1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/cpufreq.h> 13 #include <linux/device.h> 14 #include <linux/err.h> 15 #include <linux/fwnode.h> 16 #include <linux/init.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/string.h> 20 #include <linux/kdev_t.h> 21 #include <linux/notifier.h> 22 #include <linux/of.h> 23 #include <linux/of_device.h> 24 #include <linux/genhd.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/netdevice.h> 28 #include <linux/sched/signal.h> 29 #include <linux/sysfs.h> 30 31 #include "base.h" 32 #include "power/power.h" 33 34 #ifdef CONFIG_SYSFS_DEPRECATED 35 #ifdef CONFIG_SYSFS_DEPRECATED_V2 36 long sysfs_deprecated = 1; 37 #else 38 long sysfs_deprecated = 0; 39 #endif 40 static int __init sysfs_deprecated_setup(char *arg) 41 { 42 return kstrtol(arg, 10, &sysfs_deprecated); 43 } 44 early_param("sysfs.deprecated", sysfs_deprecated_setup); 45 #endif 46 47 /* Device links support. */ 48 static LIST_HEAD(wait_for_suppliers); 49 static DEFINE_MUTEX(wfs_lock); 50 static LIST_HEAD(deferred_sync); 51 static unsigned int defer_sync_state_count = 1; 52 static unsigned int defer_fw_devlink_count; 53 static LIST_HEAD(deferred_fw_devlink); 54 static DEFINE_MUTEX(defer_fw_devlink_lock); 55 static bool fw_devlink_is_permissive(void); 56 57 #ifdef CONFIG_SRCU 58 static DEFINE_MUTEX(device_links_lock); 59 DEFINE_STATIC_SRCU(device_links_srcu); 60 61 static inline void device_links_write_lock(void) 62 { 63 mutex_lock(&device_links_lock); 64 } 65 66 static inline void device_links_write_unlock(void) 67 { 68 mutex_unlock(&device_links_lock); 69 } 70 71 int device_links_read_lock(void) __acquires(&device_links_srcu) 72 { 73 return srcu_read_lock(&device_links_srcu); 74 } 75 76 void device_links_read_unlock(int idx) __releases(&device_links_srcu) 77 { 78 srcu_read_unlock(&device_links_srcu, idx); 79 } 80 81 int device_links_read_lock_held(void) 82 { 83 return srcu_read_lock_held(&device_links_srcu); 84 } 85 #else /* !CONFIG_SRCU */ 86 static DECLARE_RWSEM(device_links_lock); 87 88 static inline void device_links_write_lock(void) 89 { 90 down_write(&device_links_lock); 91 } 92 93 static inline void device_links_write_unlock(void) 94 { 95 up_write(&device_links_lock); 96 } 97 98 int device_links_read_lock(void) 99 { 100 down_read(&device_links_lock); 101 return 0; 102 } 103 104 void device_links_read_unlock(int not_used) 105 { 106 up_read(&device_links_lock); 107 } 108 109 #ifdef CONFIG_DEBUG_LOCK_ALLOC 110 int device_links_read_lock_held(void) 111 { 112 return lockdep_is_held(&device_links_lock); 113 } 114 #endif 115 #endif /* !CONFIG_SRCU */ 116 117 /** 118 * device_is_dependent - Check if one device depends on another one 119 * @dev: Device to check dependencies for. 120 * @target: Device to check against. 121 * 122 * Check if @target depends on @dev or any device dependent on it (its child or 123 * its consumer etc). Return 1 if that is the case or 0 otherwise. 124 */ 125 int device_is_dependent(struct device *dev, void *target) 126 { 127 struct device_link *link; 128 int ret; 129 130 if (dev == target) 131 return 1; 132 133 ret = device_for_each_child(dev, target, device_is_dependent); 134 if (ret) 135 return ret; 136 137 list_for_each_entry(link, &dev->links.consumers, s_node) { 138 if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 139 continue; 140 141 if (link->consumer == target) 142 return 1; 143 144 ret = device_is_dependent(link->consumer, target); 145 if (ret) 146 break; 147 } 148 return ret; 149 } 150 151 static void device_link_init_status(struct device_link *link, 152 struct device *consumer, 153 struct device *supplier) 154 { 155 switch (supplier->links.status) { 156 case DL_DEV_PROBING: 157 switch (consumer->links.status) { 158 case DL_DEV_PROBING: 159 /* 160 * A consumer driver can create a link to a supplier 161 * that has not completed its probing yet as long as it 162 * knows that the supplier is already functional (for 163 * example, it has just acquired some resources from the 164 * supplier). 165 */ 166 link->status = DL_STATE_CONSUMER_PROBE; 167 break; 168 default: 169 link->status = DL_STATE_DORMANT; 170 break; 171 } 172 break; 173 case DL_DEV_DRIVER_BOUND: 174 switch (consumer->links.status) { 175 case DL_DEV_PROBING: 176 link->status = DL_STATE_CONSUMER_PROBE; 177 break; 178 case DL_DEV_DRIVER_BOUND: 179 link->status = DL_STATE_ACTIVE; 180 break; 181 default: 182 link->status = DL_STATE_AVAILABLE; 183 break; 184 } 185 break; 186 case DL_DEV_UNBINDING: 187 link->status = DL_STATE_SUPPLIER_UNBIND; 188 break; 189 default: 190 link->status = DL_STATE_DORMANT; 191 break; 192 } 193 } 194 195 static int device_reorder_to_tail(struct device *dev, void *not_used) 196 { 197 struct device_link *link; 198 199 /* 200 * Devices that have not been registered yet will be put to the ends 201 * of the lists during the registration, so skip them here. 202 */ 203 if (device_is_registered(dev)) 204 devices_kset_move_last(dev); 205 206 if (device_pm_initialized(dev)) 207 device_pm_move_last(dev); 208 209 device_for_each_child(dev, NULL, device_reorder_to_tail); 210 list_for_each_entry(link, &dev->links.consumers, s_node) { 211 if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 212 continue; 213 device_reorder_to_tail(link->consumer, NULL); 214 } 215 216 return 0; 217 } 218 219 /** 220 * device_pm_move_to_tail - Move set of devices to the end of device lists 221 * @dev: Device to move 222 * 223 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 224 * 225 * It moves the @dev along with all of its children and all of its consumers 226 * to the ends of the device_kset and dpm_list, recursively. 227 */ 228 void device_pm_move_to_tail(struct device *dev) 229 { 230 int idx; 231 232 idx = device_links_read_lock(); 233 device_pm_lock(); 234 device_reorder_to_tail(dev, NULL); 235 device_pm_unlock(); 236 device_links_read_unlock(idx); 237 } 238 239 #define to_devlink(dev) container_of((dev), struct device_link, link_dev) 240 241 static ssize_t status_show(struct device *dev, 242 struct device_attribute *attr, char *buf) 243 { 244 char *status; 245 246 switch (to_devlink(dev)->status) { 247 case DL_STATE_NONE: 248 status = "not tracked"; break; 249 case DL_STATE_DORMANT: 250 status = "dormant"; break; 251 case DL_STATE_AVAILABLE: 252 status = "available"; break; 253 case DL_STATE_CONSUMER_PROBE: 254 status = "consumer probing"; break; 255 case DL_STATE_ACTIVE: 256 status = "active"; break; 257 case DL_STATE_SUPPLIER_UNBIND: 258 status = "supplier unbinding"; break; 259 default: 260 status = "unknown"; break; 261 } 262 return sprintf(buf, "%s\n", status); 263 } 264 static DEVICE_ATTR_RO(status); 265 266 static ssize_t auto_remove_on_show(struct device *dev, 267 struct device_attribute *attr, char *buf) 268 { 269 struct device_link *link = to_devlink(dev); 270 char *str; 271 272 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 273 str = "supplier unbind"; 274 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) 275 str = "consumer unbind"; 276 else 277 str = "never"; 278 279 return sprintf(buf, "%s\n", str); 280 } 281 static DEVICE_ATTR_RO(auto_remove_on); 282 283 static ssize_t runtime_pm_show(struct device *dev, 284 struct device_attribute *attr, char *buf) 285 { 286 struct device_link *link = to_devlink(dev); 287 288 return sprintf(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME)); 289 } 290 static DEVICE_ATTR_RO(runtime_pm); 291 292 static ssize_t sync_state_only_show(struct device *dev, 293 struct device_attribute *attr, char *buf) 294 { 295 struct device_link *link = to_devlink(dev); 296 297 return sprintf(buf, "%d\n", !!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 298 } 299 static DEVICE_ATTR_RO(sync_state_only); 300 301 static struct attribute *devlink_attrs[] = { 302 &dev_attr_status.attr, 303 &dev_attr_auto_remove_on.attr, 304 &dev_attr_runtime_pm.attr, 305 &dev_attr_sync_state_only.attr, 306 NULL, 307 }; 308 ATTRIBUTE_GROUPS(devlink); 309 310 static void device_link_free(struct device_link *link) 311 { 312 while (refcount_dec_not_one(&link->rpm_active)) 313 pm_runtime_put(link->supplier); 314 315 put_device(link->consumer); 316 put_device(link->supplier); 317 kfree(link); 318 } 319 320 #ifdef CONFIG_SRCU 321 static void __device_link_free_srcu(struct rcu_head *rhead) 322 { 323 device_link_free(container_of(rhead, struct device_link, rcu_head)); 324 } 325 326 static void devlink_dev_release(struct device *dev) 327 { 328 struct device_link *link = to_devlink(dev); 329 330 call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu); 331 } 332 #else 333 static void devlink_dev_release(struct device *dev) 334 { 335 device_link_free(to_devlink(dev)); 336 } 337 #endif 338 339 static struct class devlink_class = { 340 .name = "devlink", 341 .owner = THIS_MODULE, 342 .dev_groups = devlink_groups, 343 .dev_release = devlink_dev_release, 344 }; 345 346 static int devlink_add_symlinks(struct device *dev, 347 struct class_interface *class_intf) 348 { 349 int ret; 350 size_t len; 351 struct device_link *link = to_devlink(dev); 352 struct device *sup = link->supplier; 353 struct device *con = link->consumer; 354 char *buf; 355 356 len = max(strlen(dev_name(sup)), strlen(dev_name(con))); 357 len += strlen("supplier:") + 1; 358 buf = kzalloc(len, GFP_KERNEL); 359 if (!buf) 360 return -ENOMEM; 361 362 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier"); 363 if (ret) 364 goto out; 365 366 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer"); 367 if (ret) 368 goto err_con; 369 370 snprintf(buf, len, "consumer:%s", dev_name(con)); 371 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf); 372 if (ret) 373 goto err_con_dev; 374 375 snprintf(buf, len, "supplier:%s", dev_name(sup)); 376 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf); 377 if (ret) 378 goto err_sup_dev; 379 380 goto out; 381 382 err_sup_dev: 383 snprintf(buf, len, "consumer:%s", dev_name(con)); 384 sysfs_remove_link(&sup->kobj, buf); 385 err_con_dev: 386 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 387 err_con: 388 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 389 out: 390 kfree(buf); 391 return ret; 392 } 393 394 static void devlink_remove_symlinks(struct device *dev, 395 struct class_interface *class_intf) 396 { 397 struct device_link *link = to_devlink(dev); 398 size_t len; 399 struct device *sup = link->supplier; 400 struct device *con = link->consumer; 401 char *buf; 402 403 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 404 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 405 406 len = max(strlen(dev_name(sup)), strlen(dev_name(con))); 407 len += strlen("supplier:") + 1; 408 buf = kzalloc(len, GFP_KERNEL); 409 if (!buf) { 410 WARN(1, "Unable to properly free device link symlinks!\n"); 411 return; 412 } 413 414 snprintf(buf, len, "supplier:%s", dev_name(sup)); 415 sysfs_remove_link(&con->kobj, buf); 416 snprintf(buf, len, "consumer:%s", dev_name(con)); 417 sysfs_remove_link(&sup->kobj, buf); 418 kfree(buf); 419 } 420 421 static struct class_interface devlink_class_intf = { 422 .class = &devlink_class, 423 .add_dev = devlink_add_symlinks, 424 .remove_dev = devlink_remove_symlinks, 425 }; 426 427 static int __init devlink_class_init(void) 428 { 429 int ret; 430 431 ret = class_register(&devlink_class); 432 if (ret) 433 return ret; 434 435 ret = class_interface_register(&devlink_class_intf); 436 if (ret) 437 class_unregister(&devlink_class); 438 439 return ret; 440 } 441 postcore_initcall(devlink_class_init); 442 443 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \ 444 DL_FLAG_AUTOREMOVE_SUPPLIER | \ 445 DL_FLAG_AUTOPROBE_CONSUMER | \ 446 DL_FLAG_SYNC_STATE_ONLY) 447 448 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \ 449 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE) 450 451 /** 452 * device_link_add - Create a link between two devices. 453 * @consumer: Consumer end of the link. 454 * @supplier: Supplier end of the link. 455 * @flags: Link flags. 456 * 457 * The caller is responsible for the proper synchronization of the link creation 458 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 459 * runtime PM framework to take the link into account. Second, if the 460 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 461 * be forced into the active metastate and reference-counted upon the creation 462 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 463 * ignored. 464 * 465 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is 466 * expected to release the link returned by it directly with the help of either 467 * device_link_del() or device_link_remove(). 468 * 469 * If that flag is not set, however, the caller of this function is handing the 470 * management of the link over to the driver core entirely and its return value 471 * can only be used to check whether or not the link is present. In that case, 472 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link 473 * flags can be used to indicate to the driver core when the link can be safely 474 * deleted. Namely, setting one of them in @flags indicates to the driver core 475 * that the link is not going to be used (by the given caller of this function) 476 * after unbinding the consumer or supplier driver, respectively, from its 477 * device, so the link can be deleted at that point. If none of them is set, 478 * the link will be maintained until one of the devices pointed to by it (either 479 * the consumer or the supplier) is unregistered. 480 * 481 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and 482 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent 483 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can 484 * be used to request the driver core to automaticall probe for a consmer 485 * driver after successfully binding a driver to the supplier device. 486 * 487 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER, 488 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at 489 * the same time is invalid and will cause NULL to be returned upfront. 490 * However, if a device link between the given @consumer and @supplier pair 491 * exists already when this function is called for them, the existing link will 492 * be returned regardless of its current type and status (the link's flags may 493 * be modified then). The caller of this function is then expected to treat 494 * the link as though it has just been created, so (in particular) if 495 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released 496 * explicitly when not needed any more (as stated above). 497 * 498 * A side effect of the link creation is re-ordering of dpm_list and the 499 * devices_kset list by moving the consumer device and all devices depending 500 * on it to the ends of these lists (that does not happen to devices that have 501 * not been registered when this function is called). 502 * 503 * The supplier device is required to be registered when this function is called 504 * and NULL will be returned if that is not the case. The consumer device need 505 * not be registered, however. 506 */ 507 struct device_link *device_link_add(struct device *consumer, 508 struct device *supplier, u32 flags) 509 { 510 struct device_link *link; 511 512 if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS || 513 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) || 514 (flags & DL_FLAG_SYNC_STATE_ONLY && 515 flags != DL_FLAG_SYNC_STATE_ONLY) || 516 (flags & DL_FLAG_AUTOPROBE_CONSUMER && 517 flags & (DL_FLAG_AUTOREMOVE_CONSUMER | 518 DL_FLAG_AUTOREMOVE_SUPPLIER))) 519 return NULL; 520 521 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) { 522 if (pm_runtime_get_sync(supplier) < 0) { 523 pm_runtime_put_noidle(supplier); 524 return NULL; 525 } 526 } 527 528 if (!(flags & DL_FLAG_STATELESS)) 529 flags |= DL_FLAG_MANAGED; 530 531 device_links_write_lock(); 532 device_pm_lock(); 533 534 /* 535 * If the supplier has not been fully registered yet or there is a 536 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and 537 * the supplier already in the graph, return NULL. If the link is a 538 * SYNC_STATE_ONLY link, we don't check for reverse dependencies 539 * because it only affects sync_state() callbacks. 540 */ 541 if (!device_pm_initialized(supplier) 542 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) && 543 device_is_dependent(consumer, supplier))) { 544 link = NULL; 545 goto out; 546 } 547 548 /* 549 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed 550 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both 551 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER. 552 */ 553 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 554 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 555 556 list_for_each_entry(link, &supplier->links.consumers, s_node) { 557 if (link->consumer != consumer) 558 continue; 559 560 if (flags & DL_FLAG_PM_RUNTIME) { 561 if (!(link->flags & DL_FLAG_PM_RUNTIME)) { 562 pm_runtime_new_link(consumer); 563 link->flags |= DL_FLAG_PM_RUNTIME; 564 } 565 if (flags & DL_FLAG_RPM_ACTIVE) 566 refcount_inc(&link->rpm_active); 567 } 568 569 if (flags & DL_FLAG_STATELESS) { 570 kref_get(&link->kref); 571 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 572 !(link->flags & DL_FLAG_STATELESS)) { 573 link->flags |= DL_FLAG_STATELESS; 574 goto reorder; 575 } else { 576 link->flags |= DL_FLAG_STATELESS; 577 goto out; 578 } 579 } 580 581 /* 582 * If the life time of the link following from the new flags is 583 * longer than indicated by the flags of the existing link, 584 * update the existing link to stay around longer. 585 */ 586 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) { 587 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 588 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 589 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER; 590 } 591 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) { 592 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER | 593 DL_FLAG_AUTOREMOVE_SUPPLIER); 594 } 595 if (!(link->flags & DL_FLAG_MANAGED)) { 596 kref_get(&link->kref); 597 link->flags |= DL_FLAG_MANAGED; 598 device_link_init_status(link, consumer, supplier); 599 } 600 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 601 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 602 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY; 603 goto reorder; 604 } 605 606 goto out; 607 } 608 609 link = kzalloc(sizeof(*link), GFP_KERNEL); 610 if (!link) 611 goto out; 612 613 refcount_set(&link->rpm_active, 1); 614 615 get_device(supplier); 616 link->supplier = supplier; 617 INIT_LIST_HEAD(&link->s_node); 618 get_device(consumer); 619 link->consumer = consumer; 620 INIT_LIST_HEAD(&link->c_node); 621 link->flags = flags; 622 kref_init(&link->kref); 623 624 link->link_dev.class = &devlink_class; 625 device_set_pm_not_required(&link->link_dev); 626 dev_set_name(&link->link_dev, "%s--%s", 627 dev_name(supplier), dev_name(consumer)); 628 if (device_register(&link->link_dev)) { 629 put_device(consumer); 630 put_device(supplier); 631 kfree(link); 632 link = NULL; 633 goto out; 634 } 635 636 if (flags & DL_FLAG_PM_RUNTIME) { 637 if (flags & DL_FLAG_RPM_ACTIVE) 638 refcount_inc(&link->rpm_active); 639 640 pm_runtime_new_link(consumer); 641 } 642 643 /* Determine the initial link state. */ 644 if (flags & DL_FLAG_STATELESS) 645 link->status = DL_STATE_NONE; 646 else 647 device_link_init_status(link, consumer, supplier); 648 649 /* 650 * Some callers expect the link creation during consumer driver probe to 651 * resume the supplier even without DL_FLAG_RPM_ACTIVE. 652 */ 653 if (link->status == DL_STATE_CONSUMER_PROBE && 654 flags & DL_FLAG_PM_RUNTIME) 655 pm_runtime_resume(supplier); 656 657 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 658 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 659 660 if (flags & DL_FLAG_SYNC_STATE_ONLY) { 661 dev_dbg(consumer, 662 "Linked as a sync state only consumer to %s\n", 663 dev_name(supplier)); 664 goto out; 665 } 666 667 reorder: 668 /* 669 * Move the consumer and all of the devices depending on it to the end 670 * of dpm_list and the devices_kset list. 671 * 672 * It is necessary to hold dpm_list locked throughout all that or else 673 * we may end up suspending with a wrong ordering of it. 674 */ 675 device_reorder_to_tail(consumer, NULL); 676 677 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 678 679 out: 680 device_pm_unlock(); 681 device_links_write_unlock(); 682 683 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link) 684 pm_runtime_put(supplier); 685 686 return link; 687 } 688 EXPORT_SYMBOL_GPL(device_link_add); 689 690 /** 691 * device_link_wait_for_supplier - Add device to wait_for_suppliers list 692 * @consumer: Consumer device 693 * 694 * Marks the @consumer device as waiting for suppliers to become available by 695 * adding it to the wait_for_suppliers list. The consumer device will never be 696 * probed until it's removed from the wait_for_suppliers list. 697 * 698 * The caller is responsible for adding the links to the supplier devices once 699 * they are available and removing the @consumer device from the 700 * wait_for_suppliers list once links to all the suppliers have been created. 701 * 702 * This function is NOT meant to be called from the probe function of the 703 * consumer but rather from code that creates/adds the consumer device. 704 */ 705 static void device_link_wait_for_supplier(struct device *consumer, 706 bool need_for_probe) 707 { 708 mutex_lock(&wfs_lock); 709 list_add_tail(&consumer->links.needs_suppliers, &wait_for_suppliers); 710 consumer->links.need_for_probe = need_for_probe; 711 mutex_unlock(&wfs_lock); 712 } 713 714 static void device_link_wait_for_mandatory_supplier(struct device *consumer) 715 { 716 device_link_wait_for_supplier(consumer, true); 717 } 718 719 static void device_link_wait_for_optional_supplier(struct device *consumer) 720 { 721 device_link_wait_for_supplier(consumer, false); 722 } 723 724 /** 725 * device_link_add_missing_supplier_links - Add links from consumer devices to 726 * supplier devices, leaving any 727 * consumer with inactive suppliers on 728 * the wait_for_suppliers list 729 * 730 * Loops through all consumers waiting on suppliers and tries to add all their 731 * supplier links. If that succeeds, the consumer device is removed from 732 * wait_for_suppliers list. Otherwise, they are left in the wait_for_suppliers 733 * list. Devices left on the wait_for_suppliers list will not be probed. 734 * 735 * The fwnode add_links callback is expected to return 0 if it has found and 736 * added all the supplier links for the consumer device. It should return an 737 * error if it isn't able to do so. 738 * 739 * The caller of device_link_wait_for_supplier() is expected to call this once 740 * it's aware of potential suppliers becoming available. 741 */ 742 static void device_link_add_missing_supplier_links(void) 743 { 744 struct device *dev, *tmp; 745 746 mutex_lock(&wfs_lock); 747 list_for_each_entry_safe(dev, tmp, &wait_for_suppliers, 748 links.needs_suppliers) { 749 int ret = fwnode_call_int_op(dev->fwnode, add_links, dev); 750 if (!ret) 751 list_del_init(&dev->links.needs_suppliers); 752 else if (ret != -ENODEV || fw_devlink_is_permissive()) 753 dev->links.need_for_probe = false; 754 } 755 mutex_unlock(&wfs_lock); 756 } 757 758 #ifdef CONFIG_SRCU 759 static void __device_link_del(struct kref *kref) 760 { 761 struct device_link *link = container_of(kref, struct device_link, kref); 762 763 dev_dbg(link->consumer, "Dropping the link to %s\n", 764 dev_name(link->supplier)); 765 766 if (link->flags & DL_FLAG_PM_RUNTIME) 767 pm_runtime_drop_link(link->consumer); 768 769 list_del_rcu(&link->s_node); 770 list_del_rcu(&link->c_node); 771 device_unregister(&link->link_dev); 772 } 773 #else /* !CONFIG_SRCU */ 774 static void __device_link_del(struct kref *kref) 775 { 776 struct device_link *link = container_of(kref, struct device_link, kref); 777 778 dev_info(link->consumer, "Dropping the link to %s\n", 779 dev_name(link->supplier)); 780 781 if (link->flags & DL_FLAG_PM_RUNTIME) 782 pm_runtime_drop_link(link->consumer); 783 784 list_del(&link->s_node); 785 list_del(&link->c_node); 786 device_unregister(&link->link_dev); 787 } 788 #endif /* !CONFIG_SRCU */ 789 790 static void device_link_put_kref(struct device_link *link) 791 { 792 if (link->flags & DL_FLAG_STATELESS) 793 kref_put(&link->kref, __device_link_del); 794 else 795 WARN(1, "Unable to drop a managed device link reference\n"); 796 } 797 798 /** 799 * device_link_del - Delete a stateless link between two devices. 800 * @link: Device link to delete. 801 * 802 * The caller must ensure proper synchronization of this function with runtime 803 * PM. If the link was added multiple times, it needs to be deleted as often. 804 * Care is required for hotplugged devices: Their links are purged on removal 805 * and calling device_link_del() is then no longer allowed. 806 */ 807 void device_link_del(struct device_link *link) 808 { 809 device_links_write_lock(); 810 device_pm_lock(); 811 device_link_put_kref(link); 812 device_pm_unlock(); 813 device_links_write_unlock(); 814 } 815 EXPORT_SYMBOL_GPL(device_link_del); 816 817 /** 818 * device_link_remove - Delete a stateless link between two devices. 819 * @consumer: Consumer end of the link. 820 * @supplier: Supplier end of the link. 821 * 822 * The caller must ensure proper synchronization of this function with runtime 823 * PM. 824 */ 825 void device_link_remove(void *consumer, struct device *supplier) 826 { 827 struct device_link *link; 828 829 if (WARN_ON(consumer == supplier)) 830 return; 831 832 device_links_write_lock(); 833 device_pm_lock(); 834 835 list_for_each_entry(link, &supplier->links.consumers, s_node) { 836 if (link->consumer == consumer) { 837 device_link_put_kref(link); 838 break; 839 } 840 } 841 842 device_pm_unlock(); 843 device_links_write_unlock(); 844 } 845 EXPORT_SYMBOL_GPL(device_link_remove); 846 847 static void device_links_missing_supplier(struct device *dev) 848 { 849 struct device_link *link; 850 851 list_for_each_entry(link, &dev->links.suppliers, c_node) { 852 if (link->status != DL_STATE_CONSUMER_PROBE) 853 continue; 854 855 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 856 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 857 } else { 858 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 859 WRITE_ONCE(link->status, DL_STATE_DORMANT); 860 } 861 } 862 } 863 864 /** 865 * device_links_check_suppliers - Check presence of supplier drivers. 866 * @dev: Consumer device. 867 * 868 * Check links from this device to any suppliers. Walk the list of the device's 869 * links to suppliers and see if all of them are available. If not, simply 870 * return -EPROBE_DEFER. 871 * 872 * We need to guarantee that the supplier will not go away after the check has 873 * been positive here. It only can go away in __device_release_driver() and 874 * that function checks the device's links to consumers. This means we need to 875 * mark the link as "consumer probe in progress" to make the supplier removal 876 * wait for us to complete (or bad things may happen). 877 * 878 * Links without the DL_FLAG_MANAGED flag set are ignored. 879 */ 880 int device_links_check_suppliers(struct device *dev) 881 { 882 struct device_link *link; 883 int ret = 0; 884 885 /* 886 * Device waiting for supplier to become available is not allowed to 887 * probe. 888 */ 889 mutex_lock(&wfs_lock); 890 if (!list_empty(&dev->links.needs_suppliers) && 891 dev->links.need_for_probe) { 892 mutex_unlock(&wfs_lock); 893 return -EPROBE_DEFER; 894 } 895 mutex_unlock(&wfs_lock); 896 897 device_links_write_lock(); 898 899 list_for_each_entry(link, &dev->links.suppliers, c_node) { 900 if (!(link->flags & DL_FLAG_MANAGED)) 901 continue; 902 903 if (link->status != DL_STATE_AVAILABLE && 904 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) { 905 device_links_missing_supplier(dev); 906 ret = -EPROBE_DEFER; 907 break; 908 } 909 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 910 } 911 dev->links.status = DL_DEV_PROBING; 912 913 device_links_write_unlock(); 914 return ret; 915 } 916 917 /** 918 * __device_links_queue_sync_state - Queue a device for sync_state() callback 919 * @dev: Device to call sync_state() on 920 * @list: List head to queue the @dev on 921 * 922 * Queues a device for a sync_state() callback when the device links write lock 923 * isn't held. This allows the sync_state() execution flow to use device links 924 * APIs. The caller must ensure this function is called with 925 * device_links_write_lock() held. 926 * 927 * This function does a get_device() to make sure the device is not freed while 928 * on this list. 929 * 930 * So the caller must also ensure that device_links_flush_sync_list() is called 931 * as soon as the caller releases device_links_write_lock(). This is necessary 932 * to make sure the sync_state() is called in a timely fashion and the 933 * put_device() is called on this device. 934 */ 935 static void __device_links_queue_sync_state(struct device *dev, 936 struct list_head *list) 937 { 938 struct device_link *link; 939 940 if (!dev_has_sync_state(dev)) 941 return; 942 if (dev->state_synced) 943 return; 944 945 list_for_each_entry(link, &dev->links.consumers, s_node) { 946 if (!(link->flags & DL_FLAG_MANAGED)) 947 continue; 948 if (link->status != DL_STATE_ACTIVE) 949 return; 950 } 951 952 /* 953 * Set the flag here to avoid adding the same device to a list more 954 * than once. This can happen if new consumers get added to the device 955 * and probed before the list is flushed. 956 */ 957 dev->state_synced = true; 958 959 if (WARN_ON(!list_empty(&dev->links.defer_hook))) 960 return; 961 962 get_device(dev); 963 list_add_tail(&dev->links.defer_hook, list); 964 } 965 966 /** 967 * device_links_flush_sync_list - Call sync_state() on a list of devices 968 * @list: List of devices to call sync_state() on 969 * @dont_lock_dev: Device for which lock is already held by the caller 970 * 971 * Calls sync_state() on all the devices that have been queued for it. This 972 * function is used in conjunction with __device_links_queue_sync_state(). The 973 * @dont_lock_dev parameter is useful when this function is called from a 974 * context where a device lock is already held. 975 */ 976 static void device_links_flush_sync_list(struct list_head *list, 977 struct device *dont_lock_dev) 978 { 979 struct device *dev, *tmp; 980 981 list_for_each_entry_safe(dev, tmp, list, links.defer_hook) { 982 list_del_init(&dev->links.defer_hook); 983 984 if (dev != dont_lock_dev) 985 device_lock(dev); 986 987 if (dev->bus->sync_state) 988 dev->bus->sync_state(dev); 989 else if (dev->driver && dev->driver->sync_state) 990 dev->driver->sync_state(dev); 991 992 if (dev != dont_lock_dev) 993 device_unlock(dev); 994 995 put_device(dev); 996 } 997 } 998 999 void device_links_supplier_sync_state_pause(void) 1000 { 1001 device_links_write_lock(); 1002 defer_sync_state_count++; 1003 device_links_write_unlock(); 1004 } 1005 1006 void device_links_supplier_sync_state_resume(void) 1007 { 1008 struct device *dev, *tmp; 1009 LIST_HEAD(sync_list); 1010 1011 device_links_write_lock(); 1012 if (!defer_sync_state_count) { 1013 WARN(true, "Unmatched sync_state pause/resume!"); 1014 goto out; 1015 } 1016 defer_sync_state_count--; 1017 if (defer_sync_state_count) 1018 goto out; 1019 1020 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_hook) { 1021 /* 1022 * Delete from deferred_sync list before queuing it to 1023 * sync_list because defer_hook is used for both lists. 1024 */ 1025 list_del_init(&dev->links.defer_hook); 1026 __device_links_queue_sync_state(dev, &sync_list); 1027 } 1028 out: 1029 device_links_write_unlock(); 1030 1031 device_links_flush_sync_list(&sync_list, NULL); 1032 } 1033 1034 static int sync_state_resume_initcall(void) 1035 { 1036 device_links_supplier_sync_state_resume(); 1037 return 0; 1038 } 1039 late_initcall(sync_state_resume_initcall); 1040 1041 static void __device_links_supplier_defer_sync(struct device *sup) 1042 { 1043 if (list_empty(&sup->links.defer_hook) && dev_has_sync_state(sup)) 1044 list_add_tail(&sup->links.defer_hook, &deferred_sync); 1045 } 1046 1047 static void device_link_drop_managed(struct device_link *link) 1048 { 1049 link->flags &= ~DL_FLAG_MANAGED; 1050 WRITE_ONCE(link->status, DL_STATE_NONE); 1051 kref_put(&link->kref, __device_link_del); 1052 } 1053 1054 static ssize_t waiting_for_supplier_show(struct device *dev, 1055 struct device_attribute *attr, 1056 char *buf) 1057 { 1058 bool val; 1059 1060 device_lock(dev); 1061 mutex_lock(&wfs_lock); 1062 val = !list_empty(&dev->links.needs_suppliers) 1063 && dev->links.need_for_probe; 1064 mutex_unlock(&wfs_lock); 1065 device_unlock(dev); 1066 return sprintf(buf, "%u\n", val); 1067 } 1068 static DEVICE_ATTR_RO(waiting_for_supplier); 1069 1070 /** 1071 * device_links_driver_bound - Update device links after probing its driver. 1072 * @dev: Device to update the links for. 1073 * 1074 * The probe has been successful, so update links from this device to any 1075 * consumers by changing their status to "available". 1076 * 1077 * Also change the status of @dev's links to suppliers to "active". 1078 * 1079 * Links without the DL_FLAG_MANAGED flag set are ignored. 1080 */ 1081 void device_links_driver_bound(struct device *dev) 1082 { 1083 struct device_link *link, *ln; 1084 LIST_HEAD(sync_list); 1085 1086 /* 1087 * If a device probes successfully, it's expected to have created all 1088 * the device links it needs to or make new device links as it needs 1089 * them. So, it no longer needs to wait on any suppliers. 1090 */ 1091 mutex_lock(&wfs_lock); 1092 list_del_init(&dev->links.needs_suppliers); 1093 mutex_unlock(&wfs_lock); 1094 device_remove_file(dev, &dev_attr_waiting_for_supplier); 1095 1096 device_links_write_lock(); 1097 1098 list_for_each_entry(link, &dev->links.consumers, s_node) { 1099 if (!(link->flags & DL_FLAG_MANAGED)) 1100 continue; 1101 1102 /* 1103 * Links created during consumer probe may be in the "consumer 1104 * probe" state to start with if the supplier is still probing 1105 * when they are created and they may become "active" if the 1106 * consumer probe returns first. Skip them here. 1107 */ 1108 if (link->status == DL_STATE_CONSUMER_PROBE || 1109 link->status == DL_STATE_ACTIVE) 1110 continue; 1111 1112 WARN_ON(link->status != DL_STATE_DORMANT); 1113 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1114 1115 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER) 1116 driver_deferred_probe_add(link->consumer); 1117 } 1118 1119 if (defer_sync_state_count) 1120 __device_links_supplier_defer_sync(dev); 1121 else 1122 __device_links_queue_sync_state(dev, &sync_list); 1123 1124 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1125 struct device *supplier; 1126 1127 if (!(link->flags & DL_FLAG_MANAGED)) 1128 continue; 1129 1130 supplier = link->supplier; 1131 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) { 1132 /* 1133 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no 1134 * other DL_MANAGED_LINK_FLAGS have been set. So, it's 1135 * save to drop the managed link completely. 1136 */ 1137 device_link_drop_managed(link); 1138 } else { 1139 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 1140 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 1141 } 1142 1143 /* 1144 * This needs to be done even for the deleted 1145 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last 1146 * device link that was preventing the supplier from getting a 1147 * sync_state() call. 1148 */ 1149 if (defer_sync_state_count) 1150 __device_links_supplier_defer_sync(supplier); 1151 else 1152 __device_links_queue_sync_state(supplier, &sync_list); 1153 } 1154 1155 dev->links.status = DL_DEV_DRIVER_BOUND; 1156 1157 device_links_write_unlock(); 1158 1159 device_links_flush_sync_list(&sync_list, dev); 1160 } 1161 1162 /** 1163 * __device_links_no_driver - Update links of a device without a driver. 1164 * @dev: Device without a drvier. 1165 * 1166 * Delete all non-persistent links from this device to any suppliers. 1167 * 1168 * Persistent links stay around, but their status is changed to "available", 1169 * unless they already are in the "supplier unbind in progress" state in which 1170 * case they need not be updated. 1171 * 1172 * Links without the DL_FLAG_MANAGED flag set are ignored. 1173 */ 1174 static void __device_links_no_driver(struct device *dev) 1175 { 1176 struct device_link *link, *ln; 1177 1178 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1179 if (!(link->flags & DL_FLAG_MANAGED)) 1180 continue; 1181 1182 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 1183 device_link_drop_managed(link); 1184 continue; 1185 } 1186 1187 if (link->status != DL_STATE_CONSUMER_PROBE && 1188 link->status != DL_STATE_ACTIVE) 1189 continue; 1190 1191 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1192 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1193 } else { 1194 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1195 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1196 } 1197 } 1198 1199 dev->links.status = DL_DEV_NO_DRIVER; 1200 } 1201 1202 /** 1203 * device_links_no_driver - Update links after failing driver probe. 1204 * @dev: Device whose driver has just failed to probe. 1205 * 1206 * Clean up leftover links to consumers for @dev and invoke 1207 * %__device_links_no_driver() to update links to suppliers for it as 1208 * appropriate. 1209 * 1210 * Links without the DL_FLAG_MANAGED flag set are ignored. 1211 */ 1212 void device_links_no_driver(struct device *dev) 1213 { 1214 struct device_link *link; 1215 1216 device_links_write_lock(); 1217 1218 list_for_each_entry(link, &dev->links.consumers, s_node) { 1219 if (!(link->flags & DL_FLAG_MANAGED)) 1220 continue; 1221 1222 /* 1223 * The probe has failed, so if the status of the link is 1224 * "consumer probe" or "active", it must have been added by 1225 * a probing consumer while this device was still probing. 1226 * Change its state to "dormant", as it represents a valid 1227 * relationship, but it is not functionally meaningful. 1228 */ 1229 if (link->status == DL_STATE_CONSUMER_PROBE || 1230 link->status == DL_STATE_ACTIVE) 1231 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1232 } 1233 1234 __device_links_no_driver(dev); 1235 1236 device_links_write_unlock(); 1237 } 1238 1239 /** 1240 * device_links_driver_cleanup - Update links after driver removal. 1241 * @dev: Device whose driver has just gone away. 1242 * 1243 * Update links to consumers for @dev by changing their status to "dormant" and 1244 * invoke %__device_links_no_driver() to update links to suppliers for it as 1245 * appropriate. 1246 * 1247 * Links without the DL_FLAG_MANAGED flag set are ignored. 1248 */ 1249 void device_links_driver_cleanup(struct device *dev) 1250 { 1251 struct device_link *link, *ln; 1252 1253 device_links_write_lock(); 1254 1255 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) { 1256 if (!(link->flags & DL_FLAG_MANAGED)) 1257 continue; 1258 1259 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER); 1260 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 1261 1262 /* 1263 * autoremove the links between this @dev and its consumer 1264 * devices that are not active, i.e. where the link state 1265 * has moved to DL_STATE_SUPPLIER_UNBIND. 1266 */ 1267 if (link->status == DL_STATE_SUPPLIER_UNBIND && 1268 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 1269 device_link_drop_managed(link); 1270 1271 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1272 } 1273 1274 list_del_init(&dev->links.defer_hook); 1275 __device_links_no_driver(dev); 1276 1277 device_links_write_unlock(); 1278 } 1279 1280 /** 1281 * device_links_busy - Check if there are any busy links to consumers. 1282 * @dev: Device to check. 1283 * 1284 * Check each consumer of the device and return 'true' if its link's status 1285 * is one of "consumer probe" or "active" (meaning that the given consumer is 1286 * probing right now or its driver is present). Otherwise, change the link 1287 * state to "supplier unbind" to prevent the consumer from being probed 1288 * successfully going forward. 1289 * 1290 * Return 'false' if there are no probing or active consumers. 1291 * 1292 * Links without the DL_FLAG_MANAGED flag set are ignored. 1293 */ 1294 bool device_links_busy(struct device *dev) 1295 { 1296 struct device_link *link; 1297 bool ret = false; 1298 1299 device_links_write_lock(); 1300 1301 list_for_each_entry(link, &dev->links.consumers, s_node) { 1302 if (!(link->flags & DL_FLAG_MANAGED)) 1303 continue; 1304 1305 if (link->status == DL_STATE_CONSUMER_PROBE 1306 || link->status == DL_STATE_ACTIVE) { 1307 ret = true; 1308 break; 1309 } 1310 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1311 } 1312 1313 dev->links.status = DL_DEV_UNBINDING; 1314 1315 device_links_write_unlock(); 1316 return ret; 1317 } 1318 1319 /** 1320 * device_links_unbind_consumers - Force unbind consumers of the given device. 1321 * @dev: Device to unbind the consumers of. 1322 * 1323 * Walk the list of links to consumers for @dev and if any of them is in the 1324 * "consumer probe" state, wait for all device probes in progress to complete 1325 * and start over. 1326 * 1327 * If that's not the case, change the status of the link to "supplier unbind" 1328 * and check if the link was in the "active" state. If so, force the consumer 1329 * driver to unbind and start over (the consumer will not re-probe as we have 1330 * changed the state of the link already). 1331 * 1332 * Links without the DL_FLAG_MANAGED flag set are ignored. 1333 */ 1334 void device_links_unbind_consumers(struct device *dev) 1335 { 1336 struct device_link *link; 1337 1338 start: 1339 device_links_write_lock(); 1340 1341 list_for_each_entry(link, &dev->links.consumers, s_node) { 1342 enum device_link_state status; 1343 1344 if (!(link->flags & DL_FLAG_MANAGED) || 1345 link->flags & DL_FLAG_SYNC_STATE_ONLY) 1346 continue; 1347 1348 status = link->status; 1349 if (status == DL_STATE_CONSUMER_PROBE) { 1350 device_links_write_unlock(); 1351 1352 wait_for_device_probe(); 1353 goto start; 1354 } 1355 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1356 if (status == DL_STATE_ACTIVE) { 1357 struct device *consumer = link->consumer; 1358 1359 get_device(consumer); 1360 1361 device_links_write_unlock(); 1362 1363 device_release_driver_internal(consumer, NULL, 1364 consumer->parent); 1365 put_device(consumer); 1366 goto start; 1367 } 1368 } 1369 1370 device_links_write_unlock(); 1371 } 1372 1373 /** 1374 * device_links_purge - Delete existing links to other devices. 1375 * @dev: Target device. 1376 */ 1377 static void device_links_purge(struct device *dev) 1378 { 1379 struct device_link *link, *ln; 1380 1381 if (dev->class == &devlink_class) 1382 return; 1383 1384 mutex_lock(&wfs_lock); 1385 list_del(&dev->links.needs_suppliers); 1386 mutex_unlock(&wfs_lock); 1387 1388 /* 1389 * Delete all of the remaining links from this device to any other 1390 * devices (either consumers or suppliers). 1391 */ 1392 device_links_write_lock(); 1393 1394 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1395 WARN_ON(link->status == DL_STATE_ACTIVE); 1396 __device_link_del(&link->kref); 1397 } 1398 1399 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 1400 WARN_ON(link->status != DL_STATE_DORMANT && 1401 link->status != DL_STATE_NONE); 1402 __device_link_del(&link->kref); 1403 } 1404 1405 device_links_write_unlock(); 1406 } 1407 1408 static u32 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY; 1409 static int __init fw_devlink_setup(char *arg) 1410 { 1411 if (!arg) 1412 return -EINVAL; 1413 1414 if (strcmp(arg, "off") == 0) { 1415 fw_devlink_flags = 0; 1416 } else if (strcmp(arg, "permissive") == 0) { 1417 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY; 1418 } else if (strcmp(arg, "on") == 0) { 1419 fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER; 1420 } else if (strcmp(arg, "rpm") == 0) { 1421 fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER | 1422 DL_FLAG_PM_RUNTIME; 1423 } 1424 return 0; 1425 } 1426 early_param("fw_devlink", fw_devlink_setup); 1427 1428 u32 fw_devlink_get_flags(void) 1429 { 1430 return fw_devlink_flags; 1431 } 1432 1433 static bool fw_devlink_is_permissive(void) 1434 { 1435 return fw_devlink_flags == DL_FLAG_SYNC_STATE_ONLY; 1436 } 1437 1438 static void fw_devlink_link_device(struct device *dev) 1439 { 1440 int fw_ret; 1441 1442 if (!fw_devlink_flags) 1443 return; 1444 1445 mutex_lock(&defer_fw_devlink_lock); 1446 if (!defer_fw_devlink_count) 1447 device_link_add_missing_supplier_links(); 1448 1449 /* 1450 * The device's fwnode not having add_links() doesn't affect if other 1451 * consumers can find this device as a supplier. So, this check is 1452 * intentionally placed after device_link_add_missing_supplier_links(). 1453 */ 1454 if (!fwnode_has_op(dev->fwnode, add_links)) 1455 goto out; 1456 1457 /* 1458 * If fw_devlink is being deferred, assume all devices have mandatory 1459 * suppliers they need to link to later. Then, when the fw_devlink is 1460 * resumed, all these devices will get a chance to try and link to any 1461 * suppliers they have. 1462 */ 1463 if (!defer_fw_devlink_count) { 1464 fw_ret = fwnode_call_int_op(dev->fwnode, add_links, dev); 1465 if (fw_ret == -ENODEV && fw_devlink_is_permissive()) 1466 fw_ret = -EAGAIN; 1467 } else { 1468 fw_ret = -ENODEV; 1469 /* 1470 * defer_hook is not used to add device to deferred_sync list 1471 * until device is bound. Since deferred fw devlink also blocks 1472 * probing, same list hook can be used for deferred_fw_devlink. 1473 */ 1474 list_add_tail(&dev->links.defer_hook, &deferred_fw_devlink); 1475 } 1476 1477 if (fw_ret == -ENODEV) 1478 device_link_wait_for_mandatory_supplier(dev); 1479 else if (fw_ret) 1480 device_link_wait_for_optional_supplier(dev); 1481 1482 out: 1483 mutex_unlock(&defer_fw_devlink_lock); 1484 } 1485 1486 /** 1487 * fw_devlink_pause - Pause parsing of fwnode to create device links 1488 * 1489 * Calling this function defers any fwnode parsing to create device links until 1490 * fw_devlink_resume() is called. Both these functions are ref counted and the 1491 * caller needs to match the calls. 1492 * 1493 * While fw_devlink is paused: 1494 * - Any device that is added won't have its fwnode parsed to create device 1495 * links. 1496 * - The probe of the device will also be deferred during this period. 1497 * - Any devices that were already added, but waiting for suppliers won't be 1498 * able to link to newly added devices. 1499 * 1500 * Once fw_devlink_resume(): 1501 * - All the fwnodes that was not parsed will be parsed. 1502 * - All the devices that were deferred probing will be reattempted if they 1503 * aren't waiting for any more suppliers. 1504 * 1505 * This pair of functions, is mainly meant to optimize the parsing of fwnodes 1506 * when a lot of devices that need to link to each other are added in a short 1507 * interval of time. For example, adding all the top level devices in a system. 1508 * 1509 * For example, if N devices are added and: 1510 * - All the consumers are added before their suppliers 1511 * - All the suppliers of the N devices are part of the N devices 1512 * 1513 * Then: 1514 * 1515 * - With the use of fw_devlink_pause() and fw_devlink_resume(), each device 1516 * will only need one parsing of its fwnode because it is guaranteed to find 1517 * all the supplier devices already registered and ready to link to. It won't 1518 * have to do another pass later to find one or more suppliers it couldn't 1519 * find in the first parse of the fwnode. So, we'll only need O(N) fwnode 1520 * parses. 1521 * 1522 * - Without the use of fw_devlink_pause() and fw_devlink_resume(), we would 1523 * end up doing O(N^2) parses of fwnodes because every device that's added is 1524 * guaranteed to trigger a parse of the fwnode of every device added before 1525 * it. This O(N^2) parse is made worse by the fact that when a fwnode of a 1526 * device is parsed, all it descendant devices might need to have their 1527 * fwnodes parsed too (even if the devices themselves aren't added). 1528 */ 1529 void fw_devlink_pause(void) 1530 { 1531 mutex_lock(&defer_fw_devlink_lock); 1532 defer_fw_devlink_count++; 1533 mutex_unlock(&defer_fw_devlink_lock); 1534 } 1535 1536 /** fw_devlink_resume - Resume parsing of fwnode to create device links 1537 * 1538 * This function is used in conjunction with fw_devlink_pause() and is ref 1539 * counted. See documentation for fw_devlink_pause() for more details. 1540 */ 1541 void fw_devlink_resume(void) 1542 { 1543 struct device *dev, *tmp; 1544 LIST_HEAD(probe_list); 1545 1546 mutex_lock(&defer_fw_devlink_lock); 1547 if (!defer_fw_devlink_count) { 1548 WARN(true, "Unmatched fw_devlink pause/resume!"); 1549 goto out; 1550 } 1551 1552 defer_fw_devlink_count--; 1553 if (defer_fw_devlink_count) 1554 goto out; 1555 1556 device_link_add_missing_supplier_links(); 1557 list_splice_tail_init(&deferred_fw_devlink, &probe_list); 1558 out: 1559 mutex_unlock(&defer_fw_devlink_lock); 1560 1561 /* 1562 * bus_probe_device() can cause new devices to get added and they'll 1563 * try to grab defer_fw_devlink_lock. So, this needs to be done outside 1564 * the defer_fw_devlink_lock. 1565 */ 1566 list_for_each_entry_safe(dev, tmp, &probe_list, links.defer_hook) { 1567 list_del_init(&dev->links.defer_hook); 1568 bus_probe_device(dev); 1569 } 1570 } 1571 /* Device links support end. */ 1572 1573 int (*platform_notify)(struct device *dev) = NULL; 1574 int (*platform_notify_remove)(struct device *dev) = NULL; 1575 static struct kobject *dev_kobj; 1576 struct kobject *sysfs_dev_char_kobj; 1577 struct kobject *sysfs_dev_block_kobj; 1578 1579 static DEFINE_MUTEX(device_hotplug_lock); 1580 1581 void lock_device_hotplug(void) 1582 { 1583 mutex_lock(&device_hotplug_lock); 1584 } 1585 1586 void unlock_device_hotplug(void) 1587 { 1588 mutex_unlock(&device_hotplug_lock); 1589 } 1590 1591 int lock_device_hotplug_sysfs(void) 1592 { 1593 if (mutex_trylock(&device_hotplug_lock)) 1594 return 0; 1595 1596 /* Avoid busy looping (5 ms of sleep should do). */ 1597 msleep(5); 1598 return restart_syscall(); 1599 } 1600 1601 #ifdef CONFIG_BLOCK 1602 static inline int device_is_not_partition(struct device *dev) 1603 { 1604 return !(dev->type == &part_type); 1605 } 1606 #else 1607 static inline int device_is_not_partition(struct device *dev) 1608 { 1609 return 1; 1610 } 1611 #endif 1612 1613 static int 1614 device_platform_notify(struct device *dev, enum kobject_action action) 1615 { 1616 int ret; 1617 1618 ret = acpi_platform_notify(dev, action); 1619 if (ret) 1620 return ret; 1621 1622 ret = software_node_notify(dev, action); 1623 if (ret) 1624 return ret; 1625 1626 if (platform_notify && action == KOBJ_ADD) 1627 platform_notify(dev); 1628 else if (platform_notify_remove && action == KOBJ_REMOVE) 1629 platform_notify_remove(dev); 1630 return 0; 1631 } 1632 1633 /** 1634 * dev_driver_string - Return a device's driver name, if at all possible 1635 * @dev: struct device to get the name of 1636 * 1637 * Will return the device's driver's name if it is bound to a device. If 1638 * the device is not bound to a driver, it will return the name of the bus 1639 * it is attached to. If it is not attached to a bus either, an empty 1640 * string will be returned. 1641 */ 1642 const char *dev_driver_string(const struct device *dev) 1643 { 1644 struct device_driver *drv; 1645 1646 /* dev->driver can change to NULL underneath us because of unbinding, 1647 * so be careful about accessing it. dev->bus and dev->class should 1648 * never change once they are set, so they don't need special care. 1649 */ 1650 drv = READ_ONCE(dev->driver); 1651 return drv ? drv->name : 1652 (dev->bus ? dev->bus->name : 1653 (dev->class ? dev->class->name : "")); 1654 } 1655 EXPORT_SYMBOL(dev_driver_string); 1656 1657 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 1658 1659 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 1660 char *buf) 1661 { 1662 struct device_attribute *dev_attr = to_dev_attr(attr); 1663 struct device *dev = kobj_to_dev(kobj); 1664 ssize_t ret = -EIO; 1665 1666 if (dev_attr->show) 1667 ret = dev_attr->show(dev, dev_attr, buf); 1668 if (ret >= (ssize_t)PAGE_SIZE) { 1669 printk("dev_attr_show: %pS returned bad count\n", 1670 dev_attr->show); 1671 } 1672 return ret; 1673 } 1674 1675 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 1676 const char *buf, size_t count) 1677 { 1678 struct device_attribute *dev_attr = to_dev_attr(attr); 1679 struct device *dev = kobj_to_dev(kobj); 1680 ssize_t ret = -EIO; 1681 1682 if (dev_attr->store) 1683 ret = dev_attr->store(dev, dev_attr, buf, count); 1684 return ret; 1685 } 1686 1687 static const struct sysfs_ops dev_sysfs_ops = { 1688 .show = dev_attr_show, 1689 .store = dev_attr_store, 1690 }; 1691 1692 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 1693 1694 ssize_t device_store_ulong(struct device *dev, 1695 struct device_attribute *attr, 1696 const char *buf, size_t size) 1697 { 1698 struct dev_ext_attribute *ea = to_ext_attr(attr); 1699 int ret; 1700 unsigned long new; 1701 1702 ret = kstrtoul(buf, 0, &new); 1703 if (ret) 1704 return ret; 1705 *(unsigned long *)(ea->var) = new; 1706 /* Always return full write size even if we didn't consume all */ 1707 return size; 1708 } 1709 EXPORT_SYMBOL_GPL(device_store_ulong); 1710 1711 ssize_t device_show_ulong(struct device *dev, 1712 struct device_attribute *attr, 1713 char *buf) 1714 { 1715 struct dev_ext_attribute *ea = to_ext_attr(attr); 1716 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var)); 1717 } 1718 EXPORT_SYMBOL_GPL(device_show_ulong); 1719 1720 ssize_t device_store_int(struct device *dev, 1721 struct device_attribute *attr, 1722 const char *buf, size_t size) 1723 { 1724 struct dev_ext_attribute *ea = to_ext_attr(attr); 1725 int ret; 1726 long new; 1727 1728 ret = kstrtol(buf, 0, &new); 1729 if (ret) 1730 return ret; 1731 1732 if (new > INT_MAX || new < INT_MIN) 1733 return -EINVAL; 1734 *(int *)(ea->var) = new; 1735 /* Always return full write size even if we didn't consume all */ 1736 return size; 1737 } 1738 EXPORT_SYMBOL_GPL(device_store_int); 1739 1740 ssize_t device_show_int(struct device *dev, 1741 struct device_attribute *attr, 1742 char *buf) 1743 { 1744 struct dev_ext_attribute *ea = to_ext_attr(attr); 1745 1746 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var)); 1747 } 1748 EXPORT_SYMBOL_GPL(device_show_int); 1749 1750 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 1751 const char *buf, size_t size) 1752 { 1753 struct dev_ext_attribute *ea = to_ext_attr(attr); 1754 1755 if (strtobool(buf, ea->var) < 0) 1756 return -EINVAL; 1757 1758 return size; 1759 } 1760 EXPORT_SYMBOL_GPL(device_store_bool); 1761 1762 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 1763 char *buf) 1764 { 1765 struct dev_ext_attribute *ea = to_ext_attr(attr); 1766 1767 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var)); 1768 } 1769 EXPORT_SYMBOL_GPL(device_show_bool); 1770 1771 /** 1772 * device_release - free device structure. 1773 * @kobj: device's kobject. 1774 * 1775 * This is called once the reference count for the object 1776 * reaches 0. We forward the call to the device's release 1777 * method, which should handle actually freeing the structure. 1778 */ 1779 static void device_release(struct kobject *kobj) 1780 { 1781 struct device *dev = kobj_to_dev(kobj); 1782 struct device_private *p = dev->p; 1783 1784 /* 1785 * Some platform devices are driven without driver attached 1786 * and managed resources may have been acquired. Make sure 1787 * all resources are released. 1788 * 1789 * Drivers still can add resources into device after device 1790 * is deleted but alive, so release devres here to avoid 1791 * possible memory leak. 1792 */ 1793 devres_release_all(dev); 1794 1795 kfree(dev->dma_range_map); 1796 1797 if (dev->release) 1798 dev->release(dev); 1799 else if (dev->type && dev->type->release) 1800 dev->type->release(dev); 1801 else if (dev->class && dev->class->dev_release) 1802 dev->class->dev_release(dev); 1803 else 1804 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n", 1805 dev_name(dev)); 1806 kfree(p); 1807 } 1808 1809 static const void *device_namespace(struct kobject *kobj) 1810 { 1811 struct device *dev = kobj_to_dev(kobj); 1812 const void *ns = NULL; 1813 1814 if (dev->class && dev->class->ns_type) 1815 ns = dev->class->namespace(dev); 1816 1817 return ns; 1818 } 1819 1820 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid) 1821 { 1822 struct device *dev = kobj_to_dev(kobj); 1823 1824 if (dev->class && dev->class->get_ownership) 1825 dev->class->get_ownership(dev, uid, gid); 1826 } 1827 1828 static struct kobj_type device_ktype = { 1829 .release = device_release, 1830 .sysfs_ops = &dev_sysfs_ops, 1831 .namespace = device_namespace, 1832 .get_ownership = device_get_ownership, 1833 }; 1834 1835 1836 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj) 1837 { 1838 struct kobj_type *ktype = get_ktype(kobj); 1839 1840 if (ktype == &device_ktype) { 1841 struct device *dev = kobj_to_dev(kobj); 1842 if (dev->bus) 1843 return 1; 1844 if (dev->class) 1845 return 1; 1846 } 1847 return 0; 1848 } 1849 1850 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj) 1851 { 1852 struct device *dev = kobj_to_dev(kobj); 1853 1854 if (dev->bus) 1855 return dev->bus->name; 1856 if (dev->class) 1857 return dev->class->name; 1858 return NULL; 1859 } 1860 1861 static int dev_uevent(struct kset *kset, struct kobject *kobj, 1862 struct kobj_uevent_env *env) 1863 { 1864 struct device *dev = kobj_to_dev(kobj); 1865 int retval = 0; 1866 1867 /* add device node properties if present */ 1868 if (MAJOR(dev->devt)) { 1869 const char *tmp; 1870 const char *name; 1871 umode_t mode = 0; 1872 kuid_t uid = GLOBAL_ROOT_UID; 1873 kgid_t gid = GLOBAL_ROOT_GID; 1874 1875 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 1876 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 1877 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 1878 if (name) { 1879 add_uevent_var(env, "DEVNAME=%s", name); 1880 if (mode) 1881 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 1882 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 1883 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 1884 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 1885 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 1886 kfree(tmp); 1887 } 1888 } 1889 1890 if (dev->type && dev->type->name) 1891 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 1892 1893 if (dev->driver) 1894 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 1895 1896 /* Add common DT information about the device */ 1897 of_device_uevent(dev, env); 1898 1899 /* have the bus specific function add its stuff */ 1900 if (dev->bus && dev->bus->uevent) { 1901 retval = dev->bus->uevent(dev, env); 1902 if (retval) 1903 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 1904 dev_name(dev), __func__, retval); 1905 } 1906 1907 /* have the class specific function add its stuff */ 1908 if (dev->class && dev->class->dev_uevent) { 1909 retval = dev->class->dev_uevent(dev, env); 1910 if (retval) 1911 pr_debug("device: '%s': %s: class uevent() " 1912 "returned %d\n", dev_name(dev), 1913 __func__, retval); 1914 } 1915 1916 /* have the device type specific function add its stuff */ 1917 if (dev->type && dev->type->uevent) { 1918 retval = dev->type->uevent(dev, env); 1919 if (retval) 1920 pr_debug("device: '%s': %s: dev_type uevent() " 1921 "returned %d\n", dev_name(dev), 1922 __func__, retval); 1923 } 1924 1925 return retval; 1926 } 1927 1928 static const struct kset_uevent_ops device_uevent_ops = { 1929 .filter = dev_uevent_filter, 1930 .name = dev_uevent_name, 1931 .uevent = dev_uevent, 1932 }; 1933 1934 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 1935 char *buf) 1936 { 1937 struct kobject *top_kobj; 1938 struct kset *kset; 1939 struct kobj_uevent_env *env = NULL; 1940 int i; 1941 size_t count = 0; 1942 int retval; 1943 1944 /* search the kset, the device belongs to */ 1945 top_kobj = &dev->kobj; 1946 while (!top_kobj->kset && top_kobj->parent) 1947 top_kobj = top_kobj->parent; 1948 if (!top_kobj->kset) 1949 goto out; 1950 1951 kset = top_kobj->kset; 1952 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 1953 goto out; 1954 1955 /* respect filter */ 1956 if (kset->uevent_ops && kset->uevent_ops->filter) 1957 if (!kset->uevent_ops->filter(kset, &dev->kobj)) 1958 goto out; 1959 1960 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 1961 if (!env) 1962 return -ENOMEM; 1963 1964 /* let the kset specific function add its keys */ 1965 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env); 1966 if (retval) 1967 goto out; 1968 1969 /* copy keys to file */ 1970 for (i = 0; i < env->envp_idx; i++) 1971 count += sprintf(&buf[count], "%s\n", env->envp[i]); 1972 out: 1973 kfree(env); 1974 return count; 1975 } 1976 1977 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 1978 const char *buf, size_t count) 1979 { 1980 int rc; 1981 1982 rc = kobject_synth_uevent(&dev->kobj, buf, count); 1983 1984 if (rc) { 1985 dev_err(dev, "uevent: failed to send synthetic uevent\n"); 1986 return rc; 1987 } 1988 1989 return count; 1990 } 1991 static DEVICE_ATTR_RW(uevent); 1992 1993 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 1994 char *buf) 1995 { 1996 bool val; 1997 1998 device_lock(dev); 1999 val = !dev->offline; 2000 device_unlock(dev); 2001 return sprintf(buf, "%u\n", val); 2002 } 2003 2004 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 2005 const char *buf, size_t count) 2006 { 2007 bool val; 2008 int ret; 2009 2010 ret = strtobool(buf, &val); 2011 if (ret < 0) 2012 return ret; 2013 2014 ret = lock_device_hotplug_sysfs(); 2015 if (ret) 2016 return ret; 2017 2018 ret = val ? device_online(dev) : device_offline(dev); 2019 unlock_device_hotplug(); 2020 return ret < 0 ? ret : count; 2021 } 2022 static DEVICE_ATTR_RW(online); 2023 2024 int device_add_groups(struct device *dev, const struct attribute_group **groups) 2025 { 2026 return sysfs_create_groups(&dev->kobj, groups); 2027 } 2028 EXPORT_SYMBOL_GPL(device_add_groups); 2029 2030 void device_remove_groups(struct device *dev, 2031 const struct attribute_group **groups) 2032 { 2033 sysfs_remove_groups(&dev->kobj, groups); 2034 } 2035 EXPORT_SYMBOL_GPL(device_remove_groups); 2036 2037 union device_attr_group_devres { 2038 const struct attribute_group *group; 2039 const struct attribute_group **groups; 2040 }; 2041 2042 static int devm_attr_group_match(struct device *dev, void *res, void *data) 2043 { 2044 return ((union device_attr_group_devres *)res)->group == data; 2045 } 2046 2047 static void devm_attr_group_remove(struct device *dev, void *res) 2048 { 2049 union device_attr_group_devres *devres = res; 2050 const struct attribute_group *group = devres->group; 2051 2052 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 2053 sysfs_remove_group(&dev->kobj, group); 2054 } 2055 2056 static void devm_attr_groups_remove(struct device *dev, void *res) 2057 { 2058 union device_attr_group_devres *devres = res; 2059 const struct attribute_group **groups = devres->groups; 2060 2061 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups); 2062 sysfs_remove_groups(&dev->kobj, groups); 2063 } 2064 2065 /** 2066 * devm_device_add_group - given a device, create a managed attribute group 2067 * @dev: The device to create the group for 2068 * @grp: The attribute group to create 2069 * 2070 * This function creates a group for the first time. It will explicitly 2071 * warn and error if any of the attribute files being created already exist. 2072 * 2073 * Returns 0 on success or error code on failure. 2074 */ 2075 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 2076 { 2077 union device_attr_group_devres *devres; 2078 int error; 2079 2080 devres = devres_alloc(devm_attr_group_remove, 2081 sizeof(*devres), GFP_KERNEL); 2082 if (!devres) 2083 return -ENOMEM; 2084 2085 error = sysfs_create_group(&dev->kobj, grp); 2086 if (error) { 2087 devres_free(devres); 2088 return error; 2089 } 2090 2091 devres->group = grp; 2092 devres_add(dev, devres); 2093 return 0; 2094 } 2095 EXPORT_SYMBOL_GPL(devm_device_add_group); 2096 2097 /** 2098 * devm_device_remove_group: remove a managed group from a device 2099 * @dev: device to remove the group from 2100 * @grp: group to remove 2101 * 2102 * This function removes a group of attributes from a device. The attributes 2103 * previously have to have been created for this group, otherwise it will fail. 2104 */ 2105 void devm_device_remove_group(struct device *dev, 2106 const struct attribute_group *grp) 2107 { 2108 WARN_ON(devres_release(dev, devm_attr_group_remove, 2109 devm_attr_group_match, 2110 /* cast away const */ (void *)grp)); 2111 } 2112 EXPORT_SYMBOL_GPL(devm_device_remove_group); 2113 2114 /** 2115 * devm_device_add_groups - create a bunch of managed attribute groups 2116 * @dev: The device to create the group for 2117 * @groups: The attribute groups to create, NULL terminated 2118 * 2119 * This function creates a bunch of managed attribute groups. If an error 2120 * occurs when creating a group, all previously created groups will be 2121 * removed, unwinding everything back to the original state when this 2122 * function was called. It will explicitly warn and error if any of the 2123 * attribute files being created already exist. 2124 * 2125 * Returns 0 on success or error code from sysfs_create_group on failure. 2126 */ 2127 int devm_device_add_groups(struct device *dev, 2128 const struct attribute_group **groups) 2129 { 2130 union device_attr_group_devres *devres; 2131 int error; 2132 2133 devres = devres_alloc(devm_attr_groups_remove, 2134 sizeof(*devres), GFP_KERNEL); 2135 if (!devres) 2136 return -ENOMEM; 2137 2138 error = sysfs_create_groups(&dev->kobj, groups); 2139 if (error) { 2140 devres_free(devres); 2141 return error; 2142 } 2143 2144 devres->groups = groups; 2145 devres_add(dev, devres); 2146 return 0; 2147 } 2148 EXPORT_SYMBOL_GPL(devm_device_add_groups); 2149 2150 /** 2151 * devm_device_remove_groups - remove a list of managed groups 2152 * 2153 * @dev: The device for the groups to be removed from 2154 * @groups: NULL terminated list of groups to be removed 2155 * 2156 * If groups is not NULL, remove the specified groups from the device. 2157 */ 2158 void devm_device_remove_groups(struct device *dev, 2159 const struct attribute_group **groups) 2160 { 2161 WARN_ON(devres_release(dev, devm_attr_groups_remove, 2162 devm_attr_group_match, 2163 /* cast away const */ (void *)groups)); 2164 } 2165 EXPORT_SYMBOL_GPL(devm_device_remove_groups); 2166 2167 static int device_add_attrs(struct device *dev) 2168 { 2169 struct class *class = dev->class; 2170 const struct device_type *type = dev->type; 2171 int error; 2172 2173 if (class) { 2174 error = device_add_groups(dev, class->dev_groups); 2175 if (error) 2176 return error; 2177 } 2178 2179 if (type) { 2180 error = device_add_groups(dev, type->groups); 2181 if (error) 2182 goto err_remove_class_groups; 2183 } 2184 2185 error = device_add_groups(dev, dev->groups); 2186 if (error) 2187 goto err_remove_type_groups; 2188 2189 if (device_supports_offline(dev) && !dev->offline_disabled) { 2190 error = device_create_file(dev, &dev_attr_online); 2191 if (error) 2192 goto err_remove_dev_groups; 2193 } 2194 2195 if (fw_devlink_flags && !fw_devlink_is_permissive()) { 2196 error = device_create_file(dev, &dev_attr_waiting_for_supplier); 2197 if (error) 2198 goto err_remove_dev_online; 2199 } 2200 2201 return 0; 2202 2203 err_remove_dev_online: 2204 device_remove_file(dev, &dev_attr_online); 2205 err_remove_dev_groups: 2206 device_remove_groups(dev, dev->groups); 2207 err_remove_type_groups: 2208 if (type) 2209 device_remove_groups(dev, type->groups); 2210 err_remove_class_groups: 2211 if (class) 2212 device_remove_groups(dev, class->dev_groups); 2213 2214 return error; 2215 } 2216 2217 static void device_remove_attrs(struct device *dev) 2218 { 2219 struct class *class = dev->class; 2220 const struct device_type *type = dev->type; 2221 2222 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2223 device_remove_file(dev, &dev_attr_online); 2224 device_remove_groups(dev, dev->groups); 2225 2226 if (type) 2227 device_remove_groups(dev, type->groups); 2228 2229 if (class) 2230 device_remove_groups(dev, class->dev_groups); 2231 } 2232 2233 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 2234 char *buf) 2235 { 2236 return print_dev_t(buf, dev->devt); 2237 } 2238 static DEVICE_ATTR_RO(dev); 2239 2240 /* /sys/devices/ */ 2241 struct kset *devices_kset; 2242 2243 /** 2244 * devices_kset_move_before - Move device in the devices_kset's list. 2245 * @deva: Device to move. 2246 * @devb: Device @deva should come before. 2247 */ 2248 static void devices_kset_move_before(struct device *deva, struct device *devb) 2249 { 2250 if (!devices_kset) 2251 return; 2252 pr_debug("devices_kset: Moving %s before %s\n", 2253 dev_name(deva), dev_name(devb)); 2254 spin_lock(&devices_kset->list_lock); 2255 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 2256 spin_unlock(&devices_kset->list_lock); 2257 } 2258 2259 /** 2260 * devices_kset_move_after - Move device in the devices_kset's list. 2261 * @deva: Device to move 2262 * @devb: Device @deva should come after. 2263 */ 2264 static void devices_kset_move_after(struct device *deva, struct device *devb) 2265 { 2266 if (!devices_kset) 2267 return; 2268 pr_debug("devices_kset: Moving %s after %s\n", 2269 dev_name(deva), dev_name(devb)); 2270 spin_lock(&devices_kset->list_lock); 2271 list_move(&deva->kobj.entry, &devb->kobj.entry); 2272 spin_unlock(&devices_kset->list_lock); 2273 } 2274 2275 /** 2276 * devices_kset_move_last - move the device to the end of devices_kset's list. 2277 * @dev: device to move 2278 */ 2279 void devices_kset_move_last(struct device *dev) 2280 { 2281 if (!devices_kset) 2282 return; 2283 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 2284 spin_lock(&devices_kset->list_lock); 2285 list_move_tail(&dev->kobj.entry, &devices_kset->list); 2286 spin_unlock(&devices_kset->list_lock); 2287 } 2288 2289 /** 2290 * device_create_file - create sysfs attribute file for device. 2291 * @dev: device. 2292 * @attr: device attribute descriptor. 2293 */ 2294 int device_create_file(struct device *dev, 2295 const struct device_attribute *attr) 2296 { 2297 int error = 0; 2298 2299 if (dev) { 2300 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 2301 "Attribute %s: write permission without 'store'\n", 2302 attr->attr.name); 2303 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 2304 "Attribute %s: read permission without 'show'\n", 2305 attr->attr.name); 2306 error = sysfs_create_file(&dev->kobj, &attr->attr); 2307 } 2308 2309 return error; 2310 } 2311 EXPORT_SYMBOL_GPL(device_create_file); 2312 2313 /** 2314 * device_remove_file - remove sysfs attribute file. 2315 * @dev: device. 2316 * @attr: device attribute descriptor. 2317 */ 2318 void device_remove_file(struct device *dev, 2319 const struct device_attribute *attr) 2320 { 2321 if (dev) 2322 sysfs_remove_file(&dev->kobj, &attr->attr); 2323 } 2324 EXPORT_SYMBOL_GPL(device_remove_file); 2325 2326 /** 2327 * device_remove_file_self - remove sysfs attribute file from its own method. 2328 * @dev: device. 2329 * @attr: device attribute descriptor. 2330 * 2331 * See kernfs_remove_self() for details. 2332 */ 2333 bool device_remove_file_self(struct device *dev, 2334 const struct device_attribute *attr) 2335 { 2336 if (dev) 2337 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 2338 else 2339 return false; 2340 } 2341 EXPORT_SYMBOL_GPL(device_remove_file_self); 2342 2343 /** 2344 * device_create_bin_file - create sysfs binary attribute file for device. 2345 * @dev: device. 2346 * @attr: device binary attribute descriptor. 2347 */ 2348 int device_create_bin_file(struct device *dev, 2349 const struct bin_attribute *attr) 2350 { 2351 int error = -EINVAL; 2352 if (dev) 2353 error = sysfs_create_bin_file(&dev->kobj, attr); 2354 return error; 2355 } 2356 EXPORT_SYMBOL_GPL(device_create_bin_file); 2357 2358 /** 2359 * device_remove_bin_file - remove sysfs binary attribute file 2360 * @dev: device. 2361 * @attr: device binary attribute descriptor. 2362 */ 2363 void device_remove_bin_file(struct device *dev, 2364 const struct bin_attribute *attr) 2365 { 2366 if (dev) 2367 sysfs_remove_bin_file(&dev->kobj, attr); 2368 } 2369 EXPORT_SYMBOL_GPL(device_remove_bin_file); 2370 2371 static void klist_children_get(struct klist_node *n) 2372 { 2373 struct device_private *p = to_device_private_parent(n); 2374 struct device *dev = p->device; 2375 2376 get_device(dev); 2377 } 2378 2379 static void klist_children_put(struct klist_node *n) 2380 { 2381 struct device_private *p = to_device_private_parent(n); 2382 struct device *dev = p->device; 2383 2384 put_device(dev); 2385 } 2386 2387 /** 2388 * device_initialize - init device structure. 2389 * @dev: device. 2390 * 2391 * This prepares the device for use by other layers by initializing 2392 * its fields. 2393 * It is the first half of device_register(), if called by 2394 * that function, though it can also be called separately, so one 2395 * may use @dev's fields. In particular, get_device()/put_device() 2396 * may be used for reference counting of @dev after calling this 2397 * function. 2398 * 2399 * All fields in @dev must be initialized by the caller to 0, except 2400 * for those explicitly set to some other value. The simplest 2401 * approach is to use kzalloc() to allocate the structure containing 2402 * @dev. 2403 * 2404 * NOTE: Use put_device() to give up your reference instead of freeing 2405 * @dev directly once you have called this function. 2406 */ 2407 void device_initialize(struct device *dev) 2408 { 2409 dev->kobj.kset = devices_kset; 2410 kobject_init(&dev->kobj, &device_ktype); 2411 INIT_LIST_HEAD(&dev->dma_pools); 2412 mutex_init(&dev->mutex); 2413 #ifdef CONFIG_PROVE_LOCKING 2414 mutex_init(&dev->lockdep_mutex); 2415 #endif 2416 lockdep_set_novalidate_class(&dev->mutex); 2417 spin_lock_init(&dev->devres_lock); 2418 INIT_LIST_HEAD(&dev->devres_head); 2419 device_pm_init(dev); 2420 set_dev_node(dev, -1); 2421 #ifdef CONFIG_GENERIC_MSI_IRQ 2422 INIT_LIST_HEAD(&dev->msi_list); 2423 #endif 2424 INIT_LIST_HEAD(&dev->links.consumers); 2425 INIT_LIST_HEAD(&dev->links.suppliers); 2426 INIT_LIST_HEAD(&dev->links.needs_suppliers); 2427 INIT_LIST_HEAD(&dev->links.defer_hook); 2428 dev->links.status = DL_DEV_NO_DRIVER; 2429 } 2430 EXPORT_SYMBOL_GPL(device_initialize); 2431 2432 struct kobject *virtual_device_parent(struct device *dev) 2433 { 2434 static struct kobject *virtual_dir = NULL; 2435 2436 if (!virtual_dir) 2437 virtual_dir = kobject_create_and_add("virtual", 2438 &devices_kset->kobj); 2439 2440 return virtual_dir; 2441 } 2442 2443 struct class_dir { 2444 struct kobject kobj; 2445 struct class *class; 2446 }; 2447 2448 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 2449 2450 static void class_dir_release(struct kobject *kobj) 2451 { 2452 struct class_dir *dir = to_class_dir(kobj); 2453 kfree(dir); 2454 } 2455 2456 static const 2457 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj) 2458 { 2459 struct class_dir *dir = to_class_dir(kobj); 2460 return dir->class->ns_type; 2461 } 2462 2463 static struct kobj_type class_dir_ktype = { 2464 .release = class_dir_release, 2465 .sysfs_ops = &kobj_sysfs_ops, 2466 .child_ns_type = class_dir_child_ns_type 2467 }; 2468 2469 static struct kobject * 2470 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj) 2471 { 2472 struct class_dir *dir; 2473 int retval; 2474 2475 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 2476 if (!dir) 2477 return ERR_PTR(-ENOMEM); 2478 2479 dir->class = class; 2480 kobject_init(&dir->kobj, &class_dir_ktype); 2481 2482 dir->kobj.kset = &class->p->glue_dirs; 2483 2484 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name); 2485 if (retval < 0) { 2486 kobject_put(&dir->kobj); 2487 return ERR_PTR(retval); 2488 } 2489 return &dir->kobj; 2490 } 2491 2492 static DEFINE_MUTEX(gdp_mutex); 2493 2494 static struct kobject *get_device_parent(struct device *dev, 2495 struct device *parent) 2496 { 2497 if (dev->class) { 2498 struct kobject *kobj = NULL; 2499 struct kobject *parent_kobj; 2500 struct kobject *k; 2501 2502 #ifdef CONFIG_BLOCK 2503 /* block disks show up in /sys/block */ 2504 if (sysfs_deprecated && dev->class == &block_class) { 2505 if (parent && parent->class == &block_class) 2506 return &parent->kobj; 2507 return &block_class.p->subsys.kobj; 2508 } 2509 #endif 2510 2511 /* 2512 * If we have no parent, we live in "virtual". 2513 * Class-devices with a non class-device as parent, live 2514 * in a "glue" directory to prevent namespace collisions. 2515 */ 2516 if (parent == NULL) 2517 parent_kobj = virtual_device_parent(dev); 2518 else if (parent->class && !dev->class->ns_type) 2519 return &parent->kobj; 2520 else 2521 parent_kobj = &parent->kobj; 2522 2523 mutex_lock(&gdp_mutex); 2524 2525 /* find our class-directory at the parent and reference it */ 2526 spin_lock(&dev->class->p->glue_dirs.list_lock); 2527 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry) 2528 if (k->parent == parent_kobj) { 2529 kobj = kobject_get(k); 2530 break; 2531 } 2532 spin_unlock(&dev->class->p->glue_dirs.list_lock); 2533 if (kobj) { 2534 mutex_unlock(&gdp_mutex); 2535 return kobj; 2536 } 2537 2538 /* or create a new class-directory at the parent device */ 2539 k = class_dir_create_and_add(dev->class, parent_kobj); 2540 /* do not emit an uevent for this simple "glue" directory */ 2541 mutex_unlock(&gdp_mutex); 2542 return k; 2543 } 2544 2545 /* subsystems can specify a default root directory for their devices */ 2546 if (!parent && dev->bus && dev->bus->dev_root) 2547 return &dev->bus->dev_root->kobj; 2548 2549 if (parent) 2550 return &parent->kobj; 2551 return NULL; 2552 } 2553 2554 static inline bool live_in_glue_dir(struct kobject *kobj, 2555 struct device *dev) 2556 { 2557 if (!kobj || !dev->class || 2558 kobj->kset != &dev->class->p->glue_dirs) 2559 return false; 2560 return true; 2561 } 2562 2563 static inline struct kobject *get_glue_dir(struct device *dev) 2564 { 2565 return dev->kobj.parent; 2566 } 2567 2568 /* 2569 * make sure cleaning up dir as the last step, we need to make 2570 * sure .release handler of kobject is run with holding the 2571 * global lock 2572 */ 2573 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 2574 { 2575 unsigned int ref; 2576 2577 /* see if we live in a "glue" directory */ 2578 if (!live_in_glue_dir(glue_dir, dev)) 2579 return; 2580 2581 mutex_lock(&gdp_mutex); 2582 /** 2583 * There is a race condition between removing glue directory 2584 * and adding a new device under the glue directory. 2585 * 2586 * CPU1: CPU2: 2587 * 2588 * device_add() 2589 * get_device_parent() 2590 * class_dir_create_and_add() 2591 * kobject_add_internal() 2592 * create_dir() // create glue_dir 2593 * 2594 * device_add() 2595 * get_device_parent() 2596 * kobject_get() // get glue_dir 2597 * 2598 * device_del() 2599 * cleanup_glue_dir() 2600 * kobject_del(glue_dir) 2601 * 2602 * kobject_add() 2603 * kobject_add_internal() 2604 * create_dir() // in glue_dir 2605 * sysfs_create_dir_ns() 2606 * kernfs_create_dir_ns(sd) 2607 * 2608 * sysfs_remove_dir() // glue_dir->sd=NULL 2609 * sysfs_put() // free glue_dir->sd 2610 * 2611 * // sd is freed 2612 * kernfs_new_node(sd) 2613 * kernfs_get(glue_dir) 2614 * kernfs_add_one() 2615 * kernfs_put() 2616 * 2617 * Before CPU1 remove last child device under glue dir, if CPU2 add 2618 * a new device under glue dir, the glue_dir kobject reference count 2619 * will be increase to 2 in kobject_get(k). And CPU2 has been called 2620 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir() 2621 * and sysfs_put(). This result in glue_dir->sd is freed. 2622 * 2623 * Then the CPU2 will see a stale "empty" but still potentially used 2624 * glue dir around in kernfs_new_node(). 2625 * 2626 * In order to avoid this happening, we also should make sure that 2627 * kernfs_node for glue_dir is released in CPU1 only when refcount 2628 * for glue_dir kobj is 1. 2629 */ 2630 ref = kref_read(&glue_dir->kref); 2631 if (!kobject_has_children(glue_dir) && !--ref) 2632 kobject_del(glue_dir); 2633 kobject_put(glue_dir); 2634 mutex_unlock(&gdp_mutex); 2635 } 2636 2637 static int device_add_class_symlinks(struct device *dev) 2638 { 2639 struct device_node *of_node = dev_of_node(dev); 2640 int error; 2641 2642 if (of_node) { 2643 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 2644 if (error) 2645 dev_warn(dev, "Error %d creating of_node link\n",error); 2646 /* An error here doesn't warrant bringing down the device */ 2647 } 2648 2649 if (!dev->class) 2650 return 0; 2651 2652 error = sysfs_create_link(&dev->kobj, 2653 &dev->class->p->subsys.kobj, 2654 "subsystem"); 2655 if (error) 2656 goto out_devnode; 2657 2658 if (dev->parent && device_is_not_partition(dev)) { 2659 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 2660 "device"); 2661 if (error) 2662 goto out_subsys; 2663 } 2664 2665 #ifdef CONFIG_BLOCK 2666 /* /sys/block has directories and does not need symlinks */ 2667 if (sysfs_deprecated && dev->class == &block_class) 2668 return 0; 2669 #endif 2670 2671 /* link in the class directory pointing to the device */ 2672 error = sysfs_create_link(&dev->class->p->subsys.kobj, 2673 &dev->kobj, dev_name(dev)); 2674 if (error) 2675 goto out_device; 2676 2677 return 0; 2678 2679 out_device: 2680 sysfs_remove_link(&dev->kobj, "device"); 2681 2682 out_subsys: 2683 sysfs_remove_link(&dev->kobj, "subsystem"); 2684 out_devnode: 2685 sysfs_remove_link(&dev->kobj, "of_node"); 2686 return error; 2687 } 2688 2689 static void device_remove_class_symlinks(struct device *dev) 2690 { 2691 if (dev_of_node(dev)) 2692 sysfs_remove_link(&dev->kobj, "of_node"); 2693 2694 if (!dev->class) 2695 return; 2696 2697 if (dev->parent && device_is_not_partition(dev)) 2698 sysfs_remove_link(&dev->kobj, "device"); 2699 sysfs_remove_link(&dev->kobj, "subsystem"); 2700 #ifdef CONFIG_BLOCK 2701 if (sysfs_deprecated && dev->class == &block_class) 2702 return; 2703 #endif 2704 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev)); 2705 } 2706 2707 /** 2708 * dev_set_name - set a device name 2709 * @dev: device 2710 * @fmt: format string for the device's name 2711 */ 2712 int dev_set_name(struct device *dev, const char *fmt, ...) 2713 { 2714 va_list vargs; 2715 int err; 2716 2717 va_start(vargs, fmt); 2718 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 2719 va_end(vargs); 2720 return err; 2721 } 2722 EXPORT_SYMBOL_GPL(dev_set_name); 2723 2724 /** 2725 * device_to_dev_kobj - select a /sys/dev/ directory for the device 2726 * @dev: device 2727 * 2728 * By default we select char/ for new entries. Setting class->dev_obj 2729 * to NULL prevents an entry from being created. class->dev_kobj must 2730 * be set (or cleared) before any devices are registered to the class 2731 * otherwise device_create_sys_dev_entry() and 2732 * device_remove_sys_dev_entry() will disagree about the presence of 2733 * the link. 2734 */ 2735 static struct kobject *device_to_dev_kobj(struct device *dev) 2736 { 2737 struct kobject *kobj; 2738 2739 if (dev->class) 2740 kobj = dev->class->dev_kobj; 2741 else 2742 kobj = sysfs_dev_char_kobj; 2743 2744 return kobj; 2745 } 2746 2747 static int device_create_sys_dev_entry(struct device *dev) 2748 { 2749 struct kobject *kobj = device_to_dev_kobj(dev); 2750 int error = 0; 2751 char devt_str[15]; 2752 2753 if (kobj) { 2754 format_dev_t(devt_str, dev->devt); 2755 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 2756 } 2757 2758 return error; 2759 } 2760 2761 static void device_remove_sys_dev_entry(struct device *dev) 2762 { 2763 struct kobject *kobj = device_to_dev_kobj(dev); 2764 char devt_str[15]; 2765 2766 if (kobj) { 2767 format_dev_t(devt_str, dev->devt); 2768 sysfs_remove_link(kobj, devt_str); 2769 } 2770 } 2771 2772 static int device_private_init(struct device *dev) 2773 { 2774 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 2775 if (!dev->p) 2776 return -ENOMEM; 2777 dev->p->device = dev; 2778 klist_init(&dev->p->klist_children, klist_children_get, 2779 klist_children_put); 2780 INIT_LIST_HEAD(&dev->p->deferred_probe); 2781 return 0; 2782 } 2783 2784 /** 2785 * device_add - add device to device hierarchy. 2786 * @dev: device. 2787 * 2788 * This is part 2 of device_register(), though may be called 2789 * separately _iff_ device_initialize() has been called separately. 2790 * 2791 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 2792 * to the global and sibling lists for the device, then 2793 * adds it to the other relevant subsystems of the driver model. 2794 * 2795 * Do not call this routine or device_register() more than once for 2796 * any device structure. The driver model core is not designed to work 2797 * with devices that get unregistered and then spring back to life. 2798 * (Among other things, it's very hard to guarantee that all references 2799 * to the previous incarnation of @dev have been dropped.) Allocate 2800 * and register a fresh new struct device instead. 2801 * 2802 * NOTE: _Never_ directly free @dev after calling this function, even 2803 * if it returned an error! Always use put_device() to give up your 2804 * reference instead. 2805 * 2806 * Rule of thumb is: if device_add() succeeds, you should call 2807 * device_del() when you want to get rid of it. If device_add() has 2808 * *not* succeeded, use *only* put_device() to drop the reference 2809 * count. 2810 */ 2811 int device_add(struct device *dev) 2812 { 2813 struct device *parent; 2814 struct kobject *kobj; 2815 struct class_interface *class_intf; 2816 int error = -EINVAL; 2817 struct kobject *glue_dir = NULL; 2818 2819 dev = get_device(dev); 2820 if (!dev) 2821 goto done; 2822 2823 if (!dev->p) { 2824 error = device_private_init(dev); 2825 if (error) 2826 goto done; 2827 } 2828 2829 /* 2830 * for statically allocated devices, which should all be converted 2831 * some day, we need to initialize the name. We prevent reading back 2832 * the name, and force the use of dev_name() 2833 */ 2834 if (dev->init_name) { 2835 dev_set_name(dev, "%s", dev->init_name); 2836 dev->init_name = NULL; 2837 } 2838 2839 /* subsystems can specify simple device enumeration */ 2840 if (!dev_name(dev) && dev->bus && dev->bus->dev_name) 2841 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 2842 2843 if (!dev_name(dev)) { 2844 error = -EINVAL; 2845 goto name_error; 2846 } 2847 2848 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 2849 2850 parent = get_device(dev->parent); 2851 kobj = get_device_parent(dev, parent); 2852 if (IS_ERR(kobj)) { 2853 error = PTR_ERR(kobj); 2854 goto parent_error; 2855 } 2856 if (kobj) 2857 dev->kobj.parent = kobj; 2858 2859 /* use parent numa_node */ 2860 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 2861 set_dev_node(dev, dev_to_node(parent)); 2862 2863 /* first, register with generic layer. */ 2864 /* we require the name to be set before, and pass NULL */ 2865 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 2866 if (error) { 2867 glue_dir = get_glue_dir(dev); 2868 goto Error; 2869 } 2870 2871 /* notify platform of device entry */ 2872 error = device_platform_notify(dev, KOBJ_ADD); 2873 if (error) 2874 goto platform_error; 2875 2876 error = device_create_file(dev, &dev_attr_uevent); 2877 if (error) 2878 goto attrError; 2879 2880 error = device_add_class_symlinks(dev); 2881 if (error) 2882 goto SymlinkError; 2883 error = device_add_attrs(dev); 2884 if (error) 2885 goto AttrsError; 2886 error = bus_add_device(dev); 2887 if (error) 2888 goto BusError; 2889 error = dpm_sysfs_add(dev); 2890 if (error) 2891 goto DPMError; 2892 device_pm_add(dev); 2893 2894 if (MAJOR(dev->devt)) { 2895 error = device_create_file(dev, &dev_attr_dev); 2896 if (error) 2897 goto DevAttrError; 2898 2899 error = device_create_sys_dev_entry(dev); 2900 if (error) 2901 goto SysEntryError; 2902 2903 devtmpfs_create_node(dev); 2904 } 2905 2906 /* Notify clients of device addition. This call must come 2907 * after dpm_sysfs_add() and before kobject_uevent(). 2908 */ 2909 if (dev->bus) 2910 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 2911 BUS_NOTIFY_ADD_DEVICE, dev); 2912 2913 kobject_uevent(&dev->kobj, KOBJ_ADD); 2914 2915 /* 2916 * Check if any of the other devices (consumers) have been waiting for 2917 * this device (supplier) to be added so that they can create a device 2918 * link to it. 2919 * 2920 * This needs to happen after device_pm_add() because device_link_add() 2921 * requires the supplier be registered before it's called. 2922 * 2923 * But this also needs to happen before bus_probe_device() to make sure 2924 * waiting consumers can link to it before the driver is bound to the 2925 * device and the driver sync_state callback is called for this device. 2926 */ 2927 if (dev->fwnode && !dev->fwnode->dev) { 2928 dev->fwnode->dev = dev; 2929 fw_devlink_link_device(dev); 2930 } 2931 2932 bus_probe_device(dev); 2933 if (parent) 2934 klist_add_tail(&dev->p->knode_parent, 2935 &parent->p->klist_children); 2936 2937 if (dev->class) { 2938 mutex_lock(&dev->class->p->mutex); 2939 /* tie the class to the device */ 2940 klist_add_tail(&dev->p->knode_class, 2941 &dev->class->p->klist_devices); 2942 2943 /* notify any interfaces that the device is here */ 2944 list_for_each_entry(class_intf, 2945 &dev->class->p->interfaces, node) 2946 if (class_intf->add_dev) 2947 class_intf->add_dev(dev, class_intf); 2948 mutex_unlock(&dev->class->p->mutex); 2949 } 2950 done: 2951 put_device(dev); 2952 return error; 2953 SysEntryError: 2954 if (MAJOR(dev->devt)) 2955 device_remove_file(dev, &dev_attr_dev); 2956 DevAttrError: 2957 device_pm_remove(dev); 2958 dpm_sysfs_remove(dev); 2959 DPMError: 2960 bus_remove_device(dev); 2961 BusError: 2962 device_remove_attrs(dev); 2963 AttrsError: 2964 device_remove_class_symlinks(dev); 2965 SymlinkError: 2966 device_remove_file(dev, &dev_attr_uevent); 2967 attrError: 2968 device_platform_notify(dev, KOBJ_REMOVE); 2969 platform_error: 2970 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 2971 glue_dir = get_glue_dir(dev); 2972 kobject_del(&dev->kobj); 2973 Error: 2974 cleanup_glue_dir(dev, glue_dir); 2975 parent_error: 2976 put_device(parent); 2977 name_error: 2978 kfree(dev->p); 2979 dev->p = NULL; 2980 goto done; 2981 } 2982 EXPORT_SYMBOL_GPL(device_add); 2983 2984 /** 2985 * device_register - register a device with the system. 2986 * @dev: pointer to the device structure 2987 * 2988 * This happens in two clean steps - initialize the device 2989 * and add it to the system. The two steps can be called 2990 * separately, but this is the easiest and most common. 2991 * I.e. you should only call the two helpers separately if 2992 * have a clearly defined need to use and refcount the device 2993 * before it is added to the hierarchy. 2994 * 2995 * For more information, see the kerneldoc for device_initialize() 2996 * and device_add(). 2997 * 2998 * NOTE: _Never_ directly free @dev after calling this function, even 2999 * if it returned an error! Always use put_device() to give up the 3000 * reference initialized in this function instead. 3001 */ 3002 int device_register(struct device *dev) 3003 { 3004 device_initialize(dev); 3005 return device_add(dev); 3006 } 3007 EXPORT_SYMBOL_GPL(device_register); 3008 3009 /** 3010 * get_device - increment reference count for device. 3011 * @dev: device. 3012 * 3013 * This simply forwards the call to kobject_get(), though 3014 * we do take care to provide for the case that we get a NULL 3015 * pointer passed in. 3016 */ 3017 struct device *get_device(struct device *dev) 3018 { 3019 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 3020 } 3021 EXPORT_SYMBOL_GPL(get_device); 3022 3023 /** 3024 * put_device - decrement reference count. 3025 * @dev: device in question. 3026 */ 3027 void put_device(struct device *dev) 3028 { 3029 /* might_sleep(); */ 3030 if (dev) 3031 kobject_put(&dev->kobj); 3032 } 3033 EXPORT_SYMBOL_GPL(put_device); 3034 3035 bool kill_device(struct device *dev) 3036 { 3037 /* 3038 * Require the device lock and set the "dead" flag to guarantee that 3039 * the update behavior is consistent with the other bitfields near 3040 * it and that we cannot have an asynchronous probe routine trying 3041 * to run while we are tearing out the bus/class/sysfs from 3042 * underneath the device. 3043 */ 3044 lockdep_assert_held(&dev->mutex); 3045 3046 if (dev->p->dead) 3047 return false; 3048 dev->p->dead = true; 3049 return true; 3050 } 3051 EXPORT_SYMBOL_GPL(kill_device); 3052 3053 /** 3054 * device_del - delete device from system. 3055 * @dev: device. 3056 * 3057 * This is the first part of the device unregistration 3058 * sequence. This removes the device from the lists we control 3059 * from here, has it removed from the other driver model 3060 * subsystems it was added to in device_add(), and removes it 3061 * from the kobject hierarchy. 3062 * 3063 * NOTE: this should be called manually _iff_ device_add() was 3064 * also called manually. 3065 */ 3066 void device_del(struct device *dev) 3067 { 3068 struct device *parent = dev->parent; 3069 struct kobject *glue_dir = NULL; 3070 struct class_interface *class_intf; 3071 3072 device_lock(dev); 3073 kill_device(dev); 3074 device_unlock(dev); 3075 3076 if (dev->fwnode && dev->fwnode->dev == dev) 3077 dev->fwnode->dev = NULL; 3078 3079 /* Notify clients of device removal. This call must come 3080 * before dpm_sysfs_remove(). 3081 */ 3082 if (dev->bus) 3083 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 3084 BUS_NOTIFY_DEL_DEVICE, dev); 3085 3086 dpm_sysfs_remove(dev); 3087 if (parent) 3088 klist_del(&dev->p->knode_parent); 3089 if (MAJOR(dev->devt)) { 3090 devtmpfs_delete_node(dev); 3091 device_remove_sys_dev_entry(dev); 3092 device_remove_file(dev, &dev_attr_dev); 3093 } 3094 if (dev->class) { 3095 device_remove_class_symlinks(dev); 3096 3097 mutex_lock(&dev->class->p->mutex); 3098 /* notify any interfaces that the device is now gone */ 3099 list_for_each_entry(class_intf, 3100 &dev->class->p->interfaces, node) 3101 if (class_intf->remove_dev) 3102 class_intf->remove_dev(dev, class_intf); 3103 /* remove the device from the class list */ 3104 klist_del(&dev->p->knode_class); 3105 mutex_unlock(&dev->class->p->mutex); 3106 } 3107 device_remove_file(dev, &dev_attr_uevent); 3108 device_remove_attrs(dev); 3109 bus_remove_device(dev); 3110 device_pm_remove(dev); 3111 driver_deferred_probe_del(dev); 3112 device_platform_notify(dev, KOBJ_REMOVE); 3113 device_remove_properties(dev); 3114 device_links_purge(dev); 3115 3116 if (dev->bus) 3117 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 3118 BUS_NOTIFY_REMOVED_DEVICE, dev); 3119 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3120 glue_dir = get_glue_dir(dev); 3121 kobject_del(&dev->kobj); 3122 cleanup_glue_dir(dev, glue_dir); 3123 put_device(parent); 3124 } 3125 EXPORT_SYMBOL_GPL(device_del); 3126 3127 /** 3128 * device_unregister - unregister device from system. 3129 * @dev: device going away. 3130 * 3131 * We do this in two parts, like we do device_register(). First, 3132 * we remove it from all the subsystems with device_del(), then 3133 * we decrement the reference count via put_device(). If that 3134 * is the final reference count, the device will be cleaned up 3135 * via device_release() above. Otherwise, the structure will 3136 * stick around until the final reference to the device is dropped. 3137 */ 3138 void device_unregister(struct device *dev) 3139 { 3140 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3141 device_del(dev); 3142 put_device(dev); 3143 } 3144 EXPORT_SYMBOL_GPL(device_unregister); 3145 3146 static struct device *prev_device(struct klist_iter *i) 3147 { 3148 struct klist_node *n = klist_prev(i); 3149 struct device *dev = NULL; 3150 struct device_private *p; 3151 3152 if (n) { 3153 p = to_device_private_parent(n); 3154 dev = p->device; 3155 } 3156 return dev; 3157 } 3158 3159 static struct device *next_device(struct klist_iter *i) 3160 { 3161 struct klist_node *n = klist_next(i); 3162 struct device *dev = NULL; 3163 struct device_private *p; 3164 3165 if (n) { 3166 p = to_device_private_parent(n); 3167 dev = p->device; 3168 } 3169 return dev; 3170 } 3171 3172 /** 3173 * device_get_devnode - path of device node file 3174 * @dev: device 3175 * @mode: returned file access mode 3176 * @uid: returned file owner 3177 * @gid: returned file group 3178 * @tmp: possibly allocated string 3179 * 3180 * Return the relative path of a possible device node. 3181 * Non-default names may need to allocate a memory to compose 3182 * a name. This memory is returned in tmp and needs to be 3183 * freed by the caller. 3184 */ 3185 const char *device_get_devnode(struct device *dev, 3186 umode_t *mode, kuid_t *uid, kgid_t *gid, 3187 const char **tmp) 3188 { 3189 char *s; 3190 3191 *tmp = NULL; 3192 3193 /* the device type may provide a specific name */ 3194 if (dev->type && dev->type->devnode) 3195 *tmp = dev->type->devnode(dev, mode, uid, gid); 3196 if (*tmp) 3197 return *tmp; 3198 3199 /* the class may provide a specific name */ 3200 if (dev->class && dev->class->devnode) 3201 *tmp = dev->class->devnode(dev, mode); 3202 if (*tmp) 3203 return *tmp; 3204 3205 /* return name without allocation, tmp == NULL */ 3206 if (strchr(dev_name(dev), '!') == NULL) 3207 return dev_name(dev); 3208 3209 /* replace '!' in the name with '/' */ 3210 s = kstrdup(dev_name(dev), GFP_KERNEL); 3211 if (!s) 3212 return NULL; 3213 strreplace(s, '!', '/'); 3214 return *tmp = s; 3215 } 3216 3217 /** 3218 * device_for_each_child - device child iterator. 3219 * @parent: parent struct device. 3220 * @fn: function to be called for each device. 3221 * @data: data for the callback. 3222 * 3223 * Iterate over @parent's child devices, and call @fn for each, 3224 * passing it @data. 3225 * 3226 * We check the return of @fn each time. If it returns anything 3227 * other than 0, we break out and return that value. 3228 */ 3229 int device_for_each_child(struct device *parent, void *data, 3230 int (*fn)(struct device *dev, void *data)) 3231 { 3232 struct klist_iter i; 3233 struct device *child; 3234 int error = 0; 3235 3236 if (!parent->p) 3237 return 0; 3238 3239 klist_iter_init(&parent->p->klist_children, &i); 3240 while (!error && (child = next_device(&i))) 3241 error = fn(child, data); 3242 klist_iter_exit(&i); 3243 return error; 3244 } 3245 EXPORT_SYMBOL_GPL(device_for_each_child); 3246 3247 /** 3248 * device_for_each_child_reverse - device child iterator in reversed order. 3249 * @parent: parent struct device. 3250 * @fn: function to be called for each device. 3251 * @data: data for the callback. 3252 * 3253 * Iterate over @parent's child devices, and call @fn for each, 3254 * passing it @data. 3255 * 3256 * We check the return of @fn each time. If it returns anything 3257 * other than 0, we break out and return that value. 3258 */ 3259 int device_for_each_child_reverse(struct device *parent, void *data, 3260 int (*fn)(struct device *dev, void *data)) 3261 { 3262 struct klist_iter i; 3263 struct device *child; 3264 int error = 0; 3265 3266 if (!parent->p) 3267 return 0; 3268 3269 klist_iter_init(&parent->p->klist_children, &i); 3270 while ((child = prev_device(&i)) && !error) 3271 error = fn(child, data); 3272 klist_iter_exit(&i); 3273 return error; 3274 } 3275 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 3276 3277 /** 3278 * device_find_child - device iterator for locating a particular device. 3279 * @parent: parent struct device 3280 * @match: Callback function to check device 3281 * @data: Data to pass to match function 3282 * 3283 * This is similar to the device_for_each_child() function above, but it 3284 * returns a reference to a device that is 'found' for later use, as 3285 * determined by the @match callback. 3286 * 3287 * The callback should return 0 if the device doesn't match and non-zero 3288 * if it does. If the callback returns non-zero and a reference to the 3289 * current device can be obtained, this function will return to the caller 3290 * and not iterate over any more devices. 3291 * 3292 * NOTE: you will need to drop the reference with put_device() after use. 3293 */ 3294 struct device *device_find_child(struct device *parent, void *data, 3295 int (*match)(struct device *dev, void *data)) 3296 { 3297 struct klist_iter i; 3298 struct device *child; 3299 3300 if (!parent) 3301 return NULL; 3302 3303 klist_iter_init(&parent->p->klist_children, &i); 3304 while ((child = next_device(&i))) 3305 if (match(child, data) && get_device(child)) 3306 break; 3307 klist_iter_exit(&i); 3308 return child; 3309 } 3310 EXPORT_SYMBOL_GPL(device_find_child); 3311 3312 /** 3313 * device_find_child_by_name - device iterator for locating a child device. 3314 * @parent: parent struct device 3315 * @name: name of the child device 3316 * 3317 * This is similar to the device_find_child() function above, but it 3318 * returns a reference to a device that has the name @name. 3319 * 3320 * NOTE: you will need to drop the reference with put_device() after use. 3321 */ 3322 struct device *device_find_child_by_name(struct device *parent, 3323 const char *name) 3324 { 3325 struct klist_iter i; 3326 struct device *child; 3327 3328 if (!parent) 3329 return NULL; 3330 3331 klist_iter_init(&parent->p->klist_children, &i); 3332 while ((child = next_device(&i))) 3333 if (!strcmp(dev_name(child), name) && get_device(child)) 3334 break; 3335 klist_iter_exit(&i); 3336 return child; 3337 } 3338 EXPORT_SYMBOL_GPL(device_find_child_by_name); 3339 3340 int __init devices_init(void) 3341 { 3342 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 3343 if (!devices_kset) 3344 return -ENOMEM; 3345 dev_kobj = kobject_create_and_add("dev", NULL); 3346 if (!dev_kobj) 3347 goto dev_kobj_err; 3348 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 3349 if (!sysfs_dev_block_kobj) 3350 goto block_kobj_err; 3351 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 3352 if (!sysfs_dev_char_kobj) 3353 goto char_kobj_err; 3354 3355 return 0; 3356 3357 char_kobj_err: 3358 kobject_put(sysfs_dev_block_kobj); 3359 block_kobj_err: 3360 kobject_put(dev_kobj); 3361 dev_kobj_err: 3362 kset_unregister(devices_kset); 3363 return -ENOMEM; 3364 } 3365 3366 static int device_check_offline(struct device *dev, void *not_used) 3367 { 3368 int ret; 3369 3370 ret = device_for_each_child(dev, NULL, device_check_offline); 3371 if (ret) 3372 return ret; 3373 3374 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 3375 } 3376 3377 /** 3378 * device_offline - Prepare the device for hot-removal. 3379 * @dev: Device to be put offline. 3380 * 3381 * Execute the device bus type's .offline() callback, if present, to prepare 3382 * the device for a subsequent hot-removal. If that succeeds, the device must 3383 * not be used until either it is removed or its bus type's .online() callback 3384 * is executed. 3385 * 3386 * Call under device_hotplug_lock. 3387 */ 3388 int device_offline(struct device *dev) 3389 { 3390 int ret; 3391 3392 if (dev->offline_disabled) 3393 return -EPERM; 3394 3395 ret = device_for_each_child(dev, NULL, device_check_offline); 3396 if (ret) 3397 return ret; 3398 3399 device_lock(dev); 3400 if (device_supports_offline(dev)) { 3401 if (dev->offline) { 3402 ret = 1; 3403 } else { 3404 ret = dev->bus->offline(dev); 3405 if (!ret) { 3406 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 3407 dev->offline = true; 3408 } 3409 } 3410 } 3411 device_unlock(dev); 3412 3413 return ret; 3414 } 3415 3416 /** 3417 * device_online - Put the device back online after successful device_offline(). 3418 * @dev: Device to be put back online. 3419 * 3420 * If device_offline() has been successfully executed for @dev, but the device 3421 * has not been removed subsequently, execute its bus type's .online() callback 3422 * to indicate that the device can be used again. 3423 * 3424 * Call under device_hotplug_lock. 3425 */ 3426 int device_online(struct device *dev) 3427 { 3428 int ret = 0; 3429 3430 device_lock(dev); 3431 if (device_supports_offline(dev)) { 3432 if (dev->offline) { 3433 ret = dev->bus->online(dev); 3434 if (!ret) { 3435 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 3436 dev->offline = false; 3437 } 3438 } else { 3439 ret = 1; 3440 } 3441 } 3442 device_unlock(dev); 3443 3444 return ret; 3445 } 3446 3447 struct root_device { 3448 struct device dev; 3449 struct module *owner; 3450 }; 3451 3452 static inline struct root_device *to_root_device(struct device *d) 3453 { 3454 return container_of(d, struct root_device, dev); 3455 } 3456 3457 static void root_device_release(struct device *dev) 3458 { 3459 kfree(to_root_device(dev)); 3460 } 3461 3462 /** 3463 * __root_device_register - allocate and register a root device 3464 * @name: root device name 3465 * @owner: owner module of the root device, usually THIS_MODULE 3466 * 3467 * This function allocates a root device and registers it 3468 * using device_register(). In order to free the returned 3469 * device, use root_device_unregister(). 3470 * 3471 * Root devices are dummy devices which allow other devices 3472 * to be grouped under /sys/devices. Use this function to 3473 * allocate a root device and then use it as the parent of 3474 * any device which should appear under /sys/devices/{name} 3475 * 3476 * The /sys/devices/{name} directory will also contain a 3477 * 'module' symlink which points to the @owner directory 3478 * in sysfs. 3479 * 3480 * Returns &struct device pointer on success, or ERR_PTR() on error. 3481 * 3482 * Note: You probably want to use root_device_register(). 3483 */ 3484 struct device *__root_device_register(const char *name, struct module *owner) 3485 { 3486 struct root_device *root; 3487 int err = -ENOMEM; 3488 3489 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 3490 if (!root) 3491 return ERR_PTR(err); 3492 3493 err = dev_set_name(&root->dev, "%s", name); 3494 if (err) { 3495 kfree(root); 3496 return ERR_PTR(err); 3497 } 3498 3499 root->dev.release = root_device_release; 3500 3501 err = device_register(&root->dev); 3502 if (err) { 3503 put_device(&root->dev); 3504 return ERR_PTR(err); 3505 } 3506 3507 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 3508 if (owner) { 3509 struct module_kobject *mk = &owner->mkobj; 3510 3511 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 3512 if (err) { 3513 device_unregister(&root->dev); 3514 return ERR_PTR(err); 3515 } 3516 root->owner = owner; 3517 } 3518 #endif 3519 3520 return &root->dev; 3521 } 3522 EXPORT_SYMBOL_GPL(__root_device_register); 3523 3524 /** 3525 * root_device_unregister - unregister and free a root device 3526 * @dev: device going away 3527 * 3528 * This function unregisters and cleans up a device that was created by 3529 * root_device_register(). 3530 */ 3531 void root_device_unregister(struct device *dev) 3532 { 3533 struct root_device *root = to_root_device(dev); 3534 3535 if (root->owner) 3536 sysfs_remove_link(&root->dev.kobj, "module"); 3537 3538 device_unregister(dev); 3539 } 3540 EXPORT_SYMBOL_GPL(root_device_unregister); 3541 3542 3543 static void device_create_release(struct device *dev) 3544 { 3545 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3546 kfree(dev); 3547 } 3548 3549 static __printf(6, 0) struct device * 3550 device_create_groups_vargs(struct class *class, struct device *parent, 3551 dev_t devt, void *drvdata, 3552 const struct attribute_group **groups, 3553 const char *fmt, va_list args) 3554 { 3555 struct device *dev = NULL; 3556 int retval = -ENODEV; 3557 3558 if (class == NULL || IS_ERR(class)) 3559 goto error; 3560 3561 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3562 if (!dev) { 3563 retval = -ENOMEM; 3564 goto error; 3565 } 3566 3567 device_initialize(dev); 3568 dev->devt = devt; 3569 dev->class = class; 3570 dev->parent = parent; 3571 dev->groups = groups; 3572 dev->release = device_create_release; 3573 dev_set_drvdata(dev, drvdata); 3574 3575 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 3576 if (retval) 3577 goto error; 3578 3579 retval = device_add(dev); 3580 if (retval) 3581 goto error; 3582 3583 return dev; 3584 3585 error: 3586 put_device(dev); 3587 return ERR_PTR(retval); 3588 } 3589 3590 /** 3591 * device_create - creates a device and registers it with sysfs 3592 * @class: pointer to the struct class that this device should be registered to 3593 * @parent: pointer to the parent struct device of this new device, if any 3594 * @devt: the dev_t for the char device to be added 3595 * @drvdata: the data to be added to the device for callbacks 3596 * @fmt: string for the device's name 3597 * 3598 * This function can be used by char device classes. A struct device 3599 * will be created in sysfs, registered to the specified class. 3600 * 3601 * A "dev" file will be created, showing the dev_t for the device, if 3602 * the dev_t is not 0,0. 3603 * If a pointer to a parent struct device is passed in, the newly created 3604 * struct device will be a child of that device in sysfs. 3605 * The pointer to the struct device will be returned from the call. 3606 * Any further sysfs files that might be required can be created using this 3607 * pointer. 3608 * 3609 * Returns &struct device pointer on success, or ERR_PTR() on error. 3610 * 3611 * Note: the struct class passed to this function must have previously 3612 * been created with a call to class_create(). 3613 */ 3614 struct device *device_create(struct class *class, struct device *parent, 3615 dev_t devt, void *drvdata, const char *fmt, ...) 3616 { 3617 va_list vargs; 3618 struct device *dev; 3619 3620 va_start(vargs, fmt); 3621 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL, 3622 fmt, vargs); 3623 va_end(vargs); 3624 return dev; 3625 } 3626 EXPORT_SYMBOL_GPL(device_create); 3627 3628 /** 3629 * device_create_with_groups - creates a device and registers it with sysfs 3630 * @class: pointer to the struct class that this device should be registered to 3631 * @parent: pointer to the parent struct device of this new device, if any 3632 * @devt: the dev_t for the char device to be added 3633 * @drvdata: the data to be added to the device for callbacks 3634 * @groups: NULL-terminated list of attribute groups to be created 3635 * @fmt: string for the device's name 3636 * 3637 * This function can be used by char device classes. A struct device 3638 * will be created in sysfs, registered to the specified class. 3639 * Additional attributes specified in the groups parameter will also 3640 * be created automatically. 3641 * 3642 * A "dev" file will be created, showing the dev_t for the device, if 3643 * the dev_t is not 0,0. 3644 * If a pointer to a parent struct device is passed in, the newly created 3645 * struct device will be a child of that device in sysfs. 3646 * The pointer to the struct device will be returned from the call. 3647 * Any further sysfs files that might be required can be created using this 3648 * pointer. 3649 * 3650 * Returns &struct device pointer on success, or ERR_PTR() on error. 3651 * 3652 * Note: the struct class passed to this function must have previously 3653 * been created with a call to class_create(). 3654 */ 3655 struct device *device_create_with_groups(struct class *class, 3656 struct device *parent, dev_t devt, 3657 void *drvdata, 3658 const struct attribute_group **groups, 3659 const char *fmt, ...) 3660 { 3661 va_list vargs; 3662 struct device *dev; 3663 3664 va_start(vargs, fmt); 3665 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 3666 fmt, vargs); 3667 va_end(vargs); 3668 return dev; 3669 } 3670 EXPORT_SYMBOL_GPL(device_create_with_groups); 3671 3672 /** 3673 * device_destroy - removes a device that was created with device_create() 3674 * @class: pointer to the struct class that this device was registered with 3675 * @devt: the dev_t of the device that was previously registered 3676 * 3677 * This call unregisters and cleans up a device that was created with a 3678 * call to device_create(). 3679 */ 3680 void device_destroy(struct class *class, dev_t devt) 3681 { 3682 struct device *dev; 3683 3684 dev = class_find_device_by_devt(class, devt); 3685 if (dev) { 3686 put_device(dev); 3687 device_unregister(dev); 3688 } 3689 } 3690 EXPORT_SYMBOL_GPL(device_destroy); 3691 3692 /** 3693 * device_rename - renames a device 3694 * @dev: the pointer to the struct device to be renamed 3695 * @new_name: the new name of the device 3696 * 3697 * It is the responsibility of the caller to provide mutual 3698 * exclusion between two different calls of device_rename 3699 * on the same device to ensure that new_name is valid and 3700 * won't conflict with other devices. 3701 * 3702 * Note: Don't call this function. Currently, the networking layer calls this 3703 * function, but that will change. The following text from Kay Sievers offers 3704 * some insight: 3705 * 3706 * Renaming devices is racy at many levels, symlinks and other stuff are not 3707 * replaced atomically, and you get a "move" uevent, but it's not easy to 3708 * connect the event to the old and new device. Device nodes are not renamed at 3709 * all, there isn't even support for that in the kernel now. 3710 * 3711 * In the meantime, during renaming, your target name might be taken by another 3712 * driver, creating conflicts. Or the old name is taken directly after you 3713 * renamed it -- then you get events for the same DEVPATH, before you even see 3714 * the "move" event. It's just a mess, and nothing new should ever rely on 3715 * kernel device renaming. Besides that, it's not even implemented now for 3716 * other things than (driver-core wise very simple) network devices. 3717 * 3718 * We are currently about to change network renaming in udev to completely 3719 * disallow renaming of devices in the same namespace as the kernel uses, 3720 * because we can't solve the problems properly, that arise with swapping names 3721 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only 3722 * be allowed to some other name than eth[0-9]*, for the aforementioned 3723 * reasons. 3724 * 3725 * Make up a "real" name in the driver before you register anything, or add 3726 * some other attributes for userspace to find the device, or use udev to add 3727 * symlinks -- but never rename kernel devices later, it's a complete mess. We 3728 * don't even want to get into that and try to implement the missing pieces in 3729 * the core. We really have other pieces to fix in the driver core mess. :) 3730 */ 3731 int device_rename(struct device *dev, const char *new_name) 3732 { 3733 struct kobject *kobj = &dev->kobj; 3734 char *old_device_name = NULL; 3735 int error; 3736 3737 dev = get_device(dev); 3738 if (!dev) 3739 return -EINVAL; 3740 3741 dev_dbg(dev, "renaming to %s\n", new_name); 3742 3743 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 3744 if (!old_device_name) { 3745 error = -ENOMEM; 3746 goto out; 3747 } 3748 3749 if (dev->class) { 3750 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj, 3751 kobj, old_device_name, 3752 new_name, kobject_namespace(kobj)); 3753 if (error) 3754 goto out; 3755 } 3756 3757 error = kobject_rename(kobj, new_name); 3758 if (error) 3759 goto out; 3760 3761 out: 3762 put_device(dev); 3763 3764 kfree(old_device_name); 3765 3766 return error; 3767 } 3768 EXPORT_SYMBOL_GPL(device_rename); 3769 3770 static int device_move_class_links(struct device *dev, 3771 struct device *old_parent, 3772 struct device *new_parent) 3773 { 3774 int error = 0; 3775 3776 if (old_parent) 3777 sysfs_remove_link(&dev->kobj, "device"); 3778 if (new_parent) 3779 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 3780 "device"); 3781 return error; 3782 } 3783 3784 /** 3785 * device_move - moves a device to a new parent 3786 * @dev: the pointer to the struct device to be moved 3787 * @new_parent: the new parent of the device (can be NULL) 3788 * @dpm_order: how to reorder the dpm_list 3789 */ 3790 int device_move(struct device *dev, struct device *new_parent, 3791 enum dpm_order dpm_order) 3792 { 3793 int error; 3794 struct device *old_parent; 3795 struct kobject *new_parent_kobj; 3796 3797 dev = get_device(dev); 3798 if (!dev) 3799 return -EINVAL; 3800 3801 device_pm_lock(); 3802 new_parent = get_device(new_parent); 3803 new_parent_kobj = get_device_parent(dev, new_parent); 3804 if (IS_ERR(new_parent_kobj)) { 3805 error = PTR_ERR(new_parent_kobj); 3806 put_device(new_parent); 3807 goto out; 3808 } 3809 3810 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 3811 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 3812 error = kobject_move(&dev->kobj, new_parent_kobj); 3813 if (error) { 3814 cleanup_glue_dir(dev, new_parent_kobj); 3815 put_device(new_parent); 3816 goto out; 3817 } 3818 old_parent = dev->parent; 3819 dev->parent = new_parent; 3820 if (old_parent) 3821 klist_remove(&dev->p->knode_parent); 3822 if (new_parent) { 3823 klist_add_tail(&dev->p->knode_parent, 3824 &new_parent->p->klist_children); 3825 set_dev_node(dev, dev_to_node(new_parent)); 3826 } 3827 3828 if (dev->class) { 3829 error = device_move_class_links(dev, old_parent, new_parent); 3830 if (error) { 3831 /* We ignore errors on cleanup since we're hosed anyway... */ 3832 device_move_class_links(dev, new_parent, old_parent); 3833 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 3834 if (new_parent) 3835 klist_remove(&dev->p->knode_parent); 3836 dev->parent = old_parent; 3837 if (old_parent) { 3838 klist_add_tail(&dev->p->knode_parent, 3839 &old_parent->p->klist_children); 3840 set_dev_node(dev, dev_to_node(old_parent)); 3841 } 3842 } 3843 cleanup_glue_dir(dev, new_parent_kobj); 3844 put_device(new_parent); 3845 goto out; 3846 } 3847 } 3848 switch (dpm_order) { 3849 case DPM_ORDER_NONE: 3850 break; 3851 case DPM_ORDER_DEV_AFTER_PARENT: 3852 device_pm_move_after(dev, new_parent); 3853 devices_kset_move_after(dev, new_parent); 3854 break; 3855 case DPM_ORDER_PARENT_BEFORE_DEV: 3856 device_pm_move_before(new_parent, dev); 3857 devices_kset_move_before(new_parent, dev); 3858 break; 3859 case DPM_ORDER_DEV_LAST: 3860 device_pm_move_last(dev); 3861 devices_kset_move_last(dev); 3862 break; 3863 } 3864 3865 put_device(old_parent); 3866 out: 3867 device_pm_unlock(); 3868 put_device(dev); 3869 return error; 3870 } 3871 EXPORT_SYMBOL_GPL(device_move); 3872 3873 static int device_attrs_change_owner(struct device *dev, kuid_t kuid, 3874 kgid_t kgid) 3875 { 3876 struct kobject *kobj = &dev->kobj; 3877 struct class *class = dev->class; 3878 const struct device_type *type = dev->type; 3879 int error; 3880 3881 if (class) { 3882 /* 3883 * Change the device groups of the device class for @dev to 3884 * @kuid/@kgid. 3885 */ 3886 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid, 3887 kgid); 3888 if (error) 3889 return error; 3890 } 3891 3892 if (type) { 3893 /* 3894 * Change the device groups of the device type for @dev to 3895 * @kuid/@kgid. 3896 */ 3897 error = sysfs_groups_change_owner(kobj, type->groups, kuid, 3898 kgid); 3899 if (error) 3900 return error; 3901 } 3902 3903 /* Change the device groups of @dev to @kuid/@kgid. */ 3904 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid); 3905 if (error) 3906 return error; 3907 3908 if (device_supports_offline(dev) && !dev->offline_disabled) { 3909 /* Change online device attributes of @dev to @kuid/@kgid. */ 3910 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name, 3911 kuid, kgid); 3912 if (error) 3913 return error; 3914 } 3915 3916 return 0; 3917 } 3918 3919 /** 3920 * device_change_owner - change the owner of an existing device. 3921 * @dev: device. 3922 * @kuid: new owner's kuid 3923 * @kgid: new owner's kgid 3924 * 3925 * This changes the owner of @dev and its corresponding sysfs entries to 3926 * @kuid/@kgid. This function closely mirrors how @dev was added via driver 3927 * core. 3928 * 3929 * Returns 0 on success or error code on failure. 3930 */ 3931 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid) 3932 { 3933 int error; 3934 struct kobject *kobj = &dev->kobj; 3935 3936 dev = get_device(dev); 3937 if (!dev) 3938 return -EINVAL; 3939 3940 /* 3941 * Change the kobject and the default attributes and groups of the 3942 * ktype associated with it to @kuid/@kgid. 3943 */ 3944 error = sysfs_change_owner(kobj, kuid, kgid); 3945 if (error) 3946 goto out; 3947 3948 /* 3949 * Change the uevent file for @dev to the new owner. The uevent file 3950 * was created in a separate step when @dev got added and we mirror 3951 * that step here. 3952 */ 3953 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid, 3954 kgid); 3955 if (error) 3956 goto out; 3957 3958 /* 3959 * Change the device groups, the device groups associated with the 3960 * device class, and the groups associated with the device type of @dev 3961 * to @kuid/@kgid. 3962 */ 3963 error = device_attrs_change_owner(dev, kuid, kgid); 3964 if (error) 3965 goto out; 3966 3967 error = dpm_sysfs_change_owner(dev, kuid, kgid); 3968 if (error) 3969 goto out; 3970 3971 #ifdef CONFIG_BLOCK 3972 if (sysfs_deprecated && dev->class == &block_class) 3973 goto out; 3974 #endif 3975 3976 /* 3977 * Change the owner of the symlink located in the class directory of 3978 * the device class associated with @dev which points to the actual 3979 * directory entry for @dev to @kuid/@kgid. This ensures that the 3980 * symlink shows the same permissions as its target. 3981 */ 3982 error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj, 3983 dev_name(dev), kuid, kgid); 3984 if (error) 3985 goto out; 3986 3987 out: 3988 put_device(dev); 3989 return error; 3990 } 3991 EXPORT_SYMBOL_GPL(device_change_owner); 3992 3993 /** 3994 * device_shutdown - call ->shutdown() on each device to shutdown. 3995 */ 3996 void device_shutdown(void) 3997 { 3998 struct device *dev, *parent; 3999 4000 wait_for_device_probe(); 4001 device_block_probing(); 4002 4003 cpufreq_suspend(); 4004 4005 spin_lock(&devices_kset->list_lock); 4006 /* 4007 * Walk the devices list backward, shutting down each in turn. 4008 * Beware that device unplug events may also start pulling 4009 * devices offline, even as the system is shutting down. 4010 */ 4011 while (!list_empty(&devices_kset->list)) { 4012 dev = list_entry(devices_kset->list.prev, struct device, 4013 kobj.entry); 4014 4015 /* 4016 * hold reference count of device's parent to 4017 * prevent it from being freed because parent's 4018 * lock is to be held 4019 */ 4020 parent = get_device(dev->parent); 4021 get_device(dev); 4022 /* 4023 * Make sure the device is off the kset list, in the 4024 * event that dev->*->shutdown() doesn't remove it. 4025 */ 4026 list_del_init(&dev->kobj.entry); 4027 spin_unlock(&devices_kset->list_lock); 4028 4029 /* hold lock to avoid race with probe/release */ 4030 if (parent) 4031 device_lock(parent); 4032 device_lock(dev); 4033 4034 /* Don't allow any more runtime suspends */ 4035 pm_runtime_get_noresume(dev); 4036 pm_runtime_barrier(dev); 4037 4038 if (dev->class && dev->class->shutdown_pre) { 4039 if (initcall_debug) 4040 dev_info(dev, "shutdown_pre\n"); 4041 dev->class->shutdown_pre(dev); 4042 } 4043 if (dev->bus && dev->bus->shutdown) { 4044 if (initcall_debug) 4045 dev_info(dev, "shutdown\n"); 4046 dev->bus->shutdown(dev); 4047 } else if (dev->driver && dev->driver->shutdown) { 4048 if (initcall_debug) 4049 dev_info(dev, "shutdown\n"); 4050 dev->driver->shutdown(dev); 4051 } 4052 4053 device_unlock(dev); 4054 if (parent) 4055 device_unlock(parent); 4056 4057 put_device(dev); 4058 put_device(parent); 4059 4060 spin_lock(&devices_kset->list_lock); 4061 } 4062 spin_unlock(&devices_kset->list_lock); 4063 } 4064 4065 /* 4066 * Device logging functions 4067 */ 4068 4069 #ifdef CONFIG_PRINTK 4070 static int 4071 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen) 4072 { 4073 const char *subsys; 4074 size_t pos = 0; 4075 4076 if (dev->class) 4077 subsys = dev->class->name; 4078 else if (dev->bus) 4079 subsys = dev->bus->name; 4080 else 4081 return 0; 4082 4083 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys); 4084 if (pos >= hdrlen) 4085 goto overflow; 4086 4087 /* 4088 * Add device identifier DEVICE=: 4089 * b12:8 block dev_t 4090 * c127:3 char dev_t 4091 * n8 netdev ifindex 4092 * +sound:card0 subsystem:devname 4093 */ 4094 if (MAJOR(dev->devt)) { 4095 char c; 4096 4097 if (strcmp(subsys, "block") == 0) 4098 c = 'b'; 4099 else 4100 c = 'c'; 4101 pos++; 4102 pos += snprintf(hdr + pos, hdrlen - pos, 4103 "DEVICE=%c%u:%u", 4104 c, MAJOR(dev->devt), MINOR(dev->devt)); 4105 } else if (strcmp(subsys, "net") == 0) { 4106 struct net_device *net = to_net_dev(dev); 4107 4108 pos++; 4109 pos += snprintf(hdr + pos, hdrlen - pos, 4110 "DEVICE=n%u", net->ifindex); 4111 } else { 4112 pos++; 4113 pos += snprintf(hdr + pos, hdrlen - pos, 4114 "DEVICE=+%s:%s", subsys, dev_name(dev)); 4115 } 4116 4117 if (pos >= hdrlen) 4118 goto overflow; 4119 4120 return pos; 4121 4122 overflow: 4123 dev_WARN(dev, "device/subsystem name too long"); 4124 return 0; 4125 } 4126 4127 int dev_vprintk_emit(int level, const struct device *dev, 4128 const char *fmt, va_list args) 4129 { 4130 char hdr[128]; 4131 size_t hdrlen; 4132 4133 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr)); 4134 4135 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args); 4136 } 4137 EXPORT_SYMBOL(dev_vprintk_emit); 4138 4139 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 4140 { 4141 va_list args; 4142 int r; 4143 4144 va_start(args, fmt); 4145 4146 r = dev_vprintk_emit(level, dev, fmt, args); 4147 4148 va_end(args); 4149 4150 return r; 4151 } 4152 EXPORT_SYMBOL(dev_printk_emit); 4153 4154 static void __dev_printk(const char *level, const struct device *dev, 4155 struct va_format *vaf) 4156 { 4157 if (dev) 4158 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 4159 dev_driver_string(dev), dev_name(dev), vaf); 4160 else 4161 printk("%s(NULL device *): %pV", level, vaf); 4162 } 4163 4164 void dev_printk(const char *level, const struct device *dev, 4165 const char *fmt, ...) 4166 { 4167 struct va_format vaf; 4168 va_list args; 4169 4170 va_start(args, fmt); 4171 4172 vaf.fmt = fmt; 4173 vaf.va = &args; 4174 4175 __dev_printk(level, dev, &vaf); 4176 4177 va_end(args); 4178 } 4179 EXPORT_SYMBOL(dev_printk); 4180 4181 #define define_dev_printk_level(func, kern_level) \ 4182 void func(const struct device *dev, const char *fmt, ...) \ 4183 { \ 4184 struct va_format vaf; \ 4185 va_list args; \ 4186 \ 4187 va_start(args, fmt); \ 4188 \ 4189 vaf.fmt = fmt; \ 4190 vaf.va = &args; \ 4191 \ 4192 __dev_printk(kern_level, dev, &vaf); \ 4193 \ 4194 va_end(args); \ 4195 } \ 4196 EXPORT_SYMBOL(func); 4197 4198 define_dev_printk_level(_dev_emerg, KERN_EMERG); 4199 define_dev_printk_level(_dev_alert, KERN_ALERT); 4200 define_dev_printk_level(_dev_crit, KERN_CRIT); 4201 define_dev_printk_level(_dev_err, KERN_ERR); 4202 define_dev_printk_level(_dev_warn, KERN_WARNING); 4203 define_dev_printk_level(_dev_notice, KERN_NOTICE); 4204 define_dev_printk_level(_dev_info, KERN_INFO); 4205 4206 #endif 4207 4208 /** 4209 * dev_err_probe - probe error check and log helper 4210 * @dev: the pointer to the struct device 4211 * @err: error value to test 4212 * @fmt: printf-style format string 4213 * @...: arguments as specified in the format string 4214 * 4215 * This helper implements common pattern present in probe functions for error 4216 * checking: print debug or error message depending if the error value is 4217 * -EPROBE_DEFER and propagate error upwards. 4218 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be 4219 * checked later by reading devices_deferred debugfs attribute. 4220 * It replaces code sequence: 4221 * if (err != -EPROBE_DEFER) 4222 * dev_err(dev, ...); 4223 * else 4224 * dev_dbg(dev, ...); 4225 * return err; 4226 * with 4227 * return dev_err_probe(dev, err, ...); 4228 * 4229 * Returns @err. 4230 * 4231 */ 4232 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...) 4233 { 4234 struct va_format vaf; 4235 va_list args; 4236 4237 va_start(args, fmt); 4238 vaf.fmt = fmt; 4239 vaf.va = &args; 4240 4241 if (err != -EPROBE_DEFER) { 4242 dev_err(dev, "error %d: %pV", err, &vaf); 4243 } else { 4244 device_set_deferred_probe_reason(dev, &vaf); 4245 dev_dbg(dev, "error %d: %pV", err, &vaf); 4246 } 4247 4248 va_end(args); 4249 4250 return err; 4251 } 4252 EXPORT_SYMBOL_GPL(dev_err_probe); 4253 4254 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 4255 { 4256 return fwnode && !IS_ERR(fwnode->secondary); 4257 } 4258 4259 /** 4260 * set_primary_fwnode - Change the primary firmware node of a given device. 4261 * @dev: Device to handle. 4262 * @fwnode: New primary firmware node of the device. 4263 * 4264 * Set the device's firmware node pointer to @fwnode, but if a secondary 4265 * firmware node of the device is present, preserve it. 4266 */ 4267 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 4268 { 4269 struct fwnode_handle *fn = dev->fwnode; 4270 4271 if (fwnode) { 4272 if (fwnode_is_primary(fn)) 4273 fn = fn->secondary; 4274 4275 if (fn) { 4276 WARN_ON(fwnode->secondary); 4277 fwnode->secondary = fn; 4278 } 4279 dev->fwnode = fwnode; 4280 } else { 4281 if (fwnode_is_primary(fn)) { 4282 dev->fwnode = fn->secondary; 4283 fn->secondary = NULL; 4284 } else { 4285 dev->fwnode = NULL; 4286 } 4287 } 4288 } 4289 EXPORT_SYMBOL_GPL(set_primary_fwnode); 4290 4291 /** 4292 * set_secondary_fwnode - Change the secondary firmware node of a given device. 4293 * @dev: Device to handle. 4294 * @fwnode: New secondary firmware node of the device. 4295 * 4296 * If a primary firmware node of the device is present, set its secondary 4297 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 4298 * @fwnode. 4299 */ 4300 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 4301 { 4302 if (fwnode) 4303 fwnode->secondary = ERR_PTR(-ENODEV); 4304 4305 if (fwnode_is_primary(dev->fwnode)) 4306 dev->fwnode->secondary = fwnode; 4307 else 4308 dev->fwnode = fwnode; 4309 } 4310 EXPORT_SYMBOL_GPL(set_secondary_fwnode); 4311 4312 /** 4313 * device_set_of_node_from_dev - reuse device-tree node of another device 4314 * @dev: device whose device-tree node is being set 4315 * @dev2: device whose device-tree node is being reused 4316 * 4317 * Takes another reference to the new device-tree node after first dropping 4318 * any reference held to the old node. 4319 */ 4320 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 4321 { 4322 of_node_put(dev->of_node); 4323 dev->of_node = of_node_get(dev2->of_node); 4324 dev->of_node_reused = true; 4325 } 4326 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 4327 4328 int device_match_name(struct device *dev, const void *name) 4329 { 4330 return sysfs_streq(dev_name(dev), name); 4331 } 4332 EXPORT_SYMBOL_GPL(device_match_name); 4333 4334 int device_match_of_node(struct device *dev, const void *np) 4335 { 4336 return dev->of_node == np; 4337 } 4338 EXPORT_SYMBOL_GPL(device_match_of_node); 4339 4340 int device_match_fwnode(struct device *dev, const void *fwnode) 4341 { 4342 return dev_fwnode(dev) == fwnode; 4343 } 4344 EXPORT_SYMBOL_GPL(device_match_fwnode); 4345 4346 int device_match_devt(struct device *dev, const void *pdevt) 4347 { 4348 return dev->devt == *(dev_t *)pdevt; 4349 } 4350 EXPORT_SYMBOL_GPL(device_match_devt); 4351 4352 int device_match_acpi_dev(struct device *dev, const void *adev) 4353 { 4354 return ACPI_COMPANION(dev) == adev; 4355 } 4356 EXPORT_SYMBOL(device_match_acpi_dev); 4357 4358 int device_match_any(struct device *dev, const void *unused) 4359 { 4360 return 1; 4361 } 4362 EXPORT_SYMBOL_GPL(device_match_any); 4363