xref: /openbmc/linux/drivers/base/core.c (revision cff11abeca78aa782378401ca2800bd2194aa14e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sysfs.h>
30 
31 #include "base.h"
32 #include "power/power.h"
33 
34 #ifdef CONFIG_SYSFS_DEPRECATED
35 #ifdef CONFIG_SYSFS_DEPRECATED_V2
36 long sysfs_deprecated = 1;
37 #else
38 long sysfs_deprecated = 0;
39 #endif
40 static int __init sysfs_deprecated_setup(char *arg)
41 {
42 	return kstrtol(arg, 10, &sysfs_deprecated);
43 }
44 early_param("sysfs.deprecated", sysfs_deprecated_setup);
45 #endif
46 
47 /* Device links support. */
48 static LIST_HEAD(wait_for_suppliers);
49 static DEFINE_MUTEX(wfs_lock);
50 static LIST_HEAD(deferred_sync);
51 static unsigned int defer_sync_state_count = 1;
52 
53 #ifdef CONFIG_SRCU
54 static DEFINE_MUTEX(device_links_lock);
55 DEFINE_STATIC_SRCU(device_links_srcu);
56 
57 static inline void device_links_write_lock(void)
58 {
59 	mutex_lock(&device_links_lock);
60 }
61 
62 static inline void device_links_write_unlock(void)
63 {
64 	mutex_unlock(&device_links_lock);
65 }
66 
67 int device_links_read_lock(void) __acquires(&device_links_srcu)
68 {
69 	return srcu_read_lock(&device_links_srcu);
70 }
71 
72 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
73 {
74 	srcu_read_unlock(&device_links_srcu, idx);
75 }
76 
77 int device_links_read_lock_held(void)
78 {
79 	return srcu_read_lock_held(&device_links_srcu);
80 }
81 #else /* !CONFIG_SRCU */
82 static DECLARE_RWSEM(device_links_lock);
83 
84 static inline void device_links_write_lock(void)
85 {
86 	down_write(&device_links_lock);
87 }
88 
89 static inline void device_links_write_unlock(void)
90 {
91 	up_write(&device_links_lock);
92 }
93 
94 int device_links_read_lock(void)
95 {
96 	down_read(&device_links_lock);
97 	return 0;
98 }
99 
100 void device_links_read_unlock(int not_used)
101 {
102 	up_read(&device_links_lock);
103 }
104 
105 #ifdef CONFIG_DEBUG_LOCK_ALLOC
106 int device_links_read_lock_held(void)
107 {
108 	return lockdep_is_held(&device_links_lock);
109 }
110 #endif
111 #endif /* !CONFIG_SRCU */
112 
113 /**
114  * device_is_dependent - Check if one device depends on another one
115  * @dev: Device to check dependencies for.
116  * @target: Device to check against.
117  *
118  * Check if @target depends on @dev or any device dependent on it (its child or
119  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
120  */
121 static int device_is_dependent(struct device *dev, void *target)
122 {
123 	struct device_link *link;
124 	int ret;
125 
126 	if (dev == target)
127 		return 1;
128 
129 	ret = device_for_each_child(dev, target, device_is_dependent);
130 	if (ret)
131 		return ret;
132 
133 	list_for_each_entry(link, &dev->links.consumers, s_node) {
134 		if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
135 			continue;
136 
137 		if (link->consumer == target)
138 			return 1;
139 
140 		ret = device_is_dependent(link->consumer, target);
141 		if (ret)
142 			break;
143 	}
144 	return ret;
145 }
146 
147 static void device_link_init_status(struct device_link *link,
148 				    struct device *consumer,
149 				    struct device *supplier)
150 {
151 	switch (supplier->links.status) {
152 	case DL_DEV_PROBING:
153 		switch (consumer->links.status) {
154 		case DL_DEV_PROBING:
155 			/*
156 			 * A consumer driver can create a link to a supplier
157 			 * that has not completed its probing yet as long as it
158 			 * knows that the supplier is already functional (for
159 			 * example, it has just acquired some resources from the
160 			 * supplier).
161 			 */
162 			link->status = DL_STATE_CONSUMER_PROBE;
163 			break;
164 		default:
165 			link->status = DL_STATE_DORMANT;
166 			break;
167 		}
168 		break;
169 	case DL_DEV_DRIVER_BOUND:
170 		switch (consumer->links.status) {
171 		case DL_DEV_PROBING:
172 			link->status = DL_STATE_CONSUMER_PROBE;
173 			break;
174 		case DL_DEV_DRIVER_BOUND:
175 			link->status = DL_STATE_ACTIVE;
176 			break;
177 		default:
178 			link->status = DL_STATE_AVAILABLE;
179 			break;
180 		}
181 		break;
182 	case DL_DEV_UNBINDING:
183 		link->status = DL_STATE_SUPPLIER_UNBIND;
184 		break;
185 	default:
186 		link->status = DL_STATE_DORMANT;
187 		break;
188 	}
189 }
190 
191 static int device_reorder_to_tail(struct device *dev, void *not_used)
192 {
193 	struct device_link *link;
194 
195 	/*
196 	 * Devices that have not been registered yet will be put to the ends
197 	 * of the lists during the registration, so skip them here.
198 	 */
199 	if (device_is_registered(dev))
200 		devices_kset_move_last(dev);
201 
202 	if (device_pm_initialized(dev))
203 		device_pm_move_last(dev);
204 
205 	device_for_each_child(dev, NULL, device_reorder_to_tail);
206 	list_for_each_entry(link, &dev->links.consumers, s_node) {
207 		if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
208 			continue;
209 		device_reorder_to_tail(link->consumer, NULL);
210 	}
211 
212 	return 0;
213 }
214 
215 /**
216  * device_pm_move_to_tail - Move set of devices to the end of device lists
217  * @dev: Device to move
218  *
219  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
220  *
221  * It moves the @dev along with all of its children and all of its consumers
222  * to the ends of the device_kset and dpm_list, recursively.
223  */
224 void device_pm_move_to_tail(struct device *dev)
225 {
226 	int idx;
227 
228 	idx = device_links_read_lock();
229 	device_pm_lock();
230 	device_reorder_to_tail(dev, NULL);
231 	device_pm_unlock();
232 	device_links_read_unlock(idx);
233 }
234 
235 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
236 			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
237 			       DL_FLAG_AUTOPROBE_CONSUMER  | \
238 			       DL_FLAG_SYNC_STATE_ONLY)
239 
240 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
241 			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
242 
243 /**
244  * device_link_add - Create a link between two devices.
245  * @consumer: Consumer end of the link.
246  * @supplier: Supplier end of the link.
247  * @flags: Link flags.
248  *
249  * The caller is responsible for the proper synchronization of the link creation
250  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
251  * runtime PM framework to take the link into account.  Second, if the
252  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
253  * be forced into the active metastate and reference-counted upon the creation
254  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
255  * ignored.
256  *
257  * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
258  * expected to release the link returned by it directly with the help of either
259  * device_link_del() or device_link_remove().
260  *
261  * If that flag is not set, however, the caller of this function is handing the
262  * management of the link over to the driver core entirely and its return value
263  * can only be used to check whether or not the link is present.  In that case,
264  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
265  * flags can be used to indicate to the driver core when the link can be safely
266  * deleted.  Namely, setting one of them in @flags indicates to the driver core
267  * that the link is not going to be used (by the given caller of this function)
268  * after unbinding the consumer or supplier driver, respectively, from its
269  * device, so the link can be deleted at that point.  If none of them is set,
270  * the link will be maintained until one of the devices pointed to by it (either
271  * the consumer or the supplier) is unregistered.
272  *
273  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
274  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
275  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
276  * be used to request the driver core to automaticall probe for a consmer
277  * driver after successfully binding a driver to the supplier device.
278  *
279  * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
280  * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
281  * the same time is invalid and will cause NULL to be returned upfront.
282  * However, if a device link between the given @consumer and @supplier pair
283  * exists already when this function is called for them, the existing link will
284  * be returned regardless of its current type and status (the link's flags may
285  * be modified then).  The caller of this function is then expected to treat
286  * the link as though it has just been created, so (in particular) if
287  * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
288  * explicitly when not needed any more (as stated above).
289  *
290  * A side effect of the link creation is re-ordering of dpm_list and the
291  * devices_kset list by moving the consumer device and all devices depending
292  * on it to the ends of these lists (that does not happen to devices that have
293  * not been registered when this function is called).
294  *
295  * The supplier device is required to be registered when this function is called
296  * and NULL will be returned if that is not the case.  The consumer device need
297  * not be registered, however.
298  */
299 struct device_link *device_link_add(struct device *consumer,
300 				    struct device *supplier, u32 flags)
301 {
302 	struct device_link *link;
303 
304 	if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
305 	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
306 	    (flags & DL_FLAG_SYNC_STATE_ONLY &&
307 	     flags != DL_FLAG_SYNC_STATE_ONLY) ||
308 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
309 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
310 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
311 		return NULL;
312 
313 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
314 		if (pm_runtime_get_sync(supplier) < 0) {
315 			pm_runtime_put_noidle(supplier);
316 			return NULL;
317 		}
318 	}
319 
320 	if (!(flags & DL_FLAG_STATELESS))
321 		flags |= DL_FLAG_MANAGED;
322 
323 	device_links_write_lock();
324 	device_pm_lock();
325 
326 	/*
327 	 * If the supplier has not been fully registered yet or there is a
328 	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
329 	 * the supplier already in the graph, return NULL. If the link is a
330 	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
331 	 * because it only affects sync_state() callbacks.
332 	 */
333 	if (!device_pm_initialized(supplier)
334 	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
335 		  device_is_dependent(consumer, supplier))) {
336 		link = NULL;
337 		goto out;
338 	}
339 
340 	/*
341 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
342 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
343 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
344 	 */
345 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
346 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
347 
348 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
349 		if (link->consumer != consumer)
350 			continue;
351 
352 		if (flags & DL_FLAG_PM_RUNTIME) {
353 			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
354 				pm_runtime_new_link(consumer);
355 				link->flags |= DL_FLAG_PM_RUNTIME;
356 			}
357 			if (flags & DL_FLAG_RPM_ACTIVE)
358 				refcount_inc(&link->rpm_active);
359 		}
360 
361 		if (flags & DL_FLAG_STATELESS) {
362 			kref_get(&link->kref);
363 			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
364 			    !(link->flags & DL_FLAG_STATELESS)) {
365 				link->flags |= DL_FLAG_STATELESS;
366 				goto reorder;
367 			} else {
368 				link->flags |= DL_FLAG_STATELESS;
369 				goto out;
370 			}
371 		}
372 
373 		/*
374 		 * If the life time of the link following from the new flags is
375 		 * longer than indicated by the flags of the existing link,
376 		 * update the existing link to stay around longer.
377 		 */
378 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
379 			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
380 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
381 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
382 			}
383 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
384 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
385 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
386 		}
387 		if (!(link->flags & DL_FLAG_MANAGED)) {
388 			kref_get(&link->kref);
389 			link->flags |= DL_FLAG_MANAGED;
390 			device_link_init_status(link, consumer, supplier);
391 		}
392 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
393 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
394 			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
395 			goto reorder;
396 		}
397 
398 		goto out;
399 	}
400 
401 	link = kzalloc(sizeof(*link), GFP_KERNEL);
402 	if (!link)
403 		goto out;
404 
405 	refcount_set(&link->rpm_active, 1);
406 
407 	if (flags & DL_FLAG_PM_RUNTIME) {
408 		if (flags & DL_FLAG_RPM_ACTIVE)
409 			refcount_inc(&link->rpm_active);
410 
411 		pm_runtime_new_link(consumer);
412 	}
413 
414 	get_device(supplier);
415 	link->supplier = supplier;
416 	INIT_LIST_HEAD(&link->s_node);
417 	get_device(consumer);
418 	link->consumer = consumer;
419 	INIT_LIST_HEAD(&link->c_node);
420 	link->flags = flags;
421 	kref_init(&link->kref);
422 
423 	/* Determine the initial link state. */
424 	if (flags & DL_FLAG_STATELESS)
425 		link->status = DL_STATE_NONE;
426 	else
427 		device_link_init_status(link, consumer, supplier);
428 
429 	/*
430 	 * Some callers expect the link creation during consumer driver probe to
431 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
432 	 */
433 	if (link->status == DL_STATE_CONSUMER_PROBE &&
434 	    flags & DL_FLAG_PM_RUNTIME)
435 		pm_runtime_resume(supplier);
436 
437 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
438 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
439 
440 	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
441 		dev_dbg(consumer,
442 			"Linked as a sync state only consumer to %s\n",
443 			dev_name(supplier));
444 		goto out;
445 	}
446 
447 reorder:
448 	/*
449 	 * Move the consumer and all of the devices depending on it to the end
450 	 * of dpm_list and the devices_kset list.
451 	 *
452 	 * It is necessary to hold dpm_list locked throughout all that or else
453 	 * we may end up suspending with a wrong ordering of it.
454 	 */
455 	device_reorder_to_tail(consumer, NULL);
456 
457 	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
458 
459 out:
460 	device_pm_unlock();
461 	device_links_write_unlock();
462 
463 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
464 		pm_runtime_put(supplier);
465 
466 	return link;
467 }
468 EXPORT_SYMBOL_GPL(device_link_add);
469 
470 /**
471  * device_link_wait_for_supplier - Add device to wait_for_suppliers list
472  * @consumer: Consumer device
473  *
474  * Marks the @consumer device as waiting for suppliers to become available by
475  * adding it to the wait_for_suppliers list. The consumer device will never be
476  * probed until it's removed from the wait_for_suppliers list.
477  *
478  * The caller is responsible for adding the links to the supplier devices once
479  * they are available and removing the @consumer device from the
480  * wait_for_suppliers list once links to all the suppliers have been created.
481  *
482  * This function is NOT meant to be called from the probe function of the
483  * consumer but rather from code that creates/adds the consumer device.
484  */
485 static void device_link_wait_for_supplier(struct device *consumer,
486 					  bool need_for_probe)
487 {
488 	mutex_lock(&wfs_lock);
489 	list_add_tail(&consumer->links.needs_suppliers, &wait_for_suppliers);
490 	consumer->links.need_for_probe = need_for_probe;
491 	mutex_unlock(&wfs_lock);
492 }
493 
494 static void device_link_wait_for_mandatory_supplier(struct device *consumer)
495 {
496 	device_link_wait_for_supplier(consumer, true);
497 }
498 
499 static void device_link_wait_for_optional_supplier(struct device *consumer)
500 {
501 	device_link_wait_for_supplier(consumer, false);
502 }
503 
504 /**
505  * device_link_add_missing_supplier_links - Add links from consumer devices to
506  *					    supplier devices, leaving any
507  *					    consumer with inactive suppliers on
508  *					    the wait_for_suppliers list
509  *
510  * Loops through all consumers waiting on suppliers and tries to add all their
511  * supplier links. If that succeeds, the consumer device is removed from
512  * wait_for_suppliers list. Otherwise, they are left in the wait_for_suppliers
513  * list.  Devices left on the wait_for_suppliers list will not be probed.
514  *
515  * The fwnode add_links callback is expected to return 0 if it has found and
516  * added all the supplier links for the consumer device. It should return an
517  * error if it isn't able to do so.
518  *
519  * The caller of device_link_wait_for_supplier() is expected to call this once
520  * it's aware of potential suppliers becoming available.
521  */
522 static void device_link_add_missing_supplier_links(void)
523 {
524 	struct device *dev, *tmp;
525 
526 	mutex_lock(&wfs_lock);
527 	list_for_each_entry_safe(dev, tmp, &wait_for_suppliers,
528 				 links.needs_suppliers) {
529 		int ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
530 		if (!ret)
531 			list_del_init(&dev->links.needs_suppliers);
532 		else if (ret != -ENODEV)
533 			dev->links.need_for_probe = false;
534 	}
535 	mutex_unlock(&wfs_lock);
536 }
537 
538 static void device_link_free(struct device_link *link)
539 {
540 	while (refcount_dec_not_one(&link->rpm_active))
541 		pm_runtime_put(link->supplier);
542 
543 	put_device(link->consumer);
544 	put_device(link->supplier);
545 	kfree(link);
546 }
547 
548 #ifdef CONFIG_SRCU
549 static void __device_link_free_srcu(struct rcu_head *rhead)
550 {
551 	device_link_free(container_of(rhead, struct device_link, rcu_head));
552 }
553 
554 static void __device_link_del(struct kref *kref)
555 {
556 	struct device_link *link = container_of(kref, struct device_link, kref);
557 
558 	dev_dbg(link->consumer, "Dropping the link to %s\n",
559 		dev_name(link->supplier));
560 
561 	if (link->flags & DL_FLAG_PM_RUNTIME)
562 		pm_runtime_drop_link(link->consumer);
563 
564 	list_del_rcu(&link->s_node);
565 	list_del_rcu(&link->c_node);
566 	call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
567 }
568 #else /* !CONFIG_SRCU */
569 static void __device_link_del(struct kref *kref)
570 {
571 	struct device_link *link = container_of(kref, struct device_link, kref);
572 
573 	dev_info(link->consumer, "Dropping the link to %s\n",
574 		 dev_name(link->supplier));
575 
576 	if (link->flags & DL_FLAG_PM_RUNTIME)
577 		pm_runtime_drop_link(link->consumer);
578 
579 	list_del(&link->s_node);
580 	list_del(&link->c_node);
581 	device_link_free(link);
582 }
583 #endif /* !CONFIG_SRCU */
584 
585 static void device_link_put_kref(struct device_link *link)
586 {
587 	if (link->flags & DL_FLAG_STATELESS)
588 		kref_put(&link->kref, __device_link_del);
589 	else
590 		WARN(1, "Unable to drop a managed device link reference\n");
591 }
592 
593 /**
594  * device_link_del - Delete a stateless link between two devices.
595  * @link: Device link to delete.
596  *
597  * The caller must ensure proper synchronization of this function with runtime
598  * PM.  If the link was added multiple times, it needs to be deleted as often.
599  * Care is required for hotplugged devices:  Their links are purged on removal
600  * and calling device_link_del() is then no longer allowed.
601  */
602 void device_link_del(struct device_link *link)
603 {
604 	device_links_write_lock();
605 	device_pm_lock();
606 	device_link_put_kref(link);
607 	device_pm_unlock();
608 	device_links_write_unlock();
609 }
610 EXPORT_SYMBOL_GPL(device_link_del);
611 
612 /**
613  * device_link_remove - Delete a stateless link between two devices.
614  * @consumer: Consumer end of the link.
615  * @supplier: Supplier end of the link.
616  *
617  * The caller must ensure proper synchronization of this function with runtime
618  * PM.
619  */
620 void device_link_remove(void *consumer, struct device *supplier)
621 {
622 	struct device_link *link;
623 
624 	if (WARN_ON(consumer == supplier))
625 		return;
626 
627 	device_links_write_lock();
628 	device_pm_lock();
629 
630 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
631 		if (link->consumer == consumer) {
632 			device_link_put_kref(link);
633 			break;
634 		}
635 	}
636 
637 	device_pm_unlock();
638 	device_links_write_unlock();
639 }
640 EXPORT_SYMBOL_GPL(device_link_remove);
641 
642 static void device_links_missing_supplier(struct device *dev)
643 {
644 	struct device_link *link;
645 
646 	list_for_each_entry(link, &dev->links.suppliers, c_node)
647 		if (link->status == DL_STATE_CONSUMER_PROBE)
648 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
649 }
650 
651 /**
652  * device_links_check_suppliers - Check presence of supplier drivers.
653  * @dev: Consumer device.
654  *
655  * Check links from this device to any suppliers.  Walk the list of the device's
656  * links to suppliers and see if all of them are available.  If not, simply
657  * return -EPROBE_DEFER.
658  *
659  * We need to guarantee that the supplier will not go away after the check has
660  * been positive here.  It only can go away in __device_release_driver() and
661  * that function  checks the device's links to consumers.  This means we need to
662  * mark the link as "consumer probe in progress" to make the supplier removal
663  * wait for us to complete (or bad things may happen).
664  *
665  * Links without the DL_FLAG_MANAGED flag set are ignored.
666  */
667 int device_links_check_suppliers(struct device *dev)
668 {
669 	struct device_link *link;
670 	int ret = 0;
671 
672 	/*
673 	 * Device waiting for supplier to become available is not allowed to
674 	 * probe.
675 	 */
676 	mutex_lock(&wfs_lock);
677 	if (!list_empty(&dev->links.needs_suppliers) &&
678 	    dev->links.need_for_probe) {
679 		mutex_unlock(&wfs_lock);
680 		return -EPROBE_DEFER;
681 	}
682 	mutex_unlock(&wfs_lock);
683 
684 	device_links_write_lock();
685 
686 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
687 		if (!(link->flags & DL_FLAG_MANAGED) ||
688 		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
689 			continue;
690 
691 		if (link->status != DL_STATE_AVAILABLE) {
692 			device_links_missing_supplier(dev);
693 			ret = -EPROBE_DEFER;
694 			break;
695 		}
696 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
697 	}
698 	dev->links.status = DL_DEV_PROBING;
699 
700 	device_links_write_unlock();
701 	return ret;
702 }
703 
704 /**
705  * __device_links_queue_sync_state - Queue a device for sync_state() callback
706  * @dev: Device to call sync_state() on
707  * @list: List head to queue the @dev on
708  *
709  * Queues a device for a sync_state() callback when the device links write lock
710  * isn't held. This allows the sync_state() execution flow to use device links
711  * APIs.  The caller must ensure this function is called with
712  * device_links_write_lock() held.
713  *
714  * This function does a get_device() to make sure the device is not freed while
715  * on this list.
716  *
717  * So the caller must also ensure that device_links_flush_sync_list() is called
718  * as soon as the caller releases device_links_write_lock().  This is necessary
719  * to make sure the sync_state() is called in a timely fashion and the
720  * put_device() is called on this device.
721  */
722 static void __device_links_queue_sync_state(struct device *dev,
723 					    struct list_head *list)
724 {
725 	struct device_link *link;
726 
727 	if (!dev_has_sync_state(dev))
728 		return;
729 	if (dev->state_synced)
730 		return;
731 
732 	list_for_each_entry(link, &dev->links.consumers, s_node) {
733 		if (!(link->flags & DL_FLAG_MANAGED))
734 			continue;
735 		if (link->status != DL_STATE_ACTIVE)
736 			return;
737 	}
738 
739 	/*
740 	 * Set the flag here to avoid adding the same device to a list more
741 	 * than once. This can happen if new consumers get added to the device
742 	 * and probed before the list is flushed.
743 	 */
744 	dev->state_synced = true;
745 
746 	if (WARN_ON(!list_empty(&dev->links.defer_sync)))
747 		return;
748 
749 	get_device(dev);
750 	list_add_tail(&dev->links.defer_sync, list);
751 }
752 
753 /**
754  * device_links_flush_sync_list - Call sync_state() on a list of devices
755  * @list: List of devices to call sync_state() on
756  * @dont_lock_dev: Device for which lock is already held by the caller
757  *
758  * Calls sync_state() on all the devices that have been queued for it. This
759  * function is used in conjunction with __device_links_queue_sync_state(). The
760  * @dont_lock_dev parameter is useful when this function is called from a
761  * context where a device lock is already held.
762  */
763 static void device_links_flush_sync_list(struct list_head *list,
764 					 struct device *dont_lock_dev)
765 {
766 	struct device *dev, *tmp;
767 
768 	list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
769 		list_del_init(&dev->links.defer_sync);
770 
771 		if (dev != dont_lock_dev)
772 			device_lock(dev);
773 
774 		if (dev->bus->sync_state)
775 			dev->bus->sync_state(dev);
776 		else if (dev->driver && dev->driver->sync_state)
777 			dev->driver->sync_state(dev);
778 
779 		if (dev != dont_lock_dev)
780 			device_unlock(dev);
781 
782 		put_device(dev);
783 	}
784 }
785 
786 void device_links_supplier_sync_state_pause(void)
787 {
788 	device_links_write_lock();
789 	defer_sync_state_count++;
790 	device_links_write_unlock();
791 }
792 
793 void device_links_supplier_sync_state_resume(void)
794 {
795 	struct device *dev, *tmp;
796 	LIST_HEAD(sync_list);
797 
798 	device_links_write_lock();
799 	if (!defer_sync_state_count) {
800 		WARN(true, "Unmatched sync_state pause/resume!");
801 		goto out;
802 	}
803 	defer_sync_state_count--;
804 	if (defer_sync_state_count)
805 		goto out;
806 
807 	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
808 		/*
809 		 * Delete from deferred_sync list before queuing it to
810 		 * sync_list because defer_sync is used for both lists.
811 		 */
812 		list_del_init(&dev->links.defer_sync);
813 		__device_links_queue_sync_state(dev, &sync_list);
814 	}
815 out:
816 	device_links_write_unlock();
817 
818 	device_links_flush_sync_list(&sync_list, NULL);
819 }
820 
821 static int sync_state_resume_initcall(void)
822 {
823 	device_links_supplier_sync_state_resume();
824 	return 0;
825 }
826 late_initcall(sync_state_resume_initcall);
827 
828 static void __device_links_supplier_defer_sync(struct device *sup)
829 {
830 	if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
831 		list_add_tail(&sup->links.defer_sync, &deferred_sync);
832 }
833 
834 static void device_link_drop_managed(struct device_link *link)
835 {
836 	link->flags &= ~DL_FLAG_MANAGED;
837 	WRITE_ONCE(link->status, DL_STATE_NONE);
838 	kref_put(&link->kref, __device_link_del);
839 }
840 
841 /**
842  * device_links_driver_bound - Update device links after probing its driver.
843  * @dev: Device to update the links for.
844  *
845  * The probe has been successful, so update links from this device to any
846  * consumers by changing their status to "available".
847  *
848  * Also change the status of @dev's links to suppliers to "active".
849  *
850  * Links without the DL_FLAG_MANAGED flag set are ignored.
851  */
852 void device_links_driver_bound(struct device *dev)
853 {
854 	struct device_link *link, *ln;
855 	LIST_HEAD(sync_list);
856 
857 	/*
858 	 * If a device probes successfully, it's expected to have created all
859 	 * the device links it needs to or make new device links as it needs
860 	 * them. So, it no longer needs to wait on any suppliers.
861 	 */
862 	mutex_lock(&wfs_lock);
863 	list_del_init(&dev->links.needs_suppliers);
864 	mutex_unlock(&wfs_lock);
865 
866 	device_links_write_lock();
867 
868 	list_for_each_entry(link, &dev->links.consumers, s_node) {
869 		if (!(link->flags & DL_FLAG_MANAGED))
870 			continue;
871 
872 		/*
873 		 * Links created during consumer probe may be in the "consumer
874 		 * probe" state to start with if the supplier is still probing
875 		 * when they are created and they may become "active" if the
876 		 * consumer probe returns first.  Skip them here.
877 		 */
878 		if (link->status == DL_STATE_CONSUMER_PROBE ||
879 		    link->status == DL_STATE_ACTIVE)
880 			continue;
881 
882 		WARN_ON(link->status != DL_STATE_DORMANT);
883 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
884 
885 		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
886 			driver_deferred_probe_add(link->consumer);
887 	}
888 
889 	if (defer_sync_state_count)
890 		__device_links_supplier_defer_sync(dev);
891 	else
892 		__device_links_queue_sync_state(dev, &sync_list);
893 
894 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
895 		struct device *supplier;
896 
897 		if (!(link->flags & DL_FLAG_MANAGED))
898 			continue;
899 
900 		supplier = link->supplier;
901 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
902 			/*
903 			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
904 			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
905 			 * save to drop the managed link completely.
906 			 */
907 			device_link_drop_managed(link);
908 		} else {
909 			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
910 			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
911 		}
912 
913 		/*
914 		 * This needs to be done even for the deleted
915 		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
916 		 * device link that was preventing the supplier from getting a
917 		 * sync_state() call.
918 		 */
919 		if (defer_sync_state_count)
920 			__device_links_supplier_defer_sync(supplier);
921 		else
922 			__device_links_queue_sync_state(supplier, &sync_list);
923 	}
924 
925 	dev->links.status = DL_DEV_DRIVER_BOUND;
926 
927 	device_links_write_unlock();
928 
929 	device_links_flush_sync_list(&sync_list, dev);
930 }
931 
932 /**
933  * __device_links_no_driver - Update links of a device without a driver.
934  * @dev: Device without a drvier.
935  *
936  * Delete all non-persistent links from this device to any suppliers.
937  *
938  * Persistent links stay around, but their status is changed to "available",
939  * unless they already are in the "supplier unbind in progress" state in which
940  * case they need not be updated.
941  *
942  * Links without the DL_FLAG_MANAGED flag set are ignored.
943  */
944 static void __device_links_no_driver(struct device *dev)
945 {
946 	struct device_link *link, *ln;
947 
948 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
949 		if (!(link->flags & DL_FLAG_MANAGED))
950 			continue;
951 
952 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
953 			device_link_drop_managed(link);
954 		else if (link->status == DL_STATE_CONSUMER_PROBE ||
955 			 link->status == DL_STATE_ACTIVE)
956 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
957 	}
958 
959 	dev->links.status = DL_DEV_NO_DRIVER;
960 }
961 
962 /**
963  * device_links_no_driver - Update links after failing driver probe.
964  * @dev: Device whose driver has just failed to probe.
965  *
966  * Clean up leftover links to consumers for @dev and invoke
967  * %__device_links_no_driver() to update links to suppliers for it as
968  * appropriate.
969  *
970  * Links without the DL_FLAG_MANAGED flag set are ignored.
971  */
972 void device_links_no_driver(struct device *dev)
973 {
974 	struct device_link *link;
975 
976 	device_links_write_lock();
977 
978 	list_for_each_entry(link, &dev->links.consumers, s_node) {
979 		if (!(link->flags & DL_FLAG_MANAGED))
980 			continue;
981 
982 		/*
983 		 * The probe has failed, so if the status of the link is
984 		 * "consumer probe" or "active", it must have been added by
985 		 * a probing consumer while this device was still probing.
986 		 * Change its state to "dormant", as it represents a valid
987 		 * relationship, but it is not functionally meaningful.
988 		 */
989 		if (link->status == DL_STATE_CONSUMER_PROBE ||
990 		    link->status == DL_STATE_ACTIVE)
991 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
992 	}
993 
994 	__device_links_no_driver(dev);
995 
996 	device_links_write_unlock();
997 }
998 
999 /**
1000  * device_links_driver_cleanup - Update links after driver removal.
1001  * @dev: Device whose driver has just gone away.
1002  *
1003  * Update links to consumers for @dev by changing their status to "dormant" and
1004  * invoke %__device_links_no_driver() to update links to suppliers for it as
1005  * appropriate.
1006  *
1007  * Links without the DL_FLAG_MANAGED flag set are ignored.
1008  */
1009 void device_links_driver_cleanup(struct device *dev)
1010 {
1011 	struct device_link *link, *ln;
1012 
1013 	device_links_write_lock();
1014 
1015 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1016 		if (!(link->flags & DL_FLAG_MANAGED))
1017 			continue;
1018 
1019 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1020 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1021 
1022 		/*
1023 		 * autoremove the links between this @dev and its consumer
1024 		 * devices that are not active, i.e. where the link state
1025 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1026 		 */
1027 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1028 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1029 			device_link_drop_managed(link);
1030 
1031 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1032 	}
1033 
1034 	list_del_init(&dev->links.defer_sync);
1035 	__device_links_no_driver(dev);
1036 
1037 	device_links_write_unlock();
1038 }
1039 
1040 /**
1041  * device_links_busy - Check if there are any busy links to consumers.
1042  * @dev: Device to check.
1043  *
1044  * Check each consumer of the device and return 'true' if its link's status
1045  * is one of "consumer probe" or "active" (meaning that the given consumer is
1046  * probing right now or its driver is present).  Otherwise, change the link
1047  * state to "supplier unbind" to prevent the consumer from being probed
1048  * successfully going forward.
1049  *
1050  * Return 'false' if there are no probing or active consumers.
1051  *
1052  * Links without the DL_FLAG_MANAGED flag set are ignored.
1053  */
1054 bool device_links_busy(struct device *dev)
1055 {
1056 	struct device_link *link;
1057 	bool ret = false;
1058 
1059 	device_links_write_lock();
1060 
1061 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1062 		if (!(link->flags & DL_FLAG_MANAGED))
1063 			continue;
1064 
1065 		if (link->status == DL_STATE_CONSUMER_PROBE
1066 		    || link->status == DL_STATE_ACTIVE) {
1067 			ret = true;
1068 			break;
1069 		}
1070 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1071 	}
1072 
1073 	dev->links.status = DL_DEV_UNBINDING;
1074 
1075 	device_links_write_unlock();
1076 	return ret;
1077 }
1078 
1079 /**
1080  * device_links_unbind_consumers - Force unbind consumers of the given device.
1081  * @dev: Device to unbind the consumers of.
1082  *
1083  * Walk the list of links to consumers for @dev and if any of them is in the
1084  * "consumer probe" state, wait for all device probes in progress to complete
1085  * and start over.
1086  *
1087  * If that's not the case, change the status of the link to "supplier unbind"
1088  * and check if the link was in the "active" state.  If so, force the consumer
1089  * driver to unbind and start over (the consumer will not re-probe as we have
1090  * changed the state of the link already).
1091  *
1092  * Links without the DL_FLAG_MANAGED flag set are ignored.
1093  */
1094 void device_links_unbind_consumers(struct device *dev)
1095 {
1096 	struct device_link *link;
1097 
1098  start:
1099 	device_links_write_lock();
1100 
1101 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1102 		enum device_link_state status;
1103 
1104 		if (!(link->flags & DL_FLAG_MANAGED) ||
1105 		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1106 			continue;
1107 
1108 		status = link->status;
1109 		if (status == DL_STATE_CONSUMER_PROBE) {
1110 			device_links_write_unlock();
1111 
1112 			wait_for_device_probe();
1113 			goto start;
1114 		}
1115 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1116 		if (status == DL_STATE_ACTIVE) {
1117 			struct device *consumer = link->consumer;
1118 
1119 			get_device(consumer);
1120 
1121 			device_links_write_unlock();
1122 
1123 			device_release_driver_internal(consumer, NULL,
1124 						       consumer->parent);
1125 			put_device(consumer);
1126 			goto start;
1127 		}
1128 	}
1129 
1130 	device_links_write_unlock();
1131 }
1132 
1133 /**
1134  * device_links_purge - Delete existing links to other devices.
1135  * @dev: Target device.
1136  */
1137 static void device_links_purge(struct device *dev)
1138 {
1139 	struct device_link *link, *ln;
1140 
1141 	mutex_lock(&wfs_lock);
1142 	list_del(&dev->links.needs_suppliers);
1143 	mutex_unlock(&wfs_lock);
1144 
1145 	/*
1146 	 * Delete all of the remaining links from this device to any other
1147 	 * devices (either consumers or suppliers).
1148 	 */
1149 	device_links_write_lock();
1150 
1151 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1152 		WARN_ON(link->status == DL_STATE_ACTIVE);
1153 		__device_link_del(&link->kref);
1154 	}
1155 
1156 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1157 		WARN_ON(link->status != DL_STATE_DORMANT &&
1158 			link->status != DL_STATE_NONE);
1159 		__device_link_del(&link->kref);
1160 	}
1161 
1162 	device_links_write_unlock();
1163 }
1164 
1165 /* Device links support end. */
1166 
1167 int (*platform_notify)(struct device *dev) = NULL;
1168 int (*platform_notify_remove)(struct device *dev) = NULL;
1169 static struct kobject *dev_kobj;
1170 struct kobject *sysfs_dev_char_kobj;
1171 struct kobject *sysfs_dev_block_kobj;
1172 
1173 static DEFINE_MUTEX(device_hotplug_lock);
1174 
1175 void lock_device_hotplug(void)
1176 {
1177 	mutex_lock(&device_hotplug_lock);
1178 }
1179 
1180 void unlock_device_hotplug(void)
1181 {
1182 	mutex_unlock(&device_hotplug_lock);
1183 }
1184 
1185 int lock_device_hotplug_sysfs(void)
1186 {
1187 	if (mutex_trylock(&device_hotplug_lock))
1188 		return 0;
1189 
1190 	/* Avoid busy looping (5 ms of sleep should do). */
1191 	msleep(5);
1192 	return restart_syscall();
1193 }
1194 
1195 #ifdef CONFIG_BLOCK
1196 static inline int device_is_not_partition(struct device *dev)
1197 {
1198 	return !(dev->type == &part_type);
1199 }
1200 #else
1201 static inline int device_is_not_partition(struct device *dev)
1202 {
1203 	return 1;
1204 }
1205 #endif
1206 
1207 static int
1208 device_platform_notify(struct device *dev, enum kobject_action action)
1209 {
1210 	int ret;
1211 
1212 	ret = acpi_platform_notify(dev, action);
1213 	if (ret)
1214 		return ret;
1215 
1216 	ret = software_node_notify(dev, action);
1217 	if (ret)
1218 		return ret;
1219 
1220 	if (platform_notify && action == KOBJ_ADD)
1221 		platform_notify(dev);
1222 	else if (platform_notify_remove && action == KOBJ_REMOVE)
1223 		platform_notify_remove(dev);
1224 	return 0;
1225 }
1226 
1227 /**
1228  * dev_driver_string - Return a device's driver name, if at all possible
1229  * @dev: struct device to get the name of
1230  *
1231  * Will return the device's driver's name if it is bound to a device.  If
1232  * the device is not bound to a driver, it will return the name of the bus
1233  * it is attached to.  If it is not attached to a bus either, an empty
1234  * string will be returned.
1235  */
1236 const char *dev_driver_string(const struct device *dev)
1237 {
1238 	struct device_driver *drv;
1239 
1240 	/* dev->driver can change to NULL underneath us because of unbinding,
1241 	 * so be careful about accessing it.  dev->bus and dev->class should
1242 	 * never change once they are set, so they don't need special care.
1243 	 */
1244 	drv = READ_ONCE(dev->driver);
1245 	return drv ? drv->name :
1246 			(dev->bus ? dev->bus->name :
1247 			(dev->class ? dev->class->name : ""));
1248 }
1249 EXPORT_SYMBOL(dev_driver_string);
1250 
1251 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
1252 
1253 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
1254 			     char *buf)
1255 {
1256 	struct device_attribute *dev_attr = to_dev_attr(attr);
1257 	struct device *dev = kobj_to_dev(kobj);
1258 	ssize_t ret = -EIO;
1259 
1260 	if (dev_attr->show)
1261 		ret = dev_attr->show(dev, dev_attr, buf);
1262 	if (ret >= (ssize_t)PAGE_SIZE) {
1263 		printk("dev_attr_show: %pS returned bad count\n",
1264 				dev_attr->show);
1265 	}
1266 	return ret;
1267 }
1268 
1269 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
1270 			      const char *buf, size_t count)
1271 {
1272 	struct device_attribute *dev_attr = to_dev_attr(attr);
1273 	struct device *dev = kobj_to_dev(kobj);
1274 	ssize_t ret = -EIO;
1275 
1276 	if (dev_attr->store)
1277 		ret = dev_attr->store(dev, dev_attr, buf, count);
1278 	return ret;
1279 }
1280 
1281 static const struct sysfs_ops dev_sysfs_ops = {
1282 	.show	= dev_attr_show,
1283 	.store	= dev_attr_store,
1284 };
1285 
1286 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
1287 
1288 ssize_t device_store_ulong(struct device *dev,
1289 			   struct device_attribute *attr,
1290 			   const char *buf, size_t size)
1291 {
1292 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1293 	int ret;
1294 	unsigned long new;
1295 
1296 	ret = kstrtoul(buf, 0, &new);
1297 	if (ret)
1298 		return ret;
1299 	*(unsigned long *)(ea->var) = new;
1300 	/* Always return full write size even if we didn't consume all */
1301 	return size;
1302 }
1303 EXPORT_SYMBOL_GPL(device_store_ulong);
1304 
1305 ssize_t device_show_ulong(struct device *dev,
1306 			  struct device_attribute *attr,
1307 			  char *buf)
1308 {
1309 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1310 	return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
1311 }
1312 EXPORT_SYMBOL_GPL(device_show_ulong);
1313 
1314 ssize_t device_store_int(struct device *dev,
1315 			 struct device_attribute *attr,
1316 			 const char *buf, size_t size)
1317 {
1318 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1319 	int ret;
1320 	long new;
1321 
1322 	ret = kstrtol(buf, 0, &new);
1323 	if (ret)
1324 		return ret;
1325 
1326 	if (new > INT_MAX || new < INT_MIN)
1327 		return -EINVAL;
1328 	*(int *)(ea->var) = new;
1329 	/* Always return full write size even if we didn't consume all */
1330 	return size;
1331 }
1332 EXPORT_SYMBOL_GPL(device_store_int);
1333 
1334 ssize_t device_show_int(struct device *dev,
1335 			struct device_attribute *attr,
1336 			char *buf)
1337 {
1338 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1339 
1340 	return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
1341 }
1342 EXPORT_SYMBOL_GPL(device_show_int);
1343 
1344 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
1345 			  const char *buf, size_t size)
1346 {
1347 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1348 
1349 	if (strtobool(buf, ea->var) < 0)
1350 		return -EINVAL;
1351 
1352 	return size;
1353 }
1354 EXPORT_SYMBOL_GPL(device_store_bool);
1355 
1356 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
1357 			 char *buf)
1358 {
1359 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1360 
1361 	return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
1362 }
1363 EXPORT_SYMBOL_GPL(device_show_bool);
1364 
1365 /**
1366  * device_release - free device structure.
1367  * @kobj: device's kobject.
1368  *
1369  * This is called once the reference count for the object
1370  * reaches 0. We forward the call to the device's release
1371  * method, which should handle actually freeing the structure.
1372  */
1373 static void device_release(struct kobject *kobj)
1374 {
1375 	struct device *dev = kobj_to_dev(kobj);
1376 	struct device_private *p = dev->p;
1377 
1378 	/*
1379 	 * Some platform devices are driven without driver attached
1380 	 * and managed resources may have been acquired.  Make sure
1381 	 * all resources are released.
1382 	 *
1383 	 * Drivers still can add resources into device after device
1384 	 * is deleted but alive, so release devres here to avoid
1385 	 * possible memory leak.
1386 	 */
1387 	devres_release_all(dev);
1388 
1389 	if (dev->release)
1390 		dev->release(dev);
1391 	else if (dev->type && dev->type->release)
1392 		dev->type->release(dev);
1393 	else if (dev->class && dev->class->dev_release)
1394 		dev->class->dev_release(dev);
1395 	else
1396 		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
1397 			dev_name(dev));
1398 	kfree(p);
1399 }
1400 
1401 static const void *device_namespace(struct kobject *kobj)
1402 {
1403 	struct device *dev = kobj_to_dev(kobj);
1404 	const void *ns = NULL;
1405 
1406 	if (dev->class && dev->class->ns_type)
1407 		ns = dev->class->namespace(dev);
1408 
1409 	return ns;
1410 }
1411 
1412 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
1413 {
1414 	struct device *dev = kobj_to_dev(kobj);
1415 
1416 	if (dev->class && dev->class->get_ownership)
1417 		dev->class->get_ownership(dev, uid, gid);
1418 }
1419 
1420 static struct kobj_type device_ktype = {
1421 	.release	= device_release,
1422 	.sysfs_ops	= &dev_sysfs_ops,
1423 	.namespace	= device_namespace,
1424 	.get_ownership	= device_get_ownership,
1425 };
1426 
1427 
1428 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
1429 {
1430 	struct kobj_type *ktype = get_ktype(kobj);
1431 
1432 	if (ktype == &device_ktype) {
1433 		struct device *dev = kobj_to_dev(kobj);
1434 		if (dev->bus)
1435 			return 1;
1436 		if (dev->class)
1437 			return 1;
1438 	}
1439 	return 0;
1440 }
1441 
1442 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
1443 {
1444 	struct device *dev = kobj_to_dev(kobj);
1445 
1446 	if (dev->bus)
1447 		return dev->bus->name;
1448 	if (dev->class)
1449 		return dev->class->name;
1450 	return NULL;
1451 }
1452 
1453 static int dev_uevent(struct kset *kset, struct kobject *kobj,
1454 		      struct kobj_uevent_env *env)
1455 {
1456 	struct device *dev = kobj_to_dev(kobj);
1457 	int retval = 0;
1458 
1459 	/* add device node properties if present */
1460 	if (MAJOR(dev->devt)) {
1461 		const char *tmp;
1462 		const char *name;
1463 		umode_t mode = 0;
1464 		kuid_t uid = GLOBAL_ROOT_UID;
1465 		kgid_t gid = GLOBAL_ROOT_GID;
1466 
1467 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
1468 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
1469 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
1470 		if (name) {
1471 			add_uevent_var(env, "DEVNAME=%s", name);
1472 			if (mode)
1473 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
1474 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
1475 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
1476 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
1477 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
1478 			kfree(tmp);
1479 		}
1480 	}
1481 
1482 	if (dev->type && dev->type->name)
1483 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
1484 
1485 	if (dev->driver)
1486 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
1487 
1488 	/* Add common DT information about the device */
1489 	of_device_uevent(dev, env);
1490 
1491 	/* have the bus specific function add its stuff */
1492 	if (dev->bus && dev->bus->uevent) {
1493 		retval = dev->bus->uevent(dev, env);
1494 		if (retval)
1495 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
1496 				 dev_name(dev), __func__, retval);
1497 	}
1498 
1499 	/* have the class specific function add its stuff */
1500 	if (dev->class && dev->class->dev_uevent) {
1501 		retval = dev->class->dev_uevent(dev, env);
1502 		if (retval)
1503 			pr_debug("device: '%s': %s: class uevent() "
1504 				 "returned %d\n", dev_name(dev),
1505 				 __func__, retval);
1506 	}
1507 
1508 	/* have the device type specific function add its stuff */
1509 	if (dev->type && dev->type->uevent) {
1510 		retval = dev->type->uevent(dev, env);
1511 		if (retval)
1512 			pr_debug("device: '%s': %s: dev_type uevent() "
1513 				 "returned %d\n", dev_name(dev),
1514 				 __func__, retval);
1515 	}
1516 
1517 	return retval;
1518 }
1519 
1520 static const struct kset_uevent_ops device_uevent_ops = {
1521 	.filter =	dev_uevent_filter,
1522 	.name =		dev_uevent_name,
1523 	.uevent =	dev_uevent,
1524 };
1525 
1526 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
1527 			   char *buf)
1528 {
1529 	struct kobject *top_kobj;
1530 	struct kset *kset;
1531 	struct kobj_uevent_env *env = NULL;
1532 	int i;
1533 	size_t count = 0;
1534 	int retval;
1535 
1536 	/* search the kset, the device belongs to */
1537 	top_kobj = &dev->kobj;
1538 	while (!top_kobj->kset && top_kobj->parent)
1539 		top_kobj = top_kobj->parent;
1540 	if (!top_kobj->kset)
1541 		goto out;
1542 
1543 	kset = top_kobj->kset;
1544 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
1545 		goto out;
1546 
1547 	/* respect filter */
1548 	if (kset->uevent_ops && kset->uevent_ops->filter)
1549 		if (!kset->uevent_ops->filter(kset, &dev->kobj))
1550 			goto out;
1551 
1552 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1553 	if (!env)
1554 		return -ENOMEM;
1555 
1556 	/* let the kset specific function add its keys */
1557 	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
1558 	if (retval)
1559 		goto out;
1560 
1561 	/* copy keys to file */
1562 	for (i = 0; i < env->envp_idx; i++)
1563 		count += sprintf(&buf[count], "%s\n", env->envp[i]);
1564 out:
1565 	kfree(env);
1566 	return count;
1567 }
1568 
1569 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
1570 			    const char *buf, size_t count)
1571 {
1572 	int rc;
1573 
1574 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
1575 
1576 	if (rc) {
1577 		dev_err(dev, "uevent: failed to send synthetic uevent\n");
1578 		return rc;
1579 	}
1580 
1581 	return count;
1582 }
1583 static DEVICE_ATTR_RW(uevent);
1584 
1585 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1586 			   char *buf)
1587 {
1588 	bool val;
1589 
1590 	device_lock(dev);
1591 	val = !dev->offline;
1592 	device_unlock(dev);
1593 	return sprintf(buf, "%u\n", val);
1594 }
1595 
1596 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1597 			    const char *buf, size_t count)
1598 {
1599 	bool val;
1600 	int ret;
1601 
1602 	ret = strtobool(buf, &val);
1603 	if (ret < 0)
1604 		return ret;
1605 
1606 	ret = lock_device_hotplug_sysfs();
1607 	if (ret)
1608 		return ret;
1609 
1610 	ret = val ? device_online(dev) : device_offline(dev);
1611 	unlock_device_hotplug();
1612 	return ret < 0 ? ret : count;
1613 }
1614 static DEVICE_ATTR_RW(online);
1615 
1616 int device_add_groups(struct device *dev, const struct attribute_group **groups)
1617 {
1618 	return sysfs_create_groups(&dev->kobj, groups);
1619 }
1620 EXPORT_SYMBOL_GPL(device_add_groups);
1621 
1622 void device_remove_groups(struct device *dev,
1623 			  const struct attribute_group **groups)
1624 {
1625 	sysfs_remove_groups(&dev->kobj, groups);
1626 }
1627 EXPORT_SYMBOL_GPL(device_remove_groups);
1628 
1629 union device_attr_group_devres {
1630 	const struct attribute_group *group;
1631 	const struct attribute_group **groups;
1632 };
1633 
1634 static int devm_attr_group_match(struct device *dev, void *res, void *data)
1635 {
1636 	return ((union device_attr_group_devres *)res)->group == data;
1637 }
1638 
1639 static void devm_attr_group_remove(struct device *dev, void *res)
1640 {
1641 	union device_attr_group_devres *devres = res;
1642 	const struct attribute_group *group = devres->group;
1643 
1644 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
1645 	sysfs_remove_group(&dev->kobj, group);
1646 }
1647 
1648 static void devm_attr_groups_remove(struct device *dev, void *res)
1649 {
1650 	union device_attr_group_devres *devres = res;
1651 	const struct attribute_group **groups = devres->groups;
1652 
1653 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
1654 	sysfs_remove_groups(&dev->kobj, groups);
1655 }
1656 
1657 /**
1658  * devm_device_add_group - given a device, create a managed attribute group
1659  * @dev:	The device to create the group for
1660  * @grp:	The attribute group to create
1661  *
1662  * This function creates a group for the first time.  It will explicitly
1663  * warn and error if any of the attribute files being created already exist.
1664  *
1665  * Returns 0 on success or error code on failure.
1666  */
1667 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
1668 {
1669 	union device_attr_group_devres *devres;
1670 	int error;
1671 
1672 	devres = devres_alloc(devm_attr_group_remove,
1673 			      sizeof(*devres), GFP_KERNEL);
1674 	if (!devres)
1675 		return -ENOMEM;
1676 
1677 	error = sysfs_create_group(&dev->kobj, grp);
1678 	if (error) {
1679 		devres_free(devres);
1680 		return error;
1681 	}
1682 
1683 	devres->group = grp;
1684 	devres_add(dev, devres);
1685 	return 0;
1686 }
1687 EXPORT_SYMBOL_GPL(devm_device_add_group);
1688 
1689 /**
1690  * devm_device_remove_group: remove a managed group from a device
1691  * @dev:	device to remove the group from
1692  * @grp:	group to remove
1693  *
1694  * This function removes a group of attributes from a device. The attributes
1695  * previously have to have been created for this group, otherwise it will fail.
1696  */
1697 void devm_device_remove_group(struct device *dev,
1698 			      const struct attribute_group *grp)
1699 {
1700 	WARN_ON(devres_release(dev, devm_attr_group_remove,
1701 			       devm_attr_group_match,
1702 			       /* cast away const */ (void *)grp));
1703 }
1704 EXPORT_SYMBOL_GPL(devm_device_remove_group);
1705 
1706 /**
1707  * devm_device_add_groups - create a bunch of managed attribute groups
1708  * @dev:	The device to create the group for
1709  * @groups:	The attribute groups to create, NULL terminated
1710  *
1711  * This function creates a bunch of managed attribute groups.  If an error
1712  * occurs when creating a group, all previously created groups will be
1713  * removed, unwinding everything back to the original state when this
1714  * function was called.  It will explicitly warn and error if any of the
1715  * attribute files being created already exist.
1716  *
1717  * Returns 0 on success or error code from sysfs_create_group on failure.
1718  */
1719 int devm_device_add_groups(struct device *dev,
1720 			   const struct attribute_group **groups)
1721 {
1722 	union device_attr_group_devres *devres;
1723 	int error;
1724 
1725 	devres = devres_alloc(devm_attr_groups_remove,
1726 			      sizeof(*devres), GFP_KERNEL);
1727 	if (!devres)
1728 		return -ENOMEM;
1729 
1730 	error = sysfs_create_groups(&dev->kobj, groups);
1731 	if (error) {
1732 		devres_free(devres);
1733 		return error;
1734 	}
1735 
1736 	devres->groups = groups;
1737 	devres_add(dev, devres);
1738 	return 0;
1739 }
1740 EXPORT_SYMBOL_GPL(devm_device_add_groups);
1741 
1742 /**
1743  * devm_device_remove_groups - remove a list of managed groups
1744  *
1745  * @dev:	The device for the groups to be removed from
1746  * @groups:	NULL terminated list of groups to be removed
1747  *
1748  * If groups is not NULL, remove the specified groups from the device.
1749  */
1750 void devm_device_remove_groups(struct device *dev,
1751 			       const struct attribute_group **groups)
1752 {
1753 	WARN_ON(devres_release(dev, devm_attr_groups_remove,
1754 			       devm_attr_group_match,
1755 			       /* cast away const */ (void *)groups));
1756 }
1757 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
1758 
1759 static int device_add_attrs(struct device *dev)
1760 {
1761 	struct class *class = dev->class;
1762 	const struct device_type *type = dev->type;
1763 	int error;
1764 
1765 	if (class) {
1766 		error = device_add_groups(dev, class->dev_groups);
1767 		if (error)
1768 			return error;
1769 	}
1770 
1771 	if (type) {
1772 		error = device_add_groups(dev, type->groups);
1773 		if (error)
1774 			goto err_remove_class_groups;
1775 	}
1776 
1777 	error = device_add_groups(dev, dev->groups);
1778 	if (error)
1779 		goto err_remove_type_groups;
1780 
1781 	if (device_supports_offline(dev) && !dev->offline_disabled) {
1782 		error = device_create_file(dev, &dev_attr_online);
1783 		if (error)
1784 			goto err_remove_dev_groups;
1785 	}
1786 
1787 	return 0;
1788 
1789  err_remove_dev_groups:
1790 	device_remove_groups(dev, dev->groups);
1791  err_remove_type_groups:
1792 	if (type)
1793 		device_remove_groups(dev, type->groups);
1794  err_remove_class_groups:
1795 	if (class)
1796 		device_remove_groups(dev, class->dev_groups);
1797 
1798 	return error;
1799 }
1800 
1801 static void device_remove_attrs(struct device *dev)
1802 {
1803 	struct class *class = dev->class;
1804 	const struct device_type *type = dev->type;
1805 
1806 	device_remove_file(dev, &dev_attr_online);
1807 	device_remove_groups(dev, dev->groups);
1808 
1809 	if (type)
1810 		device_remove_groups(dev, type->groups);
1811 
1812 	if (class)
1813 		device_remove_groups(dev, class->dev_groups);
1814 }
1815 
1816 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1817 			char *buf)
1818 {
1819 	return print_dev_t(buf, dev->devt);
1820 }
1821 static DEVICE_ATTR_RO(dev);
1822 
1823 /* /sys/devices/ */
1824 struct kset *devices_kset;
1825 
1826 /**
1827  * devices_kset_move_before - Move device in the devices_kset's list.
1828  * @deva: Device to move.
1829  * @devb: Device @deva should come before.
1830  */
1831 static void devices_kset_move_before(struct device *deva, struct device *devb)
1832 {
1833 	if (!devices_kset)
1834 		return;
1835 	pr_debug("devices_kset: Moving %s before %s\n",
1836 		 dev_name(deva), dev_name(devb));
1837 	spin_lock(&devices_kset->list_lock);
1838 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1839 	spin_unlock(&devices_kset->list_lock);
1840 }
1841 
1842 /**
1843  * devices_kset_move_after - Move device in the devices_kset's list.
1844  * @deva: Device to move
1845  * @devb: Device @deva should come after.
1846  */
1847 static void devices_kset_move_after(struct device *deva, struct device *devb)
1848 {
1849 	if (!devices_kset)
1850 		return;
1851 	pr_debug("devices_kset: Moving %s after %s\n",
1852 		 dev_name(deva), dev_name(devb));
1853 	spin_lock(&devices_kset->list_lock);
1854 	list_move(&deva->kobj.entry, &devb->kobj.entry);
1855 	spin_unlock(&devices_kset->list_lock);
1856 }
1857 
1858 /**
1859  * devices_kset_move_last - move the device to the end of devices_kset's list.
1860  * @dev: device to move
1861  */
1862 void devices_kset_move_last(struct device *dev)
1863 {
1864 	if (!devices_kset)
1865 		return;
1866 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1867 	spin_lock(&devices_kset->list_lock);
1868 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
1869 	spin_unlock(&devices_kset->list_lock);
1870 }
1871 
1872 /**
1873  * device_create_file - create sysfs attribute file for device.
1874  * @dev: device.
1875  * @attr: device attribute descriptor.
1876  */
1877 int device_create_file(struct device *dev,
1878 		       const struct device_attribute *attr)
1879 {
1880 	int error = 0;
1881 
1882 	if (dev) {
1883 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1884 			"Attribute %s: write permission without 'store'\n",
1885 			attr->attr.name);
1886 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1887 			"Attribute %s: read permission without 'show'\n",
1888 			attr->attr.name);
1889 		error = sysfs_create_file(&dev->kobj, &attr->attr);
1890 	}
1891 
1892 	return error;
1893 }
1894 EXPORT_SYMBOL_GPL(device_create_file);
1895 
1896 /**
1897  * device_remove_file - remove sysfs attribute file.
1898  * @dev: device.
1899  * @attr: device attribute descriptor.
1900  */
1901 void device_remove_file(struct device *dev,
1902 			const struct device_attribute *attr)
1903 {
1904 	if (dev)
1905 		sysfs_remove_file(&dev->kobj, &attr->attr);
1906 }
1907 EXPORT_SYMBOL_GPL(device_remove_file);
1908 
1909 /**
1910  * device_remove_file_self - remove sysfs attribute file from its own method.
1911  * @dev: device.
1912  * @attr: device attribute descriptor.
1913  *
1914  * See kernfs_remove_self() for details.
1915  */
1916 bool device_remove_file_self(struct device *dev,
1917 			     const struct device_attribute *attr)
1918 {
1919 	if (dev)
1920 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1921 	else
1922 		return false;
1923 }
1924 EXPORT_SYMBOL_GPL(device_remove_file_self);
1925 
1926 /**
1927  * device_create_bin_file - create sysfs binary attribute file for device.
1928  * @dev: device.
1929  * @attr: device binary attribute descriptor.
1930  */
1931 int device_create_bin_file(struct device *dev,
1932 			   const struct bin_attribute *attr)
1933 {
1934 	int error = -EINVAL;
1935 	if (dev)
1936 		error = sysfs_create_bin_file(&dev->kobj, attr);
1937 	return error;
1938 }
1939 EXPORT_SYMBOL_GPL(device_create_bin_file);
1940 
1941 /**
1942  * device_remove_bin_file - remove sysfs binary attribute file
1943  * @dev: device.
1944  * @attr: device binary attribute descriptor.
1945  */
1946 void device_remove_bin_file(struct device *dev,
1947 			    const struct bin_attribute *attr)
1948 {
1949 	if (dev)
1950 		sysfs_remove_bin_file(&dev->kobj, attr);
1951 }
1952 EXPORT_SYMBOL_GPL(device_remove_bin_file);
1953 
1954 static void klist_children_get(struct klist_node *n)
1955 {
1956 	struct device_private *p = to_device_private_parent(n);
1957 	struct device *dev = p->device;
1958 
1959 	get_device(dev);
1960 }
1961 
1962 static void klist_children_put(struct klist_node *n)
1963 {
1964 	struct device_private *p = to_device_private_parent(n);
1965 	struct device *dev = p->device;
1966 
1967 	put_device(dev);
1968 }
1969 
1970 /**
1971  * device_initialize - init device structure.
1972  * @dev: device.
1973  *
1974  * This prepares the device for use by other layers by initializing
1975  * its fields.
1976  * It is the first half of device_register(), if called by
1977  * that function, though it can also be called separately, so one
1978  * may use @dev's fields. In particular, get_device()/put_device()
1979  * may be used for reference counting of @dev after calling this
1980  * function.
1981  *
1982  * All fields in @dev must be initialized by the caller to 0, except
1983  * for those explicitly set to some other value.  The simplest
1984  * approach is to use kzalloc() to allocate the structure containing
1985  * @dev.
1986  *
1987  * NOTE: Use put_device() to give up your reference instead of freeing
1988  * @dev directly once you have called this function.
1989  */
1990 void device_initialize(struct device *dev)
1991 {
1992 	dev->kobj.kset = devices_kset;
1993 	kobject_init(&dev->kobj, &device_ktype);
1994 	INIT_LIST_HEAD(&dev->dma_pools);
1995 	mutex_init(&dev->mutex);
1996 #ifdef CONFIG_PROVE_LOCKING
1997 	mutex_init(&dev->lockdep_mutex);
1998 #endif
1999 	lockdep_set_novalidate_class(&dev->mutex);
2000 	spin_lock_init(&dev->devres_lock);
2001 	INIT_LIST_HEAD(&dev->devres_head);
2002 	device_pm_init(dev);
2003 	set_dev_node(dev, -1);
2004 #ifdef CONFIG_GENERIC_MSI_IRQ
2005 	INIT_LIST_HEAD(&dev->msi_list);
2006 #endif
2007 	INIT_LIST_HEAD(&dev->links.consumers);
2008 	INIT_LIST_HEAD(&dev->links.suppliers);
2009 	INIT_LIST_HEAD(&dev->links.needs_suppliers);
2010 	INIT_LIST_HEAD(&dev->links.defer_sync);
2011 	dev->links.status = DL_DEV_NO_DRIVER;
2012 }
2013 EXPORT_SYMBOL_GPL(device_initialize);
2014 
2015 struct kobject *virtual_device_parent(struct device *dev)
2016 {
2017 	static struct kobject *virtual_dir = NULL;
2018 
2019 	if (!virtual_dir)
2020 		virtual_dir = kobject_create_and_add("virtual",
2021 						     &devices_kset->kobj);
2022 
2023 	return virtual_dir;
2024 }
2025 
2026 struct class_dir {
2027 	struct kobject kobj;
2028 	struct class *class;
2029 };
2030 
2031 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2032 
2033 static void class_dir_release(struct kobject *kobj)
2034 {
2035 	struct class_dir *dir = to_class_dir(kobj);
2036 	kfree(dir);
2037 }
2038 
2039 static const
2040 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2041 {
2042 	struct class_dir *dir = to_class_dir(kobj);
2043 	return dir->class->ns_type;
2044 }
2045 
2046 static struct kobj_type class_dir_ktype = {
2047 	.release	= class_dir_release,
2048 	.sysfs_ops	= &kobj_sysfs_ops,
2049 	.child_ns_type	= class_dir_child_ns_type
2050 };
2051 
2052 static struct kobject *
2053 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2054 {
2055 	struct class_dir *dir;
2056 	int retval;
2057 
2058 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2059 	if (!dir)
2060 		return ERR_PTR(-ENOMEM);
2061 
2062 	dir->class = class;
2063 	kobject_init(&dir->kobj, &class_dir_ktype);
2064 
2065 	dir->kobj.kset = &class->p->glue_dirs;
2066 
2067 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2068 	if (retval < 0) {
2069 		kobject_put(&dir->kobj);
2070 		return ERR_PTR(retval);
2071 	}
2072 	return &dir->kobj;
2073 }
2074 
2075 static DEFINE_MUTEX(gdp_mutex);
2076 
2077 static struct kobject *get_device_parent(struct device *dev,
2078 					 struct device *parent)
2079 {
2080 	if (dev->class) {
2081 		struct kobject *kobj = NULL;
2082 		struct kobject *parent_kobj;
2083 		struct kobject *k;
2084 
2085 #ifdef CONFIG_BLOCK
2086 		/* block disks show up in /sys/block */
2087 		if (sysfs_deprecated && dev->class == &block_class) {
2088 			if (parent && parent->class == &block_class)
2089 				return &parent->kobj;
2090 			return &block_class.p->subsys.kobj;
2091 		}
2092 #endif
2093 
2094 		/*
2095 		 * If we have no parent, we live in "virtual".
2096 		 * Class-devices with a non class-device as parent, live
2097 		 * in a "glue" directory to prevent namespace collisions.
2098 		 */
2099 		if (parent == NULL)
2100 			parent_kobj = virtual_device_parent(dev);
2101 		else if (parent->class && !dev->class->ns_type)
2102 			return &parent->kobj;
2103 		else
2104 			parent_kobj = &parent->kobj;
2105 
2106 		mutex_lock(&gdp_mutex);
2107 
2108 		/* find our class-directory at the parent and reference it */
2109 		spin_lock(&dev->class->p->glue_dirs.list_lock);
2110 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2111 			if (k->parent == parent_kobj) {
2112 				kobj = kobject_get(k);
2113 				break;
2114 			}
2115 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
2116 		if (kobj) {
2117 			mutex_unlock(&gdp_mutex);
2118 			return kobj;
2119 		}
2120 
2121 		/* or create a new class-directory at the parent device */
2122 		k = class_dir_create_and_add(dev->class, parent_kobj);
2123 		/* do not emit an uevent for this simple "glue" directory */
2124 		mutex_unlock(&gdp_mutex);
2125 		return k;
2126 	}
2127 
2128 	/* subsystems can specify a default root directory for their devices */
2129 	if (!parent && dev->bus && dev->bus->dev_root)
2130 		return &dev->bus->dev_root->kobj;
2131 
2132 	if (parent)
2133 		return &parent->kobj;
2134 	return NULL;
2135 }
2136 
2137 static inline bool live_in_glue_dir(struct kobject *kobj,
2138 				    struct device *dev)
2139 {
2140 	if (!kobj || !dev->class ||
2141 	    kobj->kset != &dev->class->p->glue_dirs)
2142 		return false;
2143 	return true;
2144 }
2145 
2146 static inline struct kobject *get_glue_dir(struct device *dev)
2147 {
2148 	return dev->kobj.parent;
2149 }
2150 
2151 /*
2152  * make sure cleaning up dir as the last step, we need to make
2153  * sure .release handler of kobject is run with holding the
2154  * global lock
2155  */
2156 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
2157 {
2158 	unsigned int ref;
2159 
2160 	/* see if we live in a "glue" directory */
2161 	if (!live_in_glue_dir(glue_dir, dev))
2162 		return;
2163 
2164 	mutex_lock(&gdp_mutex);
2165 	/**
2166 	 * There is a race condition between removing glue directory
2167 	 * and adding a new device under the glue directory.
2168 	 *
2169 	 * CPU1:                                         CPU2:
2170 	 *
2171 	 * device_add()
2172 	 *   get_device_parent()
2173 	 *     class_dir_create_and_add()
2174 	 *       kobject_add_internal()
2175 	 *         create_dir()    // create glue_dir
2176 	 *
2177 	 *                                               device_add()
2178 	 *                                                 get_device_parent()
2179 	 *                                                   kobject_get() // get glue_dir
2180 	 *
2181 	 * device_del()
2182 	 *   cleanup_glue_dir()
2183 	 *     kobject_del(glue_dir)
2184 	 *
2185 	 *                                               kobject_add()
2186 	 *                                                 kobject_add_internal()
2187 	 *                                                   create_dir() // in glue_dir
2188 	 *                                                     sysfs_create_dir_ns()
2189 	 *                                                       kernfs_create_dir_ns(sd)
2190 	 *
2191 	 *       sysfs_remove_dir() // glue_dir->sd=NULL
2192 	 *       sysfs_put()        // free glue_dir->sd
2193 	 *
2194 	 *                                                         // sd is freed
2195 	 *                                                         kernfs_new_node(sd)
2196 	 *                                                           kernfs_get(glue_dir)
2197 	 *                                                           kernfs_add_one()
2198 	 *                                                           kernfs_put()
2199 	 *
2200 	 * Before CPU1 remove last child device under glue dir, if CPU2 add
2201 	 * a new device under glue dir, the glue_dir kobject reference count
2202 	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
2203 	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
2204 	 * and sysfs_put(). This result in glue_dir->sd is freed.
2205 	 *
2206 	 * Then the CPU2 will see a stale "empty" but still potentially used
2207 	 * glue dir around in kernfs_new_node().
2208 	 *
2209 	 * In order to avoid this happening, we also should make sure that
2210 	 * kernfs_node for glue_dir is released in CPU1 only when refcount
2211 	 * for glue_dir kobj is 1.
2212 	 */
2213 	ref = kref_read(&glue_dir->kref);
2214 	if (!kobject_has_children(glue_dir) && !--ref)
2215 		kobject_del(glue_dir);
2216 	kobject_put(glue_dir);
2217 	mutex_unlock(&gdp_mutex);
2218 }
2219 
2220 static int device_add_class_symlinks(struct device *dev)
2221 {
2222 	struct device_node *of_node = dev_of_node(dev);
2223 	int error;
2224 
2225 	if (of_node) {
2226 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
2227 		if (error)
2228 			dev_warn(dev, "Error %d creating of_node link\n",error);
2229 		/* An error here doesn't warrant bringing down the device */
2230 	}
2231 
2232 	if (!dev->class)
2233 		return 0;
2234 
2235 	error = sysfs_create_link(&dev->kobj,
2236 				  &dev->class->p->subsys.kobj,
2237 				  "subsystem");
2238 	if (error)
2239 		goto out_devnode;
2240 
2241 	if (dev->parent && device_is_not_partition(dev)) {
2242 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
2243 					  "device");
2244 		if (error)
2245 			goto out_subsys;
2246 	}
2247 
2248 #ifdef CONFIG_BLOCK
2249 	/* /sys/block has directories and does not need symlinks */
2250 	if (sysfs_deprecated && dev->class == &block_class)
2251 		return 0;
2252 #endif
2253 
2254 	/* link in the class directory pointing to the device */
2255 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
2256 				  &dev->kobj, dev_name(dev));
2257 	if (error)
2258 		goto out_device;
2259 
2260 	return 0;
2261 
2262 out_device:
2263 	sysfs_remove_link(&dev->kobj, "device");
2264 
2265 out_subsys:
2266 	sysfs_remove_link(&dev->kobj, "subsystem");
2267 out_devnode:
2268 	sysfs_remove_link(&dev->kobj, "of_node");
2269 	return error;
2270 }
2271 
2272 static void device_remove_class_symlinks(struct device *dev)
2273 {
2274 	if (dev_of_node(dev))
2275 		sysfs_remove_link(&dev->kobj, "of_node");
2276 
2277 	if (!dev->class)
2278 		return;
2279 
2280 	if (dev->parent && device_is_not_partition(dev))
2281 		sysfs_remove_link(&dev->kobj, "device");
2282 	sysfs_remove_link(&dev->kobj, "subsystem");
2283 #ifdef CONFIG_BLOCK
2284 	if (sysfs_deprecated && dev->class == &block_class)
2285 		return;
2286 #endif
2287 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
2288 }
2289 
2290 /**
2291  * dev_set_name - set a device name
2292  * @dev: device
2293  * @fmt: format string for the device's name
2294  */
2295 int dev_set_name(struct device *dev, const char *fmt, ...)
2296 {
2297 	va_list vargs;
2298 	int err;
2299 
2300 	va_start(vargs, fmt);
2301 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
2302 	va_end(vargs);
2303 	return err;
2304 }
2305 EXPORT_SYMBOL_GPL(dev_set_name);
2306 
2307 /**
2308  * device_to_dev_kobj - select a /sys/dev/ directory for the device
2309  * @dev: device
2310  *
2311  * By default we select char/ for new entries.  Setting class->dev_obj
2312  * to NULL prevents an entry from being created.  class->dev_kobj must
2313  * be set (or cleared) before any devices are registered to the class
2314  * otherwise device_create_sys_dev_entry() and
2315  * device_remove_sys_dev_entry() will disagree about the presence of
2316  * the link.
2317  */
2318 static struct kobject *device_to_dev_kobj(struct device *dev)
2319 {
2320 	struct kobject *kobj;
2321 
2322 	if (dev->class)
2323 		kobj = dev->class->dev_kobj;
2324 	else
2325 		kobj = sysfs_dev_char_kobj;
2326 
2327 	return kobj;
2328 }
2329 
2330 static int device_create_sys_dev_entry(struct device *dev)
2331 {
2332 	struct kobject *kobj = device_to_dev_kobj(dev);
2333 	int error = 0;
2334 	char devt_str[15];
2335 
2336 	if (kobj) {
2337 		format_dev_t(devt_str, dev->devt);
2338 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
2339 	}
2340 
2341 	return error;
2342 }
2343 
2344 static void device_remove_sys_dev_entry(struct device *dev)
2345 {
2346 	struct kobject *kobj = device_to_dev_kobj(dev);
2347 	char devt_str[15];
2348 
2349 	if (kobj) {
2350 		format_dev_t(devt_str, dev->devt);
2351 		sysfs_remove_link(kobj, devt_str);
2352 	}
2353 }
2354 
2355 static int device_private_init(struct device *dev)
2356 {
2357 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
2358 	if (!dev->p)
2359 		return -ENOMEM;
2360 	dev->p->device = dev;
2361 	klist_init(&dev->p->klist_children, klist_children_get,
2362 		   klist_children_put);
2363 	INIT_LIST_HEAD(&dev->p->deferred_probe);
2364 	return 0;
2365 }
2366 
2367 static u32 fw_devlink_flags;
2368 static int __init fw_devlink_setup(char *arg)
2369 {
2370 	if (!arg)
2371 		return -EINVAL;
2372 
2373 	if (strcmp(arg, "off") == 0) {
2374 		fw_devlink_flags = 0;
2375 	} else if (strcmp(arg, "permissive") == 0) {
2376 		fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
2377 	} else if (strcmp(arg, "on") == 0) {
2378 		fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER;
2379 	} else if (strcmp(arg, "rpm") == 0) {
2380 		fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER |
2381 				   DL_FLAG_PM_RUNTIME;
2382 	}
2383 	return 0;
2384 }
2385 early_param("fw_devlink", fw_devlink_setup);
2386 
2387 u32 fw_devlink_get_flags(void)
2388 {
2389 	return fw_devlink_flags;
2390 }
2391 
2392 static bool fw_devlink_is_permissive(void)
2393 {
2394 	return fw_devlink_flags == DL_FLAG_SYNC_STATE_ONLY;
2395 }
2396 
2397 /**
2398  * device_add - add device to device hierarchy.
2399  * @dev: device.
2400  *
2401  * This is part 2 of device_register(), though may be called
2402  * separately _iff_ device_initialize() has been called separately.
2403  *
2404  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
2405  * to the global and sibling lists for the device, then
2406  * adds it to the other relevant subsystems of the driver model.
2407  *
2408  * Do not call this routine or device_register() more than once for
2409  * any device structure.  The driver model core is not designed to work
2410  * with devices that get unregistered and then spring back to life.
2411  * (Among other things, it's very hard to guarantee that all references
2412  * to the previous incarnation of @dev have been dropped.)  Allocate
2413  * and register a fresh new struct device instead.
2414  *
2415  * NOTE: _Never_ directly free @dev after calling this function, even
2416  * if it returned an error! Always use put_device() to give up your
2417  * reference instead.
2418  *
2419  * Rule of thumb is: if device_add() succeeds, you should call
2420  * device_del() when you want to get rid of it. If device_add() has
2421  * *not* succeeded, use *only* put_device() to drop the reference
2422  * count.
2423  */
2424 int device_add(struct device *dev)
2425 {
2426 	struct device *parent;
2427 	struct kobject *kobj;
2428 	struct class_interface *class_intf;
2429 	int error = -EINVAL, fw_ret;
2430 	struct kobject *glue_dir = NULL;
2431 	bool is_fwnode_dev = false;
2432 
2433 	dev = get_device(dev);
2434 	if (!dev)
2435 		goto done;
2436 
2437 	if (!dev->p) {
2438 		error = device_private_init(dev);
2439 		if (error)
2440 			goto done;
2441 	}
2442 
2443 	/*
2444 	 * for statically allocated devices, which should all be converted
2445 	 * some day, we need to initialize the name. We prevent reading back
2446 	 * the name, and force the use of dev_name()
2447 	 */
2448 	if (dev->init_name) {
2449 		dev_set_name(dev, "%s", dev->init_name);
2450 		dev->init_name = NULL;
2451 	}
2452 
2453 	/* subsystems can specify simple device enumeration */
2454 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
2455 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
2456 
2457 	if (!dev_name(dev)) {
2458 		error = -EINVAL;
2459 		goto name_error;
2460 	}
2461 
2462 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2463 
2464 	parent = get_device(dev->parent);
2465 	kobj = get_device_parent(dev, parent);
2466 	if (IS_ERR(kobj)) {
2467 		error = PTR_ERR(kobj);
2468 		goto parent_error;
2469 	}
2470 	if (kobj)
2471 		dev->kobj.parent = kobj;
2472 
2473 	/* use parent numa_node */
2474 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
2475 		set_dev_node(dev, dev_to_node(parent));
2476 
2477 	/* first, register with generic layer. */
2478 	/* we require the name to be set before, and pass NULL */
2479 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
2480 	if (error) {
2481 		glue_dir = get_glue_dir(dev);
2482 		goto Error;
2483 	}
2484 
2485 	/* notify platform of device entry */
2486 	error = device_platform_notify(dev, KOBJ_ADD);
2487 	if (error)
2488 		goto platform_error;
2489 
2490 	error = device_create_file(dev, &dev_attr_uevent);
2491 	if (error)
2492 		goto attrError;
2493 
2494 	error = device_add_class_symlinks(dev);
2495 	if (error)
2496 		goto SymlinkError;
2497 	error = device_add_attrs(dev);
2498 	if (error)
2499 		goto AttrsError;
2500 	error = bus_add_device(dev);
2501 	if (error)
2502 		goto BusError;
2503 	error = dpm_sysfs_add(dev);
2504 	if (error)
2505 		goto DPMError;
2506 	device_pm_add(dev);
2507 
2508 	if (MAJOR(dev->devt)) {
2509 		error = device_create_file(dev, &dev_attr_dev);
2510 		if (error)
2511 			goto DevAttrError;
2512 
2513 		error = device_create_sys_dev_entry(dev);
2514 		if (error)
2515 			goto SysEntryError;
2516 
2517 		devtmpfs_create_node(dev);
2518 	}
2519 
2520 	/* Notify clients of device addition.  This call must come
2521 	 * after dpm_sysfs_add() and before kobject_uevent().
2522 	 */
2523 	if (dev->bus)
2524 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2525 					     BUS_NOTIFY_ADD_DEVICE, dev);
2526 
2527 	kobject_uevent(&dev->kobj, KOBJ_ADD);
2528 
2529 	if (dev->fwnode && !dev->fwnode->dev) {
2530 		dev->fwnode->dev = dev;
2531 		is_fwnode_dev = true;
2532 	}
2533 
2534 	/*
2535 	 * Check if any of the other devices (consumers) have been waiting for
2536 	 * this device (supplier) to be added so that they can create a device
2537 	 * link to it.
2538 	 *
2539 	 * This needs to happen after device_pm_add() because device_link_add()
2540 	 * requires the supplier be registered before it's called.
2541 	 *
2542 	 * But this also needs to happe before bus_probe_device() to make sure
2543 	 * waiting consumers can link to it before the driver is bound to the
2544 	 * device and the driver sync_state callback is called for this device.
2545 	 */
2546 	device_link_add_missing_supplier_links();
2547 
2548 	if (fw_devlink_flags && is_fwnode_dev &&
2549 	    fwnode_has_op(dev->fwnode, add_links)) {
2550 		fw_ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
2551 		if (fw_ret == -ENODEV && !fw_devlink_is_permissive())
2552 			device_link_wait_for_mandatory_supplier(dev);
2553 		else if (fw_ret)
2554 			device_link_wait_for_optional_supplier(dev);
2555 	}
2556 
2557 	bus_probe_device(dev);
2558 	if (parent)
2559 		klist_add_tail(&dev->p->knode_parent,
2560 			       &parent->p->klist_children);
2561 
2562 	if (dev->class) {
2563 		mutex_lock(&dev->class->p->mutex);
2564 		/* tie the class to the device */
2565 		klist_add_tail(&dev->p->knode_class,
2566 			       &dev->class->p->klist_devices);
2567 
2568 		/* notify any interfaces that the device is here */
2569 		list_for_each_entry(class_intf,
2570 				    &dev->class->p->interfaces, node)
2571 			if (class_intf->add_dev)
2572 				class_intf->add_dev(dev, class_intf);
2573 		mutex_unlock(&dev->class->p->mutex);
2574 	}
2575 done:
2576 	put_device(dev);
2577 	return error;
2578  SysEntryError:
2579 	if (MAJOR(dev->devt))
2580 		device_remove_file(dev, &dev_attr_dev);
2581  DevAttrError:
2582 	device_pm_remove(dev);
2583 	dpm_sysfs_remove(dev);
2584  DPMError:
2585 	bus_remove_device(dev);
2586  BusError:
2587 	device_remove_attrs(dev);
2588  AttrsError:
2589 	device_remove_class_symlinks(dev);
2590  SymlinkError:
2591 	device_remove_file(dev, &dev_attr_uevent);
2592  attrError:
2593 	device_platform_notify(dev, KOBJ_REMOVE);
2594 platform_error:
2595 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2596 	glue_dir = get_glue_dir(dev);
2597 	kobject_del(&dev->kobj);
2598  Error:
2599 	cleanup_glue_dir(dev, glue_dir);
2600 parent_error:
2601 	put_device(parent);
2602 name_error:
2603 	kfree(dev->p);
2604 	dev->p = NULL;
2605 	goto done;
2606 }
2607 EXPORT_SYMBOL_GPL(device_add);
2608 
2609 /**
2610  * device_register - register a device with the system.
2611  * @dev: pointer to the device structure
2612  *
2613  * This happens in two clean steps - initialize the device
2614  * and add it to the system. The two steps can be called
2615  * separately, but this is the easiest and most common.
2616  * I.e. you should only call the two helpers separately if
2617  * have a clearly defined need to use and refcount the device
2618  * before it is added to the hierarchy.
2619  *
2620  * For more information, see the kerneldoc for device_initialize()
2621  * and device_add().
2622  *
2623  * NOTE: _Never_ directly free @dev after calling this function, even
2624  * if it returned an error! Always use put_device() to give up the
2625  * reference initialized in this function instead.
2626  */
2627 int device_register(struct device *dev)
2628 {
2629 	device_initialize(dev);
2630 	return device_add(dev);
2631 }
2632 EXPORT_SYMBOL_GPL(device_register);
2633 
2634 /**
2635  * get_device - increment reference count for device.
2636  * @dev: device.
2637  *
2638  * This simply forwards the call to kobject_get(), though
2639  * we do take care to provide for the case that we get a NULL
2640  * pointer passed in.
2641  */
2642 struct device *get_device(struct device *dev)
2643 {
2644 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
2645 }
2646 EXPORT_SYMBOL_GPL(get_device);
2647 
2648 /**
2649  * put_device - decrement reference count.
2650  * @dev: device in question.
2651  */
2652 void put_device(struct device *dev)
2653 {
2654 	/* might_sleep(); */
2655 	if (dev)
2656 		kobject_put(&dev->kobj);
2657 }
2658 EXPORT_SYMBOL_GPL(put_device);
2659 
2660 bool kill_device(struct device *dev)
2661 {
2662 	/*
2663 	 * Require the device lock and set the "dead" flag to guarantee that
2664 	 * the update behavior is consistent with the other bitfields near
2665 	 * it and that we cannot have an asynchronous probe routine trying
2666 	 * to run while we are tearing out the bus/class/sysfs from
2667 	 * underneath the device.
2668 	 */
2669 	lockdep_assert_held(&dev->mutex);
2670 
2671 	if (dev->p->dead)
2672 		return false;
2673 	dev->p->dead = true;
2674 	return true;
2675 }
2676 EXPORT_SYMBOL_GPL(kill_device);
2677 
2678 /**
2679  * device_del - delete device from system.
2680  * @dev: device.
2681  *
2682  * This is the first part of the device unregistration
2683  * sequence. This removes the device from the lists we control
2684  * from here, has it removed from the other driver model
2685  * subsystems it was added to in device_add(), and removes it
2686  * from the kobject hierarchy.
2687  *
2688  * NOTE: this should be called manually _iff_ device_add() was
2689  * also called manually.
2690  */
2691 void device_del(struct device *dev)
2692 {
2693 	struct device *parent = dev->parent;
2694 	struct kobject *glue_dir = NULL;
2695 	struct class_interface *class_intf;
2696 
2697 	device_lock(dev);
2698 	kill_device(dev);
2699 	device_unlock(dev);
2700 
2701 	if (dev->fwnode && dev->fwnode->dev == dev)
2702 		dev->fwnode->dev = NULL;
2703 
2704 	/* Notify clients of device removal.  This call must come
2705 	 * before dpm_sysfs_remove().
2706 	 */
2707 	if (dev->bus)
2708 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2709 					     BUS_NOTIFY_DEL_DEVICE, dev);
2710 
2711 	dpm_sysfs_remove(dev);
2712 	if (parent)
2713 		klist_del(&dev->p->knode_parent);
2714 	if (MAJOR(dev->devt)) {
2715 		devtmpfs_delete_node(dev);
2716 		device_remove_sys_dev_entry(dev);
2717 		device_remove_file(dev, &dev_attr_dev);
2718 	}
2719 	if (dev->class) {
2720 		device_remove_class_symlinks(dev);
2721 
2722 		mutex_lock(&dev->class->p->mutex);
2723 		/* notify any interfaces that the device is now gone */
2724 		list_for_each_entry(class_intf,
2725 				    &dev->class->p->interfaces, node)
2726 			if (class_intf->remove_dev)
2727 				class_intf->remove_dev(dev, class_intf);
2728 		/* remove the device from the class list */
2729 		klist_del(&dev->p->knode_class);
2730 		mutex_unlock(&dev->class->p->mutex);
2731 	}
2732 	device_remove_file(dev, &dev_attr_uevent);
2733 	device_remove_attrs(dev);
2734 	bus_remove_device(dev);
2735 	device_pm_remove(dev);
2736 	driver_deferred_probe_del(dev);
2737 	device_platform_notify(dev, KOBJ_REMOVE);
2738 	device_remove_properties(dev);
2739 	device_links_purge(dev);
2740 
2741 	if (dev->bus)
2742 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2743 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
2744 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2745 	glue_dir = get_glue_dir(dev);
2746 	kobject_del(&dev->kobj);
2747 	cleanup_glue_dir(dev, glue_dir);
2748 	put_device(parent);
2749 }
2750 EXPORT_SYMBOL_GPL(device_del);
2751 
2752 /**
2753  * device_unregister - unregister device from system.
2754  * @dev: device going away.
2755  *
2756  * We do this in two parts, like we do device_register(). First,
2757  * we remove it from all the subsystems with device_del(), then
2758  * we decrement the reference count via put_device(). If that
2759  * is the final reference count, the device will be cleaned up
2760  * via device_release() above. Otherwise, the structure will
2761  * stick around until the final reference to the device is dropped.
2762  */
2763 void device_unregister(struct device *dev)
2764 {
2765 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2766 	device_del(dev);
2767 	put_device(dev);
2768 }
2769 EXPORT_SYMBOL_GPL(device_unregister);
2770 
2771 static struct device *prev_device(struct klist_iter *i)
2772 {
2773 	struct klist_node *n = klist_prev(i);
2774 	struct device *dev = NULL;
2775 	struct device_private *p;
2776 
2777 	if (n) {
2778 		p = to_device_private_parent(n);
2779 		dev = p->device;
2780 	}
2781 	return dev;
2782 }
2783 
2784 static struct device *next_device(struct klist_iter *i)
2785 {
2786 	struct klist_node *n = klist_next(i);
2787 	struct device *dev = NULL;
2788 	struct device_private *p;
2789 
2790 	if (n) {
2791 		p = to_device_private_parent(n);
2792 		dev = p->device;
2793 	}
2794 	return dev;
2795 }
2796 
2797 /**
2798  * device_get_devnode - path of device node file
2799  * @dev: device
2800  * @mode: returned file access mode
2801  * @uid: returned file owner
2802  * @gid: returned file group
2803  * @tmp: possibly allocated string
2804  *
2805  * Return the relative path of a possible device node.
2806  * Non-default names may need to allocate a memory to compose
2807  * a name. This memory is returned in tmp and needs to be
2808  * freed by the caller.
2809  */
2810 const char *device_get_devnode(struct device *dev,
2811 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
2812 			       const char **tmp)
2813 {
2814 	char *s;
2815 
2816 	*tmp = NULL;
2817 
2818 	/* the device type may provide a specific name */
2819 	if (dev->type && dev->type->devnode)
2820 		*tmp = dev->type->devnode(dev, mode, uid, gid);
2821 	if (*tmp)
2822 		return *tmp;
2823 
2824 	/* the class may provide a specific name */
2825 	if (dev->class && dev->class->devnode)
2826 		*tmp = dev->class->devnode(dev, mode);
2827 	if (*tmp)
2828 		return *tmp;
2829 
2830 	/* return name without allocation, tmp == NULL */
2831 	if (strchr(dev_name(dev), '!') == NULL)
2832 		return dev_name(dev);
2833 
2834 	/* replace '!' in the name with '/' */
2835 	s = kstrdup(dev_name(dev), GFP_KERNEL);
2836 	if (!s)
2837 		return NULL;
2838 	strreplace(s, '!', '/');
2839 	return *tmp = s;
2840 }
2841 
2842 /**
2843  * device_for_each_child - device child iterator.
2844  * @parent: parent struct device.
2845  * @fn: function to be called for each device.
2846  * @data: data for the callback.
2847  *
2848  * Iterate over @parent's child devices, and call @fn for each,
2849  * passing it @data.
2850  *
2851  * We check the return of @fn each time. If it returns anything
2852  * other than 0, we break out and return that value.
2853  */
2854 int device_for_each_child(struct device *parent, void *data,
2855 			  int (*fn)(struct device *dev, void *data))
2856 {
2857 	struct klist_iter i;
2858 	struct device *child;
2859 	int error = 0;
2860 
2861 	if (!parent->p)
2862 		return 0;
2863 
2864 	klist_iter_init(&parent->p->klist_children, &i);
2865 	while (!error && (child = next_device(&i)))
2866 		error = fn(child, data);
2867 	klist_iter_exit(&i);
2868 	return error;
2869 }
2870 EXPORT_SYMBOL_GPL(device_for_each_child);
2871 
2872 /**
2873  * device_for_each_child_reverse - device child iterator in reversed order.
2874  * @parent: parent struct device.
2875  * @fn: function to be called for each device.
2876  * @data: data for the callback.
2877  *
2878  * Iterate over @parent's child devices, and call @fn for each,
2879  * passing it @data.
2880  *
2881  * We check the return of @fn each time. If it returns anything
2882  * other than 0, we break out and return that value.
2883  */
2884 int device_for_each_child_reverse(struct device *parent, void *data,
2885 				  int (*fn)(struct device *dev, void *data))
2886 {
2887 	struct klist_iter i;
2888 	struct device *child;
2889 	int error = 0;
2890 
2891 	if (!parent->p)
2892 		return 0;
2893 
2894 	klist_iter_init(&parent->p->klist_children, &i);
2895 	while ((child = prev_device(&i)) && !error)
2896 		error = fn(child, data);
2897 	klist_iter_exit(&i);
2898 	return error;
2899 }
2900 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2901 
2902 /**
2903  * device_find_child - device iterator for locating a particular device.
2904  * @parent: parent struct device
2905  * @match: Callback function to check device
2906  * @data: Data to pass to match function
2907  *
2908  * This is similar to the device_for_each_child() function above, but it
2909  * returns a reference to a device that is 'found' for later use, as
2910  * determined by the @match callback.
2911  *
2912  * The callback should return 0 if the device doesn't match and non-zero
2913  * if it does.  If the callback returns non-zero and a reference to the
2914  * current device can be obtained, this function will return to the caller
2915  * and not iterate over any more devices.
2916  *
2917  * NOTE: you will need to drop the reference with put_device() after use.
2918  */
2919 struct device *device_find_child(struct device *parent, void *data,
2920 				 int (*match)(struct device *dev, void *data))
2921 {
2922 	struct klist_iter i;
2923 	struct device *child;
2924 
2925 	if (!parent)
2926 		return NULL;
2927 
2928 	klist_iter_init(&parent->p->klist_children, &i);
2929 	while ((child = next_device(&i)))
2930 		if (match(child, data) && get_device(child))
2931 			break;
2932 	klist_iter_exit(&i);
2933 	return child;
2934 }
2935 EXPORT_SYMBOL_GPL(device_find_child);
2936 
2937 /**
2938  * device_find_child_by_name - device iterator for locating a child device.
2939  * @parent: parent struct device
2940  * @name: name of the child device
2941  *
2942  * This is similar to the device_find_child() function above, but it
2943  * returns a reference to a device that has the name @name.
2944  *
2945  * NOTE: you will need to drop the reference with put_device() after use.
2946  */
2947 struct device *device_find_child_by_name(struct device *parent,
2948 					 const char *name)
2949 {
2950 	struct klist_iter i;
2951 	struct device *child;
2952 
2953 	if (!parent)
2954 		return NULL;
2955 
2956 	klist_iter_init(&parent->p->klist_children, &i);
2957 	while ((child = next_device(&i)))
2958 		if (!strcmp(dev_name(child), name) && get_device(child))
2959 			break;
2960 	klist_iter_exit(&i);
2961 	return child;
2962 }
2963 EXPORT_SYMBOL_GPL(device_find_child_by_name);
2964 
2965 int __init devices_init(void)
2966 {
2967 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2968 	if (!devices_kset)
2969 		return -ENOMEM;
2970 	dev_kobj = kobject_create_and_add("dev", NULL);
2971 	if (!dev_kobj)
2972 		goto dev_kobj_err;
2973 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2974 	if (!sysfs_dev_block_kobj)
2975 		goto block_kobj_err;
2976 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2977 	if (!sysfs_dev_char_kobj)
2978 		goto char_kobj_err;
2979 
2980 	return 0;
2981 
2982  char_kobj_err:
2983 	kobject_put(sysfs_dev_block_kobj);
2984  block_kobj_err:
2985 	kobject_put(dev_kobj);
2986  dev_kobj_err:
2987 	kset_unregister(devices_kset);
2988 	return -ENOMEM;
2989 }
2990 
2991 static int device_check_offline(struct device *dev, void *not_used)
2992 {
2993 	int ret;
2994 
2995 	ret = device_for_each_child(dev, NULL, device_check_offline);
2996 	if (ret)
2997 		return ret;
2998 
2999 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3000 }
3001 
3002 /**
3003  * device_offline - Prepare the device for hot-removal.
3004  * @dev: Device to be put offline.
3005  *
3006  * Execute the device bus type's .offline() callback, if present, to prepare
3007  * the device for a subsequent hot-removal.  If that succeeds, the device must
3008  * not be used until either it is removed or its bus type's .online() callback
3009  * is executed.
3010  *
3011  * Call under device_hotplug_lock.
3012  */
3013 int device_offline(struct device *dev)
3014 {
3015 	int ret;
3016 
3017 	if (dev->offline_disabled)
3018 		return -EPERM;
3019 
3020 	ret = device_for_each_child(dev, NULL, device_check_offline);
3021 	if (ret)
3022 		return ret;
3023 
3024 	device_lock(dev);
3025 	if (device_supports_offline(dev)) {
3026 		if (dev->offline) {
3027 			ret = 1;
3028 		} else {
3029 			ret = dev->bus->offline(dev);
3030 			if (!ret) {
3031 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3032 				dev->offline = true;
3033 			}
3034 		}
3035 	}
3036 	device_unlock(dev);
3037 
3038 	return ret;
3039 }
3040 
3041 /**
3042  * device_online - Put the device back online after successful device_offline().
3043  * @dev: Device to be put back online.
3044  *
3045  * If device_offline() has been successfully executed for @dev, but the device
3046  * has not been removed subsequently, execute its bus type's .online() callback
3047  * to indicate that the device can be used again.
3048  *
3049  * Call under device_hotplug_lock.
3050  */
3051 int device_online(struct device *dev)
3052 {
3053 	int ret = 0;
3054 
3055 	device_lock(dev);
3056 	if (device_supports_offline(dev)) {
3057 		if (dev->offline) {
3058 			ret = dev->bus->online(dev);
3059 			if (!ret) {
3060 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3061 				dev->offline = false;
3062 			}
3063 		} else {
3064 			ret = 1;
3065 		}
3066 	}
3067 	device_unlock(dev);
3068 
3069 	return ret;
3070 }
3071 
3072 struct root_device {
3073 	struct device dev;
3074 	struct module *owner;
3075 };
3076 
3077 static inline struct root_device *to_root_device(struct device *d)
3078 {
3079 	return container_of(d, struct root_device, dev);
3080 }
3081 
3082 static void root_device_release(struct device *dev)
3083 {
3084 	kfree(to_root_device(dev));
3085 }
3086 
3087 /**
3088  * __root_device_register - allocate and register a root device
3089  * @name: root device name
3090  * @owner: owner module of the root device, usually THIS_MODULE
3091  *
3092  * This function allocates a root device and registers it
3093  * using device_register(). In order to free the returned
3094  * device, use root_device_unregister().
3095  *
3096  * Root devices are dummy devices which allow other devices
3097  * to be grouped under /sys/devices. Use this function to
3098  * allocate a root device and then use it as the parent of
3099  * any device which should appear under /sys/devices/{name}
3100  *
3101  * The /sys/devices/{name} directory will also contain a
3102  * 'module' symlink which points to the @owner directory
3103  * in sysfs.
3104  *
3105  * Returns &struct device pointer on success, or ERR_PTR() on error.
3106  *
3107  * Note: You probably want to use root_device_register().
3108  */
3109 struct device *__root_device_register(const char *name, struct module *owner)
3110 {
3111 	struct root_device *root;
3112 	int err = -ENOMEM;
3113 
3114 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3115 	if (!root)
3116 		return ERR_PTR(err);
3117 
3118 	err = dev_set_name(&root->dev, "%s", name);
3119 	if (err) {
3120 		kfree(root);
3121 		return ERR_PTR(err);
3122 	}
3123 
3124 	root->dev.release = root_device_release;
3125 
3126 	err = device_register(&root->dev);
3127 	if (err) {
3128 		put_device(&root->dev);
3129 		return ERR_PTR(err);
3130 	}
3131 
3132 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
3133 	if (owner) {
3134 		struct module_kobject *mk = &owner->mkobj;
3135 
3136 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3137 		if (err) {
3138 			device_unregister(&root->dev);
3139 			return ERR_PTR(err);
3140 		}
3141 		root->owner = owner;
3142 	}
3143 #endif
3144 
3145 	return &root->dev;
3146 }
3147 EXPORT_SYMBOL_GPL(__root_device_register);
3148 
3149 /**
3150  * root_device_unregister - unregister and free a root device
3151  * @dev: device going away
3152  *
3153  * This function unregisters and cleans up a device that was created by
3154  * root_device_register().
3155  */
3156 void root_device_unregister(struct device *dev)
3157 {
3158 	struct root_device *root = to_root_device(dev);
3159 
3160 	if (root->owner)
3161 		sysfs_remove_link(&root->dev.kobj, "module");
3162 
3163 	device_unregister(dev);
3164 }
3165 EXPORT_SYMBOL_GPL(root_device_unregister);
3166 
3167 
3168 static void device_create_release(struct device *dev)
3169 {
3170 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3171 	kfree(dev);
3172 }
3173 
3174 static __printf(6, 0) struct device *
3175 device_create_groups_vargs(struct class *class, struct device *parent,
3176 			   dev_t devt, void *drvdata,
3177 			   const struct attribute_group **groups,
3178 			   const char *fmt, va_list args)
3179 {
3180 	struct device *dev = NULL;
3181 	int retval = -ENODEV;
3182 
3183 	if (class == NULL || IS_ERR(class))
3184 		goto error;
3185 
3186 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3187 	if (!dev) {
3188 		retval = -ENOMEM;
3189 		goto error;
3190 	}
3191 
3192 	device_initialize(dev);
3193 	dev->devt = devt;
3194 	dev->class = class;
3195 	dev->parent = parent;
3196 	dev->groups = groups;
3197 	dev->release = device_create_release;
3198 	dev_set_drvdata(dev, drvdata);
3199 
3200 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
3201 	if (retval)
3202 		goto error;
3203 
3204 	retval = device_add(dev);
3205 	if (retval)
3206 		goto error;
3207 
3208 	return dev;
3209 
3210 error:
3211 	put_device(dev);
3212 	return ERR_PTR(retval);
3213 }
3214 
3215 /**
3216  * device_create - creates a device and registers it with sysfs
3217  * @class: pointer to the struct class that this device should be registered to
3218  * @parent: pointer to the parent struct device of this new device, if any
3219  * @devt: the dev_t for the char device to be added
3220  * @drvdata: the data to be added to the device for callbacks
3221  * @fmt: string for the device's name
3222  *
3223  * This function can be used by char device classes.  A struct device
3224  * will be created in sysfs, registered to the specified class.
3225  *
3226  * A "dev" file will be created, showing the dev_t for the device, if
3227  * the dev_t is not 0,0.
3228  * If a pointer to a parent struct device is passed in, the newly created
3229  * struct device will be a child of that device in sysfs.
3230  * The pointer to the struct device will be returned from the call.
3231  * Any further sysfs files that might be required can be created using this
3232  * pointer.
3233  *
3234  * Returns &struct device pointer on success, or ERR_PTR() on error.
3235  *
3236  * Note: the struct class passed to this function must have previously
3237  * been created with a call to class_create().
3238  */
3239 struct device *device_create(struct class *class, struct device *parent,
3240 			     dev_t devt, void *drvdata, const char *fmt, ...)
3241 {
3242 	va_list vargs;
3243 	struct device *dev;
3244 
3245 	va_start(vargs, fmt);
3246 	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
3247 					  fmt, vargs);
3248 	va_end(vargs);
3249 	return dev;
3250 }
3251 EXPORT_SYMBOL_GPL(device_create);
3252 
3253 /**
3254  * device_create_with_groups - creates a device and registers it with sysfs
3255  * @class: pointer to the struct class that this device should be registered to
3256  * @parent: pointer to the parent struct device of this new device, if any
3257  * @devt: the dev_t for the char device to be added
3258  * @drvdata: the data to be added to the device for callbacks
3259  * @groups: NULL-terminated list of attribute groups to be created
3260  * @fmt: string for the device's name
3261  *
3262  * This function can be used by char device classes.  A struct device
3263  * will be created in sysfs, registered to the specified class.
3264  * Additional attributes specified in the groups parameter will also
3265  * be created automatically.
3266  *
3267  * A "dev" file will be created, showing the dev_t for the device, if
3268  * the dev_t is not 0,0.
3269  * If a pointer to a parent struct device is passed in, the newly created
3270  * struct device will be a child of that device in sysfs.
3271  * The pointer to the struct device will be returned from the call.
3272  * Any further sysfs files that might be required can be created using this
3273  * pointer.
3274  *
3275  * Returns &struct device pointer on success, or ERR_PTR() on error.
3276  *
3277  * Note: the struct class passed to this function must have previously
3278  * been created with a call to class_create().
3279  */
3280 struct device *device_create_with_groups(struct class *class,
3281 					 struct device *parent, dev_t devt,
3282 					 void *drvdata,
3283 					 const struct attribute_group **groups,
3284 					 const char *fmt, ...)
3285 {
3286 	va_list vargs;
3287 	struct device *dev;
3288 
3289 	va_start(vargs, fmt);
3290 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
3291 					 fmt, vargs);
3292 	va_end(vargs);
3293 	return dev;
3294 }
3295 EXPORT_SYMBOL_GPL(device_create_with_groups);
3296 
3297 /**
3298  * device_destroy - removes a device that was created with device_create()
3299  * @class: pointer to the struct class that this device was registered with
3300  * @devt: the dev_t of the device that was previously registered
3301  *
3302  * This call unregisters and cleans up a device that was created with a
3303  * call to device_create().
3304  */
3305 void device_destroy(struct class *class, dev_t devt)
3306 {
3307 	struct device *dev;
3308 
3309 	dev = class_find_device_by_devt(class, devt);
3310 	if (dev) {
3311 		put_device(dev);
3312 		device_unregister(dev);
3313 	}
3314 }
3315 EXPORT_SYMBOL_GPL(device_destroy);
3316 
3317 /**
3318  * device_rename - renames a device
3319  * @dev: the pointer to the struct device to be renamed
3320  * @new_name: the new name of the device
3321  *
3322  * It is the responsibility of the caller to provide mutual
3323  * exclusion between two different calls of device_rename
3324  * on the same device to ensure that new_name is valid and
3325  * won't conflict with other devices.
3326  *
3327  * Note: Don't call this function.  Currently, the networking layer calls this
3328  * function, but that will change.  The following text from Kay Sievers offers
3329  * some insight:
3330  *
3331  * Renaming devices is racy at many levels, symlinks and other stuff are not
3332  * replaced atomically, and you get a "move" uevent, but it's not easy to
3333  * connect the event to the old and new device. Device nodes are not renamed at
3334  * all, there isn't even support for that in the kernel now.
3335  *
3336  * In the meantime, during renaming, your target name might be taken by another
3337  * driver, creating conflicts. Or the old name is taken directly after you
3338  * renamed it -- then you get events for the same DEVPATH, before you even see
3339  * the "move" event. It's just a mess, and nothing new should ever rely on
3340  * kernel device renaming. Besides that, it's not even implemented now for
3341  * other things than (driver-core wise very simple) network devices.
3342  *
3343  * We are currently about to change network renaming in udev to completely
3344  * disallow renaming of devices in the same namespace as the kernel uses,
3345  * because we can't solve the problems properly, that arise with swapping names
3346  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
3347  * be allowed to some other name than eth[0-9]*, for the aforementioned
3348  * reasons.
3349  *
3350  * Make up a "real" name in the driver before you register anything, or add
3351  * some other attributes for userspace to find the device, or use udev to add
3352  * symlinks -- but never rename kernel devices later, it's a complete mess. We
3353  * don't even want to get into that and try to implement the missing pieces in
3354  * the core. We really have other pieces to fix in the driver core mess. :)
3355  */
3356 int device_rename(struct device *dev, const char *new_name)
3357 {
3358 	struct kobject *kobj = &dev->kobj;
3359 	char *old_device_name = NULL;
3360 	int error;
3361 
3362 	dev = get_device(dev);
3363 	if (!dev)
3364 		return -EINVAL;
3365 
3366 	dev_dbg(dev, "renaming to %s\n", new_name);
3367 
3368 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
3369 	if (!old_device_name) {
3370 		error = -ENOMEM;
3371 		goto out;
3372 	}
3373 
3374 	if (dev->class) {
3375 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
3376 					     kobj, old_device_name,
3377 					     new_name, kobject_namespace(kobj));
3378 		if (error)
3379 			goto out;
3380 	}
3381 
3382 	error = kobject_rename(kobj, new_name);
3383 	if (error)
3384 		goto out;
3385 
3386 out:
3387 	put_device(dev);
3388 
3389 	kfree(old_device_name);
3390 
3391 	return error;
3392 }
3393 EXPORT_SYMBOL_GPL(device_rename);
3394 
3395 static int device_move_class_links(struct device *dev,
3396 				   struct device *old_parent,
3397 				   struct device *new_parent)
3398 {
3399 	int error = 0;
3400 
3401 	if (old_parent)
3402 		sysfs_remove_link(&dev->kobj, "device");
3403 	if (new_parent)
3404 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
3405 					  "device");
3406 	return error;
3407 }
3408 
3409 /**
3410  * device_move - moves a device to a new parent
3411  * @dev: the pointer to the struct device to be moved
3412  * @new_parent: the new parent of the device (can be NULL)
3413  * @dpm_order: how to reorder the dpm_list
3414  */
3415 int device_move(struct device *dev, struct device *new_parent,
3416 		enum dpm_order dpm_order)
3417 {
3418 	int error;
3419 	struct device *old_parent;
3420 	struct kobject *new_parent_kobj;
3421 
3422 	dev = get_device(dev);
3423 	if (!dev)
3424 		return -EINVAL;
3425 
3426 	device_pm_lock();
3427 	new_parent = get_device(new_parent);
3428 	new_parent_kobj = get_device_parent(dev, new_parent);
3429 	if (IS_ERR(new_parent_kobj)) {
3430 		error = PTR_ERR(new_parent_kobj);
3431 		put_device(new_parent);
3432 		goto out;
3433 	}
3434 
3435 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
3436 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
3437 	error = kobject_move(&dev->kobj, new_parent_kobj);
3438 	if (error) {
3439 		cleanup_glue_dir(dev, new_parent_kobj);
3440 		put_device(new_parent);
3441 		goto out;
3442 	}
3443 	old_parent = dev->parent;
3444 	dev->parent = new_parent;
3445 	if (old_parent)
3446 		klist_remove(&dev->p->knode_parent);
3447 	if (new_parent) {
3448 		klist_add_tail(&dev->p->knode_parent,
3449 			       &new_parent->p->klist_children);
3450 		set_dev_node(dev, dev_to_node(new_parent));
3451 	}
3452 
3453 	if (dev->class) {
3454 		error = device_move_class_links(dev, old_parent, new_parent);
3455 		if (error) {
3456 			/* We ignore errors on cleanup since we're hosed anyway... */
3457 			device_move_class_links(dev, new_parent, old_parent);
3458 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
3459 				if (new_parent)
3460 					klist_remove(&dev->p->knode_parent);
3461 				dev->parent = old_parent;
3462 				if (old_parent) {
3463 					klist_add_tail(&dev->p->knode_parent,
3464 						       &old_parent->p->klist_children);
3465 					set_dev_node(dev, dev_to_node(old_parent));
3466 				}
3467 			}
3468 			cleanup_glue_dir(dev, new_parent_kobj);
3469 			put_device(new_parent);
3470 			goto out;
3471 		}
3472 	}
3473 	switch (dpm_order) {
3474 	case DPM_ORDER_NONE:
3475 		break;
3476 	case DPM_ORDER_DEV_AFTER_PARENT:
3477 		device_pm_move_after(dev, new_parent);
3478 		devices_kset_move_after(dev, new_parent);
3479 		break;
3480 	case DPM_ORDER_PARENT_BEFORE_DEV:
3481 		device_pm_move_before(new_parent, dev);
3482 		devices_kset_move_before(new_parent, dev);
3483 		break;
3484 	case DPM_ORDER_DEV_LAST:
3485 		device_pm_move_last(dev);
3486 		devices_kset_move_last(dev);
3487 		break;
3488 	}
3489 
3490 	put_device(old_parent);
3491 out:
3492 	device_pm_unlock();
3493 	put_device(dev);
3494 	return error;
3495 }
3496 EXPORT_SYMBOL_GPL(device_move);
3497 
3498 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
3499 				     kgid_t kgid)
3500 {
3501 	struct kobject *kobj = &dev->kobj;
3502 	struct class *class = dev->class;
3503 	const struct device_type *type = dev->type;
3504 	int error;
3505 
3506 	if (class) {
3507 		/*
3508 		 * Change the device groups of the device class for @dev to
3509 		 * @kuid/@kgid.
3510 		 */
3511 		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
3512 						  kgid);
3513 		if (error)
3514 			return error;
3515 	}
3516 
3517 	if (type) {
3518 		/*
3519 		 * Change the device groups of the device type for @dev to
3520 		 * @kuid/@kgid.
3521 		 */
3522 		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
3523 						  kgid);
3524 		if (error)
3525 			return error;
3526 	}
3527 
3528 	/* Change the device groups of @dev to @kuid/@kgid. */
3529 	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
3530 	if (error)
3531 		return error;
3532 
3533 	if (device_supports_offline(dev) && !dev->offline_disabled) {
3534 		/* Change online device attributes of @dev to @kuid/@kgid. */
3535 		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
3536 						kuid, kgid);
3537 		if (error)
3538 			return error;
3539 	}
3540 
3541 	return 0;
3542 }
3543 
3544 /**
3545  * device_change_owner - change the owner of an existing device.
3546  * @dev: device.
3547  * @kuid: new owner's kuid
3548  * @kgid: new owner's kgid
3549  *
3550  * This changes the owner of @dev and its corresponding sysfs entries to
3551  * @kuid/@kgid. This function closely mirrors how @dev was added via driver
3552  * core.
3553  *
3554  * Returns 0 on success or error code on failure.
3555  */
3556 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
3557 {
3558 	int error;
3559 	struct kobject *kobj = &dev->kobj;
3560 
3561 	dev = get_device(dev);
3562 	if (!dev)
3563 		return -EINVAL;
3564 
3565 	/*
3566 	 * Change the kobject and the default attributes and groups of the
3567 	 * ktype associated with it to @kuid/@kgid.
3568 	 */
3569 	error = sysfs_change_owner(kobj, kuid, kgid);
3570 	if (error)
3571 		goto out;
3572 
3573 	/*
3574 	 * Change the uevent file for @dev to the new owner. The uevent file
3575 	 * was created in a separate step when @dev got added and we mirror
3576 	 * that step here.
3577 	 */
3578 	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
3579 					kgid);
3580 	if (error)
3581 		goto out;
3582 
3583 	/*
3584 	 * Change the device groups, the device groups associated with the
3585 	 * device class, and the groups associated with the device type of @dev
3586 	 * to @kuid/@kgid.
3587 	 */
3588 	error = device_attrs_change_owner(dev, kuid, kgid);
3589 	if (error)
3590 		goto out;
3591 
3592 	error = dpm_sysfs_change_owner(dev, kuid, kgid);
3593 	if (error)
3594 		goto out;
3595 
3596 #ifdef CONFIG_BLOCK
3597 	if (sysfs_deprecated && dev->class == &block_class)
3598 		goto out;
3599 #endif
3600 
3601 	/*
3602 	 * Change the owner of the symlink located in the class directory of
3603 	 * the device class associated with @dev which points to the actual
3604 	 * directory entry for @dev to @kuid/@kgid. This ensures that the
3605 	 * symlink shows the same permissions as its target.
3606 	 */
3607 	error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
3608 					dev_name(dev), kuid, kgid);
3609 	if (error)
3610 		goto out;
3611 
3612 out:
3613 	put_device(dev);
3614 	return error;
3615 }
3616 EXPORT_SYMBOL_GPL(device_change_owner);
3617 
3618 /**
3619  * device_shutdown - call ->shutdown() on each device to shutdown.
3620  */
3621 void device_shutdown(void)
3622 {
3623 	struct device *dev, *parent;
3624 
3625 	wait_for_device_probe();
3626 	device_block_probing();
3627 
3628 	cpufreq_suspend();
3629 
3630 	spin_lock(&devices_kset->list_lock);
3631 	/*
3632 	 * Walk the devices list backward, shutting down each in turn.
3633 	 * Beware that device unplug events may also start pulling
3634 	 * devices offline, even as the system is shutting down.
3635 	 */
3636 	while (!list_empty(&devices_kset->list)) {
3637 		dev = list_entry(devices_kset->list.prev, struct device,
3638 				kobj.entry);
3639 
3640 		/*
3641 		 * hold reference count of device's parent to
3642 		 * prevent it from being freed because parent's
3643 		 * lock is to be held
3644 		 */
3645 		parent = get_device(dev->parent);
3646 		get_device(dev);
3647 		/*
3648 		 * Make sure the device is off the kset list, in the
3649 		 * event that dev->*->shutdown() doesn't remove it.
3650 		 */
3651 		list_del_init(&dev->kobj.entry);
3652 		spin_unlock(&devices_kset->list_lock);
3653 
3654 		/* hold lock to avoid race with probe/release */
3655 		if (parent)
3656 			device_lock(parent);
3657 		device_lock(dev);
3658 
3659 		/* Don't allow any more runtime suspends */
3660 		pm_runtime_get_noresume(dev);
3661 		pm_runtime_barrier(dev);
3662 
3663 		if (dev->class && dev->class->shutdown_pre) {
3664 			if (initcall_debug)
3665 				dev_info(dev, "shutdown_pre\n");
3666 			dev->class->shutdown_pre(dev);
3667 		}
3668 		if (dev->bus && dev->bus->shutdown) {
3669 			if (initcall_debug)
3670 				dev_info(dev, "shutdown\n");
3671 			dev->bus->shutdown(dev);
3672 		} else if (dev->driver && dev->driver->shutdown) {
3673 			if (initcall_debug)
3674 				dev_info(dev, "shutdown\n");
3675 			dev->driver->shutdown(dev);
3676 		}
3677 
3678 		device_unlock(dev);
3679 		if (parent)
3680 			device_unlock(parent);
3681 
3682 		put_device(dev);
3683 		put_device(parent);
3684 
3685 		spin_lock(&devices_kset->list_lock);
3686 	}
3687 	spin_unlock(&devices_kset->list_lock);
3688 }
3689 
3690 /*
3691  * Device logging functions
3692  */
3693 
3694 #ifdef CONFIG_PRINTK
3695 static int
3696 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
3697 {
3698 	const char *subsys;
3699 	size_t pos = 0;
3700 
3701 	if (dev->class)
3702 		subsys = dev->class->name;
3703 	else if (dev->bus)
3704 		subsys = dev->bus->name;
3705 	else
3706 		return 0;
3707 
3708 	pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
3709 	if (pos >= hdrlen)
3710 		goto overflow;
3711 
3712 	/*
3713 	 * Add device identifier DEVICE=:
3714 	 *   b12:8         block dev_t
3715 	 *   c127:3        char dev_t
3716 	 *   n8            netdev ifindex
3717 	 *   +sound:card0  subsystem:devname
3718 	 */
3719 	if (MAJOR(dev->devt)) {
3720 		char c;
3721 
3722 		if (strcmp(subsys, "block") == 0)
3723 			c = 'b';
3724 		else
3725 			c = 'c';
3726 		pos++;
3727 		pos += snprintf(hdr + pos, hdrlen - pos,
3728 				"DEVICE=%c%u:%u",
3729 				c, MAJOR(dev->devt), MINOR(dev->devt));
3730 	} else if (strcmp(subsys, "net") == 0) {
3731 		struct net_device *net = to_net_dev(dev);
3732 
3733 		pos++;
3734 		pos += snprintf(hdr + pos, hdrlen - pos,
3735 				"DEVICE=n%u", net->ifindex);
3736 	} else {
3737 		pos++;
3738 		pos += snprintf(hdr + pos, hdrlen - pos,
3739 				"DEVICE=+%s:%s", subsys, dev_name(dev));
3740 	}
3741 
3742 	if (pos >= hdrlen)
3743 		goto overflow;
3744 
3745 	return pos;
3746 
3747 overflow:
3748 	dev_WARN(dev, "device/subsystem name too long");
3749 	return 0;
3750 }
3751 
3752 int dev_vprintk_emit(int level, const struct device *dev,
3753 		     const char *fmt, va_list args)
3754 {
3755 	char hdr[128];
3756 	size_t hdrlen;
3757 
3758 	hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
3759 
3760 	return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
3761 }
3762 EXPORT_SYMBOL(dev_vprintk_emit);
3763 
3764 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
3765 {
3766 	va_list args;
3767 	int r;
3768 
3769 	va_start(args, fmt);
3770 
3771 	r = dev_vprintk_emit(level, dev, fmt, args);
3772 
3773 	va_end(args);
3774 
3775 	return r;
3776 }
3777 EXPORT_SYMBOL(dev_printk_emit);
3778 
3779 static void __dev_printk(const char *level, const struct device *dev,
3780 			struct va_format *vaf)
3781 {
3782 	if (dev)
3783 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
3784 				dev_driver_string(dev), dev_name(dev), vaf);
3785 	else
3786 		printk("%s(NULL device *): %pV", level, vaf);
3787 }
3788 
3789 void dev_printk(const char *level, const struct device *dev,
3790 		const char *fmt, ...)
3791 {
3792 	struct va_format vaf;
3793 	va_list args;
3794 
3795 	va_start(args, fmt);
3796 
3797 	vaf.fmt = fmt;
3798 	vaf.va = &args;
3799 
3800 	__dev_printk(level, dev, &vaf);
3801 
3802 	va_end(args);
3803 }
3804 EXPORT_SYMBOL(dev_printk);
3805 
3806 #define define_dev_printk_level(func, kern_level)		\
3807 void func(const struct device *dev, const char *fmt, ...)	\
3808 {								\
3809 	struct va_format vaf;					\
3810 	va_list args;						\
3811 								\
3812 	va_start(args, fmt);					\
3813 								\
3814 	vaf.fmt = fmt;						\
3815 	vaf.va = &args;						\
3816 								\
3817 	__dev_printk(kern_level, dev, &vaf);			\
3818 								\
3819 	va_end(args);						\
3820 }								\
3821 EXPORT_SYMBOL(func);
3822 
3823 define_dev_printk_level(_dev_emerg, KERN_EMERG);
3824 define_dev_printk_level(_dev_alert, KERN_ALERT);
3825 define_dev_printk_level(_dev_crit, KERN_CRIT);
3826 define_dev_printk_level(_dev_err, KERN_ERR);
3827 define_dev_printk_level(_dev_warn, KERN_WARNING);
3828 define_dev_printk_level(_dev_notice, KERN_NOTICE);
3829 define_dev_printk_level(_dev_info, KERN_INFO);
3830 
3831 #endif
3832 
3833 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
3834 {
3835 	return fwnode && !IS_ERR(fwnode->secondary);
3836 }
3837 
3838 /**
3839  * set_primary_fwnode - Change the primary firmware node of a given device.
3840  * @dev: Device to handle.
3841  * @fwnode: New primary firmware node of the device.
3842  *
3843  * Set the device's firmware node pointer to @fwnode, but if a secondary
3844  * firmware node of the device is present, preserve it.
3845  */
3846 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3847 {
3848 	if (fwnode) {
3849 		struct fwnode_handle *fn = dev->fwnode;
3850 
3851 		if (fwnode_is_primary(fn))
3852 			fn = fn->secondary;
3853 
3854 		if (fn) {
3855 			WARN_ON(fwnode->secondary);
3856 			fwnode->secondary = fn;
3857 		}
3858 		dev->fwnode = fwnode;
3859 	} else {
3860 		dev->fwnode = fwnode_is_primary(dev->fwnode) ?
3861 			dev->fwnode->secondary : NULL;
3862 	}
3863 }
3864 EXPORT_SYMBOL_GPL(set_primary_fwnode);
3865 
3866 /**
3867  * set_secondary_fwnode - Change the secondary firmware node of a given device.
3868  * @dev: Device to handle.
3869  * @fwnode: New secondary firmware node of the device.
3870  *
3871  * If a primary firmware node of the device is present, set its secondary
3872  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
3873  * @fwnode.
3874  */
3875 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3876 {
3877 	if (fwnode)
3878 		fwnode->secondary = ERR_PTR(-ENODEV);
3879 
3880 	if (fwnode_is_primary(dev->fwnode))
3881 		dev->fwnode->secondary = fwnode;
3882 	else
3883 		dev->fwnode = fwnode;
3884 }
3885 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
3886 
3887 /**
3888  * device_set_of_node_from_dev - reuse device-tree node of another device
3889  * @dev: device whose device-tree node is being set
3890  * @dev2: device whose device-tree node is being reused
3891  *
3892  * Takes another reference to the new device-tree node after first dropping
3893  * any reference held to the old node.
3894  */
3895 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
3896 {
3897 	of_node_put(dev->of_node);
3898 	dev->of_node = of_node_get(dev2->of_node);
3899 	dev->of_node_reused = true;
3900 }
3901 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
3902 
3903 int device_match_name(struct device *dev, const void *name)
3904 {
3905 	return sysfs_streq(dev_name(dev), name);
3906 }
3907 EXPORT_SYMBOL_GPL(device_match_name);
3908 
3909 int device_match_of_node(struct device *dev, const void *np)
3910 {
3911 	return dev->of_node == np;
3912 }
3913 EXPORT_SYMBOL_GPL(device_match_of_node);
3914 
3915 int device_match_fwnode(struct device *dev, const void *fwnode)
3916 {
3917 	return dev_fwnode(dev) == fwnode;
3918 }
3919 EXPORT_SYMBOL_GPL(device_match_fwnode);
3920 
3921 int device_match_devt(struct device *dev, const void *pdevt)
3922 {
3923 	return dev->devt == *(dev_t *)pdevt;
3924 }
3925 EXPORT_SYMBOL_GPL(device_match_devt);
3926 
3927 int device_match_acpi_dev(struct device *dev, const void *adev)
3928 {
3929 	return ACPI_COMPANION(dev) == adev;
3930 }
3931 EXPORT_SYMBOL(device_match_acpi_dev);
3932 
3933 int device_match_any(struct device *dev, const void *unused)
3934 {
3935 	return 1;
3936 }
3937 EXPORT_SYMBOL_GPL(device_match_any);
3938