 	&dev_attr_sync_state_only.attr,
316 	NULL,
317 };
318 ATTRIBUTE_GROUPS(devlink);
319 
320 static void device_link_free(struct device_link *link)
321 {
322 	while (refcount_dec_not_one(&link->rpm_active))
323 		pm_runtime_put(link->supplier);
324 
325 	put_device(link->consumer);
326 	put_device(link->supplier);
327 	kfree(link);
328 }
329 
330 #ifdef CONFIG_SRCU
331 static void __device_link_free_srcu(struct rcu_head *rhead)
332 {
333 	device_link_free(container_of(rhead, struct device_link, rcu_head));
334 }
335 
336 static void devlink_dev_release(struct device *dev)
337 {
338 	struct device_link *link = to_devlink(dev);
339 
340 	call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
341 }
342 #else
343 static void devlink_dev_release(struct device *dev)
344 {
345 	device_link_free(to_devlink(dev));
346 }
347 #endif
348 
349 static struct class devlink_class = {
350 	.name = "devlink",
351 	.owner = THIS_MODULE,
352 	.dev_groups = devlink_groups,
353 	.dev_release = devlink_dev_release,
354 };
355 
356 static int devlink_add_symlinks(struct device *dev,
357 				struct class_interface *class_intf)
358 {
359 	int ret;
360 	size_t len;
361 	struct device_link *link = to_devlink(dev);
362 	struct device *sup = link->supplier;
363 	struct device *con = link->consumer;
364 	char *buf;
365 
366 	len = max(strlen(dev_name(sup)), strlen(dev_name(con)));
367 	len += strlen("supplier:") + 1;
368 	buf = kzalloc(len, GFP_KERNEL);
369 	if (!buf)
370 		return -ENOMEM;
371 
372 	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
373 	if (ret)
374 		goto out;
375 
376 	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
377 	if (ret)
378 		goto err_con;
379 
380 	snprintf(buf, len, "consumer:%s", dev_name(con));
381 	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
382 	if (ret)
383 		goto err_con_dev;
384 
385 	snprintf(buf, len, "supplier:%s", dev_name(sup));
386 	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
387 	if (ret)
388 		goto err_sup_dev;
389 
390 	goto out;
391 
392 err_sup_dev:
393 	snprintf(buf, len, "consumer:%s", dev_name(con));
394 	sysfs_remove_link(&sup->kobj, buf);
395 err_con_dev:
396 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
397 err_con:
398 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
399 out:
400 	kfree(buf);
401 	return ret;
402 }
403 
404 static void devlink_remove_symlinks(struct device *dev,
405 				   struct class_interface *class_intf)
406 {
407 	struct device_link *link = to_devlink(dev);
408 	size_t len;
409 	struct device *sup = link->supplier;
410 	struct device *con = link->consumer;
411 	char *buf;
412 
413 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
414 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
415 
416 	len = max(strlen(dev_name(sup)), strlen(dev_name(con)));
417 	len += strlen("supplier:") + 1;
418 	buf = kzalloc(len, GFP_KERNEL);
419 	if (!buf) {
420 		WARN(1, "Unable to properly free device link symlinks!\n");
421 		return;
422 	}
423 
424 	snprintf(buf, len, "supplier:%s", dev_name(sup));
425 	sysfs_remove_link(&con->kobj, buf);
426 	snprintf(buf, len, "consumer:%s", dev_name(con));
427 	sysfs_remove_link(&sup->kobj, buf);
428 	kfree(buf);
429 }
430 
431 static struct class_interface devlink_class_intf = {
432 	.class = &devlink_class,
433 	.add_dev = devlink_add_symlinks,
434 	.remove_dev = devlink_remove_symlinks,
435 };
436 
437 static int __init devlink_class_init(void)
438 {
439 	int ret;
440 
441 	ret = class_register(&devlink_class);
442 	if (ret)
443 		return ret;
444 
445 	ret = class_interface_register(&devlink_class_intf);
446 	if (ret)
447 		class_unregister(&devlink_class);
448 
449 	return ret;
450 }
451 postcore_initcall(devlink_class_init);
452 
453 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
454 			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
455 			       DL_FLAG_AUTOPROBE_CONSUMER  | \
456 			       DL_FLAG_SYNC_STATE_ONLY)
457 
458 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
459 			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
460 
461 /**
462  * device_link_add - Create a link between two devices.
463  * @consumer: Consumer end of the link.
464  * @supplier: Supplier end of the link.
465  * @flags: Link flags.
466  *
467  * The caller is responsible for the proper synchronization of the link creation
468  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
469  * runtime PM framework to take the link into account.  Second, if the
470  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
471  * be forced into the active metastate and reference-counted upon the creation
472  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
473  * ignored.
474  *
475  * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
476  * expected to release the link returned by it directly with the help of either
477  * device_link_del() or device_link_remove().
478  *
479  * If that flag is not set, however, the caller of this function is handing the
480  * management of the link over to the driver core entirely and its return value
481  * can only be used to check whether or not the link is present.  In that case,
482  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
483  * flags can be used to indicate to the driver core when the link can be safely
484  * deleted.  Namely, setting one of them in @flags indicates to the driver core
485  * that the link is not going to be used (by the given caller of this function)
486  * after unbinding the consumer or supplier driver, respectively, from its
487  * device, so the link can be deleted at that point.  If none of them is set,
488  * the link will be maintained until one of the devices pointed to by it (either
489  * the consumer or the supplier) is unregistered.
490  *
491  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
492  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
493  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
494  * be used to request the driver core to automaticall probe for a consmer
495  * driver after successfully binding a driver to the supplier device.
496  *
497  * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
498  * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
499  * the same time is invalid and will cause NULL to be returned upfront.
500  * However, if a device link between the given @consumer and @supplier pair
501  * exists already when this function is called for them, the existing link will
502  * be returned regardless of its current type and status (the link's flags may
503  * be modified then).  The caller of this function is then expected to treat
504  * the link as though it has just been created, so (in particular) if
505  * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
506  * explicitly when not needed any more (as stated above).
507  *
508  * A side effect of the link creation is re-ordering of dpm_list and the
509  * devices_kset list by moving the consumer device and all devices depending
510  * on it to the ends of these lists (that does not happen to devices that have
511  * not been registered when this function is called).
512  *
513  * The supplier device is required to be registered when this function is called
514  * and NULL will be returned if that is not the case.  The consumer device need
515  * not be registered, however.
516  */
517 struct device_link *device_link_add(struct device *consumer,
518 				    struct device *supplier, u32 flags)
519 {
520 	struct device_link *link;
521 
522 	if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
523 	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
524 	    (flags & DL_FLAG_SYNC_STATE_ONLY &&
525 	     flags != DL_FLAG_SYNC_STATE_ONLY) ||
526 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
527 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
528 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
529 		return NULL;
530 
531 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
532 		if (pm_runtime_get_sync(supplier) < 0) {
533 			pm_runtime_put_noidle(supplier);
534 			return NULL;
535 		}
536 	}
537 
538 	if (!(flags & DL_FLAG_STATELESS))
539 		flags |= DL_FLAG_MANAGED;
540 
541 	device_links_write_lock();
542 	device_pm_lock();
543 
544 	/*
545 	 * If the supplier has not been fully registered yet or there is a
546 	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
547 	 * the supplier already in the graph, return NULL. If the link is a
548 	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
549 	 * because it only affects sync_state() callbacks.
550 	 */
551 	if (!device_pm_initialized(supplier)
552 	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
553 		  device_is_dependent(consumer, supplier))) {
554 		link = NULL;
555 		goto out;
556 	}
557 
558 	/*
559 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
560 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
561 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
562 	 */
563 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
564 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
565 
566 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
567 		if (link->consumer != consumer)
568 			continue;
569 
570 		if (flags & DL_FLAG_PM_RUNTIME) {
571 			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
572 				pm_runtime_new_link(consumer);
573 				link->flags |= DL_FLAG_PM_RUNTIME;
574 			}
575 			if (flags & DL_FLAG_RPM_ACTIVE)
576 				refcount_inc(&link->rpm_active);
577 		}
578 
579 		if (flags & DL_FLAG_STATELESS) {
580 			kref_get(&link->kref);
581 			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
582 			    !(link->flags & DL_FLAG_STATELESS)) {
583 				link->flags |= DL_FLAG_STATELESS;
584 				goto reorder;
585 			} else {
586 				link->flags |= DL_FLAG_STATELESS;
587 				goto out;
588 			}
589 		}
590 
591 		/*
592 		 * If the life time of the link following from the new flags is
593 		 * longer than indicated by the flags of the existing link,
594 		 * update the existing link to stay around longer.
595 		 */
596 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
597 			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
598 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
599 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
600 			}
601 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
602 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
603 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
604 		}
605 		if (!(link->flags & DL_FLAG_MANAGED)) {
606 			kref_get(&link->kref);
607 			link->flags |= DL_FLAG_MANAGED;
608 			device_link_init_status(link, consumer, supplier);
609 		}
610 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
611 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
612 			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
613 			goto reorder;
614 		}
615 
616 		goto out;
617 	}
618 
619 	link = kzalloc(sizeof(*link), GFP_KERNEL);
620 	if (!link)
621 		goto out;
622 
623 	refcount_set(&link->rpm_active, 1);
624 
625 	get_device(supplier);
626 	link->supplier = supplier;
627 	INIT_LIST_HEAD(&link->s_node);
628 	get_device(consumer);
629 	link->consumer = consumer;
630 	INIT_LIST_HEAD(&link->c_node);
631 	link->flags = flags;
632 	kref_init(&link->kref);
633 
634 	link->link_dev.class = &devlink_class;
635 	device_set_pm_not_required(&link->link_dev);
636 	dev_set_name(&link->link_dev, "%s--%s",
637 		     dev_name(supplier), dev_name(consumer));
638 	if (device_register(&link->link_dev)) {
639 		put_device(consumer);
640 		put_device(supplier);
641 		kfree(link);
642 		link = NULL;
643 		goto out;
644 	}
645 
646 	if (flags & DL_FLAG_PM_RUNTIME) {
647 		if (flags & DL_FLAG_RPM_ACTIVE)
648 			refcount_inc(&link->rpm_active);
649 
650 		pm_runtime_new_link(consumer);
651 	}
652 
653 	/* Determine the initial link state. */
654 	if (flags & DL_FLAG_STATELESS)
655 		link->status = DL_STATE_NONE;
656 	else
657 		device_link_init_status(link, consumer, supplier);
658 
659 	/*
660 	 * Some callers expect the link creation during consumer driver probe to
661 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
662 	 */
663 	if (link->status == DL_STATE_CONSUMER_PROBE &&
664 	    flags & DL_FLAG_PM_RUNTIME)
665 		pm_runtime_resume(supplier);
666 
667 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
668 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
669 
670 	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
671 		dev_dbg(consumer,
672 			"Linked as a sync state only consumer to %s\n",
673 			dev_name(supplier));
674 		goto out;
675 	}
676 
677 reorder:
678 	/*
679 	 * Move the consumer and all of the devices depending on it to the end
680 	 * of dpm_list and the devices_kset list.
681 	 *
682 	 * It is necessary to hold dpm_list locked throughout all that or else
683 	 * we may end up suspending with a wrong ordering of it.
684 	 */
685 	device_reorder_to_tail(consumer, NULL);
686 
687 	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
688 
689 out:
690 	device_pm_unlock();
691 	device_links_write_unlock();
692 
693 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
694 		pm_runtime_put(supplier);
695 
696 	return link;
697 }
698 EXPORT_SYMBOL_GPL(device_link_add);
699 
700 /**
701  * device_link_wait_for_supplier - Add device to wait_for_suppliers list
702  * @consumer: Consumer device
703  *
704  * Marks the @consumer device as waiting for suppliers to become available by
705  * adding it to the wait_for_suppliers list. The consumer device will never be
706  * probed until it's removed from the wait_for_suppliers list.
707  *
708  * The caller is responsible for adding the links to the supplier devices once
709  * they are available and removing the @consumer device from the
710  * wait_for_suppliers list once links to all the suppliers have been created.
711  *
712  * This function is NOT meant to be called from the probe function of the
713  * consumer but rather from code that creates/adds the consumer device.
714  */
715 static void device_link_wait_for_supplier(struct device *consumer,
716 					  bool need_for_probe)
717 {
718 	mutex_lock(&wfs_lock);
719 	list_add_tail(&consumer->links.needs_suppliers, &wait_for_suppliers);
720 	consumer->links.need_for_probe = need_for_probe;
721 	mutex_unlock(&wfs_lock);
722 }
723 
724 static void device_link_wait_for_mandatory_supplier(struct device *consumer)
725 {
726 	device_link_wait_for_supplier(consumer, true);
727 }
728 
729 static void device_link_wait_for_optional_supplier(struct device *consumer)
730 {
731 	device_link_wait_for_supplier(consumer, false);
732 }
733 
734 /**
735  * device_link_add_missing_supplier_links - Add links from consumer devices to
736  *					    supplier devices, leaving any
737  *					    consumer with inactive suppliers on
738  *					    the wait_for_suppliers list
739  *
740  * Loops through all consumers waiting on suppliers and tries to add all their
741  * supplier links. If that succeeds, the consumer device is removed from
742  * wait_for_suppliers list. Otherwise, they are left in the wait_for_suppliers
743  * list.  Devices left on the wait_for_suppliers list will not be probed.
744  *
745  * The fwnode add_links callback is expected to return 0 if it has found and
746  * added all the supplier links for the consumer device. It should return an
747  * error if it isn't able to do so.
748  *
749  * The caller of device_link_wait_for_supplier() is expected to call this once
750  * it's aware of potential suppliers becoming available.
751  */
752 static void device_link_add_missing_supplier_links(void)
753 {
754 	struct device *dev, *tmp;
755 
756 	mutex_lock(&wfs_lock);
757 	list_for_each_entry_safe(dev, tmp, &wait_for_suppliers,
758 				 links.needs_suppliers) {
759 		int ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
760 		if (!ret)
761 			list_del_init(&dev->links.needs_suppliers);
762 		else if (ret != -ENODEV || fw_devlink_is_permissive())
763 			dev->links.need_for_probe = false;
764 	}
765 	mutex_unlock(&wfs_lock);
766 }
767 
768 #ifdef CONFIG_SRCU
769 static void __device_link_del(struct kref *kref)
770 {
771 	struct device_link *link = container_of(kref, struct device_link, kref);
772 
773 	dev_dbg(link->consumer, "Dropping the link to %s\n",
774 		dev_name(link->supplier));
775 
776 	pm_runtime_drop_link(link);
777 
778 	list_del_rcu(&link->s_node);
779 	list_del_rcu(&link->c_node);
780 	device_unregister(&link->link_dev);
781 }
782 #else /* !CONFIG_SRCU */
783 static void __device_link_del(struct kref *kref)
784 {
785 	struct device_link *link = container_of(kref, struct device_link, kref);
786 
787 	dev_info(link->consumer, "Dropping the link to %s\n",
788 		 dev_name(link->supplier));
789 
790 	pm_runtime_drop_link(link);
791 
792 	list_del(&link->s_node);
793 	list_del(&link->c_node);
794 	device_unregister(&link->link_dev);
795 }
796 #endif /* !CONFIG_SRCU */
797 
798 static void device_link_put_kref(struct device_link *link)
799 {
800 	if (link->flags & DL_FLAG_STATELESS)
801 		kref_put(&link->kref, __device_link_del);
802 	else
803 		WARN(1, "Unable to drop a managed device link reference\n");
804 }
805 
806 /**
807  * device_link_del - Delete a stateless link between two devices.
808  * @link: Device link to delete.
809  *
810  * The caller must ensure proper synchronization of this function with runtime
811  * PM.  If the link was added multiple times, it needs to be deleted as often.
812  * Care is required for hotplugged devices:  Their links are purged on removal
813  * and calling device_link_del() is then no longer allowed.
814  */
815 void device_link_del(struct device_link *link)
816 {
817 	device_links_write_lock();
818 	device_link_put_kref(link);
819 	device_links_write_unlock();
820 }
821 EXPORT_SYMBOL_GPL(device_link_del);
822 
823 /**
824  * device_link_remove - Delete a stateless link between two devices.
825  * @consumer: Consumer end of the link.
826  * @supplier: Supplier end of the link.
827  *
828  * The caller must ensure proper synchronization of this function with runtime
829  * PM.
830  */
831 void device_link_remove(void *consumer, struct device *supplier)
832 {
833 	struct device_link *link;
834 
835 	if (WARN_ON(consumer == supplier))
836 		return;
837 
838 	device_links_write_lock();
839 
840 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
841 		if (link->consumer == consumer) {
842 			device_link_put_kref(link);
843 			break;
844 		}
845 	}
846 
847 	device_links_write_unlock();
848 }
849 EXPORT_SYMBOL_GPL(device_link_remove);
850 
851 static void device_links_missing_supplier(struct device *dev)
852 {
853 	struct device_link *link;
854 
855 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
856 		if (link->status != DL_STATE_CONSUMER_PROBE)
857 			continue;
858 
859 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
860 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
861 		} else {
862 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
863 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
864 		}
865 	}
866 }
867 
868 /**
869  * device_links_check_suppliers - Check presence of supplier drivers.
870  * @dev: Consumer device.
871  *
872  * Check links from this device to any suppliers.  Walk the list of the device's
873  * links to suppliers and see if all of them are available.  If not, simply
874  * return -EPROBE_DEFER.
875  *
876  * We need to guarantee that the supplier will not go away after the check has
877  * been positive here.  It only can go away in __device_release_driver() and
878  * that function  checks the device's links to consumers.  This means we need to
879  * mark the link as "consumer probe in progress" to make the supplier removal
880  * wait for us to complete (or bad things may happen).
881  *
882  * Links without the DL_FLAG_MANAGED flag set are ignored.
883  */
884 int device_links_check_suppliers(struct device *dev)
885 {
886 	struct device_link *link;
887 	int ret = 0;
888 
889 	/*
890 	 * Device waiting for supplier to become available is not allowed to
891 	 * probe.
892 	 */
893 	mutex_lock(&wfs_lock);
894 	if (!list_empty(&dev->links.needs_suppliers) &&
895 	    dev->links.need_for_probe) {
896 		mutex_unlock(&wfs_lock);
897 		return -EPROBE_DEFER;
898 	}
899 	mutex_unlock(&wfs_lock);
900 
901 	device_links_write_lock();
902 
903 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
904 		if (!(link->flags & DL_FLAG_MANAGED))
905 			continue;
906 
907 		if (link->status != DL_STATE_AVAILABLE &&
908 		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
909 			device_links_missing_supplier(dev);
910 			ret = -EPROBE_DEFER;
911 			break;
912 		}
913 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
914 	}
915 	dev->links.status = DL_DEV_PROBING;
916 
917 	device_links_write_unlock();
918 	return ret;
919 }
920 
921 /**
922  * __device_links_queue_sync_state - Queue a device for sync_state() callback
923  * @dev: Device to call sync_state() on
924  * @list: List head to queue the @dev on
925  *
926  * Queues a device for a sync_state() callback when the device links write lock
927  * isn't held. This allows the sync_state() execution flow to use device links
928  * APIs.  The caller must ensure this function is called with
929  * device_links_write_lock() held.
930  *
931  * This function does a get_device() to make sure the device is not freed while
932  * on this list.
933  *
934  * So the caller must also ensure that device_links_flush_sync_list() is called
935  * as soon as the caller releases device_links_write_lock().  This is necessary
936  * to make sure the sync_state() is called in a timely fashion and the
937  * put_device() is called on this device.
938  */
939 static void __device_links_queue_sync_state(struct device *dev,
940 					    struct list_head *list)
941 {
942 	struct device_link *link;
943 
944 	if (!dev_has_sync_state(dev))
945 		return;
946 	if (dev->state_synced)
947 		return;
948 
949 	list_for_each_entry(link, &dev->links.consumers, s_node) {
950 		if (!(link->flags & DL_FLAG_MANAGED))
951 			continue;
952 		if (link->status != DL_STATE_ACTIVE)
953 			return;
954 	}
955 
956 	/*
957 	 * Set the flag here to avoid adding the same device to a list more
958 	 * than once. This can happen if new consumers get added to the device
959 	 * and probed before the list is flushed.
960 	 */
961 	dev->state_synced = true;
962 
963 	if (WARN_ON(!list_empty(&dev->links.defer_hook)))
964 		return;
965 
966 	get_device(dev);
967 	list_add_tail(&dev->links.defer_hook, list);
968 }
969 
970 /**
971  * device_links_flush_sync_list - Call sync_state() on a list of devices
972  * @list: List of devices to call sync_state() on
973  * @dont_lock_dev: Device for which lock is already held by the caller
974  *
975  * Calls sync_state() on all the devices that have been queued for it. This
976  * function is used in conjunction with __device_links_queue_sync_state(). The
977  * @dont_lock_dev parameter is useful when this function is called from a
978  * context where a device lock is already held.
979  */
980 static void device_links_flush_sync_list(struct list_head *list,
981 					 struct device *dont_lock_dev)
982 {
983 	struct device *dev, *tmp;
984 
985 	list_for_each_entry_safe(dev, tmp, list, links.defer_hook) {
986 		list_del_init(&dev->links.defer_hook);
987 
988 		if (dev != dont_lock_dev)
989 			device_lock(dev);
990 
991 		if (dev->bus->sync_state)
992 			dev->bus->sync_state(dev);
993 		else if (dev->driver && dev->driver->sync_state)
994 			dev->driver->sync_state(dev);
995 
996 		if (dev != dont_lock_dev)
997 			device_unlock(dev);
998 
999 		put_device(dev);
1000 	}
1001 }
1002 
1003 void device_links_supplier_sync_state_pause(void)
1004 {
1005 	device_links_write_lock();
1006 	defer_sync_state_count++;
1007 	device_links_write_unlock();
1008 }
1009 
1010 void device_links_supplier_sync_state_resume(void)
1011 {
1012 	struct device *dev, *tmp;
1013 	LIST_HEAD(sync_list);
1014 
1015 	device_links_write_lock();
1016 	if (!defer_sync_state_count) {
1017 		WARN(true, "Unmatched sync_state pause/resume!");
1018 		goto out;
1019 	}
1020 	defer_sync_state_count--;
1021 	if (defer_sync_state_count)
1022 		goto out;
1023 
1024 	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_hook) {
1025 		/*
1026 		 * Delete from deferred_sync list before queuing it to
1027 		 * sync_list because defer_hook is used for both lists.
1028 		 */
1029 		list_del_init(&dev->links.defer_hook);
1030 		__device_links_queue_sync_state(dev, &sync_list);
1031 	}
1032 out:
1033 	device_links_write_unlock();
1034 
1035 	device_links_flush_sync_list(&sync_list, NULL);
1036 }
1037 
1038 static int sync_state_resume_initcall(void)
1039 {
1040 	device_links_supplier_sync_state_resume();
1041 	return 0;
1042 }
1043 late_initcall(sync_state_resume_initcall);
1044 
1045 static void __device_links_supplier_defer_sync(struct device *sup)
1046 {
1047 	if (list_empty(&sup->links.defer_hook) && dev_has_sync_state(sup))
1048 		list_add_tail(&sup->links.defer_hook, &deferred_sync);
1049 }
1050 
1051 static void device_link_drop_managed(struct device_link *link)
1052 {
1053 	link->flags &= ~DL_FLAG_MANAGED;
1054 	WRITE_ONCE(link->status, DL_STATE_NONE);
1055 	kref_put(&link->kref, __device_link_del);
1056 }
1057 
1058 static ssize_t waiting_for_supplier_show(struct device *dev,
1059 					 struct device_attribute *attr,
1060 					 char *buf)
1061 {
1062 	bool val;
1063 
1064 	device_lock(dev);
1065 	mutex_lock(&wfs_lock);
1066 	val = !list_empty(&dev->links.needs_suppliers)
1067 	      && dev->links.need_for_probe;
1068 	mutex_unlock(&wfs_lock);
1069 	device_unlock(dev);
1070 	return sysfs_emit(buf, "%u\n", val);
1071 }
1072 static DEVICE_ATTR_RO(waiting_for_supplier);
1073 
1074 /**
1075  * device_links_driver_bound - Update device links after probing its driver.
1076  * @dev: Device to update the links for.
1077  *
1078  * The probe has been successful, so update links from this device to any
1079  * consumers by changing their status to "available".
1080  *
1081  * Also change the status of @dev's links to suppliers to "active".
1082  *
1083  * Links without the DL_FLAG_MANAGED flag set are ignored.
1084  */
1085 void device_links_driver_bound(struct device *dev)
1086 {
1087 	struct device_link *link, *ln;
1088 	LIST_HEAD(sync_list);
1089 
1090 	/*
1091 	 * If a device probes successfully, it's expected to have created all
1092 	 * the device links it needs to or make new device links as it needs
1093 	 * them. So, it no longer needs to wait on any suppliers.
1094 	 */
1095 	mutex_lock(&wfs_lock);
1096 	list_del_init(&dev->links.needs_suppliers);
1097 	mutex_unlock(&wfs_lock);
1098 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1099 
1100 	device_links_write_lock();
1101 
1102 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1103 		if (!(link->flags & DL_FLAG_MANAGED))
1104 			continue;
1105 
1106 		/*
1107 		 * Links created during consumer probe may be in the "consumer
1108 		 * probe" state to start with if the supplier is still probing
1109 		 * when they are created and they may become "active" if the
1110 		 * consumer probe returns first.  Skip them here.
1111 		 */
1112 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1113 		    link->status == DL_STATE_ACTIVE)
1114 			continue;
1115 
1116 		WARN_ON(link->status != DL_STATE_DORMANT);
1117 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1118 
1119 		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1120 			driver_deferred_probe_add(link->consumer);
1121 	}
1122 
1123 	if (defer_sync_state_count)
1124 		__device_links_supplier_defer_sync(dev);
1125 	else
1126 		__device_links_queue_sync_state(dev, &sync_list);
1127 
1128 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1129 		struct device *supplier;
1130 
1131 		if (!(link->flags & DL_FLAG_MANAGED))
1132 			continue;
1133 
1134 		supplier = link->supplier;
1135 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1136 			/*
1137 			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1138 			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1139 			 * save to drop the managed link completely.
1140 			 */
1141 			device_link_drop_managed(link);
1142 		} else {
1143 			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1144 			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1145 		}
1146 
1147 		/*
1148 		 * This needs to be done even for the deleted
1149 		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1150 		 * device link that was preventing the supplier from getting a
1151 		 * sync_state() call.
1152 		 */
1153 		if (defer_sync_state_count)
1154 			__device_links_supplier_defer_sync(supplier);
1155 		else
1156 			__device_links_queue_sync_state(supplier, &sync_list);
1157 	}
1158 
1159 	dev->links.status = DL_DEV_DRIVER_BOUND;
1160 
1161 	device_links_write_unlock();
1162 
1163 	device_links_flush_sync_list(&sync_list, dev);
1164 }
1165 
1166 /**
1167  * __device_links_no_driver - Update links of a device without a driver.
1168  * @dev: Device without a drvier.
1169  *
1170  * Delete all non-persistent links from this device to any suppliers.
1171  *
1172  * Persistent links stay around, but their status is changed to "available",
1173  * unless they already are in the "supplier unbind in progress" state in which
1174  * case they need not be updated.
1175  *
1176  * Links without the DL_FLAG_MANAGED flag set are ignored.
1177  */
1178 static void __device_links_no_driver(struct device *dev)
1179 {
1180 	struct device_link *link, *ln;
1181 
1182 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1183 		if (!(link->flags & DL_FLAG_MANAGED))
1184 			continue;
1185 
1186 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1187 			device_link_drop_managed(link);
1188 			continue;
1189 		}
1190 
1191 		if (link->status != DL_STATE_CONSUMER_PROBE &&
1192 		    link->status != DL_STATE_ACTIVE)
1193 			continue;
1194 
1195 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1196 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1197 		} else {
1198 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1199 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1200 		}
1201 	}
1202 
1203 	dev->links.status = DL_DEV_NO_DRIVER;
1204 }
1205 
1206 /**
1207  * device_links_no_driver - Update links after failing driver probe.
1208  * @dev: Device whose driver has just failed to probe.
1209  *
1210  * Clean up leftover links to consumers for @dev and invoke
1211  * %__device_links_no_driver() to update links to suppliers for it as
1212  * appropriate.
1213  *
1214  * Links without the DL_FLAG_MANAGED flag set are ignored.
1215  */
1216 void device_links_no_driver(struct device *dev)
1217 {
1218 	struct device_link *link;
1219 
1220 	device_links_write_lock();
1221 
1222 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1223 		if (!(link->flags & DL_FLAG_MANAGED))
1224 			continue;
1225 
1226 		/*
1227 		 * The probe has failed, so if the status of the link is
1228 		 * "consumer probe" or "active", it must have been added by
1229 		 * a probing consumer while this device was still probing.
1230 		 * Change its state to "dormant", as it represents a valid
1231 		 * relationship, but it is not functionally meaningful.
1232 		 */
1233 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1234 		    link->status == DL_STATE_ACTIVE)
1235 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1236 	}
1237 
1238 	__device_links_no_driver(dev);
1239 
1240 	device_links_write_unlock();
1241 }
1242 
1243 /**
1244  * device_links_driver_cleanup - Update links after driver removal.
1245  * @dev: Device whose driver has just gone away.
1246  *
1247  * Update links to consumers for @dev by changing their status to "dormant" and
1248  * invoke %__device_links_no_driver() to update links to suppliers for it as
1249  * appropriate.
1250  *
1251  * Links without the DL_FLAG_MANAGED flag set are ignored.
1252  */
1253 void device_links_driver_cleanup(struct device *dev)
1254 {
1255 	struct device_link *link, *ln;
1256 
1257 	device_links_write_lock();
1258 
1259 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1260 		if (!(link->flags & DL_FLAG_MANAGED))
1261 			continue;
1262 
1263 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1264 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1265 
1266 		/*
1267 		 * autoremove the links between this @dev and its consumer
1268 		 * devices that are not active, i.e. where the link state
1269 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1270 		 */
1271 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1272 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1273 			device_link_drop_managed(link);
1274 
1275 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1276 	}
1277 
1278 	list_del_init(&dev->links.defer_hook);
1279 	__device_links_no_driver(dev);
1280 
1281 	device_links_write_unlock();
1282 }
1283 
1284 /**
1285  * device_links_busy - Check if there are any busy links to consumers.
1286  * @dev: Device to check.
1287  *
1288  * Check each consumer of the device and return 'true' if its link's status
1289  * is one of "consumer probe" or "active" (meaning that the given consumer is
1290  * probing right now or its driver is present).  Otherwise, change the link
1291  * state to "supplier unbind" to prevent the consumer from being probed
1292  * successfully going forward.
1293  *
1294  * Return 'false' if there are no probing or active consumers.
1295  *
1296  * Links without the DL_FLAG_MANAGED flag set are ignored.
1297  */
1298 bool device_links_busy(struct device *dev)
1299 {
1300 	struct device_link *link;
1301 	bool ret = false;
1302 
1303 	device_links_write_lock();
1304 
1305 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1306 		if (!(link->flags & DL_FLAG_MANAGED))
1307 			continue;
1308 
1309 		if (link->status == DL_STATE_CONSUMER_PROBE
1310 		    || link->status == DL_STATE_ACTIVE) {
1311 			ret = true;
1312 			break;
1313 		}
1314 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1315 	}
1316 
1317 	dev->links.status = DL_DEV_UNBINDING;
1318 
1319 	device_links_write_unlock();
1320 	return ret;
1321 }
1322 
1323 /**
1324  * device_links_unbind_consumers - Force unbind consumers of the given device.
1325  * @dev: Device to unbind the consumers of.
1326  *
1327  * Walk the list of links to consumers for @dev and if any of them is in the
1328  * "consumer probe" state, wait for all device probes in progress to complete
1329  * and start over.
1330  *
1331  * If that's not the case, change the status of the link to "supplier unbind"
1332  * and check if the link was in the "active" state.  If so, force the consumer
1333  * driver to unbind and start over (the consumer will not re-probe as we have
1334  * changed the state of the link already).
1335  *
1336  * Links without the DL_FLAG_MANAGED flag set are ignored.
1337  */
1338 void device_links_unbind_consumers(struct device *dev)
1339 {
1340 	struct device_link *link;
1341 
1342  start:
1343 	device_links_write_lock();
1344 
1345 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1346 		enum device_link_state status;
1347 
1348 		if (!(link->flags & DL_FLAG_MANAGED) ||
1349 		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1350 			continue;
1351 
1352 		status = link->status;
1353 		if (status == DL_STATE_CONSUMER_PROBE) {
1354 			device_links_write_unlock();
1355 
1356 			wait_for_device_probe();
1357 			goto start;
1358 		}
1359 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1360 		if (status == DL_STATE_ACTIVE) {
1361 			struct device *consumer = link->consumer;
1362 
1363 			get_device(consumer);
1364 
1365 			device_links_write_unlock();
1366 
1367 			device_release_driver_internal(consumer, NULL,
1368 						       consumer->parent);
1369 			put_device(consumer);
1370 			goto start;
1371 		}
1372 	}
1373 
1374 	device_links_write_unlock();
1375 }
1376 
1377 /**
1378  * device_links_purge - Delete existing links to other devices.
1379  * @dev: Target device.
1380  */
1381 static void device_links_purge(struct device *dev)
1382 {
1383 	struct device_link *link, *ln;
1384 
1385 	if (dev->class == &devlink_class)
1386 		return;
1387 
1388 	mutex_lock(&wfs_lock);
1389 	list_del(&dev->links.needs_suppliers);
1390 	mutex_unlock(&wfs_lock);
1391 
1392 	/*
1393 	 * Delete all of the remaining links from this device to any other
1394 	 * devices (either consumers or suppliers).
1395 	 */
1396 	device_links_write_lock();
1397 
1398 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1399 		WARN_ON(link->status == DL_STATE_ACTIVE);
1400 		__device_link_del(&link->kref);
1401 	}
1402 
1403 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1404 		WARN_ON(link->status != DL_STATE_DORMANT &&
1405 			link->status != DL_STATE_NONE);
1406 		__device_link_del(&link->kref);
1407 	}
1408 
1409 	device_links_write_unlock();
1410 }
1411 
1412 static u32 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
1413 static int __init fw_devlink_setup(char *arg)
1414 {
1415 	if (!arg)
1416 		return -EINVAL;
1417 
1418 	if (strcmp(arg, "off") == 0) {
1419 		fw_devlink_flags = 0;
1420 	} else if (strcmp(arg, "permissive") == 0) {
1421 		fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
1422 	} else if (strcmp(arg, "on") == 0) {
1423 		fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER;
1424 	} else if (strcmp(arg, "rpm") == 0) {
1425 		fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER |
1426 				   DL_FLAG_PM_RUNTIME;
1427 	}
1428 	return 0;
1429 }
1430 early_param("fw_devlink", fw_devlink_setup);
1431 
1432 u32 fw_devlink_get_flags(void)
1433 {
1434 	return fw_devlink_flags;
1435 }
1436 
1437 static bool fw_devlink_is_permissive(void)
1438 {
1439 	return fw_devlink_flags == DL_FLAG_SYNC_STATE_ONLY;
1440 }
1441 
1442 static void fw_devlink_link_device(struct device *dev)
1443 {
1444 	int fw_ret;
1445 
1446 	if (!fw_devlink_flags)
1447 		return;
1448 
1449 	mutex_lock(&defer_fw_devlink_lock);
1450 	if (!defer_fw_devlink_count)
1451 		device_link_add_missing_supplier_links();
1452 
1453 	/*
1454 	 * The device's fwnode not having add_links() doesn't affect if other
1455 	 * consumers can find this device as a supplier.  So, this check is
1456 	 * intentionally placed after device_link_add_missing_supplier_links().
1457 	 */
1458 	if (!fwnode_has_op(dev->fwnode, add_links))
1459 		goto out;
1460 
1461 	/*
1462 	 * If fw_devlink is being deferred, assume all devices have mandatory
1463 	 * suppliers they need to link to later. Then, when the fw_devlink is
1464 	 * resumed, all these devices will get a chance to try and link to any
1465 	 * suppliers they have.
1466 	 */
1467 	if (!defer_fw_devlink_count) {
1468 		fw_ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
1469 		if (fw_ret == -ENODEV && fw_devlink_is_permissive())
1470 			fw_ret = -EAGAIN;
1471 	} else {
1472 		fw_ret = -ENODEV;
1473 		/*
1474 		 * defer_hook is not used to add device to deferred_sync list
1475 		 * until device is bound. Since deferred fw devlink also blocks
1476 		 * probing, same list hook can be used for deferred_fw_devlink.
1477 		 */
1478 		list_add_tail(&dev->links.defer_hook, &deferred_fw_devlink);
1479 	}
1480 
1481 	if (fw_ret == -ENODEV)
1482 		device_link_wait_for_mandatory_supplier(dev);
1483 	else if (fw_ret)
1484 		device_link_wait_for_optional_supplier(dev);
1485 
1486 out:
1487 	mutex_unlock(&defer_fw_devlink_lock);
1488 }
1489 
1490 /**
1491  * fw_devlink_pause - Pause parsing of fwnode to create device links
1492  *
1493  * Calling this function defers any fwnode parsing to create device links until
1494  * fw_devlink_resume() is called. Both these functions are ref counted and the
1495  * caller needs to match the calls.
1496  *
1497  * While fw_devlink is paused:
1498  * - Any device that is added won't have its fwnode parsed to create device
1499  *   links.
1500  * - The probe of the device will also be deferred during this period.
1501  * - Any devices that were already added, but waiting for suppliers won't be
1502  *   able to link to newly added devices.
1503  *
1504  * Once fw_devlink_resume():
1505  * - All the fwnodes that was not parsed will be parsed.
1506  * - All the devices that were deferred probing will be reattempted if they
1507  *   aren't waiting for any more suppliers.
1508  *
1509  * This pair of functions, is mainly meant to optimize the parsing of fwnodes
1510  * when a lot of devices that need to link to each other are added in a short
1511  * interval of time. For example, adding all the top level devices in a system.
1512  *
1513  * For example, if N devices are added and:
1514  * - All the consumers are added before their suppliers
1515  * - All the suppliers of the N devices are part of the N devices
1516  *
1517  * Then:
1518  *
1519  * - With the use of fw_devlink_pause() and fw_devlink_resume(), each device
1520  *   will only need one parsing of its fwnode because it is guaranteed to find
1521  *   all the supplier devices already registered and ready to link to. It won't
1522  *   have to do another pass later to find one or more suppliers it couldn't
1523  *   find in the first parse of the fwnode. So, we'll only need O(N) fwnode
1524  *   parses.
1525  *
1526  * - Without the use of fw_devlink_pause() and fw_devlink_resume(), we would
1527  *   end up doing O(N^2) parses of fwnodes because every device that's added is
1528  *   guaranteed to trigger a parse of the fwnode of every device added before
1529  *   it. This O(N^2) parse is made worse by the fact that when a fwnode of a
1530  *   device is parsed, all it descendant devices might need to have their
1531  *   fwnodes parsed too (even if the devices themselves aren't added).
1532  */
1533 void fw_devlink_pause(void)
1534 {
1535 	mutex_lock(&defer_fw_devlink_lock);
1536 	defer_fw_devlink_count++;
1537 	mutex_unlock(&defer_fw_devlink_lock);
1538 }
1539 
1540 /** fw_devlink_resume - Resume parsing of fwnode to create device links
1541  *
1542  * This function is used in conjunction with fw_devlink_pause() and is ref
1543  * counted. See documentation for fw_devlink_pause() for more details.
1544  */
1545 void fw_devlink_resume(void)
1546 {
1547 	struct device *dev, *tmp;
1548 	LIST_HEAD(probe_list);
1549 
1550 	mutex_lock(&defer_fw_devlink_lock);
1551 	if (!defer_fw_devlink_count) {
1552 		WARN(true, "Unmatched fw_devlink pause/resume!");
1553 		goto out;
1554 	}
1555 
1556 	defer_fw_devlink_count--;
1557 	if (defer_fw_devlink_count)
1558 		goto out;
1559 
1560 	device_link_add_missing_supplier_links();
1561 	list_splice_tail_init(&deferred_fw_devlink, &probe_list);
1562 out:
1563 	mutex_unlock(&defer_fw_devlink_lock);
1564 
1565 	/*
1566 	 * bus_probe_device() can cause new devices to get added and they'll
1567 	 * try to grab defer_fw_devlink_lock. So, this needs to be done outside
1568 	 * the defer_fw_devlink_lock.
1569 	 */
1570 	list_for_each_entry_safe(dev, tmp, &probe_list, links.defer_hook) {
1571 		list_del_init(&dev->links.defer_hook);
1572 		bus_probe_device(dev);
1573 	}
1574 }
1575 /* Device links support end. */
1576 
1577 int (*platform_notify)(struct device *dev) = NULL;
1578 int (*platform_notify_remove)(struct device *dev) = NULL;
1579 static struct kobject *dev_kobj;
1580 struct kobject *sysfs_dev_char_kobj;
1581 struct kobject *sysfs_dev_block_kobj;
1582 
1583 static DEFINE_MUTEX(device_hotplug_lock);
1584 
1585 void lock_device_hotplug(void)
1586 {
1587 	mutex_lock(&device_hotplug_lock);
1588 }
1589 
1590 void unlock_device_hotplug(void)
1591 {
1592 	mutex_unlock(&device_hotplug_lock);
1593 }
1594 
1595 int lock_device_hotplug_sysfs(void)
1596 {
1597 	if (mutex_trylock(&device_hotplug_lock))
1598 		return 0;
1599 
1600 	/* Avoid busy looping (5 ms of sleep should do). */
1601 	msleep(5);
1602 	return restart_syscall();
1603 }
1604 
1605 #ifdef CONFIG_BLOCK
1606 static inline int device_is_not_partition(struct device *dev)
1607 {
1608 	return !(dev->type == &part_type);
1609 }
1610 #else
1611 static inline int device_is_not_partition(struct device *dev)
1612 {
1613 	return 1;
1614 }
1615 #endif
1616 
1617 static int
1618 device_platform_notify(struct device *dev, enum kobject_action action)
1619 {
1620 	int ret;
1621 
1622 	ret = acpi_platform_notify(dev, action);
1623 	if (ret)
1624 		return ret;
1625 
1626 	ret = software_node_notify(dev, action);
1627 	if (ret)
1628 		return ret;
1629 
1630 	if (platform_notify && action == KOBJ_ADD)
1631 		platform_notify(dev);
1632 	else if (platform_notify_remove && action == KOBJ_REMOVE)
1633 		platform_notify_remove(dev);
1634 	return 0;
1635 }
1636 
1637 /**
1638  * dev_driver_string - Return a device's driver name, if at all possible
1639  * @dev: struct device to get the name of
1640  *
1641  * Will return the device's driver's name if it is bound to a device.  If
1642  * the device is not bound to a driver, it will return the name of the bus
1643  * it is attached to.  If it is not attached to a bus either, an empty
1644  * string will be returned.
1645  */
1646 const char *dev_driver_string(const struct device *dev)
1647 {
1648 	struct device_driver *drv;
1649 
1650 	/* dev->driver can change to NULL underneath us because of unbinding,
1651 	 * so be careful about accessing it.  dev->bus and dev->class should
1652 	 * never change once they are set, so they don't need special care.
1653 	 */
1654 	drv = READ_ONCE(dev->driver);
1655 	return drv ? drv->name :
1656 			(dev->bus ? dev->bus->name :
1657 			(dev->class ? dev->class->name : ""));
1658 }
1659 EXPORT_SYMBOL(dev_driver_string);
1660 
1661 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
1662 
1663 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
1664 			     char *buf)
1665 {
1666 	struct device_attribute *dev_attr = to_dev_attr(attr);
1667 	struct device *dev = kobj_to_dev(kobj);
1668 	ssize_t ret = -EIO;
1669 
1670 	if (dev_attr->show)
1671 		ret = dev_attr->show(dev, dev_attr, buf);
1672 	if (ret >= (ssize_t)PAGE_SIZE) {
1673 		printk("dev_attr_show: %pS returned bad count\n",
1674 				dev_attr->show);
1675 	}
1676 	return ret;
1677 }
1678 
1679 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
1680 			      const char *buf, size_t count)
1681 {
1682 	struct device_attribute *dev_attr = to_dev_attr(attr);
1683 	struct device *dev = kobj_to_dev(kobj);
1684 	ssize_t ret = -EIO;
1685 
1686 	if (dev_attr->store)
1687 		ret = dev_attr->store(dev, dev_attr, buf, count);
1688 	return ret;
1689 }
1690 
1691 static const struct sysfs_ops dev_sysfs_ops = {
1692 	.show	= dev_attr_show,
1693 	.store	= dev_attr_store,
1694 };
1695 
1696 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
1697 
1698 ssize_t device_store_ulong(struct device *dev,
1699 			   struct device_attribute *attr,
1700 			   const char *buf, size_t size)
1701 {
1702 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1703 	int ret;
1704 	unsigned long new;
1705 
1706 	ret = kstrtoul(buf, 0, &new);
1707 	if (ret)
1708 		return ret;
1709 	*(unsigned long *)(ea->var) = new;
1710 	/* Always return full write size even if we didn't consume all */
1711 	return size;
1712 }
1713 EXPORT_SYMBOL_GPL(device_store_ulong);
1714 
1715 ssize_t device_show_ulong(struct device *dev,
1716 			  struct device_attribute *attr,
1717 			  char *buf)
1718 {
1719 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1720 	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
1721 }
1722 EXPORT_SYMBOL_GPL(device_show_ulong);
1723 
1724 ssize_t device_store_int(struct device *dev,
1725 			 struct device_attribute *attr,
1726 			 const char *buf, size_t size)
1727 {
1728 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1729 	int ret;
1730 	long new;
1731 
1732 	ret = kstrtol(buf, 0, &new);
1733 	if (ret)
1734 		return ret;
1735 
1736 	if (new > INT_MAX || new < INT_MIN)
1737 		return -EINVAL;
1738 	*(int *)(ea->var) = new;
1739 	/* Always return full write size even if we didn't consume all */
1740 	return size;
1741 }
1742 EXPORT_SYMBOL_GPL(device_store_int);
1743 
1744 ssize_t device_show_int(struct device *dev,
1745 			struct device_attribute *attr,
1746 			char *buf)
1747 {
1748 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1749 
1750 	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
1751 }
1752 EXPORT_SYMBOL_GPL(device_show_int);
1753 
1754 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
1755 			  const char *buf, size_t size)
1756 {
1757 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1758 
1759 	if (strtobool(buf, ea->var) < 0)
1760 		return -EINVAL;
1761 
1762 	return size;
1763 }
1764 EXPORT_SYMBOL_GPL(device_store_bool);
1765 
1766 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
1767 			 char *buf)
1768 {
1769 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1770 
1771 	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
1772 }
1773 EXPORT_SYMBOL_GPL(device_show_bool);
1774 
1775 /**
1776  * device_release - free device structure.
1777  * @kobj: device's kobject.
1778  *
1779  * This is called once the reference count for the object
1780  * reaches 0. We forward the call to the device's release
1781  * method, which should handle actually freeing the structure.
1782  */
1783 static void device_release(struct kobject *kobj)
1784 {
1785 	struct device *dev = kobj_to_dev(kobj);
1786 	struct device_private *p = dev->p;
1787 
1788 	/*
1789 	 * Some platform devices are driven without driver attached
1790 	 * and managed resources may have been acquired.  Make sure
1791 	 * all resources are released.
1792 	 *
1793 	 * Drivers still can add resources into device after device
1794 	 * is deleted but alive, so release devres here to avoid
1795 	 * possible memory leak.
1796 	 */
1797 	devres_release_all(dev);
1798 
1799 	kfree(dev->dma_range_map);
1800 
1801 	if (dev->release)
1802 		dev->release(dev);
1803 	else if (dev->type && dev->type->release)
1804 		dev->type->release(dev);
1805 	else if (dev->class && dev->class->dev_release)
1806 		dev->class->dev_release(dev);
1807 	else
1808 		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
1809 			dev_name(dev));
1810 	kfree(p);
1811 }
1812 
1813 static const void *device_namespace(struct kobject *kobj)
1814 {
1815 	struct device *dev = kobj_to_dev(kobj);
1816 	const void *ns = NULL;
1817 
1818 	if (dev->class && dev->class->ns_type)
1819 		ns = dev->class->namespace(dev);
1820 
1821 	return ns;
1822 }
1823 
1824 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
1825 {
1826 	struct device *dev = kobj_to_dev(kobj);
1827 
1828 	if (dev->class && dev->class->get_ownership)
1829 		dev->class->get_ownership(dev, uid, gid);
1830 }
1831 
1832 static struct kobj_type device_ktype = {
1833 	.release	= device_release,
1834 	.sysfs_ops	= &dev_sysfs_ops,
1835 	.namespace	= device_namespace,
1836 	.get_ownership	= device_get_ownership,
1837 };
1838 
1839 
1840 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
1841 {
1842 	struct kobj_type *ktype = get_ktype(kobj);
1843 
1844 	if (ktype == &device_ktype) {
1845 		struct device *dev = kobj_to_dev(kobj);
1846 		if (dev->bus)
1847 			return 1;
1848 		if (dev->class)
1849 			return 1;
1850 	}
1851 	return 0;
1852 }
1853 
1854 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
1855 {
1856 	struct device *dev = kobj_to_dev(kobj);
1857 
1858 	if (dev->bus)
1859 		return dev->bus->name;
1860 	if (dev->class)
1861 		return dev->class->name;
1862 	return NULL;
1863 }
1864 
1865 static int dev_uevent(struct kset *kset, struct kobject *kobj,
1866 		      struct kobj_uevent_env *env)
1867 {
1868 	struct device *dev = kobj_to_dev(kobj);
1869 	int retval = 0;
1870 
1871 	/* add device node properties if present */
1872 	if (MAJOR(dev->devt)) {
1873 		const char *tmp;
1874 		const char *name;
1875 		umode_t mode = 0;
1876 		kuid_t uid = GLOBAL_ROOT_UID;
1877 		kgid_t gid = GLOBAL_ROOT_GID;
1878 
1879 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
1880 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
1881 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
1882 		if (name) {
1883 			add_uevent_var(env, "DEVNAME=%s", name);
1884 			if (mode)
1885 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
1886 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
1887 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
1888 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
1889 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
1890 			kfree(tmp);
1891 		}
1892 	}
1893 
1894 	if (dev->type && dev->type->name)
1895 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
1896 
1897 	if (dev->driver)
1898 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
1899 
1900 	/* Add common DT information about the device */
1901 	of_device_uevent(dev, env);
1902 
1903 	/* have the bus specific function add its stuff */
1904 	if (dev->bus && dev->bus->uevent) {
1905 		retval = dev->bus->uevent(dev, env);
1906 		if (retval)
1907 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
1908 				 dev_name(dev), __func__, retval);
1909 	}
1910 
1911 	/* have the class specific function add its stuff */
1912 	if (dev->class && dev->class->dev_uevent) {
1913 		retval = dev->class->dev_uevent(dev, env);
1914 		if (retval)
1915 			pr_debug("device: '%s': %s: class uevent() "
1916 				 "returned %d\n", dev_name(dev),
1917 				 __func__, retval);
1918 	}
1919 
1920 	/* have the device type specific function add its stuff */
1921 	if (dev->type && dev->type->uevent) {
1922 		retval = dev->type->uevent(dev, env);
1923 		if (retval)
1924 			pr_debug("device: '%s': %s: dev_type uevent() "
1925 				 "returned %d\n", dev_name(dev),
1926 				 __func__, retval);
1927 	}
1928 
1929 	return retval;
1930 }
1931 
1932 static const struct kset_uevent_ops device_uevent_ops = {
1933 	.filter =	dev_uevent_filter,
1934 	.name =		dev_uevent_name,
1935 	.uevent =	dev_uevent,
1936 };
1937 
1938 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
1939 			   char *buf)
1940 {
1941 	struct kobject *top_kobj;
1942 	struct kset *kset;
1943 	struct kobj_uevent_env *env = NULL;
1944 	int i;
1945 	int len = 0;
1946 	int retval;
1947 
1948 	/* search the kset, the device belongs to */
1949 	top_kobj = &dev->kobj;
1950 	while (!top_kobj->kset && top_kobj->parent)
1951 		top_kobj = top_kobj->parent;
1952 	if (!top_kobj->kset)
1953 		goto out;
1954 
1955 	kset = top_kobj->kset;
1956 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
1957 		goto out;
1958 
1959 	/* respect filter */
1960 	if (kset->uevent_ops && kset->uevent_ops->filter)
1961 		if (!kset->uevent_ops->filter(kset, &dev->kobj))
1962 			goto out;
1963 
1964 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1965 	if (!env)
1966 		return -ENOMEM;
1967 
1968 	/* let the kset specific function add its keys */
1969 	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
1970 	if (retval)
1971 		goto out;
1972 
1973 	/* copy keys to file */
1974 	for (i = 0; i < env->envp_idx; i++)
1975 		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
1976 out:
1977 	kfree(env);
1978 	return len;
1979 }
1980 
1981 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
1982 			    const char *buf, size_t count)
1983 {
1984 	int rc;
1985 
1986 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
1987 
1988 	if (rc) {
1989 		dev_err(dev, "uevent: failed to send synthetic uevent\n");
1990 		return rc;
1991 	}
1992 
1993 	return count;
1994 }
1995 static DEVICE_ATTR_RW(uevent);
1996 
1997 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1998 			   char *buf)
1999 {
2000 	bool val;
2001 
2002 	device_lock(dev);
2003 	val = !dev->offline;
2004 	device_unlock(dev);
2005 	return sysfs_emit(buf, "%u\n", val);
2006 }
2007 
2008 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2009 			    const char *buf, size_t count)
2010 {
2011 	bool val;
2012 	int ret;
2013 
2014 	ret = strtobool(buf, &val);
2015 	if (ret < 0)
2016 		return ret;
2017 
2018 	ret = lock_device_hotplug_sysfs();
2019 	if (ret)
2020 		return ret;
2021 
2022 	ret = val ? device_online(dev) : device_offline(dev);
2023 	unlock_device_hotplug();
2024 	return ret < 0 ? ret : count;
2025 }
2026 static DEVICE_ATTR_RW(online);
2027 
2028 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2029 {
2030 	return sysfs_create_groups(&dev->kobj, groups);
2031 }
2032 EXPORT_SYMBOL_GPL(device_add_groups);
2033 
2034 void device_remove_groups(struct device *dev,
2035 			  const struct attribute_group **groups)
2036 {
2037 	sysfs_remove_groups(&dev->kobj, groups);
2038 }
2039 EXPORT_SYMBOL_GPL(device_remove_groups);
2040 
2041 union device_attr_group_devres {
2042 	const struct attribute_group *group;
2043 	const struct attribute_group **groups;
2044 };
2045 
2046 static int devm_attr_group_match(struct device *dev, void *res, void *data)
2047 {
2048 	return ((union device_attr_group_devres *)res)->group == data;
2049 }
2050 
2051 static void devm_attr_group_remove(struct device *dev, void *res)
2052 {
2053 	union device_attr_group_devres *devres = res;
2054 	const struct attribute_group *group = devres->group;
2055 
2056 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2057 	sysfs_remove_group(&dev->kobj, group);
2058 }
2059 
2060 static void devm_attr_groups_remove(struct device *dev, void *res)
2061 {
2062 	union device_attr_group_devres *devres = res;
2063 	const struct attribute_group **groups = devres->groups;
2064 
2065 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2066 	sysfs_remove_groups(&dev->kobj, groups);
2067 }
2068 
2069 /**
2070  * devm_device_add_group - given a device, create a managed attribute group
2071  * @dev:	The device to create the group for
2072  * @grp:	The attribute group to create
2073  *
2074  * This function creates a group for the first time.  It will explicitly
2075  * warn and error if any of the attribute files being created already exist.
2076  *
2077  * Returns 0 on success or error code on failure.
2078  */
2079 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2080 {
2081 	union device_attr_group_devres *devres;
2082 	int error;
2083 
2084 	devres = devres_alloc(devm_attr_group_remove,
2085 			      sizeof(*devres), GFP_KERNEL);
2086 	if (!devres)
2087 		return -ENOMEM;
2088 
2089 	error = sysfs_create_group(&dev->kobj, grp);
2090 	if (error) {
2091 		devres_free(devres);
2092 		return error;
2093 	}
2094 
2095 	devres->group = grp;
2096 	devres_add(dev, devres);
2097 	return 0;
2098 }
2099 EXPORT_SYMBOL_GPL(devm_device_add_group);
2100 
2101 /**
2102  * devm_device_remove_group: remove a managed group from a device
2103  * @dev:	device to remove the group from
2104  * @grp:	group to remove
2105  *
2106  * This function removes a group of attributes from a device. The attributes
2107  * previously have to have been created for this group, otherwise it will fail.
2108  */
2109 void devm_device_remove_group(struct device *dev,
2110 			      const struct attribute_group *grp)
2111 {
2112 	WARN_ON(devres_release(dev, devm_attr_group_remove,
2113 			       devm_attr_group_match,
2114 			       /* cast away const */ (void *)grp));
2115 }
2116 EXPORT_SYMBOL_GPL(devm_device_remove_group);
2117 
2118 /**
2119  * devm_device_add_groups - create a bunch of managed attribute groups
2120  * @dev:	The device to create the group for
2121  * @groups:	The attribute groups to create, NULL terminated
2122  *
2123  * This function creates a bunch of managed attribute groups.  If an error
2124  * occurs when creating a group, all previously created groups will be
2125  * removed, unwinding everything back to the original state when this
2126  * function was called.  It will explicitly warn and error if any of the
2127  * attribute files being created already exist.
2128  *
2129  * Returns 0 on success or error code from sysfs_create_group on failure.
2130  */
2131 int devm_device_add_groups(struct device *dev,
2132 			   const struct attribute_group **groups)
2133 {
2134 	union device_attr_group_devres *devres;
2135 	int error;
2136 
2137 	devres = devres_alloc(devm_attr_groups_remove,
2138 			      sizeof(*devres), GFP_KERNEL);
2139 	if (!devres)
2140 		return -ENOMEM;
2141 
2142 	error = sysfs_create_groups(&dev->kobj, groups);
2143 	if (error) {
2144 		devres_free(devres);
2145 		return error;
2146 	}
2147 
2148 	devres->groups = groups;
2149 	devres_add(dev, devres);
2150 	return 0;
2151 }
2152 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2153 
2154 /**
2155  * devm_device_remove_groups - remove a list of managed groups
2156  *
2157  * @dev:	The device for the groups to be removed from
2158  * @groups:	NULL terminated list of groups to be removed
2159  *
2160  * If groups is not NULL, remove the specified groups from the device.
2161  */
2162 void devm_device_remove_groups(struct device *dev,
2163 			       const struct attribute_group **groups)
2164 {
2165 	WARN_ON(devres_release(dev, devm_attr_groups_remove,
2166 			       devm_attr_group_match,
2167 			       /* cast away const */ (void *)groups));
2168 }
2169 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2170 
2171 static int device_add_attrs(struct device *dev)
2172 {
2173 	struct class *class = dev->class;
2174 	const struct device_type *type = dev->type;
2175 	int error;
2176 
2177 	if (class) {
2178 		error = device_add_groups(dev, class->dev_groups);
2179 		if (error)
2180 			return error;
2181 	}
2182 
2183 	if (type) {
2184 		error = device_add_groups(dev, type->groups);
2185 		if (error)
2186 			goto err_remove_class_groups;
2187 	}
2188 
2189 	error = device_add_groups(dev, dev->groups);
2190 	if (error)
2191 		goto err_remove_type_groups;
2192 
2193 	if (device_supports_offline(dev) && !dev->offline_disabled) {
2194 		error = device_create_file(dev, &dev_attr_online);
2195 		if (error)
2196 			goto err_remove_dev_groups;
2197 	}
2198 
2199 	if (fw_devlink_flags && !fw_devlink_is_permissive()) {
2200 		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2201 		if (error)
2202 			goto err_remove_dev_online;
2203 	}
2204 
2205 	return 0;
2206 
2207  err_remove_dev_online:
2208 	device_remove_file(dev, &dev_attr_online);
2209  err_remove_dev_groups:
2210 	device_remove_groups(dev, dev->groups);
2211  err_remove_type_groups:
2212 	if (type)
2213 		device_remove_groups(dev, type->groups);
2214  err_remove_class_groups:
2215 	if (class)
2216 		device_remove_groups(dev, class->dev_groups);
2217 
2218 	return error;
2219 }
2220 
2221 static void device_remove_attrs(struct device *dev)
2222 {
2223 	struct class *class = dev->class;
2224 	const struct device_type *type = dev->type;
2225 
2226 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2227 	device_remove_file(dev, &dev_attr_online);
2228 	device_remove_groups(dev, dev->groups);
2229 
2230 	if (type)
2231 		device_remove_groups(dev, type->groups);
2232 
2233 	if (class)
2234 		device_remove_groups(dev, class->dev_groups);
2235 }
2236 
2237 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2238 			char *buf)
2239 {
2240 	return print_dev_t(buf, dev->devt);
2241 }
2242 static DEVICE_ATTR_RO(dev);
2243 
2244 /* /sys/devices/ */
2245 struct kset *devices_kset;
2246 
2247 /**
2248  * devices_kset_move_before - Move device in the devices_kset's list.
2249  * @deva: Device to move.
2250  * @devb: Device @deva should come before.
2251  */
2252 static void devices_kset_move_before(struct device *deva, struct device *devb)
2253 {
2254 	if (!devices_kset)
2255 		return;
2256 	pr_debug("devices_kset: Moving %s before %s\n",
2257 		 dev_name(deva), dev_name(devb));
2258 	spin_lock(&devices_kset->list_lock);
2259 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2260 	spin_unlock(&devices_kset->list_lock);
2261 }
2262 
2263 /**
2264  * devices_kset_move_after - Move device in the devices_kset's list.
2265  * @deva: Device to move
2266  * @devb: Device @deva should come after.
2267  */
2268 static void devices_kset_move_after(struct device *deva, struct device *devb)
2269 {
2270 	if (!devices_kset)
2271 		return;
2272 	pr_debug("devices_kset: Moving %s after %s\n",
2273 		 dev_name(deva), dev_name(devb));
2274 	spin_lock(&devices_kset->list_lock);
2275 	list_move(&deva->kobj.entry, &devb->kobj.entry);
2276 	spin_unlock(&devices_kset->list_lock);
2277 }
2278 
2279 /**
2280  * devices_kset_move_last - move the device to the end of devices_kset's list.
2281  * @dev: device to move
2282  */
2283 void devices_kset_move_last(struct device *dev)
2284 {
2285 	if (!devices_kset)
2286 		return;
2287 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2288 	spin_lock(&devices_kset->list_lock);
2289 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
2290 	spin_unlock(&devices_kset->list_lock);
2291 }
2292 
2293 /**
2294  * device_create_file - create sysfs attribute file for device.
2295  * @dev: device.
2296  * @attr: device attribute descriptor.
2297  */
2298 int device_create_file(struct device *dev,
2299 		       const struct device_attribute *attr)
2300 {
2301 	int error = 0;
2302 
2303 	if (dev) {
2304 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2305 			"Attribute %s: write permission without 'store'\n",
2306 			attr->attr.name);
2307 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2308 			"Attribute %s: read permission without 'show'\n",
2309 			attr->attr.name);
2310 		error = sysfs_create_file(&dev->kobj, &attr->attr);
2311 	}
2312 
2313 	return error;
2314 }
2315 EXPORT_SYMBOL_GPL(device_create_file);
2316 
2317 /**
2318  * device_remove_file - remove sysfs attribute file.
2319  * @dev: device.
2320  * @attr: device attribute descriptor.
2321  */
2322 void device_remove_file(struct device *dev,
2323 			const struct device_attribute *attr)
2324 {
2325 	if (dev)
2326 		sysfs_remove_file(&dev->kobj, &attr->attr);
2327 }
2328 EXPORT_SYMBOL_GPL(device_remove_file);
2329 
2330 /**
2331  * device_remove_file_self - remove sysfs attribute file from its own method.
2332  * @dev: device.
2333  * @attr: device attribute descriptor.
2334  *
2335  * See kernfs_remove_self() for details.
2336  */
2337 bool device_remove_file_self(struct device *dev,
2338 			     const struct device_attribute *attr)
2339 {
2340 	if (dev)
2341 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2342 	else
2343 		return false;
2344 }
2345 EXPORT_SYMBOL_GPL(device_remove_file_self);
2346 
2347 /**
2348  * device_create_bin_file - create sysfs binary attribute file for device.
2349  * @dev: device.
2350  * @attr: device binary attribute descriptor.
2351  */
2352 int device_create_bin_file(struct device *dev,
2353 			   const struct bin_attribute *attr)
2354 {
2355 	int error = -EINVAL;
2356 	if (dev)
2357 		error = sysfs_create_bin_file(&dev->kobj, attr);
2358 	return error;
2359 }
2360 EXPORT_SYMBOL_GPL(device_create_bin_file);
2361 
2362 /**
2363  * device_remove_bin_file - remove sysfs binary attribute file
2364  * @dev: device.
2365  * @attr: device binary attribute descriptor.
2366  */
2367 void device_remove_bin_file(struct device *dev,
2368 			    const struct bin_attribute *attr)
2369 {
2370 	if (dev)
2371 		sysfs_remove_bin_file(&dev->kobj, attr);
2372 }
2373 EXPORT_SYMBOL_GPL(device_remove_bin_file);
2374 
2375 static void klist_children_get(struct klist_node *n)
2376 {
2377 	struct device_private *p = to_device_private_parent(n);
2378 	struct device *dev = p->device;
2379 
2380 	get_device(dev);
2381 }
2382 
2383 static void klist_children_put(struct klist_node *n)
2384 {
2385 	struct device_private *p = to_device_private_parent(n);
2386 	struct device *dev = p->device;
2387 
2388 	put_device(dev);
2389 }
2390 
2391 /**
2392  * device_initialize - init device structure.
2393  * @dev: device.
2394  *
2395  * This prepares the device for use by other layers by initializing
2396  * its fields.
2397  * It is the first half of device_register(), if called by
2398  * that function, though it can also be called separately, so one
2399  * may use @dev's fields. In particular, get_device()/put_device()
2400  * may be used for reference counting of @dev after calling this
2401  * function.
2402  *
2403  * All fields in @dev must be initialized by the caller to 0, except
2404  * for those explicitly set to some other value.  The simplest
2405  * approach is to use kzalloc() to allocate the structure containing
2406  * @dev.
2407  *
2408  * NOTE: Use put_device() to give up your reference instead of freeing
2409  * @dev directly once you have called this function.
2410  */
2411 void device_initialize(struct device *dev)
2412 {
2413 	dev->kobj.kset = devices_kset;
2414 	kobject_init(&dev->kobj, &device_ktype);
2415 	INIT_LIST_HEAD(&dev->dma_pools);
2416 	mutex_init(&dev->mutex);
2417 #ifdef CONFIG_PROVE_LOCKING
2418 	mutex_init(&dev->lockdep_mutex);
2419 #endif
2420 	lockdep_set_novalidate_class(&dev->mutex);
2421 	spin_lock_init(&dev->devres_lock);
2422 	INIT_LIST_HEAD(&dev->devres_head);
2423 	device_pm_init(dev);
2424 	set_dev_node(dev, -1);
2425 #ifdef CONFIG_GENERIC_MSI_IRQ
2426 	INIT_LIST_HEAD(&dev->msi_list);
2427 #endif
2428 	INIT_LIST_HEAD(&dev->links.consumers);
2429 	INIT_LIST_HEAD(&dev->links.suppliers);
2430 	INIT_LIST_HEAD(&dev->links.needs_suppliers);
2431 	INIT_LIST_HEAD(&dev->links.defer_hook);
2432 	dev->links.status = DL_DEV_NO_DRIVER;
2433 }
2434 EXPORT_SYMBOL_GPL(device_initialize);
2435 
2436 struct kobject *virtual_device_parent(struct device *dev)
2437 {
2438 	static struct kobject *virtual_dir = NULL;
2439 
2440 	if (!virtual_dir)
2441 		virtual_dir = kobject_create_and_add("virtual",
2442 						     &devices_kset->kobj);
2443 
2444 	return virtual_dir;
2445 }
2446 
2447 struct class_dir {
2448 	struct kobject kobj;
2449 	struct class *class;
2450 };
2451 
2452 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2453 
2454 static void class_dir_release(struct kobject *kobj)
2455 {
2456 	struct class_dir *dir = to_class_dir(kobj);
2457 	kfree(dir);
2458 }
2459 
2460 static const
2461 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2462 {
2463 	struct class_dir *dir = to_class_dir(kobj);
2464 	return dir->class->ns_type;
2465 }
2466 
2467 static struct kobj_type class_dir_ktype = {
2468 	.release	= class_dir_release,
2469 	.sysfs_ops	= &kobj_sysfs_ops,
2470 	.child_ns_type	= class_dir_child_ns_type
2471 };
2472 
2473 static struct kobject *
2474 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2475 {
2476 	struct class_dir *dir;
2477 	int retval;
2478 
2479 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2480 	if (!dir)
2481 		return ERR_PTR(-ENOMEM);
2482 
2483 	dir->class = class;
2484 	kobject_init(&dir->kobj, &class_dir_ktype);
2485 
2486 	dir->kobj.kset = &class->p->glue_dirs;
2487 
2488 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2489 	if (retval < 0) {
2490 		kobject_put(&dir->kobj);
2491 		return ERR_PTR(retval);
2492 	}
2493 	return &dir->kobj;
2494 }
2495 
2496 static DEFINE_MUTEX(gdp_mutex);
2497 
2498 static struct kobject *get_device_parent(struct device *dev,
2499 					 struct device *parent)
2500 {
2501 	if (dev->class) {
2502 		struct kobject *kobj = NULL;
2503 		struct kobject *parent_kobj;
2504 		struct kobject *k;
2505 
2506 #ifdef CONFIG_BLOCK
2507 		/* block disks show up in /sys/block */
2508 		if (sysfs_deprecated && dev->class == &block_class) {
2509 			if (parent && parent->class == &block_class)
2510 				return &parent->kobj;
2511 			return &block_class.p->subsys.kobj;
2512 		}
2513 #endif
2514 
2515 		/*
2516 		 * If we have no parent, we live in "virtual".
2517 		 * Class-devices with a non class-device as parent, live
2518 		 * in a "glue" directory to prevent namespace collisions.
2519 		 */
2520 		if (parent == NULL)
2521 			parent_kobj = virtual_device_parent(dev);
2522 		else if (parent->class && !dev->class->ns_type)
2523 			return &parent->kobj;
2524 		else
2525 			parent_kobj = &parent->kobj;
2526 
2527 		mutex_lock(&gdp_mutex);
2528 
2529 		/* find our class-directory at the parent and reference it */
2530 		spin_lock(&dev->class->p->glue_dirs.list_lock);
2531 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2532 			if (k->parent == parent_kobj) {
2533 				kobj = kobject_get(k);
2534 				break;
2535 			}
2536 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
2537 		if (kobj) {
2538 			mutex_unlock(&gdp_mutex);
2539 			return kobj;
2540 		}
2541 
2542 		/* or create a new class-directory at the parent device */
2543 		k = class_dir_create_and_add(dev->class, parent_kobj);
2544 		/* do not emit an uevent for this simple "glue" directory */
2545 		mutex_unlock(&gdp_mutex);
2546 		return k;
2547 	}
2548 
2549 	/* subsystems can specify a default root directory for their devices */
2550 	if (!parent && dev->bus && dev->bus->dev_root)
2551 		return &dev->bus->dev_root->kobj;
2552 
2553 	if (parent)
2554 		return &parent->kobj;
2555 	return NULL;
2556 }
2557 
2558 static inline bool live_in_glue_dir(struct kobject *kobj,
2559 				    struct device *dev)
2560 {
2561 	if (!kobj || !dev->class ||
2562 	    kobj->kset != &dev->class->p->glue_dirs)
2563 		return false;
2564 	return true;
2565 }
2566 
2567 static inline struct kobject *get_glue_dir(struct device *dev)
2568 {
2569 	return dev->kobj.parent;
2570 }
2571 
2572 /*
2573  * make sure cleaning up dir as the last step, we need to make
2574  * sure .release handler of kobject is run with holding the
2575  * global lock
2576  */
2577 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
2578 {
2579 	unsigned int ref;
2580 
2581 	/* see if we live in a "glue" directory */
2582 	if (!live_in_glue_dir(glue_dir, dev))
2583 		return;
2584 
2585 	mutex_lock(&gdp_mutex);
2586 	/**
2587 	 * There is a race condition between removing glue directory
2588 	 * and adding a new device under the glue directory.
2589 	 *
2590 	 * CPU1:                                         CPU2:
2591 	 *
2592 	 * device_add()
2593 	 *   get_device_parent()
2594 	 *     class_dir_create_and_add()
2595 	 *       kobject_add_internal()
2596 	 *         create_dir()    // create glue_dir
2597 	 *
2598 	 *                                               device_add()
2599 	 *                                                 get_device_parent()
2600 	 *                                                   kobject_get() // get glue_dir
2601 	 *
2602 	 * device_del()
2603 	 *   cleanup_glue_dir()
2604 	 *     kobject_del(glue_dir)
2605 	 *
2606 	 *                                               kobject_add()
2607 	 *                                                 kobject_add_internal()
2608 	 *                                                   create_dir() // in glue_dir
2609 	 *                                                     sysfs_create_dir_ns()
2610 	 *                                                       kernfs_create_dir_ns(sd)
2611 	 *
2612 	 *       sysfs_remove_dir() // glue_dir->sd=NULL
2613 	 *       sysfs_put()        // free glue_dir->sd
2614 	 *
2615 	 *                                                         // sd is freed
2616 	 *                                                         kernfs_new_node(sd)
2617 	 *                                                           kernfs_get(glue_dir)
2618 	 *                                                           kernfs_add_one()
2619 	 *                                                           kernfs_put()
2620 	 *
2621 	 * Before CPU1 remove last child device under glue dir, if CPU2 add
2622 	 * a new device under glue dir, the glue_dir kobject reference count
2623 	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
2624 	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
2625 	 * and sysfs_put(). This result in glue_dir->sd is freed.
2626 	 *
2627 	 * Then the CPU2 will see a stale "empty" but still potentially used
2628 	 * glue dir around in kernfs_new_node().
2629 	 *
2630 	 * In order to avoid this happening, we also should make sure that
2631 	 * kernfs_node for glue_dir is released in CPU1 only when refcount
2632 	 * for glue_dir kobj is 1.
2633 	 */
2634 	ref = kref_read(&glue_dir->kref);
2635 	if (!kobject_has_children(glue_dir) && !--ref)
2636 		kobject_del(glue_dir);
2637 	kobject_put(glue_dir);
2638 	mutex_unlock(&gdp_mutex);
2639 }
2640 
2641 static int device_add_class_symlinks(struct device *dev)
2642 {
2643 	struct device_node *of_node = dev_of_node(dev);
2644 	int error;
2645 
2646 	if (of_node) {
2647 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
2648 		if (error)
2649 			dev_warn(dev, "Error %d creating of_node link\n",error);
2650 		/* An error here doesn't warrant bringing down the device */
2651 	}
2652 
2653 	if (!dev->class)
2654 		return 0;
2655 
2656 	error = sysfs_create_link(&dev->kobj,
2657 				  &dev->class->p->subsys.kobj,
2658 				  "subsystem");
2659 	if (error)
2660 		goto out_devnode;
2661 
2662 	if (dev->parent && device_is_not_partition(dev)) {
2663 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
2664 					  "device");
2665 		if (error)
2666 			goto out_subsys;
2667 	}
2668 
2669 #ifdef CONFIG_BLOCK
2670 	/* /sys/block has directories and does not need symlinks */
2671 	if (sysfs_deprecated && dev->class == &block_class)
2672 		return 0;
2673 #endif
2674 
2675 	/* link in the class directory pointing to the device */
2676 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
2677 				  &dev->kobj, dev_name(dev));
2678 	if (error)
2679 		goto out_device;
2680 
2681 	return 0;
2682 
2683 out_device:
2684 	sysfs_remove_link(&dev->kobj, "device");
2685 
2686 out_subsys:
2687 	sysfs_remove_link(&dev->kobj, "subsystem");
2688 out_devnode:
2689 	sysfs_remove_link(&dev->kobj, "of_node");
2690 	return error;
2691 }
2692 
2693 static void device_remove_class_symlinks(struct device *dev)
2694 {
2695 	if (dev_of_node(dev))
2696 		sysfs_remove_link(&dev->kobj, "of_node");
2697 
2698 	if (!dev->class)
2699 		return;
2700 
2701 	if (dev->parent && device_is_not_partition(dev))
2702 		sysfs_remove_link(&dev->kobj, "device");
2703 	sysfs_remove_link(&dev->kobj, "subsystem");
2704 #ifdef CONFIG_BLOCK
2705 	if (sysfs_deprecated && dev->class == &block_class)
2706 		return;
2707 #endif
2708 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
2709 }
2710 
2711 /**
2712  * dev_set_name - set a device name
2713  * @dev: device
2714  * @fmt: format string for the device's name
2715  */
2716 int dev_set_name(struct device *dev, const char *fmt, ...)
2717 {
2718 	va_list vargs;
2719 	int err;
2720 
2721 	va_start(vargs, fmt);
2722 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
2723 	va_end(vargs);
2724 	return err;
2725 }
2726 EXPORT_SYMBOL_GPL(dev_set_name);
2727 
2728 /**
2729  * device_to_dev_kobj - select a /sys/dev/ directory for the device
2730  * @dev: device
2731  *
2732  * By default we select char/ for new entries.  Setting class->dev_obj
2733  * to NULL prevents an entry from being created.  class->dev_kobj must
2734  * be set (or cleared) before any devices are registered to the class
2735  * otherwise device_create_sys_dev_entry() and
2736  * device_remove_sys_dev_entry() will disagree about the presence of
2737  * the link.
2738  */
2739 static struct kobject *device_to_dev_kobj(struct device *dev)
2740 {
2741 	struct kobject *kobj;
2742 
2743 	if (dev->class)
2744 		kobj = dev->class->dev_kobj;
2745 	else
2746 		kobj = sysfs_dev_char_kobj;
2747 
2748 	return kobj;
2749 }
2750 
2751 static int device_create_sys_dev_entry(struct device *dev)
2752 {
2753 	struct kobject *kobj = device_to_dev_kobj(dev);
2754 	int error = 0;
2755 	char devt_str[15];
2756 
2757 	if (kobj) {
2758 		format_dev_t(devt_str, dev->devt);
2759 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
2760 	}
2761 
2762 	return error;
2763 }
2764 
2765 static void device_remove_sys_dev_entry(struct device *dev)
2766 {
2767 	struct kobject *kobj = device_to_dev_kobj(dev);
2768 	char devt_str[15];
2769 
2770 	if (kobj) {
2771 		format_dev_t(devt_str, dev->devt);
2772 		sysfs_remove_link(kobj, devt_str);
2773 	}
2774 }
2775 
2776 static int device_private_init(struct device *dev)
2777 {
2778 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
2779 	if (!dev->p)
2780 		return -ENOMEM;
2781 	dev->p->device = dev;
2782 	klist_init(&dev->p->klist_children, klist_children_get,
2783 		   klist_children_put);
2784 	INIT_LIST_HEAD(&dev->p->deferred_probe);
2785 	return 0;
2786 }
2787 
2788 /**
2789  * device_add - add device to device hierarchy.
2790  * @dev: device.
2791  *
2792  * This is part 2 of device_register(), though may be called
2793  * separately _iff_ device_initialize() has been called separately.
2794  *
2795  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
2796  * to the global and sibling lists for the device, then
2797  * adds it to the other relevant subsystems of the driver model.
2798  *
2799  * Do not call this routine or device_register() more than once for
2800  * any device structure.  The driver model core is not designed to work
2801  * with devices that get unregistered and then spring back to life.
2802  * (Among other things, it's very hard to guarantee that all references
2803  * to the previous incarnation of @dev have been dropped.)  Allocate
2804  * and register a fresh new struct device instead.
2805  *
2806  * NOTE: _Never_ directly free @dev after calling this function, even
2807  * if it returned an error! Always use put_device() to give up your
2808  * reference instead.
2809  *
2810  * Rule of thumb is: if device_add() succeeds, you should call
2811  * device_del() when you want to get rid of it. If device_add() has
2812  * *not* succeeded, use *only* put_device() to drop the reference
2813  * count.
2814  */
2815 int device_add(struct device *dev)
2816 {
2817 	struct device *parent;
2818 	struct kobject *kobj;
2819 	struct class_interface *class_intf;
2820 	int error = -EINVAL;
2821 	struct kobject *glue_dir = NULL;
2822 
2823 	dev = get_device(dev);
2824 	if (!dev)
2825 		goto done;
2826 
2827 	if (!dev->p) {
2828 		error = device_private_init(dev);
2829 		if (error)
2830 			goto done;
2831 	}
2832 
2833 	/*
2834 	 * for statically allocated devices, which should all be converted
2835 	 * some day, we need to initialize the name. We prevent reading back
2836 	 * the name, and force the use of dev_name()
2837 	 */
2838 	if (dev->init_name) {
2839 		dev_set_name(dev, "%s", dev->init_name);
2840 		dev->init_name = NULL;
2841 	}
2842 
2843 	/* subsystems can specify simple device enumeration */
2844 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
2845 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
2846 
2847 	if (!dev_name(dev)) {
2848 		error = -EINVAL;
2849 		goto name_error;
2850 	}
2851 
2852 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2853 
2854 	parent = get_device(dev->parent);
2855 	kobj = get_device_parent(dev, parent);
2856 	if (IS_ERR(kobj)) {
2857 		error = PTR_ERR(kobj);
2858 		goto parent_error;
2859 	}
2860 	if (kobj)
2861 		dev->kobj.parent = kobj;
2862 
2863 	/* use parent numa_node */
2864 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
2865 		set_dev_node(dev, dev_to_node(parent));
2866 
2867 	/* first, register with generic layer. */
2868 	/* we require the name to be set before, and pass NULL */
2869 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
2870 	if (error) {
2871 		glue_dir = get_glue_dir(dev);
2872 		goto Error;
2873 	}
2874 
2875 	/* notify platform of device entry */
2876 	error = device_platform_notify(dev, KOBJ_ADD);
2877 	if (error)
2878 		goto platform_error;
2879 
2880 	error = device_create_file(dev, &dev_attr_uevent);
2881 	if (error)
2882 		goto attrError;
2883 
2884 	error = device_add_class_symlinks(dev);
2885 	if (error)
2886 		goto SymlinkError;
2887 	error = device_add_attrs(dev);
2888 	if (error)
2889 		goto AttrsError;
2890 	error = bus_add_device(dev);
2891 	if (error)
2892 		goto BusError;
2893 	error = dpm_sysfs_add(dev);
2894 	if (error)
2895 		goto DPMError;
2896 	device_pm_add(dev);
2897 
2898 	if (MAJOR(dev->devt)) {
2899 		error = device_create_file(dev, &dev_attr_dev);
2900 		if (error)
2901 			goto DevAttrError;
2902 
2903 		error = device_create_sys_dev_entry(dev);
2904 		if (error)
2905 			goto SysEntryError;
2906 
2907 		devtmpfs_create_node(dev);
2908 	}
2909 
2910 	/* Notify clients of device addition.  This call must come
2911 	 * after dpm_sysfs_add() and before kobject_uevent().
2912 	 */
2913 	if (dev->bus)
2914 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2915 					     BUS_NOTIFY_ADD_DEVICE, dev);
2916 
2917 	kobject_uevent(&dev->kobj, KOBJ_ADD);
2918 
2919 	/*
2920 	 * Check if any of the other devices (consumers) have been waiting for
2921 	 * this device (supplier) to be added so that they can create a device
2922 	 * link to it.
2923 	 *
2924 	 * This needs to happen after device_pm_add() because device_link_add()
2925 	 * requires the supplier be registered before it's called.
2926 	 *
2927 	 * But this also needs to happen before bus_probe_device() to make sure
2928 	 * waiting consumers can link to it before the driver is bound to the
2929 	 * device and the driver sync_state callback is called for this device.
2930 	 */
2931 	if (dev->fwnode && !dev->fwnode->dev) {
2932 		dev->fwnode->dev = dev;
2933 		fw_devlink_link_device(dev);
2934 	}
2935 
2936 	bus_probe_device(dev);
2937 	if (parent)
2938 		klist_add_tail(&dev->p->knode_parent,
2939 			       &parent->p->klist_children);
2940 
2941 	if (dev->class) {
2942 		mutex_lock(&dev->class->p->mutex);
2943 		/* tie the class to the device */
2944 		klist_add_tail(&dev->p->knode_class,
2945 			       &dev->class->p->klist_devices);
2946 
2947 		/* notify any interfaces that the device is here */
2948 		list_for_each_entry(class_intf,
2949 				    &dev->class->p->interfaces, node)
2950 			if (class_intf->add_dev)
2951 				class_intf->add_dev(dev, class_intf);
2952 		mutex_unlock(&dev->class->p->mutex);
2953 	}
2954 done:
2955 	put_device(dev);
2956 	return error;
2957  SysEntryError:
2958 	if (MAJOR(dev->devt))
2959 		device_remove_file(dev, &dev_attr_dev);
2960  DevAttrError:
2961 	device_pm_remove(dev);
2962 	dpm_sysfs_remove(dev);
2963  DPMError:
2964 	bus_remove_device(dev);
2965  BusError:
2966 	device_remove_attrs(dev);
2967  AttrsError:
2968 	device_remove_class_symlinks(dev);
2969  SymlinkError:
2970 	device_remove_file(dev, &dev_attr_uevent);
2971  attrError:
2972 	device_platform_notify(dev, KOBJ_REMOVE);
2973 platform_error:
2974 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2975 	glue_dir = get_glue_dir(dev);
2976 	kobject_del(&dev->kobj);
2977  Error:
2978 	cleanup_glue_dir(dev, glue_dir);
2979 parent_error:
2980 	put_device(parent);
2981 name_error:
2982 	kfree(dev->p);
2983 	dev->p = NULL;
2984 	goto done;
2985 }
2986 EXPORT_SYMBOL_GPL(device_add);
2987 
2988 /**
2989  * device_register - register a device with the system.
2990  * @dev: pointer to the device structure
2991  *
2992  * This happens in two clean steps - initialize the device
2993  * and add it to the system. The two steps can be called
2994  * separately, but this is the easiest and most common.
2995  * I.e. you should only call the two helpers separately if
2996  * have a clearly defined need to use and refcount the device
2997  * before it is added to the hierarchy.
2998  *
2999  * For more information, see the kerneldoc for device_initialize()
3000  * and device_add().
3001  *
3002  * NOTE: _Never_ directly free @dev after calling this function, even
3003  * if it returned an error! Always use put_device() to give up the
3004  * reference initialized in this function instead.
3005  */
3006 int device_register(struct device *dev)
3007 {
3008 	device_initialize(dev);
3009 	return device_add(dev);
3010 }
3011 EXPORT_SYMBOL_GPL(device_register);
3012 
3013 /**
3014  * get_device - increment reference count for device.
3015  * @dev: device.
3016  *
3017  * This simply forwards the call to kobject_get(), though
3018  * we do take care to provide for the case that we get a NULL
3019  * pointer passed in.
3020  */
3021 struct device *get_device(struct device *dev)
3022 {
3023 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3024 }
3025 EXPORT_SYMBOL_GPL(get_device);
3026 
3027 /**
3028  * put_device - decrement reference count.
3029  * @dev: device in question.
3030  */
3031 void put_device(struct device *dev)
3032 {
3033 	/* might_sleep(); */
3034 	if (dev)
3035 		kobject_put(&dev->kobj);
3036 }
3037 EXPORT_SYMBOL_GPL(put_device);
3038 
3039 bool kill_device(struct device *dev)
3040 {
3041 	/*
3042 	 * Require the device lock and set the "dead" flag to guarantee that
3043 	 * the update behavior is consistent with the other bitfields near
3044 	 * it and that we cannot have an asynchronous probe routine trying
3045 	 * to run while we are tearing out the bus/class/sysfs from
3046 	 * underneath the device.
3047 	 */
3048 	lockdep_assert_held(&dev->mutex);
3049 
3050 	if (dev->p->dead)
3051 		return false;
3052 	dev->p->dead = true;
3053 	return true;
3054 }
3055 EXPORT_SYMBOL_GPL(kill_device);
3056 
3057 /**
3058  * device_del - delete device from system.
3059  * @dev: device.
3060  *
3061  * This is the first part of the device unregistration
3062  * sequence. This removes the device from the lists we control
3063  * from here, has it removed from the other driver model
3064  * subsystems it was added to in device_add(), and removes it
3065  * from the kobject hierarchy.
3066  *
3067  * NOTE: this should be called manually _iff_ device_add() was
3068  * also called manually.
3069  */
3070 void device_del(struct device *dev)
3071 {
3072 	struct device *parent = dev->parent;
3073 	struct kobject *glue_dir = NULL;
3074 	struct class_interface *class_intf;
3075 	unsigned int noio_flag;
3076 
3077 	device_lock(dev);
3078 	kill_device(dev);
3079 	device_unlock(dev);
3080 
3081 	if (dev->fwnode && dev->fwnode->dev == dev)
3082 		dev->fwnode->dev = NULL;
3083 
3084 	/* Notify clients of device removal.  This call must come
3085 	 * before dpm_sysfs_remove().
3086 	 */
3087 	noio_flag = memalloc_noio_save();
3088 	if (dev->bus)
3089 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3090 					     BUS_NOTIFY_DEL_DEVICE, dev);
3091 
3092 	dpm_sysfs_remove(dev);
3093 	if (parent)
3094 		klist_del(&dev->p->knode_parent);
3095 	if (MAJOR(dev->devt)) {
3096 		devtmpfs_delete_node(dev);
3097 		device_remove_sys_dev_entry(dev);
3098 		device_remove_file(dev, &dev_attr_dev);
3099 	}
3100 	if (dev->class) {
3101 		device_remove_class_symlinks(dev);
3102 
3103 		mutex_lock(&dev->class->p->mutex);
3104 		/* notify any interfaces that the device is now gone */
3105 		list_for_each_entry(class_intf,
3106 				    &dev->class->p->interfaces, node)
3107 			if (class_intf->remove_dev)
3108 				class_intf->remove_dev(dev, class_intf);
3109 		/* remove the device from the class list */
3110 		klist_del(&dev->p->knode_class);
3111 		mutex_unlock(&dev->class->p->mutex);
3112 	}
3113 	device_remove_file(dev, &dev_attr_uevent);
3114 	device_remove_attrs(dev);
3115 	bus_remove_device(dev);
3116 	device_pm_remove(dev);
3117 	driver_deferred_probe_del(dev);
3118 	device_platform_notify(dev, KOBJ_REMOVE);
3119 	device_remove_properties(dev);
3120 	device_links_purge(dev);
3121 
3122 	if (dev->bus)
3123 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3124 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
3125 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3126 	glue_dir = get_glue_dir(dev);
3127 	kobject_del(&dev->kobj);
3128 	cleanup_glue_dir(dev, glue_dir);
3129 	memalloc_noio_restore(noio_flag);
3130 	put_device(parent);
3131 }
3132 EXPORT_SYMBOL_GPL(device_del);
3133 
3134 /**
3135  * device_unregister - unregister device from system.
3136  * @dev: device going away.
3137  *
3138  * We do this in two parts, like we do device_register(). First,
3139  * we remove it from all the subsystems with device_del(), then
3140  * we decrement the reference count via put_device(). If that
3141  * is the final reference count, the device will be cleaned up
3142  * via device_release() above. Otherwise, the structure will
3143  * stick around until the final reference to the device is dropped.
3144  */
3145 void device_unregister(struct device *dev)
3146 {
3147 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3148 	device_del(dev);
3149 	put_device(dev);
3150 }
3151 EXPORT_SYMBOL_GPL(device_unregister);
3152 
3153 static struct device *prev_device(struct klist_iter *i)
3154 {
3155 	struct klist_node *n = klist_prev(i);
3156 	struct device *dev = NULL;
3157 	struct device_private *p;
3158 
3159 	if (n) {
3160 		p = to_device_private_parent(n);
3161 		dev = p->device;
3162 	}
3163 	return dev;
3164 }
3165 
3166 static struct device *next_device(struct klist_iter *i)
3167 {
3168 	struct klist_node *n = klist_next(i);
3169 	struct device *dev = NULL;
3170 	struct device_private *p;
3171 
3172 	if (n) {
3173 		p = to_device_private_parent(n);
3174 		dev = p->device;
3175 	}
3176 	return dev;
3177 }
3178 
3179 /**
3180  * device_get_devnode - path of device node file
3181  * @dev: device
3182  * @mode: returned file access mode
3183  * @uid: returned file owner
3184  * @gid: returned file group
3185  * @tmp: possibly allocated string
3186  *
3187  * Return the relative path of a possible device node.
3188  * Non-default names may need to allocate a memory to compose
3189  * a name. This memory is returned in tmp and needs to be
3190  * freed by the caller.
3191  */
3192 const char *device_get_devnode(struct device *dev,
3193 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3194 			       const char **tmp)
3195 {
3196 	char *s;
3197 
3198 	*tmp = NULL;
3199 
3200 	/* the device type may provide a specific name */
3201 	if (dev->type && dev->type->devnode)
3202 		*tmp = dev->type->devnode(dev, mode, uid, gid);
3203 	if (*tmp)
3204 		return *tmp;
3205 
3206 	/* the class may provide a specific name */
3207 	if (dev->class && dev->class->devnode)
3208 		*tmp = dev->class->devnode(dev, mode);
3209 	if (*tmp)
3210 		return *tmp;
3211 
3212 	/* return name without allocation, tmp == NULL */
3213 	if (strchr(dev_name(dev), '!') == NULL)
3214 		return dev_name(dev);
3215 
3216 	/* replace '!' in the name with '/' */
3217 	s = kstrdup(dev_name(dev), GFP_KERNEL);
3218 	if (!s)
3219 		return NULL;
3220 	strreplace(s, '!', '/');
3221 	return *tmp = s;
3222 }
3223 
3224 /**
3225  * device_for_each_child - device child iterator.
3226  * @parent: parent struct device.
3227  * @fn: function to be called for each device.
3228  * @data: data for the callback.
3229  *
3230  * Iterate over @parent's child devices, and call @fn for each,
3231  * passing it @data.
3232  *
3233  * We check the return of @fn each time. If it returns anything
3234  * other than 0, we break out and return that value.
3235  */
3236 int device_for_each_child(struct device *parent, void *data,
3237 			  int (*fn)(struct device *dev, void *data))
3238 {
3239 	struct klist_iter i;
3240 	struct device *child;
3241 	int error = 0;
3242 
3243 	if (!parent->p)
3244 		return 0;
3245 
3246 	klist_iter_init(&parent->p->klist_children, &i);
3247 	while (!error && (child = next_device(&i)))
3248 		error = fn(child, data);
3249 	klist_iter_exit(&i);
3250 	return error;
3251 }
3252 EXPORT_SYMBOL_GPL(device_for_each_child);
3253 
3254 /**
3255  * device_for_each_child_reverse - device child iterator in reversed order.
3256  * @parent: parent struct device.
3257  * @fn: function to be called for each device.
3258  * @data: data for the callback.
3259  *
3260  * Iterate over @parent's child devices, and call @fn for each,
3261  * passing it @data.
3262  *
3263  * We check the return of @fn each time. If it returns anything
3264  * other than 0, we break out and return that value.
3265  */
3266 int device_for_each_child_reverse(struct device *parent, void *data,
3267 				  int (*fn)(struct device *dev, void *data))
3268 {
3269 	struct klist_iter i;
3270 	struct device *child;
3271 	int error = 0;
3272 
3273 	if (!parent->p)
3274 		return 0;
3275 
3276 	klist_iter_init(&parent->p->klist_children, &i);
3277 	while ((child = prev_device(&i)) && !error)
3278 		error = fn(child, data);
3279 	klist_iter_exit(&i);
3280 	return error;
3281 }
3282 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3283 
3284 /**
3285  * device_find_child - device iterator for locating a particular device.
3286  * @parent: parent struct device
3287  * @match: Callback function to check device
3288  * @data: Data to pass to match function
3289  *
3290  * This is similar to the device_for_each_child() function above, but it
3291  * returns a reference to a device that is 'found' for later use, as
3292  * determined by the @match callback.
3293  *
3294  * The callback should return 0 if the device doesn't match and non-zero
3295  * if it does.  If the callback returns non-zero and a reference to the
3296  * current device can be obtained, this function will return to the caller
3297  * and not iterate over any more devices.
3298  *
3299  * NOTE: you will need to drop the reference with put_device() after use.
3300  */
3301 struct device *device_find_child(struct device *parent, void *data,
3302 				 int (*match)(struct device *dev, void *data))
3303 {
3304 	struct klist_iter i;
3305 	struct device *child;
3306 
3307 	if (!parent)
3308 		return NULL;
3309 
3310 	klist_iter_init(&parent->p->klist_children, &i);
3311 	while ((child = next_device(&i)))
3312 		if (match(child, data) && get_device(child))
3313 			break;
3314 	klist_iter_exit(&i);
3315 	return child;
3316 }
3317 EXPORT_SYMBOL_GPL(device_find_child);
3318 
3319 /**
3320  * device_find_child_by_name - device iterator for locating a child device.
3321  * @parent: parent struct device
3322  * @name: name of the child device
3323  *
3324  * This is similar to the device_find_child() function above, but it
3325  * returns a reference to a device that has the name @name.
3326  *
3327  * NOTE: you will need to drop the reference with put_device() after use.
3328  */
3329 struct device *device_find_child_by_name(struct device *parent,
3330 					 const char *name)
3331 {
3332 	struct klist_iter i;
3333 	struct device *child;
3334 
3335 	if (!parent)
3336 		return NULL;
3337 
3338 	klist_iter_init(&parent->p->klist_children, &i);
3339 	while ((child = next_device(&i)))
3340 		if (sysfs_streq(dev_name(child), name) && get_device(child))
3341 			break;
3342 	klist_iter_exit(&i);
3343 	return child;
3344 }
3345 EXPORT_SYMBOL_GPL(device_find_child_by_name);
3346 
3347 int __init devices_init(void)
3348 {
3349 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3350 	if (!devices_kset)
3351 		return -ENOMEM;
3352 	dev_kobj = kobject_create_and_add("dev", NULL);
3353 	if (!dev_kobj)
3354 		goto dev_kobj_err;
3355 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3356 	if (!sysfs_dev_block_kobj)
3357 		goto block_kobj_err;
3358 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3359 	if (!sysfs_dev_char_kobj)
3360 		goto char_kobj_err;
3361 
3362 	return 0;
3363 
3364  char_kobj_err:
3365 	kobject_put(sysfs_dev_block_kobj);
3366  block_kobj_err:
3367 	kobject_put(dev_kobj);
3368  dev_kobj_err:
3369 	kset_unregister(devices_kset);
3370 	return -ENOMEM;
3371 }
3372 
3373 static int device_check_offline(struct device *dev, void *not_used)
3374 {
3375 	int ret;
3376 
3377 	ret = device_for_each_child(dev, NULL, device_check_offline);
3378 	if (ret)
3379 		return ret;
3380 
3381 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3382 }
3383 
3384 /**
3385  * device_offline - Prepare the device for hot-removal.
3386  * @dev: Device to be put offline.
3387  *
3388  * Execute the device bus type's .offline() callback, if present, to prepare
3389  * the device for a subsequent hot-removal.  If that succeeds, the device must
3390  * not be used until either it is removed or its bus type's .online() callback
3391  * is executed.
3392  *
3393  * Call under device_hotplug_lock.
3394  */
3395 int device_offline(struct device *dev)
3396 {
3397 	int ret;
3398 
3399 	if (dev->offline_disabled)
3400 		return -EPERM;
3401 
3402 	ret = device_for_each_child(dev, NULL, device_check_offline);
3403 	if (ret)
3404 		return ret;
3405 
3406 	device_lock(dev);
3407 	if (device_supports_offline(dev)) {
3408 		if (dev->offline) {
3409 			ret = 1;
3410 		} else {
3411 			ret = dev->bus->offline(dev);
3412 			if (!ret) {
3413 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3414 				dev->offline = true;
3415 			}
3416 		}
3417 	}
3418 	device_unlock(dev);
3419 
3420 	return ret;
3421 }
3422 
3423 /**
3424  * device_online - Put the device back online after successful device_offline().
3425  * @dev: Device to be put back online.
3426  *
3427  * If device_offline() has been successfully executed for @dev, but the device
3428  * has not been removed subsequently, execute its bus type's .online() callback
3429  * to indicate that the device can be used again.
3430  *
3431  * Call under device_hotplug_lock.
3432  */
3433 int device_online(struct device *dev)
3434 {
3435 	int ret = 0;
3436 
3437 	device_lock(dev);
3438 	if (device_supports_offline(dev)) {
3439 		if (dev->offline) {
3440 			ret = dev->bus->online(dev);
3441 			if (!ret) {
3442 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3443 				dev->offline = false;
3444 			}
3445 		} else {
3446 			ret = 1;
3447 		}
3448 	}
3449 	device_unlock(dev);
3450 
3451 	return ret;
3452 }
3453 
3454 struct root_device {
3455 	struct device dev;
3456 	struct module *owner;
3457 };
3458 
3459 static inline struct root_device *to_root_device(struct device *d)
3460 {
3461 	return container_of(d, struct root_device, dev);
3462 }
3463 
3464 static void root_device_release(struct device *dev)
3465 {
3466 	kfree(to_root_device(dev));
3467 }
3468 
3469 /**
3470  * __root_device_register - allocate and register a root device
3471  * @name: root device name
3472  * @owner: owner module of the root device, usually THIS_MODULE
3473  *
3474  * This function allocates a root device and registers it
3475  * using device_register(). In order to free the returned
3476  * device, use root_device_unregister().
3477  *
3478  * Root devices are dummy devices which allow other devices
3479  * to be grouped under /sys/devices. Use this function to
3480  * allocate a root device and then use it as the parent of
3481  * any device which should appear under /sys/devices/{name}
3482  *
3483  * The /sys/devices/{name} directory will also contain a
3484  * 'module' symlink which points to the @owner directory
3485  * in sysfs.
3486  *
3487  * Returns &struct device pointer on success, or ERR_PTR() on error.
3488  *
3489  * Note: You probably want to use root_device_register().
3490  */
3491 struct device *__root_device_register(const char *name, struct module *owner)
3492 {
3493 	struct root_device *root;
3494 	int err = -ENOMEM;
3495 
3496 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3497 	if (!root)
3498 		return ERR_PTR(err);
3499 
3500 	err = dev_set_name(&root->dev, "%s", name);
3501 	if (err) {
3502 		kfree(root);
3503 		return ERR_PTR(err);
3504 	}
3505 
3506 	root->dev.release = root_device_release;
3507 
3508 	err = device_register(&root->dev);
3509 	if (err) {
3510 		put_device(&root->dev);
3511 		return ERR_PTR(err);
3512 	}
3513 
3514 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
3515 	if (owner) {
3516 		struct module_kobject *mk = &owner->mkobj;
3517 
3518 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3519 		if (err) {
3520 			device_unregister(&root->dev);
3521 			return ERR_PTR(err);
3522 		}
3523 		root->owner = owner;
3524 	}
3525 #endif
3526 
3527 	return &root->dev;
3528 }
3529 EXPORT_SYMBOL_GPL(__root_device_register);
3530 
3531 /**
3532  * root_device_unregister - unregister and free a root device
3533  * @dev: device going away
3534  *
3535  * This function unregisters and cleans up a device that was created by
3536  * root_device_register().
3537  */
3538 void root_device_unregister(struct device *dev)
3539 {
3540 	struct root_device *root = to_root_device(dev);
3541 
3542 	if (root->owner)
3543 		sysfs_remove_link(&root->dev.kobj, "module");
3544 
3545 	device_unregister(dev);
3546 }
3547 EXPORT_SYMBOL_GPL(root_device_unregister);
3548 
3549 
3550 static void device_create_release(struct device *dev)
3551 {
3552 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3553 	kfree(dev);
3554 }
3555 
3556 static __printf(6, 0) struct device *
3557 device_create_groups_vargs(struct class *class, struct device *parent,
3558 			   dev_t devt, void *drvdata,
3559 			   const struct attribute_group **groups,
3560 			   const char *fmt, va_list args)
3561 {
3562 	struct device *dev = NULL;
3563 	int retval = -ENODEV;
3564 
3565 	if (class == NULL || IS_ERR(class))
3566 		goto error;
3567 
3568 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3569 	if (!dev) {
3570 		retval = -ENOMEM;
3571 		goto error;
3572 	}
3573 
3574 	device_initialize(dev);
3575 	dev->devt = devt;
3576 	dev->class = class;
3577 	dev->parent = parent;
3578 	dev->groups = groups;
3579 	dev->release = device_create_release;
3580 	dev_set_drvdata(dev, drvdata);
3581 
3582 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
3583 	if (retval)
3584 		goto error;
3585 
3586 	retval = device_add(dev);
3587 	if (retval)
3588 		goto error;
3589 
3590 	return dev;
3591 
3592 error:
3593 	put_device(dev);
3594 	return ERR_PTR(retval);
3595 }
3596 
3597 /**
3598  * device_create - creates a device and registers it with sysfs
3599  * @class: pointer to the struct class that this device should be registered to
3600  * @parent: pointer to the parent struct device of this new device, if any
3601  * @devt: the dev_t for the char device to be added
3602  * @drvdata: the data to be added to the device for callbacks
3603  * @fmt: string for the device's name
3604  *
3605  * This function can be used by char device classes.  A struct device
3606  * will be created in sysfs, registered to the specified class.
3607  *
3608  * A "dev" file will be created, showing the dev_t for the device, if
3609  * the dev_t is not 0,0.
3610  * If a pointer to a parent struct device is passed in, the newly created
3611  * struct device will be a child of that device in sysfs.
3612  * The pointer to the struct device will be returned from the call.
3613  * Any further sysfs files that might be required can be created using this
3614  * pointer.
3615  *
3616  * Returns &struct device pointer on success, or ERR_PTR() on error.
3617  *
3618  * Note: the struct class passed to this function must have previously
3619  * been created with a call to class_create().
3620  */
3621 struct device *device_create(struct class *class, struct device *parent,
3622 			     dev_t devt, void *drvdata, const char *fmt, ...)
3623 {
3624 	va_list vargs;
3625 	struct device *dev;
3626 
3627 	va_start(vargs, fmt);
3628 	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
3629 					  fmt, vargs);
3630 	va_end(vargs);
3631 	return dev;
3632 }
3633 EXPORT_SYMBOL_GPL(device_create);
3634 
3635 /**
3636  * device_create_with_groups - creates a device and registers it with sysfs
3637  * @class: pointer to the struct class that this device should be registered to
3638  * @parent: pointer to the parent struct device of this new device, if any
3639  * @devt: the dev_t for the char device to be added
3640  * @drvdata: the data to be added to the device for callbacks
3641  * @groups: NULL-terminated list of attribute groups to be created
3642  * @fmt: string for the device's name
3643  *
3644  * This function can be used by char device classes.  A struct device
3645  * will be created in sysfs, registered to the specified class.
3646  * Additional attributes specified in the groups parameter will also
3647  * be created automatically.
3648  *
3649  * A "dev" file will be created, showing the dev_t for the device, if
3650  * the dev_t is not 0,0.
3651  * If a pointer to a parent struct device is passed in, the newly created
3652  * struct device will be a child of that device in sysfs.
3653  * The pointer to the struct device will be returned from the call.
3654  * Any further sysfs files that might be required can be created using this
3655  * pointer.
3656  *
3657  * Returns &struct device pointer on success, or ERR_PTR() on error.
3658  *
3659  * Note: the struct class passed to this function must have previously
3660  * been created with a call to class_create().
3661  */
3662 struct device *device_create_with_groups(struct class *class,
3663 					 struct device *parent, dev_t devt,
3664 					 void *drvdata,
3665 					 const struct attribute_group **groups,
3666 					 const char *fmt, ...)
3667 {
3668 	va_list vargs;
3669 	struct device *dev;
3670 
3671 	va_start(vargs, fmt);
3672 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
3673 					 fmt, vargs);
3674 	va_end(vargs);
3675 	return dev;
3676 }
3677 EXPORT_SYMBOL_GPL(device_create_with_groups);
3678 
3679 /**
3680  * device_destroy - removes a device that was created with device_create()
3681  * @class: pointer to the struct class that this device was registered with
3682  * @devt: the dev_t of the device that was previously registered
3683  *
3684  * This call unregisters and cleans up a device that was created with a
3685  * call to device_create().
3686  */
3687 void device_destroy(struct class *class, dev_t devt)
3688 {
3689 	struct device *dev;
3690 
3691 	dev = class_find_device_by_devt(class, devt);
3692 	if (dev) {
3693 		put_device(dev);
3694 		device_unregister(dev);
3695 	}
3696 }
3697 EXPORT_SYMBOL_GPL(device_destroy);
3698 
3699 /**
3700  * device_rename - renames a device
3701  * @dev: the pointer to the struct device to be renamed
3702  * @new_name: the new name of the device
3703  *
3704  * It is the responsibility of the caller to provide mutual
3705  * exclusion between two different calls of device_rename
3706  * on the same device to ensure that new_name is valid and
3707  * won't conflict with other devices.
3708  *
3709  * Note: Don't call this function.  Currently, the networking layer calls this
3710  * function, but that will change.  The following text from Kay Sievers offers
3711  * some insight:
3712  *
3713  * Renaming devices is racy at many levels, symlinks and other stuff are not
3714  * replaced atomically, and you get a "move" uevent, but it's not easy to
3715  * connect the event to the old and new device. Device nodes are not renamed at
3716  * all, there isn't even support for that in the kernel now.
3717  *
3718  * In the meantime, during renaming, your target name might be taken by another
3719  * driver, creating conflicts. Or the old name is taken directly after you
3720  * renamed it -- then you get events for the same DEVPATH, before you even see
3721  * the "move" event. It's just a mess, and nothing new should ever rely on
3722  * kernel device renaming. Besides that, it's not even implemented now for
3723  * other things than (driver-core wise very simple) network devices.
3724  *
3725  * We are currently about to change network renaming in udev to completely
3726  * disallow renaming of devices in the same namespace as the kernel uses,
3727  * because we can't solve the problems properly, that arise with swapping names
3728  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
3729  * be allowed to some other name than eth[0-9]*, for the aforementioned
3730  * reasons.
3731  *
3732  * Make up a "real" name in the driver before you register anything, or add
3733  * some other attributes for userspace to find the device, or use udev to add
3734  * symlinks -- but never rename kernel devices later, it's a complete mess. We
3735  * don't even want to get into that and try to implement the missing pieces in
3736  * the core. We really have other pieces to fix in the driver core mess. :)
3737  */
3738 int device_rename(struct device *dev, const char *new_name)
3739 {
3740 	struct kobject *kobj = &dev->kobj;
3741 	char *old_device_name = NULL;
3742 	int error;
3743 
3744 	dev = get_device(dev);
3745 	if (!dev)
3746 		return -EINVAL;
3747 
3748 	dev_dbg(dev, "renaming to %s\n", new_name);
3749 
3750 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
3751 	if (!old_device_name) {
3752 		error = -ENOMEM;
3753 		goto out;
3754 	}
3755 
3756 	if (dev->class) {
3757 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
3758 					     kobj, old_device_name,
3759 					     new_name, kobject_namespace(kobj));
3760 		if (error)
3761 			goto out;
3762 	}
3763 
3764 	error = kobject_rename(kobj, new_name);
3765 	if (error)
3766 		goto out;
3767 
3768 out:
3769 	put_device(dev);
3770 
3771 	kfree(old_device_name);
3772 
3773 	return error;
3774 }
3775 EXPORT_SYMBOL_GPL(device_rename);
3776 
3777 static int device_move_class_links(struct device *dev,
3778 				   struct device *old_parent,
3779 				   struct device *new_parent)
3780 {
3781 	int error = 0;
3782 
3783 	if (old_parent)
3784 		sysfs_remove_link(&dev->kobj, "device");
3785 	if (new_parent)
3786 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
3787 					  "device");
3788 	return error;
3789 }
3790 
3791 /**
3792  * device_move - moves a device to a new parent
3793  * @dev: the pointer to the struct device to be moved
3794  * @new_parent: the new parent of the device (can be NULL)
3795  * @dpm_order: how to reorder the dpm_list
3796  */
3797 int device_move(struct device *dev, struct device *new_parent,
3798 		enum dpm_order dpm_order)
3799 {
3800 	int error;
3801 	struct device *old_parent;
3802 	struct kobject *new_parent_kobj;
3803 
3804 	dev = get_device(dev);
3805 	if (!dev)
3806 		return -EINVAL;
3807 
3808 	device_pm_lock();
3809 	new_parent = get_device(new_parent);
3810 	new_parent_kobj = get_device_parent(dev, new_parent);
3811 	if (IS_ERR(new_parent_kobj)) {
3812 		error = PTR_ERR(new_parent_kobj);
3813 		put_device(new_parent);
3814 		goto out;
3815 	}
3816 
3817 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
3818 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
3819 	error = kobject_move(&dev->kobj, new_parent_kobj);
3820 	if (error) {
3821 		cleanup_glue_dir(dev, new_parent_kobj);
3822 		put_device(new_parent);
3823 		goto out;
3824 	}
3825 	old_parent = dev->parent;
3826 	dev->parent = new_parent;
3827 	if (old_parent)
3828 		klist_remove(&dev->p->knode_parent);
3829 	if (new_parent) {
3830 		klist_add_tail(&dev->p->knode_parent,
3831 			       &new_parent->p->klist_children);
3832 		set_dev_node(dev, dev_to_node(new_parent));
3833 	}
3834 
3835 	if (dev->class) {
3836 		error = device_move_class_links(dev, old_parent, new_parent);
3837 		if (error) {
3838 			/* We ignore errors on cleanup since we're hosed anyway... */
3839 			device_move_class_links(dev, new_parent, old_parent);
3840 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
3841 				if (new_parent)
3842 					klist_remove(&dev->p->knode_parent);
3843 				dev->parent = old_parent;
3844 				if (old_parent) {
3845 					klist_add_tail(&dev->p->knode_parent,
3846 						       &old_parent->p->klist_children);
3847 					set_dev_node(dev, dev_to_node(old_parent));
3848 				}
3849 			}
3850 			cleanup_glue_dir(dev, new_parent_kobj);
3851 			put_device(new_parent);
3852 			goto out;
3853 		}
3854 	}
3855 	switch (dpm_order) {
3856 	case DPM_ORDER_NONE:
3857 		break;
3858 	case DPM_ORDER_DEV_AFTER_PARENT:
3859 		device_pm_move_after(dev, new_parent);
3860 		devices_kset_move_after(dev, new_parent);
3861 		break;
3862 	case DPM_ORDER_PARENT_BEFORE_DEV:
3863 		device_pm_move_before(new_parent, dev);
3864 		devices_kset_move_before(new_parent, dev);
3865 		break;
3866 	case DPM_ORDER_DEV_LAST:
3867 		device_pm_move_last(dev);
3868 		devices_kset_move_last(dev);
3869 		break;
3870 	}
3871 
3872 	put_device(old_parent);
3873 out:
3874 	device_pm_unlock();
3875 	put_device(dev);
3876 	return error;
3877 }
3878 EXPORT_SYMBOL_GPL(device_move);
3879 
3880 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
3881 				     kgid_t kgid)
3882 {
3883 	struct kobject *kobj = &dev->kobj;
3884 	struct class *class = dev->class;
3885 	const struct device_type *type = dev->type;
3886 	int error;
3887 
3888 	if (class) {
3889 		/*
3890 		 * Change the device groups of the device class for @dev to
3891 		 * @kuid/@kgid.
3892 		 */
3893 		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
3894 						  kgid);
3895 		if (error)
3896 			return error;
3897 	}
3898 
3899 	if (type) {
3900 		/*
3901 		 * Change the device groups of the device type for @dev to
3902 		 * @kuid/@kgid.
3903 		 */
3904 		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
3905 						  kgid);
3906 		if (error)
3907 			return error;
3908 	}
3909 
3910 	/* Change the device groups of @dev to @kuid/@kgid. */
3911 	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
3912 	if (error)
3913 		return error;
3914 
3915 	if (device_supports_offline(dev) && !dev->offline_disabled) {
3916 		/* Change online device attributes of @dev to @kuid/@kgid. */
3917 		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
3918 						kuid, kgid);
3919 		if (error)
3920 			return error;
3921 	}
3922 
3923 	return 0;
3924 }
3925 
3926 /**
3927  * device_change_owner - change the owner of an existing device.
3928  * @dev: device.
3929  * @kuid: new owner's kuid
3930  * @kgid: new owner's kgid
3931  *
3932  * This changes the owner of @dev and its corresponding sysfs entries to
3933  * @kuid/@kgid. This function closely mirrors how @dev was added via driver
3934  * core.
3935  *
3936  * Returns 0 on success or error code on failure.
3937  */
3938 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
3939 {
3940 	int error;
3941 	struct kobject *kobj = &dev->kobj;
3942 
3943 	dev = get_device(dev);
3944 	if (!dev)
3945 		return -EINVAL;
3946 
3947 	/*
3948 	 * Change the kobject and the default attributes and groups of the
3949 	 * ktype associated with it to @kuid/@kgid.
3950 	 */
3951 	error = sysfs_change_owner(kobj, kuid, kgid);
3952 	if (error)
3953 		goto out;
3954 
3955 	/*
3956 	 * Change the uevent file for @dev to the new owner. The uevent file
3957 	 * was created in a separate step when @dev got added and we mirror
3958 	 * that step here.
3959 	 */
3960 	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
3961 					kgid);
3962 	if (error)
3963 		goto out;
3964 
3965 	/*
3966 	 * Change the device groups, the device groups associated with the
3967 	 * device class, and the groups associated with the device type of @dev
3968 	 * to @kuid/@kgid.
3969 	 */
3970 	error = device_attrs_change_owner(dev, kuid, kgid);
3971 	if (error)
3972 		goto out;
3973 
3974 	error = dpm_sysfs_change_owner(dev, kuid, kgid);
3975 	if (error)
3976 		goto out;
3977 
3978 #ifdef CONFIG_BLOCK
3979 	if (sysfs_deprecated && dev->class == &block_class)
3980 		goto out;
3981 #endif
3982 
3983 	/*
3984 	 * Change the owner of the symlink located in the class directory of
3985 	 * the device class associated with @dev which points to the actual
3986 	 * directory entry for @dev to @kuid/@kgid. This ensures that the
3987 	 * symlink shows the same permissions as its target.
3988 	 */
3989 	error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
3990 					dev_name(dev), kuid, kgid);
3991 	if (error)
3992 		goto out;
3993 
3994 out:
3995 	put_device(dev);
3996 	return error;
3997 }
3998 EXPORT_SYMBOL_GPL(device_change_owner);
3999 
4000 /**
4001  * device_shutdown - call ->shutdown() on each device to shutdown.
4002  */
4003 void device_shutdown(void)
4004 {
4005 	struct device *dev, *parent;
4006 
4007 	wait_for_device_probe();
4008 	device_block_probing();
4009 
4010 	cpufreq_suspend();
4011 
4012 	spin_lock(&devices_kset->list_lock);
4013 	/*
4014 	 * Walk the devices list backward, shutting down each in turn.
4015 	 * Beware that device unplug events may also start pulling
4016 	 * devices offline, even as the system is shutting down.
4017 	 */
4018 	while (!list_empty(&devices_kset->list)) {
4019 		dev = list_entry(devices_kset->list.prev, struct device,
4020 				kobj.entry);
4021 
4022 		/*
4023 		 * hold reference count of device's parent to
4024 		 * prevent it from being freed because parent's
4025 		 * lock is to be held
4026 		 */
4027 		parent = get_device(dev->parent);
4028 		get_device(dev);
4029 		/*
4030 		 * Make sure the device is off the kset list, in the
4031 		 * event that dev->*->shutdown() doesn't remove it.
4032 		 */
4033 		list_del_init(&dev->kobj.entry);
4034 		spin_unlock(&devices_kset->list_lock);
4035 
4036 		/* hold lock to avoid race with probe/release */
4037 		if (parent)
4038 			device_lock(parent);
4039 		device_lock(dev);
4040 
4041 		/* Don't allow any more runtime suspends */
4042 		pm_runtime_get_noresume(dev);
4043 		pm_runtime_barrier(dev);
4044 
4045 		if (dev->class && dev->class->shutdown_pre) {
4046 			if (initcall_debug)
4047 				dev_info(dev, "shutdown_pre\n");
4048 			dev->class->shutdown_pre(dev);
4049 		}
4050 		if (dev->bus && dev->bus->shutdown) {
4051 			if (initcall_debug)
4052 				dev_info(dev, "shutdown\n");
4053 			dev->bus->shutdown(dev);
4054 		} else if (dev->driver && dev->driver->shutdown) {
4055 			if (initcall_debug)
4056 				dev_info(dev, "shutdown\n");
4057 			dev->driver->shutdown(dev);
4058 		}
4059 
4060 		device_unlock(dev);
4061 		if (parent)
4062 			device_unlock(parent);
4063 
4064 		put_device(dev);
4065 		put_device(parent);
4066 
4067 		spin_lock(&devices_kset->list_lock);
4068 	}
4069 	spin_unlock(&devices_kset->list_lock);
4070 }
4071 
4072 /*
4073  * Device logging functions
4074  */
4075 
4076 #ifdef CONFIG_PRINTK
4077 static void
4078 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4079 {
4080 	const char *subsys;
4081 
4082 	memset(dev_info, 0, sizeof(*dev_info));
4083 
4084 	if (dev->class)
4085 		subsys = dev->class->name;
4086 	else if (dev->bus)
4087 		subsys = dev->bus->name;
4088 	else
4089 		return;
4090 
4091 	strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4092 
4093 	/*
4094 	 * Add device identifier DEVICE=:
4095 	 *   b12:8         block dev_t
4096 	 *   c127:3        char dev_t
4097 	 *   n8            netdev ifindex
4098 	 *   +sound:card0  subsystem:devname
4099 	 */
4100 	if (MAJOR(dev->devt)) {
4101 		char c;
4102 
4103 		if (strcmp(subsys, "block") == 0)
4104 			c = 'b';
4105 		else
4106 			c = 'c';
4107 
4108 		snprintf(dev_info->device, sizeof(dev_info->device),
4109 			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4110 	} else if (strcmp(subsys, "net") == 0) {
4111 		struct net_device *net = to_net_dev(dev);
4112 
4113 		snprintf(dev_info->device, sizeof(dev_info->device),
4114 			 "n%u", net->ifindex);
4115 	} else {
4116 		snprintf(dev_info->device, sizeof(dev_info->device),
4117 			 "+%s:%s", subsys, dev_name(dev));
4118 	}
4119 }
4120 
4121 int dev_vprintk_emit(int level, const struct device *dev,
4122 		     const char *fmt, va_list args)
4123 {
4124 	struct dev_printk_info dev_info;
4125 
4126 	set_dev_info(dev, &dev_info);
4127 
4128 	return vprintk_emit(0, level, &dev_info, fmt, args);
4129 }
4130 EXPORT_SYMBOL(dev_vprintk_emit);
4131 
4132 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4133 {
4134 	va_list args;
4135 	int r;
4136 
4137 	va_start(args, fmt);
4138 
4139 	r = dev_vprintk_emit(level, dev, fmt, args);
4140 
4141 	va_end(args);
4142 
4143 	return r;
4144 }
4145 EXPORT_SYMBOL(dev_printk_emit);
4146 
4147 static void __dev_printk(const char *level, const struct device *dev,
4148 			struct va_format *vaf)
4149 {
4150 	if (dev)
4151 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4152 				dev_driver_string(dev), dev_name(dev), vaf);
4153 	else
4154 		printk("%s(NULL device *): %pV", level, vaf);
4155 }
4156 
4157 void dev_printk(const char *level, const struct device *dev,
4158 		const char *fmt, ...)
4159 {
4160 	struct va_format vaf;
4161 	va_list args;
4162 
4163 	va_start(args, fmt);
4164 
4165 	vaf.fmt = fmt;
4166 	vaf.va = &args;
4167 
4168 	__dev_printk(level, dev, &vaf);
4169 
4170 	va_end(args);
4171 }
4172 EXPORT_SYMBOL(dev_printk);
4173 
4174 #define define_dev_printk_level(func, kern_level)		\
4175 void func(const struct device *dev, const char *fmt, ...)	\
4176 {								\
4177 	struct va_format vaf;					\
4178 	va_list args;						\
4179 								\
4180 	va_start(args, fmt);					\
4181 								\
4182 	vaf.fmt = fmt;						\
4183 	vaf.va = &args;						\
4184 								\
4185 	__dev_printk(kern_level, dev, &vaf);			\
4186 								\
4187 	va_end(args);						\
4188 }								\
4189 EXPORT_SYMBOL(func);
4190 
4191 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4192 define_dev_printk_level(_dev_alert, KERN_ALERT);
4193 define_dev_printk_level(_dev_crit, KERN_CRIT);
4194 define_dev_printk_level(_dev_err, KERN_ERR);
4195 define_dev_printk_level(_dev_warn, KERN_WARNING);
4196 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4197 define_dev_printk_level(_dev_info, KERN_INFO);
4198 
4199 #endif
4200 
4201 /**
4202  * dev_err_probe - probe error check and log helper
4203  * @dev: the pointer to the struct device
4204  * @err: error value to test
4205  * @fmt: printf-style format string
4206  * @...: arguments as specified in the format string
4207  *
4208  * This helper implements common pattern present in probe functions for error
4209  * checking: print debug or error message depending if the error value is
4210  * -EPROBE_DEFER and propagate error upwards.
4211  * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4212  * checked later by reading devices_deferred debugfs attribute.
4213  * It replaces code sequence::
4214  *
4215  * 	if (err != -EPROBE_DEFER)
4216  * 		dev_err(dev, ...);
4217  * 	else
4218  * 		dev_dbg(dev, ...);
4219  * 	return err;
4220  *
4221  * with::
4222  *
4223  * 	return dev_err_probe(dev, err, ...);
4224  *
4225  * Returns @err.
4226  *
4227  */
4228 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4229 {
4230 	struct va_format vaf;
4231 	va_list args;
4232 
4233 	va_start(args, fmt);
4234 	vaf.fmt = fmt;
4235 	vaf.va = &args;
4236 
4237 	if (err != -EPROBE_DEFER) {
4238 		dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4239 	} else {
4240 		device_set_deferred_probe_reason(dev, &vaf);
4241 		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4242 	}
4243 
4244 	va_end(args);
4245 
4246 	return err;
4247 }
4248 EXPORT_SYMBOL_GPL(dev_err_probe);
4249 
4250 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4251 {
4252 	return fwnode && !IS_ERR(fwnode->secondary);
4253 }
4254 
4255 /**
4256  * set_primary_fwnode - Change the primary firmware node of a given device.
4257  * @dev: Device to handle.
4258  * @fwnode: New primary firmware node of the device.
4259  *
4260  * Set the device's firmware node pointer to @fwnode, but if a secondary
4261  * firmware node of the device is present, preserve it.
4262  */
4263 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4264 {
4265 	struct device *parent = dev->parent;
4266 	struct fwnode_handle *fn = dev->fwnode;
4267 
4268 	if (fwnode) {
4269 		if (fwnode_is_primary(fn))
4270 			fn = fn->secondary;
4271 
4272 		if (fn) {
4273 			WARN_ON(fwnode->secondary);
4274 			fwnode->secondary = fn;
4275 		}
4276 		dev->fwnode = fwnode;
4277 	} else {
4278 		if (fwnode_is_primary(fn)) {
4279 			dev->fwnode = fn->secondary;
4280 			if (!(parent && fn == parent->fwnode))
4281 				fn->secondary = ERR_PTR(-ENODEV);
4282 		} else {
4283 			dev->fwnode = NULL;
4284 		}
4285 	}
4286 }
4287 EXPORT_SYMBOL_GPL(set_primary_fwnode);
4288 
4289 /**
4290  * set_secondary_fwnode - Change the secondary firmware node of a given device.
4291  * @dev: Device to handle.
4292  * @fwnode: New secondary firmware node of the device.
4293  *
4294  * If a primary firmware node of the device is present, set its secondary
4295  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
4296  * @fwnode.
4297  */
4298 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4299 {
4300 	if (fwnode)
4301 		fwnode->secondary = ERR_PTR(-ENODEV);
4302 
4303 	if (fwnode_is_primary(dev->fwnode))
4304 		dev->fwnode->secondary = fwnode;
4305 	else
4306 		dev->fwnode = fwnode;
4307 }
4308 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4309 
4310 /**
4311  * device_set_of_node_from_dev - reuse device-tree node of another device
4312  * @dev: device whose device-tree node is being set
4313  * @dev2: device whose device-tree node is being reused
4314  *
4315  * Takes another reference to the new device-tree node after first dropping
4316  * any reference held to the old node.
4317  */
4318 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4319 {
4320 	of_node_put(dev->of_node);
4321 	dev->of_node = of_node_get(dev2->of_node);
4322 	dev->of_node_reused = true;
4323 }
4324 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4325 
4326 int device_match_name(struct device *dev, const void *name)
4327 {
4328 	return sysfs_streq(dev_name(dev), name);
4329 }
4330 EXPORT_SYMBOL_GPL(device_match_name);
4331 
4332 int device_match_of_node(struct device *dev, const void *np)
4333 {
4334 	return dev->of_node == np;
4335 }
4336 EXPORT_SYMBOL_GPL(device_match_of_node);
4337 
4338 int device_match_fwnode(struct device *dev, const void *fwnode)
4339 {
4340 	return dev_fwnode(dev) == fwnode;
4341 }
4342 EXPORT_SYMBOL_GPL(device_match_fwnode);
4343 
4344 int device_match_devt(struct device *dev, const void *pdevt)
4345 {
4346 	return dev->devt == *(dev_t *)pdevt;
4347 }
4348 EXPORT_SYMBOL_GPL(device_match_devt);
4349 
4350 int device_match_acpi_dev(struct device *dev, const void *adev)
4351 {
4352 	return ACPI_COMPANION(dev) == adev;
4353 }
4354 EXPORT_SYMBOL(device_match_acpi_dev);
4355 
4356 int device_match_any(struct device *dev, const void *unused)
4357 {
4358 	return 1;
4359 }
4360 EXPORT_SYMBOL_GPL(device_match_any);
4361