1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/cpufreq.h> 13 #include <linux/device.h> 14 #include <linux/err.h> 15 #include <linux/fwnode.h> 16 #include <linux/init.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/string.h> 20 #include <linux/kdev_t.h> 21 #include <linux/notifier.h> 22 #include <linux/of.h> 23 #include <linux/of_device.h> 24 #include <linux/genhd.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/netdevice.h> 28 #include <linux/sched/signal.h> 29 #include <linux/sysfs.h> 30 31 #include "base.h" 32 #include "power/power.h" 33 34 #ifdef CONFIG_SYSFS_DEPRECATED 35 #ifdef CONFIG_SYSFS_DEPRECATED_V2 36 long sysfs_deprecated = 1; 37 #else 38 long sysfs_deprecated = 0; 39 #endif 40 static int __init sysfs_deprecated_setup(char *arg) 41 { 42 return kstrtol(arg, 10, &sysfs_deprecated); 43 } 44 early_param("sysfs.deprecated", sysfs_deprecated_setup); 45 #endif 46 47 /* Device links support. */ 48 static LIST_HEAD(wait_for_suppliers); 49 static DEFINE_MUTEX(wfs_lock); 50 static LIST_HEAD(deferred_sync); 51 static unsigned int defer_sync_state_count = 1; 52 static unsigned int defer_fw_devlink_count; 53 static LIST_HEAD(deferred_fw_devlink); 54 static DEFINE_MUTEX(defer_fw_devlink_lock); 55 static bool fw_devlink_is_permissive(void); 56 57 #ifdef CONFIG_SRCU 58 static DEFINE_MUTEX(device_links_lock); 59 DEFINE_STATIC_SRCU(device_links_srcu); 60 61 static inline void device_links_write_lock(void) 62 { 63 mutex_lock(&device_links_lock); 64 } 65 66 static inline void device_links_write_unlock(void) 67 { 68 mutex_unlock(&device_links_lock); 69 } 70 71 int device_links_read_lock(void) __acquires(&device_links_srcu) 72 { 73 return srcu_read_lock(&device_links_srcu); 74 } 75 76 void device_links_read_unlock(int idx) __releases(&device_links_srcu) 77 { 78 srcu_read_unlock(&device_links_srcu, idx); 79 } 80 81 int device_links_read_lock_held(void) 82 { 83 return srcu_read_lock_held(&device_links_srcu); 84 } 85 #else /* !CONFIG_SRCU */ 86 static DECLARE_RWSEM(device_links_lock); 87 88 static inline void device_links_write_lock(void) 89 { 90 down_write(&device_links_lock); 91 } 92 93 static inline void device_links_write_unlock(void) 94 { 95 up_write(&device_links_lock); 96 } 97 98 int device_links_read_lock(void) 99 { 100 down_read(&device_links_lock); 101 return 0; 102 } 103 104 void device_links_read_unlock(int not_used) 105 { 106 up_read(&device_links_lock); 107 } 108 109 #ifdef CONFIG_DEBUG_LOCK_ALLOC 110 int device_links_read_lock_held(void) 111 { 112 return lockdep_is_held(&device_links_lock); 113 } 114 #endif 115 #endif /* !CONFIG_SRCU */ 116 117 /** 118 * device_is_dependent - Check if one device depends on another one 119 * @dev: Device to check dependencies for. 120 * @target: Device to check against. 121 * 122 * Check if @target depends on @dev or any device dependent on it (its child or 123 * its consumer etc). Return 1 if that is the case or 0 otherwise. 124 */ 125 int device_is_dependent(struct device *dev, void *target) 126 { 127 struct device_link *link; 128 int ret; 129 130 if (dev == target) 131 return 1; 132 133 ret = device_for_each_child(dev, target, device_is_dependent); 134 if (ret) 135 return ret; 136 137 list_for_each_entry(link, &dev->links.consumers, s_node) { 138 if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 139 continue; 140 141 if (link->consumer == target) 142 return 1; 143 144 ret = device_is_dependent(link->consumer, target); 145 if (ret) 146 break; 147 } 148 return ret; 149 } 150 151 static void device_link_init_status(struct device_link *link, 152 struct device *consumer, 153 struct device *supplier) 154 { 155 switch (supplier->links.status) { 156 case DL_DEV_PROBING: 157 switch (consumer->links.status) { 158 case DL_DEV_PROBING: 159 /* 160 * A consumer driver can create a link to a supplier 161 * that has not completed its probing yet as long as it 162 * knows that the supplier is already functional (for 163 * example, it has just acquired some resources from the 164 * supplier). 165 */ 166 link->status = DL_STATE_CONSUMER_PROBE; 167 break; 168 default: 169 link->status = DL_STATE_DORMANT; 170 break; 171 } 172 break; 173 case DL_DEV_DRIVER_BOUND: 174 switch (consumer->links.status) { 175 case DL_DEV_PROBING: 176 link->status = DL_STATE_CONSUMER_PROBE; 177 break; 178 case DL_DEV_DRIVER_BOUND: 179 link->status = DL_STATE_ACTIVE; 180 break; 181 default: 182 link->status = DL_STATE_AVAILABLE; 183 break; 184 } 185 break; 186 case DL_DEV_UNBINDING: 187 link->status = DL_STATE_SUPPLIER_UNBIND; 188 break; 189 default: 190 link->status = DL_STATE_DORMANT; 191 break; 192 } 193 } 194 195 static int device_reorder_to_tail(struct device *dev, void *not_used) 196 { 197 struct device_link *link; 198 199 /* 200 * Devices that have not been registered yet will be put to the ends 201 * of the lists during the registration, so skip them here. 202 */ 203 if (device_is_registered(dev)) 204 devices_kset_move_last(dev); 205 206 if (device_pm_initialized(dev)) 207 device_pm_move_last(dev); 208 209 device_for_each_child(dev, NULL, device_reorder_to_tail); 210 list_for_each_entry(link, &dev->links.consumers, s_node) { 211 if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 212 continue; 213 device_reorder_to_tail(link->consumer, NULL); 214 } 215 216 return 0; 217 } 218 219 /** 220 * device_pm_move_to_tail - Move set of devices to the end of device lists 221 * @dev: Device to move 222 * 223 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 224 * 225 * It moves the @dev along with all of its children and all of its consumers 226 * to the ends of the device_kset and dpm_list, recursively. 227 */ 228 void device_pm_move_to_tail(struct device *dev) 229 { 230 int idx; 231 232 idx = device_links_read_lock(); 233 device_pm_lock(); 234 device_reorder_to_tail(dev, NULL); 235 device_pm_unlock(); 236 device_links_read_unlock(idx); 237 } 238 239 #define to_devlink(dev) container_of((dev), struct device_link, link_dev) 240 241 static ssize_t status_show(struct device *dev, 242 struct device_attribute *attr, char *buf) 243 { 244 char *status; 245 246 switch (to_devlink(dev)->status) { 247 case DL_STATE_NONE: 248 status = "not tracked"; break; 249 case DL_STATE_DORMANT: 250 status = "dormant"; break; 251 case DL_STATE_AVAILABLE: 252 status = "available"; break; 253 case DL_STATE_CONSUMER_PROBE: 254 status = "consumer probing"; break; 255 case DL_STATE_ACTIVE: 256 status = "active"; break; 257 case DL_STATE_SUPPLIER_UNBIND: 258 status = "supplier unbinding"; break; 259 default: 260 status = "unknown"; break; 261 } 262 return sprintf(buf, "%s\n", status); 263 } 264 static DEVICE_ATTR_RO(status); 265 266 static ssize_t auto_remove_on_show(struct device *dev, 267 struct device_attribute *attr, char *buf) 268 { 269 struct device_link *link = to_devlink(dev); 270 char *str; 271 272 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 273 str = "supplier unbind"; 274 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) 275 str = "consumer unbind"; 276 else 277 str = "never"; 278 279 return sprintf(buf, "%s\n", str); 280 } 281 static DEVICE_ATTR_RO(auto_remove_on); 282 283 static ssize_t runtime_pm_show(struct device *dev, 284 struct device_attribute *attr, char *buf) 285 { 286 struct device_link *link = to_devlink(dev); 287 288 return sprintf(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME)); 289 } 290 static DEVICE_ATTR_RO(runtime_pm); 291 292 static ssize_t sync_state_only_show(struct device *dev, 293 struct device_attribute *attr, char *buf) 294 { 295 struct device_link *link = to_devlink(dev); 296 297 return sprintf(buf, "%d\n", !!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 298 } 299 static DEVICE_ATTR_RO(sync_state_only); 300 301 static struct attribute *devlink_attrs[] = { 302 &dev_attr_status.attr, 303 &dev_attr_auto_remove_on.attr, 304 &dev_attr_runtime_pm.attr, 305 &dev_attr_sync_state_only.attr, 306 NULL, 307 }; 308 ATTRIBUTE_GROUPS(devlink); 309 310 static void device_link_free(struct device_link *link) 311 { 312 while (refcount_dec_not_one(&link->rpm_active)) 313 pm_runtime_put(link->supplier); 314 315 put_device(link->consumer); 316 put_device(link->supplier); 317 kfree(link); 318 } 319 320 #ifdef CONFIG_SRCU 321 static void __device_link_free_srcu(struct rcu_head *rhead) 322 { 323 device_link_free(container_of(rhead, struct device_link, rcu_head)); 324 } 325 326 static void devlink_dev_release(struct device *dev) 327 { 328 struct device_link *link = to_devlink(dev); 329 330 call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu); 331 } 332 #else 333 static void devlink_dev_release(struct device *dev) 334 { 335 device_link_free(to_devlink(dev)); 336 } 337 #endif 338 339 static struct class devlink_class = { 340 .name = "devlink", 341 .owner = THIS_MODULE, 342 .dev_groups = devlink_groups, 343 .dev_release = devlink_dev_release, 344 }; 345 346 static int devlink_add_symlinks(struct device *dev, 347 struct class_interface *class_intf) 348 { 349 int ret; 350 size_t len; 351 struct device_link *link = to_devlink(dev); 352 struct device *sup = link->supplier; 353 struct device *con = link->consumer; 354 char *buf; 355 356 len = max(strlen(dev_name(sup)), strlen(dev_name(con))); 357 len += strlen("supplier:") + 1; 358 buf = kzalloc(len, GFP_KERNEL); 359 if (!buf) 360 return -ENOMEM; 361 362 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier"); 363 if (ret) 364 goto out; 365 366 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer"); 367 if (ret) 368 goto err_con; 369 370 snprintf(buf, len, "consumer:%s", dev_name(con)); 371 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf); 372 if (ret) 373 goto err_con_dev; 374 375 snprintf(buf, len, "supplier:%s", dev_name(sup)); 376 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf); 377 if (ret) 378 goto err_sup_dev; 379 380 goto out; 381 382 err_sup_dev: 383 snprintf(buf, len, "consumer:%s", dev_name(con)); 384 sysfs_remove_link(&sup->kobj, buf); 385 err_con_dev: 386 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 387 err_con: 388 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 389 out: 390 kfree(buf); 391 return ret; 392 } 393 394 static void devlink_remove_symlinks(struct device *dev, 395 struct class_interface *class_intf) 396 { 397 struct device_link *link = to_devlink(dev); 398 size_t len; 399 struct device *sup = link->supplier; 400 struct device *con = link->consumer; 401 char *buf; 402 403 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 404 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 405 406 len = max(strlen(dev_name(sup)), strlen(dev_name(con))); 407 len += strlen("supplier:") + 1; 408 buf = kzalloc(len, GFP_KERNEL); 409 if (!buf) { 410 WARN(1, "Unable to properly free device link symlinks!\n"); 411 return; 412 } 413 414 snprintf(buf, len, "supplier:%s", dev_name(sup)); 415 sysfs_remove_link(&con->kobj, buf); 416 snprintf(buf, len, "consumer:%s", dev_name(con)); 417 sysfs_remove_link(&sup->kobj, buf); 418 kfree(buf); 419 } 420 421 static struct class_interface devlink_class_intf = { 422 .class = &devlink_class, 423 .add_dev = devlink_add_symlinks, 424 .remove_dev = devlink_remove_symlinks, 425 }; 426 427 static int __init devlink_class_init(void) 428 { 429 int ret; 430 431 ret = class_register(&devlink_class); 432 if (ret) 433 return ret; 434 435 ret = class_interface_register(&devlink_class_intf); 436 if (ret) 437 class_unregister(&devlink_class); 438 439 return ret; 440 } 441 postcore_initcall(devlink_class_init); 442 443 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \ 444 DL_FLAG_AUTOREMOVE_SUPPLIER | \ 445 DL_FLAG_AUTOPROBE_CONSUMER | \ 446 DL_FLAG_SYNC_STATE_ONLY) 447 448 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \ 449 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE) 450 451 /** 452 * device_link_add - Create a link between two devices. 453 * @consumer: Consumer end of the link. 454 * @supplier: Supplier end of the link. 455 * @flags: Link flags. 456 * 457 * The caller is responsible for the proper synchronization of the link creation 458 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 459 * runtime PM framework to take the link into account. Second, if the 460 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 461 * be forced into the active metastate and reference-counted upon the creation 462 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 463 * ignored. 464 * 465 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is 466 * expected to release the link returned by it directly with the help of either 467 * device_link_del() or device_link_remove(). 468 * 469 * If that flag is not set, however, the caller of this function is handing the 470 * management of the link over to the driver core entirely and its return value 471 * can only be used to check whether or not the link is present. In that case, 472 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link 473 * flags can be used to indicate to the driver core when the link can be safely 474 * deleted. Namely, setting one of them in @flags indicates to the driver core 475 * that the link is not going to be used (by the given caller of this function) 476 * after unbinding the consumer or supplier driver, respectively, from its 477 * device, so the link can be deleted at that point. If none of them is set, 478 * the link will be maintained until one of the devices pointed to by it (either 479 * the consumer or the supplier) is unregistered. 480 * 481 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and 482 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent 483 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can 484 * be used to request the driver core to automaticall probe for a consmer 485 * driver after successfully binding a driver to the supplier device. 486 * 487 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER, 488 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at 489 * the same time is invalid and will cause NULL to be returned upfront. 490 * However, if a device link between the given @consumer and @supplier pair 491 * exists already when this function is called for them, the existing link will 492 * be returned regardless of its current type and status (the link's flags may 493 * be modified then). The caller of this function is then expected to treat 494 * the link as though it has just been created, so (in particular) if 495 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released 496 * explicitly when not needed any more (as stated above). 497 * 498 * A side effect of the link creation is re-ordering of dpm_list and the 499 * devices_kset list by moving the consumer device and all devices depending 500 * on it to the ends of these lists (that does not happen to devices that have 501 * not been registered when this function is called). 502 * 503 * The supplier device is required to be registered when this function is called 504 * and NULL will be returned if that is not the case. The consumer device need 505 * not be registered, however. 506 */ 507 struct device_link *device_link_add(struct device *consumer, 508 struct device *supplier, u32 flags) 509 { 510 struct device_link *link; 511 512 if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS || 513 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) || 514 (flags & DL_FLAG_SYNC_STATE_ONLY && 515 flags != DL_FLAG_SYNC_STATE_ONLY) || 516 (flags & DL_FLAG_AUTOPROBE_CONSUMER && 517 flags & (DL_FLAG_AUTOREMOVE_CONSUMER | 518 DL_FLAG_AUTOREMOVE_SUPPLIER))) 519 return NULL; 520 521 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) { 522 if (pm_runtime_get_sync(supplier) < 0) { 523 pm_runtime_put_noidle(supplier); 524 return NULL; 525 } 526 } 527 528 if (!(flags & DL_FLAG_STATELESS)) 529 flags |= DL_FLAG_MANAGED; 530 531 device_links_write_lock(); 532 device_pm_lock(); 533 534 /* 535 * If the supplier has not been fully registered yet or there is a 536 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and 537 * the supplier already in the graph, return NULL. If the link is a 538 * SYNC_STATE_ONLY link, we don't check for reverse dependencies 539 * because it only affects sync_state() callbacks. 540 */ 541 if (!device_pm_initialized(supplier) 542 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) && 543 device_is_dependent(consumer, supplier))) { 544 link = NULL; 545 goto out; 546 } 547 548 /* 549 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed 550 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both 551 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER. 552 */ 553 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 554 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 555 556 list_for_each_entry(link, &supplier->links.consumers, s_node) { 557 if (link->consumer != consumer) 558 continue; 559 560 if (flags & DL_FLAG_PM_RUNTIME) { 561 if (!(link->flags & DL_FLAG_PM_RUNTIME)) { 562 pm_runtime_new_link(consumer); 563 link->flags |= DL_FLAG_PM_RUNTIME; 564 } 565 if (flags & DL_FLAG_RPM_ACTIVE) 566 refcount_inc(&link->rpm_active); 567 } 568 569 if (flags & DL_FLAG_STATELESS) { 570 kref_get(&link->kref); 571 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 572 !(link->flags & DL_FLAG_STATELESS)) { 573 link->flags |= DL_FLAG_STATELESS; 574 goto reorder; 575 } else { 576 link->flags |= DL_FLAG_STATELESS; 577 goto out; 578 } 579 } 580 581 /* 582 * If the life time of the link following from the new flags is 583 * longer than indicated by the flags of the existing link, 584 * update the existing link to stay around longer. 585 */ 586 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) { 587 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 588 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 589 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER; 590 } 591 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) { 592 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER | 593 DL_FLAG_AUTOREMOVE_SUPPLIER); 594 } 595 if (!(link->flags & DL_FLAG_MANAGED)) { 596 kref_get(&link->kref); 597 link->flags |= DL_FLAG_MANAGED; 598 device_link_init_status(link, consumer, supplier); 599 } 600 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 601 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 602 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY; 603 goto reorder; 604 } 605 606 goto out; 607 } 608 609 link = kzalloc(sizeof(*link), GFP_KERNEL); 610 if (!link) 611 goto out; 612 613 refcount_set(&link->rpm_active, 1); 614 615 get_device(supplier); 616 link->supplier = supplier; 617 INIT_LIST_HEAD(&link->s_node); 618 get_device(consumer); 619 link->consumer = consumer; 620 INIT_LIST_HEAD(&link->c_node); 621 link->flags = flags; 622 kref_init(&link->kref); 623 624 link->link_dev.class = &devlink_class; 625 device_set_pm_not_required(&link->link_dev); 626 dev_set_name(&link->link_dev, "%s--%s", 627 dev_name(supplier), dev_name(consumer)); 628 if (device_register(&link->link_dev)) { 629 put_device(consumer); 630 put_device(supplier); 631 kfree(link); 632 link = NULL; 633 goto out; 634 } 635 636 if (flags & DL_FLAG_PM_RUNTIME) { 637 if (flags & DL_FLAG_RPM_ACTIVE) 638 refcount_inc(&link->rpm_active); 639 640 pm_runtime_new_link(consumer); 641 } 642 643 /* Determine the initial link state. */ 644 if (flags & DL_FLAG_STATELESS) 645 link->status = DL_STATE_NONE; 646 else 647 device_link_init_status(link, consumer, supplier); 648 649 /* 650 * Some callers expect the link creation during consumer driver probe to 651 * resume the supplier even without DL_FLAG_RPM_ACTIVE. 652 */ 653 if (link->status == DL_STATE_CONSUMER_PROBE && 654 flags & DL_FLAG_PM_RUNTIME) 655 pm_runtime_resume(supplier); 656 657 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 658 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 659 660 if (flags & DL_FLAG_SYNC_STATE_ONLY) { 661 dev_dbg(consumer, 662 "Linked as a sync state only consumer to %s\n", 663 dev_name(supplier)); 664 goto out; 665 } 666 667 reorder: 668 /* 669 * Move the consumer and all of the devices depending on it to the end 670 * of dpm_list and the devices_kset list. 671 * 672 * It is necessary to hold dpm_list locked throughout all that or else 673 * we may end up suspending with a wrong ordering of it. 674 */ 675 device_reorder_to_tail(consumer, NULL); 676 677 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 678 679 out: 680 device_pm_unlock(); 681 device_links_write_unlock(); 682 683 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link) 684 pm_runtime_put(supplier); 685 686 return link; 687 } 688 EXPORT_SYMBOL_GPL(device_link_add); 689 690 /** 691 * device_link_wait_for_supplier - Add device to wait_for_suppliers list 692 * @consumer: Consumer device 693 * 694 * Marks the @consumer device as waiting for suppliers to become available by 695 * adding it to the wait_for_suppliers list. The consumer device will never be 696 * probed until it's removed from the wait_for_suppliers list. 697 * 698 * The caller is responsible for adding the links to the supplier devices once 699 * they are available and removing the @consumer device from the 700 * wait_for_suppliers list once links to all the suppliers have been created. 701 * 702 * This function is NOT meant to be called from the probe function of the 703 * consumer but rather from code that creates/adds the consumer device. 704 */ 705 static void device_link_wait_for_supplier(struct device *consumer, 706 bool need_for_probe) 707 { 708 mutex_lock(&wfs_lock); 709 list_add_tail(&consumer->links.needs_suppliers, &wait_for_suppliers); 710 consumer->links.need_for_probe = need_for_probe; 711 mutex_unlock(&wfs_lock); 712 } 713 714 static void device_link_wait_for_mandatory_supplier(struct device *consumer) 715 { 716 device_link_wait_for_supplier(consumer, true); 717 } 718 719 static void device_link_wait_for_optional_supplier(struct device *consumer) 720 { 721 device_link_wait_for_supplier(consumer, false); 722 } 723 724 /** 725 * device_link_add_missing_supplier_links - Add links from consumer devices to 726 * supplier devices, leaving any 727 * consumer with inactive suppliers on 728 * the wait_for_suppliers list 729 * 730 * Loops through all consumers waiting on suppliers and tries to add all their 731 * supplier links. If that succeeds, the consumer device is removed from 732 * wait_for_suppliers list. Otherwise, they are left in the wait_for_suppliers 733 * list. Devices left on the wait_for_suppliers list will not be probed. 734 * 735 * The fwnode add_links callback is expected to return 0 if it has found and 736 * added all the supplier links for the consumer device. It should return an 737 * error if it isn't able to do so. 738 * 739 * The caller of device_link_wait_for_supplier() is expected to call this once 740 * it's aware of potential suppliers becoming available. 741 */ 742 static void device_link_add_missing_supplier_links(void) 743 { 744 struct device *dev, *tmp; 745 746 mutex_lock(&wfs_lock); 747 list_for_each_entry_safe(dev, tmp, &wait_for_suppliers, 748 links.needs_suppliers) { 749 int ret = fwnode_call_int_op(dev->fwnode, add_links, dev); 750 if (!ret) 751 list_del_init(&dev->links.needs_suppliers); 752 else if (ret != -ENODEV || fw_devlink_is_permissive()) 753 dev->links.need_for_probe = false; 754 } 755 mutex_unlock(&wfs_lock); 756 } 757 758 #ifdef CONFIG_SRCU 759 static void __device_link_del(struct kref *kref) 760 { 761 struct device_link *link = container_of(kref, struct device_link, kref); 762 763 dev_dbg(link->consumer, "Dropping the link to %s\n", 764 dev_name(link->supplier)); 765 766 if (link->flags & DL_FLAG_PM_RUNTIME) 767 pm_runtime_drop_link(link->consumer); 768 769 list_del_rcu(&link->s_node); 770 list_del_rcu(&link->c_node); 771 device_unregister(&link->link_dev); 772 } 773 #else /* !CONFIG_SRCU */ 774 static void __device_link_del(struct kref *kref) 775 { 776 struct device_link *link = container_of(kref, struct device_link, kref); 777 778 dev_info(link->consumer, "Dropping the link to %s\n", 779 dev_name(link->supplier)); 780 781 if (link->flags & DL_FLAG_PM_RUNTIME) 782 pm_runtime_drop_link(link->consumer); 783 784 list_del(&link->s_node); 785 list_del(&link->c_node); 786 device_unregister(&link->link_dev); 787 } 788 #endif /* !CONFIG_SRCU */ 789 790 static void device_link_put_kref(struct device_link *link) 791 { 792 if (link->flags & DL_FLAG_STATELESS) 793 kref_put(&link->kref, __device_link_del); 794 else 795 WARN(1, "Unable to drop a managed device link reference\n"); 796 } 797 798 /** 799 * device_link_del - Delete a stateless link between two devices. 800 * @link: Device link to delete. 801 * 802 * The caller must ensure proper synchronization of this function with runtime 803 * PM. If the link was added multiple times, it needs to be deleted as often. 804 * Care is required for hotplugged devices: Their links are purged on removal 805 * and calling device_link_del() is then no longer allowed. 806 */ 807 void device_link_del(struct device_link *link) 808 { 809 device_links_write_lock(); 810 device_link_put_kref(link); 811 device_links_write_unlock(); 812 } 813 EXPORT_SYMBOL_GPL(device_link_del); 814 815 /** 816 * device_link_remove - Delete a stateless link between two devices. 817 * @consumer: Consumer end of the link. 818 * @supplier: Supplier end of the link. 819 * 820 * The caller must ensure proper synchronization of this function with runtime 821 * PM. 822 */ 823 void device_link_remove(void *consumer, struct device *supplier) 824 { 825 struct device_link *link; 826 827 if (WARN_ON(consumer == supplier)) 828 return; 829 830 device_links_write_lock(); 831 832 list_for_each_entry(link, &supplier->links.consumers, s_node) { 833 if (link->consumer == consumer) { 834 device_link_put_kref(link); 835 break; 836 } 837 } 838 839 device_links_write_unlock(); 840 } 841 EXPORT_SYMBOL_GPL(device_link_remove); 842 843 static void device_links_missing_supplier(struct device *dev) 844 { 845 struct device_link *link; 846 847 list_for_each_entry(link, &dev->links.suppliers, c_node) { 848 if (link->status != DL_STATE_CONSUMER_PROBE) 849 continue; 850 851 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 852 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 853 } else { 854 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 855 WRITE_ONCE(link->status, DL_STATE_DORMANT); 856 } 857 } 858 } 859 860 /** 861 * device_links_check_suppliers - Check presence of supplier drivers. 862 * @dev: Consumer device. 863 * 864 * Check links from this device to any suppliers. Walk the list of the device's 865 * links to suppliers and see if all of them are available. If not, simply 866 * return -EPROBE_DEFER. 867 * 868 * We need to guarantee that the supplier will not go away after the check has 869 * been positive here. It only can go away in __device_release_driver() and 870 * that function checks the device's links to consumers. This means we need to 871 * mark the link as "consumer probe in progress" to make the supplier removal 872 * wait for us to complete (or bad things may happen). 873 * 874 * Links without the DL_FLAG_MANAGED flag set are ignored. 875 */ 876 int device_links_check_suppliers(struct device *dev) 877 { 878 struct device_link *link; 879 int ret = 0; 880 881 /* 882 * Device waiting for supplier to become available is not allowed to 883 * probe. 884 */ 885 mutex_lock(&wfs_lock); 886 if (!list_empty(&dev->links.needs_suppliers) && 887 dev->links.need_for_probe) { 888 mutex_unlock(&wfs_lock); 889 return -EPROBE_DEFER; 890 } 891 mutex_unlock(&wfs_lock); 892 893 device_links_write_lock(); 894 895 list_for_each_entry(link, &dev->links.suppliers, c_node) { 896 if (!(link->flags & DL_FLAG_MANAGED)) 897 continue; 898 899 if (link->status != DL_STATE_AVAILABLE && 900 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) { 901 device_links_missing_supplier(dev); 902 ret = -EPROBE_DEFER; 903 break; 904 } 905 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 906 } 907 dev->links.status = DL_DEV_PROBING; 908 909 device_links_write_unlock(); 910 return ret; 911 } 912 913 /** 914 * __device_links_queue_sync_state - Queue a device for sync_state() callback 915 * @dev: Device to call sync_state() on 916 * @list: List head to queue the @dev on 917 * 918 * Queues a device for a sync_state() callback when the device links write lock 919 * isn't held. This allows the sync_state() execution flow to use device links 920 * APIs. The caller must ensure this function is called with 921 * device_links_write_lock() held. 922 * 923 * This function does a get_device() to make sure the device is not freed while 924 * on this list. 925 * 926 * So the caller must also ensure that device_links_flush_sync_list() is called 927 * as soon as the caller releases device_links_write_lock(). This is necessary 928 * to make sure the sync_state() is called in a timely fashion and the 929 * put_device() is called on this device. 930 */ 931 static void __device_links_queue_sync_state(struct device *dev, 932 struct list_head *list) 933 { 934 struct device_link *link; 935 936 if (!dev_has_sync_state(dev)) 937 return; 938 if (dev->state_synced) 939 return; 940 941 list_for_each_entry(link, &dev->links.consumers, s_node) { 942 if (!(link->flags & DL_FLAG_MANAGED)) 943 continue; 944 if (link->status != DL_STATE_ACTIVE) 945 return; 946 } 947 948 /* 949 * Set the flag here to avoid adding the same device to a list more 950 * than once. This can happen if new consumers get added to the device 951 * and probed before the list is flushed. 952 */ 953 dev->state_synced = true; 954 955 if (WARN_ON(!list_empty(&dev->links.defer_hook))) 956 return; 957 958 get_device(dev); 959 list_add_tail(&dev->links.defer_hook, list); 960 } 961 962 /** 963 * device_links_flush_sync_list - Call sync_state() on a list of devices 964 * @list: List of devices to call sync_state() on 965 * @dont_lock_dev: Device for which lock is already held by the caller 966 * 967 * Calls sync_state() on all the devices that have been queued for it. This 968 * function is used in conjunction with __device_links_queue_sync_state(). The 969 * @dont_lock_dev parameter is useful when this function is called from a 970 * context where a device lock is already held. 971 */ 972 static void device_links_flush_sync_list(struct list_head *list, 973 struct device *dont_lock_dev) 974 { 975 struct device *dev, *tmp; 976 977 list_for_each_entry_safe(dev, tmp, list, links.defer_hook) { 978 list_del_init(&dev->links.defer_hook); 979 980 if (dev != dont_lock_dev) 981 device_lock(dev); 982 983 if (dev->bus->sync_state) 984 dev->bus->sync_state(dev); 985 else if (dev->driver && dev->driver->sync_state) 986 dev->driver->sync_state(dev); 987 988 if (dev != dont_lock_dev) 989 device_unlock(dev); 990 991 put_device(dev); 992 } 993 } 994 995 void device_links_supplier_sync_state_pause(void) 996 { 997 device_links_write_lock(); 998 defer_sync_state_count++; 999 device_links_write_unlock(); 1000 } 1001 1002 void device_links_supplier_sync_state_resume(void) 1003 { 1004 struct device *dev, *tmp; 1005 LIST_HEAD(sync_list); 1006 1007 device_links_write_lock(); 1008 if (!defer_sync_state_count) { 1009 WARN(true, "Unmatched sync_state pause/resume!"); 1010 goto out; 1011 } 1012 defer_sync_state_count--; 1013 if (defer_sync_state_count) 1014 goto out; 1015 1016 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_hook) { 1017 /* 1018 * Delete from deferred_sync list before queuing it to 1019 * sync_list because defer_hook is used for both lists. 1020 */ 1021 list_del_init(&dev->links.defer_hook); 1022 __device_links_queue_sync_state(dev, &sync_list); 1023 } 1024 out: 1025 device_links_write_unlock(); 1026 1027 device_links_flush_sync_list(&sync_list, NULL); 1028 } 1029 1030 static int sync_state_resume_initcall(void) 1031 { 1032 device_links_supplier_sync_state_resume(); 1033 return 0; 1034 } 1035 late_initcall(sync_state_resume_initcall); 1036 1037 static void __device_links_supplier_defer_sync(struct device *sup) 1038 { 1039 if (list_empty(&sup->links.defer_hook) && dev_has_sync_state(sup)) 1040 list_add_tail(&sup->links.defer_hook, &deferred_sync); 1041 } 1042 1043 static void device_link_drop_managed(struct device_link *link) 1044 { 1045 link->flags &= ~DL_FLAG_MANAGED; 1046 WRITE_ONCE(link->status, DL_STATE_NONE); 1047 kref_put(&link->kref, __device_link_del); 1048 } 1049 1050 static ssize_t waiting_for_supplier_show(struct device *dev, 1051 struct device_attribute *attr, 1052 char *buf) 1053 { 1054 bool val; 1055 1056 device_lock(dev); 1057 mutex_lock(&wfs_lock); 1058 val = !list_empty(&dev->links.needs_suppliers) 1059 && dev->links.need_for_probe; 1060 mutex_unlock(&wfs_lock); 1061 device_unlock(dev); 1062 return sprintf(buf, "%u\n", val); 1063 } 1064 static DEVICE_ATTR_RO(waiting_for_supplier); 1065 1066 /** 1067 * device_links_driver_bound - Update device links after probing its driver. 1068 * @dev: Device to update the links for. 1069 * 1070 * The probe has been successful, so update links from this device to any 1071 * consumers by changing their status to "available". 1072 * 1073 * Also change the status of @dev's links to suppliers to "active". 1074 * 1075 * Links without the DL_FLAG_MANAGED flag set are ignored. 1076 */ 1077 void device_links_driver_bound(struct device *dev) 1078 { 1079 struct device_link *link, *ln; 1080 LIST_HEAD(sync_list); 1081 1082 /* 1083 * If a device probes successfully, it's expected to have created all 1084 * the device links it needs to or make new device links as it needs 1085 * them. So, it no longer needs to wait on any suppliers. 1086 */ 1087 mutex_lock(&wfs_lock); 1088 list_del_init(&dev->links.needs_suppliers); 1089 mutex_unlock(&wfs_lock); 1090 device_remove_file(dev, &dev_attr_waiting_for_supplier); 1091 1092 device_links_write_lock(); 1093 1094 list_for_each_entry(link, &dev->links.consumers, s_node) { 1095 if (!(link->flags & DL_FLAG_MANAGED)) 1096 continue; 1097 1098 /* 1099 * Links created during consumer probe may be in the "consumer 1100 * probe" state to start with if the supplier is still probing 1101 * when they are created and they may become "active" if the 1102 * consumer probe returns first. Skip them here. 1103 */ 1104 if (link->status == DL_STATE_CONSUMER_PROBE || 1105 link->status == DL_STATE_ACTIVE) 1106 continue; 1107 1108 WARN_ON(link->status != DL_STATE_DORMANT); 1109 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1110 1111 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER) 1112 driver_deferred_probe_add(link->consumer); 1113 } 1114 1115 if (defer_sync_state_count) 1116 __device_links_supplier_defer_sync(dev); 1117 else 1118 __device_links_queue_sync_state(dev, &sync_list); 1119 1120 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1121 struct device *supplier; 1122 1123 if (!(link->flags & DL_FLAG_MANAGED)) 1124 continue; 1125 1126 supplier = link->supplier; 1127 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) { 1128 /* 1129 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no 1130 * other DL_MANAGED_LINK_FLAGS have been set. So, it's 1131 * save to drop the managed link completely. 1132 */ 1133 device_link_drop_managed(link); 1134 } else { 1135 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 1136 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 1137 } 1138 1139 /* 1140 * This needs to be done even for the deleted 1141 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last 1142 * device link that was preventing the supplier from getting a 1143 * sync_state() call. 1144 */ 1145 if (defer_sync_state_count) 1146 __device_links_supplier_defer_sync(supplier); 1147 else 1148 __device_links_queue_sync_state(supplier, &sync_list); 1149 } 1150 1151 dev->links.status = DL_DEV_DRIVER_BOUND; 1152 1153 device_links_write_unlock(); 1154 1155 device_links_flush_sync_list(&sync_list, dev); 1156 } 1157 1158 /** 1159 * __device_links_no_driver - Update links of a device without a driver. 1160 * @dev: Device without a drvier. 1161 * 1162 * Delete all non-persistent links from this device to any suppliers. 1163 * 1164 * Persistent links stay around, but their status is changed to "available", 1165 * unless they already are in the "supplier unbind in progress" state in which 1166 * case they need not be updated. 1167 * 1168 * Links without the DL_FLAG_MANAGED flag set are ignored. 1169 */ 1170 static void __device_links_no_driver(struct device *dev) 1171 { 1172 struct device_link *link, *ln; 1173 1174 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1175 if (!(link->flags & DL_FLAG_MANAGED)) 1176 continue; 1177 1178 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 1179 device_link_drop_managed(link); 1180 continue; 1181 } 1182 1183 if (link->status != DL_STATE_CONSUMER_PROBE && 1184 link->status != DL_STATE_ACTIVE) 1185 continue; 1186 1187 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1188 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1189 } else { 1190 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1191 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1192 } 1193 } 1194 1195 dev->links.status = DL_DEV_NO_DRIVER; 1196 } 1197 1198 /** 1199 * device_links_no_driver - Update links after failing driver probe. 1200 * @dev: Device whose driver has just failed to probe. 1201 * 1202 * Clean up leftover links to consumers for @dev and invoke 1203 * %__device_links_no_driver() to update links to suppliers for it as 1204 * appropriate. 1205 * 1206 * Links without the DL_FLAG_MANAGED flag set are ignored. 1207 */ 1208 void device_links_no_driver(struct device *dev) 1209 { 1210 struct device_link *link; 1211 1212 device_links_write_lock(); 1213 1214 list_for_each_entry(link, &dev->links.consumers, s_node) { 1215 if (!(link->flags & DL_FLAG_MANAGED)) 1216 continue; 1217 1218 /* 1219 * The probe has failed, so if the status of the link is 1220 * "consumer probe" or "active", it must have been added by 1221 * a probing consumer while this device was still probing. 1222 * Change its state to "dormant", as it represents a valid 1223 * relationship, but it is not functionally meaningful. 1224 */ 1225 if (link->status == DL_STATE_CONSUMER_PROBE || 1226 link->status == DL_STATE_ACTIVE) 1227 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1228 } 1229 1230 __device_links_no_driver(dev); 1231 1232 device_links_write_unlock(); 1233 } 1234 1235 /** 1236 * device_links_driver_cleanup - Update links after driver removal. 1237 * @dev: Device whose driver has just gone away. 1238 * 1239 * Update links to consumers for @dev by changing their status to "dormant" and 1240 * invoke %__device_links_no_driver() to update links to suppliers for it as 1241 * appropriate. 1242 * 1243 * Links without the DL_FLAG_MANAGED flag set are ignored. 1244 */ 1245 void device_links_driver_cleanup(struct device *dev) 1246 { 1247 struct device_link *link, *ln; 1248 1249 device_links_write_lock(); 1250 1251 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) { 1252 if (!(link->flags & DL_FLAG_MANAGED)) 1253 continue; 1254 1255 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER); 1256 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 1257 1258 /* 1259 * autoremove the links between this @dev and its consumer 1260 * devices that are not active, i.e. where the link state 1261 * has moved to DL_STATE_SUPPLIER_UNBIND. 1262 */ 1263 if (link->status == DL_STATE_SUPPLIER_UNBIND && 1264 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 1265 device_link_drop_managed(link); 1266 1267 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1268 } 1269 1270 list_del_init(&dev->links.defer_hook); 1271 __device_links_no_driver(dev); 1272 1273 device_links_write_unlock(); 1274 } 1275 1276 /** 1277 * device_links_busy - Check if there are any busy links to consumers. 1278 * @dev: Device to check. 1279 * 1280 * Check each consumer of the device and return 'true' if its link's status 1281 * is one of "consumer probe" or "active" (meaning that the given consumer is 1282 * probing right now or its driver is present). Otherwise, change the link 1283 * state to "supplier unbind" to prevent the consumer from being probed 1284 * successfully going forward. 1285 * 1286 * Return 'false' if there are no probing or active consumers. 1287 * 1288 * Links without the DL_FLAG_MANAGED flag set are ignored. 1289 */ 1290 bool device_links_busy(struct device *dev) 1291 { 1292 struct device_link *link; 1293 bool ret = false; 1294 1295 device_links_write_lock(); 1296 1297 list_for_each_entry(link, &dev->links.consumers, s_node) { 1298 if (!(link->flags & DL_FLAG_MANAGED)) 1299 continue; 1300 1301 if (link->status == DL_STATE_CONSUMER_PROBE 1302 || link->status == DL_STATE_ACTIVE) { 1303 ret = true; 1304 break; 1305 } 1306 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1307 } 1308 1309 dev->links.status = DL_DEV_UNBINDING; 1310 1311 device_links_write_unlock(); 1312 return ret; 1313 } 1314 1315 /** 1316 * device_links_unbind_consumers - Force unbind consumers of the given device. 1317 * @dev: Device to unbind the consumers of. 1318 * 1319 * Walk the list of links to consumers for @dev and if any of them is in the 1320 * "consumer probe" state, wait for all device probes in progress to complete 1321 * and start over. 1322 * 1323 * If that's not the case, change the status of the link to "supplier unbind" 1324 * and check if the link was in the "active" state. If so, force the consumer 1325 * driver to unbind and start over (the consumer will not re-probe as we have 1326 * changed the state of the link already). 1327 * 1328 * Links without the DL_FLAG_MANAGED flag set are ignored. 1329 */ 1330 void device_links_unbind_consumers(struct device *dev) 1331 { 1332 struct device_link *link; 1333 1334 start: 1335 device_links_write_lock(); 1336 1337 list_for_each_entry(link, &dev->links.consumers, s_node) { 1338 enum device_link_state status; 1339 1340 if (!(link->flags & DL_FLAG_MANAGED) || 1341 link->flags & DL_FLAG_SYNC_STATE_ONLY) 1342 continue; 1343 1344 status = link->status; 1345 if (status == DL_STATE_CONSUMER_PROBE) { 1346 device_links_write_unlock(); 1347 1348 wait_for_device_probe(); 1349 goto start; 1350 } 1351 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1352 if (status == DL_STATE_ACTIVE) { 1353 struct device *consumer = link->consumer; 1354 1355 get_device(consumer); 1356 1357 device_links_write_unlock(); 1358 1359 device_release_driver_internal(consumer, NULL, 1360 consumer->parent); 1361 put_device(consumer); 1362 goto start; 1363 } 1364 } 1365 1366 device_links_write_unlock(); 1367 } 1368 1369 /** 1370 * device_links_purge - Delete existing links to other devices. 1371 * @dev: Target device. 1372 */ 1373 static void device_links_purge(struct device *dev) 1374 { 1375 struct device_link *link, *ln; 1376 1377 if (dev->class == &devlink_class) 1378 return; 1379 1380 mutex_lock(&wfs_lock); 1381 list_del(&dev->links.needs_suppliers); 1382 mutex_unlock(&wfs_lock); 1383 1384 /* 1385 * Delete all of the remaining links from this device to any other 1386 * devices (either consumers or suppliers). 1387 */ 1388 device_links_write_lock(); 1389 1390 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1391 WARN_ON(link->status == DL_STATE_ACTIVE); 1392 __device_link_del(&link->kref); 1393 } 1394 1395 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 1396 WARN_ON(link->status != DL_STATE_DORMANT && 1397 link->status != DL_STATE_NONE); 1398 __device_link_del(&link->kref); 1399 } 1400 1401 device_links_write_unlock(); 1402 } 1403 1404 static u32 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY; 1405 static int __init fw_devlink_setup(char *arg) 1406 { 1407 if (!arg) 1408 return -EINVAL; 1409 1410 if (strcmp(arg, "off") == 0) { 1411 fw_devlink_flags = 0; 1412 } else if (strcmp(arg, "permissive") == 0) { 1413 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY; 1414 } else if (strcmp(arg, "on") == 0) { 1415 fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER; 1416 } else if (strcmp(arg, "rpm") == 0) { 1417 fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER | 1418 DL_FLAG_PM_RUNTIME; 1419 } 1420 return 0; 1421 } 1422 early_param("fw_devlink", fw_devlink_setup); 1423 1424 u32 fw_devlink_get_flags(void) 1425 { 1426 return fw_devlink_flags; 1427 } 1428 1429 static bool fw_devlink_is_permissive(void) 1430 { 1431 return fw_devlink_flags == DL_FLAG_SYNC_STATE_ONLY; 1432 } 1433 1434 static void fw_devlink_link_device(struct device *dev) 1435 { 1436 int fw_ret; 1437 1438 if (!fw_devlink_flags) 1439 return; 1440 1441 mutex_lock(&defer_fw_devlink_lock); 1442 if (!defer_fw_devlink_count) 1443 device_link_add_missing_supplier_links(); 1444 1445 /* 1446 * The device's fwnode not having add_links() doesn't affect if other 1447 * consumers can find this device as a supplier. So, this check is 1448 * intentionally placed after device_link_add_missing_supplier_links(). 1449 */ 1450 if (!fwnode_has_op(dev->fwnode, add_links)) 1451 goto out; 1452 1453 /* 1454 * If fw_devlink is being deferred, assume all devices have mandatory 1455 * suppliers they need to link to later. Then, when the fw_devlink is 1456 * resumed, all these devices will get a chance to try and link to any 1457 * suppliers they have. 1458 */ 1459 if (!defer_fw_devlink_count) { 1460 fw_ret = fwnode_call_int_op(dev->fwnode, add_links, dev); 1461 if (fw_ret == -ENODEV && fw_devlink_is_permissive()) 1462 fw_ret = -EAGAIN; 1463 } else { 1464 fw_ret = -ENODEV; 1465 /* 1466 * defer_hook is not used to add device to deferred_sync list 1467 * until device is bound. Since deferred fw devlink also blocks 1468 * probing, same list hook can be used for deferred_fw_devlink. 1469 */ 1470 list_add_tail(&dev->links.defer_hook, &deferred_fw_devlink); 1471 } 1472 1473 if (fw_ret == -ENODEV) 1474 device_link_wait_for_mandatory_supplier(dev); 1475 else if (fw_ret) 1476 device_link_wait_for_optional_supplier(dev); 1477 1478 out: 1479 mutex_unlock(&defer_fw_devlink_lock); 1480 } 1481 1482 /** 1483 * fw_devlink_pause - Pause parsing of fwnode to create device links 1484 * 1485 * Calling this function defers any fwnode parsing to create device links until 1486 * fw_devlink_resume() is called. Both these functions are ref counted and the 1487 * caller needs to match the calls. 1488 * 1489 * While fw_devlink is paused: 1490 * - Any device that is added won't have its fwnode parsed to create device 1491 * links. 1492 * - The probe of the device will also be deferred during this period. 1493 * - Any devices that were already added, but waiting for suppliers won't be 1494 * able to link to newly added devices. 1495 * 1496 * Once fw_devlink_resume(): 1497 * - All the fwnodes that was not parsed will be parsed. 1498 * - All the devices that were deferred probing will be reattempted if they 1499 * aren't waiting for any more suppliers. 1500 * 1501 * This pair of functions, is mainly meant to optimize the parsing of fwnodes 1502 * when a lot of devices that need to link to each other are added in a short 1503 * interval of time. For example, adding all the top level devices in a system. 1504 * 1505 * For example, if N devices are added and: 1506 * - All the consumers are added before their suppliers 1507 * - All the suppliers of the N devices are part of the N devices 1508 * 1509 * Then: 1510 * 1511 * - With the use of fw_devlink_pause() and fw_devlink_resume(), each device 1512 * will only need one parsing of its fwnode because it is guaranteed to find 1513 * all the supplier devices already registered and ready to link to. It won't 1514 * have to do another pass later to find one or more suppliers it couldn't 1515 * find in the first parse of the fwnode. So, we'll only need O(N) fwnode 1516 * parses. 1517 * 1518 * - Without the use of fw_devlink_pause() and fw_devlink_resume(), we would 1519 * end up doing O(N^2) parses of fwnodes because every device that's added is 1520 * guaranteed to trigger a parse of the fwnode of every device added before 1521 * it. This O(N^2) parse is made worse by the fact that when a fwnode of a 1522 * device is parsed, all it descendant devices might need to have their 1523 * fwnodes parsed too (even if the devices themselves aren't added). 1524 */ 1525 void fw_devlink_pause(void) 1526 { 1527 mutex_lock(&defer_fw_devlink_lock); 1528 defer_fw_devlink_count++; 1529 mutex_unlock(&defer_fw_devlink_lock); 1530 } 1531 1532 /** fw_devlink_resume - Resume parsing of fwnode to create device links 1533 * 1534 * This function is used in conjunction with fw_devlink_pause() and is ref 1535 * counted. See documentation for fw_devlink_pause() for more details. 1536 */ 1537 void fw_devlink_resume(void) 1538 { 1539 struct device *dev, *tmp; 1540 LIST_HEAD(probe_list); 1541 1542 mutex_lock(&defer_fw_devlink_lock); 1543 if (!defer_fw_devlink_count) { 1544 WARN(true, "Unmatched fw_devlink pause/resume!"); 1545 goto out; 1546 } 1547 1548 defer_fw_devlink_count--; 1549 if (defer_fw_devlink_count) 1550 goto out; 1551 1552 device_link_add_missing_supplier_links(); 1553 list_splice_tail_init(&deferred_fw_devlink, &probe_list); 1554 out: 1555 mutex_unlock(&defer_fw_devlink_lock); 1556 1557 /* 1558 * bus_probe_device() can cause new devices to get added and they'll 1559 * try to grab defer_fw_devlink_lock. So, this needs to be done outside 1560 * the defer_fw_devlink_lock. 1561 */ 1562 list_for_each_entry_safe(dev, tmp, &probe_list, links.defer_hook) { 1563 list_del_init(&dev->links.defer_hook); 1564 bus_probe_device(dev); 1565 } 1566 } 1567 /* Device links support end. */ 1568 1569 int (*platform_notify)(struct device *dev) = NULL; 1570 int (*platform_notify_remove)(struct device *dev) = NULL; 1571 static struct kobject *dev_kobj; 1572 struct kobject *sysfs_dev_char_kobj; 1573 struct kobject *sysfs_dev_block_kobj; 1574 1575 static DEFINE_MUTEX(device_hotplug_lock); 1576 1577 void lock_device_hotplug(void) 1578 { 1579 mutex_lock(&device_hotplug_lock); 1580 } 1581 1582 void unlock_device_hotplug(void) 1583 { 1584 mutex_unlock(&device_hotplug_lock); 1585 } 1586 1587 int lock_device_hotplug_sysfs(void) 1588 { 1589 if (mutex_trylock(&device_hotplug_lock)) 1590 return 0; 1591 1592 /* Avoid busy looping (5 ms of sleep should do). */ 1593 msleep(5); 1594 return restart_syscall(); 1595 } 1596 1597 #ifdef CONFIG_BLOCK 1598 static inline int device_is_not_partition(struct device *dev) 1599 { 1600 return !(dev->type == &part_type); 1601 } 1602 #else 1603 static inline int device_is_not_partition(struct device *dev) 1604 { 1605 return 1; 1606 } 1607 #endif 1608 1609 static int 1610 device_platform_notify(struct device *dev, enum kobject_action action) 1611 { 1612 int ret; 1613 1614 ret = acpi_platform_notify(dev, action); 1615 if (ret) 1616 return ret; 1617 1618 ret = software_node_notify(dev, action); 1619 if (ret) 1620 return ret; 1621 1622 if (platform_notify && action == KOBJ_ADD) 1623 platform_notify(dev); 1624 else if (platform_notify_remove && action == KOBJ_REMOVE) 1625 platform_notify_remove(dev); 1626 return 0; 1627 } 1628 1629 /** 1630 * dev_driver_string - Return a device's driver name, if at all possible 1631 * @dev: struct device to get the name of 1632 * 1633 * Will return the device's driver's name if it is bound to a device. If 1634 * the device is not bound to a driver, it will return the name of the bus 1635 * it is attached to. If it is not attached to a bus either, an empty 1636 * string will be returned. 1637 */ 1638 const char *dev_driver_string(const struct device *dev) 1639 { 1640 struct device_driver *drv; 1641 1642 /* dev->driver can change to NULL underneath us because of unbinding, 1643 * so be careful about accessing it. dev->bus and dev->class should 1644 * never change once they are set, so they don't need special care. 1645 */ 1646 drv = READ_ONCE(dev->driver); 1647 return drv ? drv->name : 1648 (dev->bus ? dev->bus->name : 1649 (dev->class ? dev->class->name : "")); 1650 } 1651 EXPORT_SYMBOL(dev_driver_string); 1652 1653 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 1654 1655 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 1656 char *buf) 1657 { 1658 struct device_attribute *dev_attr = to_dev_attr(attr); 1659 struct device *dev = kobj_to_dev(kobj); 1660 ssize_t ret = -EIO; 1661 1662 if (dev_attr->show) 1663 ret = dev_attr->show(dev, dev_attr, buf); 1664 if (ret >= (ssize_t)PAGE_SIZE) { 1665 printk("dev_attr_show: %pS returned bad count\n", 1666 dev_attr->show); 1667 } 1668 return ret; 1669 } 1670 1671 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 1672 const char *buf, size_t count) 1673 { 1674 struct device_attribute *dev_attr = to_dev_attr(attr); 1675 struct device *dev = kobj_to_dev(kobj); 1676 ssize_t ret = -EIO; 1677 1678 if (dev_attr->store) 1679 ret = dev_attr->store(dev, dev_attr, buf, count); 1680 return ret; 1681 } 1682 1683 static const struct sysfs_ops dev_sysfs_ops = { 1684 .show = dev_attr_show, 1685 .store = dev_attr_store, 1686 }; 1687 1688 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 1689 1690 ssize_t device_store_ulong(struct device *dev, 1691 struct device_attribute *attr, 1692 const char *buf, size_t size) 1693 { 1694 struct dev_ext_attribute *ea = to_ext_attr(attr); 1695 int ret; 1696 unsigned long new; 1697 1698 ret = kstrtoul(buf, 0, &new); 1699 if (ret) 1700 return ret; 1701 *(unsigned long *)(ea->var) = new; 1702 /* Always return full write size even if we didn't consume all */ 1703 return size; 1704 } 1705 EXPORT_SYMBOL_GPL(device_store_ulong); 1706 1707 ssize_t device_show_ulong(struct device *dev, 1708 struct device_attribute *attr, 1709 char *buf) 1710 { 1711 struct dev_ext_attribute *ea = to_ext_attr(attr); 1712 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var)); 1713 } 1714 EXPORT_SYMBOL_GPL(device_show_ulong); 1715 1716 ssize_t device_store_int(struct device *dev, 1717 struct device_attribute *attr, 1718 const char *buf, size_t size) 1719 { 1720 struct dev_ext_attribute *ea = to_ext_attr(attr); 1721 int ret; 1722 long new; 1723 1724 ret = kstrtol(buf, 0, &new); 1725 if (ret) 1726 return ret; 1727 1728 if (new > INT_MAX || new < INT_MIN) 1729 return -EINVAL; 1730 *(int *)(ea->var) = new; 1731 /* Always return full write size even if we didn't consume all */ 1732 return size; 1733 } 1734 EXPORT_SYMBOL_GPL(device_store_int); 1735 1736 ssize_t device_show_int(struct device *dev, 1737 struct device_attribute *attr, 1738 char *buf) 1739 { 1740 struct dev_ext_attribute *ea = to_ext_attr(attr); 1741 1742 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var)); 1743 } 1744 EXPORT_SYMBOL_GPL(device_show_int); 1745 1746 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 1747 const char *buf, size_t size) 1748 { 1749 struct dev_ext_attribute *ea = to_ext_attr(attr); 1750 1751 if (strtobool(buf, ea->var) < 0) 1752 return -EINVAL; 1753 1754 return size; 1755 } 1756 EXPORT_SYMBOL_GPL(device_store_bool); 1757 1758 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 1759 char *buf) 1760 { 1761 struct dev_ext_attribute *ea = to_ext_attr(attr); 1762 1763 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var)); 1764 } 1765 EXPORT_SYMBOL_GPL(device_show_bool); 1766 1767 /** 1768 * device_release - free device structure. 1769 * @kobj: device's kobject. 1770 * 1771 * This is called once the reference count for the object 1772 * reaches 0. We forward the call to the device's release 1773 * method, which should handle actually freeing the structure. 1774 */ 1775 static void device_release(struct kobject *kobj) 1776 { 1777 struct device *dev = kobj_to_dev(kobj); 1778 struct device_private *p = dev->p; 1779 1780 /* 1781 * Some platform devices are driven without driver attached 1782 * and managed resources may have been acquired. Make sure 1783 * all resources are released. 1784 * 1785 * Drivers still can add resources into device after device 1786 * is deleted but alive, so release devres here to avoid 1787 * possible memory leak. 1788 */ 1789 devres_release_all(dev); 1790 1791 if (dev->release) 1792 dev->release(dev); 1793 else if (dev->type && dev->type->release) 1794 dev->type->release(dev); 1795 else if (dev->class && dev->class->dev_release) 1796 dev->class->dev_release(dev); 1797 else 1798 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n", 1799 dev_name(dev)); 1800 kfree(p); 1801 } 1802 1803 static const void *device_namespace(struct kobject *kobj) 1804 { 1805 struct device *dev = kobj_to_dev(kobj); 1806 const void *ns = NULL; 1807 1808 if (dev->class && dev->class->ns_type) 1809 ns = dev->class->namespace(dev); 1810 1811 return ns; 1812 } 1813 1814 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid) 1815 { 1816 struct device *dev = kobj_to_dev(kobj); 1817 1818 if (dev->class && dev->class->get_ownership) 1819 dev->class->get_ownership(dev, uid, gid); 1820 } 1821 1822 static struct kobj_type device_ktype = { 1823 .release = device_release, 1824 .sysfs_ops = &dev_sysfs_ops, 1825 .namespace = device_namespace, 1826 .get_ownership = device_get_ownership, 1827 }; 1828 1829 1830 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj) 1831 { 1832 struct kobj_type *ktype = get_ktype(kobj); 1833 1834 if (ktype == &device_ktype) { 1835 struct device *dev = kobj_to_dev(kobj); 1836 if (dev->bus) 1837 return 1; 1838 if (dev->class) 1839 return 1; 1840 } 1841 return 0; 1842 } 1843 1844 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj) 1845 { 1846 struct device *dev = kobj_to_dev(kobj); 1847 1848 if (dev->bus) 1849 return dev->bus->name; 1850 if (dev->class) 1851 return dev->class->name; 1852 return NULL; 1853 } 1854 1855 static int dev_uevent(struct kset *kset, struct kobject *kobj, 1856 struct kobj_uevent_env *env) 1857 { 1858 struct device *dev = kobj_to_dev(kobj); 1859 int retval = 0; 1860 1861 /* add device node properties if present */ 1862 if (MAJOR(dev->devt)) { 1863 const char *tmp; 1864 const char *name; 1865 umode_t mode = 0; 1866 kuid_t uid = GLOBAL_ROOT_UID; 1867 kgid_t gid = GLOBAL_ROOT_GID; 1868 1869 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 1870 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 1871 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 1872 if (name) { 1873 add_uevent_var(env, "DEVNAME=%s", name); 1874 if (mode) 1875 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 1876 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 1877 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 1878 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 1879 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 1880 kfree(tmp); 1881 } 1882 } 1883 1884 if (dev->type && dev->type->name) 1885 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 1886 1887 if (dev->driver) 1888 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 1889 1890 /* Add common DT information about the device */ 1891 of_device_uevent(dev, env); 1892 1893 /* have the bus specific function add its stuff */ 1894 if (dev->bus && dev->bus->uevent) { 1895 retval = dev->bus->uevent(dev, env); 1896 if (retval) 1897 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 1898 dev_name(dev), __func__, retval); 1899 } 1900 1901 /* have the class specific function add its stuff */ 1902 if (dev->class && dev->class->dev_uevent) { 1903 retval = dev->class->dev_uevent(dev, env); 1904 if (retval) 1905 pr_debug("device: '%s': %s: class uevent() " 1906 "returned %d\n", dev_name(dev), 1907 __func__, retval); 1908 } 1909 1910 /* have the device type specific function add its stuff */ 1911 if (dev->type && dev->type->uevent) { 1912 retval = dev->type->uevent(dev, env); 1913 if (retval) 1914 pr_debug("device: '%s': %s: dev_type uevent() " 1915 "returned %d\n", dev_name(dev), 1916 __func__, retval); 1917 } 1918 1919 return retval; 1920 } 1921 1922 static const struct kset_uevent_ops device_uevent_ops = { 1923 .filter = dev_uevent_filter, 1924 .name = dev_uevent_name, 1925 .uevent = dev_uevent, 1926 }; 1927 1928 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 1929 char *buf) 1930 { 1931 struct kobject *top_kobj; 1932 struct kset *kset; 1933 struct kobj_uevent_env *env = NULL; 1934 int i; 1935 size_t count = 0; 1936 int retval; 1937 1938 /* search the kset, the device belongs to */ 1939 top_kobj = &dev->kobj; 1940 while (!top_kobj->kset && top_kobj->parent) 1941 top_kobj = top_kobj->parent; 1942 if (!top_kobj->kset) 1943 goto out; 1944 1945 kset = top_kobj->kset; 1946 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 1947 goto out; 1948 1949 /* respect filter */ 1950 if (kset->uevent_ops && kset->uevent_ops->filter) 1951 if (!kset->uevent_ops->filter(kset, &dev->kobj)) 1952 goto out; 1953 1954 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 1955 if (!env) 1956 return -ENOMEM; 1957 1958 /* let the kset specific function add its keys */ 1959 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env); 1960 if (retval) 1961 goto out; 1962 1963 /* copy keys to file */ 1964 for (i = 0; i < env->envp_idx; i++) 1965 count += sprintf(&buf[count], "%s\n", env->envp[i]); 1966 out: 1967 kfree(env); 1968 return count; 1969 } 1970 1971 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 1972 const char *buf, size_t count) 1973 { 1974 int rc; 1975 1976 rc = kobject_synth_uevent(&dev->kobj, buf, count); 1977 1978 if (rc) { 1979 dev_err(dev, "uevent: failed to send synthetic uevent\n"); 1980 return rc; 1981 } 1982 1983 return count; 1984 } 1985 static DEVICE_ATTR_RW(uevent); 1986 1987 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 1988 char *buf) 1989 { 1990 bool val; 1991 1992 device_lock(dev); 1993 val = !dev->offline; 1994 device_unlock(dev); 1995 return sprintf(buf, "%u\n", val); 1996 } 1997 1998 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 1999 const char *buf, size_t count) 2000 { 2001 bool val; 2002 int ret; 2003 2004 ret = strtobool(buf, &val); 2005 if (ret < 0) 2006 return ret; 2007 2008 ret = lock_device_hotplug_sysfs(); 2009 if (ret) 2010 return ret; 2011 2012 ret = val ? device_online(dev) : device_offline(dev); 2013 unlock_device_hotplug(); 2014 return ret < 0 ? ret : count; 2015 } 2016 static DEVICE_ATTR_RW(online); 2017 2018 int device_add_groups(struct device *dev, const struct attribute_group **groups) 2019 { 2020 return sysfs_create_groups(&dev->kobj, groups); 2021 } 2022 EXPORT_SYMBOL_GPL(device_add_groups); 2023 2024 void device_remove_groups(struct device *dev, 2025 const struct attribute_group **groups) 2026 { 2027 sysfs_remove_groups(&dev->kobj, groups); 2028 } 2029 EXPORT_SYMBOL_GPL(device_remove_groups); 2030 2031 union device_attr_group_devres { 2032 const struct attribute_group *group; 2033 const struct attribute_group **groups; 2034 }; 2035 2036 static int devm_attr_group_match(struct device *dev, void *res, void *data) 2037 { 2038 return ((union device_attr_group_devres *)res)->group == data; 2039 } 2040 2041 static void devm_attr_group_remove(struct device *dev, void *res) 2042 { 2043 union device_attr_group_devres *devres = res; 2044 const struct attribute_group *group = devres->group; 2045 2046 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 2047 sysfs_remove_group(&dev->kobj, group); 2048 } 2049 2050 static void devm_attr_groups_remove(struct device *dev, void *res) 2051 { 2052 union device_attr_group_devres *devres = res; 2053 const struct attribute_group **groups = devres->groups; 2054 2055 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups); 2056 sysfs_remove_groups(&dev->kobj, groups); 2057 } 2058 2059 /** 2060 * devm_device_add_group - given a device, create a managed attribute group 2061 * @dev: The device to create the group for 2062 * @grp: The attribute group to create 2063 * 2064 * This function creates a group for the first time. It will explicitly 2065 * warn and error if any of the attribute files being created already exist. 2066 * 2067 * Returns 0 on success or error code on failure. 2068 */ 2069 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 2070 { 2071 union device_attr_group_devres *devres; 2072 int error; 2073 2074 devres = devres_alloc(devm_attr_group_remove, 2075 sizeof(*devres), GFP_KERNEL); 2076 if (!devres) 2077 return -ENOMEM; 2078 2079 error = sysfs_create_group(&dev->kobj, grp); 2080 if (error) { 2081 devres_free(devres); 2082 return error; 2083 } 2084 2085 devres->group = grp; 2086 devres_add(dev, devres); 2087 return 0; 2088 } 2089 EXPORT_SYMBOL_GPL(devm_device_add_group); 2090 2091 /** 2092 * devm_device_remove_group: remove a managed group from a device 2093 * @dev: device to remove the group from 2094 * @grp: group to remove 2095 * 2096 * This function removes a group of attributes from a device. The attributes 2097 * previously have to have been created for this group, otherwise it will fail. 2098 */ 2099 void devm_device_remove_group(struct device *dev, 2100 const struct attribute_group *grp) 2101 { 2102 WARN_ON(devres_release(dev, devm_attr_group_remove, 2103 devm_attr_group_match, 2104 /* cast away const */ (void *)grp)); 2105 } 2106 EXPORT_SYMBOL_GPL(devm_device_remove_group); 2107 2108 /** 2109 * devm_device_add_groups - create a bunch of managed attribute groups 2110 * @dev: The device to create the group for 2111 * @groups: The attribute groups to create, NULL terminated 2112 * 2113 * This function creates a bunch of managed attribute groups. If an error 2114 * occurs when creating a group, all previously created groups will be 2115 * removed, unwinding everything back to the original state when this 2116 * function was called. It will explicitly warn and error if any of the 2117 * attribute files being created already exist. 2118 * 2119 * Returns 0 on success or error code from sysfs_create_group on failure. 2120 */ 2121 int devm_device_add_groups(struct device *dev, 2122 const struct attribute_group **groups) 2123 { 2124 union device_attr_group_devres *devres; 2125 int error; 2126 2127 devres = devres_alloc(devm_attr_groups_remove, 2128 sizeof(*devres), GFP_KERNEL); 2129 if (!devres) 2130 return -ENOMEM; 2131 2132 error = sysfs_create_groups(&dev->kobj, groups); 2133 if (error) { 2134 devres_free(devres); 2135 return error; 2136 } 2137 2138 devres->groups = groups; 2139 devres_add(dev, devres); 2140 return 0; 2141 } 2142 EXPORT_SYMBOL_GPL(devm_device_add_groups); 2143 2144 /** 2145 * devm_device_remove_groups - remove a list of managed groups 2146 * 2147 * @dev: The device for the groups to be removed from 2148 * @groups: NULL terminated list of groups to be removed 2149 * 2150 * If groups is not NULL, remove the specified groups from the device. 2151 */ 2152 void devm_device_remove_groups(struct device *dev, 2153 const struct attribute_group **groups) 2154 { 2155 WARN_ON(devres_release(dev, devm_attr_groups_remove, 2156 devm_attr_group_match, 2157 /* cast away const */ (void *)groups)); 2158 } 2159 EXPORT_SYMBOL_GPL(devm_device_remove_groups); 2160 2161 static int device_add_attrs(struct device *dev) 2162 { 2163 struct class *class = dev->class; 2164 const struct device_type *type = dev->type; 2165 int error; 2166 2167 if (class) { 2168 error = device_add_groups(dev, class->dev_groups); 2169 if (error) 2170 return error; 2171 } 2172 2173 if (type) { 2174 error = device_add_groups(dev, type->groups); 2175 if (error) 2176 goto err_remove_class_groups; 2177 } 2178 2179 error = device_add_groups(dev, dev->groups); 2180 if (error) 2181 goto err_remove_type_groups; 2182 2183 if (device_supports_offline(dev) && !dev->offline_disabled) { 2184 error = device_create_file(dev, &dev_attr_online); 2185 if (error) 2186 goto err_remove_dev_groups; 2187 } 2188 2189 if (fw_devlink_flags && !fw_devlink_is_permissive()) { 2190 error = device_create_file(dev, &dev_attr_waiting_for_supplier); 2191 if (error) 2192 goto err_remove_dev_online; 2193 } 2194 2195 return 0; 2196 2197 err_remove_dev_online: 2198 device_remove_file(dev, &dev_attr_online); 2199 err_remove_dev_groups: 2200 device_remove_groups(dev, dev->groups); 2201 err_remove_type_groups: 2202 if (type) 2203 device_remove_groups(dev, type->groups); 2204 err_remove_class_groups: 2205 if (class) 2206 device_remove_groups(dev, class->dev_groups); 2207 2208 return error; 2209 } 2210 2211 static void device_remove_attrs(struct device *dev) 2212 { 2213 struct class *class = dev->class; 2214 const struct device_type *type = dev->type; 2215 2216 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2217 device_remove_file(dev, &dev_attr_online); 2218 device_remove_groups(dev, dev->groups); 2219 2220 if (type) 2221 device_remove_groups(dev, type->groups); 2222 2223 if (class) 2224 device_remove_groups(dev, class->dev_groups); 2225 } 2226 2227 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 2228 char *buf) 2229 { 2230 return print_dev_t(buf, dev->devt); 2231 } 2232 static DEVICE_ATTR_RO(dev); 2233 2234 /* /sys/devices/ */ 2235 struct kset *devices_kset; 2236 2237 /** 2238 * devices_kset_move_before - Move device in the devices_kset's list. 2239 * @deva: Device to move. 2240 * @devb: Device @deva should come before. 2241 */ 2242 static void devices_kset_move_before(struct device *deva, struct device *devb) 2243 { 2244 if (!devices_kset) 2245 return; 2246 pr_debug("devices_kset: Moving %s before %s\n", 2247 dev_name(deva), dev_name(devb)); 2248 spin_lock(&devices_kset->list_lock); 2249 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 2250 spin_unlock(&devices_kset->list_lock); 2251 } 2252 2253 /** 2254 * devices_kset_move_after - Move device in the devices_kset's list. 2255 * @deva: Device to move 2256 * @devb: Device @deva should come after. 2257 */ 2258 static void devices_kset_move_after(struct device *deva, struct device *devb) 2259 { 2260 if (!devices_kset) 2261 return; 2262 pr_debug("devices_kset: Moving %s after %s\n", 2263 dev_name(deva), dev_name(devb)); 2264 spin_lock(&devices_kset->list_lock); 2265 list_move(&deva->kobj.entry, &devb->kobj.entry); 2266 spin_unlock(&devices_kset->list_lock); 2267 } 2268 2269 /** 2270 * devices_kset_move_last - move the device to the end of devices_kset's list. 2271 * @dev: device to move 2272 */ 2273 void devices_kset_move_last(struct device *dev) 2274 { 2275 if (!devices_kset) 2276 return; 2277 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 2278 spin_lock(&devices_kset->list_lock); 2279 list_move_tail(&dev->kobj.entry, &devices_kset->list); 2280 spin_unlock(&devices_kset->list_lock); 2281 } 2282 2283 /** 2284 * device_create_file - create sysfs attribute file for device. 2285 * @dev: device. 2286 * @attr: device attribute descriptor. 2287 */ 2288 int device_create_file(struct device *dev, 2289 const struct device_attribute *attr) 2290 { 2291 int error = 0; 2292 2293 if (dev) { 2294 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 2295 "Attribute %s: write permission without 'store'\n", 2296 attr->attr.name); 2297 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 2298 "Attribute %s: read permission without 'show'\n", 2299 attr->attr.name); 2300 error = sysfs_create_file(&dev->kobj, &attr->attr); 2301 } 2302 2303 return error; 2304 } 2305 EXPORT_SYMBOL_GPL(device_create_file); 2306 2307 /** 2308 * device_remove_file - remove sysfs attribute file. 2309 * @dev: device. 2310 * @attr: device attribute descriptor. 2311 */ 2312 void device_remove_file(struct device *dev, 2313 const struct device_attribute *attr) 2314 { 2315 if (dev) 2316 sysfs_remove_file(&dev->kobj, &attr->attr); 2317 } 2318 EXPORT_SYMBOL_GPL(device_remove_file); 2319 2320 /** 2321 * device_remove_file_self - remove sysfs attribute file from its own method. 2322 * @dev: device. 2323 * @attr: device attribute descriptor. 2324 * 2325 * See kernfs_remove_self() for details. 2326 */ 2327 bool device_remove_file_self(struct device *dev, 2328 const struct device_attribute *attr) 2329 { 2330 if (dev) 2331 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 2332 else 2333 return false; 2334 } 2335 EXPORT_SYMBOL_GPL(device_remove_file_self); 2336 2337 /** 2338 * device_create_bin_file - create sysfs binary attribute file for device. 2339 * @dev: device. 2340 * @attr: device binary attribute descriptor. 2341 */ 2342 int device_create_bin_file(struct device *dev, 2343 const struct bin_attribute *attr) 2344 { 2345 int error = -EINVAL; 2346 if (dev) 2347 error = sysfs_create_bin_file(&dev->kobj, attr); 2348 return error; 2349 } 2350 EXPORT_SYMBOL_GPL(device_create_bin_file); 2351 2352 /** 2353 * device_remove_bin_file - remove sysfs binary attribute file 2354 * @dev: device. 2355 * @attr: device binary attribute descriptor. 2356 */ 2357 void device_remove_bin_file(struct device *dev, 2358 const struct bin_attribute *attr) 2359 { 2360 if (dev) 2361 sysfs_remove_bin_file(&dev->kobj, attr); 2362 } 2363 EXPORT_SYMBOL_GPL(device_remove_bin_file); 2364 2365 static void klist_children_get(struct klist_node *n) 2366 { 2367 struct device_private *p = to_device_private_parent(n); 2368 struct device *dev = p->device; 2369 2370 get_device(dev); 2371 } 2372 2373 static void klist_children_put(struct klist_node *n) 2374 { 2375 struct device_private *p = to_device_private_parent(n); 2376 struct device *dev = p->device; 2377 2378 put_device(dev); 2379 } 2380 2381 /** 2382 * device_initialize - init device structure. 2383 * @dev: device. 2384 * 2385 * This prepares the device for use by other layers by initializing 2386 * its fields. 2387 * It is the first half of device_register(), if called by 2388 * that function, though it can also be called separately, so one 2389 * may use @dev's fields. In particular, get_device()/put_device() 2390 * may be used for reference counting of @dev after calling this 2391 * function. 2392 * 2393 * All fields in @dev must be initialized by the caller to 0, except 2394 * for those explicitly set to some other value. The simplest 2395 * approach is to use kzalloc() to allocate the structure containing 2396 * @dev. 2397 * 2398 * NOTE: Use put_device() to give up your reference instead of freeing 2399 * @dev directly once you have called this function. 2400 */ 2401 void device_initialize(struct device *dev) 2402 { 2403 dev->kobj.kset = devices_kset; 2404 kobject_init(&dev->kobj, &device_ktype); 2405 INIT_LIST_HEAD(&dev->dma_pools); 2406 mutex_init(&dev->mutex); 2407 #ifdef CONFIG_PROVE_LOCKING 2408 mutex_init(&dev->lockdep_mutex); 2409 #endif 2410 lockdep_set_novalidate_class(&dev->mutex); 2411 spin_lock_init(&dev->devres_lock); 2412 INIT_LIST_HEAD(&dev->devres_head); 2413 device_pm_init(dev); 2414 set_dev_node(dev, -1); 2415 #ifdef CONFIG_GENERIC_MSI_IRQ 2416 INIT_LIST_HEAD(&dev->msi_list); 2417 #endif 2418 INIT_LIST_HEAD(&dev->links.consumers); 2419 INIT_LIST_HEAD(&dev->links.suppliers); 2420 INIT_LIST_HEAD(&dev->links.needs_suppliers); 2421 INIT_LIST_HEAD(&dev->links.defer_hook); 2422 dev->links.status = DL_DEV_NO_DRIVER; 2423 } 2424 EXPORT_SYMBOL_GPL(device_initialize); 2425 2426 struct kobject *virtual_device_parent(struct device *dev) 2427 { 2428 static struct kobject *virtual_dir = NULL; 2429 2430 if (!virtual_dir) 2431 virtual_dir = kobject_create_and_add("virtual", 2432 &devices_kset->kobj); 2433 2434 return virtual_dir; 2435 } 2436 2437 struct class_dir { 2438 struct kobject kobj; 2439 struct class *class; 2440 }; 2441 2442 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 2443 2444 static void class_dir_release(struct kobject *kobj) 2445 { 2446 struct class_dir *dir = to_class_dir(kobj); 2447 kfree(dir); 2448 } 2449 2450 static const 2451 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj) 2452 { 2453 struct class_dir *dir = to_class_dir(kobj); 2454 return dir->class->ns_type; 2455 } 2456 2457 static struct kobj_type class_dir_ktype = { 2458 .release = class_dir_release, 2459 .sysfs_ops = &kobj_sysfs_ops, 2460 .child_ns_type = class_dir_child_ns_type 2461 }; 2462 2463 static struct kobject * 2464 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj) 2465 { 2466 struct class_dir *dir; 2467 int retval; 2468 2469 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 2470 if (!dir) 2471 return ERR_PTR(-ENOMEM); 2472 2473 dir->class = class; 2474 kobject_init(&dir->kobj, &class_dir_ktype); 2475 2476 dir->kobj.kset = &class->p->glue_dirs; 2477 2478 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name); 2479 if (retval < 0) { 2480 kobject_put(&dir->kobj); 2481 return ERR_PTR(retval); 2482 } 2483 return &dir->kobj; 2484 } 2485 2486 static DEFINE_MUTEX(gdp_mutex); 2487 2488 static struct kobject *get_device_parent(struct device *dev, 2489 struct device *parent) 2490 { 2491 if (dev->class) { 2492 struct kobject *kobj = NULL; 2493 struct kobject *parent_kobj; 2494 struct kobject *k; 2495 2496 #ifdef CONFIG_BLOCK 2497 /* block disks show up in /sys/block */ 2498 if (sysfs_deprecated && dev->class == &block_class) { 2499 if (parent && parent->class == &block_class) 2500 return &parent->kobj; 2501 return &block_class.p->subsys.kobj; 2502 } 2503 #endif 2504 2505 /* 2506 * If we have no parent, we live in "virtual". 2507 * Class-devices with a non class-device as parent, live 2508 * in a "glue" directory to prevent namespace collisions. 2509 */ 2510 if (parent == NULL) 2511 parent_kobj = virtual_device_parent(dev); 2512 else if (parent->class && !dev->class->ns_type) 2513 return &parent->kobj; 2514 else 2515 parent_kobj = &parent->kobj; 2516 2517 mutex_lock(&gdp_mutex); 2518 2519 /* find our class-directory at the parent and reference it */ 2520 spin_lock(&dev->class->p->glue_dirs.list_lock); 2521 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry) 2522 if (k->parent == parent_kobj) { 2523 kobj = kobject_get(k); 2524 break; 2525 } 2526 spin_unlock(&dev->class->p->glue_dirs.list_lock); 2527 if (kobj) { 2528 mutex_unlock(&gdp_mutex); 2529 return kobj; 2530 } 2531 2532 /* or create a new class-directory at the parent device */ 2533 k = class_dir_create_and_add(dev->class, parent_kobj); 2534 /* do not emit an uevent for this simple "glue" directory */ 2535 mutex_unlock(&gdp_mutex); 2536 return k; 2537 } 2538 2539 /* subsystems can specify a default root directory for their devices */ 2540 if (!parent && dev->bus && dev->bus->dev_root) 2541 return &dev->bus->dev_root->kobj; 2542 2543 if (parent) 2544 return &parent->kobj; 2545 return NULL; 2546 } 2547 2548 static inline bool live_in_glue_dir(struct kobject *kobj, 2549 struct device *dev) 2550 { 2551 if (!kobj || !dev->class || 2552 kobj->kset != &dev->class->p->glue_dirs) 2553 return false; 2554 return true; 2555 } 2556 2557 static inline struct kobject *get_glue_dir(struct device *dev) 2558 { 2559 return dev->kobj.parent; 2560 } 2561 2562 /* 2563 * make sure cleaning up dir as the last step, we need to make 2564 * sure .release handler of kobject is run with holding the 2565 * global lock 2566 */ 2567 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 2568 { 2569 unsigned int ref; 2570 2571 /* see if we live in a "glue" directory */ 2572 if (!live_in_glue_dir(glue_dir, dev)) 2573 return; 2574 2575 mutex_lock(&gdp_mutex); 2576 /** 2577 * There is a race condition between removing glue directory 2578 * and adding a new device under the glue directory. 2579 * 2580 * CPU1: CPU2: 2581 * 2582 * device_add() 2583 * get_device_parent() 2584 * class_dir_create_and_add() 2585 * kobject_add_internal() 2586 * create_dir() // create glue_dir 2587 * 2588 * device_add() 2589 * get_device_parent() 2590 * kobject_get() // get glue_dir 2591 * 2592 * device_del() 2593 * cleanup_glue_dir() 2594 * kobject_del(glue_dir) 2595 * 2596 * kobject_add() 2597 * kobject_add_internal() 2598 * create_dir() // in glue_dir 2599 * sysfs_create_dir_ns() 2600 * kernfs_create_dir_ns(sd) 2601 * 2602 * sysfs_remove_dir() // glue_dir->sd=NULL 2603 * sysfs_put() // free glue_dir->sd 2604 * 2605 * // sd is freed 2606 * kernfs_new_node(sd) 2607 * kernfs_get(glue_dir) 2608 * kernfs_add_one() 2609 * kernfs_put() 2610 * 2611 * Before CPU1 remove last child device under glue dir, if CPU2 add 2612 * a new device under glue dir, the glue_dir kobject reference count 2613 * will be increase to 2 in kobject_get(k). And CPU2 has been called 2614 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir() 2615 * and sysfs_put(). This result in glue_dir->sd is freed. 2616 * 2617 * Then the CPU2 will see a stale "empty" but still potentially used 2618 * glue dir around in kernfs_new_node(). 2619 * 2620 * In order to avoid this happening, we also should make sure that 2621 * kernfs_node for glue_dir is released in CPU1 only when refcount 2622 * for glue_dir kobj is 1. 2623 */ 2624 ref = kref_read(&glue_dir->kref); 2625 if (!kobject_has_children(glue_dir) && !--ref) 2626 kobject_del(glue_dir); 2627 kobject_put(glue_dir); 2628 mutex_unlock(&gdp_mutex); 2629 } 2630 2631 static int device_add_class_symlinks(struct device *dev) 2632 { 2633 struct device_node *of_node = dev_of_node(dev); 2634 int error; 2635 2636 if (of_node) { 2637 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 2638 if (error) 2639 dev_warn(dev, "Error %d creating of_node link\n",error); 2640 /* An error here doesn't warrant bringing down the device */ 2641 } 2642 2643 if (!dev->class) 2644 return 0; 2645 2646 error = sysfs_create_link(&dev->kobj, 2647 &dev->class->p->subsys.kobj, 2648 "subsystem"); 2649 if (error) 2650 goto out_devnode; 2651 2652 if (dev->parent && device_is_not_partition(dev)) { 2653 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 2654 "device"); 2655 if (error) 2656 goto out_subsys; 2657 } 2658 2659 #ifdef CONFIG_BLOCK 2660 /* /sys/block has directories and does not need symlinks */ 2661 if (sysfs_deprecated && dev->class == &block_class) 2662 return 0; 2663 #endif 2664 2665 /* link in the class directory pointing to the device */ 2666 error = sysfs_create_link(&dev->class->p->subsys.kobj, 2667 &dev->kobj, dev_name(dev)); 2668 if (error) 2669 goto out_device; 2670 2671 return 0; 2672 2673 out_device: 2674 sysfs_remove_link(&dev->kobj, "device"); 2675 2676 out_subsys: 2677 sysfs_remove_link(&dev->kobj, "subsystem"); 2678 out_devnode: 2679 sysfs_remove_link(&dev->kobj, "of_node"); 2680 return error; 2681 } 2682 2683 static void device_remove_class_symlinks(struct device *dev) 2684 { 2685 if (dev_of_node(dev)) 2686 sysfs_remove_link(&dev->kobj, "of_node"); 2687 2688 if (!dev->class) 2689 return; 2690 2691 if (dev->parent && device_is_not_partition(dev)) 2692 sysfs_remove_link(&dev->kobj, "device"); 2693 sysfs_remove_link(&dev->kobj, "subsystem"); 2694 #ifdef CONFIG_BLOCK 2695 if (sysfs_deprecated && dev->class == &block_class) 2696 return; 2697 #endif 2698 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev)); 2699 } 2700 2701 /** 2702 * dev_set_name - set a device name 2703 * @dev: device 2704 * @fmt: format string for the device's name 2705 */ 2706 int dev_set_name(struct device *dev, const char *fmt, ...) 2707 { 2708 va_list vargs; 2709 int err; 2710 2711 va_start(vargs, fmt); 2712 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 2713 va_end(vargs); 2714 return err; 2715 } 2716 EXPORT_SYMBOL_GPL(dev_set_name); 2717 2718 /** 2719 * device_to_dev_kobj - select a /sys/dev/ directory for the device 2720 * @dev: device 2721 * 2722 * By default we select char/ for new entries. Setting class->dev_obj 2723 * to NULL prevents an entry from being created. class->dev_kobj must 2724 * be set (or cleared) before any devices are registered to the class 2725 * otherwise device_create_sys_dev_entry() and 2726 * device_remove_sys_dev_entry() will disagree about the presence of 2727 * the link. 2728 */ 2729 static struct kobject *device_to_dev_kobj(struct device *dev) 2730 { 2731 struct kobject *kobj; 2732 2733 if (dev->class) 2734 kobj = dev->class->dev_kobj; 2735 else 2736 kobj = sysfs_dev_char_kobj; 2737 2738 return kobj; 2739 } 2740 2741 static int device_create_sys_dev_entry(struct device *dev) 2742 { 2743 struct kobject *kobj = device_to_dev_kobj(dev); 2744 int error = 0; 2745 char devt_str[15]; 2746 2747 if (kobj) { 2748 format_dev_t(devt_str, dev->devt); 2749 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 2750 } 2751 2752 return error; 2753 } 2754 2755 static void device_remove_sys_dev_entry(struct device *dev) 2756 { 2757 struct kobject *kobj = device_to_dev_kobj(dev); 2758 char devt_str[15]; 2759 2760 if (kobj) { 2761 format_dev_t(devt_str, dev->devt); 2762 sysfs_remove_link(kobj, devt_str); 2763 } 2764 } 2765 2766 static int device_private_init(struct device *dev) 2767 { 2768 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 2769 if (!dev->p) 2770 return -ENOMEM; 2771 dev->p->device = dev; 2772 klist_init(&dev->p->klist_children, klist_children_get, 2773 klist_children_put); 2774 INIT_LIST_HEAD(&dev->p->deferred_probe); 2775 return 0; 2776 } 2777 2778 /** 2779 * device_add - add device to device hierarchy. 2780 * @dev: device. 2781 * 2782 * This is part 2 of device_register(), though may be called 2783 * separately _iff_ device_initialize() has been called separately. 2784 * 2785 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 2786 * to the global and sibling lists for the device, then 2787 * adds it to the other relevant subsystems of the driver model. 2788 * 2789 * Do not call this routine or device_register() more than once for 2790 * any device structure. The driver model core is not designed to work 2791 * with devices that get unregistered and then spring back to life. 2792 * (Among other things, it's very hard to guarantee that all references 2793 * to the previous incarnation of @dev have been dropped.) Allocate 2794 * and register a fresh new struct device instead. 2795 * 2796 * NOTE: _Never_ directly free @dev after calling this function, even 2797 * if it returned an error! Always use put_device() to give up your 2798 * reference instead. 2799 * 2800 * Rule of thumb is: if device_add() succeeds, you should call 2801 * device_del() when you want to get rid of it. If device_add() has 2802 * *not* succeeded, use *only* put_device() to drop the reference 2803 * count. 2804 */ 2805 int device_add(struct device *dev) 2806 { 2807 struct device *parent; 2808 struct kobject *kobj; 2809 struct class_interface *class_intf; 2810 int error = -EINVAL; 2811 struct kobject *glue_dir = NULL; 2812 2813 dev = get_device(dev); 2814 if (!dev) 2815 goto done; 2816 2817 if (!dev->p) { 2818 error = device_private_init(dev); 2819 if (error) 2820 goto done; 2821 } 2822 2823 /* 2824 * for statically allocated devices, which should all be converted 2825 * some day, we need to initialize the name. We prevent reading back 2826 * the name, and force the use of dev_name() 2827 */ 2828 if (dev->init_name) { 2829 dev_set_name(dev, "%s", dev->init_name); 2830 dev->init_name = NULL; 2831 } 2832 2833 /* subsystems can specify simple device enumeration */ 2834 if (!dev_name(dev) && dev->bus && dev->bus->dev_name) 2835 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 2836 2837 if (!dev_name(dev)) { 2838 error = -EINVAL; 2839 goto name_error; 2840 } 2841 2842 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 2843 2844 parent = get_device(dev->parent); 2845 kobj = get_device_parent(dev, parent); 2846 if (IS_ERR(kobj)) { 2847 error = PTR_ERR(kobj); 2848 goto parent_error; 2849 } 2850 if (kobj) 2851 dev->kobj.parent = kobj; 2852 2853 /* use parent numa_node */ 2854 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 2855 set_dev_node(dev, dev_to_node(parent)); 2856 2857 /* first, register with generic layer. */ 2858 /* we require the name to be set before, and pass NULL */ 2859 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 2860 if (error) { 2861 glue_dir = get_glue_dir(dev); 2862 goto Error; 2863 } 2864 2865 /* notify platform of device entry */ 2866 error = device_platform_notify(dev, KOBJ_ADD); 2867 if (error) 2868 goto platform_error; 2869 2870 error = device_create_file(dev, &dev_attr_uevent); 2871 if (error) 2872 goto attrError; 2873 2874 error = device_add_class_symlinks(dev); 2875 if (error) 2876 goto SymlinkError; 2877 error = device_add_attrs(dev); 2878 if (error) 2879 goto AttrsError; 2880 error = bus_add_device(dev); 2881 if (error) 2882 goto BusError; 2883 error = dpm_sysfs_add(dev); 2884 if (error) 2885 goto DPMError; 2886 device_pm_add(dev); 2887 2888 if (MAJOR(dev->devt)) { 2889 error = device_create_file(dev, &dev_attr_dev); 2890 if (error) 2891 goto DevAttrError; 2892 2893 error = device_create_sys_dev_entry(dev); 2894 if (error) 2895 goto SysEntryError; 2896 2897 devtmpfs_create_node(dev); 2898 } 2899 2900 /* Notify clients of device addition. This call must come 2901 * after dpm_sysfs_add() and before kobject_uevent(). 2902 */ 2903 if (dev->bus) 2904 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 2905 BUS_NOTIFY_ADD_DEVICE, dev); 2906 2907 kobject_uevent(&dev->kobj, KOBJ_ADD); 2908 2909 /* 2910 * Check if any of the other devices (consumers) have been waiting for 2911 * this device (supplier) to be added so that they can create a device 2912 * link to it. 2913 * 2914 * This needs to happen after device_pm_add() because device_link_add() 2915 * requires the supplier be registered before it's called. 2916 * 2917 * But this also needs to happen before bus_probe_device() to make sure 2918 * waiting consumers can link to it before the driver is bound to the 2919 * device and the driver sync_state callback is called for this device. 2920 */ 2921 if (dev->fwnode && !dev->fwnode->dev) { 2922 dev->fwnode->dev = dev; 2923 fw_devlink_link_device(dev); 2924 } 2925 2926 bus_probe_device(dev); 2927 if (parent) 2928 klist_add_tail(&dev->p->knode_parent, 2929 &parent->p->klist_children); 2930 2931 if (dev->class) { 2932 mutex_lock(&dev->class->p->mutex); 2933 /* tie the class to the device */ 2934 klist_add_tail(&dev->p->knode_class, 2935 &dev->class->p->klist_devices); 2936 2937 /* notify any interfaces that the device is here */ 2938 list_for_each_entry(class_intf, 2939 &dev->class->p->interfaces, node) 2940 if (class_intf->add_dev) 2941 class_intf->add_dev(dev, class_intf); 2942 mutex_unlock(&dev->class->p->mutex); 2943 } 2944 done: 2945 put_device(dev); 2946 return error; 2947 SysEntryError: 2948 if (MAJOR(dev->devt)) 2949 device_remove_file(dev, &dev_attr_dev); 2950 DevAttrError: 2951 device_pm_remove(dev); 2952 dpm_sysfs_remove(dev); 2953 DPMError: 2954 bus_remove_device(dev); 2955 BusError: 2956 device_remove_attrs(dev); 2957 AttrsError: 2958 device_remove_class_symlinks(dev); 2959 SymlinkError: 2960 device_remove_file(dev, &dev_attr_uevent); 2961 attrError: 2962 device_platform_notify(dev, KOBJ_REMOVE); 2963 platform_error: 2964 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 2965 glue_dir = get_glue_dir(dev); 2966 kobject_del(&dev->kobj); 2967 Error: 2968 cleanup_glue_dir(dev, glue_dir); 2969 parent_error: 2970 put_device(parent); 2971 name_error: 2972 kfree(dev->p); 2973 dev->p = NULL; 2974 goto done; 2975 } 2976 EXPORT_SYMBOL_GPL(device_add); 2977 2978 /** 2979 * device_register - register a device with the system. 2980 * @dev: pointer to the device structure 2981 * 2982 * This happens in two clean steps - initialize the device 2983 * and add it to the system. The two steps can be called 2984 * separately, but this is the easiest and most common. 2985 * I.e. you should only call the two helpers separately if 2986 * have a clearly defined need to use and refcount the device 2987 * before it is added to the hierarchy. 2988 * 2989 * For more information, see the kerneldoc for device_initialize() 2990 * and device_add(). 2991 * 2992 * NOTE: _Never_ directly free @dev after calling this function, even 2993 * if it returned an error! Always use put_device() to give up the 2994 * reference initialized in this function instead. 2995 */ 2996 int device_register(struct device *dev) 2997 { 2998 device_initialize(dev); 2999 return device_add(dev); 3000 } 3001 EXPORT_SYMBOL_GPL(device_register); 3002 3003 /** 3004 * get_device - increment reference count for device. 3005 * @dev: device. 3006 * 3007 * This simply forwards the call to kobject_get(), though 3008 * we do take care to provide for the case that we get a NULL 3009 * pointer passed in. 3010 */ 3011 struct device *get_device(struct device *dev) 3012 { 3013 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 3014 } 3015 EXPORT_SYMBOL_GPL(get_device); 3016 3017 /** 3018 * put_device - decrement reference count. 3019 * @dev: device in question. 3020 */ 3021 void put_device(struct device *dev) 3022 { 3023 /* might_sleep(); */ 3024 if (dev) 3025 kobject_put(&dev->kobj); 3026 } 3027 EXPORT_SYMBOL_GPL(put_device); 3028 3029 bool kill_device(struct device *dev) 3030 { 3031 /* 3032 * Require the device lock and set the "dead" flag to guarantee that 3033 * the update behavior is consistent with the other bitfields near 3034 * it and that we cannot have an asynchronous probe routine trying 3035 * to run while we are tearing out the bus/class/sysfs from 3036 * underneath the device. 3037 */ 3038 lockdep_assert_held(&dev->mutex); 3039 3040 if (dev->p->dead) 3041 return false; 3042 dev->p->dead = true; 3043 return true; 3044 } 3045 EXPORT_SYMBOL_GPL(kill_device); 3046 3047 /** 3048 * device_del - delete device from system. 3049 * @dev: device. 3050 * 3051 * This is the first part of the device unregistration 3052 * sequence. This removes the device from the lists we control 3053 * from here, has it removed from the other driver model 3054 * subsystems it was added to in device_add(), and removes it 3055 * from the kobject hierarchy. 3056 * 3057 * NOTE: this should be called manually _iff_ device_add() was 3058 * also called manually. 3059 */ 3060 void device_del(struct device *dev) 3061 { 3062 struct device *parent = dev->parent; 3063 struct kobject *glue_dir = NULL; 3064 struct class_interface *class_intf; 3065 3066 device_lock(dev); 3067 kill_device(dev); 3068 device_unlock(dev); 3069 3070 if (dev->fwnode && dev->fwnode->dev == dev) 3071 dev->fwnode->dev = NULL; 3072 3073 /* Notify clients of device removal. This call must come 3074 * before dpm_sysfs_remove(). 3075 */ 3076 if (dev->bus) 3077 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 3078 BUS_NOTIFY_DEL_DEVICE, dev); 3079 3080 dpm_sysfs_remove(dev); 3081 if (parent) 3082 klist_del(&dev->p->knode_parent); 3083 if (MAJOR(dev->devt)) { 3084 devtmpfs_delete_node(dev); 3085 device_remove_sys_dev_entry(dev); 3086 device_remove_file(dev, &dev_attr_dev); 3087 } 3088 if (dev->class) { 3089 device_remove_class_symlinks(dev); 3090 3091 mutex_lock(&dev->class->p->mutex); 3092 /* notify any interfaces that the device is now gone */ 3093 list_for_each_entry(class_intf, 3094 &dev->class->p->interfaces, node) 3095 if (class_intf->remove_dev) 3096 class_intf->remove_dev(dev, class_intf); 3097 /* remove the device from the class list */ 3098 klist_del(&dev->p->knode_class); 3099 mutex_unlock(&dev->class->p->mutex); 3100 } 3101 device_remove_file(dev, &dev_attr_uevent); 3102 device_remove_attrs(dev); 3103 bus_remove_device(dev); 3104 device_pm_remove(dev); 3105 driver_deferred_probe_del(dev); 3106 device_platform_notify(dev, KOBJ_REMOVE); 3107 device_remove_properties(dev); 3108 device_links_purge(dev); 3109 3110 if (dev->bus) 3111 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 3112 BUS_NOTIFY_REMOVED_DEVICE, dev); 3113 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3114 glue_dir = get_glue_dir(dev); 3115 kobject_del(&dev->kobj); 3116 cleanup_glue_dir(dev, glue_dir); 3117 put_device(parent); 3118 } 3119 EXPORT_SYMBOL_GPL(device_del); 3120 3121 /** 3122 * device_unregister - unregister device from system. 3123 * @dev: device going away. 3124 * 3125 * We do this in two parts, like we do device_register(). First, 3126 * we remove it from all the subsystems with device_del(), then 3127 * we decrement the reference count via put_device(). If that 3128 * is the final reference count, the device will be cleaned up 3129 * via device_release() above. Otherwise, the structure will 3130 * stick around until the final reference to the device is dropped. 3131 */ 3132 void device_unregister(struct device *dev) 3133 { 3134 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3135 device_del(dev); 3136 put_device(dev); 3137 } 3138 EXPORT_SYMBOL_GPL(device_unregister); 3139 3140 static struct device *prev_device(struct klist_iter *i) 3141 { 3142 struct klist_node *n = klist_prev(i); 3143 struct device *dev = NULL; 3144 struct device_private *p; 3145 3146 if (n) { 3147 p = to_device_private_parent(n); 3148 dev = p->device; 3149 } 3150 return dev; 3151 } 3152 3153 static struct device *next_device(struct klist_iter *i) 3154 { 3155 struct klist_node *n = klist_next(i); 3156 struct device *dev = NULL; 3157 struct device_private *p; 3158 3159 if (n) { 3160 p = to_device_private_parent(n); 3161 dev = p->device; 3162 } 3163 return dev; 3164 } 3165 3166 /** 3167 * device_get_devnode - path of device node file 3168 * @dev: device 3169 * @mode: returned file access mode 3170 * @uid: returned file owner 3171 * @gid: returned file group 3172 * @tmp: possibly allocated string 3173 * 3174 * Return the relative path of a possible device node. 3175 * Non-default names may need to allocate a memory to compose 3176 * a name. This memory is returned in tmp and needs to be 3177 * freed by the caller. 3178 */ 3179 const char *device_get_devnode(struct device *dev, 3180 umode_t *mode, kuid_t *uid, kgid_t *gid, 3181 const char **tmp) 3182 { 3183 char *s; 3184 3185 *tmp = NULL; 3186 3187 /* the device type may provide a specific name */ 3188 if (dev->type && dev->type->devnode) 3189 *tmp = dev->type->devnode(dev, mode, uid, gid); 3190 if (*tmp) 3191 return *tmp; 3192 3193 /* the class may provide a specific name */ 3194 if (dev->class && dev->class->devnode) 3195 *tmp = dev->class->devnode(dev, mode); 3196 if (*tmp) 3197 return *tmp; 3198 3199 /* return name without allocation, tmp == NULL */ 3200 if (strchr(dev_name(dev), '!') == NULL) 3201 return dev_name(dev); 3202 3203 /* replace '!' in the name with '/' */ 3204 s = kstrdup(dev_name(dev), GFP_KERNEL); 3205 if (!s) 3206 return NULL; 3207 strreplace(s, '!', '/'); 3208 return *tmp = s; 3209 } 3210 3211 /** 3212 * device_for_each_child - device child iterator. 3213 * @parent: parent struct device. 3214 * @fn: function to be called for each device. 3215 * @data: data for the callback. 3216 * 3217 * Iterate over @parent's child devices, and call @fn for each, 3218 * passing it @data. 3219 * 3220 * We check the return of @fn each time. If it returns anything 3221 * other than 0, we break out and return that value. 3222 */ 3223 int device_for_each_child(struct device *parent, void *data, 3224 int (*fn)(struct device *dev, void *data)) 3225 { 3226 struct klist_iter i; 3227 struct device *child; 3228 int error = 0; 3229 3230 if (!parent->p) 3231 return 0; 3232 3233 klist_iter_init(&parent->p->klist_children, &i); 3234 while (!error && (child = next_device(&i))) 3235 error = fn(child, data); 3236 klist_iter_exit(&i); 3237 return error; 3238 } 3239 EXPORT_SYMBOL_GPL(device_for_each_child); 3240 3241 /** 3242 * device_for_each_child_reverse - device child iterator in reversed order. 3243 * @parent: parent struct device. 3244 * @fn: function to be called for each device. 3245 * @data: data for the callback. 3246 * 3247 * Iterate over @parent's child devices, and call @fn for each, 3248 * passing it @data. 3249 * 3250 * We check the return of @fn each time. If it returns anything 3251 * other than 0, we break out and return that value. 3252 */ 3253 int device_for_each_child_reverse(struct device *parent, void *data, 3254 int (*fn)(struct device *dev, void *data)) 3255 { 3256 struct klist_iter i; 3257 struct device *child; 3258 int error = 0; 3259 3260 if (!parent->p) 3261 return 0; 3262 3263 klist_iter_init(&parent->p->klist_children, &i); 3264 while ((child = prev_device(&i)) && !error) 3265 error = fn(child, data); 3266 klist_iter_exit(&i); 3267 return error; 3268 } 3269 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 3270 3271 /** 3272 * device_find_child - device iterator for locating a particular device. 3273 * @parent: parent struct device 3274 * @match: Callback function to check device 3275 * @data: Data to pass to match function 3276 * 3277 * This is similar to the device_for_each_child() function above, but it 3278 * returns a reference to a device that is 'found' for later use, as 3279 * determined by the @match callback. 3280 * 3281 * The callback should return 0 if the device doesn't match and non-zero 3282 * if it does. If the callback returns non-zero and a reference to the 3283 * current device can be obtained, this function will return to the caller 3284 * and not iterate over any more devices. 3285 * 3286 * NOTE: you will need to drop the reference with put_device() after use. 3287 */ 3288 struct device *device_find_child(struct device *parent, void *data, 3289 int (*match)(struct device *dev, void *data)) 3290 { 3291 struct klist_iter i; 3292 struct device *child; 3293 3294 if (!parent) 3295 return NULL; 3296 3297 klist_iter_init(&parent->p->klist_children, &i); 3298 while ((child = next_device(&i))) 3299 if (match(child, data) && get_device(child)) 3300 break; 3301 klist_iter_exit(&i); 3302 return child; 3303 } 3304 EXPORT_SYMBOL_GPL(device_find_child); 3305 3306 /** 3307 * device_find_child_by_name - device iterator for locating a child device. 3308 * @parent: parent struct device 3309 * @name: name of the child device 3310 * 3311 * This is similar to the device_find_child() function above, but it 3312 * returns a reference to a device that has the name @name. 3313 * 3314 * NOTE: you will need to drop the reference with put_device() after use. 3315 */ 3316 struct device *device_find_child_by_name(struct device *parent, 3317 const char *name) 3318 { 3319 struct klist_iter i; 3320 struct device *child; 3321 3322 if (!parent) 3323 return NULL; 3324 3325 klist_iter_init(&parent->p->klist_children, &i); 3326 while ((child = next_device(&i))) 3327 if (!strcmp(dev_name(child), name) && get_device(child)) 3328 break; 3329 klist_iter_exit(&i); 3330 return child; 3331 } 3332 EXPORT_SYMBOL_GPL(device_find_child_by_name); 3333 3334 int __init devices_init(void) 3335 { 3336 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 3337 if (!devices_kset) 3338 return -ENOMEM; 3339 dev_kobj = kobject_create_and_add("dev", NULL); 3340 if (!dev_kobj) 3341 goto dev_kobj_err; 3342 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 3343 if (!sysfs_dev_block_kobj) 3344 goto block_kobj_err; 3345 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 3346 if (!sysfs_dev_char_kobj) 3347 goto char_kobj_err; 3348 3349 return 0; 3350 3351 char_kobj_err: 3352 kobject_put(sysfs_dev_block_kobj); 3353 block_kobj_err: 3354 kobject_put(dev_kobj); 3355 dev_kobj_err: 3356 kset_unregister(devices_kset); 3357 return -ENOMEM; 3358 } 3359 3360 static int device_check_offline(struct device *dev, void *not_used) 3361 { 3362 int ret; 3363 3364 ret = device_for_each_child(dev, NULL, device_check_offline); 3365 if (ret) 3366 return ret; 3367 3368 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 3369 } 3370 3371 /** 3372 * device_offline - Prepare the device for hot-removal. 3373 * @dev: Device to be put offline. 3374 * 3375 * Execute the device bus type's .offline() callback, if present, to prepare 3376 * the device for a subsequent hot-removal. If that succeeds, the device must 3377 * not be used until either it is removed or its bus type's .online() callback 3378 * is executed. 3379 * 3380 * Call under device_hotplug_lock. 3381 */ 3382 int device_offline(struct device *dev) 3383 { 3384 int ret; 3385 3386 if (dev->offline_disabled) 3387 return -EPERM; 3388 3389 ret = device_for_each_child(dev, NULL, device_check_offline); 3390 if (ret) 3391 return ret; 3392 3393 device_lock(dev); 3394 if (device_supports_offline(dev)) { 3395 if (dev->offline) { 3396 ret = 1; 3397 } else { 3398 ret = dev->bus->offline(dev); 3399 if (!ret) { 3400 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 3401 dev->offline = true; 3402 } 3403 } 3404 } 3405 device_unlock(dev); 3406 3407 return ret; 3408 } 3409 3410 /** 3411 * device_online - Put the device back online after successful device_offline(). 3412 * @dev: Device to be put back online. 3413 * 3414 * If device_offline() has been successfully executed for @dev, but the device 3415 * has not been removed subsequently, execute its bus type's .online() callback 3416 * to indicate that the device can be used again. 3417 * 3418 * Call under device_hotplug_lock. 3419 */ 3420 int device_online(struct device *dev) 3421 { 3422 int ret = 0; 3423 3424 device_lock(dev); 3425 if (device_supports_offline(dev)) { 3426 if (dev->offline) { 3427 ret = dev->bus->online(dev); 3428 if (!ret) { 3429 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 3430 dev->offline = false; 3431 } 3432 } else { 3433 ret = 1; 3434 } 3435 } 3436 device_unlock(dev); 3437 3438 return ret; 3439 } 3440 3441 struct root_device { 3442 struct device dev; 3443 struct module *owner; 3444 }; 3445 3446 static inline struct root_device *to_root_device(struct device *d) 3447 { 3448 return container_of(d, struct root_device, dev); 3449 } 3450 3451 static void root_device_release(struct device *dev) 3452 { 3453 kfree(to_root_device(dev)); 3454 } 3455 3456 /** 3457 * __root_device_register - allocate and register a root device 3458 * @name: root device name 3459 * @owner: owner module of the root device, usually THIS_MODULE 3460 * 3461 * This function allocates a root device and registers it 3462 * using device_register(). In order to free the returned 3463 * device, use root_device_unregister(). 3464 * 3465 * Root devices are dummy devices which allow other devices 3466 * to be grouped under /sys/devices. Use this function to 3467 * allocate a root device and then use it as the parent of 3468 * any device which should appear under /sys/devices/{name} 3469 * 3470 * The /sys/devices/{name} directory will also contain a 3471 * 'module' symlink which points to the @owner directory 3472 * in sysfs. 3473 * 3474 * Returns &struct device pointer on success, or ERR_PTR() on error. 3475 * 3476 * Note: You probably want to use root_device_register(). 3477 */ 3478 struct device *__root_device_register(const char *name, struct module *owner) 3479 { 3480 struct root_device *root; 3481 int err = -ENOMEM; 3482 3483 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 3484 if (!root) 3485 return ERR_PTR(err); 3486 3487 err = dev_set_name(&root->dev, "%s", name); 3488 if (err) { 3489 kfree(root); 3490 return ERR_PTR(err); 3491 } 3492 3493 root->dev.release = root_device_release; 3494 3495 err = device_register(&root->dev); 3496 if (err) { 3497 put_device(&root->dev); 3498 return ERR_PTR(err); 3499 } 3500 3501 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 3502 if (owner) { 3503 struct module_kobject *mk = &owner->mkobj; 3504 3505 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 3506 if (err) { 3507 device_unregister(&root->dev); 3508 return ERR_PTR(err); 3509 } 3510 root->owner = owner; 3511 } 3512 #endif 3513 3514 return &root->dev; 3515 } 3516 EXPORT_SYMBOL_GPL(__root_device_register); 3517 3518 /** 3519 * root_device_unregister - unregister and free a root device 3520 * @dev: device going away 3521 * 3522 * This function unregisters and cleans up a device that was created by 3523 * root_device_register(). 3524 */ 3525 void root_device_unregister(struct device *dev) 3526 { 3527 struct root_device *root = to_root_device(dev); 3528 3529 if (root->owner) 3530 sysfs_remove_link(&root->dev.kobj, "module"); 3531 3532 device_unregister(dev); 3533 } 3534 EXPORT_SYMBOL_GPL(root_device_unregister); 3535 3536 3537 static void device_create_release(struct device *dev) 3538 { 3539 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3540 kfree(dev); 3541 } 3542 3543 static __printf(6, 0) struct device * 3544 device_create_groups_vargs(struct class *class, struct device *parent, 3545 dev_t devt, void *drvdata, 3546 const struct attribute_group **groups, 3547 const char *fmt, va_list args) 3548 { 3549 struct device *dev = NULL; 3550 int retval = -ENODEV; 3551 3552 if (class == NULL || IS_ERR(class)) 3553 goto error; 3554 3555 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3556 if (!dev) { 3557 retval = -ENOMEM; 3558 goto error; 3559 } 3560 3561 device_initialize(dev); 3562 dev->devt = devt; 3563 dev->class = class; 3564 dev->parent = parent; 3565 dev->groups = groups; 3566 dev->release = device_create_release; 3567 dev_set_drvdata(dev, drvdata); 3568 3569 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 3570 if (retval) 3571 goto error; 3572 3573 retval = device_add(dev); 3574 if (retval) 3575 goto error; 3576 3577 return dev; 3578 3579 error: 3580 put_device(dev); 3581 return ERR_PTR(retval); 3582 } 3583 3584 /** 3585 * device_create - creates a device and registers it with sysfs 3586 * @class: pointer to the struct class that this device should be registered to 3587 * @parent: pointer to the parent struct device of this new device, if any 3588 * @devt: the dev_t for the char device to be added 3589 * @drvdata: the data to be added to the device for callbacks 3590 * @fmt: string for the device's name 3591 * 3592 * This function can be used by char device classes. A struct device 3593 * will be created in sysfs, registered to the specified class. 3594 * 3595 * A "dev" file will be created, showing the dev_t for the device, if 3596 * the dev_t is not 0,0. 3597 * If a pointer to a parent struct device is passed in, the newly created 3598 * struct device will be a child of that device in sysfs. 3599 * The pointer to the struct device will be returned from the call. 3600 * Any further sysfs files that might be required can be created using this 3601 * pointer. 3602 * 3603 * Returns &struct device pointer on success, or ERR_PTR() on error. 3604 * 3605 * Note: the struct class passed to this function must have previously 3606 * been created with a call to class_create(). 3607 */ 3608 struct device *device_create(struct class *class, struct device *parent, 3609 dev_t devt, void *drvdata, const char *fmt, ...) 3610 { 3611 va_list vargs; 3612 struct device *dev; 3613 3614 va_start(vargs, fmt); 3615 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL, 3616 fmt, vargs); 3617 va_end(vargs); 3618 return dev; 3619 } 3620 EXPORT_SYMBOL_GPL(device_create); 3621 3622 /** 3623 * device_create_with_groups - creates a device and registers it with sysfs 3624 * @class: pointer to the struct class that this device should be registered to 3625 * @parent: pointer to the parent struct device of this new device, if any 3626 * @devt: the dev_t for the char device to be added 3627 * @drvdata: the data to be added to the device for callbacks 3628 * @groups: NULL-terminated list of attribute groups to be created 3629 * @fmt: string for the device's name 3630 * 3631 * This function can be used by char device classes. A struct device 3632 * will be created in sysfs, registered to the specified class. 3633 * Additional attributes specified in the groups parameter will also 3634 * be created automatically. 3635 * 3636 * A "dev" file will be created, showing the dev_t for the device, if 3637 * the dev_t is not 0,0. 3638 * If a pointer to a parent struct device is passed in, the newly created 3639 * struct device will be a child of that device in sysfs. 3640 * The pointer to the struct device will be returned from the call. 3641 * Any further sysfs files that might be required can be created using this 3642 * pointer. 3643 * 3644 * Returns &struct device pointer on success, or ERR_PTR() on error. 3645 * 3646 * Note: the struct class passed to this function must have previously 3647 * been created with a call to class_create(). 3648 */ 3649 struct device *device_create_with_groups(struct class *class, 3650 struct device *parent, dev_t devt, 3651 void *drvdata, 3652 const struct attribute_group **groups, 3653 const char *fmt, ...) 3654 { 3655 va_list vargs; 3656 struct device *dev; 3657 3658 va_start(vargs, fmt); 3659 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 3660 fmt, vargs); 3661 va_end(vargs); 3662 return dev; 3663 } 3664 EXPORT_SYMBOL_GPL(device_create_with_groups); 3665 3666 /** 3667 * device_destroy - removes a device that was created with device_create() 3668 * @class: pointer to the struct class that this device was registered with 3669 * @devt: the dev_t of the device that was previously registered 3670 * 3671 * This call unregisters and cleans up a device that was created with a 3672 * call to device_create(). 3673 */ 3674 void device_destroy(struct class *class, dev_t devt) 3675 { 3676 struct device *dev; 3677 3678 dev = class_find_device_by_devt(class, devt); 3679 if (dev) { 3680 put_device(dev); 3681 device_unregister(dev); 3682 } 3683 } 3684 EXPORT_SYMBOL_GPL(device_destroy); 3685 3686 /** 3687 * device_rename - renames a device 3688 * @dev: the pointer to the struct device to be renamed 3689 * @new_name: the new name of the device 3690 * 3691 * It is the responsibility of the caller to provide mutual 3692 * exclusion between two different calls of device_rename 3693 * on the same device to ensure that new_name is valid and 3694 * won't conflict with other devices. 3695 * 3696 * Note: Don't call this function. Currently, the networking layer calls this 3697 * function, but that will change. The following text from Kay Sievers offers 3698 * some insight: 3699 * 3700 * Renaming devices is racy at many levels, symlinks and other stuff are not 3701 * replaced atomically, and you get a "move" uevent, but it's not easy to 3702 * connect the event to the old and new device. Device nodes are not renamed at 3703 * all, there isn't even support for that in the kernel now. 3704 * 3705 * In the meantime, during renaming, your target name might be taken by another 3706 * driver, creating conflicts. Or the old name is taken directly after you 3707 * renamed it -- then you get events for the same DEVPATH, before you even see 3708 * the "move" event. It's just a mess, and nothing new should ever rely on 3709 * kernel device renaming. Besides that, it's not even implemented now for 3710 * other things than (driver-core wise very simple) network devices. 3711 * 3712 * We are currently about to change network renaming in udev to completely 3713 * disallow renaming of devices in the same namespace as the kernel uses, 3714 * because we can't solve the problems properly, that arise with swapping names 3715 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only 3716 * be allowed to some other name than eth[0-9]*, for the aforementioned 3717 * reasons. 3718 * 3719 * Make up a "real" name in the driver before you register anything, or add 3720 * some other attributes for userspace to find the device, or use udev to add 3721 * symlinks -- but never rename kernel devices later, it's a complete mess. We 3722 * don't even want to get into that and try to implement the missing pieces in 3723 * the core. We really have other pieces to fix in the driver core mess. :) 3724 */ 3725 int device_rename(struct device *dev, const char *new_name) 3726 { 3727 struct kobject *kobj = &dev->kobj; 3728 char *old_device_name = NULL; 3729 int error; 3730 3731 dev = get_device(dev); 3732 if (!dev) 3733 return -EINVAL; 3734 3735 dev_dbg(dev, "renaming to %s\n", new_name); 3736 3737 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 3738 if (!old_device_name) { 3739 error = -ENOMEM; 3740 goto out; 3741 } 3742 3743 if (dev->class) { 3744 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj, 3745 kobj, old_device_name, 3746 new_name, kobject_namespace(kobj)); 3747 if (error) 3748 goto out; 3749 } 3750 3751 error = kobject_rename(kobj, new_name); 3752 if (error) 3753 goto out; 3754 3755 out: 3756 put_device(dev); 3757 3758 kfree(old_device_name); 3759 3760 return error; 3761 } 3762 EXPORT_SYMBOL_GPL(device_rename); 3763 3764 static int device_move_class_links(struct device *dev, 3765 struct device *old_parent, 3766 struct device *new_parent) 3767 { 3768 int error = 0; 3769 3770 if (old_parent) 3771 sysfs_remove_link(&dev->kobj, "device"); 3772 if (new_parent) 3773 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 3774 "device"); 3775 return error; 3776 } 3777 3778 /** 3779 * device_move - moves a device to a new parent 3780 * @dev: the pointer to the struct device to be moved 3781 * @new_parent: the new parent of the device (can be NULL) 3782 * @dpm_order: how to reorder the dpm_list 3783 */ 3784 int device_move(struct device *dev, struct device *new_parent, 3785 enum dpm_order dpm_order) 3786 { 3787 int error; 3788 struct device *old_parent; 3789 struct kobject *new_parent_kobj; 3790 3791 dev = get_device(dev); 3792 if (!dev) 3793 return -EINVAL; 3794 3795 device_pm_lock(); 3796 new_parent = get_device(new_parent); 3797 new_parent_kobj = get_device_parent(dev, new_parent); 3798 if (IS_ERR(new_parent_kobj)) { 3799 error = PTR_ERR(new_parent_kobj); 3800 put_device(new_parent); 3801 goto out; 3802 } 3803 3804 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 3805 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 3806 error = kobject_move(&dev->kobj, new_parent_kobj); 3807 if (error) { 3808 cleanup_glue_dir(dev, new_parent_kobj); 3809 put_device(new_parent); 3810 goto out; 3811 } 3812 old_parent = dev->parent; 3813 dev->parent = new_parent; 3814 if (old_parent) 3815 klist_remove(&dev->p->knode_parent); 3816 if (new_parent) { 3817 klist_add_tail(&dev->p->knode_parent, 3818 &new_parent->p->klist_children); 3819 set_dev_node(dev, dev_to_node(new_parent)); 3820 } 3821 3822 if (dev->class) { 3823 error = device_move_class_links(dev, old_parent, new_parent); 3824 if (error) { 3825 /* We ignore errors on cleanup since we're hosed anyway... */ 3826 device_move_class_links(dev, new_parent, old_parent); 3827 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 3828 if (new_parent) 3829 klist_remove(&dev->p->knode_parent); 3830 dev->parent = old_parent; 3831 if (old_parent) { 3832 klist_add_tail(&dev->p->knode_parent, 3833 &old_parent->p->klist_children); 3834 set_dev_node(dev, dev_to_node(old_parent)); 3835 } 3836 } 3837 cleanup_glue_dir(dev, new_parent_kobj); 3838 put_device(new_parent); 3839 goto out; 3840 } 3841 } 3842 switch (dpm_order) { 3843 case DPM_ORDER_NONE: 3844 break; 3845 case DPM_ORDER_DEV_AFTER_PARENT: 3846 device_pm_move_after(dev, new_parent); 3847 devices_kset_move_after(dev, new_parent); 3848 break; 3849 case DPM_ORDER_PARENT_BEFORE_DEV: 3850 device_pm_move_before(new_parent, dev); 3851 devices_kset_move_before(new_parent, dev); 3852 break; 3853 case DPM_ORDER_DEV_LAST: 3854 device_pm_move_last(dev); 3855 devices_kset_move_last(dev); 3856 break; 3857 } 3858 3859 put_device(old_parent); 3860 out: 3861 device_pm_unlock(); 3862 put_device(dev); 3863 return error; 3864 } 3865 EXPORT_SYMBOL_GPL(device_move); 3866 3867 static int device_attrs_change_owner(struct device *dev, kuid_t kuid, 3868 kgid_t kgid) 3869 { 3870 struct kobject *kobj = &dev->kobj; 3871 struct class *class = dev->class; 3872 const struct device_type *type = dev->type; 3873 int error; 3874 3875 if (class) { 3876 /* 3877 * Change the device groups of the device class for @dev to 3878 * @kuid/@kgid. 3879 */ 3880 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid, 3881 kgid); 3882 if (error) 3883 return error; 3884 } 3885 3886 if (type) { 3887 /* 3888 * Change the device groups of the device type for @dev to 3889 * @kuid/@kgid. 3890 */ 3891 error = sysfs_groups_change_owner(kobj, type->groups, kuid, 3892 kgid); 3893 if (error) 3894 return error; 3895 } 3896 3897 /* Change the device groups of @dev to @kuid/@kgid. */ 3898 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid); 3899 if (error) 3900 return error; 3901 3902 if (device_supports_offline(dev) && !dev->offline_disabled) { 3903 /* Change online device attributes of @dev to @kuid/@kgid. */ 3904 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name, 3905 kuid, kgid); 3906 if (error) 3907 return error; 3908 } 3909 3910 return 0; 3911 } 3912 3913 /** 3914 * device_change_owner - change the owner of an existing device. 3915 * @dev: device. 3916 * @kuid: new owner's kuid 3917 * @kgid: new owner's kgid 3918 * 3919 * This changes the owner of @dev and its corresponding sysfs entries to 3920 * @kuid/@kgid. This function closely mirrors how @dev was added via driver 3921 * core. 3922 * 3923 * Returns 0 on success or error code on failure. 3924 */ 3925 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid) 3926 { 3927 int error; 3928 struct kobject *kobj = &dev->kobj; 3929 3930 dev = get_device(dev); 3931 if (!dev) 3932 return -EINVAL; 3933 3934 /* 3935 * Change the kobject and the default attributes and groups of the 3936 * ktype associated with it to @kuid/@kgid. 3937 */ 3938 error = sysfs_change_owner(kobj, kuid, kgid); 3939 if (error) 3940 goto out; 3941 3942 /* 3943 * Change the uevent file for @dev to the new owner. The uevent file 3944 * was created in a separate step when @dev got added and we mirror 3945 * that step here. 3946 */ 3947 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid, 3948 kgid); 3949 if (error) 3950 goto out; 3951 3952 /* 3953 * Change the device groups, the device groups associated with the 3954 * device class, and the groups associated with the device type of @dev 3955 * to @kuid/@kgid. 3956 */ 3957 error = device_attrs_change_owner(dev, kuid, kgid); 3958 if (error) 3959 goto out; 3960 3961 error = dpm_sysfs_change_owner(dev, kuid, kgid); 3962 if (error) 3963 goto out; 3964 3965 #ifdef CONFIG_BLOCK 3966 if (sysfs_deprecated && dev->class == &block_class) 3967 goto out; 3968 #endif 3969 3970 /* 3971 * Change the owner of the symlink located in the class directory of 3972 * the device class associated with @dev which points to the actual 3973 * directory entry for @dev to @kuid/@kgid. This ensures that the 3974 * symlink shows the same permissions as its target. 3975 */ 3976 error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj, 3977 dev_name(dev), kuid, kgid); 3978 if (error) 3979 goto out; 3980 3981 out: 3982 put_device(dev); 3983 return error; 3984 } 3985 EXPORT_SYMBOL_GPL(device_change_owner); 3986 3987 /** 3988 * device_shutdown - call ->shutdown() on each device to shutdown. 3989 */ 3990 void device_shutdown(void) 3991 { 3992 struct device *dev, *parent; 3993 3994 wait_for_device_probe(); 3995 device_block_probing(); 3996 3997 cpufreq_suspend(); 3998 3999 spin_lock(&devices_kset->list_lock); 4000 /* 4001 * Walk the devices list backward, shutting down each in turn. 4002 * Beware that device unplug events may also start pulling 4003 * devices offline, even as the system is shutting down. 4004 */ 4005 while (!list_empty(&devices_kset->list)) { 4006 dev = list_entry(devices_kset->list.prev, struct device, 4007 kobj.entry); 4008 4009 /* 4010 * hold reference count of device's parent to 4011 * prevent it from being freed because parent's 4012 * lock is to be held 4013 */ 4014 parent = get_device(dev->parent); 4015 get_device(dev); 4016 /* 4017 * Make sure the device is off the kset list, in the 4018 * event that dev->*->shutdown() doesn't remove it. 4019 */ 4020 list_del_init(&dev->kobj.entry); 4021 spin_unlock(&devices_kset->list_lock); 4022 4023 /* hold lock to avoid race with probe/release */ 4024 if (parent) 4025 device_lock(parent); 4026 device_lock(dev); 4027 4028 /* Don't allow any more runtime suspends */ 4029 pm_runtime_get_noresume(dev); 4030 pm_runtime_barrier(dev); 4031 4032 if (dev->class && dev->class->shutdown_pre) { 4033 if (initcall_debug) 4034 dev_info(dev, "shutdown_pre\n"); 4035 dev->class->shutdown_pre(dev); 4036 } 4037 if (dev->bus && dev->bus->shutdown) { 4038 if (initcall_debug) 4039 dev_info(dev, "shutdown\n"); 4040 dev->bus->shutdown(dev); 4041 } else if (dev->driver && dev->driver->shutdown) { 4042 if (initcall_debug) 4043 dev_info(dev, "shutdown\n"); 4044 dev->driver->shutdown(dev); 4045 } 4046 4047 device_unlock(dev); 4048 if (parent) 4049 device_unlock(parent); 4050 4051 put_device(dev); 4052 put_device(parent); 4053 4054 spin_lock(&devices_kset->list_lock); 4055 } 4056 spin_unlock(&devices_kset->list_lock); 4057 } 4058 4059 /* 4060 * Device logging functions 4061 */ 4062 4063 #ifdef CONFIG_PRINTK 4064 static int 4065 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen) 4066 { 4067 const char *subsys; 4068 size_t pos = 0; 4069 4070 if (dev->class) 4071 subsys = dev->class->name; 4072 else if (dev->bus) 4073 subsys = dev->bus->name; 4074 else 4075 return 0; 4076 4077 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys); 4078 if (pos >= hdrlen) 4079 goto overflow; 4080 4081 /* 4082 * Add device identifier DEVICE=: 4083 * b12:8 block dev_t 4084 * c127:3 char dev_t 4085 * n8 netdev ifindex 4086 * +sound:card0 subsystem:devname 4087 */ 4088 if (MAJOR(dev->devt)) { 4089 char c; 4090 4091 if (strcmp(subsys, "block") == 0) 4092 c = 'b'; 4093 else 4094 c = 'c'; 4095 pos++; 4096 pos += snprintf(hdr + pos, hdrlen - pos, 4097 "DEVICE=%c%u:%u", 4098 c, MAJOR(dev->devt), MINOR(dev->devt)); 4099 } else if (strcmp(subsys, "net") == 0) { 4100 struct net_device *net = to_net_dev(dev); 4101 4102 pos++; 4103 pos += snprintf(hdr + pos, hdrlen - pos, 4104 "DEVICE=n%u", net->ifindex); 4105 } else { 4106 pos++; 4107 pos += snprintf(hdr + pos, hdrlen - pos, 4108 "DEVICE=+%s:%s", subsys, dev_name(dev)); 4109 } 4110 4111 if (pos >= hdrlen) 4112 goto overflow; 4113 4114 return pos; 4115 4116 overflow: 4117 dev_WARN(dev, "device/subsystem name too long"); 4118 return 0; 4119 } 4120 4121 int dev_vprintk_emit(int level, const struct device *dev, 4122 const char *fmt, va_list args) 4123 { 4124 char hdr[128]; 4125 size_t hdrlen; 4126 4127 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr)); 4128 4129 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args); 4130 } 4131 EXPORT_SYMBOL(dev_vprintk_emit); 4132 4133 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 4134 { 4135 va_list args; 4136 int r; 4137 4138 va_start(args, fmt); 4139 4140 r = dev_vprintk_emit(level, dev, fmt, args); 4141 4142 va_end(args); 4143 4144 return r; 4145 } 4146 EXPORT_SYMBOL(dev_printk_emit); 4147 4148 static void __dev_printk(const char *level, const struct device *dev, 4149 struct va_format *vaf) 4150 { 4151 if (dev) 4152 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 4153 dev_driver_string(dev), dev_name(dev), vaf); 4154 else 4155 printk("%s(NULL device *): %pV", level, vaf); 4156 } 4157 4158 void dev_printk(const char *level, const struct device *dev, 4159 const char *fmt, ...) 4160 { 4161 struct va_format vaf; 4162 va_list args; 4163 4164 va_start(args, fmt); 4165 4166 vaf.fmt = fmt; 4167 vaf.va = &args; 4168 4169 __dev_printk(level, dev, &vaf); 4170 4171 va_end(args); 4172 } 4173 EXPORT_SYMBOL(dev_printk); 4174 4175 #define define_dev_printk_level(func, kern_level) \ 4176 void func(const struct device *dev, const char *fmt, ...) \ 4177 { \ 4178 struct va_format vaf; \ 4179 va_list args; \ 4180 \ 4181 va_start(args, fmt); \ 4182 \ 4183 vaf.fmt = fmt; \ 4184 vaf.va = &args; \ 4185 \ 4186 __dev_printk(kern_level, dev, &vaf); \ 4187 \ 4188 va_end(args); \ 4189 } \ 4190 EXPORT_SYMBOL(func); 4191 4192 define_dev_printk_level(_dev_emerg, KERN_EMERG); 4193 define_dev_printk_level(_dev_alert, KERN_ALERT); 4194 define_dev_printk_level(_dev_crit, KERN_CRIT); 4195 define_dev_printk_level(_dev_err, KERN_ERR); 4196 define_dev_printk_level(_dev_warn, KERN_WARNING); 4197 define_dev_printk_level(_dev_notice, KERN_NOTICE); 4198 define_dev_printk_level(_dev_info, KERN_INFO); 4199 4200 #endif 4201 4202 /** 4203 * dev_err_probe - probe error check and log helper 4204 * @dev: the pointer to the struct device 4205 * @err: error value to test 4206 * @fmt: printf-style format string 4207 * @...: arguments as specified in the format string 4208 * 4209 * This helper implements common pattern present in probe functions for error 4210 * checking: print debug or error message depending if the error value is 4211 * -EPROBE_DEFER and propagate error upwards. 4212 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be 4213 * checked later by reading devices_deferred debugfs attribute. 4214 * It replaces code sequence: 4215 * if (err != -EPROBE_DEFER) 4216 * dev_err(dev, ...); 4217 * else 4218 * dev_dbg(dev, ...); 4219 * return err; 4220 * with 4221 * return dev_err_probe(dev, err, ...); 4222 * 4223 * Returns @err. 4224 * 4225 */ 4226 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...) 4227 { 4228 struct va_format vaf; 4229 va_list args; 4230 4231 va_start(args, fmt); 4232 vaf.fmt = fmt; 4233 vaf.va = &args; 4234 4235 if (err != -EPROBE_DEFER) { 4236 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 4237 } else { 4238 device_set_deferred_probe_reason(dev, &vaf); 4239 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 4240 } 4241 4242 va_end(args); 4243 4244 return err; 4245 } 4246 EXPORT_SYMBOL_GPL(dev_err_probe); 4247 4248 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 4249 { 4250 return fwnode && !IS_ERR(fwnode->secondary); 4251 } 4252 4253 /** 4254 * set_primary_fwnode - Change the primary firmware node of a given device. 4255 * @dev: Device to handle. 4256 * @fwnode: New primary firmware node of the device. 4257 * 4258 * Set the device's firmware node pointer to @fwnode, but if a secondary 4259 * firmware node of the device is present, preserve it. 4260 */ 4261 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 4262 { 4263 struct fwnode_handle *fn = dev->fwnode; 4264 4265 if (fwnode) { 4266 if (fwnode_is_primary(fn)) 4267 fn = fn->secondary; 4268 4269 if (fn) { 4270 WARN_ON(fwnode->secondary); 4271 fwnode->secondary = fn; 4272 } 4273 dev->fwnode = fwnode; 4274 } else { 4275 if (fwnode_is_primary(fn)) { 4276 dev->fwnode = fn->secondary; 4277 fn->secondary = NULL; 4278 } else { 4279 dev->fwnode = NULL; 4280 } 4281 } 4282 } 4283 EXPORT_SYMBOL_GPL(set_primary_fwnode); 4284 4285 /** 4286 * set_secondary_fwnode - Change the secondary firmware node of a given device. 4287 * @dev: Device to handle. 4288 * @fwnode: New secondary firmware node of the device. 4289 * 4290 * If a primary firmware node of the device is present, set its secondary 4291 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 4292 * @fwnode. 4293 */ 4294 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 4295 { 4296 if (fwnode) 4297 fwnode->secondary = ERR_PTR(-ENODEV); 4298 4299 if (fwnode_is_primary(dev->fwnode)) 4300 dev->fwnode->secondary = fwnode; 4301 else 4302 dev->fwnode = fwnode; 4303 } 4304 EXPORT_SYMBOL_GPL(set_secondary_fwnode); 4305 4306 /** 4307 * device_set_of_node_from_dev - reuse device-tree node of another device 4308 * @dev: device whose device-tree node is being set 4309 * @dev2: device whose device-tree node is being reused 4310 * 4311 * Takes another reference to the new device-tree node after first dropping 4312 * any reference held to the old node. 4313 */ 4314 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 4315 { 4316 of_node_put(dev->of_node); 4317 dev->of_node = of_node_get(dev2->of_node); 4318 dev->of_node_reused = true; 4319 } 4320 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 4321 4322 int device_match_name(struct device *dev, const void *name) 4323 { 4324 return sysfs_streq(dev_name(dev), name); 4325 } 4326 EXPORT_SYMBOL_GPL(device_match_name); 4327 4328 int device_match_of_node(struct device *dev, const void *np) 4329 { 4330 return dev->of_node == np; 4331 } 4332 EXPORT_SYMBOL_GPL(device_match_of_node); 4333 4334 int device_match_fwnode(struct device *dev, const void *fwnode) 4335 { 4336 return dev_fwnode(dev) == fwnode; 4337 } 4338 EXPORT_SYMBOL_GPL(device_match_fwnode); 4339 4340 int device_match_devt(struct device *dev, const void *pdevt) 4341 { 4342 return dev->devt == *(dev_t *)pdevt; 4343 } 4344 EXPORT_SYMBOL_GPL(device_match_devt); 4345 4346 int device_match_acpi_dev(struct device *dev, const void *adev) 4347 { 4348 return ACPI_COMPANION(dev) == adev; 4349 } 4350 EXPORT_SYMBOL(device_match_acpi_dev); 4351 4352 int device_match_any(struct device *dev, const void *unused) 4353 { 4354 return 1; 4355 } 4356 EXPORT_SYMBOL_GPL(device_match_any); 4357