xref: /openbmc/linux/drivers/base/core.c (revision dbf563ee)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sysfs.h>
30 
31 #include "base.h"
32 #include "power/power.h"
33 
34 #ifdef CONFIG_SYSFS_DEPRECATED
35 #ifdef CONFIG_SYSFS_DEPRECATED_V2
36 long sysfs_deprecated = 1;
37 #else
38 long sysfs_deprecated = 0;
39 #endif
40 static int __init sysfs_deprecated_setup(char *arg)
41 {
42 	return kstrtol(arg, 10, &sysfs_deprecated);
43 }
44 early_param("sysfs.deprecated", sysfs_deprecated_setup);
45 #endif
46 
47 /* Device links support. */
48 static LIST_HEAD(wait_for_suppliers);
49 static DEFINE_MUTEX(wfs_lock);
50 static LIST_HEAD(deferred_sync);
51 static unsigned int defer_sync_state_count = 1;
52 static unsigned int defer_fw_devlink_count;
53 static LIST_HEAD(deferred_fw_devlink);
54 static DEFINE_MUTEX(defer_fw_devlink_lock);
55 static bool fw_devlink_is_permissive(void);
56 
57 #ifdef CONFIG_SRCU
58 static DEFINE_MUTEX(device_links_lock);
59 DEFINE_STATIC_SRCU(device_links_srcu);
60 
61 static inline void device_links_write_lock(void)
62 {
63 	mutex_lock(&device_links_lock);
64 }
65 
66 static inline void device_links_write_unlock(void)
67 {
68 	mutex_unlock(&device_links_lock);
69 }
70 
71 int device_links_read_lock(void) __acquires(&device_links_srcu)
72 {
73 	return srcu_read_lock(&device_links_srcu);
74 }
75 
76 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
77 {
78 	srcu_read_unlock(&device_links_srcu, idx);
79 }
80 
81 int device_links_read_lock_held(void)
82 {
83 	return srcu_read_lock_held(&device_links_srcu);
84 }
85 #else /* !CONFIG_SRCU */
86 static DECLARE_RWSEM(device_links_lock);
87 
88 static inline void device_links_write_lock(void)
89 {
90 	down_write(&device_links_lock);
91 }
92 
93 static inline void device_links_write_unlock(void)
94 {
95 	up_write(&device_links_lock);
96 }
97 
98 int device_links_read_lock(void)
99 {
100 	down_read(&device_links_lock);
101 	return 0;
102 }
103 
104 void device_links_read_unlock(int not_used)
105 {
106 	up_read(&device_links_lock);
107 }
108 
109 #ifdef CONFIG_DEBUG_LOCK_ALLOC
110 int device_links_read_lock_held(void)
111 {
112 	return lockdep_is_held(&device_links_lock);
113 }
114 #endif
115 #endif /* !CONFIG_SRCU */
116 
117 /**
118  * device_is_dependent - Check if one device depends on another one
119  * @dev: Device to check dependencies for.
120  * @target: Device to check against.
121  *
122  * Check if @target depends on @dev or any device dependent on it (its child or
123  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
124  */
125 int device_is_dependent(struct device *dev, void *target)
126 {
127 	struct device_link *link;
128 	int ret;
129 
130 	if (dev == target)
131 		return 1;
132 
133 	ret = device_for_each_child(dev, target, device_is_dependent);
134 	if (ret)
135 		return ret;
136 
137 	list_for_each_entry(link, &dev->links.consumers, s_node) {
138 		if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
139 			continue;
140 
141 		if (link->consumer == target)
142 			return 1;
143 
144 		ret = device_is_dependent(link->consumer, target);
145 		if (ret)
146 			break;
147 	}
148 	return ret;
149 }
150 
151 static void device_link_init_status(struct device_link *link,
152 				    struct device *consumer,
153 				    struct device *supplier)
154 {
155 	switch (supplier->links.status) {
156 	case DL_DEV_PROBING:
157 		switch (consumer->links.status) {
158 		case DL_DEV_PROBING:
159 			/*
160 			 * A consumer driver can create a link to a supplier
161 			 * that has not completed its probing yet as long as it
162 			 * knows that the supplier is already functional (for
163 			 * example, it has just acquired some resources from the
164 			 * supplier).
165 			 */
166 			link->status = DL_STATE_CONSUMER_PROBE;
167 			break;
168 		default:
169 			link->status = DL_STATE_DORMANT;
170 			break;
171 		}
172 		break;
173 	case DL_DEV_DRIVER_BOUND:
174 		switch (consumer->links.status) {
175 		case DL_DEV_PROBING:
176 			link->status = DL_STATE_CONSUMER_PROBE;
177 			break;
178 		case DL_DEV_DRIVER_BOUND:
179 			link->status = DL_STATE_ACTIVE;
180 			break;
181 		default:
182 			link->status = DL_STATE_AVAILABLE;
183 			break;
184 		}
185 		break;
186 	case DL_DEV_UNBINDING:
187 		link->status = DL_STATE_SUPPLIER_UNBIND;
188 		break;
189 	default:
190 		link->status = DL_STATE_DORMANT;
191 		break;
192 	}
193 }
194 
195 static int device_reorder_to_tail(struct device *dev, void *not_used)
196 {
197 	struct device_link *link;
198 
199 	/*
200 	 * Devices that have not been registered yet will be put to the ends
201 	 * of the lists during the registration, so skip them here.
202 	 */
203 	if (device_is_registered(dev))
204 		devices_kset_move_last(dev);
205 
206 	if (device_pm_initialized(dev))
207 		device_pm_move_last(dev);
208 
209 	device_for_each_child(dev, NULL, device_reorder_to_tail);
210 	list_for_each_entry(link, &dev->links.consumers, s_node) {
211 		if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
212 			continue;
213 		device_reorder_to_tail(link->consumer, NULL);
214 	}
215 
216 	return 0;
217 }
218 
219 /**
220  * device_pm_move_to_tail - Move set of devices to the end of device lists
221  * @dev: Device to move
222  *
223  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
224  *
225  * It moves the @dev along with all of its children and all of its consumers
226  * to the ends of the device_kset and dpm_list, recursively.
227  */
228 void device_pm_move_to_tail(struct device *dev)
229 {
230 	int idx;
231 
232 	idx = device_links_read_lock();
233 	device_pm_lock();
234 	device_reorder_to_tail(dev, NULL);
235 	device_pm_unlock();
236 	device_links_read_unlock(idx);
237 }
238 
239 #define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
240 
241 static ssize_t status_show(struct device *dev,
242 			  struct device_attribute *attr, char *buf)
243 {
244 	char *status;
245 
246 	switch (to_devlink(dev)->status) {
247 	case DL_STATE_NONE:
248 		status = "not tracked"; break;
249 	case DL_STATE_DORMANT:
250 		status = "dormant"; break;
251 	case DL_STATE_AVAILABLE:
252 		status = "available"; break;
253 	case DL_STATE_CONSUMER_PROBE:
254 		status = "consumer probing"; break;
255 	case DL_STATE_ACTIVE:
256 		status = "active"; break;
257 	case DL_STATE_SUPPLIER_UNBIND:
258 		status = "supplier unbinding"; break;
259 	default:
260 		status = "unknown"; break;
261 	}
262 	return sprintf(buf, "%s\n", status);
263 }
264 static DEVICE_ATTR_RO(status);
265 
266 static ssize_t auto_remove_on_show(struct device *dev,
267 				   struct device_attribute *attr, char *buf)
268 {
269 	struct device_link *link = to_devlink(dev);
270 	char *str;
271 
272 	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
273 		str = "supplier unbind";
274 	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
275 		str = "consumer unbind";
276 	else
277 		str = "never";
278 
279 	return sprintf(buf, "%s\n", str);
280 }
281 static DEVICE_ATTR_RO(auto_remove_on);
282 
283 static ssize_t runtime_pm_show(struct device *dev,
284 			       struct device_attribute *attr, char *buf)
285 {
286 	struct device_link *link = to_devlink(dev);
287 
288 	return sprintf(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
289 }
290 static DEVICE_ATTR_RO(runtime_pm);
291 
292 static ssize_t sync_state_only_show(struct device *dev,
293 				    struct device_attribute *attr, char *buf)
294 {
295 	struct device_link *link = to_devlink(dev);
296 
297 	return sprintf(buf, "%d\n", !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
298 }
299 static DEVICE_ATTR_RO(sync_state_only);
300 
301 static struct attribute *devlink_attrs[] = {
302 	&dev_attr_status.attr,
303 	&dev_attr_auto_remove_on.attr,
304 	&dev_attr_runtime_pm.attr,
305 	&dev_attr_sync_state_only.attr,
306 	NULL,
307 };
308 ATTRIBUTE_GROUPS(devlink);
309 
310 static void device_link_free(struct device_link *link)
311 {
312 	while (refcount_dec_not_one(&link->rpm_active))
313 		pm_runtime_put(link->supplier);
314 
315 	put_device(link->consumer);
316 	put_device(link->supplier);
317 	kfree(link);
318 }
319 
320 #ifdef CONFIG_SRCU
321 static void __device_link_free_srcu(struct rcu_head *rhead)
322 {
323 	device_link_free(container_of(rhead, struct device_link, rcu_head));
324 }
325 
326 static void devlink_dev_release(struct device *dev)
327 {
328 	struct device_link *link = to_devlink(dev);
329 
330 	call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
331 }
332 #else
333 static void devlink_dev_release(struct device *dev)
334 {
335 	device_link_free(to_devlink(dev));
336 }
337 #endif
338 
339 static struct class devlink_class = {
340 	.name = "devlink",
341 	.owner = THIS_MODULE,
342 	.dev_groups = devlink_groups,
343 	.dev_release = devlink_dev_release,
344 };
345 
346 static int devlink_add_symlinks(struct device *dev,
347 				struct class_interface *class_intf)
348 {
349 	int ret;
350 	size_t len;
351 	struct device_link *link = to_devlink(dev);
352 	struct device *sup = link->supplier;
353 	struct device *con = link->consumer;
354 	char *buf;
355 
356 	len = max(strlen(dev_name(sup)), strlen(dev_name(con)));
357 	len += strlen("supplier:") + 1;
358 	buf = kzalloc(len, GFP_KERNEL);
359 	if (!buf)
360 		return -ENOMEM;
361 
362 	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
363 	if (ret)
364 		goto out;
365 
366 	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
367 	if (ret)
368 		goto err_con;
369 
370 	snprintf(buf, len, "consumer:%s", dev_name(con));
371 	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
372 	if (ret)
373 		goto err_con_dev;
374 
375 	snprintf(buf, len, "supplier:%s", dev_name(sup));
376 	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
377 	if (ret)
378 		goto err_sup_dev;
379 
380 	goto out;
381 
382 err_sup_dev:
383 	snprintf(buf, len, "consumer:%s", dev_name(con));
384 	sysfs_remove_link(&sup->kobj, buf);
385 err_con_dev:
386 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
387 err_con:
388 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
389 out:
390 	kfree(buf);
391 	return ret;
392 }
393 
394 static void devlink_remove_symlinks(struct device *dev,
395 				   struct class_interface *class_intf)
396 {
397 	struct device_link *link = to_devlink(dev);
398 	size_t len;
399 	struct device *sup = link->supplier;
400 	struct device *con = link->consumer;
401 	char *buf;
402 
403 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
404 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
405 
406 	len = max(strlen(dev_name(sup)), strlen(dev_name(con)));
407 	len += strlen("supplier:") + 1;
408 	buf = kzalloc(len, GFP_KERNEL);
409 	if (!buf) {
410 		WARN(1, "Unable to properly free device link symlinks!\n");
411 		return;
412 	}
413 
414 	snprintf(buf, len, "supplier:%s", dev_name(sup));
415 	sysfs_remove_link(&con->kobj, buf);
416 	snprintf(buf, len, "consumer:%s", dev_name(con));
417 	sysfs_remove_link(&sup->kobj, buf);
418 	kfree(buf);
419 }
420 
421 static struct class_interface devlink_class_intf = {
422 	.class = &devlink_class,
423 	.add_dev = devlink_add_symlinks,
424 	.remove_dev = devlink_remove_symlinks,
425 };
426 
427 static int __init devlink_class_init(void)
428 {
429 	int ret;
430 
431 	ret = class_register(&devlink_class);
432 	if (ret)
433 		return ret;
434 
435 	ret = class_interface_register(&devlink_class_intf);
436 	if (ret)
437 		class_unregister(&devlink_class);
438 
439 	return ret;
440 }
441 postcore_initcall(devlink_class_init);
442 
443 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
444 			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
445 			       DL_FLAG_AUTOPROBE_CONSUMER  | \
446 			       DL_FLAG_SYNC_STATE_ONLY)
447 
448 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
449 			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
450 
451 /**
452  * device_link_add - Create a link between two devices.
453  * @consumer: Consumer end of the link.
454  * @supplier: Supplier end of the link.
455  * @flags: Link flags.
456  *
457  * The caller is responsible for the proper synchronization of the link creation
458  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
459  * runtime PM framework to take the link into account.  Second, if the
460  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
461  * be forced into the active metastate and reference-counted upon the creation
462  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
463  * ignored.
464  *
465  * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
466  * expected to release the link returned by it directly with the help of either
467  * device_link_del() or device_link_remove().
468  *
469  * If that flag is not set, however, the caller of this function is handing the
470  * management of the link over to the driver core entirely and its return value
471  * can only be used to check whether or not the link is present.  In that case,
472  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
473  * flags can be used to indicate to the driver core when the link can be safely
474  * deleted.  Namely, setting one of them in @flags indicates to the driver core
475  * that the link is not going to be used (by the given caller of this function)
476  * after unbinding the consumer or supplier driver, respectively, from its
477  * device, so the link can be deleted at that point.  If none of them is set,
478  * the link will be maintained until one of the devices pointed to by it (either
479  * the consumer or the supplier) is unregistered.
480  *
481  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
482  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
483  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
484  * be used to request the driver core to automaticall probe for a consmer
485  * driver after successfully binding a driver to the supplier device.
486  *
487  * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
488  * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
489  * the same time is invalid and will cause NULL to be returned upfront.
490  * However, if a device link between the given @consumer and @supplier pair
491  * exists already when this function is called for them, the existing link will
492  * be returned regardless of its current type and status (the link's flags may
493  * be modified then).  The caller of this function is then expected to treat
494  * the link as though it has just been created, so (in particular) if
495  * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
496  * explicitly when not needed any more (as stated above).
497  *
498  * A side effect of the link creation is re-ordering of dpm_list and the
499  * devices_kset list by moving the consumer device and all devices depending
500  * on it to the ends of these lists (that does not happen to devices that have
501  * not been registered when this function is called).
502  *
503  * The supplier device is required to be registered when this function is called
504  * and NULL will be returned if that is not the case.  The consumer device need
505  * not be registered, however.
506  */
507 struct device_link *device_link_add(struct device *consumer,
508 				    struct device *supplier, u32 flags)
509 {
510 	struct device_link *link;
511 
512 	if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
513 	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
514 	    (flags & DL_FLAG_SYNC_STATE_ONLY &&
515 	     flags != DL_FLAG_SYNC_STATE_ONLY) ||
516 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
517 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
518 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
519 		return NULL;
520 
521 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
522 		if (pm_runtime_get_sync(supplier) < 0) {
523 			pm_runtime_put_noidle(supplier);
524 			return NULL;
525 		}
526 	}
527 
528 	if (!(flags & DL_FLAG_STATELESS))
529 		flags |= DL_FLAG_MANAGED;
530 
531 	device_links_write_lock();
532 	device_pm_lock();
533 
534 	/*
535 	 * If the supplier has not been fully registered yet or there is a
536 	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
537 	 * the supplier already in the graph, return NULL. If the link is a
538 	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
539 	 * because it only affects sync_state() callbacks.
540 	 */
541 	if (!device_pm_initialized(supplier)
542 	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
543 		  device_is_dependent(consumer, supplier))) {
544 		link = NULL;
545 		goto out;
546 	}
547 
548 	/*
549 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
550 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
551 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
552 	 */
553 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
554 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
555 
556 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
557 		if (link->consumer != consumer)
558 			continue;
559 
560 		if (flags & DL_FLAG_PM_RUNTIME) {
561 			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
562 				pm_runtime_new_link(consumer);
563 				link->flags |= DL_FLAG_PM_RUNTIME;
564 			}
565 			if (flags & DL_FLAG_RPM_ACTIVE)
566 				refcount_inc(&link->rpm_active);
567 		}
568 
569 		if (flags & DL_FLAG_STATELESS) {
570 			kref_get(&link->kref);
571 			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
572 			    !(link->flags & DL_FLAG_STATELESS)) {
573 				link->flags |= DL_FLAG_STATELESS;
574 				goto reorder;
575 			} else {
576 				link->flags |= DL_FLAG_STATELESS;
577 				goto out;
578 			}
579 		}
580 
581 		/*
582 		 * If the life time of the link following from the new flags is
583 		 * longer than indicated by the flags of the existing link,
584 		 * update the existing link to stay around longer.
585 		 */
586 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
587 			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
588 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
589 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
590 			}
591 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
592 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
593 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
594 		}
595 		if (!(link->flags & DL_FLAG_MANAGED)) {
596 			kref_get(&link->kref);
597 			link->flags |= DL_FLAG_MANAGED;
598 			device_link_init_status(link, consumer, supplier);
599 		}
600 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
601 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
602 			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
603 			goto reorder;
604 		}
605 
606 		goto out;
607 	}
608 
609 	link = kzalloc(sizeof(*link), GFP_KERNEL);
610 	if (!link)
611 		goto out;
612 
613 	refcount_set(&link->rpm_active, 1);
614 
615 	get_device(supplier);
616 	link->supplier = supplier;
617 	INIT_LIST_HEAD(&link->s_node);
618 	get_device(consumer);
619 	link->consumer = consumer;
620 	INIT_LIST_HEAD(&link->c_node);
621 	link->flags = flags;
622 	kref_init(&link->kref);
623 
624 	link->link_dev.class = &devlink_class;
625 	device_set_pm_not_required(&link->link_dev);
626 	dev_set_name(&link->link_dev, "%s--%s",
627 		     dev_name(supplier), dev_name(consumer));
628 	if (device_register(&link->link_dev)) {
629 		put_device(consumer);
630 		put_device(supplier);
631 		kfree(link);
632 		link = NULL;
633 		goto out;
634 	}
635 
636 	if (flags & DL_FLAG_PM_RUNTIME) {
637 		if (flags & DL_FLAG_RPM_ACTIVE)
638 			refcount_inc(&link->rpm_active);
639 
640 		pm_runtime_new_link(consumer);
641 	}
642 
643 	/* Determine the initial link state. */
644 	if (flags & DL_FLAG_STATELESS)
645 		link->status = DL_STATE_NONE;
646 	else
647 		device_link_init_status(link, consumer, supplier);
648 
649 	/*
650 	 * Some callers expect the link creation during consumer driver probe to
651 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
652 	 */
653 	if (link->status == DL_STATE_CONSUMER_PROBE &&
654 	    flags & DL_FLAG_PM_RUNTIME)
655 		pm_runtime_resume(supplier);
656 
657 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
658 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
659 
660 	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
661 		dev_dbg(consumer,
662 			"Linked as a sync state only consumer to %s\n",
663 			dev_name(supplier));
664 		goto out;
665 	}
666 
667 reorder:
668 	/*
669 	 * Move the consumer and all of the devices depending on it to the end
670 	 * of dpm_list and the devices_kset list.
671 	 *
672 	 * It is necessary to hold dpm_list locked throughout all that or else
673 	 * we may end up suspending with a wrong ordering of it.
674 	 */
675 	device_reorder_to_tail(consumer, NULL);
676 
677 	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
678 
679 out:
680 	device_pm_unlock();
681 	device_links_write_unlock();
682 
683 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
684 		pm_runtime_put(supplier);
685 
686 	return link;
687 }
688 EXPORT_SYMBOL_GPL(device_link_add);
689 
690 /**
691  * device_link_wait_for_supplier - Add device to wait_for_suppliers list
692  * @consumer: Consumer device
693  *
694  * Marks the @consumer device as waiting for suppliers to become available by
695  * adding it to the wait_for_suppliers list. The consumer device will never be
696  * probed until it's removed from the wait_for_suppliers list.
697  *
698  * The caller is responsible for adding the links to the supplier devices once
699  * they are available and removing the @consumer device from the
700  * wait_for_suppliers list once links to all the suppliers have been created.
701  *
702  * This function is NOT meant to be called from the probe function of the
703  * consumer but rather from code that creates/adds the consumer device.
704  */
705 static void device_link_wait_for_supplier(struct device *consumer,
706 					  bool need_for_probe)
707 {
708 	mutex_lock(&wfs_lock);
709 	list_add_tail(&consumer->links.needs_suppliers, &wait_for_suppliers);
710 	consumer->links.need_for_probe = need_for_probe;
711 	mutex_unlock(&wfs_lock);
712 }
713 
714 static void device_link_wait_for_mandatory_supplier(struct device *consumer)
715 {
716 	device_link_wait_for_supplier(consumer, true);
717 }
718 
719 static void device_link_wait_for_optional_supplier(struct device *consumer)
720 {
721 	device_link_wait_for_supplier(consumer, false);
722 }
723 
724 /**
725  * device_link_add_missing_supplier_links - Add links from consumer devices to
726  *					    supplier devices, leaving any
727  *					    consumer with inactive suppliers on
728  *					    the wait_for_suppliers list
729  *
730  * Loops through all consumers waiting on suppliers and tries to add all their
731  * supplier links. If that succeeds, the consumer device is removed from
732  * wait_for_suppliers list. Otherwise, they are left in the wait_for_suppliers
733  * list.  Devices left on the wait_for_suppliers list will not be probed.
734  *
735  * The fwnode add_links callback is expected to return 0 if it has found and
736  * added all the supplier links for the consumer device. It should return an
737  * error if it isn't able to do so.
738  *
739  * The caller of device_link_wait_for_supplier() is expected to call this once
740  * it's aware of potential suppliers becoming available.
741  */
742 static void device_link_add_missing_supplier_links(void)
743 {
744 	struct device *dev, *tmp;
745 
746 	mutex_lock(&wfs_lock);
747 	list_for_each_entry_safe(dev, tmp, &wait_for_suppliers,
748 				 links.needs_suppliers) {
749 		int ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
750 		if (!ret)
751 			list_del_init(&dev->links.needs_suppliers);
752 		else if (ret != -ENODEV || fw_devlink_is_permissive())
753 			dev->links.need_for_probe = false;
754 	}
755 	mutex_unlock(&wfs_lock);
756 }
757 
758 #ifdef CONFIG_SRCU
759 static void __device_link_del(struct kref *kref)
760 {
761 	struct device_link *link = container_of(kref, struct device_link, kref);
762 
763 	dev_dbg(link->consumer, "Dropping the link to %s\n",
764 		dev_name(link->supplier));
765 
766 	if (link->flags & DL_FLAG_PM_RUNTIME)
767 		pm_runtime_drop_link(link->consumer);
768 
769 	list_del_rcu(&link->s_node);
770 	list_del_rcu(&link->c_node);
771 	device_unregister(&link->link_dev);
772 }
773 #else /* !CONFIG_SRCU */
774 static void __device_link_del(struct kref *kref)
775 {
776 	struct device_link *link = container_of(kref, struct device_link, kref);
777 
778 	dev_info(link->consumer, "Dropping the link to %s\n",
779 		 dev_name(link->supplier));
780 
781 	if (link->flags & DL_FLAG_PM_RUNTIME)
782 		pm_runtime_drop_link(link->consumer);
783 
784 	list_del(&link->s_node);
785 	list_del(&link->c_node);
786 	device_unregister(&link->link_dev);
787 }
788 #endif /* !CONFIG_SRCU */
789 
790 static void device_link_put_kref(struct device_link *link)
791 {
792 	if (link->flags & DL_FLAG_STATELESS)
793 		kref_put(&link->kref, __device_link_del);
794 	else
795 		WARN(1, "Unable to drop a managed device link reference\n");
796 }
797 
798 /**
799  * device_link_del - Delete a stateless link between two devices.
800  * @link: Device link to delete.
801  *
802  * The caller must ensure proper synchronization of this function with runtime
803  * PM.  If the link was added multiple times, it needs to be deleted as often.
804  * Care is required for hotplugged devices:  Their links are purged on removal
805  * and calling device_link_del() is then no longer allowed.
806  */
807 void device_link_del(struct device_link *link)
808 {
809 	device_links_write_lock();
810 	device_link_put_kref(link);
811 	device_links_write_unlock();
812 }
813 EXPORT_SYMBOL_GPL(device_link_del);
814 
815 /**
816  * device_link_remove - Delete a stateless link between two devices.
817  * @consumer: Consumer end of the link.
818  * @supplier: Supplier end of the link.
819  *
820  * The caller must ensure proper synchronization of this function with runtime
821  * PM.
822  */
823 void device_link_remove(void *consumer, struct device *supplier)
824 {
825 	struct device_link *link;
826 
827 	if (WARN_ON(consumer == supplier))
828 		return;
829 
830 	device_links_write_lock();
831 
832 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
833 		if (link->consumer == consumer) {
834 			device_link_put_kref(link);
835 			break;
836 		}
837 	}
838 
839 	device_links_write_unlock();
840 }
841 EXPORT_SYMBOL_GPL(device_link_remove);
842 
843 static void device_links_missing_supplier(struct device *dev)
844 {
845 	struct device_link *link;
846 
847 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
848 		if (link->status != DL_STATE_CONSUMER_PROBE)
849 			continue;
850 
851 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
852 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
853 		} else {
854 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
855 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
856 		}
857 	}
858 }
859 
860 /**
861  * device_links_check_suppliers - Check presence of supplier drivers.
862  * @dev: Consumer device.
863  *
864  * Check links from this device to any suppliers.  Walk the list of the device's
865  * links to suppliers and see if all of them are available.  If not, simply
866  * return -EPROBE_DEFER.
867  *
868  * We need to guarantee that the supplier will not go away after the check has
869  * been positive here.  It only can go away in __device_release_driver() and
870  * that function  checks the device's links to consumers.  This means we need to
871  * mark the link as "consumer probe in progress" to make the supplier removal
872  * wait for us to complete (or bad things may happen).
873  *
874  * Links without the DL_FLAG_MANAGED flag set are ignored.
875  */
876 int device_links_check_suppliers(struct device *dev)
877 {
878 	struct device_link *link;
879 	int ret = 0;
880 
881 	/*
882 	 * Device waiting for supplier to become available is not allowed to
883 	 * probe.
884 	 */
885 	mutex_lock(&wfs_lock);
886 	if (!list_empty(&dev->links.needs_suppliers) &&
887 	    dev->links.need_for_probe) {
888 		mutex_unlock(&wfs_lock);
889 		return -EPROBE_DEFER;
890 	}
891 	mutex_unlock(&wfs_lock);
892 
893 	device_links_write_lock();
894 
895 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
896 		if (!(link->flags & DL_FLAG_MANAGED))
897 			continue;
898 
899 		if (link->status != DL_STATE_AVAILABLE &&
900 		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
901 			device_links_missing_supplier(dev);
902 			ret = -EPROBE_DEFER;
903 			break;
904 		}
905 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
906 	}
907 	dev->links.status = DL_DEV_PROBING;
908 
909 	device_links_write_unlock();
910 	return ret;
911 }
912 
913 /**
914  * __device_links_queue_sync_state - Queue a device for sync_state() callback
915  * @dev: Device to call sync_state() on
916  * @list: List head to queue the @dev on
917  *
918  * Queues a device for a sync_state() callback when the device links write lock
919  * isn't held. This allows the sync_state() execution flow to use device links
920  * APIs.  The caller must ensure this function is called with
921  * device_links_write_lock() held.
922  *
923  * This function does a get_device() to make sure the device is not freed while
924  * on this list.
925  *
926  * So the caller must also ensure that device_links_flush_sync_list() is called
927  * as soon as the caller releases device_links_write_lock().  This is necessary
928  * to make sure the sync_state() is called in a timely fashion and the
929  * put_device() is called on this device.
930  */
931 static void __device_links_queue_sync_state(struct device *dev,
932 					    struct list_head *list)
933 {
934 	struct device_link *link;
935 
936 	if (!dev_has_sync_state(dev))
937 		return;
938 	if (dev->state_synced)
939 		return;
940 
941 	list_for_each_entry(link, &dev->links.consumers, s_node) {
942 		if (!(link->flags & DL_FLAG_MANAGED))
943 			continue;
944 		if (link->status != DL_STATE_ACTIVE)
945 			return;
946 	}
947 
948 	/*
949 	 * Set the flag here to avoid adding the same device to a list more
950 	 * than once. This can happen if new consumers get added to the device
951 	 * and probed before the list is flushed.
952 	 */
953 	dev->state_synced = true;
954 
955 	if (WARN_ON(!list_empty(&dev->links.defer_hook)))
956 		return;
957 
958 	get_device(dev);
959 	list_add_tail(&dev->links.defer_hook, list);
960 }
961 
962 /**
963  * device_links_flush_sync_list - Call sync_state() on a list of devices
964  * @list: List of devices to call sync_state() on
965  * @dont_lock_dev: Device for which lock is already held by the caller
966  *
967  * Calls sync_state() on all the devices that have been queued for it. This
968  * function is used in conjunction with __device_links_queue_sync_state(). The
969  * @dont_lock_dev parameter is useful when this function is called from a
970  * context where a device lock is already held.
971  */
972 static void device_links_flush_sync_list(struct list_head *list,
973 					 struct device *dont_lock_dev)
974 {
975 	struct device *dev, *tmp;
976 
977 	list_for_each_entry_safe(dev, tmp, list, links.defer_hook) {
978 		list_del_init(&dev->links.defer_hook);
979 
980 		if (dev != dont_lock_dev)
981 			device_lock(dev);
982 
983 		if (dev->bus->sync_state)
984 			dev->bus->sync_state(dev);
985 		else if (dev->driver && dev->driver->sync_state)
986 			dev->driver->sync_state(dev);
987 
988 		if (dev != dont_lock_dev)
989 			device_unlock(dev);
990 
991 		put_device(dev);
992 	}
993 }
994 
995 void device_links_supplier_sync_state_pause(void)
996 {
997 	device_links_write_lock();
998 	defer_sync_state_count++;
999 	device_links_write_unlock();
1000 }
1001 
1002 void device_links_supplier_sync_state_resume(void)
1003 {
1004 	struct device *dev, *tmp;
1005 	LIST_HEAD(sync_list);
1006 
1007 	device_links_write_lock();
1008 	if (!defer_sync_state_count) {
1009 		WARN(true, "Unmatched sync_state pause/resume!");
1010 		goto out;
1011 	}
1012 	defer_sync_state_count--;
1013 	if (defer_sync_state_count)
1014 		goto out;
1015 
1016 	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_hook) {
1017 		/*
1018 		 * Delete from deferred_sync list before queuing it to
1019 		 * sync_list because defer_hook is used for both lists.
1020 		 */
1021 		list_del_init(&dev->links.defer_hook);
1022 		__device_links_queue_sync_state(dev, &sync_list);
1023 	}
1024 out:
1025 	device_links_write_unlock();
1026 
1027 	device_links_flush_sync_list(&sync_list, NULL);
1028 }
1029 
1030 static int sync_state_resume_initcall(void)
1031 {
1032 	device_links_supplier_sync_state_resume();
1033 	return 0;
1034 }
1035 late_initcall(sync_state_resume_initcall);
1036 
1037 static void __device_links_supplier_defer_sync(struct device *sup)
1038 {
1039 	if (list_empty(&sup->links.defer_hook) && dev_has_sync_state(sup))
1040 		list_add_tail(&sup->links.defer_hook, &deferred_sync);
1041 }
1042 
1043 static void device_link_drop_managed(struct device_link *link)
1044 {
1045 	link->flags &= ~DL_FLAG_MANAGED;
1046 	WRITE_ONCE(link->status, DL_STATE_NONE);
1047 	kref_put(&link->kref, __device_link_del);
1048 }
1049 
1050 static ssize_t waiting_for_supplier_show(struct device *dev,
1051 					 struct device_attribute *attr,
1052 					 char *buf)
1053 {
1054 	bool val;
1055 
1056 	device_lock(dev);
1057 	mutex_lock(&wfs_lock);
1058 	val = !list_empty(&dev->links.needs_suppliers)
1059 	      && dev->links.need_for_probe;
1060 	mutex_unlock(&wfs_lock);
1061 	device_unlock(dev);
1062 	return sprintf(buf, "%u\n", val);
1063 }
1064 static DEVICE_ATTR_RO(waiting_for_supplier);
1065 
1066 /**
1067  * device_links_driver_bound - Update device links after probing its driver.
1068  * @dev: Device to update the links for.
1069  *
1070  * The probe has been successful, so update links from this device to any
1071  * consumers by changing their status to "available".
1072  *
1073  * Also change the status of @dev's links to suppliers to "active".
1074  *
1075  * Links without the DL_FLAG_MANAGED flag set are ignored.
1076  */
1077 void device_links_driver_bound(struct device *dev)
1078 {
1079 	struct device_link *link, *ln;
1080 	LIST_HEAD(sync_list);
1081 
1082 	/*
1083 	 * If a device probes successfully, it's expected to have created all
1084 	 * the device links it needs to or make new device links as it needs
1085 	 * them. So, it no longer needs to wait on any suppliers.
1086 	 */
1087 	mutex_lock(&wfs_lock);
1088 	list_del_init(&dev->links.needs_suppliers);
1089 	mutex_unlock(&wfs_lock);
1090 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1091 
1092 	device_links_write_lock();
1093 
1094 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1095 		if (!(link->flags & DL_FLAG_MANAGED))
1096 			continue;
1097 
1098 		/*
1099 		 * Links created during consumer probe may be in the "consumer
1100 		 * probe" state to start with if the supplier is still probing
1101 		 * when they are created and they may become "active" if the
1102 		 * consumer probe returns first.  Skip them here.
1103 		 */
1104 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1105 		    link->status == DL_STATE_ACTIVE)
1106 			continue;
1107 
1108 		WARN_ON(link->status != DL_STATE_DORMANT);
1109 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1110 
1111 		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1112 			driver_deferred_probe_add(link->consumer);
1113 	}
1114 
1115 	if (defer_sync_state_count)
1116 		__device_links_supplier_defer_sync(dev);
1117 	else
1118 		__device_links_queue_sync_state(dev, &sync_list);
1119 
1120 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1121 		struct device *supplier;
1122 
1123 		if (!(link->flags & DL_FLAG_MANAGED))
1124 			continue;
1125 
1126 		supplier = link->supplier;
1127 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1128 			/*
1129 			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1130 			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1131 			 * save to drop the managed link completely.
1132 			 */
1133 			device_link_drop_managed(link);
1134 		} else {
1135 			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1136 			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1137 		}
1138 
1139 		/*
1140 		 * This needs to be done even for the deleted
1141 		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1142 		 * device link that was preventing the supplier from getting a
1143 		 * sync_state() call.
1144 		 */
1145 		if (defer_sync_state_count)
1146 			__device_links_supplier_defer_sync(supplier);
1147 		else
1148 			__device_links_queue_sync_state(supplier, &sync_list);
1149 	}
1150 
1151 	dev->links.status = DL_DEV_DRIVER_BOUND;
1152 
1153 	device_links_write_unlock();
1154 
1155 	device_links_flush_sync_list(&sync_list, dev);
1156 }
1157 
1158 /**
1159  * __device_links_no_driver - Update links of a device without a driver.
1160  * @dev: Device without a drvier.
1161  *
1162  * Delete all non-persistent links from this device to any suppliers.
1163  *
1164  * Persistent links stay around, but their status is changed to "available",
1165  * unless they already are in the "supplier unbind in progress" state in which
1166  * case they need not be updated.
1167  *
1168  * Links without the DL_FLAG_MANAGED flag set are ignored.
1169  */
1170 static void __device_links_no_driver(struct device *dev)
1171 {
1172 	struct device_link *link, *ln;
1173 
1174 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1175 		if (!(link->flags & DL_FLAG_MANAGED))
1176 			continue;
1177 
1178 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1179 			device_link_drop_managed(link);
1180 			continue;
1181 		}
1182 
1183 		if (link->status != DL_STATE_CONSUMER_PROBE &&
1184 		    link->status != DL_STATE_ACTIVE)
1185 			continue;
1186 
1187 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1188 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1189 		} else {
1190 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1191 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1192 		}
1193 	}
1194 
1195 	dev->links.status = DL_DEV_NO_DRIVER;
1196 }
1197 
1198 /**
1199  * device_links_no_driver - Update links after failing driver probe.
1200  * @dev: Device whose driver has just failed to probe.
1201  *
1202  * Clean up leftover links to consumers for @dev and invoke
1203  * %__device_links_no_driver() to update links to suppliers for it as
1204  * appropriate.
1205  *
1206  * Links without the DL_FLAG_MANAGED flag set are ignored.
1207  */
1208 void device_links_no_driver(struct device *dev)
1209 {
1210 	struct device_link *link;
1211 
1212 	device_links_write_lock();
1213 
1214 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1215 		if (!(link->flags & DL_FLAG_MANAGED))
1216 			continue;
1217 
1218 		/*
1219 		 * The probe has failed, so if the status of the link is
1220 		 * "consumer probe" or "active", it must have been added by
1221 		 * a probing consumer while this device was still probing.
1222 		 * Change its state to "dormant", as it represents a valid
1223 		 * relationship, but it is not functionally meaningful.
1224 		 */
1225 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1226 		    link->status == DL_STATE_ACTIVE)
1227 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1228 	}
1229 
1230 	__device_links_no_driver(dev);
1231 
1232 	device_links_write_unlock();
1233 }
1234 
1235 /**
1236  * device_links_driver_cleanup - Update links after driver removal.
1237  * @dev: Device whose driver has just gone away.
1238  *
1239  * Update links to consumers for @dev by changing their status to "dormant" and
1240  * invoke %__device_links_no_driver() to update links to suppliers for it as
1241  * appropriate.
1242  *
1243  * Links without the DL_FLAG_MANAGED flag set are ignored.
1244  */
1245 void device_links_driver_cleanup(struct device *dev)
1246 {
1247 	struct device_link *link, *ln;
1248 
1249 	device_links_write_lock();
1250 
1251 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1252 		if (!(link->flags & DL_FLAG_MANAGED))
1253 			continue;
1254 
1255 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1256 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1257 
1258 		/*
1259 		 * autoremove the links between this @dev and its consumer
1260 		 * devices that are not active, i.e. where the link state
1261 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1262 		 */
1263 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1264 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1265 			device_link_drop_managed(link);
1266 
1267 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1268 	}
1269 
1270 	list_del_init(&dev->links.defer_hook);
1271 	__device_links_no_driver(dev);
1272 
1273 	device_links_write_unlock();
1274 }
1275 
1276 /**
1277  * device_links_busy - Check if there are any busy links to consumers.
1278  * @dev: Device to check.
1279  *
1280  * Check each consumer of the device and return 'true' if its link's status
1281  * is one of "consumer probe" or "active" (meaning that the given consumer is
1282  * probing right now or its driver is present).  Otherwise, change the link
1283  * state to "supplier unbind" to prevent the consumer from being probed
1284  * successfully going forward.
1285  *
1286  * Return 'false' if there are no probing or active consumers.
1287  *
1288  * Links without the DL_FLAG_MANAGED flag set are ignored.
1289  */
1290 bool device_links_busy(struct device *dev)
1291 {
1292 	struct device_link *link;
1293 	bool ret = false;
1294 
1295 	device_links_write_lock();
1296 
1297 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1298 		if (!(link->flags & DL_FLAG_MANAGED))
1299 			continue;
1300 
1301 		if (link->status == DL_STATE_CONSUMER_PROBE
1302 		    || link->status == DL_STATE_ACTIVE) {
1303 			ret = true;
1304 			break;
1305 		}
1306 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1307 	}
1308 
1309 	dev->links.status = DL_DEV_UNBINDING;
1310 
1311 	device_links_write_unlock();
1312 	return ret;
1313 }
1314 
1315 /**
1316  * device_links_unbind_consumers - Force unbind consumers of the given device.
1317  * @dev: Device to unbind the consumers of.
1318  *
1319  * Walk the list of links to consumers for @dev and if any of them is in the
1320  * "consumer probe" state, wait for all device probes in progress to complete
1321  * and start over.
1322  *
1323  * If that's not the case, change the status of the link to "supplier unbind"
1324  * and check if the link was in the "active" state.  If so, force the consumer
1325  * driver to unbind and start over (the consumer will not re-probe as we have
1326  * changed the state of the link already).
1327  *
1328  * Links without the DL_FLAG_MANAGED flag set are ignored.
1329  */
1330 void device_links_unbind_consumers(struct device *dev)
1331 {
1332 	struct device_link *link;
1333 
1334  start:
1335 	device_links_write_lock();
1336 
1337 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1338 		enum device_link_state status;
1339 
1340 		if (!(link->flags & DL_FLAG_MANAGED) ||
1341 		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1342 			continue;
1343 
1344 		status = link->status;
1345 		if (status == DL_STATE_CONSUMER_PROBE) {
1346 			device_links_write_unlock();
1347 
1348 			wait_for_device_probe();
1349 			goto start;
1350 		}
1351 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1352 		if (status == DL_STATE_ACTIVE) {
1353 			struct device *consumer = link->consumer;
1354 
1355 			get_device(consumer);
1356 
1357 			device_links_write_unlock();
1358 
1359 			device_release_driver_internal(consumer, NULL,
1360 						       consumer->parent);
1361 			put_device(consumer);
1362 			goto start;
1363 		}
1364 	}
1365 
1366 	device_links_write_unlock();
1367 }
1368 
1369 /**
1370  * device_links_purge - Delete existing links to other devices.
1371  * @dev: Target device.
1372  */
1373 static void device_links_purge(struct device *dev)
1374 {
1375 	struct device_link *link, *ln;
1376 
1377 	if (dev->class == &devlink_class)
1378 		return;
1379 
1380 	mutex_lock(&wfs_lock);
1381 	list_del(&dev->links.needs_suppliers);
1382 	mutex_unlock(&wfs_lock);
1383 
1384 	/*
1385 	 * Delete all of the remaining links from this device to any other
1386 	 * devices (either consumers or suppliers).
1387 	 */
1388 	device_links_write_lock();
1389 
1390 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1391 		WARN_ON(link->status == DL_STATE_ACTIVE);
1392 		__device_link_del(&link->kref);
1393 	}
1394 
1395 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1396 		WARN_ON(link->status != DL_STATE_DORMANT &&
1397 			link->status != DL_STATE_NONE);
1398 		__device_link_del(&link->kref);
1399 	}
1400 
1401 	device_links_write_unlock();
1402 }
1403 
1404 static u32 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
1405 static int __init fw_devlink_setup(char *arg)
1406 {
1407 	if (!arg)
1408 		return -EINVAL;
1409 
1410 	if (strcmp(arg, "off") == 0) {
1411 		fw_devlink_flags = 0;
1412 	} else if (strcmp(arg, "permissive") == 0) {
1413 		fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
1414 	} else if (strcmp(arg, "on") == 0) {
1415 		fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER;
1416 	} else if (strcmp(arg, "rpm") == 0) {
1417 		fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER |
1418 				   DL_FLAG_PM_RUNTIME;
1419 	}
1420 	return 0;
1421 }
1422 early_param("fw_devlink", fw_devlink_setup);
1423 
1424 u32 fw_devlink_get_flags(void)
1425 {
1426 	return fw_devlink_flags;
1427 }
1428 
1429 static bool fw_devlink_is_permissive(void)
1430 {
1431 	return fw_devlink_flags == DL_FLAG_SYNC_STATE_ONLY;
1432 }
1433 
1434 static void fw_devlink_link_device(struct device *dev)
1435 {
1436 	int fw_ret;
1437 
1438 	if (!fw_devlink_flags)
1439 		return;
1440 
1441 	mutex_lock(&defer_fw_devlink_lock);
1442 	if (!defer_fw_devlink_count)
1443 		device_link_add_missing_supplier_links();
1444 
1445 	/*
1446 	 * The device's fwnode not having add_links() doesn't affect if other
1447 	 * consumers can find this device as a supplier.  So, this check is
1448 	 * intentionally placed after device_link_add_missing_supplier_links().
1449 	 */
1450 	if (!fwnode_has_op(dev->fwnode, add_links))
1451 		goto out;
1452 
1453 	/*
1454 	 * If fw_devlink is being deferred, assume all devices have mandatory
1455 	 * suppliers they need to link to later. Then, when the fw_devlink is
1456 	 * resumed, all these devices will get a chance to try and link to any
1457 	 * suppliers they have.
1458 	 */
1459 	if (!defer_fw_devlink_count) {
1460 		fw_ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
1461 		if (fw_ret == -ENODEV && fw_devlink_is_permissive())
1462 			fw_ret = -EAGAIN;
1463 	} else {
1464 		fw_ret = -ENODEV;
1465 		/*
1466 		 * defer_hook is not used to add device to deferred_sync list
1467 		 * until device is bound. Since deferred fw devlink also blocks
1468 		 * probing, same list hook can be used for deferred_fw_devlink.
1469 		 */
1470 		list_add_tail(&dev->links.defer_hook, &deferred_fw_devlink);
1471 	}
1472 
1473 	if (fw_ret == -ENODEV)
1474 		device_link_wait_for_mandatory_supplier(dev);
1475 	else if (fw_ret)
1476 		device_link_wait_for_optional_supplier(dev);
1477 
1478 out:
1479 	mutex_unlock(&defer_fw_devlink_lock);
1480 }
1481 
1482 /**
1483  * fw_devlink_pause - Pause parsing of fwnode to create device links
1484  *
1485  * Calling this function defers any fwnode parsing to create device links until
1486  * fw_devlink_resume() is called. Both these functions are ref counted and the
1487  * caller needs to match the calls.
1488  *
1489  * While fw_devlink is paused:
1490  * - Any device that is added won't have its fwnode parsed to create device
1491  *   links.
1492  * - The probe of the device will also be deferred during this period.
1493  * - Any devices that were already added, but waiting for suppliers won't be
1494  *   able to link to newly added devices.
1495  *
1496  * Once fw_devlink_resume():
1497  * - All the fwnodes that was not parsed will be parsed.
1498  * - All the devices that were deferred probing will be reattempted if they
1499  *   aren't waiting for any more suppliers.
1500  *
1501  * This pair of functions, is mainly meant to optimize the parsing of fwnodes
1502  * when a lot of devices that need to link to each other are added in a short
1503  * interval of time. For example, adding all the top level devices in a system.
1504  *
1505  * For example, if N devices are added and:
1506  * - All the consumers are added before their suppliers
1507  * - All the suppliers of the N devices are part of the N devices
1508  *
1509  * Then:
1510  *
1511  * - With the use of fw_devlink_pause() and fw_devlink_resume(), each device
1512  *   will only need one parsing of its fwnode because it is guaranteed to find
1513  *   all the supplier devices already registered and ready to link to. It won't
1514  *   have to do another pass later to find one or more suppliers it couldn't
1515  *   find in the first parse of the fwnode. So, we'll only need O(N) fwnode
1516  *   parses.
1517  *
1518  * - Without the use of fw_devlink_pause() and fw_devlink_resume(), we would
1519  *   end up doing O(N^2) parses of fwnodes because every device that's added is
1520  *   guaranteed to trigger a parse of the fwnode of every device added before
1521  *   it. This O(N^2) parse is made worse by the fact that when a fwnode of a
1522  *   device is parsed, all it descendant devices might need to have their
1523  *   fwnodes parsed too (even if the devices themselves aren't added).
1524  */
1525 void fw_devlink_pause(void)
1526 {
1527 	mutex_lock(&defer_fw_devlink_lock);
1528 	defer_fw_devlink_count++;
1529 	mutex_unlock(&defer_fw_devlink_lock);
1530 }
1531 
1532 /** fw_devlink_resume - Resume parsing of fwnode to create device links
1533  *
1534  * This function is used in conjunction with fw_devlink_pause() and is ref
1535  * counted. See documentation for fw_devlink_pause() for more details.
1536  */
1537 void fw_devlink_resume(void)
1538 {
1539 	struct device *dev, *tmp;
1540 	LIST_HEAD(probe_list);
1541 
1542 	mutex_lock(&defer_fw_devlink_lock);
1543 	if (!defer_fw_devlink_count) {
1544 		WARN(true, "Unmatched fw_devlink pause/resume!");
1545 		goto out;
1546 	}
1547 
1548 	defer_fw_devlink_count--;
1549 	if (defer_fw_devlink_count)
1550 		goto out;
1551 
1552 	device_link_add_missing_supplier_links();
1553 	list_splice_tail_init(&deferred_fw_devlink, &probe_list);
1554 out:
1555 	mutex_unlock(&defer_fw_devlink_lock);
1556 
1557 	/*
1558 	 * bus_probe_device() can cause new devices to get added and they'll
1559 	 * try to grab defer_fw_devlink_lock. So, this needs to be done outside
1560 	 * the defer_fw_devlink_lock.
1561 	 */
1562 	list_for_each_entry_safe(dev, tmp, &probe_list, links.defer_hook) {
1563 		list_del_init(&dev->links.defer_hook);
1564 		bus_probe_device(dev);
1565 	}
1566 }
1567 /* Device links support end. */
1568 
1569 int (*platform_notify)(struct device *dev) = NULL;
1570 int (*platform_notify_remove)(struct device *dev) = NULL;
1571 static struct kobject *dev_kobj;
1572 struct kobject *sysfs_dev_char_kobj;
1573 struct kobject *sysfs_dev_block_kobj;
1574 
1575 static DEFINE_MUTEX(device_hotplug_lock);
1576 
1577 void lock_device_hotplug(void)
1578 {
1579 	mutex_lock(&device_hotplug_lock);
1580 }
1581 
1582 void unlock_device_hotplug(void)
1583 {
1584 	mutex_unlock(&device_hotplug_lock);
1585 }
1586 
1587 int lock_device_hotplug_sysfs(void)
1588 {
1589 	if (mutex_trylock(&device_hotplug_lock))
1590 		return 0;
1591 
1592 	/* Avoid busy looping (5 ms of sleep should do). */
1593 	msleep(5);
1594 	return restart_syscall();
1595 }
1596 
1597 #ifdef CONFIG_BLOCK
1598 static inline int device_is_not_partition(struct device *dev)
1599 {
1600 	return !(dev->type == &part_type);
1601 }
1602 #else
1603 static inline int device_is_not_partition(struct device *dev)
1604 {
1605 	return 1;
1606 }
1607 #endif
1608 
1609 static int
1610 device_platform_notify(struct device *dev, enum kobject_action action)
1611 {
1612 	int ret;
1613 
1614 	ret = acpi_platform_notify(dev, action);
1615 	if (ret)
1616 		return ret;
1617 
1618 	ret = software_node_notify(dev, action);
1619 	if (ret)
1620 		return ret;
1621 
1622 	if (platform_notify && action == KOBJ_ADD)
1623 		platform_notify(dev);
1624 	else if (platform_notify_remove && action == KOBJ_REMOVE)
1625 		platform_notify_remove(dev);
1626 	return 0;
1627 }
1628 
1629 /**
1630  * dev_driver_string - Return a device's driver name, if at all possible
1631  * @dev: struct device to get the name of
1632  *
1633  * Will return the device's driver's name if it is bound to a device.  If
1634  * the device is not bound to a driver, it will return the name of the bus
1635  * it is attached to.  If it is not attached to a bus either, an empty
1636  * string will be returned.
1637  */
1638 const char *dev_driver_string(const struct device *dev)
1639 {
1640 	struct device_driver *drv;
1641 
1642 	/* dev->driver can change to NULL underneath us because of unbinding,
1643 	 * so be careful about accessing it.  dev->bus and dev->class should
1644 	 * never change once they are set, so they don't need special care.
1645 	 */
1646 	drv = READ_ONCE(dev->driver);
1647 	return drv ? drv->name :
1648 			(dev->bus ? dev->bus->name :
1649 			(dev->class ? dev->class->name : ""));
1650 }
1651 EXPORT_SYMBOL(dev_driver_string);
1652 
1653 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
1654 
1655 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
1656 			     char *buf)
1657 {
1658 	struct device_attribute *dev_attr = to_dev_attr(attr);
1659 	struct device *dev = kobj_to_dev(kobj);
1660 	ssize_t ret = -EIO;
1661 
1662 	if (dev_attr->show)
1663 		ret = dev_attr->show(dev, dev_attr, buf);
1664 	if (ret >= (ssize_t)PAGE_SIZE) {
1665 		printk("dev_attr_show: %pS returned bad count\n",
1666 				dev_attr->show);
1667 	}
1668 	return ret;
1669 }
1670 
1671 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
1672 			      const char *buf, size_t count)
1673 {
1674 	struct device_attribute *dev_attr = to_dev_attr(attr);
1675 	struct device *dev = kobj_to_dev(kobj);
1676 	ssize_t ret = -EIO;
1677 
1678 	if (dev_attr->store)
1679 		ret = dev_attr->store(dev, dev_attr, buf, count);
1680 	return ret;
1681 }
1682 
1683 static const struct sysfs_ops dev_sysfs_ops = {
1684 	.show	= dev_attr_show,
1685 	.store	= dev_attr_store,
1686 };
1687 
1688 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
1689 
1690 ssize_t device_store_ulong(struct device *dev,
1691 			   struct device_attribute *attr,
1692 			   const char *buf, size_t size)
1693 {
1694 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1695 	int ret;
1696 	unsigned long new;
1697 
1698 	ret = kstrtoul(buf, 0, &new);
1699 	if (ret)
1700 		return ret;
1701 	*(unsigned long *)(ea->var) = new;
1702 	/* Always return full write size even if we didn't consume all */
1703 	return size;
1704 }
1705 EXPORT_SYMBOL_GPL(device_store_ulong);
1706 
1707 ssize_t device_show_ulong(struct device *dev,
1708 			  struct device_attribute *attr,
1709 			  char *buf)
1710 {
1711 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1712 	return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
1713 }
1714 EXPORT_SYMBOL_GPL(device_show_ulong);
1715 
1716 ssize_t device_store_int(struct device *dev,
1717 			 struct device_attribute *attr,
1718 			 const char *buf, size_t size)
1719 {
1720 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1721 	int ret;
1722 	long new;
1723 
1724 	ret = kstrtol(buf, 0, &new);
1725 	if (ret)
1726 		return ret;
1727 
1728 	if (new > INT_MAX || new < INT_MIN)
1729 		return -EINVAL;
1730 	*(int *)(ea->var) = new;
1731 	/* Always return full write size even if we didn't consume all */
1732 	return size;
1733 }
1734 EXPORT_SYMBOL_GPL(device_store_int);
1735 
1736 ssize_t device_show_int(struct device *dev,
1737 			struct device_attribute *attr,
1738 			char *buf)
1739 {
1740 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1741 
1742 	return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
1743 }
1744 EXPORT_SYMBOL_GPL(device_show_int);
1745 
1746 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
1747 			  const char *buf, size_t size)
1748 {
1749 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1750 
1751 	if (strtobool(buf, ea->var) < 0)
1752 		return -EINVAL;
1753 
1754 	return size;
1755 }
1756 EXPORT_SYMBOL_GPL(device_store_bool);
1757 
1758 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
1759 			 char *buf)
1760 {
1761 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1762 
1763 	return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
1764 }
1765 EXPORT_SYMBOL_GPL(device_show_bool);
1766 
1767 /**
1768  * device_release - free device structure.
1769  * @kobj: device's kobject.
1770  *
1771  * This is called once the reference count for the object
1772  * reaches 0. We forward the call to the device's release
1773  * method, which should handle actually freeing the structure.
1774  */
1775 static void device_release(struct kobject *kobj)
1776 {
1777 	struct device *dev = kobj_to_dev(kobj);
1778 	struct device_private *p = dev->p;
1779 
1780 	/*
1781 	 * Some platform devices are driven without driver attached
1782 	 * and managed resources may have been acquired.  Make sure
1783 	 * all resources are released.
1784 	 *
1785 	 * Drivers still can add resources into device after device
1786 	 * is deleted but alive, so release devres here to avoid
1787 	 * possible memory leak.
1788 	 */
1789 	devres_release_all(dev);
1790 
1791 	if (dev->release)
1792 		dev->release(dev);
1793 	else if (dev->type && dev->type->release)
1794 		dev->type->release(dev);
1795 	else if (dev->class && dev->class->dev_release)
1796 		dev->class->dev_release(dev);
1797 	else
1798 		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
1799 			dev_name(dev));
1800 	kfree(p);
1801 }
1802 
1803 static const void *device_namespace(struct kobject *kobj)
1804 {
1805 	struct device *dev = kobj_to_dev(kobj);
1806 	const void *ns = NULL;
1807 
1808 	if (dev->class && dev->class->ns_type)
1809 		ns = dev->class->namespace(dev);
1810 
1811 	return ns;
1812 }
1813 
1814 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
1815 {
1816 	struct device *dev = kobj_to_dev(kobj);
1817 
1818 	if (dev->class && dev->class->get_ownership)
1819 		dev->class->get_ownership(dev, uid, gid);
1820 }
1821 
1822 static struct kobj_type device_ktype = {
1823 	.release	= device_release,
1824 	.sysfs_ops	= &dev_sysfs_ops,
1825 	.namespace	= device_namespace,
1826 	.get_ownership	= device_get_ownership,
1827 };
1828 
1829 
1830 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
1831 {
1832 	struct kobj_type *ktype = get_ktype(kobj);
1833 
1834 	if (ktype == &device_ktype) {
1835 		struct device *dev = kobj_to_dev(kobj);
1836 		if (dev->bus)
1837 			return 1;
1838 		if (dev->class)
1839 			return 1;
1840 	}
1841 	return 0;
1842 }
1843 
1844 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
1845 {
1846 	struct device *dev = kobj_to_dev(kobj);
1847 
1848 	if (dev->bus)
1849 		return dev->bus->name;
1850 	if (dev->class)
1851 		return dev->class->name;
1852 	return NULL;
1853 }
1854 
1855 static int dev_uevent(struct kset *kset, struct kobject *kobj,
1856 		      struct kobj_uevent_env *env)
1857 {
1858 	struct device *dev = kobj_to_dev(kobj);
1859 	int retval = 0;
1860 
1861 	/* add device node properties if present */
1862 	if (MAJOR(dev->devt)) {
1863 		const char *tmp;
1864 		const char *name;
1865 		umode_t mode = 0;
1866 		kuid_t uid = GLOBAL_ROOT_UID;
1867 		kgid_t gid = GLOBAL_ROOT_GID;
1868 
1869 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
1870 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
1871 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
1872 		if (name) {
1873 			add_uevent_var(env, "DEVNAME=%s", name);
1874 			if (mode)
1875 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
1876 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
1877 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
1878 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
1879 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
1880 			kfree(tmp);
1881 		}
1882 	}
1883 
1884 	if (dev->type && dev->type->name)
1885 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
1886 
1887 	if (dev->driver)
1888 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
1889 
1890 	/* Add common DT information about the device */
1891 	of_device_uevent(dev, env);
1892 
1893 	/* have the bus specific function add its stuff */
1894 	if (dev->bus && dev->bus->uevent) {
1895 		retval = dev->bus->uevent(dev, env);
1896 		if (retval)
1897 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
1898 				 dev_name(dev), __func__, retval);
1899 	}
1900 
1901 	/* have the class specific function add its stuff */
1902 	if (dev->class && dev->class->dev_uevent) {
1903 		retval = dev->class->dev_uevent(dev, env);
1904 		if (retval)
1905 			pr_debug("device: '%s': %s: class uevent() "
1906 				 "returned %d\n", dev_name(dev),
1907 				 __func__, retval);
1908 	}
1909 
1910 	/* have the device type specific function add its stuff */
1911 	if (dev->type && dev->type->uevent) {
1912 		retval = dev->type->uevent(dev, env);
1913 		if (retval)
1914 			pr_debug("device: '%s': %s: dev_type uevent() "
1915 				 "returned %d\n", dev_name(dev),
1916 				 __func__, retval);
1917 	}
1918 
1919 	return retval;
1920 }
1921 
1922 static const struct kset_uevent_ops device_uevent_ops = {
1923 	.filter =	dev_uevent_filter,
1924 	.name =		dev_uevent_name,
1925 	.uevent =	dev_uevent,
1926 };
1927 
1928 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
1929 			   char *buf)
1930 {
1931 	struct kobject *top_kobj;
1932 	struct kset *kset;
1933 	struct kobj_uevent_env *env = NULL;
1934 	int i;
1935 	size_t count = 0;
1936 	int retval;
1937 
1938 	/* search the kset, the device belongs to */
1939 	top_kobj = &dev->kobj;
1940 	while (!top_kobj->kset && top_kobj->parent)
1941 		top_kobj = top_kobj->parent;
1942 	if (!top_kobj->kset)
1943 		goto out;
1944 
1945 	kset = top_kobj->kset;
1946 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
1947 		goto out;
1948 
1949 	/* respect filter */
1950 	if (kset->uevent_ops && kset->uevent_ops->filter)
1951 		if (!kset->uevent_ops->filter(kset, &dev->kobj))
1952 			goto out;
1953 
1954 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1955 	if (!env)
1956 		return -ENOMEM;
1957 
1958 	/* let the kset specific function add its keys */
1959 	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
1960 	if (retval)
1961 		goto out;
1962 
1963 	/* copy keys to file */
1964 	for (i = 0; i < env->envp_idx; i++)
1965 		count += sprintf(&buf[count], "%s\n", env->envp[i]);
1966 out:
1967 	kfree(env);
1968 	return count;
1969 }
1970 
1971 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
1972 			    const char *buf, size_t count)
1973 {
1974 	int rc;
1975 
1976 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
1977 
1978 	if (rc) {
1979 		dev_err(dev, "uevent: failed to send synthetic uevent\n");
1980 		return rc;
1981 	}
1982 
1983 	return count;
1984 }
1985 static DEVICE_ATTR_RW(uevent);
1986 
1987 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1988 			   char *buf)
1989 {
1990 	bool val;
1991 
1992 	device_lock(dev);
1993 	val = !dev->offline;
1994 	device_unlock(dev);
1995 	return sprintf(buf, "%u\n", val);
1996 }
1997 
1998 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1999 			    const char *buf, size_t count)
2000 {
2001 	bool val;
2002 	int ret;
2003 
2004 	ret = strtobool(buf, &val);
2005 	if (ret < 0)
2006 		return ret;
2007 
2008 	ret = lock_device_hotplug_sysfs();
2009 	if (ret)
2010 		return ret;
2011 
2012 	ret = val ? device_online(dev) : device_offline(dev);
2013 	unlock_device_hotplug();
2014 	return ret < 0 ? ret : count;
2015 }
2016 static DEVICE_ATTR_RW(online);
2017 
2018 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2019 {
2020 	return sysfs_create_groups(&dev->kobj, groups);
2021 }
2022 EXPORT_SYMBOL_GPL(device_add_groups);
2023 
2024 void device_remove_groups(struct device *dev,
2025 			  const struct attribute_group **groups)
2026 {
2027 	sysfs_remove_groups(&dev->kobj, groups);
2028 }
2029 EXPORT_SYMBOL_GPL(device_remove_groups);
2030 
2031 union device_attr_group_devres {
2032 	const struct attribute_group *group;
2033 	const struct attribute_group **groups;
2034 };
2035 
2036 static int devm_attr_group_match(struct device *dev, void *res, void *data)
2037 {
2038 	return ((union device_attr_group_devres *)res)->group == data;
2039 }
2040 
2041 static void devm_attr_group_remove(struct device *dev, void *res)
2042 {
2043 	union device_attr_group_devres *devres = res;
2044 	const struct attribute_group *group = devres->group;
2045 
2046 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2047 	sysfs_remove_group(&dev->kobj, group);
2048 }
2049 
2050 static void devm_attr_groups_remove(struct device *dev, void *res)
2051 {
2052 	union device_attr_group_devres *devres = res;
2053 	const struct attribute_group **groups = devres->groups;
2054 
2055 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2056 	sysfs_remove_groups(&dev->kobj, groups);
2057 }
2058 
2059 /**
2060  * devm_device_add_group - given a device, create a managed attribute group
2061  * @dev:	The device to create the group for
2062  * @grp:	The attribute group to create
2063  *
2064  * This function creates a group for the first time.  It will explicitly
2065  * warn and error if any of the attribute files being created already exist.
2066  *
2067  * Returns 0 on success or error code on failure.
2068  */
2069 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2070 {
2071 	union device_attr_group_devres *devres;
2072 	int error;
2073 
2074 	devres = devres_alloc(devm_attr_group_remove,
2075 			      sizeof(*devres), GFP_KERNEL);
2076 	if (!devres)
2077 		return -ENOMEM;
2078 
2079 	error = sysfs_create_group(&dev->kobj, grp);
2080 	if (error) {
2081 		devres_free(devres);
2082 		return error;
2083 	}
2084 
2085 	devres->group = grp;
2086 	devres_add(dev, devres);
2087 	return 0;
2088 }
2089 EXPORT_SYMBOL_GPL(devm_device_add_group);
2090 
2091 /**
2092  * devm_device_remove_group: remove a managed group from a device
2093  * @dev:	device to remove the group from
2094  * @grp:	group to remove
2095  *
2096  * This function removes a group of attributes from a device. The attributes
2097  * previously have to have been created for this group, otherwise it will fail.
2098  */
2099 void devm_device_remove_group(struct device *dev,
2100 			      const struct attribute_group *grp)
2101 {
2102 	WARN_ON(devres_release(dev, devm_attr_group_remove,
2103 			       devm_attr_group_match,
2104 			       /* cast away const */ (void *)grp));
2105 }
2106 EXPORT_SYMBOL_GPL(devm_device_remove_group);
2107 
2108 /**
2109  * devm_device_add_groups - create a bunch of managed attribute groups
2110  * @dev:	The device to create the group for
2111  * @groups:	The attribute groups to create, NULL terminated
2112  *
2113  * This function creates a bunch of managed attribute groups.  If an error
2114  * occurs when creating a group, all previously created groups will be
2115  * removed, unwinding everything back to the original state when this
2116  * function was called.  It will explicitly warn and error if any of the
2117  * attribute files being created already exist.
2118  *
2119  * Returns 0 on success or error code from sysfs_create_group on failure.
2120  */
2121 int devm_device_add_groups(struct device *dev,
2122 			   const struct attribute_group **groups)
2123 {
2124 	union device_attr_group_devres *devres;
2125 	int error;
2126 
2127 	devres = devres_alloc(devm_attr_groups_remove,
2128 			      sizeof(*devres), GFP_KERNEL);
2129 	if (!devres)
2130 		return -ENOMEM;
2131 
2132 	error = sysfs_create_groups(&dev->kobj, groups);
2133 	if (error) {
2134 		devres_free(devres);
2135 		return error;
2136 	}
2137 
2138 	devres->groups = groups;
2139 	devres_add(dev, devres);
2140 	return 0;
2141 }
2142 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2143 
2144 /**
2145  * devm_device_remove_groups - remove a list of managed groups
2146  *
2147  * @dev:	The device for the groups to be removed from
2148  * @groups:	NULL terminated list of groups to be removed
2149  *
2150  * If groups is not NULL, remove the specified groups from the device.
2151  */
2152 void devm_device_remove_groups(struct device *dev,
2153 			       const struct attribute_group **groups)
2154 {
2155 	WARN_ON(devres_release(dev, devm_attr_groups_remove,
2156 			       devm_attr_group_match,
2157 			       /* cast away const */ (void *)groups));
2158 }
2159 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2160 
2161 static int device_add_attrs(struct device *dev)
2162 {
2163 	struct class *class = dev->class;
2164 	const struct device_type *type = dev->type;
2165 	int error;
2166 
2167 	if (class) {
2168 		error = device_add_groups(dev, class->dev_groups);
2169 		if (error)
2170 			return error;
2171 	}
2172 
2173 	if (type) {
2174 		error = device_add_groups(dev, type->groups);
2175 		if (error)
2176 			goto err_remove_class_groups;
2177 	}
2178 
2179 	error = device_add_groups(dev, dev->groups);
2180 	if (error)
2181 		goto err_remove_type_groups;
2182 
2183 	if (device_supports_offline(dev) && !dev->offline_disabled) {
2184 		error = device_create_file(dev, &dev_attr_online);
2185 		if (error)
2186 			goto err_remove_dev_groups;
2187 	}
2188 
2189 	if (fw_devlink_flags && !fw_devlink_is_permissive()) {
2190 		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2191 		if (error)
2192 			goto err_remove_dev_online;
2193 	}
2194 
2195 	return 0;
2196 
2197  err_remove_dev_online:
2198 	device_remove_file(dev, &dev_attr_online);
2199  err_remove_dev_groups:
2200 	device_remove_groups(dev, dev->groups);
2201  err_remove_type_groups:
2202 	if (type)
2203 		device_remove_groups(dev, type->groups);
2204  err_remove_class_groups:
2205 	if (class)
2206 		device_remove_groups(dev, class->dev_groups);
2207 
2208 	return error;
2209 }
2210 
2211 static void device_remove_attrs(struct device *dev)
2212 {
2213 	struct class *class = dev->class;
2214 	const struct device_type *type = dev->type;
2215 
2216 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2217 	device_remove_file(dev, &dev_attr_online);
2218 	device_remove_groups(dev, dev->groups);
2219 
2220 	if (type)
2221 		device_remove_groups(dev, type->groups);
2222 
2223 	if (class)
2224 		device_remove_groups(dev, class->dev_groups);
2225 }
2226 
2227 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2228 			char *buf)
2229 {
2230 	return print_dev_t(buf, dev->devt);
2231 }
2232 static DEVICE_ATTR_RO(dev);
2233 
2234 /* /sys/devices/ */
2235 struct kset *devices_kset;
2236 
2237 /**
2238  * devices_kset_move_before - Move device in the devices_kset's list.
2239  * @deva: Device to move.
2240  * @devb: Device @deva should come before.
2241  */
2242 static void devices_kset_move_before(struct device *deva, struct device *devb)
2243 {
2244 	if (!devices_kset)
2245 		return;
2246 	pr_debug("devices_kset: Moving %s before %s\n",
2247 		 dev_name(deva), dev_name(devb));
2248 	spin_lock(&devices_kset->list_lock);
2249 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2250 	spin_unlock(&devices_kset->list_lock);
2251 }
2252 
2253 /**
2254  * devices_kset_move_after - Move device in the devices_kset's list.
2255  * @deva: Device to move
2256  * @devb: Device @deva should come after.
2257  */
2258 static void devices_kset_move_after(struct device *deva, struct device *devb)
2259 {
2260 	if (!devices_kset)
2261 		return;
2262 	pr_debug("devices_kset: Moving %s after %s\n",
2263 		 dev_name(deva), dev_name(devb));
2264 	spin_lock(&devices_kset->list_lock);
2265 	list_move(&deva->kobj.entry, &devb->kobj.entry);
2266 	spin_unlock(&devices_kset->list_lock);
2267 }
2268 
2269 /**
2270  * devices_kset_move_last - move the device to the end of devices_kset's list.
2271  * @dev: device to move
2272  */
2273 void devices_kset_move_last(struct device *dev)
2274 {
2275 	if (!devices_kset)
2276 		return;
2277 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2278 	spin_lock(&devices_kset->list_lock);
2279 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
2280 	spin_unlock(&devices_kset->list_lock);
2281 }
2282 
2283 /**
2284  * device_create_file - create sysfs attribute file for device.
2285  * @dev: device.
2286  * @attr: device attribute descriptor.
2287  */
2288 int device_create_file(struct device *dev,
2289 		       const struct device_attribute *attr)
2290 {
2291 	int error = 0;
2292 
2293 	if (dev) {
2294 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2295 			"Attribute %s: write permission without 'store'\n",
2296 			attr->attr.name);
2297 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2298 			"Attribute %s: read permission without 'show'\n",
2299 			attr->attr.name);
2300 		error = sysfs_create_file(&dev->kobj, &attr->attr);
2301 	}
2302 
2303 	return error;
2304 }
2305 EXPORT_SYMBOL_GPL(device_create_file);
2306 
2307 /**
2308  * device_remove_file - remove sysfs attribute file.
2309  * @dev: device.
2310  * @attr: device attribute descriptor.
2311  */
2312 void device_remove_file(struct device *dev,
2313 			const struct device_attribute *attr)
2314 {
2315 	if (dev)
2316 		sysfs_remove_file(&dev->kobj, &attr->attr);
2317 }
2318 EXPORT_SYMBOL_GPL(device_remove_file);
2319 
2320 /**
2321  * device_remove_file_self - remove sysfs attribute file from its own method.
2322  * @dev: device.
2323  * @attr: device attribute descriptor.
2324  *
2325  * See kernfs_remove_self() for details.
2326  */
2327 bool device_remove_file_self(struct device *dev,
2328 			     const struct device_attribute *attr)
2329 {
2330 	if (dev)
2331 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2332 	else
2333 		return false;
2334 }
2335 EXPORT_SYMBOL_GPL(device_remove_file_self);
2336 
2337 /**
2338  * device_create_bin_file - create sysfs binary attribute file for device.
2339  * @dev: device.
2340  * @attr: device binary attribute descriptor.
2341  */
2342 int device_create_bin_file(struct device *dev,
2343 			   const struct bin_attribute *attr)
2344 {
2345 	int error = -EINVAL;
2346 	if (dev)
2347 		error = sysfs_create_bin_file(&dev->kobj, attr);
2348 	return error;
2349 }
2350 EXPORT_SYMBOL_GPL(device_create_bin_file);
2351 
2352 /**
2353  * device_remove_bin_file - remove sysfs binary attribute file
2354  * @dev: device.
2355  * @attr: device binary attribute descriptor.
2356  */
2357 void device_remove_bin_file(struct device *dev,
2358 			    const struct bin_attribute *attr)
2359 {
2360 	if (dev)
2361 		sysfs_remove_bin_file(&dev->kobj, attr);
2362 }
2363 EXPORT_SYMBOL_GPL(device_remove_bin_file);
2364 
2365 static void klist_children_get(struct klist_node *n)
2366 {
2367 	struct device_private *p = to_device_private_parent(n);
2368 	struct device *dev = p->device;
2369 
2370 	get_device(dev);
2371 }
2372 
2373 static void klist_children_put(struct klist_node *n)
2374 {
2375 	struct device_private *p = to_device_private_parent(n);
2376 	struct device *dev = p->device;
2377 
2378 	put_device(dev);
2379 }
2380 
2381 /**
2382  * device_initialize - init device structure.
2383  * @dev: device.
2384  *
2385  * This prepares the device for use by other layers by initializing
2386  * its fields.
2387  * It is the first half of device_register(), if called by
2388  * that function, though it can also be called separately, so one
2389  * may use @dev's fields. In particular, get_device()/put_device()
2390  * may be used for reference counting of @dev after calling this
2391  * function.
2392  *
2393  * All fields in @dev must be initialized by the caller to 0, except
2394  * for those explicitly set to some other value.  The simplest
2395  * approach is to use kzalloc() to allocate the structure containing
2396  * @dev.
2397  *
2398  * NOTE: Use put_device() to give up your reference instead of freeing
2399  * @dev directly once you have called this function.
2400  */
2401 void device_initialize(struct device *dev)
2402 {
2403 	dev->kobj.kset = devices_kset;
2404 	kobject_init(&dev->kobj, &device_ktype);
2405 	INIT_LIST_HEAD(&dev->dma_pools);
2406 	mutex_init(&dev->mutex);
2407 #ifdef CONFIG_PROVE_LOCKING
2408 	mutex_init(&dev->lockdep_mutex);
2409 #endif
2410 	lockdep_set_novalidate_class(&dev->mutex);
2411 	spin_lock_init(&dev->devres_lock);
2412 	INIT_LIST_HEAD(&dev->devres_head);
2413 	device_pm_init(dev);
2414 	set_dev_node(dev, -1);
2415 #ifdef CONFIG_GENERIC_MSI_IRQ
2416 	INIT_LIST_HEAD(&dev->msi_list);
2417 #endif
2418 	INIT_LIST_HEAD(&dev->links.consumers);
2419 	INIT_LIST_HEAD(&dev->links.suppliers);
2420 	INIT_LIST_HEAD(&dev->links.needs_suppliers);
2421 	INIT_LIST_HEAD(&dev->links.defer_hook);
2422 	dev->links.status = DL_DEV_NO_DRIVER;
2423 }
2424 EXPORT_SYMBOL_GPL(device_initialize);
2425 
2426 struct kobject *virtual_device_parent(struct device *dev)
2427 {
2428 	static struct kobject *virtual_dir = NULL;
2429 
2430 	if (!virtual_dir)
2431 		virtual_dir = kobject_create_and_add("virtual",
2432 						     &devices_kset->kobj);
2433 
2434 	return virtual_dir;
2435 }
2436 
2437 struct class_dir {
2438 	struct kobject kobj;
2439 	struct class *class;
2440 };
2441 
2442 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2443 
2444 static void class_dir_release(struct kobject *kobj)
2445 {
2446 	struct class_dir *dir = to_class_dir(kobj);
2447 	kfree(dir);
2448 }
2449 
2450 static const
2451 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2452 {
2453 	struct class_dir *dir = to_class_dir(kobj);
2454 	return dir->class->ns_type;
2455 }
2456 
2457 static struct kobj_type class_dir_ktype = {
2458 	.release	= class_dir_release,
2459 	.sysfs_ops	= &kobj_sysfs_ops,
2460 	.child_ns_type	= class_dir_child_ns_type
2461 };
2462 
2463 static struct kobject *
2464 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2465 {
2466 	struct class_dir *dir;
2467 	int retval;
2468 
2469 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2470 	if (!dir)
2471 		return ERR_PTR(-ENOMEM);
2472 
2473 	dir->class = class;
2474 	kobject_init(&dir->kobj, &class_dir_ktype);
2475 
2476 	dir->kobj.kset = &class->p->glue_dirs;
2477 
2478 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2479 	if (retval < 0) {
2480 		kobject_put(&dir->kobj);
2481 		return ERR_PTR(retval);
2482 	}
2483 	return &dir->kobj;
2484 }
2485 
2486 static DEFINE_MUTEX(gdp_mutex);
2487 
2488 static struct kobject *get_device_parent(struct device *dev,
2489 					 struct device *parent)
2490 {
2491 	if (dev->class) {
2492 		struct kobject *kobj = NULL;
2493 		struct kobject *parent_kobj;
2494 		struct kobject *k;
2495 
2496 #ifdef CONFIG_BLOCK
2497 		/* block disks show up in /sys/block */
2498 		if (sysfs_deprecated && dev->class == &block_class) {
2499 			if (parent && parent->class == &block_class)
2500 				return &parent->kobj;
2501 			return &block_class.p->subsys.kobj;
2502 		}
2503 #endif
2504 
2505 		/*
2506 		 * If we have no parent, we live in "virtual".
2507 		 * Class-devices with a non class-device as parent, live
2508 		 * in a "glue" directory to prevent namespace collisions.
2509 		 */
2510 		if (parent == NULL)
2511 			parent_kobj = virtual_device_parent(dev);
2512 		else if (parent->class && !dev->class->ns_type)
2513 			return &parent->kobj;
2514 		else
2515 			parent_kobj = &parent->kobj;
2516 
2517 		mutex_lock(&gdp_mutex);
2518 
2519 		/* find our class-directory at the parent and reference it */
2520 		spin_lock(&dev->class->p->glue_dirs.list_lock);
2521 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2522 			if (k->parent == parent_kobj) {
2523 				kobj = kobject_get(k);
2524 				break;
2525 			}
2526 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
2527 		if (kobj) {
2528 			mutex_unlock(&gdp_mutex);
2529 			return kobj;
2530 		}
2531 
2532 		/* or create a new class-directory at the parent device */
2533 		k = class_dir_create_and_add(dev->class, parent_kobj);
2534 		/* do not emit an uevent for this simple "glue" directory */
2535 		mutex_unlock(&gdp_mutex);
2536 		return k;
2537 	}
2538 
2539 	/* subsystems can specify a default root directory for their devices */
2540 	if (!parent && dev->bus && dev->bus->dev_root)
2541 		return &dev->bus->dev_root->kobj;
2542 
2543 	if (parent)
2544 		return &parent->kobj;
2545 	return NULL;
2546 }
2547 
2548 static inline bool live_in_glue_dir(struct kobject *kobj,
2549 				    struct device *dev)
2550 {
2551 	if (!kobj || !dev->class ||
2552 	    kobj->kset != &dev->class->p->glue_dirs)
2553 		return false;
2554 	return true;
2555 }
2556 
2557 static inline struct kobject *get_glue_dir(struct device *dev)
2558 {
2559 	return dev->kobj.parent;
2560 }
2561 
2562 /*
2563  * make sure cleaning up dir as the last step, we need to make
2564  * sure .release handler of kobject is run with holding the
2565  * global lock
2566  */
2567 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
2568 {
2569 	unsigned int ref;
2570 
2571 	/* see if we live in a "glue" directory */
2572 	if (!live_in_glue_dir(glue_dir, dev))
2573 		return;
2574 
2575 	mutex_lock(&gdp_mutex);
2576 	/**
2577 	 * There is a race condition between removing glue directory
2578 	 * and adding a new device under the glue directory.
2579 	 *
2580 	 * CPU1:                                         CPU2:
2581 	 *
2582 	 * device_add()
2583 	 *   get_device_parent()
2584 	 *     class_dir_create_and_add()
2585 	 *       kobject_add_internal()
2586 	 *         create_dir()    // create glue_dir
2587 	 *
2588 	 *                                               device_add()
2589 	 *                                                 get_device_parent()
2590 	 *                                                   kobject_get() // get glue_dir
2591 	 *
2592 	 * device_del()
2593 	 *   cleanup_glue_dir()
2594 	 *     kobject_del(glue_dir)
2595 	 *
2596 	 *                                               kobject_add()
2597 	 *                                                 kobject_add_internal()
2598 	 *                                                   create_dir() // in glue_dir
2599 	 *                                                     sysfs_create_dir_ns()
2600 	 *                                                       kernfs_create_dir_ns(sd)
2601 	 *
2602 	 *       sysfs_remove_dir() // glue_dir->sd=NULL
2603 	 *       sysfs_put()        // free glue_dir->sd
2604 	 *
2605 	 *                                                         // sd is freed
2606 	 *                                                         kernfs_new_node(sd)
2607 	 *                                                           kernfs_get(glue_dir)
2608 	 *                                                           kernfs_add_one()
2609 	 *                                                           kernfs_put()
2610 	 *
2611 	 * Before CPU1 remove last child device under glue dir, if CPU2 add
2612 	 * a new device under glue dir, the glue_dir kobject reference count
2613 	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
2614 	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
2615 	 * and sysfs_put(). This result in glue_dir->sd is freed.
2616 	 *
2617 	 * Then the CPU2 will see a stale "empty" but still potentially used
2618 	 * glue dir around in kernfs_new_node().
2619 	 *
2620 	 * In order to avoid this happening, we also should make sure that
2621 	 * kernfs_node for glue_dir is released in CPU1 only when refcount
2622 	 * for glue_dir kobj is 1.
2623 	 */
2624 	ref = kref_read(&glue_dir->kref);
2625 	if (!kobject_has_children(glue_dir) && !--ref)
2626 		kobject_del(glue_dir);
2627 	kobject_put(glue_dir);
2628 	mutex_unlock(&gdp_mutex);
2629 }
2630 
2631 static int device_add_class_symlinks(struct device *dev)
2632 {
2633 	struct device_node *of_node = dev_of_node(dev);
2634 	int error;
2635 
2636 	if (of_node) {
2637 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
2638 		if (error)
2639 			dev_warn(dev, "Error %d creating of_node link\n",error);
2640 		/* An error here doesn't warrant bringing down the device */
2641 	}
2642 
2643 	if (!dev->class)
2644 		return 0;
2645 
2646 	error = sysfs_create_link(&dev->kobj,
2647 				  &dev->class->p->subsys.kobj,
2648 				  "subsystem");
2649 	if (error)
2650 		goto out_devnode;
2651 
2652 	if (dev->parent && device_is_not_partition(dev)) {
2653 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
2654 					  "device");
2655 		if (error)
2656 			goto out_subsys;
2657 	}
2658 
2659 #ifdef CONFIG_BLOCK
2660 	/* /sys/block has directories and does not need symlinks */
2661 	if (sysfs_deprecated && dev->class == &block_class)
2662 		return 0;
2663 #endif
2664 
2665 	/* link in the class directory pointing to the device */
2666 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
2667 				  &dev->kobj, dev_name(dev));
2668 	if (error)
2669 		goto out_device;
2670 
2671 	return 0;
2672 
2673 out_device:
2674 	sysfs_remove_link(&dev->kobj, "device");
2675 
2676 out_subsys:
2677 	sysfs_remove_link(&dev->kobj, "subsystem");
2678 out_devnode:
2679 	sysfs_remove_link(&dev->kobj, "of_node");
2680 	return error;
2681 }
2682 
2683 static void device_remove_class_symlinks(struct device *dev)
2684 {
2685 	if (dev_of_node(dev))
2686 		sysfs_remove_link(&dev->kobj, "of_node");
2687 
2688 	if (!dev->class)
2689 		return;
2690 
2691 	if (dev->parent && device_is_not_partition(dev))
2692 		sysfs_remove_link(&dev->kobj, "device");
2693 	sysfs_remove_link(&dev->kobj, "subsystem");
2694 #ifdef CONFIG_BLOCK
2695 	if (sysfs_deprecated && dev->class == &block_class)
2696 		return;
2697 #endif
2698 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
2699 }
2700 
2701 /**
2702  * dev_set_name - set a device name
2703  * @dev: device
2704  * @fmt: format string for the device's name
2705  */
2706 int dev_set_name(struct device *dev, const char *fmt, ...)
2707 {
2708 	va_list vargs;
2709 	int err;
2710 
2711 	va_start(vargs, fmt);
2712 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
2713 	va_end(vargs);
2714 	return err;
2715 }
2716 EXPORT_SYMBOL_GPL(dev_set_name);
2717 
2718 /**
2719  * device_to_dev_kobj - select a /sys/dev/ directory for the device
2720  * @dev: device
2721  *
2722  * By default we select char/ for new entries.  Setting class->dev_obj
2723  * to NULL prevents an entry from being created.  class->dev_kobj must
2724  * be set (or cleared) before any devices are registered to the class
2725  * otherwise device_create_sys_dev_entry() and
2726  * device_remove_sys_dev_entry() will disagree about the presence of
2727  * the link.
2728  */
2729 static struct kobject *device_to_dev_kobj(struct device *dev)
2730 {
2731 	struct kobject *kobj;
2732 
2733 	if (dev->class)
2734 		kobj = dev->class->dev_kobj;
2735 	else
2736 		kobj = sysfs_dev_char_kobj;
2737 
2738 	return kobj;
2739 }
2740 
2741 static int device_create_sys_dev_entry(struct device *dev)
2742 {
2743 	struct kobject *kobj = device_to_dev_kobj(dev);
2744 	int error = 0;
2745 	char devt_str[15];
2746 
2747 	if (kobj) {
2748 		format_dev_t(devt_str, dev->devt);
2749 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
2750 	}
2751 
2752 	return error;
2753 }
2754 
2755 static void device_remove_sys_dev_entry(struct device *dev)
2756 {
2757 	struct kobject *kobj = device_to_dev_kobj(dev);
2758 	char devt_str[15];
2759 
2760 	if (kobj) {
2761 		format_dev_t(devt_str, dev->devt);
2762 		sysfs_remove_link(kobj, devt_str);
2763 	}
2764 }
2765 
2766 static int device_private_init(struct device *dev)
2767 {
2768 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
2769 	if (!dev->p)
2770 		return -ENOMEM;
2771 	dev->p->device = dev;
2772 	klist_init(&dev->p->klist_children, klist_children_get,
2773 		   klist_children_put);
2774 	INIT_LIST_HEAD(&dev->p->deferred_probe);
2775 	return 0;
2776 }
2777 
2778 /**
2779  * device_add - add device to device hierarchy.
2780  * @dev: device.
2781  *
2782  * This is part 2 of device_register(), though may be called
2783  * separately _iff_ device_initialize() has been called separately.
2784  *
2785  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
2786  * to the global and sibling lists for the device, then
2787  * adds it to the other relevant subsystems of the driver model.
2788  *
2789  * Do not call this routine or device_register() more than once for
2790  * any device structure.  The driver model core is not designed to work
2791  * with devices that get unregistered and then spring back to life.
2792  * (Among other things, it's very hard to guarantee that all references
2793  * to the previous incarnation of @dev have been dropped.)  Allocate
2794  * and register a fresh new struct device instead.
2795  *
2796  * NOTE: _Never_ directly free @dev after calling this function, even
2797  * if it returned an error! Always use put_device() to give up your
2798  * reference instead.
2799  *
2800  * Rule of thumb is: if device_add() succeeds, you should call
2801  * device_del() when you want to get rid of it. If device_add() has
2802  * *not* succeeded, use *only* put_device() to drop the reference
2803  * count.
2804  */
2805 int device_add(struct device *dev)
2806 {
2807 	struct device *parent;
2808 	struct kobject *kobj;
2809 	struct class_interface *class_intf;
2810 	int error = -EINVAL;
2811 	struct kobject *glue_dir = NULL;
2812 
2813 	dev = get_device(dev);
2814 	if (!dev)
2815 		goto done;
2816 
2817 	if (!dev->p) {
2818 		error = device_private_init(dev);
2819 		if (error)
2820 			goto done;
2821 	}
2822 
2823 	/*
2824 	 * for statically allocated devices, which should all be converted
2825 	 * some day, we need to initialize the name. We prevent reading back
2826 	 * the name, and force the use of dev_name()
2827 	 */
2828 	if (dev->init_name) {
2829 		dev_set_name(dev, "%s", dev->init_name);
2830 		dev->init_name = NULL;
2831 	}
2832 
2833 	/* subsystems can specify simple device enumeration */
2834 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
2835 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
2836 
2837 	if (!dev_name(dev)) {
2838 		error = -EINVAL;
2839 		goto name_error;
2840 	}
2841 
2842 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2843 
2844 	parent = get_device(dev->parent);
2845 	kobj = get_device_parent(dev, parent);
2846 	if (IS_ERR(kobj)) {
2847 		error = PTR_ERR(kobj);
2848 		goto parent_error;
2849 	}
2850 	if (kobj)
2851 		dev->kobj.parent = kobj;
2852 
2853 	/* use parent numa_node */
2854 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
2855 		set_dev_node(dev, dev_to_node(parent));
2856 
2857 	/* first, register with generic layer. */
2858 	/* we require the name to be set before, and pass NULL */
2859 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
2860 	if (error) {
2861 		glue_dir = get_glue_dir(dev);
2862 		goto Error;
2863 	}
2864 
2865 	/* notify platform of device entry */
2866 	error = device_platform_notify(dev, KOBJ_ADD);
2867 	if (error)
2868 		goto platform_error;
2869 
2870 	error = device_create_file(dev, &dev_attr_uevent);
2871 	if (error)
2872 		goto attrError;
2873 
2874 	error = device_add_class_symlinks(dev);
2875 	if (error)
2876 		goto SymlinkError;
2877 	error = device_add_attrs(dev);
2878 	if (error)
2879 		goto AttrsError;
2880 	error = bus_add_device(dev);
2881 	if (error)
2882 		goto BusError;
2883 	error = dpm_sysfs_add(dev);
2884 	if (error)
2885 		goto DPMError;
2886 	device_pm_add(dev);
2887 
2888 	if (MAJOR(dev->devt)) {
2889 		error = device_create_file(dev, &dev_attr_dev);
2890 		if (error)
2891 			goto DevAttrError;
2892 
2893 		error = device_create_sys_dev_entry(dev);
2894 		if (error)
2895 			goto SysEntryError;
2896 
2897 		devtmpfs_create_node(dev);
2898 	}
2899 
2900 	/* Notify clients of device addition.  This call must come
2901 	 * after dpm_sysfs_add() and before kobject_uevent().
2902 	 */
2903 	if (dev->bus)
2904 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2905 					     BUS_NOTIFY_ADD_DEVICE, dev);
2906 
2907 	kobject_uevent(&dev->kobj, KOBJ_ADD);
2908 
2909 	/*
2910 	 * Check if any of the other devices (consumers) have been waiting for
2911 	 * this device (supplier) to be added so that they can create a device
2912 	 * link to it.
2913 	 *
2914 	 * This needs to happen after device_pm_add() because device_link_add()
2915 	 * requires the supplier be registered before it's called.
2916 	 *
2917 	 * But this also needs to happen before bus_probe_device() to make sure
2918 	 * waiting consumers can link to it before the driver is bound to the
2919 	 * device and the driver sync_state callback is called for this device.
2920 	 */
2921 	if (dev->fwnode && !dev->fwnode->dev) {
2922 		dev->fwnode->dev = dev;
2923 		fw_devlink_link_device(dev);
2924 	}
2925 
2926 	bus_probe_device(dev);
2927 	if (parent)
2928 		klist_add_tail(&dev->p->knode_parent,
2929 			       &parent->p->klist_children);
2930 
2931 	if (dev->class) {
2932 		mutex_lock(&dev->class->p->mutex);
2933 		/* tie the class to the device */
2934 		klist_add_tail(&dev->p->knode_class,
2935 			       &dev->class->p->klist_devices);
2936 
2937 		/* notify any interfaces that the device is here */
2938 		list_for_each_entry(class_intf,
2939 				    &dev->class->p->interfaces, node)
2940 			if (class_intf->add_dev)
2941 				class_intf->add_dev(dev, class_intf);
2942 		mutex_unlock(&dev->class->p->mutex);
2943 	}
2944 done:
2945 	put_device(dev);
2946 	return error;
2947  SysEntryError:
2948 	if (MAJOR(dev->devt))
2949 		device_remove_file(dev, &dev_attr_dev);
2950  DevAttrError:
2951 	device_pm_remove(dev);
2952 	dpm_sysfs_remove(dev);
2953  DPMError:
2954 	bus_remove_device(dev);
2955  BusError:
2956 	device_remove_attrs(dev);
2957  AttrsError:
2958 	device_remove_class_symlinks(dev);
2959  SymlinkError:
2960 	device_remove_file(dev, &dev_attr_uevent);
2961  attrError:
2962 	device_platform_notify(dev, KOBJ_REMOVE);
2963 platform_error:
2964 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2965 	glue_dir = get_glue_dir(dev);
2966 	kobject_del(&dev->kobj);
2967  Error:
2968 	cleanup_glue_dir(dev, glue_dir);
2969 parent_error:
2970 	put_device(parent);
2971 name_error:
2972 	kfree(dev->p);
2973 	dev->p = NULL;
2974 	goto done;
2975 }
2976 EXPORT_SYMBOL_GPL(device_add);
2977 
2978 /**
2979  * device_register - register a device with the system.
2980  * @dev: pointer to the device structure
2981  *
2982  * This happens in two clean steps - initialize the device
2983  * and add it to the system. The two steps can be called
2984  * separately, but this is the easiest and most common.
2985  * I.e. you should only call the two helpers separately if
2986  * have a clearly defined need to use and refcount the device
2987  * before it is added to the hierarchy.
2988  *
2989  * For more information, see the kerneldoc for device_initialize()
2990  * and device_add().
2991  *
2992  * NOTE: _Never_ directly free @dev after calling this function, even
2993  * if it returned an error! Always use put_device() to give up the
2994  * reference initialized in this function instead.
2995  */
2996 int device_register(struct device *dev)
2997 {
2998 	device_initialize(dev);
2999 	return device_add(dev);
3000 }
3001 EXPORT_SYMBOL_GPL(device_register);
3002 
3003 /**
3004  * get_device - increment reference count for device.
3005  * @dev: device.
3006  *
3007  * This simply forwards the call to kobject_get(), though
3008  * we do take care to provide for the case that we get a NULL
3009  * pointer passed in.
3010  */
3011 struct device *get_device(struct device *dev)
3012 {
3013 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3014 }
3015 EXPORT_SYMBOL_GPL(get_device);
3016 
3017 /**
3018  * put_device - decrement reference count.
3019  * @dev: device in question.
3020  */
3021 void put_device(struct device *dev)
3022 {
3023 	/* might_sleep(); */
3024 	if (dev)
3025 		kobject_put(&dev->kobj);
3026 }
3027 EXPORT_SYMBOL_GPL(put_device);
3028 
3029 bool kill_device(struct device *dev)
3030 {
3031 	/*
3032 	 * Require the device lock and set the "dead" flag to guarantee that
3033 	 * the update behavior is consistent with the other bitfields near
3034 	 * it and that we cannot have an asynchronous probe routine trying
3035 	 * to run while we are tearing out the bus/class/sysfs from
3036 	 * underneath the device.
3037 	 */
3038 	lockdep_assert_held(&dev->mutex);
3039 
3040 	if (dev->p->dead)
3041 		return false;
3042 	dev->p->dead = true;
3043 	return true;
3044 }
3045 EXPORT_SYMBOL_GPL(kill_device);
3046 
3047 /**
3048  * device_del - delete device from system.
3049  * @dev: device.
3050  *
3051  * This is the first part of the device unregistration
3052  * sequence. This removes the device from the lists we control
3053  * from here, has it removed from the other driver model
3054  * subsystems it was added to in device_add(), and removes it
3055  * from the kobject hierarchy.
3056  *
3057  * NOTE: this should be called manually _iff_ device_add() was
3058  * also called manually.
3059  */
3060 void device_del(struct device *dev)
3061 {
3062 	struct device *parent = dev->parent;
3063 	struct kobject *glue_dir = NULL;
3064 	struct class_interface *class_intf;
3065 
3066 	device_lock(dev);
3067 	kill_device(dev);
3068 	device_unlock(dev);
3069 
3070 	if (dev->fwnode && dev->fwnode->dev == dev)
3071 		dev->fwnode->dev = NULL;
3072 
3073 	/* Notify clients of device removal.  This call must come
3074 	 * before dpm_sysfs_remove().
3075 	 */
3076 	if (dev->bus)
3077 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3078 					     BUS_NOTIFY_DEL_DEVICE, dev);
3079 
3080 	dpm_sysfs_remove(dev);
3081 	if (parent)
3082 		klist_del(&dev->p->knode_parent);
3083 	if (MAJOR(dev->devt)) {
3084 		devtmpfs_delete_node(dev);
3085 		device_remove_sys_dev_entry(dev);
3086 		device_remove_file(dev, &dev_attr_dev);
3087 	}
3088 	if (dev->class) {
3089 		device_remove_class_symlinks(dev);
3090 
3091 		mutex_lock(&dev->class->p->mutex);
3092 		/* notify any interfaces that the device is now gone */
3093 		list_for_each_entry(class_intf,
3094 				    &dev->class->p->interfaces, node)
3095 			if (class_intf->remove_dev)
3096 				class_intf->remove_dev(dev, class_intf);
3097 		/* remove the device from the class list */
3098 		klist_del(&dev->p->knode_class);
3099 		mutex_unlock(&dev->class->p->mutex);
3100 	}
3101 	device_remove_file(dev, &dev_attr_uevent);
3102 	device_remove_attrs(dev);
3103 	bus_remove_device(dev);
3104 	device_pm_remove(dev);
3105 	driver_deferred_probe_del(dev);
3106 	device_platform_notify(dev, KOBJ_REMOVE);
3107 	device_remove_properties(dev);
3108 	device_links_purge(dev);
3109 
3110 	if (dev->bus)
3111 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3112 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
3113 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3114 	glue_dir = get_glue_dir(dev);
3115 	kobject_del(&dev->kobj);
3116 	cleanup_glue_dir(dev, glue_dir);
3117 	put_device(parent);
3118 }
3119 EXPORT_SYMBOL_GPL(device_del);
3120 
3121 /**
3122  * device_unregister - unregister device from system.
3123  * @dev: device going away.
3124  *
3125  * We do this in two parts, like we do device_register(). First,
3126  * we remove it from all the subsystems with device_del(), then
3127  * we decrement the reference count via put_device(). If that
3128  * is the final reference count, the device will be cleaned up
3129  * via device_release() above. Otherwise, the structure will
3130  * stick around until the final reference to the device is dropped.
3131  */
3132 void device_unregister(struct device *dev)
3133 {
3134 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3135 	device_del(dev);
3136 	put_device(dev);
3137 }
3138 EXPORT_SYMBOL_GPL(device_unregister);
3139 
3140 static struct device *prev_device(struct klist_iter *i)
3141 {
3142 	struct klist_node *n = klist_prev(i);
3143 	struct device *dev = NULL;
3144 	struct device_private *p;
3145 
3146 	if (n) {
3147 		p = to_device_private_parent(n);
3148 		dev = p->device;
3149 	}
3150 	return dev;
3151 }
3152 
3153 static struct device *next_device(struct klist_iter *i)
3154 {
3155 	struct klist_node *n = klist_next(i);
3156 	struct device *dev = NULL;
3157 	struct device_private *p;
3158 
3159 	if (n) {
3160 		p = to_device_private_parent(n);
3161 		dev = p->device;
3162 	}
3163 	return dev;
3164 }
3165 
3166 /**
3167  * device_get_devnode - path of device node file
3168  * @dev: device
3169  * @mode: returned file access mode
3170  * @uid: returned file owner
3171  * @gid: returned file group
3172  * @tmp: possibly allocated string
3173  *
3174  * Return the relative path of a possible device node.
3175  * Non-default names may need to allocate a memory to compose
3176  * a name. This memory is returned in tmp and needs to be
3177  * freed by the caller.
3178  */
3179 const char *device_get_devnode(struct device *dev,
3180 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3181 			       const char **tmp)
3182 {
3183 	char *s;
3184 
3185 	*tmp = NULL;
3186 
3187 	/* the device type may provide a specific name */
3188 	if (dev->type && dev->type->devnode)
3189 		*tmp = dev->type->devnode(dev, mode, uid, gid);
3190 	if (*tmp)
3191 		return *tmp;
3192 
3193 	/* the class may provide a specific name */
3194 	if (dev->class && dev->class->devnode)
3195 		*tmp = dev->class->devnode(dev, mode);
3196 	if (*tmp)
3197 		return *tmp;
3198 
3199 	/* return name without allocation, tmp == NULL */
3200 	if (strchr(dev_name(dev), '!') == NULL)
3201 		return dev_name(dev);
3202 
3203 	/* replace '!' in the name with '/' */
3204 	s = kstrdup(dev_name(dev), GFP_KERNEL);
3205 	if (!s)
3206 		return NULL;
3207 	strreplace(s, '!', '/');
3208 	return *tmp = s;
3209 }
3210 
3211 /**
3212  * device_for_each_child - device child iterator.
3213  * @parent: parent struct device.
3214  * @fn: function to be called for each device.
3215  * @data: data for the callback.
3216  *
3217  * Iterate over @parent's child devices, and call @fn for each,
3218  * passing it @data.
3219  *
3220  * We check the return of @fn each time. If it returns anything
3221  * other than 0, we break out and return that value.
3222  */
3223 int device_for_each_child(struct device *parent, void *data,
3224 			  int (*fn)(struct device *dev, void *data))
3225 {
3226 	struct klist_iter i;
3227 	struct device *child;
3228 	int error = 0;
3229 
3230 	if (!parent->p)
3231 		return 0;
3232 
3233 	klist_iter_init(&parent->p->klist_children, &i);
3234 	while (!error && (child = next_device(&i)))
3235 		error = fn(child, data);
3236 	klist_iter_exit(&i);
3237 	return error;
3238 }
3239 EXPORT_SYMBOL_GPL(device_for_each_child);
3240 
3241 /**
3242  * device_for_each_child_reverse - device child iterator in reversed order.
3243  * @parent: parent struct device.
3244  * @fn: function to be called for each device.
3245  * @data: data for the callback.
3246  *
3247  * Iterate over @parent's child devices, and call @fn for each,
3248  * passing it @data.
3249  *
3250  * We check the return of @fn each time. If it returns anything
3251  * other than 0, we break out and return that value.
3252  */
3253 int device_for_each_child_reverse(struct device *parent, void *data,
3254 				  int (*fn)(struct device *dev, void *data))
3255 {
3256 	struct klist_iter i;
3257 	struct device *child;
3258 	int error = 0;
3259 
3260 	if (!parent->p)
3261 		return 0;
3262 
3263 	klist_iter_init(&parent->p->klist_children, &i);
3264 	while ((child = prev_device(&i)) && !error)
3265 		error = fn(child, data);
3266 	klist_iter_exit(&i);
3267 	return error;
3268 }
3269 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3270 
3271 /**
3272  * device_find_child - device iterator for locating a particular device.
3273  * @parent: parent struct device
3274  * @match: Callback function to check device
3275  * @data: Data to pass to match function
3276  *
3277  * This is similar to the device_for_each_child() function above, but it
3278  * returns a reference to a device that is 'found' for later use, as
3279  * determined by the @match callback.
3280  *
3281  * The callback should return 0 if the device doesn't match and non-zero
3282  * if it does.  If the callback returns non-zero and a reference to the
3283  * current device can be obtained, this function will return to the caller
3284  * and not iterate over any more devices.
3285  *
3286  * NOTE: you will need to drop the reference with put_device() after use.
3287  */
3288 struct device *device_find_child(struct device *parent, void *data,
3289 				 int (*match)(struct device *dev, void *data))
3290 {
3291 	struct klist_iter i;
3292 	struct device *child;
3293 
3294 	if (!parent)
3295 		return NULL;
3296 
3297 	klist_iter_init(&parent->p->klist_children, &i);
3298 	while ((child = next_device(&i)))
3299 		if (match(child, data) && get_device(child))
3300 			break;
3301 	klist_iter_exit(&i);
3302 	return child;
3303 }
3304 EXPORT_SYMBOL_GPL(device_find_child);
3305 
3306 /**
3307  * device_find_child_by_name - device iterator for locating a child device.
3308  * @parent: parent struct device
3309  * @name: name of the child device
3310  *
3311  * This is similar to the device_find_child() function above, but it
3312  * returns a reference to a device that has the name @name.
3313  *
3314  * NOTE: you will need to drop the reference with put_device() after use.
3315  */
3316 struct device *device_find_child_by_name(struct device *parent,
3317 					 const char *name)
3318 {
3319 	struct klist_iter i;
3320 	struct device *child;
3321 
3322 	if (!parent)
3323 		return NULL;
3324 
3325 	klist_iter_init(&parent->p->klist_children, &i);
3326 	while ((child = next_device(&i)))
3327 		if (!strcmp(dev_name(child), name) && get_device(child))
3328 			break;
3329 	klist_iter_exit(&i);
3330 	return child;
3331 }
3332 EXPORT_SYMBOL_GPL(device_find_child_by_name);
3333 
3334 int __init devices_init(void)
3335 {
3336 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3337 	if (!devices_kset)
3338 		return -ENOMEM;
3339 	dev_kobj = kobject_create_and_add("dev", NULL);
3340 	if (!dev_kobj)
3341 		goto dev_kobj_err;
3342 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3343 	if (!sysfs_dev_block_kobj)
3344 		goto block_kobj_err;
3345 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3346 	if (!sysfs_dev_char_kobj)
3347 		goto char_kobj_err;
3348 
3349 	return 0;
3350 
3351  char_kobj_err:
3352 	kobject_put(sysfs_dev_block_kobj);
3353  block_kobj_err:
3354 	kobject_put(dev_kobj);
3355  dev_kobj_err:
3356 	kset_unregister(devices_kset);
3357 	return -ENOMEM;
3358 }
3359 
3360 static int device_check_offline(struct device *dev, void *not_used)
3361 {
3362 	int ret;
3363 
3364 	ret = device_for_each_child(dev, NULL, device_check_offline);
3365 	if (ret)
3366 		return ret;
3367 
3368 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3369 }
3370 
3371 /**
3372  * device_offline - Prepare the device for hot-removal.
3373  * @dev: Device to be put offline.
3374  *
3375  * Execute the device bus type's .offline() callback, if present, to prepare
3376  * the device for a subsequent hot-removal.  If that succeeds, the device must
3377  * not be used until either it is removed or its bus type's .online() callback
3378  * is executed.
3379  *
3380  * Call under device_hotplug_lock.
3381  */
3382 int device_offline(struct device *dev)
3383 {
3384 	int ret;
3385 
3386 	if (dev->offline_disabled)
3387 		return -EPERM;
3388 
3389 	ret = device_for_each_child(dev, NULL, device_check_offline);
3390 	if (ret)
3391 		return ret;
3392 
3393 	device_lock(dev);
3394 	if (device_supports_offline(dev)) {
3395 		if (dev->offline) {
3396 			ret = 1;
3397 		} else {
3398 			ret = dev->bus->offline(dev);
3399 			if (!ret) {
3400 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3401 				dev->offline = true;
3402 			}
3403 		}
3404 	}
3405 	device_unlock(dev);
3406 
3407 	return ret;
3408 }
3409 
3410 /**
3411  * device_online - Put the device back online after successful device_offline().
3412  * @dev: Device to be put back online.
3413  *
3414  * If device_offline() has been successfully executed for @dev, but the device
3415  * has not been removed subsequently, execute its bus type's .online() callback
3416  * to indicate that the device can be used again.
3417  *
3418  * Call under device_hotplug_lock.
3419  */
3420 int device_online(struct device *dev)
3421 {
3422 	int ret = 0;
3423 
3424 	device_lock(dev);
3425 	if (device_supports_offline(dev)) {
3426 		if (dev->offline) {
3427 			ret = dev->bus->online(dev);
3428 			if (!ret) {
3429 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3430 				dev->offline = false;
3431 			}
3432 		} else {
3433 			ret = 1;
3434 		}
3435 	}
3436 	device_unlock(dev);
3437 
3438 	return ret;
3439 }
3440 
3441 struct root_device {
3442 	struct device dev;
3443 	struct module *owner;
3444 };
3445 
3446 static inline struct root_device *to_root_device(struct device *d)
3447 {
3448 	return container_of(d, struct root_device, dev);
3449 }
3450 
3451 static void root_device_release(struct device *dev)
3452 {
3453 	kfree(to_root_device(dev));
3454 }
3455 
3456 /**
3457  * __root_device_register - allocate and register a root device
3458  * @name: root device name
3459  * @owner: owner module of the root device, usually THIS_MODULE
3460  *
3461  * This function allocates a root device and registers it
3462  * using device_register(). In order to free the returned
3463  * device, use root_device_unregister().
3464  *
3465  * Root devices are dummy devices which allow other devices
3466  * to be grouped under /sys/devices. Use this function to
3467  * allocate a root device and then use it as the parent of
3468  * any device which should appear under /sys/devices/{name}
3469  *
3470  * The /sys/devices/{name} directory will also contain a
3471  * 'module' symlink which points to the @owner directory
3472  * in sysfs.
3473  *
3474  * Returns &struct device pointer on success, or ERR_PTR() on error.
3475  *
3476  * Note: You probably want to use root_device_register().
3477  */
3478 struct device *__root_device_register(const char *name, struct module *owner)
3479 {
3480 	struct root_device *root;
3481 	int err = -ENOMEM;
3482 
3483 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3484 	if (!root)
3485 		return ERR_PTR(err);
3486 
3487 	err = dev_set_name(&root->dev, "%s", name);
3488 	if (err) {
3489 		kfree(root);
3490 		return ERR_PTR(err);
3491 	}
3492 
3493 	root->dev.release = root_device_release;
3494 
3495 	err = device_register(&root->dev);
3496 	if (err) {
3497 		put_device(&root->dev);
3498 		return ERR_PTR(err);
3499 	}
3500 
3501 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
3502 	if (owner) {
3503 		struct module_kobject *mk = &owner->mkobj;
3504 
3505 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3506 		if (err) {
3507 			device_unregister(&root->dev);
3508 			return ERR_PTR(err);
3509 		}
3510 		root->owner = owner;
3511 	}
3512 #endif
3513 
3514 	return &root->dev;
3515 }
3516 EXPORT_SYMBOL_GPL(__root_device_register);
3517 
3518 /**
3519  * root_device_unregister - unregister and free a root device
3520  * @dev: device going away
3521  *
3522  * This function unregisters and cleans up a device that was created by
3523  * root_device_register().
3524  */
3525 void root_device_unregister(struct device *dev)
3526 {
3527 	struct root_device *root = to_root_device(dev);
3528 
3529 	if (root->owner)
3530 		sysfs_remove_link(&root->dev.kobj, "module");
3531 
3532 	device_unregister(dev);
3533 }
3534 EXPORT_SYMBOL_GPL(root_device_unregister);
3535 
3536 
3537 static void device_create_release(struct device *dev)
3538 {
3539 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3540 	kfree(dev);
3541 }
3542 
3543 static __printf(6, 0) struct device *
3544 device_create_groups_vargs(struct class *class, struct device *parent,
3545 			   dev_t devt, void *drvdata,
3546 			   const struct attribute_group **groups,
3547 			   const char *fmt, va_list args)
3548 {
3549 	struct device *dev = NULL;
3550 	int retval = -ENODEV;
3551 
3552 	if (class == NULL || IS_ERR(class))
3553 		goto error;
3554 
3555 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3556 	if (!dev) {
3557 		retval = -ENOMEM;
3558 		goto error;
3559 	}
3560 
3561 	device_initialize(dev);
3562 	dev->devt = devt;
3563 	dev->class = class;
3564 	dev->parent = parent;
3565 	dev->groups = groups;
3566 	dev->release = device_create_release;
3567 	dev_set_drvdata(dev, drvdata);
3568 
3569 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
3570 	if (retval)
3571 		goto error;
3572 
3573 	retval = device_add(dev);
3574 	if (retval)
3575 		goto error;
3576 
3577 	return dev;
3578 
3579 error:
3580 	put_device(dev);
3581 	return ERR_PTR(retval);
3582 }
3583 
3584 /**
3585  * device_create - creates a device and registers it with sysfs
3586  * @class: pointer to the struct class that this device should be registered to
3587  * @parent: pointer to the parent struct device of this new device, if any
3588  * @devt: the dev_t for the char device to be added
3589  * @drvdata: the data to be added to the device for callbacks
3590  * @fmt: string for the device's name
3591  *
3592  * This function can be used by char device classes.  A struct device
3593  * will be created in sysfs, registered to the specified class.
3594  *
3595  * A "dev" file will be created, showing the dev_t for the device, if
3596  * the dev_t is not 0,0.
3597  * If a pointer to a parent struct device is passed in, the newly created
3598  * struct device will be a child of that device in sysfs.
3599  * The pointer to the struct device will be returned from the call.
3600  * Any further sysfs files that might be required can be created using this
3601  * pointer.
3602  *
3603  * Returns &struct device pointer on success, or ERR_PTR() on error.
3604  *
3605  * Note: the struct class passed to this function must have previously
3606  * been created with a call to class_create().
3607  */
3608 struct device *device_create(struct class *class, struct device *parent,
3609 			     dev_t devt, void *drvdata, const char *fmt, ...)
3610 {
3611 	va_list vargs;
3612 	struct device *dev;
3613 
3614 	va_start(vargs, fmt);
3615 	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
3616 					  fmt, vargs);
3617 	va_end(vargs);
3618 	return dev;
3619 }
3620 EXPORT_SYMBOL_GPL(device_create);
3621 
3622 /**
3623  * device_create_with_groups - creates a device and registers it with sysfs
3624  * @class: pointer to the struct class that this device should be registered to
3625  * @parent: pointer to the parent struct device of this new device, if any
3626  * @devt: the dev_t for the char device to be added
3627  * @drvdata: the data to be added to the device for callbacks
3628  * @groups: NULL-terminated list of attribute groups to be created
3629  * @fmt: string for the device's name
3630  *
3631  * This function can be used by char device classes.  A struct device
3632  * will be created in sysfs, registered to the specified class.
3633  * Additional attributes specified in the groups parameter will also
3634  * be created automatically.
3635  *
3636  * A "dev" file will be created, showing the dev_t for the device, if
3637  * the dev_t is not 0,0.
3638  * If a pointer to a parent struct device is passed in, the newly created
3639  * struct device will be a child of that device in sysfs.
3640  * The pointer to the struct device will be returned from the call.
3641  * Any further sysfs files that might be required can be created using this
3642  * pointer.
3643  *
3644  * Returns &struct device pointer on success, or ERR_PTR() on error.
3645  *
3646  * Note: the struct class passed to this function must have previously
3647  * been created with a call to class_create().
3648  */
3649 struct device *device_create_with_groups(struct class *class,
3650 					 struct device *parent, dev_t devt,
3651 					 void *drvdata,
3652 					 const struct attribute_group **groups,
3653 					 const char *fmt, ...)
3654 {
3655 	va_list vargs;
3656 	struct device *dev;
3657 
3658 	va_start(vargs, fmt);
3659 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
3660 					 fmt, vargs);
3661 	va_end(vargs);
3662 	return dev;
3663 }
3664 EXPORT_SYMBOL_GPL(device_create_with_groups);
3665 
3666 /**
3667  * device_destroy - removes a device that was created with device_create()
3668  * @class: pointer to the struct class that this device was registered with
3669  * @devt: the dev_t of the device that was previously registered
3670  *
3671  * This call unregisters and cleans up a device that was created with a
3672  * call to device_create().
3673  */
3674 void device_destroy(struct class *class, dev_t devt)
3675 {
3676 	struct device *dev;
3677 
3678 	dev = class_find_device_by_devt(class, devt);
3679 	if (dev) {
3680 		put_device(dev);
3681 		device_unregister(dev);
3682 	}
3683 }
3684 EXPORT_SYMBOL_GPL(device_destroy);
3685 
3686 /**
3687  * device_rename - renames a device
3688  * @dev: the pointer to the struct device to be renamed
3689  * @new_name: the new name of the device
3690  *
3691  * It is the responsibility of the caller to provide mutual
3692  * exclusion between two different calls of device_rename
3693  * on the same device to ensure that new_name is valid and
3694  * won't conflict with other devices.
3695  *
3696  * Note: Don't call this function.  Currently, the networking layer calls this
3697  * function, but that will change.  The following text from Kay Sievers offers
3698  * some insight:
3699  *
3700  * Renaming devices is racy at many levels, symlinks and other stuff are not
3701  * replaced atomically, and you get a "move" uevent, but it's not easy to
3702  * connect the event to the old and new device. Device nodes are not renamed at
3703  * all, there isn't even support for that in the kernel now.
3704  *
3705  * In the meantime, during renaming, your target name might be taken by another
3706  * driver, creating conflicts. Or the old name is taken directly after you
3707  * renamed it -- then you get events for the same DEVPATH, before you even see
3708  * the "move" event. It's just a mess, and nothing new should ever rely on
3709  * kernel device renaming. Besides that, it's not even implemented now for
3710  * other things than (driver-core wise very simple) network devices.
3711  *
3712  * We are currently about to change network renaming in udev to completely
3713  * disallow renaming of devices in the same namespace as the kernel uses,
3714  * because we can't solve the problems properly, that arise with swapping names
3715  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
3716  * be allowed to some other name than eth[0-9]*, for the aforementioned
3717  * reasons.
3718  *
3719  * Make up a "real" name in the driver before you register anything, or add
3720  * some other attributes for userspace to find the device, or use udev to add
3721  * symlinks -- but never rename kernel devices later, it's a complete mess. We
3722  * don't even want to get into that and try to implement the missing pieces in
3723  * the core. We really have other pieces to fix in the driver core mess. :)
3724  */
3725 int device_rename(struct device *dev, const char *new_name)
3726 {
3727 	struct kobject *kobj = &dev->kobj;
3728 	char *old_device_name = NULL;
3729 	int error;
3730 
3731 	dev = get_device(dev);
3732 	if (!dev)
3733 		return -EINVAL;
3734 
3735 	dev_dbg(dev, "renaming to %s\n", new_name);
3736 
3737 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
3738 	if (!old_device_name) {
3739 		error = -ENOMEM;
3740 		goto out;
3741 	}
3742 
3743 	if (dev->class) {
3744 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
3745 					     kobj, old_device_name,
3746 					     new_name, kobject_namespace(kobj));
3747 		if (error)
3748 			goto out;
3749 	}
3750 
3751 	error = kobject_rename(kobj, new_name);
3752 	if (error)
3753 		goto out;
3754 
3755 out:
3756 	put_device(dev);
3757 
3758 	kfree(old_device_name);
3759 
3760 	return error;
3761 }
3762 EXPORT_SYMBOL_GPL(device_rename);
3763 
3764 static int device_move_class_links(struct device *dev,
3765 				   struct device *old_parent,
3766 				   struct device *new_parent)
3767 {
3768 	int error = 0;
3769 
3770 	if (old_parent)
3771 		sysfs_remove_link(&dev->kobj, "device");
3772 	if (new_parent)
3773 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
3774 					  "device");
3775 	return error;
3776 }
3777 
3778 /**
3779  * device_move - moves a device to a new parent
3780  * @dev: the pointer to the struct device to be moved
3781  * @new_parent: the new parent of the device (can be NULL)
3782  * @dpm_order: how to reorder the dpm_list
3783  */
3784 int device_move(struct device *dev, struct device *new_parent,
3785 		enum dpm_order dpm_order)
3786 {
3787 	int error;
3788 	struct device *old_parent;
3789 	struct kobject *new_parent_kobj;
3790 
3791 	dev = get_device(dev);
3792 	if (!dev)
3793 		return -EINVAL;
3794 
3795 	device_pm_lock();
3796 	new_parent = get_device(new_parent);
3797 	new_parent_kobj = get_device_parent(dev, new_parent);
3798 	if (IS_ERR(new_parent_kobj)) {
3799 		error = PTR_ERR(new_parent_kobj);
3800 		put_device(new_parent);
3801 		goto out;
3802 	}
3803 
3804 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
3805 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
3806 	error = kobject_move(&dev->kobj, new_parent_kobj);
3807 	if (error) {
3808 		cleanup_glue_dir(dev, new_parent_kobj);
3809 		put_device(new_parent);
3810 		goto out;
3811 	}
3812 	old_parent = dev->parent;
3813 	dev->parent = new_parent;
3814 	if (old_parent)
3815 		klist_remove(&dev->p->knode_parent);
3816 	if (new_parent) {
3817 		klist_add_tail(&dev->p->knode_parent,
3818 			       &new_parent->p->klist_children);
3819 		set_dev_node(dev, dev_to_node(new_parent));
3820 	}
3821 
3822 	if (dev->class) {
3823 		error = device_move_class_links(dev, old_parent, new_parent);
3824 		if (error) {
3825 			/* We ignore errors on cleanup since we're hosed anyway... */
3826 			device_move_class_links(dev, new_parent, old_parent);
3827 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
3828 				if (new_parent)
3829 					klist_remove(&dev->p->knode_parent);
3830 				dev->parent = old_parent;
3831 				if (old_parent) {
3832 					klist_add_tail(&dev->p->knode_parent,
3833 						       &old_parent->p->klist_children);
3834 					set_dev_node(dev, dev_to_node(old_parent));
3835 				}
3836 			}
3837 			cleanup_glue_dir(dev, new_parent_kobj);
3838 			put_device(new_parent);
3839 			goto out;
3840 		}
3841 	}
3842 	switch (dpm_order) {
3843 	case DPM_ORDER_NONE:
3844 		break;
3845 	case DPM_ORDER_DEV_AFTER_PARENT:
3846 		device_pm_move_after(dev, new_parent);
3847 		devices_kset_move_after(dev, new_parent);
3848 		break;
3849 	case DPM_ORDER_PARENT_BEFORE_DEV:
3850 		device_pm_move_before(new_parent, dev);
3851 		devices_kset_move_before(new_parent, dev);
3852 		break;
3853 	case DPM_ORDER_DEV_LAST:
3854 		device_pm_move_last(dev);
3855 		devices_kset_move_last(dev);
3856 		break;
3857 	}
3858 
3859 	put_device(old_parent);
3860 out:
3861 	device_pm_unlock();
3862 	put_device(dev);
3863 	return error;
3864 }
3865 EXPORT_SYMBOL_GPL(device_move);
3866 
3867 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
3868 				     kgid_t kgid)
3869 {
3870 	struct kobject *kobj = &dev->kobj;
3871 	struct class *class = dev->class;
3872 	const struct device_type *type = dev->type;
3873 	int error;
3874 
3875 	if (class) {
3876 		/*
3877 		 * Change the device groups of the device class for @dev to
3878 		 * @kuid/@kgid.
3879 		 */
3880 		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
3881 						  kgid);
3882 		if (error)
3883 			return error;
3884 	}
3885 
3886 	if (type) {
3887 		/*
3888 		 * Change the device groups of the device type for @dev to
3889 		 * @kuid/@kgid.
3890 		 */
3891 		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
3892 						  kgid);
3893 		if (error)
3894 			return error;
3895 	}
3896 
3897 	/* Change the device groups of @dev to @kuid/@kgid. */
3898 	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
3899 	if (error)
3900 		return error;
3901 
3902 	if (device_supports_offline(dev) && !dev->offline_disabled) {
3903 		/* Change online device attributes of @dev to @kuid/@kgid. */
3904 		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
3905 						kuid, kgid);
3906 		if (error)
3907 			return error;
3908 	}
3909 
3910 	return 0;
3911 }
3912 
3913 /**
3914  * device_change_owner - change the owner of an existing device.
3915  * @dev: device.
3916  * @kuid: new owner's kuid
3917  * @kgid: new owner's kgid
3918  *
3919  * This changes the owner of @dev and its corresponding sysfs entries to
3920  * @kuid/@kgid. This function closely mirrors how @dev was added via driver
3921  * core.
3922  *
3923  * Returns 0 on success or error code on failure.
3924  */
3925 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
3926 {
3927 	int error;
3928 	struct kobject *kobj = &dev->kobj;
3929 
3930 	dev = get_device(dev);
3931 	if (!dev)
3932 		return -EINVAL;
3933 
3934 	/*
3935 	 * Change the kobject and the default attributes and groups of the
3936 	 * ktype associated with it to @kuid/@kgid.
3937 	 */
3938 	error = sysfs_change_owner(kobj, kuid, kgid);
3939 	if (error)
3940 		goto out;
3941 
3942 	/*
3943 	 * Change the uevent file for @dev to the new owner. The uevent file
3944 	 * was created in a separate step when @dev got added and we mirror
3945 	 * that step here.
3946 	 */
3947 	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
3948 					kgid);
3949 	if (error)
3950 		goto out;
3951 
3952 	/*
3953 	 * Change the device groups, the device groups associated with the
3954 	 * device class, and the groups associated with the device type of @dev
3955 	 * to @kuid/@kgid.
3956 	 */
3957 	error = device_attrs_change_owner(dev, kuid, kgid);
3958 	if (error)
3959 		goto out;
3960 
3961 	error = dpm_sysfs_change_owner(dev, kuid, kgid);
3962 	if (error)
3963 		goto out;
3964 
3965 #ifdef CONFIG_BLOCK
3966 	if (sysfs_deprecated && dev->class == &block_class)
3967 		goto out;
3968 #endif
3969 
3970 	/*
3971 	 * Change the owner of the symlink located in the class directory of
3972 	 * the device class associated with @dev which points to the actual
3973 	 * directory entry for @dev to @kuid/@kgid. This ensures that the
3974 	 * symlink shows the same permissions as its target.
3975 	 */
3976 	error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
3977 					dev_name(dev), kuid, kgid);
3978 	if (error)
3979 		goto out;
3980 
3981 out:
3982 	put_device(dev);
3983 	return error;
3984 }
3985 EXPORT_SYMBOL_GPL(device_change_owner);
3986 
3987 /**
3988  * device_shutdown - call ->shutdown() on each device to shutdown.
3989  */
3990 void device_shutdown(void)
3991 {
3992 	struct device *dev, *parent;
3993 
3994 	wait_for_device_probe();
3995 	device_block_probing();
3996 
3997 	cpufreq_suspend();
3998 
3999 	spin_lock(&devices_kset->list_lock);
4000 	/*
4001 	 * Walk the devices list backward, shutting down each in turn.
4002 	 * Beware that device unplug events may also start pulling
4003 	 * devices offline, even as the system is shutting down.
4004 	 */
4005 	while (!list_empty(&devices_kset->list)) {
4006 		dev = list_entry(devices_kset->list.prev, struct device,
4007 				kobj.entry);
4008 
4009 		/*
4010 		 * hold reference count of device's parent to
4011 		 * prevent it from being freed because parent's
4012 		 * lock is to be held
4013 		 */
4014 		parent = get_device(dev->parent);
4015 		get_device(dev);
4016 		/*
4017 		 * Make sure the device is off the kset list, in the
4018 		 * event that dev->*->shutdown() doesn't remove it.
4019 		 */
4020 		list_del_init(&dev->kobj.entry);
4021 		spin_unlock(&devices_kset->list_lock);
4022 
4023 		/* hold lock to avoid race with probe/release */
4024 		if (parent)
4025 			device_lock(parent);
4026 		device_lock(dev);
4027 
4028 		/* Don't allow any more runtime suspends */
4029 		pm_runtime_get_noresume(dev);
4030 		pm_runtime_barrier(dev);
4031 
4032 		if (dev->class && dev->class->shutdown_pre) {
4033 			if (initcall_debug)
4034 				dev_info(dev, "shutdown_pre\n");
4035 			dev->class->shutdown_pre(dev);
4036 		}
4037 		if (dev->bus && dev->bus->shutdown) {
4038 			if (initcall_debug)
4039 				dev_info(dev, "shutdown\n");
4040 			dev->bus->shutdown(dev);
4041 		} else if (dev->driver && dev->driver->shutdown) {
4042 			if (initcall_debug)
4043 				dev_info(dev, "shutdown\n");
4044 			dev->driver->shutdown(dev);
4045 		}
4046 
4047 		device_unlock(dev);
4048 		if (parent)
4049 			device_unlock(parent);
4050 
4051 		put_device(dev);
4052 		put_device(parent);
4053 
4054 		spin_lock(&devices_kset->list_lock);
4055 	}
4056 	spin_unlock(&devices_kset->list_lock);
4057 }
4058 
4059 /*
4060  * Device logging functions
4061  */
4062 
4063 #ifdef CONFIG_PRINTK
4064 static int
4065 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
4066 {
4067 	const char *subsys;
4068 	size_t pos = 0;
4069 
4070 	if (dev->class)
4071 		subsys = dev->class->name;
4072 	else if (dev->bus)
4073 		subsys = dev->bus->name;
4074 	else
4075 		return 0;
4076 
4077 	pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
4078 	if (pos >= hdrlen)
4079 		goto overflow;
4080 
4081 	/*
4082 	 * Add device identifier DEVICE=:
4083 	 *   b12:8         block dev_t
4084 	 *   c127:3        char dev_t
4085 	 *   n8            netdev ifindex
4086 	 *   +sound:card0  subsystem:devname
4087 	 */
4088 	if (MAJOR(dev->devt)) {
4089 		char c;
4090 
4091 		if (strcmp(subsys, "block") == 0)
4092 			c = 'b';
4093 		else
4094 			c = 'c';
4095 		pos++;
4096 		pos += snprintf(hdr + pos, hdrlen - pos,
4097 				"DEVICE=%c%u:%u",
4098 				c, MAJOR(dev->devt), MINOR(dev->devt));
4099 	} else if (strcmp(subsys, "net") == 0) {
4100 		struct net_device *net = to_net_dev(dev);
4101 
4102 		pos++;
4103 		pos += snprintf(hdr + pos, hdrlen - pos,
4104 				"DEVICE=n%u", net->ifindex);
4105 	} else {
4106 		pos++;
4107 		pos += snprintf(hdr + pos, hdrlen - pos,
4108 				"DEVICE=+%s:%s", subsys, dev_name(dev));
4109 	}
4110 
4111 	if (pos >= hdrlen)
4112 		goto overflow;
4113 
4114 	return pos;
4115 
4116 overflow:
4117 	dev_WARN(dev, "device/subsystem name too long");
4118 	return 0;
4119 }
4120 
4121 int dev_vprintk_emit(int level, const struct device *dev,
4122 		     const char *fmt, va_list args)
4123 {
4124 	char hdr[128];
4125 	size_t hdrlen;
4126 
4127 	hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
4128 
4129 	return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
4130 }
4131 EXPORT_SYMBOL(dev_vprintk_emit);
4132 
4133 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4134 {
4135 	va_list args;
4136 	int r;
4137 
4138 	va_start(args, fmt);
4139 
4140 	r = dev_vprintk_emit(level, dev, fmt, args);
4141 
4142 	va_end(args);
4143 
4144 	return r;
4145 }
4146 EXPORT_SYMBOL(dev_printk_emit);
4147 
4148 static void __dev_printk(const char *level, const struct device *dev,
4149 			struct va_format *vaf)
4150 {
4151 	if (dev)
4152 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4153 				dev_driver_string(dev), dev_name(dev), vaf);
4154 	else
4155 		printk("%s(NULL device *): %pV", level, vaf);
4156 }
4157 
4158 void dev_printk(const char *level, const struct device *dev,
4159 		const char *fmt, ...)
4160 {
4161 	struct va_format vaf;
4162 	va_list args;
4163 
4164 	va_start(args, fmt);
4165 
4166 	vaf.fmt = fmt;
4167 	vaf.va = &args;
4168 
4169 	__dev_printk(level, dev, &vaf);
4170 
4171 	va_end(args);
4172 }
4173 EXPORT_SYMBOL(dev_printk);
4174 
4175 #define define_dev_printk_level(func, kern_level)		\
4176 void func(const struct device *dev, const char *fmt, ...)	\
4177 {								\
4178 	struct va_format vaf;					\
4179 	va_list args;						\
4180 								\
4181 	va_start(args, fmt);					\
4182 								\
4183 	vaf.fmt = fmt;						\
4184 	vaf.va = &args;						\
4185 								\
4186 	__dev_printk(kern_level, dev, &vaf);			\
4187 								\
4188 	va_end(args);						\
4189 }								\
4190 EXPORT_SYMBOL(func);
4191 
4192 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4193 define_dev_printk_level(_dev_alert, KERN_ALERT);
4194 define_dev_printk_level(_dev_crit, KERN_CRIT);
4195 define_dev_printk_level(_dev_err, KERN_ERR);
4196 define_dev_printk_level(_dev_warn, KERN_WARNING);
4197 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4198 define_dev_printk_level(_dev_info, KERN_INFO);
4199 
4200 #endif
4201 
4202 /**
4203  * dev_err_probe - probe error check and log helper
4204  * @dev: the pointer to the struct device
4205  * @err: error value to test
4206  * @fmt: printf-style format string
4207  * @...: arguments as specified in the format string
4208  *
4209  * This helper implements common pattern present in probe functions for error
4210  * checking: print debug or error message depending if the error value is
4211  * -EPROBE_DEFER and propagate error upwards.
4212  * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4213  * checked later by reading devices_deferred debugfs attribute.
4214  * It replaces code sequence:
4215  * 	if (err != -EPROBE_DEFER)
4216  * 		dev_err(dev, ...);
4217  * 	else
4218  * 		dev_dbg(dev, ...);
4219  * 	return err;
4220  * with
4221  * 	return dev_err_probe(dev, err, ...);
4222  *
4223  * Returns @err.
4224  *
4225  */
4226 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4227 {
4228 	struct va_format vaf;
4229 	va_list args;
4230 
4231 	va_start(args, fmt);
4232 	vaf.fmt = fmt;
4233 	vaf.va = &args;
4234 
4235 	if (err != -EPROBE_DEFER) {
4236 		dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4237 	} else {
4238 		device_set_deferred_probe_reason(dev, &vaf);
4239 		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4240 	}
4241 
4242 	va_end(args);
4243 
4244 	return err;
4245 }
4246 EXPORT_SYMBOL_GPL(dev_err_probe);
4247 
4248 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4249 {
4250 	return fwnode && !IS_ERR(fwnode->secondary);
4251 }
4252 
4253 /**
4254  * set_primary_fwnode - Change the primary firmware node of a given device.
4255  * @dev: Device to handle.
4256  * @fwnode: New primary firmware node of the device.
4257  *
4258  * Set the device's firmware node pointer to @fwnode, but if a secondary
4259  * firmware node of the device is present, preserve it.
4260  */
4261 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4262 {
4263 	struct fwnode_handle *fn = dev->fwnode;
4264 
4265 	if (fwnode) {
4266 		if (fwnode_is_primary(fn))
4267 			fn = fn->secondary;
4268 
4269 		if (fn) {
4270 			WARN_ON(fwnode->secondary);
4271 			fwnode->secondary = fn;
4272 		}
4273 		dev->fwnode = fwnode;
4274 	} else {
4275 		if (fwnode_is_primary(fn)) {
4276 			dev->fwnode = fn->secondary;
4277 			fn->secondary = NULL;
4278 		} else {
4279 			dev->fwnode = NULL;
4280 		}
4281 	}
4282 }
4283 EXPORT_SYMBOL_GPL(set_primary_fwnode);
4284 
4285 /**
4286  * set_secondary_fwnode - Change the secondary firmware node of a given device.
4287  * @dev: Device to handle.
4288  * @fwnode: New secondary firmware node of the device.
4289  *
4290  * If a primary firmware node of the device is present, set its secondary
4291  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
4292  * @fwnode.
4293  */
4294 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4295 {
4296 	if (fwnode)
4297 		fwnode->secondary = ERR_PTR(-ENODEV);
4298 
4299 	if (fwnode_is_primary(dev->fwnode))
4300 		dev->fwnode->secondary = fwnode;
4301 	else
4302 		dev->fwnode = fwnode;
4303 }
4304 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4305 
4306 /**
4307  * device_set_of_node_from_dev - reuse device-tree node of another device
4308  * @dev: device whose device-tree node is being set
4309  * @dev2: device whose device-tree node is being reused
4310  *
4311  * Takes another reference to the new device-tree node after first dropping
4312  * any reference held to the old node.
4313  */
4314 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4315 {
4316 	of_node_put(dev->of_node);
4317 	dev->of_node = of_node_get(dev2->of_node);
4318 	dev->of_node_reused = true;
4319 }
4320 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4321 
4322 int device_match_name(struct device *dev, const void *name)
4323 {
4324 	return sysfs_streq(dev_name(dev), name);
4325 }
4326 EXPORT_SYMBOL_GPL(device_match_name);
4327 
4328 int device_match_of_node(struct device *dev, const void *np)
4329 {
4330 	return dev->of_node == np;
4331 }
4332 EXPORT_SYMBOL_GPL(device_match_of_node);
4333 
4334 int device_match_fwnode(struct device *dev, const void *fwnode)
4335 {
4336 	return dev_fwnode(dev) == fwnode;
4337 }
4338 EXPORT_SYMBOL_GPL(device_match_fwnode);
4339 
4340 int device_match_devt(struct device *dev, const void *pdevt)
4341 {
4342 	return dev->devt == *(dev_t *)pdevt;
4343 }
4344 EXPORT_SYMBOL_GPL(device_match_devt);
4345 
4346 int device_match_acpi_dev(struct device *dev, const void *adev)
4347 {
4348 	return ACPI_COMPANION(dev) == adev;
4349 }
4350 EXPORT_SYMBOL(device_match_acpi_dev);
4351 
4352 int device_match_any(struct device *dev, const void *unused)
4353 {
4354 	return 1;
4355 }
4356 EXPORT_SYMBOL_GPL(device_match_any);
4357