xref: /openbmc/linux/drivers/base/core.c (revision e0d07278)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sysfs.h>
30 
31 #include "base.h"
32 #include "power/power.h"
33 
34 #ifdef CONFIG_SYSFS_DEPRECATED
35 #ifdef CONFIG_SYSFS_DEPRECATED_V2
36 long sysfs_deprecated = 1;
37 #else
38 long sysfs_deprecated = 0;
39 #endif
40 static int __init sysfs_deprecated_setup(char *arg)
41 {
42 	return kstrtol(arg, 10, &sysfs_deprecated);
43 }
44 early_param("sysfs.deprecated", sysfs_deprecated_setup);
45 #endif
46 
47 /* Device links support. */
48 static LIST_HEAD(wait_for_suppliers);
49 static DEFINE_MUTEX(wfs_lock);
50 static LIST_HEAD(deferred_sync);
51 static unsigned int defer_sync_state_count = 1;
52 static unsigned int defer_fw_devlink_count;
53 static LIST_HEAD(deferred_fw_devlink);
54 static DEFINE_MUTEX(defer_fw_devlink_lock);
55 static bool fw_devlink_is_permissive(void);
56 
57 #ifdef CONFIG_SRCU
58 static DEFINE_MUTEX(device_links_lock);
59 DEFINE_STATIC_SRCU(device_links_srcu);
60 
61 static inline void device_links_write_lock(void)
62 {
63 	mutex_lock(&device_links_lock);
64 }
65 
66 static inline void device_links_write_unlock(void)
67 {
68 	mutex_unlock(&device_links_lock);
69 }
70 
71 int device_links_read_lock(void) __acquires(&device_links_srcu)
72 {
73 	return srcu_read_lock(&device_links_srcu);
74 }
75 
76 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
77 {
78 	srcu_read_unlock(&device_links_srcu, idx);
79 }
80 
81 int device_links_read_lock_held(void)
82 {
83 	return srcu_read_lock_held(&device_links_srcu);
84 }
85 #else /* !CONFIG_SRCU */
86 static DECLARE_RWSEM(device_links_lock);
87 
88 static inline void device_links_write_lock(void)
89 {
90 	down_write(&device_links_lock);
91 }
92 
93 static inline void device_links_write_unlock(void)
94 {
95 	up_write(&device_links_lock);
96 }
97 
98 int device_links_read_lock(void)
99 {
100 	down_read(&device_links_lock);
101 	return 0;
102 }
103 
104 void device_links_read_unlock(int not_used)
105 {
106 	up_read(&device_links_lock);
107 }
108 
109 #ifdef CONFIG_DEBUG_LOCK_ALLOC
110 int device_links_read_lock_held(void)
111 {
112 	return lockdep_is_held(&device_links_lock);
113 }
114 #endif
115 #endif /* !CONFIG_SRCU */
116 
117 /**
118  * device_is_dependent - Check if one device depends on another one
119  * @dev: Device to check dependencies for.
120  * @target: Device to check against.
121  *
122  * Check if @target depends on @dev or any device dependent on it (its child or
123  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
124  */
125 int device_is_dependent(struct device *dev, void *target)
126 {
127 	struct device_link *link;
128 	int ret;
129 
130 	if (dev == target)
131 		return 1;
132 
133 	ret = device_for_each_child(dev, target, device_is_dependent);
134 	if (ret)
135 		return ret;
136 
137 	list_for_each_entry(link, &dev->links.consumers, s_node) {
138 		if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
139 			continue;
140 
141 		if (link->consumer == target)
142 			return 1;
143 
144 		ret = device_is_dependent(link->consumer, target);
145 		if (ret)
146 			break;
147 	}
148 	return ret;
149 }
150 
151 static void device_link_init_status(struct device_link *link,
152 				    struct device *consumer,
153 				    struct device *supplier)
154 {
155 	switch (supplier->links.status) {
156 	case DL_DEV_PROBING:
157 		switch (consumer->links.status) {
158 		case DL_DEV_PROBING:
159 			/*
160 			 * A consumer driver can create a link to a supplier
161 			 * that has not completed its probing yet as long as it
162 			 * knows that the supplier is already functional (for
163 			 * example, it has just acquired some resources from the
164 			 * supplier).
165 			 */
166 			link->status = DL_STATE_CONSUMER_PROBE;
167 			break;
168 		default:
169 			link->status = DL_STATE_DORMANT;
170 			break;
171 		}
172 		break;
173 	case DL_DEV_DRIVER_BOUND:
174 		switch (consumer->links.status) {
175 		case DL_DEV_PROBING:
176 			link->status = DL_STATE_CONSUMER_PROBE;
177 			break;
178 		case DL_DEV_DRIVER_BOUND:
179 			link->status = DL_STATE_ACTIVE;
180 			break;
181 		default:
182 			link->status = DL_STATE_AVAILABLE;
183 			break;
184 		}
185 		break;
186 	case DL_DEV_UNBINDING:
187 		link->status = DL_STATE_SUPPLIER_UNBIND;
188 		break;
189 	default:
190 		link->status = DL_STATE_DORMANT;
191 		break;
192 	}
193 }
194 
195 static int device_reorder_to_tail(struct device *dev, void *not_used)
196 {
197 	struct device_link *link;
198 
199 	/*
200 	 * Devices that have not been registered yet will be put to the ends
201 	 * of the lists during the registration, so skip them here.
202 	 */
203 	if (device_is_registered(dev))
204 		devices_kset_move_last(dev);
205 
206 	if (device_pm_initialized(dev))
207 		device_pm_move_last(dev);
208 
209 	device_for_each_child(dev, NULL, device_reorder_to_tail);
210 	list_for_each_entry(link, &dev->links.consumers, s_node) {
211 		if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
212 			continue;
213 		device_reorder_to_tail(link->consumer, NULL);
214 	}
215 
216 	return 0;
217 }
218 
219 /**
220  * device_pm_move_to_tail - Move set of devices to the end of device lists
221  * @dev: Device to move
222  *
223  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
224  *
225  * It moves the @dev along with all of its children and all of its consumers
226  * to the ends of the device_kset and dpm_list, recursively.
227  */
228 void device_pm_move_to_tail(struct device *dev)
229 {
230 	int idx;
231 
232 	idx = device_links_read_lock();
233 	device_pm_lock();
234 	device_reorder_to_tail(dev, NULL);
235 	device_pm_unlock();
236 	device_links_read_unlock(idx);
237 }
238 
239 #define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
240 
241 static ssize_t status_show(struct device *dev,
242 			  struct device_attribute *attr, char *buf)
243 {
244 	char *status;
245 
246 	switch (to_devlink(dev)->status) {
247 	case DL_STATE_NONE:
248 		status = "not tracked"; break;
249 	case DL_STATE_DORMANT:
250 		status = "dormant"; break;
251 	case DL_STATE_AVAILABLE:
252 		status = "available"; break;
253 	case DL_STATE_CONSUMER_PROBE:
254 		status = "consumer probing"; break;
255 	case DL_STATE_ACTIVE:
256 		status = "active"; break;
257 	case DL_STATE_SUPPLIER_UNBIND:
258 		status = "supplier unbinding"; break;
259 	default:
260 		status = "unknown"; break;
261 	}
262 	return sprintf(buf, "%s\n", status);
263 }
264 static DEVICE_ATTR_RO(status);
265 
266 static ssize_t auto_remove_on_show(struct device *dev,
267 				   struct device_attribute *attr, char *buf)
268 {
269 	struct device_link *link = to_devlink(dev);
270 	char *str;
271 
272 	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
273 		str = "supplier unbind";
274 	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
275 		str = "consumer unbind";
276 	else
277 		str = "never";
278 
279 	return sprintf(buf, "%s\n", str);
280 }
281 static DEVICE_ATTR_RO(auto_remove_on);
282 
283 static ssize_t runtime_pm_show(struct device *dev,
284 			       struct device_attribute *attr, char *buf)
285 {
286 	struct device_link *link = to_devlink(dev);
287 
288 	return sprintf(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
289 }
290 static DEVICE_ATTR_RO(runtime_pm);
291 
292 static ssize_t sync_state_only_show(struct device *dev,
293 				    struct device_attribute *attr, char *buf)
294 {
295 	struct device_link *link = to_devlink(dev);
296 
297 	return sprintf(buf, "%d\n", !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
298 }
299 static DEVICE_ATTR_RO(sync_state_only);
300 
301 static struct attribute *devlink_attrs[] = {
302 	&dev_attr_status.attr,
303 	&dev_attr_auto_remove_on.attr,
304 	&dev_attr_runtime_pm.attr,
305 	&dev_attr_sync_state_only.attr,
306 	NULL,
307 };
308 ATTRIBUTE_GROUPS(devlink);
309 
310 static void device_link_free(struct device_link *link)
311 {
312 	while (refcount_dec_not_one(&link->rpm_active))
313 		pm_runtime_put(link->supplier);
314 
315 	put_device(link->consumer);
316 	put_device(link->supplier);
317 	kfree(link);
318 }
319 
320 #ifdef CONFIG_SRCU
321 static void __device_link_free_srcu(struct rcu_head *rhead)
322 {
323 	device_link_free(container_of(rhead, struct device_link, rcu_head));
324 }
325 
326 static void devlink_dev_release(struct device *dev)
327 {
328 	struct device_link *link = to_devlink(dev);
329 
330 	call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
331 }
332 #else
333 static void devlink_dev_release(struct device *dev)
334 {
335 	device_link_free(to_devlink(dev));
336 }
337 #endif
338 
339 static struct class devlink_class = {
340 	.name = "devlink",
341 	.owner = THIS_MODULE,
342 	.dev_groups = devlink_groups,
343 	.dev_release = devlink_dev_release,
344 };
345 
346 static int devlink_add_symlinks(struct device *dev,
347 				struct class_interface *class_intf)
348 {
349 	int ret;
350 	size_t len;
351 	struct device_link *link = to_devlink(dev);
352 	struct device *sup = link->supplier;
353 	struct device *con = link->consumer;
354 	char *buf;
355 
356 	len = max(strlen(dev_name(sup)), strlen(dev_name(con)));
357 	len += strlen("supplier:") + 1;
358 	buf = kzalloc(len, GFP_KERNEL);
359 	if (!buf)
360 		return -ENOMEM;
361 
362 	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
363 	if (ret)
364 		goto out;
365 
366 	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
367 	if (ret)
368 		goto err_con;
369 
370 	snprintf(buf, len, "consumer:%s", dev_name(con));
371 	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
372 	if (ret)
373 		goto err_con_dev;
374 
375 	snprintf(buf, len, "supplier:%s", dev_name(sup));
376 	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
377 	if (ret)
378 		goto err_sup_dev;
379 
380 	goto out;
381 
382 err_sup_dev:
383 	snprintf(buf, len, "consumer:%s", dev_name(con));
384 	sysfs_remove_link(&sup->kobj, buf);
385 err_con_dev:
386 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
387 err_con:
388 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
389 out:
390 	kfree(buf);
391 	return ret;
392 }
393 
394 static void devlink_remove_symlinks(struct device *dev,
395 				   struct class_interface *class_intf)
396 {
397 	struct device_link *link = to_devlink(dev);
398 	size_t len;
399 	struct device *sup = link->supplier;
400 	struct device *con = link->consumer;
401 	char *buf;
402 
403 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
404 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
405 
406 	len = max(strlen(dev_name(sup)), strlen(dev_name(con)));
407 	len += strlen("supplier:") + 1;
408 	buf = kzalloc(len, GFP_KERNEL);
409 	if (!buf) {
410 		WARN(1, "Unable to properly free device link symlinks!\n");
411 		return;
412 	}
413 
414 	snprintf(buf, len, "supplier:%s", dev_name(sup));
415 	sysfs_remove_link(&con->kobj, buf);
416 	snprintf(buf, len, "consumer:%s", dev_name(con));
417 	sysfs_remove_link(&sup->kobj, buf);
418 	kfree(buf);
419 }
420 
421 static struct class_interface devlink_class_intf = {
422 	.class = &devlink_class,
423 	.add_dev = devlink_add_symlinks,
424 	.remove_dev = devlink_remove_symlinks,
425 };
426 
427 static int __init devlink_class_init(void)
428 {
429 	int ret;
430 
431 	ret = class_register(&devlink_class);
432 	if (ret)
433 		return ret;
434 
435 	ret = class_interface_register(&devlink_class_intf);
436 	if (ret)
437 		class_unregister(&devlink_class);
438 
439 	return ret;
440 }
441 postcore_initcall(devlink_class_init);
442 
443 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
444 			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
445 			       DL_FLAG_AUTOPROBE_CONSUMER  | \
446 			       DL_FLAG_SYNC_STATE_ONLY)
447 
448 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
449 			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
450 
451 /**
452  * device_link_add - Create a link between two devices.
453  * @consumer: Consumer end of the link.
454  * @supplier: Supplier end of the link.
455  * @flags: Link flags.
456  *
457  * The caller is responsible for the proper synchronization of the link creation
458  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
459  * runtime PM framework to take the link into account.  Second, if the
460  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
461  * be forced into the active metastate and reference-counted upon the creation
462  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
463  * ignored.
464  *
465  * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
466  * expected to release the link returned by it directly with the help of either
467  * device_link_del() or device_link_remove().
468  *
469  * If that flag is not set, however, the caller of this function is handing the
470  * management of the link over to the driver core entirely and its return value
471  * can only be used to check whether or not the link is present.  In that case,
472  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
473  * flags can be used to indicate to the driver core when the link can be safely
474  * deleted.  Namely, setting one of them in @flags indicates to the driver core
475  * that the link is not going to be used (by the given caller of this function)
476  * after unbinding the consumer or supplier driver, respectively, from its
477  * device, so the link can be deleted at that point.  If none of them is set,
478  * the link will be maintained until one of the devices pointed to by it (either
479  * the consumer or the supplier) is unregistered.
480  *
481  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
482  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
483  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
484  * be used to request the driver core to automaticall probe for a consmer
485  * driver after successfully binding a driver to the supplier device.
486  *
487  * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
488  * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
489  * the same time is invalid and will cause NULL to be returned upfront.
490  * However, if a device link between the given @consumer and @supplier pair
491  * exists already when this function is called for them, the existing link will
492  * be returned regardless of its current type and status (the link's flags may
493  * be modified then).  The caller of this function is then expected to treat
494  * the link as though it has just been created, so (in particular) if
495  * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
496  * explicitly when not needed any more (as stated above).
497  *
498  * A side effect of the link creation is re-ordering of dpm_list and the
499  * devices_kset list by moving the consumer device and all devices depending
500  * on it to the ends of these lists (that does not happen to devices that have
501  * not been registered when this function is called).
502  *
503  * The supplier device is required to be registered when this function is called
504  * and NULL will be returned if that is not the case.  The consumer device need
505  * not be registered, however.
506  */
507 struct device_link *device_link_add(struct device *consumer,
508 				    struct device *supplier, u32 flags)
509 {
510 	struct device_link *link;
511 
512 	if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
513 	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
514 	    (flags & DL_FLAG_SYNC_STATE_ONLY &&
515 	     flags != DL_FLAG_SYNC_STATE_ONLY) ||
516 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
517 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
518 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
519 		return NULL;
520 
521 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
522 		if (pm_runtime_get_sync(supplier) < 0) {
523 			pm_runtime_put_noidle(supplier);
524 			return NULL;
525 		}
526 	}
527 
528 	if (!(flags & DL_FLAG_STATELESS))
529 		flags |= DL_FLAG_MANAGED;
530 
531 	device_links_write_lock();
532 	device_pm_lock();
533 
534 	/*
535 	 * If the supplier has not been fully registered yet or there is a
536 	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
537 	 * the supplier already in the graph, return NULL. If the link is a
538 	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
539 	 * because it only affects sync_state() callbacks.
540 	 */
541 	if (!device_pm_initialized(supplier)
542 	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
543 		  device_is_dependent(consumer, supplier))) {
544 		link = NULL;
545 		goto out;
546 	}
547 
548 	/*
549 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
550 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
551 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
552 	 */
553 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
554 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
555 
556 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
557 		if (link->consumer != consumer)
558 			continue;
559 
560 		if (flags & DL_FLAG_PM_RUNTIME) {
561 			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
562 				pm_runtime_new_link(consumer);
563 				link->flags |= DL_FLAG_PM_RUNTIME;
564 			}
565 			if (flags & DL_FLAG_RPM_ACTIVE)
566 				refcount_inc(&link->rpm_active);
567 		}
568 
569 		if (flags & DL_FLAG_STATELESS) {
570 			kref_get(&link->kref);
571 			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
572 			    !(link->flags & DL_FLAG_STATELESS)) {
573 				link->flags |= DL_FLAG_STATELESS;
574 				goto reorder;
575 			} else {
576 				link->flags |= DL_FLAG_STATELESS;
577 				goto out;
578 			}
579 		}
580 
581 		/*
582 		 * If the life time of the link following from the new flags is
583 		 * longer than indicated by the flags of the existing link,
584 		 * update the existing link to stay around longer.
585 		 */
586 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
587 			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
588 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
589 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
590 			}
591 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
592 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
593 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
594 		}
595 		if (!(link->flags & DL_FLAG_MANAGED)) {
596 			kref_get(&link->kref);
597 			link->flags |= DL_FLAG_MANAGED;
598 			device_link_init_status(link, consumer, supplier);
599 		}
600 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
601 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
602 			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
603 			goto reorder;
604 		}
605 
606 		goto out;
607 	}
608 
609 	link = kzalloc(sizeof(*link), GFP_KERNEL);
610 	if (!link)
611 		goto out;
612 
613 	refcount_set(&link->rpm_active, 1);
614 
615 	get_device(supplier);
616 	link->supplier = supplier;
617 	INIT_LIST_HEAD(&link->s_node);
618 	get_device(consumer);
619 	link->consumer = consumer;
620 	INIT_LIST_HEAD(&link->c_node);
621 	link->flags = flags;
622 	kref_init(&link->kref);
623 
624 	link->link_dev.class = &devlink_class;
625 	device_set_pm_not_required(&link->link_dev);
626 	dev_set_name(&link->link_dev, "%s--%s",
627 		     dev_name(supplier), dev_name(consumer));
628 	if (device_register(&link->link_dev)) {
629 		put_device(consumer);
630 		put_device(supplier);
631 		kfree(link);
632 		link = NULL;
633 		goto out;
634 	}
635 
636 	if (flags & DL_FLAG_PM_RUNTIME) {
637 		if (flags & DL_FLAG_RPM_ACTIVE)
638 			refcount_inc(&link->rpm_active);
639 
640 		pm_runtime_new_link(consumer);
641 	}
642 
643 	/* Determine the initial link state. */
644 	if (flags & DL_FLAG_STATELESS)
645 		link->status = DL_STATE_NONE;
646 	else
647 		device_link_init_status(link, consumer, supplier);
648 
649 	/*
650 	 * Some callers expect the link creation during consumer driver probe to
651 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
652 	 */
653 	if (link->status == DL_STATE_CONSUMER_PROBE &&
654 	    flags & DL_FLAG_PM_RUNTIME)
655 		pm_runtime_resume(supplier);
656 
657 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
658 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
659 
660 	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
661 		dev_dbg(consumer,
662 			"Linked as a sync state only consumer to %s\n",
663 			dev_name(supplier));
664 		goto out;
665 	}
666 
667 reorder:
668 	/*
669 	 * Move the consumer and all of the devices depending on it to the end
670 	 * of dpm_list and the devices_kset list.
671 	 *
672 	 * It is necessary to hold dpm_list locked throughout all that or else
673 	 * we may end up suspending with a wrong ordering of it.
674 	 */
675 	device_reorder_to_tail(consumer, NULL);
676 
677 	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
678 
679 out:
680 	device_pm_unlock();
681 	device_links_write_unlock();
682 
683 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
684 		pm_runtime_put(supplier);
685 
686 	return link;
687 }
688 EXPORT_SYMBOL_GPL(device_link_add);
689 
690 /**
691  * device_link_wait_for_supplier - Add device to wait_for_suppliers list
692  * @consumer: Consumer device
693  *
694  * Marks the @consumer device as waiting for suppliers to become available by
695  * adding it to the wait_for_suppliers list. The consumer device will never be
696  * probed until it's removed from the wait_for_suppliers list.
697  *
698  * The caller is responsible for adding the links to the supplier devices once
699  * they are available and removing the @consumer device from the
700  * wait_for_suppliers list once links to all the suppliers have been created.
701  *
702  * This function is NOT meant to be called from the probe function of the
703  * consumer but rather from code that creates/adds the consumer device.
704  */
705 static void device_link_wait_for_supplier(struct device *consumer,
706 					  bool need_for_probe)
707 {
708 	mutex_lock(&wfs_lock);
709 	list_add_tail(&consumer->links.needs_suppliers, &wait_for_suppliers);
710 	consumer->links.need_for_probe = need_for_probe;
711 	mutex_unlock(&wfs_lock);
712 }
713 
714 static void device_link_wait_for_mandatory_supplier(struct device *consumer)
715 {
716 	device_link_wait_for_supplier(consumer, true);
717 }
718 
719 static void device_link_wait_for_optional_supplier(struct device *consumer)
720 {
721 	device_link_wait_for_supplier(consumer, false);
722 }
723 
724 /**
725  * device_link_add_missing_supplier_links - Add links from consumer devices to
726  *					    supplier devices, leaving any
727  *					    consumer with inactive suppliers on
728  *					    the wait_for_suppliers list
729  *
730  * Loops through all consumers waiting on suppliers and tries to add all their
731  * supplier links. If that succeeds, the consumer device is removed from
732  * wait_for_suppliers list. Otherwise, they are left in the wait_for_suppliers
733  * list.  Devices left on the wait_for_suppliers list will not be probed.
734  *
735  * The fwnode add_links callback is expected to return 0 if it has found and
736  * added all the supplier links for the consumer device. It should return an
737  * error if it isn't able to do so.
738  *
739  * The caller of device_link_wait_for_supplier() is expected to call this once
740  * it's aware of potential suppliers becoming available.
741  */
742 static void device_link_add_missing_supplier_links(void)
743 {
744 	struct device *dev, *tmp;
745 
746 	mutex_lock(&wfs_lock);
747 	list_for_each_entry_safe(dev, tmp, &wait_for_suppliers,
748 				 links.needs_suppliers) {
749 		int ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
750 		if (!ret)
751 			list_del_init(&dev->links.needs_suppliers);
752 		else if (ret != -ENODEV || fw_devlink_is_permissive())
753 			dev->links.need_for_probe = false;
754 	}
755 	mutex_unlock(&wfs_lock);
756 }
757 
758 #ifdef CONFIG_SRCU
759 static void __device_link_del(struct kref *kref)
760 {
761 	struct device_link *link = container_of(kref, struct device_link, kref);
762 
763 	dev_dbg(link->consumer, "Dropping the link to %s\n",
764 		dev_name(link->supplier));
765 
766 	if (link->flags & DL_FLAG_PM_RUNTIME)
767 		pm_runtime_drop_link(link->consumer);
768 
769 	list_del_rcu(&link->s_node);
770 	list_del_rcu(&link->c_node);
771 	device_unregister(&link->link_dev);
772 }
773 #else /* !CONFIG_SRCU */
774 static void __device_link_del(struct kref *kref)
775 {
776 	struct device_link *link = container_of(kref, struct device_link, kref);
777 
778 	dev_info(link->consumer, "Dropping the link to %s\n",
779 		 dev_name(link->supplier));
780 
781 	if (link->flags & DL_FLAG_PM_RUNTIME)
782 		pm_runtime_drop_link(link->consumer);
783 
784 	list_del(&link->s_node);
785 	list_del(&link->c_node);
786 	device_unregister(&link->link_dev);
787 }
788 #endif /* !CONFIG_SRCU */
789 
790 static void device_link_put_kref(struct device_link *link)
791 {
792 	if (link->flags & DL_FLAG_STATELESS)
793 		kref_put(&link->kref, __device_link_del);
794 	else
795 		WARN(1, "Unable to drop a managed device link reference\n");
796 }
797 
798 /**
799  * device_link_del - Delete a stateless link between two devices.
800  * @link: Device link to delete.
801  *
802  * The caller must ensure proper synchronization of this function with runtime
803  * PM.  If the link was added multiple times, it needs to be deleted as often.
804  * Care is required for hotplugged devices:  Their links are purged on removal
805  * and calling device_link_del() is then no longer allowed.
806  */
807 void device_link_del(struct device_link *link)
808 {
809 	device_links_write_lock();
810 	device_pm_lock();
811 	device_link_put_kref(link);
812 	device_pm_unlock();
813 	device_links_write_unlock();
814 }
815 EXPORT_SYMBOL_GPL(device_link_del);
816 
817 /**
818  * device_link_remove - Delete a stateless link between two devices.
819  * @consumer: Consumer end of the link.
820  * @supplier: Supplier end of the link.
821  *
822  * The caller must ensure proper synchronization of this function with runtime
823  * PM.
824  */
825 void device_link_remove(void *consumer, struct device *supplier)
826 {
827 	struct device_link *link;
828 
829 	if (WARN_ON(consumer == supplier))
830 		return;
831 
832 	device_links_write_lock();
833 	device_pm_lock();
834 
835 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
836 		if (link->consumer == consumer) {
837 			device_link_put_kref(link);
838 			break;
839 		}
840 	}
841 
842 	device_pm_unlock();
843 	device_links_write_unlock();
844 }
845 EXPORT_SYMBOL_GPL(device_link_remove);
846 
847 static void device_links_missing_supplier(struct device *dev)
848 {
849 	struct device_link *link;
850 
851 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
852 		if (link->status != DL_STATE_CONSUMER_PROBE)
853 			continue;
854 
855 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
856 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
857 		} else {
858 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
859 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
860 		}
861 	}
862 }
863 
864 /**
865  * device_links_check_suppliers - Check presence of supplier drivers.
866  * @dev: Consumer device.
867  *
868  * Check links from this device to any suppliers.  Walk the list of the device's
869  * links to suppliers and see if all of them are available.  If not, simply
870  * return -EPROBE_DEFER.
871  *
872  * We need to guarantee that the supplier will not go away after the check has
873  * been positive here.  It only can go away in __device_release_driver() and
874  * that function  checks the device's links to consumers.  This means we need to
875  * mark the link as "consumer probe in progress" to make the supplier removal
876  * wait for us to complete (or bad things may happen).
877  *
878  * Links without the DL_FLAG_MANAGED flag set are ignored.
879  */
880 int device_links_check_suppliers(struct device *dev)
881 {
882 	struct device_link *link;
883 	int ret = 0;
884 
885 	/*
886 	 * Device waiting for supplier to become available is not allowed to
887 	 * probe.
888 	 */
889 	mutex_lock(&wfs_lock);
890 	if (!list_empty(&dev->links.needs_suppliers) &&
891 	    dev->links.need_for_probe) {
892 		mutex_unlock(&wfs_lock);
893 		return -EPROBE_DEFER;
894 	}
895 	mutex_unlock(&wfs_lock);
896 
897 	device_links_write_lock();
898 
899 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
900 		if (!(link->flags & DL_FLAG_MANAGED))
901 			continue;
902 
903 		if (link->status != DL_STATE_AVAILABLE &&
904 		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
905 			device_links_missing_supplier(dev);
906 			ret = -EPROBE_DEFER;
907 			break;
908 		}
909 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
910 	}
911 	dev->links.status = DL_DEV_PROBING;
912 
913 	device_links_write_unlock();
914 	return ret;
915 }
916 
917 /**
918  * __device_links_queue_sync_state - Queue a device for sync_state() callback
919  * @dev: Device to call sync_state() on
920  * @list: List head to queue the @dev on
921  *
922  * Queues a device for a sync_state() callback when the device links write lock
923  * isn't held. This allows the sync_state() execution flow to use device links
924  * APIs.  The caller must ensure this function is called with
925  * device_links_write_lock() held.
926  *
927  * This function does a get_device() to make sure the device is not freed while
928  * on this list.
929  *
930  * So the caller must also ensure that device_links_flush_sync_list() is called
931  * as soon as the caller releases device_links_write_lock().  This is necessary
932  * to make sure the sync_state() is called in a timely fashion and the
933  * put_device() is called on this device.
934  */
935 static void __device_links_queue_sync_state(struct device *dev,
936 					    struct list_head *list)
937 {
938 	struct device_link *link;
939 
940 	if (!dev_has_sync_state(dev))
941 		return;
942 	if (dev->state_synced)
943 		return;
944 
945 	list_for_each_entry(link, &dev->links.consumers, s_node) {
946 		if (!(link->flags & DL_FLAG_MANAGED))
947 			continue;
948 		if (link->status != DL_STATE_ACTIVE)
949 			return;
950 	}
951 
952 	/*
953 	 * Set the flag here to avoid adding the same device to a list more
954 	 * than once. This can happen if new consumers get added to the device
955 	 * and probed before the list is flushed.
956 	 */
957 	dev->state_synced = true;
958 
959 	if (WARN_ON(!list_empty(&dev->links.defer_hook)))
960 		return;
961 
962 	get_device(dev);
963 	list_add_tail(&dev->links.defer_hook, list);
964 }
965 
966 /**
967  * device_links_flush_sync_list - Call sync_state() on a list of devices
968  * @list: List of devices to call sync_state() on
969  * @dont_lock_dev: Device for which lock is already held by the caller
970  *
971  * Calls sync_state() on all the devices that have been queued for it. This
972  * function is used in conjunction with __device_links_queue_sync_state(). The
973  * @dont_lock_dev parameter is useful when this function is called from a
974  * context where a device lock is already held.
975  */
976 static void device_links_flush_sync_list(struct list_head *list,
977 					 struct device *dont_lock_dev)
978 {
979 	struct device *dev, *tmp;
980 
981 	list_for_each_entry_safe(dev, tmp, list, links.defer_hook) {
982 		list_del_init(&dev->links.defer_hook);
983 
984 		if (dev != dont_lock_dev)
985 			device_lock(dev);
986 
987 		if (dev->bus->sync_state)
988 			dev->bus->sync_state(dev);
989 		else if (dev->driver && dev->driver->sync_state)
990 			dev->driver->sync_state(dev);
991 
992 		if (dev != dont_lock_dev)
993 			device_unlock(dev);
994 
995 		put_device(dev);
996 	}
997 }
998 
999 void device_links_supplier_sync_state_pause(void)
1000 {
1001 	device_links_write_lock();
1002 	defer_sync_state_count++;
1003 	device_links_write_unlock();
1004 }
1005 
1006 void device_links_supplier_sync_state_resume(void)
1007 {
1008 	struct device *dev, *tmp;
1009 	LIST_HEAD(sync_list);
1010 
1011 	device_links_write_lock();
1012 	if (!defer_sync_state_count) {
1013 		WARN(true, "Unmatched sync_state pause/resume!");
1014 		goto out;
1015 	}
1016 	defer_sync_state_count--;
1017 	if (defer_sync_state_count)
1018 		goto out;
1019 
1020 	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_hook) {
1021 		/*
1022 		 * Delete from deferred_sync list before queuing it to
1023 		 * sync_list because defer_hook is used for both lists.
1024 		 */
1025 		list_del_init(&dev->links.defer_hook);
1026 		__device_links_queue_sync_state(dev, &sync_list);
1027 	}
1028 out:
1029 	device_links_write_unlock();
1030 
1031 	device_links_flush_sync_list(&sync_list, NULL);
1032 }
1033 
1034 static int sync_state_resume_initcall(void)
1035 {
1036 	device_links_supplier_sync_state_resume();
1037 	return 0;
1038 }
1039 late_initcall(sync_state_resume_initcall);
1040 
1041 static void __device_links_supplier_defer_sync(struct device *sup)
1042 {
1043 	if (list_empty(&sup->links.defer_hook) && dev_has_sync_state(sup))
1044 		list_add_tail(&sup->links.defer_hook, &deferred_sync);
1045 }
1046 
1047 static void device_link_drop_managed(struct device_link *link)
1048 {
1049 	link->flags &= ~DL_FLAG_MANAGED;
1050 	WRITE_ONCE(link->status, DL_STATE_NONE);
1051 	kref_put(&link->kref, __device_link_del);
1052 }
1053 
1054 static ssize_t waiting_for_supplier_show(struct device *dev,
1055 					 struct device_attribute *attr,
1056 					 char *buf)
1057 {
1058 	bool val;
1059 
1060 	device_lock(dev);
1061 	mutex_lock(&wfs_lock);
1062 	val = !list_empty(&dev->links.needs_suppliers)
1063 	      && dev->links.need_for_probe;
1064 	mutex_unlock(&wfs_lock);
1065 	device_unlock(dev);
1066 	return sprintf(buf, "%u\n", val);
1067 }
1068 static DEVICE_ATTR_RO(waiting_for_supplier);
1069 
1070 /**
1071  * device_links_driver_bound - Update device links after probing its driver.
1072  * @dev: Device to update the links for.
1073  *
1074  * The probe has been successful, so update links from this device to any
1075  * consumers by changing their status to "available".
1076  *
1077  * Also change the status of @dev's links to suppliers to "active".
1078  *
1079  * Links without the DL_FLAG_MANAGED flag set are ignored.
1080  */
1081 void device_links_driver_bound(struct device *dev)
1082 {
1083 	struct device_link *link, *ln;
1084 	LIST_HEAD(sync_list);
1085 
1086 	/*
1087 	 * If a device probes successfully, it's expected to have created all
1088 	 * the device links it needs to or make new device links as it needs
1089 	 * them. So, it no longer needs to wait on any suppliers.
1090 	 */
1091 	mutex_lock(&wfs_lock);
1092 	list_del_init(&dev->links.needs_suppliers);
1093 	mutex_unlock(&wfs_lock);
1094 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1095 
1096 	device_links_write_lock();
1097 
1098 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1099 		if (!(link->flags & DL_FLAG_MANAGED))
1100 			continue;
1101 
1102 		/*
1103 		 * Links created during consumer probe may be in the "consumer
1104 		 * probe" state to start with if the supplier is still probing
1105 		 * when they are created and they may become "active" if the
1106 		 * consumer probe returns first.  Skip them here.
1107 		 */
1108 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1109 		    link->status == DL_STATE_ACTIVE)
1110 			continue;
1111 
1112 		WARN_ON(link->status != DL_STATE_DORMANT);
1113 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1114 
1115 		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1116 			driver_deferred_probe_add(link->consumer);
1117 	}
1118 
1119 	if (defer_sync_state_count)
1120 		__device_links_supplier_defer_sync(dev);
1121 	else
1122 		__device_links_queue_sync_state(dev, &sync_list);
1123 
1124 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1125 		struct device *supplier;
1126 
1127 		if (!(link->flags & DL_FLAG_MANAGED))
1128 			continue;
1129 
1130 		supplier = link->supplier;
1131 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1132 			/*
1133 			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1134 			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1135 			 * save to drop the managed link completely.
1136 			 */
1137 			device_link_drop_managed(link);
1138 		} else {
1139 			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1140 			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1141 		}
1142 
1143 		/*
1144 		 * This needs to be done even for the deleted
1145 		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1146 		 * device link that was preventing the supplier from getting a
1147 		 * sync_state() call.
1148 		 */
1149 		if (defer_sync_state_count)
1150 			__device_links_supplier_defer_sync(supplier);
1151 		else
1152 			__device_links_queue_sync_state(supplier, &sync_list);
1153 	}
1154 
1155 	dev->links.status = DL_DEV_DRIVER_BOUND;
1156 
1157 	device_links_write_unlock();
1158 
1159 	device_links_flush_sync_list(&sync_list, dev);
1160 }
1161 
1162 /**
1163  * __device_links_no_driver - Update links of a device without a driver.
1164  * @dev: Device without a drvier.
1165  *
1166  * Delete all non-persistent links from this device to any suppliers.
1167  *
1168  * Persistent links stay around, but their status is changed to "available",
1169  * unless they already are in the "supplier unbind in progress" state in which
1170  * case they need not be updated.
1171  *
1172  * Links without the DL_FLAG_MANAGED flag set are ignored.
1173  */
1174 static void __device_links_no_driver(struct device *dev)
1175 {
1176 	struct device_link *link, *ln;
1177 
1178 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1179 		if (!(link->flags & DL_FLAG_MANAGED))
1180 			continue;
1181 
1182 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1183 			device_link_drop_managed(link);
1184 			continue;
1185 		}
1186 
1187 		if (link->status != DL_STATE_CONSUMER_PROBE &&
1188 		    link->status != DL_STATE_ACTIVE)
1189 			continue;
1190 
1191 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1192 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1193 		} else {
1194 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1195 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1196 		}
1197 	}
1198 
1199 	dev->links.status = DL_DEV_NO_DRIVER;
1200 }
1201 
1202 /**
1203  * device_links_no_driver - Update links after failing driver probe.
1204  * @dev: Device whose driver has just failed to probe.
1205  *
1206  * Clean up leftover links to consumers for @dev and invoke
1207  * %__device_links_no_driver() to update links to suppliers for it as
1208  * appropriate.
1209  *
1210  * Links without the DL_FLAG_MANAGED flag set are ignored.
1211  */
1212 void device_links_no_driver(struct device *dev)
1213 {
1214 	struct device_link *link;
1215 
1216 	device_links_write_lock();
1217 
1218 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1219 		if (!(link->flags & DL_FLAG_MANAGED))
1220 			continue;
1221 
1222 		/*
1223 		 * The probe has failed, so if the status of the link is
1224 		 * "consumer probe" or "active", it must have been added by
1225 		 * a probing consumer while this device was still probing.
1226 		 * Change its state to "dormant", as it represents a valid
1227 		 * relationship, but it is not functionally meaningful.
1228 		 */
1229 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1230 		    link->status == DL_STATE_ACTIVE)
1231 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1232 	}
1233 
1234 	__device_links_no_driver(dev);
1235 
1236 	device_links_write_unlock();
1237 }
1238 
1239 /**
1240  * device_links_driver_cleanup - Update links after driver removal.
1241  * @dev: Device whose driver has just gone away.
1242  *
1243  * Update links to consumers for @dev by changing their status to "dormant" and
1244  * invoke %__device_links_no_driver() to update links to suppliers for it as
1245  * appropriate.
1246  *
1247  * Links without the DL_FLAG_MANAGED flag set are ignored.
1248  */
1249 void device_links_driver_cleanup(struct device *dev)
1250 {
1251 	struct device_link *link, *ln;
1252 
1253 	device_links_write_lock();
1254 
1255 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1256 		if (!(link->flags & DL_FLAG_MANAGED))
1257 			continue;
1258 
1259 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1260 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1261 
1262 		/*
1263 		 * autoremove the links between this @dev and its consumer
1264 		 * devices that are not active, i.e. where the link state
1265 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1266 		 */
1267 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1268 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1269 			device_link_drop_managed(link);
1270 
1271 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1272 	}
1273 
1274 	list_del_init(&dev->links.defer_hook);
1275 	__device_links_no_driver(dev);
1276 
1277 	device_links_write_unlock();
1278 }
1279 
1280 /**
1281  * device_links_busy - Check if there are any busy links to consumers.
1282  * @dev: Device to check.
1283  *
1284  * Check each consumer of the device and return 'true' if its link's status
1285  * is one of "consumer probe" or "active" (meaning that the given consumer is
1286  * probing right now or its driver is present).  Otherwise, change the link
1287  * state to "supplier unbind" to prevent the consumer from being probed
1288  * successfully going forward.
1289  *
1290  * Return 'false' if there are no probing or active consumers.
1291  *
1292  * Links without the DL_FLAG_MANAGED flag set are ignored.
1293  */
1294 bool device_links_busy(struct device *dev)
1295 {
1296 	struct device_link *link;
1297 	bool ret = false;
1298 
1299 	device_links_write_lock();
1300 
1301 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1302 		if (!(link->flags & DL_FLAG_MANAGED))
1303 			continue;
1304 
1305 		if (link->status == DL_STATE_CONSUMER_PROBE
1306 		    || link->status == DL_STATE_ACTIVE) {
1307 			ret = true;
1308 			break;
1309 		}
1310 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1311 	}
1312 
1313 	dev->links.status = DL_DEV_UNBINDING;
1314 
1315 	device_links_write_unlock();
1316 	return ret;
1317 }
1318 
1319 /**
1320  * device_links_unbind_consumers - Force unbind consumers of the given device.
1321  * @dev: Device to unbind the consumers of.
1322  *
1323  * Walk the list of links to consumers for @dev and if any of them is in the
1324  * "consumer probe" state, wait for all device probes in progress to complete
1325  * and start over.
1326  *
1327  * If that's not the case, change the status of the link to "supplier unbind"
1328  * and check if the link was in the "active" state.  If so, force the consumer
1329  * driver to unbind and start over (the consumer will not re-probe as we have
1330  * changed the state of the link already).
1331  *
1332  * Links without the DL_FLAG_MANAGED flag set are ignored.
1333  */
1334 void device_links_unbind_consumers(struct device *dev)
1335 {
1336 	struct device_link *link;
1337 
1338  start:
1339 	device_links_write_lock();
1340 
1341 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1342 		enum device_link_state status;
1343 
1344 		if (!(link->flags & DL_FLAG_MANAGED) ||
1345 		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1346 			continue;
1347 
1348 		status = link->status;
1349 		if (status == DL_STATE_CONSUMER_PROBE) {
1350 			device_links_write_unlock();
1351 
1352 			wait_for_device_probe();
1353 			goto start;
1354 		}
1355 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1356 		if (status == DL_STATE_ACTIVE) {
1357 			struct device *consumer = link->consumer;
1358 
1359 			get_device(consumer);
1360 
1361 			device_links_write_unlock();
1362 
1363 			device_release_driver_internal(consumer, NULL,
1364 						       consumer->parent);
1365 			put_device(consumer);
1366 			goto start;
1367 		}
1368 	}
1369 
1370 	device_links_write_unlock();
1371 }
1372 
1373 /**
1374  * device_links_purge - Delete existing links to other devices.
1375  * @dev: Target device.
1376  */
1377 static void device_links_purge(struct device *dev)
1378 {
1379 	struct device_link *link, *ln;
1380 
1381 	if (dev->class == &devlink_class)
1382 		return;
1383 
1384 	mutex_lock(&wfs_lock);
1385 	list_del(&dev->links.needs_suppliers);
1386 	mutex_unlock(&wfs_lock);
1387 
1388 	/*
1389 	 * Delete all of the remaining links from this device to any other
1390 	 * devices (either consumers or suppliers).
1391 	 */
1392 	device_links_write_lock();
1393 
1394 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1395 		WARN_ON(link->status == DL_STATE_ACTIVE);
1396 		__device_link_del(&link->kref);
1397 	}
1398 
1399 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1400 		WARN_ON(link->status != DL_STATE_DORMANT &&
1401 			link->status != DL_STATE_NONE);
1402 		__device_link_del(&link->kref);
1403 	}
1404 
1405 	device_links_write_unlock();
1406 }
1407 
1408 static u32 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
1409 static int __init fw_devlink_setup(char *arg)
1410 {
1411 	if (!arg)
1412 		return -EINVAL;
1413 
1414 	if (strcmp(arg, "off") == 0) {
1415 		fw_devlink_flags = 0;
1416 	} else if (strcmp(arg, "permissive") == 0) {
1417 		fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
1418 	} else if (strcmp(arg, "on") == 0) {
1419 		fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER;
1420 	} else if (strcmp(arg, "rpm") == 0) {
1421 		fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER |
1422 				   DL_FLAG_PM_RUNTIME;
1423 	}
1424 	return 0;
1425 }
1426 early_param("fw_devlink", fw_devlink_setup);
1427 
1428 u32 fw_devlink_get_flags(void)
1429 {
1430 	return fw_devlink_flags;
1431 }
1432 
1433 static bool fw_devlink_is_permissive(void)
1434 {
1435 	return fw_devlink_flags == DL_FLAG_SYNC_STATE_ONLY;
1436 }
1437 
1438 static void fw_devlink_link_device(struct device *dev)
1439 {
1440 	int fw_ret;
1441 
1442 	if (!fw_devlink_flags)
1443 		return;
1444 
1445 	mutex_lock(&defer_fw_devlink_lock);
1446 	if (!defer_fw_devlink_count)
1447 		device_link_add_missing_supplier_links();
1448 
1449 	/*
1450 	 * The device's fwnode not having add_links() doesn't affect if other
1451 	 * consumers can find this device as a supplier.  So, this check is
1452 	 * intentionally placed after device_link_add_missing_supplier_links().
1453 	 */
1454 	if (!fwnode_has_op(dev->fwnode, add_links))
1455 		goto out;
1456 
1457 	/*
1458 	 * If fw_devlink is being deferred, assume all devices have mandatory
1459 	 * suppliers they need to link to later. Then, when the fw_devlink is
1460 	 * resumed, all these devices will get a chance to try and link to any
1461 	 * suppliers they have.
1462 	 */
1463 	if (!defer_fw_devlink_count) {
1464 		fw_ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
1465 		if (fw_ret == -ENODEV && fw_devlink_is_permissive())
1466 			fw_ret = -EAGAIN;
1467 	} else {
1468 		fw_ret = -ENODEV;
1469 		/*
1470 		 * defer_hook is not used to add device to deferred_sync list
1471 		 * until device is bound. Since deferred fw devlink also blocks
1472 		 * probing, same list hook can be used for deferred_fw_devlink.
1473 		 */
1474 		list_add_tail(&dev->links.defer_hook, &deferred_fw_devlink);
1475 	}
1476 
1477 	if (fw_ret == -ENODEV)
1478 		device_link_wait_for_mandatory_supplier(dev);
1479 	else if (fw_ret)
1480 		device_link_wait_for_optional_supplier(dev);
1481 
1482 out:
1483 	mutex_unlock(&defer_fw_devlink_lock);
1484 }
1485 
1486 /**
1487  * fw_devlink_pause - Pause parsing of fwnode to create device links
1488  *
1489  * Calling this function defers any fwnode parsing to create device links until
1490  * fw_devlink_resume() is called. Both these functions are ref counted and the
1491  * caller needs to match the calls.
1492  *
1493  * While fw_devlink is paused:
1494  * - Any device that is added won't have its fwnode parsed to create device
1495  *   links.
1496  * - The probe of the device will also be deferred during this period.
1497  * - Any devices that were already added, but waiting for suppliers won't be
1498  *   able to link to newly added devices.
1499  *
1500  * Once fw_devlink_resume():
1501  * - All the fwnodes that was not parsed will be parsed.
1502  * - All the devices that were deferred probing will be reattempted if they
1503  *   aren't waiting for any more suppliers.
1504  *
1505  * This pair of functions, is mainly meant to optimize the parsing of fwnodes
1506  * when a lot of devices that need to link to each other are added in a short
1507  * interval of time. For example, adding all the top level devices in a system.
1508  *
1509  * For example, if N devices are added and:
1510  * - All the consumers are added before their suppliers
1511  * - All the suppliers of the N devices are part of the N devices
1512  *
1513  * Then:
1514  *
1515  * - With the use of fw_devlink_pause() and fw_devlink_resume(), each device
1516  *   will only need one parsing of its fwnode because it is guaranteed to find
1517  *   all the supplier devices already registered and ready to link to. It won't
1518  *   have to do another pass later to find one or more suppliers it couldn't
1519  *   find in the first parse of the fwnode. So, we'll only need O(N) fwnode
1520  *   parses.
1521  *
1522  * - Without the use of fw_devlink_pause() and fw_devlink_resume(), we would
1523  *   end up doing O(N^2) parses of fwnodes because every device that's added is
1524  *   guaranteed to trigger a parse of the fwnode of every device added before
1525  *   it. This O(N^2) parse is made worse by the fact that when a fwnode of a
1526  *   device is parsed, all it descendant devices might need to have their
1527  *   fwnodes parsed too (even if the devices themselves aren't added).
1528  */
1529 void fw_devlink_pause(void)
1530 {
1531 	mutex_lock(&defer_fw_devlink_lock);
1532 	defer_fw_devlink_count++;
1533 	mutex_unlock(&defer_fw_devlink_lock);
1534 }
1535 
1536 /** fw_devlink_resume - Resume parsing of fwnode to create device links
1537  *
1538  * This function is used in conjunction with fw_devlink_pause() and is ref
1539  * counted. See documentation for fw_devlink_pause() for more details.
1540  */
1541 void fw_devlink_resume(void)
1542 {
1543 	struct device *dev, *tmp;
1544 	LIST_HEAD(probe_list);
1545 
1546 	mutex_lock(&defer_fw_devlink_lock);
1547 	if (!defer_fw_devlink_count) {
1548 		WARN(true, "Unmatched fw_devlink pause/resume!");
1549 		goto out;
1550 	}
1551 
1552 	defer_fw_devlink_count--;
1553 	if (defer_fw_devlink_count)
1554 		goto out;
1555 
1556 	device_link_add_missing_supplier_links();
1557 	list_splice_tail_init(&deferred_fw_devlink, &probe_list);
1558 out:
1559 	mutex_unlock(&defer_fw_devlink_lock);
1560 
1561 	/*
1562 	 * bus_probe_device() can cause new devices to get added and they'll
1563 	 * try to grab defer_fw_devlink_lock. So, this needs to be done outside
1564 	 * the defer_fw_devlink_lock.
1565 	 */
1566 	list_for_each_entry_safe(dev, tmp, &probe_list, links.defer_hook) {
1567 		list_del_init(&dev->links.defer_hook);
1568 		bus_probe_device(dev);
1569 	}
1570 }
1571 /* Device links support end. */
1572 
1573 int (*platform_notify)(struct device *dev) = NULL;
1574 int (*platform_notify_remove)(struct device *dev) = NULL;
1575 static struct kobject *dev_kobj;
1576 struct kobject *sysfs_dev_char_kobj;
1577 struct kobject *sysfs_dev_block_kobj;
1578 
1579 static DEFINE_MUTEX(device_hotplug_lock);
1580 
1581 void lock_device_hotplug(void)
1582 {
1583 	mutex_lock(&device_hotplug_lock);
1584 }
1585 
1586 void unlock_device_hotplug(void)
1587 {
1588 	mutex_unlock(&device_hotplug_lock);
1589 }
1590 
1591 int lock_device_hotplug_sysfs(void)
1592 {
1593 	if (mutex_trylock(&device_hotplug_lock))
1594 		return 0;
1595 
1596 	/* Avoid busy looping (5 ms of sleep should do). */
1597 	msleep(5);
1598 	return restart_syscall();
1599 }
1600 
1601 #ifdef CONFIG_BLOCK
1602 static inline int device_is_not_partition(struct device *dev)
1603 {
1604 	return !(dev->type == &part_type);
1605 }
1606 #else
1607 static inline int device_is_not_partition(struct device *dev)
1608 {
1609 	return 1;
1610 }
1611 #endif
1612 
1613 static int
1614 device_platform_notify(struct device *dev, enum kobject_action action)
1615 {
1616 	int ret;
1617 
1618 	ret = acpi_platform_notify(dev, action);
1619 	if (ret)
1620 		return ret;
1621 
1622 	ret = software_node_notify(dev, action);
1623 	if (ret)
1624 		return ret;
1625 
1626 	if (platform_notify && action == KOBJ_ADD)
1627 		platform_notify(dev);
1628 	else if (platform_notify_remove && action == KOBJ_REMOVE)
1629 		platform_notify_remove(dev);
1630 	return 0;
1631 }
1632 
1633 /**
1634  * dev_driver_string - Return a device's driver name, if at all possible
1635  * @dev: struct device to get the name of
1636  *
1637  * Will return the device's driver's name if it is bound to a device.  If
1638  * the device is not bound to a driver, it will return the name of the bus
1639  * it is attached to.  If it is not attached to a bus either, an empty
1640  * string will be returned.
1641  */
1642 const char *dev_driver_string(const struct device *dev)
1643 {
1644 	struct device_driver *drv;
1645 
1646 	/* dev->driver can change to NULL underneath us because of unbinding,
1647 	 * so be careful about accessing it.  dev->bus and dev->class should
1648 	 * never change once they are set, so they don't need special care.
1649 	 */
1650 	drv = READ_ONCE(dev->driver);
1651 	return drv ? drv->name :
1652 			(dev->bus ? dev->bus->name :
1653 			(dev->class ? dev->class->name : ""));
1654 }
1655 EXPORT_SYMBOL(dev_driver_string);
1656 
1657 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
1658 
1659 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
1660 			     char *buf)
1661 {
1662 	struct device_attribute *dev_attr = to_dev_attr(attr);
1663 	struct device *dev = kobj_to_dev(kobj);
1664 	ssize_t ret = -EIO;
1665 
1666 	if (dev_attr->show)
1667 		ret = dev_attr->show(dev, dev_attr, buf);
1668 	if (ret >= (ssize_t)PAGE_SIZE) {
1669 		printk("dev_attr_show: %pS returned bad count\n",
1670 				dev_attr->show);
1671 	}
1672 	return ret;
1673 }
1674 
1675 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
1676 			      const char *buf, size_t count)
1677 {
1678 	struct device_attribute *dev_attr = to_dev_attr(attr);
1679 	struct device *dev = kobj_to_dev(kobj);
1680 	ssize_t ret = -EIO;
1681 
1682 	if (dev_attr->store)
1683 		ret = dev_attr->store(dev, dev_attr, buf, count);
1684 	return ret;
1685 }
1686 
1687 static const struct sysfs_ops dev_sysfs_ops = {
1688 	.show	= dev_attr_show,
1689 	.store	= dev_attr_store,
1690 };
1691 
1692 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
1693 
1694 ssize_t device_store_ulong(struct device *dev,
1695 			   struct device_attribute *attr,
1696 			   const char *buf, size_t size)
1697 {
1698 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1699 	int ret;
1700 	unsigned long new;
1701 
1702 	ret = kstrtoul(buf, 0, &new);
1703 	if (ret)
1704 		return ret;
1705 	*(unsigned long *)(ea->var) = new;
1706 	/* Always return full write size even if we didn't consume all */
1707 	return size;
1708 }
1709 EXPORT_SYMBOL_GPL(device_store_ulong);
1710 
1711 ssize_t device_show_ulong(struct device *dev,
1712 			  struct device_attribute *attr,
1713 			  char *buf)
1714 {
1715 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1716 	return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
1717 }
1718 EXPORT_SYMBOL_GPL(device_show_ulong);
1719 
1720 ssize_t device_store_int(struct device *dev,
1721 			 struct device_attribute *attr,
1722 			 const char *buf, size_t size)
1723 {
1724 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1725 	int ret;
1726 	long new;
1727 
1728 	ret = kstrtol(buf, 0, &new);
1729 	if (ret)
1730 		return ret;
1731 
1732 	if (new > INT_MAX || new < INT_MIN)
1733 		return -EINVAL;
1734 	*(int *)(ea->var) = new;
1735 	/* Always return full write size even if we didn't consume all */
1736 	return size;
1737 }
1738 EXPORT_SYMBOL_GPL(device_store_int);
1739 
1740 ssize_t device_show_int(struct device *dev,
1741 			struct device_attribute *attr,
1742 			char *buf)
1743 {
1744 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1745 
1746 	return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
1747 }
1748 EXPORT_SYMBOL_GPL(device_show_int);
1749 
1750 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
1751 			  const char *buf, size_t size)
1752 {
1753 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1754 
1755 	if (strtobool(buf, ea->var) < 0)
1756 		return -EINVAL;
1757 
1758 	return size;
1759 }
1760 EXPORT_SYMBOL_GPL(device_store_bool);
1761 
1762 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
1763 			 char *buf)
1764 {
1765 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1766 
1767 	return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
1768 }
1769 EXPORT_SYMBOL_GPL(device_show_bool);
1770 
1771 /**
1772  * device_release - free device structure.
1773  * @kobj: device's kobject.
1774  *
1775  * This is called once the reference count for the object
1776  * reaches 0. We forward the call to the device's release
1777  * method, which should handle actually freeing the structure.
1778  */
1779 static void device_release(struct kobject *kobj)
1780 {
1781 	struct device *dev = kobj_to_dev(kobj);
1782 	struct device_private *p = dev->p;
1783 
1784 	/*
1785 	 * Some platform devices are driven without driver attached
1786 	 * and managed resources may have been acquired.  Make sure
1787 	 * all resources are released.
1788 	 *
1789 	 * Drivers still can add resources into device after device
1790 	 * is deleted but alive, so release devres here to avoid
1791 	 * possible memory leak.
1792 	 */
1793 	devres_release_all(dev);
1794 
1795 	kfree(dev->dma_range_map);
1796 
1797 	if (dev->release)
1798 		dev->release(dev);
1799 	else if (dev->type && dev->type->release)
1800 		dev->type->release(dev);
1801 	else if (dev->class && dev->class->dev_release)
1802 		dev->class->dev_release(dev);
1803 	else
1804 		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
1805 			dev_name(dev));
1806 	kfree(p);
1807 }
1808 
1809 static const void *device_namespace(struct kobject *kobj)
1810 {
1811 	struct device *dev = kobj_to_dev(kobj);
1812 	const void *ns = NULL;
1813 
1814 	if (dev->class && dev->class->ns_type)
1815 		ns = dev->class->namespace(dev);
1816 
1817 	return ns;
1818 }
1819 
1820 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
1821 {
1822 	struct device *dev = kobj_to_dev(kobj);
1823 
1824 	if (dev->class && dev->class->get_ownership)
1825 		dev->class->get_ownership(dev, uid, gid);
1826 }
1827 
1828 static struct kobj_type device_ktype = {
1829 	.release	= device_release,
1830 	.sysfs_ops	= &dev_sysfs_ops,
1831 	.namespace	= device_namespace,
1832 	.get_ownership	= device_get_ownership,
1833 };
1834 
1835 
1836 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
1837 {
1838 	struct kobj_type *ktype = get_ktype(kobj);
1839 
1840 	if (ktype == &device_ktype) {
1841 		struct device *dev = kobj_to_dev(kobj);
1842 		if (dev->bus)
1843 			return 1;
1844 		if (dev->class)
1845 			return 1;
1846 	}
1847 	return 0;
1848 }
1849 
1850 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
1851 {
1852 	struct device *dev = kobj_to_dev(kobj);
1853 
1854 	if (dev->bus)
1855 		return dev->bus->name;
1856 	if (dev->class)
1857 		return dev->class->name;
1858 	return NULL;
1859 }
1860 
1861 static int dev_uevent(struct kset *kset, struct kobject *kobj,
1862 		      struct kobj_uevent_env *env)
1863 {
1864 	struct device *dev = kobj_to_dev(kobj);
1865 	int retval = 0;
1866 
1867 	/* add device node properties if present */
1868 	if (MAJOR(dev->devt)) {
1869 		const char *tmp;
1870 		const char *name;
1871 		umode_t mode = 0;
1872 		kuid_t uid = GLOBAL_ROOT_UID;
1873 		kgid_t gid = GLOBAL_ROOT_GID;
1874 
1875 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
1876 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
1877 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
1878 		if (name) {
1879 			add_uevent_var(env, "DEVNAME=%s", name);
1880 			if (mode)
1881 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
1882 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
1883 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
1884 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
1885 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
1886 			kfree(tmp);
1887 		}
1888 	}
1889 
1890 	if (dev->type && dev->type->name)
1891 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
1892 
1893 	if (dev->driver)
1894 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
1895 
1896 	/* Add common DT information about the device */
1897 	of_device_uevent(dev, env);
1898 
1899 	/* have the bus specific function add its stuff */
1900 	if (dev->bus && dev->bus->uevent) {
1901 		retval = dev->bus->uevent(dev, env);
1902 		if (retval)
1903 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
1904 				 dev_name(dev), __func__, retval);
1905 	}
1906 
1907 	/* have the class specific function add its stuff */
1908 	if (dev->class && dev->class->dev_uevent) {
1909 		retval = dev->class->dev_uevent(dev, env);
1910 		if (retval)
1911 			pr_debug("device: '%s': %s: class uevent() "
1912 				 "returned %d\n", dev_name(dev),
1913 				 __func__, retval);
1914 	}
1915 
1916 	/* have the device type specific function add its stuff */
1917 	if (dev->type && dev->type->uevent) {
1918 		retval = dev->type->uevent(dev, env);
1919 		if (retval)
1920 			pr_debug("device: '%s': %s: dev_type uevent() "
1921 				 "returned %d\n", dev_name(dev),
1922 				 __func__, retval);
1923 	}
1924 
1925 	return retval;
1926 }
1927 
1928 static const struct kset_uevent_ops device_uevent_ops = {
1929 	.filter =	dev_uevent_filter,
1930 	.name =		dev_uevent_name,
1931 	.uevent =	dev_uevent,
1932 };
1933 
1934 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
1935 			   char *buf)
1936 {
1937 	struct kobject *top_kobj;
1938 	struct kset *kset;
1939 	struct kobj_uevent_env *env = NULL;
1940 	int i;
1941 	size_t count = 0;
1942 	int retval;
1943 
1944 	/* search the kset, the device belongs to */
1945 	top_kobj = &dev->kobj;
1946 	while (!top_kobj->kset && top_kobj->parent)
1947 		top_kobj = top_kobj->parent;
1948 	if (!top_kobj->kset)
1949 		goto out;
1950 
1951 	kset = top_kobj->kset;
1952 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
1953 		goto out;
1954 
1955 	/* respect filter */
1956 	if (kset->uevent_ops && kset->uevent_ops->filter)
1957 		if (!kset->uevent_ops->filter(kset, &dev->kobj))
1958 			goto out;
1959 
1960 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1961 	if (!env)
1962 		return -ENOMEM;
1963 
1964 	/* let the kset specific function add its keys */
1965 	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
1966 	if (retval)
1967 		goto out;
1968 
1969 	/* copy keys to file */
1970 	for (i = 0; i < env->envp_idx; i++)
1971 		count += sprintf(&buf[count], "%s\n", env->envp[i]);
1972 out:
1973 	kfree(env);
1974 	return count;
1975 }
1976 
1977 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
1978 			    const char *buf, size_t count)
1979 {
1980 	int rc;
1981 
1982 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
1983 
1984 	if (rc) {
1985 		dev_err(dev, "uevent: failed to send synthetic uevent\n");
1986 		return rc;
1987 	}
1988 
1989 	return count;
1990 }
1991 static DEVICE_ATTR_RW(uevent);
1992 
1993 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1994 			   char *buf)
1995 {
1996 	bool val;
1997 
1998 	device_lock(dev);
1999 	val = !dev->offline;
2000 	device_unlock(dev);
2001 	return sprintf(buf, "%u\n", val);
2002 }
2003 
2004 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2005 			    const char *buf, size_t count)
2006 {
2007 	bool val;
2008 	int ret;
2009 
2010 	ret = strtobool(buf, &val);
2011 	if (ret < 0)
2012 		return ret;
2013 
2014 	ret = lock_device_hotplug_sysfs();
2015 	if (ret)
2016 		return ret;
2017 
2018 	ret = val ? device_online(dev) : device_offline(dev);
2019 	unlock_device_hotplug();
2020 	return ret < 0 ? ret : count;
2021 }
2022 static DEVICE_ATTR_RW(online);
2023 
2024 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2025 {
2026 	return sysfs_create_groups(&dev->kobj, groups);
2027 }
2028 EXPORT_SYMBOL_GPL(device_add_groups);
2029 
2030 void device_remove_groups(struct device *dev,
2031 			  const struct attribute_group **groups)
2032 {
2033 	sysfs_remove_groups(&dev->kobj, groups);
2034 }
2035 EXPORT_SYMBOL_GPL(device_remove_groups);
2036 
2037 union device_attr_group_devres {
2038 	const struct attribute_group *group;
2039 	const struct attribute_group **groups;
2040 };
2041 
2042 static int devm_attr_group_match(struct device *dev, void *res, void *data)
2043 {
2044 	return ((union device_attr_group_devres *)res)->group == data;
2045 }
2046 
2047 static void devm_attr_group_remove(struct device *dev, void *res)
2048 {
2049 	union device_attr_group_devres *devres = res;
2050 	const struct attribute_group *group = devres->group;
2051 
2052 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2053 	sysfs_remove_group(&dev->kobj, group);
2054 }
2055 
2056 static void devm_attr_groups_remove(struct device *dev, void *res)
2057 {
2058 	union device_attr_group_devres *devres = res;
2059 	const struct attribute_group **groups = devres->groups;
2060 
2061 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2062 	sysfs_remove_groups(&dev->kobj, groups);
2063 }
2064 
2065 /**
2066  * devm_device_add_group - given a device, create a managed attribute group
2067  * @dev:	The device to create the group for
2068  * @grp:	The attribute group to create
2069  *
2070  * This function creates a group for the first time.  It will explicitly
2071  * warn and error if any of the attribute files being created already exist.
2072  *
2073  * Returns 0 on success or error code on failure.
2074  */
2075 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2076 {
2077 	union device_attr_group_devres *devres;
2078 	int error;
2079 
2080 	devres = devres_alloc(devm_attr_group_remove,
2081 			      sizeof(*devres), GFP_KERNEL);
2082 	if (!devres)
2083 		return -ENOMEM;
2084 
2085 	error = sysfs_create_group(&dev->kobj, grp);
2086 	if (error) {
2087 		devres_free(devres);
2088 		return error;
2089 	}
2090 
2091 	devres->group = grp;
2092 	devres_add(dev, devres);
2093 	return 0;
2094 }
2095 EXPORT_SYMBOL_GPL(devm_device_add_group);
2096 
2097 /**
2098  * devm_device_remove_group: remove a managed group from a device
2099  * @dev:	device to remove the group from
2100  * @grp:	group to remove
2101  *
2102  * This function removes a group of attributes from a device. The attributes
2103  * previously have to have been created for this group, otherwise it will fail.
2104  */
2105 void devm_device_remove_group(struct device *dev,
2106 			      const struct attribute_group *grp)
2107 {
2108 	WARN_ON(devres_release(dev, devm_attr_group_remove,
2109 			       devm_attr_group_match,
2110 			       /* cast away const */ (void *)grp));
2111 }
2112 EXPORT_SYMBOL_GPL(devm_device_remove_group);
2113 
2114 /**
2115  * devm_device_add_groups - create a bunch of managed attribute groups
2116  * @dev:	The device to create the group for
2117  * @groups:	The attribute groups to create, NULL terminated
2118  *
2119  * This function creates a bunch of managed attribute groups.  If an error
2120  * occurs when creating a group, all previously created groups will be
2121  * removed, unwinding everything back to the original state when this
2122  * function was called.  It will explicitly warn and error if any of the
2123  * attribute files being created already exist.
2124  *
2125  * Returns 0 on success or error code from sysfs_create_group on failure.
2126  */
2127 int devm_device_add_groups(struct device *dev,
2128 			   const struct attribute_group **groups)
2129 {
2130 	union device_attr_group_devres *devres;
2131 	int error;
2132 
2133 	devres = devres_alloc(devm_attr_groups_remove,
2134 			      sizeof(*devres), GFP_KERNEL);
2135 	if (!devres)
2136 		return -ENOMEM;
2137 
2138 	error = sysfs_create_groups(&dev->kobj, groups);
2139 	if (error) {
2140 		devres_free(devres);
2141 		return error;
2142 	}
2143 
2144 	devres->groups = groups;
2145 	devres_add(dev, devres);
2146 	return 0;
2147 }
2148 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2149 
2150 /**
2151  * devm_device_remove_groups - remove a list of managed groups
2152  *
2153  * @dev:	The device for the groups to be removed from
2154  * @groups:	NULL terminated list of groups to be removed
2155  *
2156  * If groups is not NULL, remove the specified groups from the device.
2157  */
2158 void devm_device_remove_groups(struct device *dev,
2159 			       const struct attribute_group **groups)
2160 {
2161 	WARN_ON(devres_release(dev, devm_attr_groups_remove,
2162 			       devm_attr_group_match,
2163 			       /* cast away const */ (void *)groups));
2164 }
2165 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2166 
2167 static int device_add_attrs(struct device *dev)
2168 {
2169 	struct class *class = dev->class;
2170 	const struct device_type *type = dev->type;
2171 	int error;
2172 
2173 	if (class) {
2174 		error = device_add_groups(dev, class->dev_groups);
2175 		if (error)
2176 			return error;
2177 	}
2178 
2179 	if (type) {
2180 		error = device_add_groups(dev, type->groups);
2181 		if (error)
2182 			goto err_remove_class_groups;
2183 	}
2184 
2185 	error = device_add_groups(dev, dev->groups);
2186 	if (error)
2187 		goto err_remove_type_groups;
2188 
2189 	if (device_supports_offline(dev) && !dev->offline_disabled) {
2190 		error = device_create_file(dev, &dev_attr_online);
2191 		if (error)
2192 			goto err_remove_dev_groups;
2193 	}
2194 
2195 	if (fw_devlink_flags && !fw_devlink_is_permissive()) {
2196 		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2197 		if (error)
2198 			goto err_remove_dev_online;
2199 	}
2200 
2201 	return 0;
2202 
2203  err_remove_dev_online:
2204 	device_remove_file(dev, &dev_attr_online);
2205  err_remove_dev_groups:
2206 	device_remove_groups(dev, dev->groups);
2207  err_remove_type_groups:
2208 	if (type)
2209 		device_remove_groups(dev, type->groups);
2210  err_remove_class_groups:
2211 	if (class)
2212 		device_remove_groups(dev, class->dev_groups);
2213 
2214 	return error;
2215 }
2216 
2217 static void device_remove_attrs(struct device *dev)
2218 {
2219 	struct class *class = dev->class;
2220 	const struct device_type *type = dev->type;
2221 
2222 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2223 	device_remove_file(dev, &dev_attr_online);
2224 	device_remove_groups(dev, dev->groups);
2225 
2226 	if (type)
2227 		device_remove_groups(dev, type->groups);
2228 
2229 	if (class)
2230 		device_remove_groups(dev, class->dev_groups);
2231 }
2232 
2233 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2234 			char *buf)
2235 {
2236 	return print_dev_t(buf, dev->devt);
2237 }
2238 static DEVICE_ATTR_RO(dev);
2239 
2240 /* /sys/devices/ */
2241 struct kset *devices_kset;
2242 
2243 /**
2244  * devices_kset_move_before - Move device in the devices_kset's list.
2245  * @deva: Device to move.
2246  * @devb: Device @deva should come before.
2247  */
2248 static void devices_kset_move_before(struct device *deva, struct device *devb)
2249 {
2250 	if (!devices_kset)
2251 		return;
2252 	pr_debug("devices_kset: Moving %s before %s\n",
2253 		 dev_name(deva), dev_name(devb));
2254 	spin_lock(&devices_kset->list_lock);
2255 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2256 	spin_unlock(&devices_kset->list_lock);
2257 }
2258 
2259 /**
2260  * devices_kset_move_after - Move device in the devices_kset's list.
2261  * @deva: Device to move
2262  * @devb: Device @deva should come after.
2263  */
2264 static void devices_kset_move_after(struct device *deva, struct device *devb)
2265 {
2266 	if (!devices_kset)
2267 		return;
2268 	pr_debug("devices_kset: Moving %s after %s\n",
2269 		 dev_name(deva), dev_name(devb));
2270 	spin_lock(&devices_kset->list_lock);
2271 	list_move(&deva->kobj.entry, &devb->kobj.entry);
2272 	spin_unlock(&devices_kset->list_lock);
2273 }
2274 
2275 /**
2276  * devices_kset_move_last - move the device to the end of devices_kset's list.
2277  * @dev: device to move
2278  */
2279 void devices_kset_move_last(struct device *dev)
2280 {
2281 	if (!devices_kset)
2282 		return;
2283 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2284 	spin_lock(&devices_kset->list_lock);
2285 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
2286 	spin_unlock(&devices_kset->list_lock);
2287 }
2288 
2289 /**
2290  * device_create_file - create sysfs attribute file for device.
2291  * @dev: device.
2292  * @attr: device attribute descriptor.
2293  */
2294 int device_create_file(struct device *dev,
2295 		       const struct device_attribute *attr)
2296 {
2297 	int error = 0;
2298 
2299 	if (dev) {
2300 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2301 			"Attribute %s: write permission without 'store'\n",
2302 			attr->attr.name);
2303 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2304 			"Attribute %s: read permission without 'show'\n",
2305 			attr->attr.name);
2306 		error = sysfs_create_file(&dev->kobj, &attr->attr);
2307 	}
2308 
2309 	return error;
2310 }
2311 EXPORT_SYMBOL_GPL(device_create_file);
2312 
2313 /**
2314  * device_remove_file - remove sysfs attribute file.
2315  * @dev: device.
2316  * @attr: device attribute descriptor.
2317  */
2318 void device_remove_file(struct device *dev,
2319 			const struct device_attribute *attr)
2320 {
2321 	if (dev)
2322 		sysfs_remove_file(&dev->kobj, &attr->attr);
2323 }
2324 EXPORT_SYMBOL_GPL(device_remove_file);
2325 
2326 /**
2327  * device_remove_file_self - remove sysfs attribute file from its own method.
2328  * @dev: device.
2329  * @attr: device attribute descriptor.
2330  *
2331  * See kernfs_remove_self() for details.
2332  */
2333 bool device_remove_file_self(struct device *dev,
2334 			     const struct device_attribute *attr)
2335 {
2336 	if (dev)
2337 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2338 	else
2339 		return false;
2340 }
2341 EXPORT_SYMBOL_GPL(device_remove_file_self);
2342 
2343 /**
2344  * device_create_bin_file - create sysfs binary attribute file for device.
2345  * @dev: device.
2346  * @attr: device binary attribute descriptor.
2347  */
2348 int device_create_bin_file(struct device *dev,
2349 			   const struct bin_attribute *attr)
2350 {
2351 	int error = -EINVAL;
2352 	if (dev)
2353 		error = sysfs_create_bin_file(&dev->kobj, attr);
2354 	return error;
2355 }
2356 EXPORT_SYMBOL_GPL(device_create_bin_file);
2357 
2358 /**
2359  * device_remove_bin_file - remove sysfs binary attribute file
2360  * @dev: device.
2361  * @attr: device binary attribute descriptor.
2362  */
2363 void device_remove_bin_file(struct device *dev,
2364 			    const struct bin_attribute *attr)
2365 {
2366 	if (dev)
2367 		sysfs_remove_bin_file(&dev->kobj, attr);
2368 }
2369 EXPORT_SYMBOL_GPL(device_remove_bin_file);
2370 
2371 static void klist_children_get(struct klist_node *n)
2372 {
2373 	struct device_private *p = to_device_private_parent(n);
2374 	struct device *dev = p->device;
2375 
2376 	get_device(dev);
2377 }
2378 
2379 static void klist_children_put(struct klist_node *n)
2380 {
2381 	struct device_private *p = to_device_private_parent(n);
2382 	struct device *dev = p->device;
2383 
2384 	put_device(dev);
2385 }
2386 
2387 /**
2388  * device_initialize - init device structure.
2389  * @dev: device.
2390  *
2391  * This prepares the device for use by other layers by initializing
2392  * its fields.
2393  * It is the first half of device_register(), if called by
2394  * that function, though it can also be called separately, so one
2395  * may use @dev's fields. In particular, get_device()/put_device()
2396  * may be used for reference counting of @dev after calling this
2397  * function.
2398  *
2399  * All fields in @dev must be initialized by the caller to 0, except
2400  * for those explicitly set to some other value.  The simplest
2401  * approach is to use kzalloc() to allocate the structure containing
2402  * @dev.
2403  *
2404  * NOTE: Use put_device() to give up your reference instead of freeing
2405  * @dev directly once you have called this function.
2406  */
2407 void device_initialize(struct device *dev)
2408 {
2409 	dev->kobj.kset = devices_kset;
2410 	kobject_init(&dev->kobj, &device_ktype);
2411 	INIT_LIST_HEAD(&dev->dma_pools);
2412 	mutex_init(&dev->mutex);
2413 #ifdef CONFIG_PROVE_LOCKING
2414 	mutex_init(&dev->lockdep_mutex);
2415 #endif
2416 	lockdep_set_novalidate_class(&dev->mutex);
2417 	spin_lock_init(&dev->devres_lock);
2418 	INIT_LIST_HEAD(&dev->devres_head);
2419 	device_pm_init(dev);
2420 	set_dev_node(dev, -1);
2421 #ifdef CONFIG_GENERIC_MSI_IRQ
2422 	INIT_LIST_HEAD(&dev->msi_list);
2423 #endif
2424 	INIT_LIST_HEAD(&dev->links.consumers);
2425 	INIT_LIST_HEAD(&dev->links.suppliers);
2426 	INIT_LIST_HEAD(&dev->links.needs_suppliers);
2427 	INIT_LIST_HEAD(&dev->links.defer_hook);
2428 	dev->links.status = DL_DEV_NO_DRIVER;
2429 }
2430 EXPORT_SYMBOL_GPL(device_initialize);
2431 
2432 struct kobject *virtual_device_parent(struct device *dev)
2433 {
2434 	static struct kobject *virtual_dir = NULL;
2435 
2436 	if (!virtual_dir)
2437 		virtual_dir = kobject_create_and_add("virtual",
2438 						     &devices_kset->kobj);
2439 
2440 	return virtual_dir;
2441 }
2442 
2443 struct class_dir {
2444 	struct kobject kobj;
2445 	struct class *class;
2446 };
2447 
2448 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2449 
2450 static void class_dir_release(struct kobject *kobj)
2451 {
2452 	struct class_dir *dir = to_class_dir(kobj);
2453 	kfree(dir);
2454 }
2455 
2456 static const
2457 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2458 {
2459 	struct class_dir *dir = to_class_dir(kobj);
2460 	return dir->class->ns_type;
2461 }
2462 
2463 static struct kobj_type class_dir_ktype = {
2464 	.release	= class_dir_release,
2465 	.sysfs_ops	= &kobj_sysfs_ops,
2466 	.child_ns_type	= class_dir_child_ns_type
2467 };
2468 
2469 static struct kobject *
2470 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2471 {
2472 	struct class_dir *dir;
2473 	int retval;
2474 
2475 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2476 	if (!dir)
2477 		return ERR_PTR(-ENOMEM);
2478 
2479 	dir->class = class;
2480 	kobject_init(&dir->kobj, &class_dir_ktype);
2481 
2482 	dir->kobj.kset = &class->p->glue_dirs;
2483 
2484 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2485 	if (retval < 0) {
2486 		kobject_put(&dir->kobj);
2487 		return ERR_PTR(retval);
2488 	}
2489 	return &dir->kobj;
2490 }
2491 
2492 static DEFINE_MUTEX(gdp_mutex);
2493 
2494 static struct kobject *get_device_parent(struct device *dev,
2495 					 struct device *parent)
2496 {
2497 	if (dev->class) {
2498 		struct kobject *kobj = NULL;
2499 		struct kobject *parent_kobj;
2500 		struct kobject *k;
2501 
2502 #ifdef CONFIG_BLOCK
2503 		/* block disks show up in /sys/block */
2504 		if (sysfs_deprecated && dev->class == &block_class) {
2505 			if (parent && parent->class == &block_class)
2506 				return &parent->kobj;
2507 			return &block_class.p->subsys.kobj;
2508 		}
2509 #endif
2510 
2511 		/*
2512 		 * If we have no parent, we live in "virtual".
2513 		 * Class-devices with a non class-device as parent, live
2514 		 * in a "glue" directory to prevent namespace collisions.
2515 		 */
2516 		if (parent == NULL)
2517 			parent_kobj = virtual_device_parent(dev);
2518 		else if (parent->class && !dev->class->ns_type)
2519 			return &parent->kobj;
2520 		else
2521 			parent_kobj = &parent->kobj;
2522 
2523 		mutex_lock(&gdp_mutex);
2524 
2525 		/* find our class-directory at the parent and reference it */
2526 		spin_lock(&dev->class->p->glue_dirs.list_lock);
2527 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2528 			if (k->parent == parent_kobj) {
2529 				kobj = kobject_get(k);
2530 				break;
2531 			}
2532 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
2533 		if (kobj) {
2534 			mutex_unlock(&gdp_mutex);
2535 			return kobj;
2536 		}
2537 
2538 		/* or create a new class-directory at the parent device */
2539 		k = class_dir_create_and_add(dev->class, parent_kobj);
2540 		/* do not emit an uevent for this simple "glue" directory */
2541 		mutex_unlock(&gdp_mutex);
2542 		return k;
2543 	}
2544 
2545 	/* subsystems can specify a default root directory for their devices */
2546 	if (!parent && dev->bus && dev->bus->dev_root)
2547 		return &dev->bus->dev_root->kobj;
2548 
2549 	if (parent)
2550 		return &parent->kobj;
2551 	return NULL;
2552 }
2553 
2554 static inline bool live_in_glue_dir(struct kobject *kobj,
2555 				    struct device *dev)
2556 {
2557 	if (!kobj || !dev->class ||
2558 	    kobj->kset != &dev->class->p->glue_dirs)
2559 		return false;
2560 	return true;
2561 }
2562 
2563 static inline struct kobject *get_glue_dir(struct device *dev)
2564 {
2565 	return dev->kobj.parent;
2566 }
2567 
2568 /*
2569  * make sure cleaning up dir as the last step, we need to make
2570  * sure .release handler of kobject is run with holding the
2571  * global lock
2572  */
2573 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
2574 {
2575 	unsigned int ref;
2576 
2577 	/* see if we live in a "glue" directory */
2578 	if (!live_in_glue_dir(glue_dir, dev))
2579 		return;
2580 
2581 	mutex_lock(&gdp_mutex);
2582 	/**
2583 	 * There is a race condition between removing glue directory
2584 	 * and adding a new device under the glue directory.
2585 	 *
2586 	 * CPU1:                                         CPU2:
2587 	 *
2588 	 * device_add()
2589 	 *   get_device_parent()
2590 	 *     class_dir_create_and_add()
2591 	 *       kobject_add_internal()
2592 	 *         create_dir()    // create glue_dir
2593 	 *
2594 	 *                                               device_add()
2595 	 *                                                 get_device_parent()
2596 	 *                                                   kobject_get() // get glue_dir
2597 	 *
2598 	 * device_del()
2599 	 *   cleanup_glue_dir()
2600 	 *     kobject_del(glue_dir)
2601 	 *
2602 	 *                                               kobject_add()
2603 	 *                                                 kobject_add_internal()
2604 	 *                                                   create_dir() // in glue_dir
2605 	 *                                                     sysfs_create_dir_ns()
2606 	 *                                                       kernfs_create_dir_ns(sd)
2607 	 *
2608 	 *       sysfs_remove_dir() // glue_dir->sd=NULL
2609 	 *       sysfs_put()        // free glue_dir->sd
2610 	 *
2611 	 *                                                         // sd is freed
2612 	 *                                                         kernfs_new_node(sd)
2613 	 *                                                           kernfs_get(glue_dir)
2614 	 *                                                           kernfs_add_one()
2615 	 *                                                           kernfs_put()
2616 	 *
2617 	 * Before CPU1 remove last child device under glue dir, if CPU2 add
2618 	 * a new device under glue dir, the glue_dir kobject reference count
2619 	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
2620 	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
2621 	 * and sysfs_put(). This result in glue_dir->sd is freed.
2622 	 *
2623 	 * Then the CPU2 will see a stale "empty" but still potentially used
2624 	 * glue dir around in kernfs_new_node().
2625 	 *
2626 	 * In order to avoid this happening, we also should make sure that
2627 	 * kernfs_node for glue_dir is released in CPU1 only when refcount
2628 	 * for glue_dir kobj is 1.
2629 	 */
2630 	ref = kref_read(&glue_dir->kref);
2631 	if (!kobject_has_children(glue_dir) && !--ref)
2632 		kobject_del(glue_dir);
2633 	kobject_put(glue_dir);
2634 	mutex_unlock(&gdp_mutex);
2635 }
2636 
2637 static int device_add_class_symlinks(struct device *dev)
2638 {
2639 	struct device_node *of_node = dev_of_node(dev);
2640 	int error;
2641 
2642 	if (of_node) {
2643 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
2644 		if (error)
2645 			dev_warn(dev, "Error %d creating of_node link\n",error);
2646 		/* An error here doesn't warrant bringing down the device */
2647 	}
2648 
2649 	if (!dev->class)
2650 		return 0;
2651 
2652 	error = sysfs_create_link(&dev->kobj,
2653 				  &dev->class->p->subsys.kobj,
2654 				  "subsystem");
2655 	if (error)
2656 		goto out_devnode;
2657 
2658 	if (dev->parent && device_is_not_partition(dev)) {
2659 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
2660 					  "device");
2661 		if (error)
2662 			goto out_subsys;
2663 	}
2664 
2665 #ifdef CONFIG_BLOCK
2666 	/* /sys/block has directories and does not need symlinks */
2667 	if (sysfs_deprecated && dev->class == &block_class)
2668 		return 0;
2669 #endif
2670 
2671 	/* link in the class directory pointing to the device */
2672 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
2673 				  &dev->kobj, dev_name(dev));
2674 	if (error)
2675 		goto out_device;
2676 
2677 	return 0;
2678 
2679 out_device:
2680 	sysfs_remove_link(&dev->kobj, "device");
2681 
2682 out_subsys:
2683 	sysfs_remove_link(&dev->kobj, "subsystem");
2684 out_devnode:
2685 	sysfs_remove_link(&dev->kobj, "of_node");
2686 	return error;
2687 }
2688 
2689 static void device_remove_class_symlinks(struct device *dev)
2690 {
2691 	if (dev_of_node(dev))
2692 		sysfs_remove_link(&dev->kobj, "of_node");
2693 
2694 	if (!dev->class)
2695 		return;
2696 
2697 	if (dev->parent && device_is_not_partition(dev))
2698 		sysfs_remove_link(&dev->kobj, "device");
2699 	sysfs_remove_link(&dev->kobj, "subsystem");
2700 #ifdef CONFIG_BLOCK
2701 	if (sysfs_deprecated && dev->class == &block_class)
2702 		return;
2703 #endif
2704 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
2705 }
2706 
2707 /**
2708  * dev_set_name - set a device name
2709  * @dev: device
2710  * @fmt: format string for the device's name
2711  */
2712 int dev_set_name(struct device *dev, const char *fmt, ...)
2713 {
2714 	va_list vargs;
2715 	int err;
2716 
2717 	va_start(vargs, fmt);
2718 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
2719 	va_end(vargs);
2720 	return err;
2721 }
2722 EXPORT_SYMBOL_GPL(dev_set_name);
2723 
2724 /**
2725  * device_to_dev_kobj - select a /sys/dev/ directory for the device
2726  * @dev: device
2727  *
2728  * By default we select char/ for new entries.  Setting class->dev_obj
2729  * to NULL prevents an entry from being created.  class->dev_kobj must
2730  * be set (or cleared) before any devices are registered to the class
2731  * otherwise device_create_sys_dev_entry() and
2732  * device_remove_sys_dev_entry() will disagree about the presence of
2733  * the link.
2734  */
2735 static struct kobject *device_to_dev_kobj(struct device *dev)
2736 {
2737 	struct kobject *kobj;
2738 
2739 	if (dev->class)
2740 		kobj = dev->class->dev_kobj;
2741 	else
2742 		kobj = sysfs_dev_char_kobj;
2743 
2744 	return kobj;
2745 }
2746 
2747 static int device_create_sys_dev_entry(struct device *dev)
2748 {
2749 	struct kobject *kobj = device_to_dev_kobj(dev);
2750 	int error = 0;
2751 	char devt_str[15];
2752 
2753 	if (kobj) {
2754 		format_dev_t(devt_str, dev->devt);
2755 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
2756 	}
2757 
2758 	return error;
2759 }
2760 
2761 static void device_remove_sys_dev_entry(struct device *dev)
2762 {
2763 	struct kobject *kobj = device_to_dev_kobj(dev);
2764 	char devt_str[15];
2765 
2766 	if (kobj) {
2767 		format_dev_t(devt_str, dev->devt);
2768 		sysfs_remove_link(kobj, devt_str);
2769 	}
2770 }
2771 
2772 static int device_private_init(struct device *dev)
2773 {
2774 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
2775 	if (!dev->p)
2776 		return -ENOMEM;
2777 	dev->p->device = dev;
2778 	klist_init(&dev->p->klist_children, klist_children_get,
2779 		   klist_children_put);
2780 	INIT_LIST_HEAD(&dev->p->deferred_probe);
2781 	return 0;
2782 }
2783 
2784 /**
2785  * device_add - add device to device hierarchy.
2786  * @dev: device.
2787  *
2788  * This is part 2 of device_register(), though may be called
2789  * separately _iff_ device_initialize() has been called separately.
2790  *
2791  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
2792  * to the global and sibling lists for the device, then
2793  * adds it to the other relevant subsystems of the driver model.
2794  *
2795  * Do not call this routine or device_register() more than once for
2796  * any device structure.  The driver model core is not designed to work
2797  * with devices that get unregistered and then spring back to life.
2798  * (Among other things, it's very hard to guarantee that all references
2799  * to the previous incarnation of @dev have been dropped.)  Allocate
2800  * and register a fresh new struct device instead.
2801  *
2802  * NOTE: _Never_ directly free @dev after calling this function, even
2803  * if it returned an error! Always use put_device() to give up your
2804  * reference instead.
2805  *
2806  * Rule of thumb is: if device_add() succeeds, you should call
2807  * device_del() when you want to get rid of it. If device_add() has
2808  * *not* succeeded, use *only* put_device() to drop the reference
2809  * count.
2810  */
2811 int device_add(struct device *dev)
2812 {
2813 	struct device *parent;
2814 	struct kobject *kobj;
2815 	struct class_interface *class_intf;
2816 	int error = -EINVAL;
2817 	struct kobject *glue_dir = NULL;
2818 
2819 	dev = get_device(dev);
2820 	if (!dev)
2821 		goto done;
2822 
2823 	if (!dev->p) {
2824 		error = device_private_init(dev);
2825 		if (error)
2826 			goto done;
2827 	}
2828 
2829 	/*
2830 	 * for statically allocated devices, which should all be converted
2831 	 * some day, we need to initialize the name. We prevent reading back
2832 	 * the name, and force the use of dev_name()
2833 	 */
2834 	if (dev->init_name) {
2835 		dev_set_name(dev, "%s", dev->init_name);
2836 		dev->init_name = NULL;
2837 	}
2838 
2839 	/* subsystems can specify simple device enumeration */
2840 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
2841 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
2842 
2843 	if (!dev_name(dev)) {
2844 		error = -EINVAL;
2845 		goto name_error;
2846 	}
2847 
2848 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2849 
2850 	parent = get_device(dev->parent);
2851 	kobj = get_device_parent(dev, parent);
2852 	if (IS_ERR(kobj)) {
2853 		error = PTR_ERR(kobj);
2854 		goto parent_error;
2855 	}
2856 	if (kobj)
2857 		dev->kobj.parent = kobj;
2858 
2859 	/* use parent numa_node */
2860 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
2861 		set_dev_node(dev, dev_to_node(parent));
2862 
2863 	/* first, register with generic layer. */
2864 	/* we require the name to be set before, and pass NULL */
2865 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
2866 	if (error) {
2867 		glue_dir = get_glue_dir(dev);
2868 		goto Error;
2869 	}
2870 
2871 	/* notify platform of device entry */
2872 	error = device_platform_notify(dev, KOBJ_ADD);
2873 	if (error)
2874 		goto platform_error;
2875 
2876 	error = device_create_file(dev, &dev_attr_uevent);
2877 	if (error)
2878 		goto attrError;
2879 
2880 	error = device_add_class_symlinks(dev);
2881 	if (error)
2882 		goto SymlinkError;
2883 	error = device_add_attrs(dev);
2884 	if (error)
2885 		goto AttrsError;
2886 	error = bus_add_device(dev);
2887 	if (error)
2888 		goto BusError;
2889 	error = dpm_sysfs_add(dev);
2890 	if (error)
2891 		goto DPMError;
2892 	device_pm_add(dev);
2893 
2894 	if (MAJOR(dev->devt)) {
2895 		error = device_create_file(dev, &dev_attr_dev);
2896 		if (error)
2897 			goto DevAttrError;
2898 
2899 		error = device_create_sys_dev_entry(dev);
2900 		if (error)
2901 			goto SysEntryError;
2902 
2903 		devtmpfs_create_node(dev);
2904 	}
2905 
2906 	/* Notify clients of device addition.  This call must come
2907 	 * after dpm_sysfs_add() and before kobject_uevent().
2908 	 */
2909 	if (dev->bus)
2910 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2911 					     BUS_NOTIFY_ADD_DEVICE, dev);
2912 
2913 	kobject_uevent(&dev->kobj, KOBJ_ADD);
2914 
2915 	/*
2916 	 * Check if any of the other devices (consumers) have been waiting for
2917 	 * this device (supplier) to be added so that they can create a device
2918 	 * link to it.
2919 	 *
2920 	 * This needs to happen after device_pm_add() because device_link_add()
2921 	 * requires the supplier be registered before it's called.
2922 	 *
2923 	 * But this also needs to happen before bus_probe_device() to make sure
2924 	 * waiting consumers can link to it before the driver is bound to the
2925 	 * device and the driver sync_state callback is called for this device.
2926 	 */
2927 	if (dev->fwnode && !dev->fwnode->dev) {
2928 		dev->fwnode->dev = dev;
2929 		fw_devlink_link_device(dev);
2930 	}
2931 
2932 	bus_probe_device(dev);
2933 	if (parent)
2934 		klist_add_tail(&dev->p->knode_parent,
2935 			       &parent->p->klist_children);
2936 
2937 	if (dev->class) {
2938 		mutex_lock(&dev->class->p->mutex);
2939 		/* tie the class to the device */
2940 		klist_add_tail(&dev->p->knode_class,
2941 			       &dev->class->p->klist_devices);
2942 
2943 		/* notify any interfaces that the device is here */
2944 		list_for_each_entry(class_intf,
2945 				    &dev->class->p->interfaces, node)
2946 			if (class_intf->add_dev)
2947 				class_intf->add_dev(dev, class_intf);
2948 		mutex_unlock(&dev->class->p->mutex);
2949 	}
2950 done:
2951 	put_device(dev);
2952 	return error;
2953  SysEntryError:
2954 	if (MAJOR(dev->devt))
2955 		device_remove_file(dev, &dev_attr_dev);
2956  DevAttrError:
2957 	device_pm_remove(dev);
2958 	dpm_sysfs_remove(dev);
2959  DPMError:
2960 	bus_remove_device(dev);
2961  BusError:
2962 	device_remove_attrs(dev);
2963  AttrsError:
2964 	device_remove_class_symlinks(dev);
2965  SymlinkError:
2966 	device_remove_file(dev, &dev_attr_uevent);
2967  attrError:
2968 	device_platform_notify(dev, KOBJ_REMOVE);
2969 platform_error:
2970 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2971 	glue_dir = get_glue_dir(dev);
2972 	kobject_del(&dev->kobj);
2973  Error:
2974 	cleanup_glue_dir(dev, glue_dir);
2975 parent_error:
2976 	put_device(parent);
2977 name_error:
2978 	kfree(dev->p);
2979 	dev->p = NULL;
2980 	goto done;
2981 }
2982 EXPORT_SYMBOL_GPL(device_add);
2983 
2984 /**
2985  * device_register - register a device with the system.
2986  * @dev: pointer to the device structure
2987  *
2988  * This happens in two clean steps - initialize the device
2989  * and add it to the system. The two steps can be called
2990  * separately, but this is the easiest and most common.
2991  * I.e. you should only call the two helpers separately if
2992  * have a clearly defined need to use and refcount the device
2993  * before it is added to the hierarchy.
2994  *
2995  * For more information, see the kerneldoc for device_initialize()
2996  * and device_add().
2997  *
2998  * NOTE: _Never_ directly free @dev after calling this function, even
2999  * if it returned an error! Always use put_device() to give up the
3000  * reference initialized in this function instead.
3001  */
3002 int device_register(struct device *dev)
3003 {
3004 	device_initialize(dev);
3005 	return device_add(dev);
3006 }
3007 EXPORT_SYMBOL_GPL(device_register);
3008 
3009 /**
3010  * get_device - increment reference count for device.
3011  * @dev: device.
3012  *
3013  * This simply forwards the call to kobject_get(), though
3014  * we do take care to provide for the case that we get a NULL
3015  * pointer passed in.
3016  */
3017 struct device *get_device(struct device *dev)
3018 {
3019 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3020 }
3021 EXPORT_SYMBOL_GPL(get_device);
3022 
3023 /**
3024  * put_device - decrement reference count.
3025  * @dev: device in question.
3026  */
3027 void put_device(struct device *dev)
3028 {
3029 	/* might_sleep(); */
3030 	if (dev)
3031 		kobject_put(&dev->kobj);
3032 }
3033 EXPORT_SYMBOL_GPL(put_device);
3034 
3035 bool kill_device(struct device *dev)
3036 {
3037 	/*
3038 	 * Require the device lock and set the "dead" flag to guarantee that
3039 	 * the update behavior is consistent with the other bitfields near
3040 	 * it and that we cannot have an asynchronous probe routine trying
3041 	 * to run while we are tearing out the bus/class/sysfs from
3042 	 * underneath the device.
3043 	 */
3044 	lockdep_assert_held(&dev->mutex);
3045 
3046 	if (dev->p->dead)
3047 		return false;
3048 	dev->p->dead = true;
3049 	return true;
3050 }
3051 EXPORT_SYMBOL_GPL(kill_device);
3052 
3053 /**
3054  * device_del - delete device from system.
3055  * @dev: device.
3056  *
3057  * This is the first part of the device unregistration
3058  * sequence. This removes the device from the lists we control
3059  * from here, has it removed from the other driver model
3060  * subsystems it was added to in device_add(), and removes it
3061  * from the kobject hierarchy.
3062  *
3063  * NOTE: this should be called manually _iff_ device_add() was
3064  * also called manually.
3065  */
3066 void device_del(struct device *dev)
3067 {
3068 	struct device *parent = dev->parent;
3069 	struct kobject *glue_dir = NULL;
3070 	struct class_interface *class_intf;
3071 
3072 	device_lock(dev);
3073 	kill_device(dev);
3074 	device_unlock(dev);
3075 
3076 	if (dev->fwnode && dev->fwnode->dev == dev)
3077 		dev->fwnode->dev = NULL;
3078 
3079 	/* Notify clients of device removal.  This call must come
3080 	 * before dpm_sysfs_remove().
3081 	 */
3082 	if (dev->bus)
3083 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3084 					     BUS_NOTIFY_DEL_DEVICE, dev);
3085 
3086 	dpm_sysfs_remove(dev);
3087 	if (parent)
3088 		klist_del(&dev->p->knode_parent);
3089 	if (MAJOR(dev->devt)) {
3090 		devtmpfs_delete_node(dev);
3091 		device_remove_sys_dev_entry(dev);
3092 		device_remove_file(dev, &dev_attr_dev);
3093 	}
3094 	if (dev->class) {
3095 		device_remove_class_symlinks(dev);
3096 
3097 		mutex_lock(&dev->class->p->mutex);
3098 		/* notify any interfaces that the device is now gone */
3099 		list_for_each_entry(class_intf,
3100 				    &dev->class->p->interfaces, node)
3101 			if (class_intf->remove_dev)
3102 				class_intf->remove_dev(dev, class_intf);
3103 		/* remove the device from the class list */
3104 		klist_del(&dev->p->knode_class);
3105 		mutex_unlock(&dev->class->p->mutex);
3106 	}
3107 	device_remove_file(dev, &dev_attr_uevent);
3108 	device_remove_attrs(dev);
3109 	bus_remove_device(dev);
3110 	device_pm_remove(dev);
3111 	driver_deferred_probe_del(dev);
3112 	device_platform_notify(dev, KOBJ_REMOVE);
3113 	device_remove_properties(dev);
3114 	device_links_purge(dev);
3115 
3116 	if (dev->bus)
3117 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3118 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
3119 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3120 	glue_dir = get_glue_dir(dev);
3121 	kobject_del(&dev->kobj);
3122 	cleanup_glue_dir(dev, glue_dir);
3123 	put_device(parent);
3124 }
3125 EXPORT_SYMBOL_GPL(device_del);
3126 
3127 /**
3128  * device_unregister - unregister device from system.
3129  * @dev: device going away.
3130  *
3131  * We do this in two parts, like we do device_register(). First,
3132  * we remove it from all the subsystems with device_del(), then
3133  * we decrement the reference count via put_device(). If that
3134  * is the final reference count, the device will be cleaned up
3135  * via device_release() above. Otherwise, the structure will
3136  * stick around until the final reference to the device is dropped.
3137  */
3138 void device_unregister(struct device *dev)
3139 {
3140 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3141 	device_del(dev);
3142 	put_device(dev);
3143 }
3144 EXPORT_SYMBOL_GPL(device_unregister);
3145 
3146 static struct device *prev_device(struct klist_iter *i)
3147 {
3148 	struct klist_node *n = klist_prev(i);
3149 	struct device *dev = NULL;
3150 	struct device_private *p;
3151 
3152 	if (n) {
3153 		p = to_device_private_parent(n);
3154 		dev = p->device;
3155 	}
3156 	return dev;
3157 }
3158 
3159 static struct device *next_device(struct klist_iter *i)
3160 {
3161 	struct klist_node *n = klist_next(i);
3162 	struct device *dev = NULL;
3163 	struct device_private *p;
3164 
3165 	if (n) {
3166 		p = to_device_private_parent(n);
3167 		dev = p->device;
3168 	}
3169 	return dev;
3170 }
3171 
3172 /**
3173  * device_get_devnode - path of device node file
3174  * @dev: device
3175  * @mode: returned file access mode
3176  * @uid: returned file owner
3177  * @gid: returned file group
3178  * @tmp: possibly allocated string
3179  *
3180  * Return the relative path of a possible device node.
3181  * Non-default names may need to allocate a memory to compose
3182  * a name. This memory is returned in tmp and needs to be
3183  * freed by the caller.
3184  */
3185 const char *device_get_devnode(struct device *dev,
3186 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3187 			       const char **tmp)
3188 {
3189 	char *s;
3190 
3191 	*tmp = NULL;
3192 
3193 	/* the device type may provide a specific name */
3194 	if (dev->type && dev->type->devnode)
3195 		*tmp = dev->type->devnode(dev, mode, uid, gid);
3196 	if (*tmp)
3197 		return *tmp;
3198 
3199 	/* the class may provide a specific name */
3200 	if (dev->class && dev->class->devnode)
3201 		*tmp = dev->class->devnode(dev, mode);
3202 	if (*tmp)
3203 		return *tmp;
3204 
3205 	/* return name without allocation, tmp == NULL */
3206 	if (strchr(dev_name(dev), '!') == NULL)
3207 		return dev_name(dev);
3208 
3209 	/* replace '!' in the name with '/' */
3210 	s = kstrdup(dev_name(dev), GFP_KERNEL);
3211 	if (!s)
3212 		return NULL;
3213 	strreplace(s, '!', '/');
3214 	return *tmp = s;
3215 }
3216 
3217 /**
3218  * device_for_each_child - device child iterator.
3219  * @parent: parent struct device.
3220  * @fn: function to be called for each device.
3221  * @data: data for the callback.
3222  *
3223  * Iterate over @parent's child devices, and call @fn for each,
3224  * passing it @data.
3225  *
3226  * We check the return of @fn each time. If it returns anything
3227  * other than 0, we break out and return that value.
3228  */
3229 int device_for_each_child(struct device *parent, void *data,
3230 			  int (*fn)(struct device *dev, void *data))
3231 {
3232 	struct klist_iter i;
3233 	struct device *child;
3234 	int error = 0;
3235 
3236 	if (!parent->p)
3237 		return 0;
3238 
3239 	klist_iter_init(&parent->p->klist_children, &i);
3240 	while (!error && (child = next_device(&i)))
3241 		error = fn(child, data);
3242 	klist_iter_exit(&i);
3243 	return error;
3244 }
3245 EXPORT_SYMBOL_GPL(device_for_each_child);
3246 
3247 /**
3248  * device_for_each_child_reverse - device child iterator in reversed order.
3249  * @parent: parent struct device.
3250  * @fn: function to be called for each device.
3251  * @data: data for the callback.
3252  *
3253  * Iterate over @parent's child devices, and call @fn for each,
3254  * passing it @data.
3255  *
3256  * We check the return of @fn each time. If it returns anything
3257  * other than 0, we break out and return that value.
3258  */
3259 int device_for_each_child_reverse(struct device *parent, void *data,
3260 				  int (*fn)(struct device *dev, void *data))
3261 {
3262 	struct klist_iter i;
3263 	struct device *child;
3264 	int error = 0;
3265 
3266 	if (!parent->p)
3267 		return 0;
3268 
3269 	klist_iter_init(&parent->p->klist_children, &i);
3270 	while ((child = prev_device(&i)) && !error)
3271 		error = fn(child, data);
3272 	klist_iter_exit(&i);
3273 	return error;
3274 }
3275 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3276 
3277 /**
3278  * device_find_child - device iterator for locating a particular device.
3279  * @parent: parent struct device
3280  * @match: Callback function to check device
3281  * @data: Data to pass to match function
3282  *
3283  * This is similar to the device_for_each_child() function above, but it
3284  * returns a reference to a device that is 'found' for later use, as
3285  * determined by the @match callback.
3286  *
3287  * The callback should return 0 if the device doesn't match and non-zero
3288  * if it does.  If the callback returns non-zero and a reference to the
3289  * current device can be obtained, this function will return to the caller
3290  * and not iterate over any more devices.
3291  *
3292  * NOTE: you will need to drop the reference with put_device() after use.
3293  */
3294 struct device *device_find_child(struct device *parent, void *data,
3295 				 int (*match)(struct device *dev, void *data))
3296 {
3297 	struct klist_iter i;
3298 	struct device *child;
3299 
3300 	if (!parent)
3301 		return NULL;
3302 
3303 	klist_iter_init(&parent->p->klist_children, &i);
3304 	while ((child = next_device(&i)))
3305 		if (match(child, data) && get_device(child))
3306 			break;
3307 	klist_iter_exit(&i);
3308 	return child;
3309 }
3310 EXPORT_SYMBOL_GPL(device_find_child);
3311 
3312 /**
3313  * device_find_child_by_name - device iterator for locating a child device.
3314  * @parent: parent struct device
3315  * @name: name of the child device
3316  *
3317  * This is similar to the device_find_child() function above, but it
3318  * returns a reference to a device that has the name @name.
3319  *
3320  * NOTE: you will need to drop the reference with put_device() after use.
3321  */
3322 struct device *device_find_child_by_name(struct device *parent,
3323 					 const char *name)
3324 {
3325 	struct klist_iter i;
3326 	struct device *child;
3327 
3328 	if (!parent)
3329 		return NULL;
3330 
3331 	klist_iter_init(&parent->p->klist_children, &i);
3332 	while ((child = next_device(&i)))
3333 		if (!strcmp(dev_name(child), name) && get_device(child))
3334 			break;
3335 	klist_iter_exit(&i);
3336 	return child;
3337 }
3338 EXPORT_SYMBOL_GPL(device_find_child_by_name);
3339 
3340 int __init devices_init(void)
3341 {
3342 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3343 	if (!devices_kset)
3344 		return -ENOMEM;
3345 	dev_kobj = kobject_create_and_add("dev", NULL);
3346 	if (!dev_kobj)
3347 		goto dev_kobj_err;
3348 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3349 	if (!sysfs_dev_block_kobj)
3350 		goto block_kobj_err;
3351 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3352 	if (!sysfs_dev_char_kobj)
3353 		goto char_kobj_err;
3354 
3355 	return 0;
3356 
3357  char_kobj_err:
3358 	kobject_put(sysfs_dev_block_kobj);
3359  block_kobj_err:
3360 	kobject_put(dev_kobj);
3361  dev_kobj_err:
3362 	kset_unregister(devices_kset);
3363 	return -ENOMEM;
3364 }
3365 
3366 static int device_check_offline(struct device *dev, void *not_used)
3367 {
3368 	int ret;
3369 
3370 	ret = device_for_each_child(dev, NULL, device_check_offline);
3371 	if (ret)
3372 		return ret;
3373 
3374 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3375 }
3376 
3377 /**
3378  * device_offline - Prepare the device for hot-removal.
3379  * @dev: Device to be put offline.
3380  *
3381  * Execute the device bus type's .offline() callback, if present, to prepare
3382  * the device for a subsequent hot-removal.  If that succeeds, the device must
3383  * not be used until either it is removed or its bus type's .online() callback
3384  * is executed.
3385  *
3386  * Call under device_hotplug_lock.
3387  */
3388 int device_offline(struct device *dev)
3389 {
3390 	int ret;
3391 
3392 	if (dev->offline_disabled)
3393 		return -EPERM;
3394 
3395 	ret = device_for_each_child(dev, NULL, device_check_offline);
3396 	if (ret)
3397 		return ret;
3398 
3399 	device_lock(dev);
3400 	if (device_supports_offline(dev)) {
3401 		if (dev->offline) {
3402 			ret = 1;
3403 		} else {
3404 			ret = dev->bus->offline(dev);
3405 			if (!ret) {
3406 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3407 				dev->offline = true;
3408 			}
3409 		}
3410 	}
3411 	device_unlock(dev);
3412 
3413 	return ret;
3414 }
3415 
3416 /**
3417  * device_online - Put the device back online after successful device_offline().
3418  * @dev: Device to be put back online.
3419  *
3420  * If device_offline() has been successfully executed for @dev, but the device
3421  * has not been removed subsequently, execute its bus type's .online() callback
3422  * to indicate that the device can be used again.
3423  *
3424  * Call under device_hotplug_lock.
3425  */
3426 int device_online(struct device *dev)
3427 {
3428 	int ret = 0;
3429 
3430 	device_lock(dev);
3431 	if (device_supports_offline(dev)) {
3432 		if (dev->offline) {
3433 			ret = dev->bus->online(dev);
3434 			if (!ret) {
3435 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3436 				dev->offline = false;
3437 			}
3438 		} else {
3439 			ret = 1;
3440 		}
3441 	}
3442 	device_unlock(dev);
3443 
3444 	return ret;
3445 }
3446 
3447 struct root_device {
3448 	struct device dev;
3449 	struct module *owner;
3450 };
3451 
3452 static inline struct root_device *to_root_device(struct device *d)
3453 {
3454 	return container_of(d, struct root_device, dev);
3455 }
3456 
3457 static void root_device_release(struct device *dev)
3458 {
3459 	kfree(to_root_device(dev));
3460 }
3461 
3462 /**
3463  * __root_device_register - allocate and register a root device
3464  * @name: root device name
3465  * @owner: owner module of the root device, usually THIS_MODULE
3466  *
3467  * This function allocates a root device and registers it
3468  * using device_register(). In order to free the returned
3469  * device, use root_device_unregister().
3470  *
3471  * Root devices are dummy devices which allow other devices
3472  * to be grouped under /sys/devices. Use this function to
3473  * allocate a root device and then use it as the parent of
3474  * any device which should appear under /sys/devices/{name}
3475  *
3476  * The /sys/devices/{name} directory will also contain a
3477  * 'module' symlink which points to the @owner directory
3478  * in sysfs.
3479  *
3480  * Returns &struct device pointer on success, or ERR_PTR() on error.
3481  *
3482  * Note: You probably want to use root_device_register().
3483  */
3484 struct device *__root_device_register(const char *name, struct module *owner)
3485 {
3486 	struct root_device *root;
3487 	int err = -ENOMEM;
3488 
3489 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3490 	if (!root)
3491 		return ERR_PTR(err);
3492 
3493 	err = dev_set_name(&root->dev, "%s", name);
3494 	if (err) {
3495 		kfree(root);
3496 		return ERR_PTR(err);
3497 	}
3498 
3499 	root->dev.release = root_device_release;
3500 
3501 	err = device_register(&root->dev);
3502 	if (err) {
3503 		put_device(&root->dev);
3504 		return ERR_PTR(err);
3505 	}
3506 
3507 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
3508 	if (owner) {
3509 		struct module_kobject *mk = &owner->mkobj;
3510 
3511 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3512 		if (err) {
3513 			device_unregister(&root->dev);
3514 			return ERR_PTR(err);
3515 		}
3516 		root->owner = owner;
3517 	}
3518 #endif
3519 
3520 	return &root->dev;
3521 }
3522 EXPORT_SYMBOL_GPL(__root_device_register);
3523 
3524 /**
3525  * root_device_unregister - unregister and free a root device
3526  * @dev: device going away
3527  *
3528  * This function unregisters and cleans up a device that was created by
3529  * root_device_register().
3530  */
3531 void root_device_unregister(struct device *dev)
3532 {
3533 	struct root_device *root = to_root_device(dev);
3534 
3535 	if (root->owner)
3536 		sysfs_remove_link(&root->dev.kobj, "module");
3537 
3538 	device_unregister(dev);
3539 }
3540 EXPORT_SYMBOL_GPL(root_device_unregister);
3541 
3542 
3543 static void device_create_release(struct device *dev)
3544 {
3545 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3546 	kfree(dev);
3547 }
3548 
3549 static __printf(6, 0) struct device *
3550 device_create_groups_vargs(struct class *class, struct device *parent,
3551 			   dev_t devt, void *drvdata,
3552 			   const struct attribute_group **groups,
3553 			   const char *fmt, va_list args)
3554 {
3555 	struct device *dev = NULL;
3556 	int retval = -ENODEV;
3557 
3558 	if (class == NULL || IS_ERR(class))
3559 		goto error;
3560 
3561 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3562 	if (!dev) {
3563 		retval = -ENOMEM;
3564 		goto error;
3565 	}
3566 
3567 	device_initialize(dev);
3568 	dev->devt = devt;
3569 	dev->class = class;
3570 	dev->parent = parent;
3571 	dev->groups = groups;
3572 	dev->release = device_create_release;
3573 	dev_set_drvdata(dev, drvdata);
3574 
3575 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
3576 	if (retval)
3577 		goto error;
3578 
3579 	retval = device_add(dev);
3580 	if (retval)
3581 		goto error;
3582 
3583 	return dev;
3584 
3585 error:
3586 	put_device(dev);
3587 	return ERR_PTR(retval);
3588 }
3589 
3590 /**
3591  * device_create - creates a device and registers it with sysfs
3592  * @class: pointer to the struct class that this device should be registered to
3593  * @parent: pointer to the parent struct device of this new device, if any
3594  * @devt: the dev_t for the char device to be added
3595  * @drvdata: the data to be added to the device for callbacks
3596  * @fmt: string for the device's name
3597  *
3598  * This function can be used by char device classes.  A struct device
3599  * will be created in sysfs, registered to the specified class.
3600  *
3601  * A "dev" file will be created, showing the dev_t for the device, if
3602  * the dev_t is not 0,0.
3603  * If a pointer to a parent struct device is passed in, the newly created
3604  * struct device will be a child of that device in sysfs.
3605  * The pointer to the struct device will be returned from the call.
3606  * Any further sysfs files that might be required can be created using this
3607  * pointer.
3608  *
3609  * Returns &struct device pointer on success, or ERR_PTR() on error.
3610  *
3611  * Note: the struct class passed to this function must have previously
3612  * been created with a call to class_create().
3613  */
3614 struct device *device_create(struct class *class, struct device *parent,
3615 			     dev_t devt, void *drvdata, const char *fmt, ...)
3616 {
3617 	va_list vargs;
3618 	struct device *dev;
3619 
3620 	va_start(vargs, fmt);
3621 	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
3622 					  fmt, vargs);
3623 	va_end(vargs);
3624 	return dev;
3625 }
3626 EXPORT_SYMBOL_GPL(device_create);
3627 
3628 /**
3629  * device_create_with_groups - creates a device and registers it with sysfs
3630  * @class: pointer to the struct class that this device should be registered to
3631  * @parent: pointer to the parent struct device of this new device, if any
3632  * @devt: the dev_t for the char device to be added
3633  * @drvdata: the data to be added to the device for callbacks
3634  * @groups: NULL-terminated list of attribute groups to be created
3635  * @fmt: string for the device's name
3636  *
3637  * This function can be used by char device classes.  A struct device
3638  * will be created in sysfs, registered to the specified class.
3639  * Additional attributes specified in the groups parameter will also
3640  * be created automatically.
3641  *
3642  * A "dev" file will be created, showing the dev_t for the device, if
3643  * the dev_t is not 0,0.
3644  * If a pointer to a parent struct device is passed in, the newly created
3645  * struct device will be a child of that device in sysfs.
3646  * The pointer to the struct device will be returned from the call.
3647  * Any further sysfs files that might be required can be created using this
3648  * pointer.
3649  *
3650  * Returns &struct device pointer on success, or ERR_PTR() on error.
3651  *
3652  * Note: the struct class passed to this function must have previously
3653  * been created with a call to class_create().
3654  */
3655 struct device *device_create_with_groups(struct class *class,
3656 					 struct device *parent, dev_t devt,
3657 					 void *drvdata,
3658 					 const struct attribute_group **groups,
3659 					 const char *fmt, ...)
3660 {
3661 	va_list vargs;
3662 	struct device *dev;
3663 
3664 	va_start(vargs, fmt);
3665 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
3666 					 fmt, vargs);
3667 	va_end(vargs);
3668 	return dev;
3669 }
3670 EXPORT_SYMBOL_GPL(device_create_with_groups);
3671 
3672 /**
3673  * device_destroy - removes a device that was created with device_create()
3674  * @class: pointer to the struct class that this device was registered with
3675  * @devt: the dev_t of the device that was previously registered
3676  *
3677  * This call unregisters and cleans up a device that was created with a
3678  * call to device_create().
3679  */
3680 void device_destroy(struct class *class, dev_t devt)
3681 {
3682 	struct device *dev;
3683 
3684 	dev = class_find_device_by_devt(class, devt);
3685 	if (dev) {
3686 		put_device(dev);
3687 		device_unregister(dev);
3688 	}
3689 }
3690 EXPORT_SYMBOL_GPL(device_destroy);
3691 
3692 /**
3693  * device_rename - renames a device
3694  * @dev: the pointer to the struct device to be renamed
3695  * @new_name: the new name of the device
3696  *
3697  * It is the responsibility of the caller to provide mutual
3698  * exclusion between two different calls of device_rename
3699  * on the same device to ensure that new_name is valid and
3700  * won't conflict with other devices.
3701  *
3702  * Note: Don't call this function.  Currently, the networking layer calls this
3703  * function, but that will change.  The following text from Kay Sievers offers
3704  * some insight:
3705  *
3706  * Renaming devices is racy at many levels, symlinks and other stuff are not
3707  * replaced atomically, and you get a "move" uevent, but it's not easy to
3708  * connect the event to the old and new device. Device nodes are not renamed at
3709  * all, there isn't even support for that in the kernel now.
3710  *
3711  * In the meantime, during renaming, your target name might be taken by another
3712  * driver, creating conflicts. Or the old name is taken directly after you
3713  * renamed it -- then you get events for the same DEVPATH, before you even see
3714  * the "move" event. It's just a mess, and nothing new should ever rely on
3715  * kernel device renaming. Besides that, it's not even implemented now for
3716  * other things than (driver-core wise very simple) network devices.
3717  *
3718  * We are currently about to change network renaming in udev to completely
3719  * disallow renaming of devices in the same namespace as the kernel uses,
3720  * because we can't solve the problems properly, that arise with swapping names
3721  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
3722  * be allowed to some other name than eth[0-9]*, for the aforementioned
3723  * reasons.
3724  *
3725  * Make up a "real" name in the driver before you register anything, or add
3726  * some other attributes for userspace to find the device, or use udev to add
3727  * symlinks -- but never rename kernel devices later, it's a complete mess. We
3728  * don't even want to get into that and try to implement the missing pieces in
3729  * the core. We really have other pieces to fix in the driver core mess. :)
3730  */
3731 int device_rename(struct device *dev, const char *new_name)
3732 {
3733 	struct kobject *kobj = &dev->kobj;
3734 	char *old_device_name = NULL;
3735 	int error;
3736 
3737 	dev = get_device(dev);
3738 	if (!dev)
3739 		return -EINVAL;
3740 
3741 	dev_dbg(dev, "renaming to %s\n", new_name);
3742 
3743 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
3744 	if (!old_device_name) {
3745 		error = -ENOMEM;
3746 		goto out;
3747 	}
3748 
3749 	if (dev->class) {
3750 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
3751 					     kobj, old_device_name,
3752 					     new_name, kobject_namespace(kobj));
3753 		if (error)
3754 			goto out;
3755 	}
3756 
3757 	error = kobject_rename(kobj, new_name);
3758 	if (error)
3759 		goto out;
3760 
3761 out:
3762 	put_device(dev);
3763 
3764 	kfree(old_device_name);
3765 
3766 	return error;
3767 }
3768 EXPORT_SYMBOL_GPL(device_rename);
3769 
3770 static int device_move_class_links(struct device *dev,
3771 				   struct device *old_parent,
3772 				   struct device *new_parent)
3773 {
3774 	int error = 0;
3775 
3776 	if (old_parent)
3777 		sysfs_remove_link(&dev->kobj, "device");
3778 	if (new_parent)
3779 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
3780 					  "device");
3781 	return error;
3782 }
3783 
3784 /**
3785  * device_move - moves a device to a new parent
3786  * @dev: the pointer to the struct device to be moved
3787  * @new_parent: the new parent of the device (can be NULL)
3788  * @dpm_order: how to reorder the dpm_list
3789  */
3790 int device_move(struct device *dev, struct device *new_parent,
3791 		enum dpm_order dpm_order)
3792 {
3793 	int error;
3794 	struct device *old_parent;
3795 	struct kobject *new_parent_kobj;
3796 
3797 	dev = get_device(dev);
3798 	if (!dev)
3799 		return -EINVAL;
3800 
3801 	device_pm_lock();
3802 	new_parent = get_device(new_parent);
3803 	new_parent_kobj = get_device_parent(dev, new_parent);
3804 	if (IS_ERR(new_parent_kobj)) {
3805 		error = PTR_ERR(new_parent_kobj);
3806 		put_device(new_parent);
3807 		goto out;
3808 	}
3809 
3810 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
3811 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
3812 	error = kobject_move(&dev->kobj, new_parent_kobj);
3813 	if (error) {
3814 		cleanup_glue_dir(dev, new_parent_kobj);
3815 		put_device(new_parent);
3816 		goto out;
3817 	}
3818 	old_parent = dev->parent;
3819 	dev->parent = new_parent;
3820 	if (old_parent)
3821 		klist_remove(&dev->p->knode_parent);
3822 	if (new_parent) {
3823 		klist_add_tail(&dev->p->knode_parent,
3824 			       &new_parent->p->klist_children);
3825 		set_dev_node(dev, dev_to_node(new_parent));
3826 	}
3827 
3828 	if (dev->class) {
3829 		error = device_move_class_links(dev, old_parent, new_parent);
3830 		if (error) {
3831 			/* We ignore errors on cleanup since we're hosed anyway... */
3832 			device_move_class_links(dev, new_parent, old_parent);
3833 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
3834 				if (new_parent)
3835 					klist_remove(&dev->p->knode_parent);
3836 				dev->parent = old_parent;
3837 				if (old_parent) {
3838 					klist_add_tail(&dev->p->knode_parent,
3839 						       &old_parent->p->klist_children);
3840 					set_dev_node(dev, dev_to_node(old_parent));
3841 				}
3842 			}
3843 			cleanup_glue_dir(dev, new_parent_kobj);
3844 			put_device(new_parent);
3845 			goto out;
3846 		}
3847 	}
3848 	switch (dpm_order) {
3849 	case DPM_ORDER_NONE:
3850 		break;
3851 	case DPM_ORDER_DEV_AFTER_PARENT:
3852 		device_pm_move_after(dev, new_parent);
3853 		devices_kset_move_after(dev, new_parent);
3854 		break;
3855 	case DPM_ORDER_PARENT_BEFORE_DEV:
3856 		device_pm_move_before(new_parent, dev);
3857 		devices_kset_move_before(new_parent, dev);
3858 		break;
3859 	case DPM_ORDER_DEV_LAST:
3860 		device_pm_move_last(dev);
3861 		devices_kset_move_last(dev);
3862 		break;
3863 	}
3864 
3865 	put_device(old_parent);
3866 out:
3867 	device_pm_unlock();
3868 	put_device(dev);
3869 	return error;
3870 }
3871 EXPORT_SYMBOL_GPL(device_move);
3872 
3873 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
3874 				     kgid_t kgid)
3875 {
3876 	struct kobject *kobj = &dev->kobj;
3877 	struct class *class = dev->class;
3878 	const struct device_type *type = dev->type;
3879 	int error;
3880 
3881 	if (class) {
3882 		/*
3883 		 * Change the device groups of the device class for @dev to
3884 		 * @kuid/@kgid.
3885 		 */
3886 		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
3887 						  kgid);
3888 		if (error)
3889 			return error;
3890 	}
3891 
3892 	if (type) {
3893 		/*
3894 		 * Change the device groups of the device type for @dev to
3895 		 * @kuid/@kgid.
3896 		 */
3897 		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
3898 						  kgid);
3899 		if (error)
3900 			return error;
3901 	}
3902 
3903 	/* Change the device groups of @dev to @kuid/@kgid. */
3904 	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
3905 	if (error)
3906 		return error;
3907 
3908 	if (device_supports_offline(dev) && !dev->offline_disabled) {
3909 		/* Change online device attributes of @dev to @kuid/@kgid. */
3910 		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
3911 						kuid, kgid);
3912 		if (error)
3913 			return error;
3914 	}
3915 
3916 	return 0;
3917 }
3918 
3919 /**
3920  * device_change_owner - change the owner of an existing device.
3921  * @dev: device.
3922  * @kuid: new owner's kuid
3923  * @kgid: new owner's kgid
3924  *
3925  * This changes the owner of @dev and its corresponding sysfs entries to
3926  * @kuid/@kgid. This function closely mirrors how @dev was added via driver
3927  * core.
3928  *
3929  * Returns 0 on success or error code on failure.
3930  */
3931 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
3932 {
3933 	int error;
3934 	struct kobject *kobj = &dev->kobj;
3935 
3936 	dev = get_device(dev);
3937 	if (!dev)
3938 		return -EINVAL;
3939 
3940 	/*
3941 	 * Change the kobject and the default attributes and groups of the
3942 	 * ktype associated with it to @kuid/@kgid.
3943 	 */
3944 	error = sysfs_change_owner(kobj, kuid, kgid);
3945 	if (error)
3946 		goto out;
3947 
3948 	/*
3949 	 * Change the uevent file for @dev to the new owner. The uevent file
3950 	 * was created in a separate step when @dev got added and we mirror
3951 	 * that step here.
3952 	 */
3953 	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
3954 					kgid);
3955 	if (error)
3956 		goto out;
3957 
3958 	/*
3959 	 * Change the device groups, the device groups associated with the
3960 	 * device class, and the groups associated with the device type of @dev
3961 	 * to @kuid/@kgid.
3962 	 */
3963 	error = device_attrs_change_owner(dev, kuid, kgid);
3964 	if (error)
3965 		goto out;
3966 
3967 	error = dpm_sysfs_change_owner(dev, kuid, kgid);
3968 	if (error)
3969 		goto out;
3970 
3971 #ifdef CONFIG_BLOCK
3972 	if (sysfs_deprecated && dev->class == &block_class)
3973 		goto out;
3974 #endif
3975 
3976 	/*
3977 	 * Change the owner of the symlink located in the class directory of
3978 	 * the device class associated with @dev which points to the actual
3979 	 * directory entry for @dev to @kuid/@kgid. This ensures that the
3980 	 * symlink shows the same permissions as its target.
3981 	 */
3982 	error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
3983 					dev_name(dev), kuid, kgid);
3984 	if (error)
3985 		goto out;
3986 
3987 out:
3988 	put_device(dev);
3989 	return error;
3990 }
3991 EXPORT_SYMBOL_GPL(device_change_owner);
3992 
3993 /**
3994  * device_shutdown - call ->shutdown() on each device to shutdown.
3995  */
3996 void device_shutdown(void)
3997 {
3998 	struct device *dev, *parent;
3999 
4000 	wait_for_device_probe();
4001 	device_block_probing();
4002 
4003 	cpufreq_suspend();
4004 
4005 	spin_lock(&devices_kset->list_lock);
4006 	/*
4007 	 * Walk the devices list backward, shutting down each in turn.
4008 	 * Beware that device unplug events may also start pulling
4009 	 * devices offline, even as the system is shutting down.
4010 	 */
4011 	while (!list_empty(&devices_kset->list)) {
4012 		dev = list_entry(devices_kset->list.prev, struct device,
4013 				kobj.entry);
4014 
4015 		/*
4016 		 * hold reference count of device's parent to
4017 		 * prevent it from being freed because parent's
4018 		 * lock is to be held
4019 		 */
4020 		parent = get_device(dev->parent);
4021 		get_device(dev);
4022 		/*
4023 		 * Make sure the device is off the kset list, in the
4024 		 * event that dev->*->shutdown() doesn't remove it.
4025 		 */
4026 		list_del_init(&dev->kobj.entry);
4027 		spin_unlock(&devices_kset->list_lock);
4028 
4029 		/* hold lock to avoid race with probe/release */
4030 		if (parent)
4031 			device_lock(parent);
4032 		device_lock(dev);
4033 
4034 		/* Don't allow any more runtime suspends */
4035 		pm_runtime_get_noresume(dev);
4036 		pm_runtime_barrier(dev);
4037 
4038 		if (dev->class && dev->class->shutdown_pre) {
4039 			if (initcall_debug)
4040 				dev_info(dev, "shutdown_pre\n");
4041 			dev->class->shutdown_pre(dev);
4042 		}
4043 		if (dev->bus && dev->bus->shutdown) {
4044 			if (initcall_debug)
4045 				dev_info(dev, "shutdown\n");
4046 			dev->bus->shutdown(dev);
4047 		} else if (dev->driver && dev->driver->shutdown) {
4048 			if (initcall_debug)
4049 				dev_info(dev, "shutdown\n");
4050 			dev->driver->shutdown(dev);
4051 		}
4052 
4053 		device_unlock(dev);
4054 		if (parent)
4055 			device_unlock(parent);
4056 
4057 		put_device(dev);
4058 		put_device(parent);
4059 
4060 		spin_lock(&devices_kset->list_lock);
4061 	}
4062 	spin_unlock(&devices_kset->list_lock);
4063 }
4064 
4065 /*
4066  * Device logging functions
4067  */
4068 
4069 #ifdef CONFIG_PRINTK
4070 static int
4071 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
4072 {
4073 	const char *subsys;
4074 	size_t pos = 0;
4075 
4076 	if (dev->class)
4077 		subsys = dev->class->name;
4078 	else if (dev->bus)
4079 		subsys = dev->bus->name;
4080 	else
4081 		return 0;
4082 
4083 	pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
4084 	if (pos >= hdrlen)
4085 		goto overflow;
4086 
4087 	/*
4088 	 * Add device identifier DEVICE=:
4089 	 *   b12:8         block dev_t
4090 	 *   c127:3        char dev_t
4091 	 *   n8            netdev ifindex
4092 	 *   +sound:card0  subsystem:devname
4093 	 */
4094 	if (MAJOR(dev->devt)) {
4095 		char c;
4096 
4097 		if (strcmp(subsys, "block") == 0)
4098 			c = 'b';
4099 		else
4100 			c = 'c';
4101 		pos++;
4102 		pos += snprintf(hdr + pos, hdrlen - pos,
4103 				"DEVICE=%c%u:%u",
4104 				c, MAJOR(dev->devt), MINOR(dev->devt));
4105 	} else if (strcmp(subsys, "net") == 0) {
4106 		struct net_device *net = to_net_dev(dev);
4107 
4108 		pos++;
4109 		pos += snprintf(hdr + pos, hdrlen - pos,
4110 				"DEVICE=n%u", net->ifindex);
4111 	} else {
4112 		pos++;
4113 		pos += snprintf(hdr + pos, hdrlen - pos,
4114 				"DEVICE=+%s:%s", subsys, dev_name(dev));
4115 	}
4116 
4117 	if (pos >= hdrlen)
4118 		goto overflow;
4119 
4120 	return pos;
4121 
4122 overflow:
4123 	dev_WARN(dev, "device/subsystem name too long");
4124 	return 0;
4125 }
4126 
4127 int dev_vprintk_emit(int level, const struct device *dev,
4128 		     const char *fmt, va_list args)
4129 {
4130 	char hdr[128];
4131 	size_t hdrlen;
4132 
4133 	hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
4134 
4135 	return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
4136 }
4137 EXPORT_SYMBOL(dev_vprintk_emit);
4138 
4139 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4140 {
4141 	va_list args;
4142 	int r;
4143 
4144 	va_start(args, fmt);
4145 
4146 	r = dev_vprintk_emit(level, dev, fmt, args);
4147 
4148 	va_end(args);
4149 
4150 	return r;
4151 }
4152 EXPORT_SYMBOL(dev_printk_emit);
4153 
4154 static void __dev_printk(const char *level, const struct device *dev,
4155 			struct va_format *vaf)
4156 {
4157 	if (dev)
4158 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4159 				dev_driver_string(dev), dev_name(dev), vaf);
4160 	else
4161 		printk("%s(NULL device *): %pV", level, vaf);
4162 }
4163 
4164 void dev_printk(const char *level, const struct device *dev,
4165 		const char *fmt, ...)
4166 {
4167 	struct va_format vaf;
4168 	va_list args;
4169 
4170 	va_start(args, fmt);
4171 
4172 	vaf.fmt = fmt;
4173 	vaf.va = &args;
4174 
4175 	__dev_printk(level, dev, &vaf);
4176 
4177 	va_end(args);
4178 }
4179 EXPORT_SYMBOL(dev_printk);
4180 
4181 #define define_dev_printk_level(func, kern_level)		\
4182 void func(const struct device *dev, const char *fmt, ...)	\
4183 {								\
4184 	struct va_format vaf;					\
4185 	va_list args;						\
4186 								\
4187 	va_start(args, fmt);					\
4188 								\
4189 	vaf.fmt = fmt;						\
4190 	vaf.va = &args;						\
4191 								\
4192 	__dev_printk(kern_level, dev, &vaf);			\
4193 								\
4194 	va_end(args);						\
4195 }								\
4196 EXPORT_SYMBOL(func);
4197 
4198 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4199 define_dev_printk_level(_dev_alert, KERN_ALERT);
4200 define_dev_printk_level(_dev_crit, KERN_CRIT);
4201 define_dev_printk_level(_dev_err, KERN_ERR);
4202 define_dev_printk_level(_dev_warn, KERN_WARNING);
4203 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4204 define_dev_printk_level(_dev_info, KERN_INFO);
4205 
4206 #endif
4207 
4208 /**
4209  * dev_err_probe - probe error check and log helper
4210  * @dev: the pointer to the struct device
4211  * @err: error value to test
4212  * @fmt: printf-style format string
4213  * @...: arguments as specified in the format string
4214  *
4215  * This helper implements common pattern present in probe functions for error
4216  * checking: print debug or error message depending if the error value is
4217  * -EPROBE_DEFER and propagate error upwards.
4218  * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4219  * checked later by reading devices_deferred debugfs attribute.
4220  * It replaces code sequence:
4221  * 	if (err != -EPROBE_DEFER)
4222  * 		dev_err(dev, ...);
4223  * 	else
4224  * 		dev_dbg(dev, ...);
4225  * 	return err;
4226  * with
4227  * 	return dev_err_probe(dev, err, ...);
4228  *
4229  * Returns @err.
4230  *
4231  */
4232 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4233 {
4234 	struct va_format vaf;
4235 	va_list args;
4236 
4237 	va_start(args, fmt);
4238 	vaf.fmt = fmt;
4239 	vaf.va = &args;
4240 
4241 	if (err != -EPROBE_DEFER) {
4242 		dev_err(dev, "error %d: %pV", err, &vaf);
4243 	} else {
4244 		device_set_deferred_probe_reason(dev, &vaf);
4245 		dev_dbg(dev, "error %d: %pV", err, &vaf);
4246 	}
4247 
4248 	va_end(args);
4249 
4250 	return err;
4251 }
4252 EXPORT_SYMBOL_GPL(dev_err_probe);
4253 
4254 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4255 {
4256 	return fwnode && !IS_ERR(fwnode->secondary);
4257 }
4258 
4259 /**
4260  * set_primary_fwnode - Change the primary firmware node of a given device.
4261  * @dev: Device to handle.
4262  * @fwnode: New primary firmware node of the device.
4263  *
4264  * Set the device's firmware node pointer to @fwnode, but if a secondary
4265  * firmware node of the device is present, preserve it.
4266  */
4267 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4268 {
4269 	struct fwnode_handle *fn = dev->fwnode;
4270 
4271 	if (fwnode) {
4272 		if (fwnode_is_primary(fn))
4273 			fn = fn->secondary;
4274 
4275 		if (fn) {
4276 			WARN_ON(fwnode->secondary);
4277 			fwnode->secondary = fn;
4278 		}
4279 		dev->fwnode = fwnode;
4280 	} else {
4281 		if (fwnode_is_primary(fn)) {
4282 			dev->fwnode = fn->secondary;
4283 			fn->secondary = NULL;
4284 		} else {
4285 			dev->fwnode = NULL;
4286 		}
4287 	}
4288 }
4289 EXPORT_SYMBOL_GPL(set_primary_fwnode);
4290 
4291 /**
4292  * set_secondary_fwnode - Change the secondary firmware node of a given device.
4293  * @dev: Device to handle.
4294  * @fwnode: New secondary firmware node of the device.
4295  *
4296  * If a primary firmware node of the device is present, set its secondary
4297  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
4298  * @fwnode.
4299  */
4300 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4301 {
4302 	if (fwnode)
4303 		fwnode->secondary = ERR_PTR(-ENODEV);
4304 
4305 	if (fwnode_is_primary(dev->fwnode))
4306 		dev->fwnode->secondary = fwnode;
4307 	else
4308 		dev->fwnode = fwnode;
4309 }
4310 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4311 
4312 /**
4313  * device_set_of_node_from_dev - reuse device-tree node of another device
4314  * @dev: device whose device-tree node is being set
4315  * @dev2: device whose device-tree node is being reused
4316  *
4317  * Takes another reference to the new device-tree node after first dropping
4318  * any reference held to the old node.
4319  */
4320 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4321 {
4322 	of_node_put(dev->of_node);
4323 	dev->of_node = of_node_get(dev2->of_node);
4324 	dev->of_node_reused = true;
4325 }
4326 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4327 
4328 int device_match_name(struct device *dev, const void *name)
4329 {
4330 	return sysfs_streq(dev_name(dev), name);
4331 }
4332 EXPORT_SYMBOL_GPL(device_match_name);
4333 
4334 int device_match_of_node(struct device *dev, const void *np)
4335 {
4336 	return dev->of_node == np;
4337 }
4338 EXPORT_SYMBOL_GPL(device_match_of_node);
4339 
4340 int device_match_fwnode(struct device *dev, const void *fwnode)
4341 {
4342 	return dev_fwnode(dev) == fwnode;
4343 }
4344 EXPORT_SYMBOL_GPL(device_match_fwnode);
4345 
4346 int device_match_devt(struct device *dev, const void *pdevt)
4347 {
4348 	return dev->devt == *(dev_t *)pdevt;
4349 }
4350 EXPORT_SYMBOL_GPL(device_match_devt);
4351 
4352 int device_match_acpi_dev(struct device *dev, const void *adev)
4353 {
4354 	return ACPI_COMPANION(dev) == adev;
4355 }
4356 EXPORT_SYMBOL(device_match_acpi_dev);
4357 
4358 int device_match_any(struct device *dev, const void *unused)
4359 {
4360 	return 1;
4361 }
4362 EXPORT_SYMBOL_GPL(device_match_any);
4363