1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/cpufreq.h> 13 #include <linux/device.h> 14 #include <linux/err.h> 15 #include <linux/fwnode.h> 16 #include <linux/init.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/string.h> 20 #include <linux/kdev_t.h> 21 #include <linux/notifier.h> 22 #include <linux/of.h> 23 #include <linux/of_device.h> 24 #include <linux/genhd.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/netdevice.h> 28 #include <linux/sched/signal.h> 29 #include <linux/sysfs.h> 30 31 #include "base.h" 32 #include "power/power.h" 33 34 #ifdef CONFIG_SYSFS_DEPRECATED 35 #ifdef CONFIG_SYSFS_DEPRECATED_V2 36 long sysfs_deprecated = 1; 37 #else 38 long sysfs_deprecated = 0; 39 #endif 40 static int __init sysfs_deprecated_setup(char *arg) 41 { 42 return kstrtol(arg, 10, &sysfs_deprecated); 43 } 44 early_param("sysfs.deprecated", sysfs_deprecated_setup); 45 #endif 46 47 /* Device links support. */ 48 static LIST_HEAD(wait_for_suppliers); 49 static DEFINE_MUTEX(wfs_lock); 50 static LIST_HEAD(deferred_sync); 51 static unsigned int defer_sync_state_count = 1; 52 53 #ifdef CONFIG_SRCU 54 static DEFINE_MUTEX(device_links_lock); 55 DEFINE_STATIC_SRCU(device_links_srcu); 56 57 static inline void device_links_write_lock(void) 58 { 59 mutex_lock(&device_links_lock); 60 } 61 62 static inline void device_links_write_unlock(void) 63 { 64 mutex_unlock(&device_links_lock); 65 } 66 67 int device_links_read_lock(void) __acquires(&device_links_srcu) 68 { 69 return srcu_read_lock(&device_links_srcu); 70 } 71 72 void device_links_read_unlock(int idx) __releases(&device_links_srcu) 73 { 74 srcu_read_unlock(&device_links_srcu, idx); 75 } 76 77 int device_links_read_lock_held(void) 78 { 79 return srcu_read_lock_held(&device_links_srcu); 80 } 81 #else /* !CONFIG_SRCU */ 82 static DECLARE_RWSEM(device_links_lock); 83 84 static inline void device_links_write_lock(void) 85 { 86 down_write(&device_links_lock); 87 } 88 89 static inline void device_links_write_unlock(void) 90 { 91 up_write(&device_links_lock); 92 } 93 94 int device_links_read_lock(void) 95 { 96 down_read(&device_links_lock); 97 return 0; 98 } 99 100 void device_links_read_unlock(int not_used) 101 { 102 up_read(&device_links_lock); 103 } 104 105 #ifdef CONFIG_DEBUG_LOCK_ALLOC 106 int device_links_read_lock_held(void) 107 { 108 return lockdep_is_held(&device_links_lock); 109 } 110 #endif 111 #endif /* !CONFIG_SRCU */ 112 113 /** 114 * device_is_dependent - Check if one device depends on another one 115 * @dev: Device to check dependencies for. 116 * @target: Device to check against. 117 * 118 * Check if @target depends on @dev or any device dependent on it (its child or 119 * its consumer etc). Return 1 if that is the case or 0 otherwise. 120 */ 121 static int device_is_dependent(struct device *dev, void *target) 122 { 123 struct device_link *link; 124 int ret; 125 126 if (dev == target) 127 return 1; 128 129 ret = device_for_each_child(dev, target, device_is_dependent); 130 if (ret) 131 return ret; 132 133 list_for_each_entry(link, &dev->links.consumers, s_node) { 134 if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 135 continue; 136 137 if (link->consumer == target) 138 return 1; 139 140 ret = device_is_dependent(link->consumer, target); 141 if (ret) 142 break; 143 } 144 return ret; 145 } 146 147 static void device_link_init_status(struct device_link *link, 148 struct device *consumer, 149 struct device *supplier) 150 { 151 switch (supplier->links.status) { 152 case DL_DEV_PROBING: 153 switch (consumer->links.status) { 154 case DL_DEV_PROBING: 155 /* 156 * A consumer driver can create a link to a supplier 157 * that has not completed its probing yet as long as it 158 * knows that the supplier is already functional (for 159 * example, it has just acquired some resources from the 160 * supplier). 161 */ 162 link->status = DL_STATE_CONSUMER_PROBE; 163 break; 164 default: 165 link->status = DL_STATE_DORMANT; 166 break; 167 } 168 break; 169 case DL_DEV_DRIVER_BOUND: 170 switch (consumer->links.status) { 171 case DL_DEV_PROBING: 172 link->status = DL_STATE_CONSUMER_PROBE; 173 break; 174 case DL_DEV_DRIVER_BOUND: 175 link->status = DL_STATE_ACTIVE; 176 break; 177 default: 178 link->status = DL_STATE_AVAILABLE; 179 break; 180 } 181 break; 182 case DL_DEV_UNBINDING: 183 link->status = DL_STATE_SUPPLIER_UNBIND; 184 break; 185 default: 186 link->status = DL_STATE_DORMANT; 187 break; 188 } 189 } 190 191 static int device_reorder_to_tail(struct device *dev, void *not_used) 192 { 193 struct device_link *link; 194 195 /* 196 * Devices that have not been registered yet will be put to the ends 197 * of the lists during the registration, so skip them here. 198 */ 199 if (device_is_registered(dev)) 200 devices_kset_move_last(dev); 201 202 if (device_pm_initialized(dev)) 203 device_pm_move_last(dev); 204 205 device_for_each_child(dev, NULL, device_reorder_to_tail); 206 list_for_each_entry(link, &dev->links.consumers, s_node) { 207 if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 208 continue; 209 device_reorder_to_tail(link->consumer, NULL); 210 } 211 212 return 0; 213 } 214 215 /** 216 * device_pm_move_to_tail - Move set of devices to the end of device lists 217 * @dev: Device to move 218 * 219 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 220 * 221 * It moves the @dev along with all of its children and all of its consumers 222 * to the ends of the device_kset and dpm_list, recursively. 223 */ 224 void device_pm_move_to_tail(struct device *dev) 225 { 226 int idx; 227 228 idx = device_links_read_lock(); 229 device_pm_lock(); 230 device_reorder_to_tail(dev, NULL); 231 device_pm_unlock(); 232 device_links_read_unlock(idx); 233 } 234 235 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \ 236 DL_FLAG_AUTOREMOVE_SUPPLIER | \ 237 DL_FLAG_AUTOPROBE_CONSUMER | \ 238 DL_FLAG_SYNC_STATE_ONLY) 239 240 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \ 241 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE) 242 243 /** 244 * device_link_add - Create a link between two devices. 245 * @consumer: Consumer end of the link. 246 * @supplier: Supplier end of the link. 247 * @flags: Link flags. 248 * 249 * The caller is responsible for the proper synchronization of the link creation 250 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 251 * runtime PM framework to take the link into account. Second, if the 252 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 253 * be forced into the active metastate and reference-counted upon the creation 254 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 255 * ignored. 256 * 257 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is 258 * expected to release the link returned by it directly with the help of either 259 * device_link_del() or device_link_remove(). 260 * 261 * If that flag is not set, however, the caller of this function is handing the 262 * management of the link over to the driver core entirely and its return value 263 * can only be used to check whether or not the link is present. In that case, 264 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link 265 * flags can be used to indicate to the driver core when the link can be safely 266 * deleted. Namely, setting one of them in @flags indicates to the driver core 267 * that the link is not going to be used (by the given caller of this function) 268 * after unbinding the consumer or supplier driver, respectively, from its 269 * device, so the link can be deleted at that point. If none of them is set, 270 * the link will be maintained until one of the devices pointed to by it (either 271 * the consumer or the supplier) is unregistered. 272 * 273 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and 274 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent 275 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can 276 * be used to request the driver core to automaticall probe for a consmer 277 * driver after successfully binding a driver to the supplier device. 278 * 279 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER, 280 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at 281 * the same time is invalid and will cause NULL to be returned upfront. 282 * However, if a device link between the given @consumer and @supplier pair 283 * exists already when this function is called for them, the existing link will 284 * be returned regardless of its current type and status (the link's flags may 285 * be modified then). The caller of this function is then expected to treat 286 * the link as though it has just been created, so (in particular) if 287 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released 288 * explicitly when not needed any more (as stated above). 289 * 290 * A side effect of the link creation is re-ordering of dpm_list and the 291 * devices_kset list by moving the consumer device and all devices depending 292 * on it to the ends of these lists (that does not happen to devices that have 293 * not been registered when this function is called). 294 * 295 * The supplier device is required to be registered when this function is called 296 * and NULL will be returned if that is not the case. The consumer device need 297 * not be registered, however. 298 */ 299 struct device_link *device_link_add(struct device *consumer, 300 struct device *supplier, u32 flags) 301 { 302 struct device_link *link; 303 304 if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS || 305 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) || 306 (flags & DL_FLAG_SYNC_STATE_ONLY && 307 flags != DL_FLAG_SYNC_STATE_ONLY) || 308 (flags & DL_FLAG_AUTOPROBE_CONSUMER && 309 flags & (DL_FLAG_AUTOREMOVE_CONSUMER | 310 DL_FLAG_AUTOREMOVE_SUPPLIER))) 311 return NULL; 312 313 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) { 314 if (pm_runtime_get_sync(supplier) < 0) { 315 pm_runtime_put_noidle(supplier); 316 return NULL; 317 } 318 } 319 320 if (!(flags & DL_FLAG_STATELESS)) 321 flags |= DL_FLAG_MANAGED; 322 323 device_links_write_lock(); 324 device_pm_lock(); 325 326 /* 327 * If the supplier has not been fully registered yet or there is a 328 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and 329 * the supplier already in the graph, return NULL. If the link is a 330 * SYNC_STATE_ONLY link, we don't check for reverse dependencies 331 * because it only affects sync_state() callbacks. 332 */ 333 if (!device_pm_initialized(supplier) 334 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) && 335 device_is_dependent(consumer, supplier))) { 336 link = NULL; 337 goto out; 338 } 339 340 /* 341 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed 342 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both 343 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER. 344 */ 345 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 346 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 347 348 list_for_each_entry(link, &supplier->links.consumers, s_node) { 349 if (link->consumer != consumer) 350 continue; 351 352 if (flags & DL_FLAG_PM_RUNTIME) { 353 if (!(link->flags & DL_FLAG_PM_RUNTIME)) { 354 pm_runtime_new_link(consumer); 355 link->flags |= DL_FLAG_PM_RUNTIME; 356 } 357 if (flags & DL_FLAG_RPM_ACTIVE) 358 refcount_inc(&link->rpm_active); 359 } 360 361 if (flags & DL_FLAG_STATELESS) { 362 kref_get(&link->kref); 363 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 364 !(link->flags & DL_FLAG_STATELESS)) { 365 link->flags |= DL_FLAG_STATELESS; 366 goto reorder; 367 } else { 368 link->flags |= DL_FLAG_STATELESS; 369 goto out; 370 } 371 } 372 373 /* 374 * If the life time of the link following from the new flags is 375 * longer than indicated by the flags of the existing link, 376 * update the existing link to stay around longer. 377 */ 378 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) { 379 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 380 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 381 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER; 382 } 383 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) { 384 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER | 385 DL_FLAG_AUTOREMOVE_SUPPLIER); 386 } 387 if (!(link->flags & DL_FLAG_MANAGED)) { 388 kref_get(&link->kref); 389 link->flags |= DL_FLAG_MANAGED; 390 device_link_init_status(link, consumer, supplier); 391 } 392 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 393 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 394 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY; 395 goto reorder; 396 } 397 398 goto out; 399 } 400 401 link = kzalloc(sizeof(*link), GFP_KERNEL); 402 if (!link) 403 goto out; 404 405 refcount_set(&link->rpm_active, 1); 406 407 if (flags & DL_FLAG_PM_RUNTIME) { 408 if (flags & DL_FLAG_RPM_ACTIVE) 409 refcount_inc(&link->rpm_active); 410 411 pm_runtime_new_link(consumer); 412 } 413 414 get_device(supplier); 415 link->supplier = supplier; 416 INIT_LIST_HEAD(&link->s_node); 417 get_device(consumer); 418 link->consumer = consumer; 419 INIT_LIST_HEAD(&link->c_node); 420 link->flags = flags; 421 kref_init(&link->kref); 422 423 /* Determine the initial link state. */ 424 if (flags & DL_FLAG_STATELESS) 425 link->status = DL_STATE_NONE; 426 else 427 device_link_init_status(link, consumer, supplier); 428 429 /* 430 * Some callers expect the link creation during consumer driver probe to 431 * resume the supplier even without DL_FLAG_RPM_ACTIVE. 432 */ 433 if (link->status == DL_STATE_CONSUMER_PROBE && 434 flags & DL_FLAG_PM_RUNTIME) 435 pm_runtime_resume(supplier); 436 437 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 438 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 439 440 if (flags & DL_FLAG_SYNC_STATE_ONLY) { 441 dev_dbg(consumer, 442 "Linked as a sync state only consumer to %s\n", 443 dev_name(supplier)); 444 goto out; 445 } 446 447 reorder: 448 /* 449 * Move the consumer and all of the devices depending on it to the end 450 * of dpm_list and the devices_kset list. 451 * 452 * It is necessary to hold dpm_list locked throughout all that or else 453 * we may end up suspending with a wrong ordering of it. 454 */ 455 device_reorder_to_tail(consumer, NULL); 456 457 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 458 459 out: 460 device_pm_unlock(); 461 device_links_write_unlock(); 462 463 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link) 464 pm_runtime_put(supplier); 465 466 return link; 467 } 468 EXPORT_SYMBOL_GPL(device_link_add); 469 470 /** 471 * device_link_wait_for_supplier - Add device to wait_for_suppliers list 472 * @consumer: Consumer device 473 * 474 * Marks the @consumer device as waiting for suppliers to become available by 475 * adding it to the wait_for_suppliers list. The consumer device will never be 476 * probed until it's removed from the wait_for_suppliers list. 477 * 478 * The caller is responsible for adding the links to the supplier devices once 479 * they are available and removing the @consumer device from the 480 * wait_for_suppliers list once links to all the suppliers have been created. 481 * 482 * This function is NOT meant to be called from the probe function of the 483 * consumer but rather from code that creates/adds the consumer device. 484 */ 485 static void device_link_wait_for_supplier(struct device *consumer, 486 bool need_for_probe) 487 { 488 mutex_lock(&wfs_lock); 489 list_add_tail(&consumer->links.needs_suppliers, &wait_for_suppliers); 490 consumer->links.need_for_probe = need_for_probe; 491 mutex_unlock(&wfs_lock); 492 } 493 494 static void device_link_wait_for_mandatory_supplier(struct device *consumer) 495 { 496 device_link_wait_for_supplier(consumer, true); 497 } 498 499 static void device_link_wait_for_optional_supplier(struct device *consumer) 500 { 501 device_link_wait_for_supplier(consumer, false); 502 } 503 504 /** 505 * device_link_add_missing_supplier_links - Add links from consumer devices to 506 * supplier devices, leaving any 507 * consumer with inactive suppliers on 508 * the wait_for_suppliers list 509 * 510 * Loops through all consumers waiting on suppliers and tries to add all their 511 * supplier links. If that succeeds, the consumer device is removed from 512 * wait_for_suppliers list. Otherwise, they are left in the wait_for_suppliers 513 * list. Devices left on the wait_for_suppliers list will not be probed. 514 * 515 * The fwnode add_links callback is expected to return 0 if it has found and 516 * added all the supplier links for the consumer device. It should return an 517 * error if it isn't able to do so. 518 * 519 * The caller of device_link_wait_for_supplier() is expected to call this once 520 * it's aware of potential suppliers becoming available. 521 */ 522 static void device_link_add_missing_supplier_links(void) 523 { 524 struct device *dev, *tmp; 525 526 mutex_lock(&wfs_lock); 527 list_for_each_entry_safe(dev, tmp, &wait_for_suppliers, 528 links.needs_suppliers) { 529 int ret = fwnode_call_int_op(dev->fwnode, add_links, dev); 530 if (!ret) 531 list_del_init(&dev->links.needs_suppliers); 532 else if (ret != -ENODEV) 533 dev->links.need_for_probe = false; 534 } 535 mutex_unlock(&wfs_lock); 536 } 537 538 static void device_link_free(struct device_link *link) 539 { 540 while (refcount_dec_not_one(&link->rpm_active)) 541 pm_runtime_put(link->supplier); 542 543 put_device(link->consumer); 544 put_device(link->supplier); 545 kfree(link); 546 } 547 548 #ifdef CONFIG_SRCU 549 static void __device_link_free_srcu(struct rcu_head *rhead) 550 { 551 device_link_free(container_of(rhead, struct device_link, rcu_head)); 552 } 553 554 static void __device_link_del(struct kref *kref) 555 { 556 struct device_link *link = container_of(kref, struct device_link, kref); 557 558 dev_dbg(link->consumer, "Dropping the link to %s\n", 559 dev_name(link->supplier)); 560 561 if (link->flags & DL_FLAG_PM_RUNTIME) 562 pm_runtime_drop_link(link->consumer); 563 564 list_del_rcu(&link->s_node); 565 list_del_rcu(&link->c_node); 566 call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu); 567 } 568 #else /* !CONFIG_SRCU */ 569 static void __device_link_del(struct kref *kref) 570 { 571 struct device_link *link = container_of(kref, struct device_link, kref); 572 573 dev_info(link->consumer, "Dropping the link to %s\n", 574 dev_name(link->supplier)); 575 576 if (link->flags & DL_FLAG_PM_RUNTIME) 577 pm_runtime_drop_link(link->consumer); 578 579 list_del(&link->s_node); 580 list_del(&link->c_node); 581 device_link_free(link); 582 } 583 #endif /* !CONFIG_SRCU */ 584 585 static void device_link_put_kref(struct device_link *link) 586 { 587 if (link->flags & DL_FLAG_STATELESS) 588 kref_put(&link->kref, __device_link_del); 589 else 590 WARN(1, "Unable to drop a managed device link reference\n"); 591 } 592 593 /** 594 * device_link_del - Delete a stateless link between two devices. 595 * @link: Device link to delete. 596 * 597 * The caller must ensure proper synchronization of this function with runtime 598 * PM. If the link was added multiple times, it needs to be deleted as often. 599 * Care is required for hotplugged devices: Their links are purged on removal 600 * and calling device_link_del() is then no longer allowed. 601 */ 602 void device_link_del(struct device_link *link) 603 { 604 device_links_write_lock(); 605 device_pm_lock(); 606 device_link_put_kref(link); 607 device_pm_unlock(); 608 device_links_write_unlock(); 609 } 610 EXPORT_SYMBOL_GPL(device_link_del); 611 612 /** 613 * device_link_remove - Delete a stateless link between two devices. 614 * @consumer: Consumer end of the link. 615 * @supplier: Supplier end of the link. 616 * 617 * The caller must ensure proper synchronization of this function with runtime 618 * PM. 619 */ 620 void device_link_remove(void *consumer, struct device *supplier) 621 { 622 struct device_link *link; 623 624 if (WARN_ON(consumer == supplier)) 625 return; 626 627 device_links_write_lock(); 628 device_pm_lock(); 629 630 list_for_each_entry(link, &supplier->links.consumers, s_node) { 631 if (link->consumer == consumer) { 632 device_link_put_kref(link); 633 break; 634 } 635 } 636 637 device_pm_unlock(); 638 device_links_write_unlock(); 639 } 640 EXPORT_SYMBOL_GPL(device_link_remove); 641 642 static void device_links_missing_supplier(struct device *dev) 643 { 644 struct device_link *link; 645 646 list_for_each_entry(link, &dev->links.suppliers, c_node) 647 if (link->status == DL_STATE_CONSUMER_PROBE) 648 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 649 } 650 651 /** 652 * device_links_check_suppliers - Check presence of supplier drivers. 653 * @dev: Consumer device. 654 * 655 * Check links from this device to any suppliers. Walk the list of the device's 656 * links to suppliers and see if all of them are available. If not, simply 657 * return -EPROBE_DEFER. 658 * 659 * We need to guarantee that the supplier will not go away after the check has 660 * been positive here. It only can go away in __device_release_driver() and 661 * that function checks the device's links to consumers. This means we need to 662 * mark the link as "consumer probe in progress" to make the supplier removal 663 * wait for us to complete (or bad things may happen). 664 * 665 * Links without the DL_FLAG_MANAGED flag set are ignored. 666 */ 667 int device_links_check_suppliers(struct device *dev) 668 { 669 struct device_link *link; 670 int ret = 0; 671 672 /* 673 * Device waiting for supplier to become available is not allowed to 674 * probe. 675 */ 676 mutex_lock(&wfs_lock); 677 if (!list_empty(&dev->links.needs_suppliers) && 678 dev->links.need_for_probe) { 679 mutex_unlock(&wfs_lock); 680 return -EPROBE_DEFER; 681 } 682 mutex_unlock(&wfs_lock); 683 684 device_links_write_lock(); 685 686 list_for_each_entry(link, &dev->links.suppliers, c_node) { 687 if (!(link->flags & DL_FLAG_MANAGED) || 688 link->flags & DL_FLAG_SYNC_STATE_ONLY) 689 continue; 690 691 if (link->status != DL_STATE_AVAILABLE) { 692 device_links_missing_supplier(dev); 693 ret = -EPROBE_DEFER; 694 break; 695 } 696 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 697 } 698 dev->links.status = DL_DEV_PROBING; 699 700 device_links_write_unlock(); 701 return ret; 702 } 703 704 /** 705 * __device_links_queue_sync_state - Queue a device for sync_state() callback 706 * @dev: Device to call sync_state() on 707 * @list: List head to queue the @dev on 708 * 709 * Queues a device for a sync_state() callback when the device links write lock 710 * isn't held. This allows the sync_state() execution flow to use device links 711 * APIs. The caller must ensure this function is called with 712 * device_links_write_lock() held. 713 * 714 * This function does a get_device() to make sure the device is not freed while 715 * on this list. 716 * 717 * So the caller must also ensure that device_links_flush_sync_list() is called 718 * as soon as the caller releases device_links_write_lock(). This is necessary 719 * to make sure the sync_state() is called in a timely fashion and the 720 * put_device() is called on this device. 721 */ 722 static void __device_links_queue_sync_state(struct device *dev, 723 struct list_head *list) 724 { 725 struct device_link *link; 726 727 if (!dev_has_sync_state(dev)) 728 return; 729 if (dev->state_synced) 730 return; 731 732 list_for_each_entry(link, &dev->links.consumers, s_node) { 733 if (!(link->flags & DL_FLAG_MANAGED)) 734 continue; 735 if (link->status != DL_STATE_ACTIVE) 736 return; 737 } 738 739 /* 740 * Set the flag here to avoid adding the same device to a list more 741 * than once. This can happen if new consumers get added to the device 742 * and probed before the list is flushed. 743 */ 744 dev->state_synced = true; 745 746 if (WARN_ON(!list_empty(&dev->links.defer_sync))) 747 return; 748 749 get_device(dev); 750 list_add_tail(&dev->links.defer_sync, list); 751 } 752 753 /** 754 * device_links_flush_sync_list - Call sync_state() on a list of devices 755 * @list: List of devices to call sync_state() on 756 * @dont_lock_dev: Device for which lock is already held by the caller 757 * 758 * Calls sync_state() on all the devices that have been queued for it. This 759 * function is used in conjunction with __device_links_queue_sync_state(). The 760 * @dont_lock_dev parameter is useful when this function is called from a 761 * context where a device lock is already held. 762 */ 763 static void device_links_flush_sync_list(struct list_head *list, 764 struct device *dont_lock_dev) 765 { 766 struct device *dev, *tmp; 767 768 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) { 769 list_del_init(&dev->links.defer_sync); 770 771 if (dev != dont_lock_dev) 772 device_lock(dev); 773 774 if (dev->bus->sync_state) 775 dev->bus->sync_state(dev); 776 else if (dev->driver && dev->driver->sync_state) 777 dev->driver->sync_state(dev); 778 779 if (dev != dont_lock_dev) 780 device_unlock(dev); 781 782 put_device(dev); 783 } 784 } 785 786 void device_links_supplier_sync_state_pause(void) 787 { 788 device_links_write_lock(); 789 defer_sync_state_count++; 790 device_links_write_unlock(); 791 } 792 793 void device_links_supplier_sync_state_resume(void) 794 { 795 struct device *dev, *tmp; 796 LIST_HEAD(sync_list); 797 798 device_links_write_lock(); 799 if (!defer_sync_state_count) { 800 WARN(true, "Unmatched sync_state pause/resume!"); 801 goto out; 802 } 803 defer_sync_state_count--; 804 if (defer_sync_state_count) 805 goto out; 806 807 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) { 808 /* 809 * Delete from deferred_sync list before queuing it to 810 * sync_list because defer_sync is used for both lists. 811 */ 812 list_del_init(&dev->links.defer_sync); 813 __device_links_queue_sync_state(dev, &sync_list); 814 } 815 out: 816 device_links_write_unlock(); 817 818 device_links_flush_sync_list(&sync_list, NULL); 819 } 820 821 static int sync_state_resume_initcall(void) 822 { 823 device_links_supplier_sync_state_resume(); 824 return 0; 825 } 826 late_initcall(sync_state_resume_initcall); 827 828 static void __device_links_supplier_defer_sync(struct device *sup) 829 { 830 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup)) 831 list_add_tail(&sup->links.defer_sync, &deferred_sync); 832 } 833 834 static void device_link_drop_managed(struct device_link *link) 835 { 836 link->flags &= ~DL_FLAG_MANAGED; 837 WRITE_ONCE(link->status, DL_STATE_NONE); 838 kref_put(&link->kref, __device_link_del); 839 } 840 841 /** 842 * device_links_driver_bound - Update device links after probing its driver. 843 * @dev: Device to update the links for. 844 * 845 * The probe has been successful, so update links from this device to any 846 * consumers by changing their status to "available". 847 * 848 * Also change the status of @dev's links to suppliers to "active". 849 * 850 * Links without the DL_FLAG_MANAGED flag set are ignored. 851 */ 852 void device_links_driver_bound(struct device *dev) 853 { 854 struct device_link *link, *ln; 855 LIST_HEAD(sync_list); 856 857 /* 858 * If a device probes successfully, it's expected to have created all 859 * the device links it needs to or make new device links as it needs 860 * them. So, it no longer needs to wait on any suppliers. 861 */ 862 mutex_lock(&wfs_lock); 863 list_del_init(&dev->links.needs_suppliers); 864 mutex_unlock(&wfs_lock); 865 866 device_links_write_lock(); 867 868 list_for_each_entry(link, &dev->links.consumers, s_node) { 869 if (!(link->flags & DL_FLAG_MANAGED)) 870 continue; 871 872 /* 873 * Links created during consumer probe may be in the "consumer 874 * probe" state to start with if the supplier is still probing 875 * when they are created and they may become "active" if the 876 * consumer probe returns first. Skip them here. 877 */ 878 if (link->status == DL_STATE_CONSUMER_PROBE || 879 link->status == DL_STATE_ACTIVE) 880 continue; 881 882 WARN_ON(link->status != DL_STATE_DORMANT); 883 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 884 885 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER) 886 driver_deferred_probe_add(link->consumer); 887 } 888 889 if (defer_sync_state_count) 890 __device_links_supplier_defer_sync(dev); 891 else 892 __device_links_queue_sync_state(dev, &sync_list); 893 894 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 895 struct device *supplier; 896 897 if (!(link->flags & DL_FLAG_MANAGED)) 898 continue; 899 900 supplier = link->supplier; 901 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) { 902 /* 903 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no 904 * other DL_MANAGED_LINK_FLAGS have been set. So, it's 905 * save to drop the managed link completely. 906 */ 907 device_link_drop_managed(link); 908 } else { 909 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 910 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 911 } 912 913 /* 914 * This needs to be done even for the deleted 915 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last 916 * device link that was preventing the supplier from getting a 917 * sync_state() call. 918 */ 919 if (defer_sync_state_count) 920 __device_links_supplier_defer_sync(supplier); 921 else 922 __device_links_queue_sync_state(supplier, &sync_list); 923 } 924 925 dev->links.status = DL_DEV_DRIVER_BOUND; 926 927 device_links_write_unlock(); 928 929 device_links_flush_sync_list(&sync_list, dev); 930 } 931 932 /** 933 * __device_links_no_driver - Update links of a device without a driver. 934 * @dev: Device without a drvier. 935 * 936 * Delete all non-persistent links from this device to any suppliers. 937 * 938 * Persistent links stay around, but their status is changed to "available", 939 * unless they already are in the "supplier unbind in progress" state in which 940 * case they need not be updated. 941 * 942 * Links without the DL_FLAG_MANAGED flag set are ignored. 943 */ 944 static void __device_links_no_driver(struct device *dev) 945 { 946 struct device_link *link, *ln; 947 948 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 949 if (!(link->flags & DL_FLAG_MANAGED)) 950 continue; 951 952 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) 953 device_link_drop_managed(link); 954 else if (link->status == DL_STATE_CONSUMER_PROBE || 955 link->status == DL_STATE_ACTIVE) 956 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 957 } 958 959 dev->links.status = DL_DEV_NO_DRIVER; 960 } 961 962 /** 963 * device_links_no_driver - Update links after failing driver probe. 964 * @dev: Device whose driver has just failed to probe. 965 * 966 * Clean up leftover links to consumers for @dev and invoke 967 * %__device_links_no_driver() to update links to suppliers for it as 968 * appropriate. 969 * 970 * Links without the DL_FLAG_MANAGED flag set are ignored. 971 */ 972 void device_links_no_driver(struct device *dev) 973 { 974 struct device_link *link; 975 976 device_links_write_lock(); 977 978 list_for_each_entry(link, &dev->links.consumers, s_node) { 979 if (!(link->flags & DL_FLAG_MANAGED)) 980 continue; 981 982 /* 983 * The probe has failed, so if the status of the link is 984 * "consumer probe" or "active", it must have been added by 985 * a probing consumer while this device was still probing. 986 * Change its state to "dormant", as it represents a valid 987 * relationship, but it is not functionally meaningful. 988 */ 989 if (link->status == DL_STATE_CONSUMER_PROBE || 990 link->status == DL_STATE_ACTIVE) 991 WRITE_ONCE(link->status, DL_STATE_DORMANT); 992 } 993 994 __device_links_no_driver(dev); 995 996 device_links_write_unlock(); 997 } 998 999 /** 1000 * device_links_driver_cleanup - Update links after driver removal. 1001 * @dev: Device whose driver has just gone away. 1002 * 1003 * Update links to consumers for @dev by changing their status to "dormant" and 1004 * invoke %__device_links_no_driver() to update links to suppliers for it as 1005 * appropriate. 1006 * 1007 * Links without the DL_FLAG_MANAGED flag set are ignored. 1008 */ 1009 void device_links_driver_cleanup(struct device *dev) 1010 { 1011 struct device_link *link, *ln; 1012 1013 device_links_write_lock(); 1014 1015 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) { 1016 if (!(link->flags & DL_FLAG_MANAGED)) 1017 continue; 1018 1019 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER); 1020 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 1021 1022 /* 1023 * autoremove the links between this @dev and its consumer 1024 * devices that are not active, i.e. where the link state 1025 * has moved to DL_STATE_SUPPLIER_UNBIND. 1026 */ 1027 if (link->status == DL_STATE_SUPPLIER_UNBIND && 1028 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 1029 device_link_drop_managed(link); 1030 1031 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1032 } 1033 1034 list_del_init(&dev->links.defer_sync); 1035 __device_links_no_driver(dev); 1036 1037 device_links_write_unlock(); 1038 } 1039 1040 /** 1041 * device_links_busy - Check if there are any busy links to consumers. 1042 * @dev: Device to check. 1043 * 1044 * Check each consumer of the device and return 'true' if its link's status 1045 * is one of "consumer probe" or "active" (meaning that the given consumer is 1046 * probing right now or its driver is present). Otherwise, change the link 1047 * state to "supplier unbind" to prevent the consumer from being probed 1048 * successfully going forward. 1049 * 1050 * Return 'false' if there are no probing or active consumers. 1051 * 1052 * Links without the DL_FLAG_MANAGED flag set are ignored. 1053 */ 1054 bool device_links_busy(struct device *dev) 1055 { 1056 struct device_link *link; 1057 bool ret = false; 1058 1059 device_links_write_lock(); 1060 1061 list_for_each_entry(link, &dev->links.consumers, s_node) { 1062 if (!(link->flags & DL_FLAG_MANAGED)) 1063 continue; 1064 1065 if (link->status == DL_STATE_CONSUMER_PROBE 1066 || link->status == DL_STATE_ACTIVE) { 1067 ret = true; 1068 break; 1069 } 1070 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1071 } 1072 1073 dev->links.status = DL_DEV_UNBINDING; 1074 1075 device_links_write_unlock(); 1076 return ret; 1077 } 1078 1079 /** 1080 * device_links_unbind_consumers - Force unbind consumers of the given device. 1081 * @dev: Device to unbind the consumers of. 1082 * 1083 * Walk the list of links to consumers for @dev and if any of them is in the 1084 * "consumer probe" state, wait for all device probes in progress to complete 1085 * and start over. 1086 * 1087 * If that's not the case, change the status of the link to "supplier unbind" 1088 * and check if the link was in the "active" state. If so, force the consumer 1089 * driver to unbind and start over (the consumer will not re-probe as we have 1090 * changed the state of the link already). 1091 * 1092 * Links without the DL_FLAG_MANAGED flag set are ignored. 1093 */ 1094 void device_links_unbind_consumers(struct device *dev) 1095 { 1096 struct device_link *link; 1097 1098 start: 1099 device_links_write_lock(); 1100 1101 list_for_each_entry(link, &dev->links.consumers, s_node) { 1102 enum device_link_state status; 1103 1104 if (!(link->flags & DL_FLAG_MANAGED) || 1105 link->flags & DL_FLAG_SYNC_STATE_ONLY) 1106 continue; 1107 1108 status = link->status; 1109 if (status == DL_STATE_CONSUMER_PROBE) { 1110 device_links_write_unlock(); 1111 1112 wait_for_device_probe(); 1113 goto start; 1114 } 1115 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1116 if (status == DL_STATE_ACTIVE) { 1117 struct device *consumer = link->consumer; 1118 1119 get_device(consumer); 1120 1121 device_links_write_unlock(); 1122 1123 device_release_driver_internal(consumer, NULL, 1124 consumer->parent); 1125 put_device(consumer); 1126 goto start; 1127 } 1128 } 1129 1130 device_links_write_unlock(); 1131 } 1132 1133 /** 1134 * device_links_purge - Delete existing links to other devices. 1135 * @dev: Target device. 1136 */ 1137 static void device_links_purge(struct device *dev) 1138 { 1139 struct device_link *link, *ln; 1140 1141 mutex_lock(&wfs_lock); 1142 list_del(&dev->links.needs_suppliers); 1143 mutex_unlock(&wfs_lock); 1144 1145 /* 1146 * Delete all of the remaining links from this device to any other 1147 * devices (either consumers or suppliers). 1148 */ 1149 device_links_write_lock(); 1150 1151 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1152 WARN_ON(link->status == DL_STATE_ACTIVE); 1153 __device_link_del(&link->kref); 1154 } 1155 1156 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 1157 WARN_ON(link->status != DL_STATE_DORMANT && 1158 link->status != DL_STATE_NONE); 1159 __device_link_del(&link->kref); 1160 } 1161 1162 device_links_write_unlock(); 1163 } 1164 1165 /* Device links support end. */ 1166 1167 int (*platform_notify)(struct device *dev) = NULL; 1168 int (*platform_notify_remove)(struct device *dev) = NULL; 1169 static struct kobject *dev_kobj; 1170 struct kobject *sysfs_dev_char_kobj; 1171 struct kobject *sysfs_dev_block_kobj; 1172 1173 static DEFINE_MUTEX(device_hotplug_lock); 1174 1175 void lock_device_hotplug(void) 1176 { 1177 mutex_lock(&device_hotplug_lock); 1178 } 1179 1180 void unlock_device_hotplug(void) 1181 { 1182 mutex_unlock(&device_hotplug_lock); 1183 } 1184 1185 int lock_device_hotplug_sysfs(void) 1186 { 1187 if (mutex_trylock(&device_hotplug_lock)) 1188 return 0; 1189 1190 /* Avoid busy looping (5 ms of sleep should do). */ 1191 msleep(5); 1192 return restart_syscall(); 1193 } 1194 1195 #ifdef CONFIG_BLOCK 1196 static inline int device_is_not_partition(struct device *dev) 1197 { 1198 return !(dev->type == &part_type); 1199 } 1200 #else 1201 static inline int device_is_not_partition(struct device *dev) 1202 { 1203 return 1; 1204 } 1205 #endif 1206 1207 static int 1208 device_platform_notify(struct device *dev, enum kobject_action action) 1209 { 1210 int ret; 1211 1212 ret = acpi_platform_notify(dev, action); 1213 if (ret) 1214 return ret; 1215 1216 ret = software_node_notify(dev, action); 1217 if (ret) 1218 return ret; 1219 1220 if (platform_notify && action == KOBJ_ADD) 1221 platform_notify(dev); 1222 else if (platform_notify_remove && action == KOBJ_REMOVE) 1223 platform_notify_remove(dev); 1224 return 0; 1225 } 1226 1227 /** 1228 * dev_driver_string - Return a device's driver name, if at all possible 1229 * @dev: struct device to get the name of 1230 * 1231 * Will return the device's driver's name if it is bound to a device. If 1232 * the device is not bound to a driver, it will return the name of the bus 1233 * it is attached to. If it is not attached to a bus either, an empty 1234 * string will be returned. 1235 */ 1236 const char *dev_driver_string(const struct device *dev) 1237 { 1238 struct device_driver *drv; 1239 1240 /* dev->driver can change to NULL underneath us because of unbinding, 1241 * so be careful about accessing it. dev->bus and dev->class should 1242 * never change once they are set, so they don't need special care. 1243 */ 1244 drv = READ_ONCE(dev->driver); 1245 return drv ? drv->name : 1246 (dev->bus ? dev->bus->name : 1247 (dev->class ? dev->class->name : "")); 1248 } 1249 EXPORT_SYMBOL(dev_driver_string); 1250 1251 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 1252 1253 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 1254 char *buf) 1255 { 1256 struct device_attribute *dev_attr = to_dev_attr(attr); 1257 struct device *dev = kobj_to_dev(kobj); 1258 ssize_t ret = -EIO; 1259 1260 if (dev_attr->show) 1261 ret = dev_attr->show(dev, dev_attr, buf); 1262 if (ret >= (ssize_t)PAGE_SIZE) { 1263 printk("dev_attr_show: %pS returned bad count\n", 1264 dev_attr->show); 1265 } 1266 return ret; 1267 } 1268 1269 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 1270 const char *buf, size_t count) 1271 { 1272 struct device_attribute *dev_attr = to_dev_attr(attr); 1273 struct device *dev = kobj_to_dev(kobj); 1274 ssize_t ret = -EIO; 1275 1276 if (dev_attr->store) 1277 ret = dev_attr->store(dev, dev_attr, buf, count); 1278 return ret; 1279 } 1280 1281 static const struct sysfs_ops dev_sysfs_ops = { 1282 .show = dev_attr_show, 1283 .store = dev_attr_store, 1284 }; 1285 1286 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 1287 1288 ssize_t device_store_ulong(struct device *dev, 1289 struct device_attribute *attr, 1290 const char *buf, size_t size) 1291 { 1292 struct dev_ext_attribute *ea = to_ext_attr(attr); 1293 int ret; 1294 unsigned long new; 1295 1296 ret = kstrtoul(buf, 0, &new); 1297 if (ret) 1298 return ret; 1299 *(unsigned long *)(ea->var) = new; 1300 /* Always return full write size even if we didn't consume all */ 1301 return size; 1302 } 1303 EXPORT_SYMBOL_GPL(device_store_ulong); 1304 1305 ssize_t device_show_ulong(struct device *dev, 1306 struct device_attribute *attr, 1307 char *buf) 1308 { 1309 struct dev_ext_attribute *ea = to_ext_attr(attr); 1310 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var)); 1311 } 1312 EXPORT_SYMBOL_GPL(device_show_ulong); 1313 1314 ssize_t device_store_int(struct device *dev, 1315 struct device_attribute *attr, 1316 const char *buf, size_t size) 1317 { 1318 struct dev_ext_attribute *ea = to_ext_attr(attr); 1319 int ret; 1320 long new; 1321 1322 ret = kstrtol(buf, 0, &new); 1323 if (ret) 1324 return ret; 1325 1326 if (new > INT_MAX || new < INT_MIN) 1327 return -EINVAL; 1328 *(int *)(ea->var) = new; 1329 /* Always return full write size even if we didn't consume all */ 1330 return size; 1331 } 1332 EXPORT_SYMBOL_GPL(device_store_int); 1333 1334 ssize_t device_show_int(struct device *dev, 1335 struct device_attribute *attr, 1336 char *buf) 1337 { 1338 struct dev_ext_attribute *ea = to_ext_attr(attr); 1339 1340 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var)); 1341 } 1342 EXPORT_SYMBOL_GPL(device_show_int); 1343 1344 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 1345 const char *buf, size_t size) 1346 { 1347 struct dev_ext_attribute *ea = to_ext_attr(attr); 1348 1349 if (strtobool(buf, ea->var) < 0) 1350 return -EINVAL; 1351 1352 return size; 1353 } 1354 EXPORT_SYMBOL_GPL(device_store_bool); 1355 1356 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 1357 char *buf) 1358 { 1359 struct dev_ext_attribute *ea = to_ext_attr(attr); 1360 1361 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var)); 1362 } 1363 EXPORT_SYMBOL_GPL(device_show_bool); 1364 1365 /** 1366 * device_release - free device structure. 1367 * @kobj: device's kobject. 1368 * 1369 * This is called once the reference count for the object 1370 * reaches 0. We forward the call to the device's release 1371 * method, which should handle actually freeing the structure. 1372 */ 1373 static void device_release(struct kobject *kobj) 1374 { 1375 struct device *dev = kobj_to_dev(kobj); 1376 struct device_private *p = dev->p; 1377 1378 /* 1379 * Some platform devices are driven without driver attached 1380 * and managed resources may have been acquired. Make sure 1381 * all resources are released. 1382 * 1383 * Drivers still can add resources into device after device 1384 * is deleted but alive, so release devres here to avoid 1385 * possible memory leak. 1386 */ 1387 devres_release_all(dev); 1388 1389 if (dev->release) 1390 dev->release(dev); 1391 else if (dev->type && dev->type->release) 1392 dev->type->release(dev); 1393 else if (dev->class && dev->class->dev_release) 1394 dev->class->dev_release(dev); 1395 else 1396 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n", 1397 dev_name(dev)); 1398 kfree(p); 1399 } 1400 1401 static const void *device_namespace(struct kobject *kobj) 1402 { 1403 struct device *dev = kobj_to_dev(kobj); 1404 const void *ns = NULL; 1405 1406 if (dev->class && dev->class->ns_type) 1407 ns = dev->class->namespace(dev); 1408 1409 return ns; 1410 } 1411 1412 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid) 1413 { 1414 struct device *dev = kobj_to_dev(kobj); 1415 1416 if (dev->class && dev->class->get_ownership) 1417 dev->class->get_ownership(dev, uid, gid); 1418 } 1419 1420 static struct kobj_type device_ktype = { 1421 .release = device_release, 1422 .sysfs_ops = &dev_sysfs_ops, 1423 .namespace = device_namespace, 1424 .get_ownership = device_get_ownership, 1425 }; 1426 1427 1428 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj) 1429 { 1430 struct kobj_type *ktype = get_ktype(kobj); 1431 1432 if (ktype == &device_ktype) { 1433 struct device *dev = kobj_to_dev(kobj); 1434 if (dev->bus) 1435 return 1; 1436 if (dev->class) 1437 return 1; 1438 } 1439 return 0; 1440 } 1441 1442 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj) 1443 { 1444 struct device *dev = kobj_to_dev(kobj); 1445 1446 if (dev->bus) 1447 return dev->bus->name; 1448 if (dev->class) 1449 return dev->class->name; 1450 return NULL; 1451 } 1452 1453 static int dev_uevent(struct kset *kset, struct kobject *kobj, 1454 struct kobj_uevent_env *env) 1455 { 1456 struct device *dev = kobj_to_dev(kobj); 1457 int retval = 0; 1458 1459 /* add device node properties if present */ 1460 if (MAJOR(dev->devt)) { 1461 const char *tmp; 1462 const char *name; 1463 umode_t mode = 0; 1464 kuid_t uid = GLOBAL_ROOT_UID; 1465 kgid_t gid = GLOBAL_ROOT_GID; 1466 1467 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 1468 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 1469 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 1470 if (name) { 1471 add_uevent_var(env, "DEVNAME=%s", name); 1472 if (mode) 1473 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 1474 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 1475 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 1476 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 1477 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 1478 kfree(tmp); 1479 } 1480 } 1481 1482 if (dev->type && dev->type->name) 1483 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 1484 1485 if (dev->driver) 1486 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 1487 1488 /* Add common DT information about the device */ 1489 of_device_uevent(dev, env); 1490 1491 /* have the bus specific function add its stuff */ 1492 if (dev->bus && dev->bus->uevent) { 1493 retval = dev->bus->uevent(dev, env); 1494 if (retval) 1495 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 1496 dev_name(dev), __func__, retval); 1497 } 1498 1499 /* have the class specific function add its stuff */ 1500 if (dev->class && dev->class->dev_uevent) { 1501 retval = dev->class->dev_uevent(dev, env); 1502 if (retval) 1503 pr_debug("device: '%s': %s: class uevent() " 1504 "returned %d\n", dev_name(dev), 1505 __func__, retval); 1506 } 1507 1508 /* have the device type specific function add its stuff */ 1509 if (dev->type && dev->type->uevent) { 1510 retval = dev->type->uevent(dev, env); 1511 if (retval) 1512 pr_debug("device: '%s': %s: dev_type uevent() " 1513 "returned %d\n", dev_name(dev), 1514 __func__, retval); 1515 } 1516 1517 return retval; 1518 } 1519 1520 static const struct kset_uevent_ops device_uevent_ops = { 1521 .filter = dev_uevent_filter, 1522 .name = dev_uevent_name, 1523 .uevent = dev_uevent, 1524 }; 1525 1526 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 1527 char *buf) 1528 { 1529 struct kobject *top_kobj; 1530 struct kset *kset; 1531 struct kobj_uevent_env *env = NULL; 1532 int i; 1533 size_t count = 0; 1534 int retval; 1535 1536 /* search the kset, the device belongs to */ 1537 top_kobj = &dev->kobj; 1538 while (!top_kobj->kset && top_kobj->parent) 1539 top_kobj = top_kobj->parent; 1540 if (!top_kobj->kset) 1541 goto out; 1542 1543 kset = top_kobj->kset; 1544 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 1545 goto out; 1546 1547 /* respect filter */ 1548 if (kset->uevent_ops && kset->uevent_ops->filter) 1549 if (!kset->uevent_ops->filter(kset, &dev->kobj)) 1550 goto out; 1551 1552 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 1553 if (!env) 1554 return -ENOMEM; 1555 1556 /* let the kset specific function add its keys */ 1557 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env); 1558 if (retval) 1559 goto out; 1560 1561 /* copy keys to file */ 1562 for (i = 0; i < env->envp_idx; i++) 1563 count += sprintf(&buf[count], "%s\n", env->envp[i]); 1564 out: 1565 kfree(env); 1566 return count; 1567 } 1568 1569 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 1570 const char *buf, size_t count) 1571 { 1572 int rc; 1573 1574 rc = kobject_synth_uevent(&dev->kobj, buf, count); 1575 1576 if (rc) { 1577 dev_err(dev, "uevent: failed to send synthetic uevent\n"); 1578 return rc; 1579 } 1580 1581 return count; 1582 } 1583 static DEVICE_ATTR_RW(uevent); 1584 1585 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 1586 char *buf) 1587 { 1588 bool val; 1589 1590 device_lock(dev); 1591 val = !dev->offline; 1592 device_unlock(dev); 1593 return sprintf(buf, "%u\n", val); 1594 } 1595 1596 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 1597 const char *buf, size_t count) 1598 { 1599 bool val; 1600 int ret; 1601 1602 ret = strtobool(buf, &val); 1603 if (ret < 0) 1604 return ret; 1605 1606 ret = lock_device_hotplug_sysfs(); 1607 if (ret) 1608 return ret; 1609 1610 ret = val ? device_online(dev) : device_offline(dev); 1611 unlock_device_hotplug(); 1612 return ret < 0 ? ret : count; 1613 } 1614 static DEVICE_ATTR_RW(online); 1615 1616 int device_add_groups(struct device *dev, const struct attribute_group **groups) 1617 { 1618 return sysfs_create_groups(&dev->kobj, groups); 1619 } 1620 EXPORT_SYMBOL_GPL(device_add_groups); 1621 1622 void device_remove_groups(struct device *dev, 1623 const struct attribute_group **groups) 1624 { 1625 sysfs_remove_groups(&dev->kobj, groups); 1626 } 1627 EXPORT_SYMBOL_GPL(device_remove_groups); 1628 1629 union device_attr_group_devres { 1630 const struct attribute_group *group; 1631 const struct attribute_group **groups; 1632 }; 1633 1634 static int devm_attr_group_match(struct device *dev, void *res, void *data) 1635 { 1636 return ((union device_attr_group_devres *)res)->group == data; 1637 } 1638 1639 static void devm_attr_group_remove(struct device *dev, void *res) 1640 { 1641 union device_attr_group_devres *devres = res; 1642 const struct attribute_group *group = devres->group; 1643 1644 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 1645 sysfs_remove_group(&dev->kobj, group); 1646 } 1647 1648 static void devm_attr_groups_remove(struct device *dev, void *res) 1649 { 1650 union device_attr_group_devres *devres = res; 1651 const struct attribute_group **groups = devres->groups; 1652 1653 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups); 1654 sysfs_remove_groups(&dev->kobj, groups); 1655 } 1656 1657 /** 1658 * devm_device_add_group - given a device, create a managed attribute group 1659 * @dev: The device to create the group for 1660 * @grp: The attribute group to create 1661 * 1662 * This function creates a group for the first time. It will explicitly 1663 * warn and error if any of the attribute files being created already exist. 1664 * 1665 * Returns 0 on success or error code on failure. 1666 */ 1667 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 1668 { 1669 union device_attr_group_devres *devres; 1670 int error; 1671 1672 devres = devres_alloc(devm_attr_group_remove, 1673 sizeof(*devres), GFP_KERNEL); 1674 if (!devres) 1675 return -ENOMEM; 1676 1677 error = sysfs_create_group(&dev->kobj, grp); 1678 if (error) { 1679 devres_free(devres); 1680 return error; 1681 } 1682 1683 devres->group = grp; 1684 devres_add(dev, devres); 1685 return 0; 1686 } 1687 EXPORT_SYMBOL_GPL(devm_device_add_group); 1688 1689 /** 1690 * devm_device_remove_group: remove a managed group from a device 1691 * @dev: device to remove the group from 1692 * @grp: group to remove 1693 * 1694 * This function removes a group of attributes from a device. The attributes 1695 * previously have to have been created for this group, otherwise it will fail. 1696 */ 1697 void devm_device_remove_group(struct device *dev, 1698 const struct attribute_group *grp) 1699 { 1700 WARN_ON(devres_release(dev, devm_attr_group_remove, 1701 devm_attr_group_match, 1702 /* cast away const */ (void *)grp)); 1703 } 1704 EXPORT_SYMBOL_GPL(devm_device_remove_group); 1705 1706 /** 1707 * devm_device_add_groups - create a bunch of managed attribute groups 1708 * @dev: The device to create the group for 1709 * @groups: The attribute groups to create, NULL terminated 1710 * 1711 * This function creates a bunch of managed attribute groups. If an error 1712 * occurs when creating a group, all previously created groups will be 1713 * removed, unwinding everything back to the original state when this 1714 * function was called. It will explicitly warn and error if any of the 1715 * attribute files being created already exist. 1716 * 1717 * Returns 0 on success or error code from sysfs_create_group on failure. 1718 */ 1719 int devm_device_add_groups(struct device *dev, 1720 const struct attribute_group **groups) 1721 { 1722 union device_attr_group_devres *devres; 1723 int error; 1724 1725 devres = devres_alloc(devm_attr_groups_remove, 1726 sizeof(*devres), GFP_KERNEL); 1727 if (!devres) 1728 return -ENOMEM; 1729 1730 error = sysfs_create_groups(&dev->kobj, groups); 1731 if (error) { 1732 devres_free(devres); 1733 return error; 1734 } 1735 1736 devres->groups = groups; 1737 devres_add(dev, devres); 1738 return 0; 1739 } 1740 EXPORT_SYMBOL_GPL(devm_device_add_groups); 1741 1742 /** 1743 * devm_device_remove_groups - remove a list of managed groups 1744 * 1745 * @dev: The device for the groups to be removed from 1746 * @groups: NULL terminated list of groups to be removed 1747 * 1748 * If groups is not NULL, remove the specified groups from the device. 1749 */ 1750 void devm_device_remove_groups(struct device *dev, 1751 const struct attribute_group **groups) 1752 { 1753 WARN_ON(devres_release(dev, devm_attr_groups_remove, 1754 devm_attr_group_match, 1755 /* cast away const */ (void *)groups)); 1756 } 1757 EXPORT_SYMBOL_GPL(devm_device_remove_groups); 1758 1759 static int device_add_attrs(struct device *dev) 1760 { 1761 struct class *class = dev->class; 1762 const struct device_type *type = dev->type; 1763 int error; 1764 1765 if (class) { 1766 error = device_add_groups(dev, class->dev_groups); 1767 if (error) 1768 return error; 1769 } 1770 1771 if (type) { 1772 error = device_add_groups(dev, type->groups); 1773 if (error) 1774 goto err_remove_class_groups; 1775 } 1776 1777 error = device_add_groups(dev, dev->groups); 1778 if (error) 1779 goto err_remove_type_groups; 1780 1781 if (device_supports_offline(dev) && !dev->offline_disabled) { 1782 error = device_create_file(dev, &dev_attr_online); 1783 if (error) 1784 goto err_remove_dev_groups; 1785 } 1786 1787 return 0; 1788 1789 err_remove_dev_groups: 1790 device_remove_groups(dev, dev->groups); 1791 err_remove_type_groups: 1792 if (type) 1793 device_remove_groups(dev, type->groups); 1794 err_remove_class_groups: 1795 if (class) 1796 device_remove_groups(dev, class->dev_groups); 1797 1798 return error; 1799 } 1800 1801 static void device_remove_attrs(struct device *dev) 1802 { 1803 struct class *class = dev->class; 1804 const struct device_type *type = dev->type; 1805 1806 device_remove_file(dev, &dev_attr_online); 1807 device_remove_groups(dev, dev->groups); 1808 1809 if (type) 1810 device_remove_groups(dev, type->groups); 1811 1812 if (class) 1813 device_remove_groups(dev, class->dev_groups); 1814 } 1815 1816 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 1817 char *buf) 1818 { 1819 return print_dev_t(buf, dev->devt); 1820 } 1821 static DEVICE_ATTR_RO(dev); 1822 1823 /* /sys/devices/ */ 1824 struct kset *devices_kset; 1825 1826 /** 1827 * devices_kset_move_before - Move device in the devices_kset's list. 1828 * @deva: Device to move. 1829 * @devb: Device @deva should come before. 1830 */ 1831 static void devices_kset_move_before(struct device *deva, struct device *devb) 1832 { 1833 if (!devices_kset) 1834 return; 1835 pr_debug("devices_kset: Moving %s before %s\n", 1836 dev_name(deva), dev_name(devb)); 1837 spin_lock(&devices_kset->list_lock); 1838 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 1839 spin_unlock(&devices_kset->list_lock); 1840 } 1841 1842 /** 1843 * devices_kset_move_after - Move device in the devices_kset's list. 1844 * @deva: Device to move 1845 * @devb: Device @deva should come after. 1846 */ 1847 static void devices_kset_move_after(struct device *deva, struct device *devb) 1848 { 1849 if (!devices_kset) 1850 return; 1851 pr_debug("devices_kset: Moving %s after %s\n", 1852 dev_name(deva), dev_name(devb)); 1853 spin_lock(&devices_kset->list_lock); 1854 list_move(&deva->kobj.entry, &devb->kobj.entry); 1855 spin_unlock(&devices_kset->list_lock); 1856 } 1857 1858 /** 1859 * devices_kset_move_last - move the device to the end of devices_kset's list. 1860 * @dev: device to move 1861 */ 1862 void devices_kset_move_last(struct device *dev) 1863 { 1864 if (!devices_kset) 1865 return; 1866 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 1867 spin_lock(&devices_kset->list_lock); 1868 list_move_tail(&dev->kobj.entry, &devices_kset->list); 1869 spin_unlock(&devices_kset->list_lock); 1870 } 1871 1872 /** 1873 * device_create_file - create sysfs attribute file for device. 1874 * @dev: device. 1875 * @attr: device attribute descriptor. 1876 */ 1877 int device_create_file(struct device *dev, 1878 const struct device_attribute *attr) 1879 { 1880 int error = 0; 1881 1882 if (dev) { 1883 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 1884 "Attribute %s: write permission without 'store'\n", 1885 attr->attr.name); 1886 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 1887 "Attribute %s: read permission without 'show'\n", 1888 attr->attr.name); 1889 error = sysfs_create_file(&dev->kobj, &attr->attr); 1890 } 1891 1892 return error; 1893 } 1894 EXPORT_SYMBOL_GPL(device_create_file); 1895 1896 /** 1897 * device_remove_file - remove sysfs attribute file. 1898 * @dev: device. 1899 * @attr: device attribute descriptor. 1900 */ 1901 void device_remove_file(struct device *dev, 1902 const struct device_attribute *attr) 1903 { 1904 if (dev) 1905 sysfs_remove_file(&dev->kobj, &attr->attr); 1906 } 1907 EXPORT_SYMBOL_GPL(device_remove_file); 1908 1909 /** 1910 * device_remove_file_self - remove sysfs attribute file from its own method. 1911 * @dev: device. 1912 * @attr: device attribute descriptor. 1913 * 1914 * See kernfs_remove_self() for details. 1915 */ 1916 bool device_remove_file_self(struct device *dev, 1917 const struct device_attribute *attr) 1918 { 1919 if (dev) 1920 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 1921 else 1922 return false; 1923 } 1924 EXPORT_SYMBOL_GPL(device_remove_file_self); 1925 1926 /** 1927 * device_create_bin_file - create sysfs binary attribute file for device. 1928 * @dev: device. 1929 * @attr: device binary attribute descriptor. 1930 */ 1931 int device_create_bin_file(struct device *dev, 1932 const struct bin_attribute *attr) 1933 { 1934 int error = -EINVAL; 1935 if (dev) 1936 error = sysfs_create_bin_file(&dev->kobj, attr); 1937 return error; 1938 } 1939 EXPORT_SYMBOL_GPL(device_create_bin_file); 1940 1941 /** 1942 * device_remove_bin_file - remove sysfs binary attribute file 1943 * @dev: device. 1944 * @attr: device binary attribute descriptor. 1945 */ 1946 void device_remove_bin_file(struct device *dev, 1947 const struct bin_attribute *attr) 1948 { 1949 if (dev) 1950 sysfs_remove_bin_file(&dev->kobj, attr); 1951 } 1952 EXPORT_SYMBOL_GPL(device_remove_bin_file); 1953 1954 static void klist_children_get(struct klist_node *n) 1955 { 1956 struct device_private *p = to_device_private_parent(n); 1957 struct device *dev = p->device; 1958 1959 get_device(dev); 1960 } 1961 1962 static void klist_children_put(struct klist_node *n) 1963 { 1964 struct device_private *p = to_device_private_parent(n); 1965 struct device *dev = p->device; 1966 1967 put_device(dev); 1968 } 1969 1970 /** 1971 * device_initialize - init device structure. 1972 * @dev: device. 1973 * 1974 * This prepares the device for use by other layers by initializing 1975 * its fields. 1976 * It is the first half of device_register(), if called by 1977 * that function, though it can also be called separately, so one 1978 * may use @dev's fields. In particular, get_device()/put_device() 1979 * may be used for reference counting of @dev after calling this 1980 * function. 1981 * 1982 * All fields in @dev must be initialized by the caller to 0, except 1983 * for those explicitly set to some other value. The simplest 1984 * approach is to use kzalloc() to allocate the structure containing 1985 * @dev. 1986 * 1987 * NOTE: Use put_device() to give up your reference instead of freeing 1988 * @dev directly once you have called this function. 1989 */ 1990 void device_initialize(struct device *dev) 1991 { 1992 dev->kobj.kset = devices_kset; 1993 kobject_init(&dev->kobj, &device_ktype); 1994 INIT_LIST_HEAD(&dev->dma_pools); 1995 mutex_init(&dev->mutex); 1996 #ifdef CONFIG_PROVE_LOCKING 1997 mutex_init(&dev->lockdep_mutex); 1998 #endif 1999 lockdep_set_novalidate_class(&dev->mutex); 2000 spin_lock_init(&dev->devres_lock); 2001 INIT_LIST_HEAD(&dev->devres_head); 2002 device_pm_init(dev); 2003 set_dev_node(dev, -1); 2004 #ifdef CONFIG_GENERIC_MSI_IRQ 2005 INIT_LIST_HEAD(&dev->msi_list); 2006 #endif 2007 INIT_LIST_HEAD(&dev->links.consumers); 2008 INIT_LIST_HEAD(&dev->links.suppliers); 2009 INIT_LIST_HEAD(&dev->links.needs_suppliers); 2010 INIT_LIST_HEAD(&dev->links.defer_sync); 2011 dev->links.status = DL_DEV_NO_DRIVER; 2012 } 2013 EXPORT_SYMBOL_GPL(device_initialize); 2014 2015 struct kobject *virtual_device_parent(struct device *dev) 2016 { 2017 static struct kobject *virtual_dir = NULL; 2018 2019 if (!virtual_dir) 2020 virtual_dir = kobject_create_and_add("virtual", 2021 &devices_kset->kobj); 2022 2023 return virtual_dir; 2024 } 2025 2026 struct class_dir { 2027 struct kobject kobj; 2028 struct class *class; 2029 }; 2030 2031 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 2032 2033 static void class_dir_release(struct kobject *kobj) 2034 { 2035 struct class_dir *dir = to_class_dir(kobj); 2036 kfree(dir); 2037 } 2038 2039 static const 2040 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj) 2041 { 2042 struct class_dir *dir = to_class_dir(kobj); 2043 return dir->class->ns_type; 2044 } 2045 2046 static struct kobj_type class_dir_ktype = { 2047 .release = class_dir_release, 2048 .sysfs_ops = &kobj_sysfs_ops, 2049 .child_ns_type = class_dir_child_ns_type 2050 }; 2051 2052 static struct kobject * 2053 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj) 2054 { 2055 struct class_dir *dir; 2056 int retval; 2057 2058 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 2059 if (!dir) 2060 return ERR_PTR(-ENOMEM); 2061 2062 dir->class = class; 2063 kobject_init(&dir->kobj, &class_dir_ktype); 2064 2065 dir->kobj.kset = &class->p->glue_dirs; 2066 2067 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name); 2068 if (retval < 0) { 2069 kobject_put(&dir->kobj); 2070 return ERR_PTR(retval); 2071 } 2072 return &dir->kobj; 2073 } 2074 2075 static DEFINE_MUTEX(gdp_mutex); 2076 2077 static struct kobject *get_device_parent(struct device *dev, 2078 struct device *parent) 2079 { 2080 if (dev->class) { 2081 struct kobject *kobj = NULL; 2082 struct kobject *parent_kobj; 2083 struct kobject *k; 2084 2085 #ifdef CONFIG_BLOCK 2086 /* block disks show up in /sys/block */ 2087 if (sysfs_deprecated && dev->class == &block_class) { 2088 if (parent && parent->class == &block_class) 2089 return &parent->kobj; 2090 return &block_class.p->subsys.kobj; 2091 } 2092 #endif 2093 2094 /* 2095 * If we have no parent, we live in "virtual". 2096 * Class-devices with a non class-device as parent, live 2097 * in a "glue" directory to prevent namespace collisions. 2098 */ 2099 if (parent == NULL) 2100 parent_kobj = virtual_device_parent(dev); 2101 else if (parent->class && !dev->class->ns_type) 2102 return &parent->kobj; 2103 else 2104 parent_kobj = &parent->kobj; 2105 2106 mutex_lock(&gdp_mutex); 2107 2108 /* find our class-directory at the parent and reference it */ 2109 spin_lock(&dev->class->p->glue_dirs.list_lock); 2110 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry) 2111 if (k->parent == parent_kobj) { 2112 kobj = kobject_get(k); 2113 break; 2114 } 2115 spin_unlock(&dev->class->p->glue_dirs.list_lock); 2116 if (kobj) { 2117 mutex_unlock(&gdp_mutex); 2118 return kobj; 2119 } 2120 2121 /* or create a new class-directory at the parent device */ 2122 k = class_dir_create_and_add(dev->class, parent_kobj); 2123 /* do not emit an uevent for this simple "glue" directory */ 2124 mutex_unlock(&gdp_mutex); 2125 return k; 2126 } 2127 2128 /* subsystems can specify a default root directory for their devices */ 2129 if (!parent && dev->bus && dev->bus->dev_root) 2130 return &dev->bus->dev_root->kobj; 2131 2132 if (parent) 2133 return &parent->kobj; 2134 return NULL; 2135 } 2136 2137 static inline bool live_in_glue_dir(struct kobject *kobj, 2138 struct device *dev) 2139 { 2140 if (!kobj || !dev->class || 2141 kobj->kset != &dev->class->p->glue_dirs) 2142 return false; 2143 return true; 2144 } 2145 2146 static inline struct kobject *get_glue_dir(struct device *dev) 2147 { 2148 return dev->kobj.parent; 2149 } 2150 2151 /* 2152 * make sure cleaning up dir as the last step, we need to make 2153 * sure .release handler of kobject is run with holding the 2154 * global lock 2155 */ 2156 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 2157 { 2158 unsigned int ref; 2159 2160 /* see if we live in a "glue" directory */ 2161 if (!live_in_glue_dir(glue_dir, dev)) 2162 return; 2163 2164 mutex_lock(&gdp_mutex); 2165 /** 2166 * There is a race condition between removing glue directory 2167 * and adding a new device under the glue directory. 2168 * 2169 * CPU1: CPU2: 2170 * 2171 * device_add() 2172 * get_device_parent() 2173 * class_dir_create_and_add() 2174 * kobject_add_internal() 2175 * create_dir() // create glue_dir 2176 * 2177 * device_add() 2178 * get_device_parent() 2179 * kobject_get() // get glue_dir 2180 * 2181 * device_del() 2182 * cleanup_glue_dir() 2183 * kobject_del(glue_dir) 2184 * 2185 * kobject_add() 2186 * kobject_add_internal() 2187 * create_dir() // in glue_dir 2188 * sysfs_create_dir_ns() 2189 * kernfs_create_dir_ns(sd) 2190 * 2191 * sysfs_remove_dir() // glue_dir->sd=NULL 2192 * sysfs_put() // free glue_dir->sd 2193 * 2194 * // sd is freed 2195 * kernfs_new_node(sd) 2196 * kernfs_get(glue_dir) 2197 * kernfs_add_one() 2198 * kernfs_put() 2199 * 2200 * Before CPU1 remove last child device under glue dir, if CPU2 add 2201 * a new device under glue dir, the glue_dir kobject reference count 2202 * will be increase to 2 in kobject_get(k). And CPU2 has been called 2203 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir() 2204 * and sysfs_put(). This result in glue_dir->sd is freed. 2205 * 2206 * Then the CPU2 will see a stale "empty" but still potentially used 2207 * glue dir around in kernfs_new_node(). 2208 * 2209 * In order to avoid this happening, we also should make sure that 2210 * kernfs_node for glue_dir is released in CPU1 only when refcount 2211 * for glue_dir kobj is 1. 2212 */ 2213 ref = kref_read(&glue_dir->kref); 2214 if (!kobject_has_children(glue_dir) && !--ref) 2215 kobject_del(glue_dir); 2216 kobject_put(glue_dir); 2217 mutex_unlock(&gdp_mutex); 2218 } 2219 2220 static int device_add_class_symlinks(struct device *dev) 2221 { 2222 struct device_node *of_node = dev_of_node(dev); 2223 int error; 2224 2225 if (of_node) { 2226 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 2227 if (error) 2228 dev_warn(dev, "Error %d creating of_node link\n",error); 2229 /* An error here doesn't warrant bringing down the device */ 2230 } 2231 2232 if (!dev->class) 2233 return 0; 2234 2235 error = sysfs_create_link(&dev->kobj, 2236 &dev->class->p->subsys.kobj, 2237 "subsystem"); 2238 if (error) 2239 goto out_devnode; 2240 2241 if (dev->parent && device_is_not_partition(dev)) { 2242 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 2243 "device"); 2244 if (error) 2245 goto out_subsys; 2246 } 2247 2248 #ifdef CONFIG_BLOCK 2249 /* /sys/block has directories and does not need symlinks */ 2250 if (sysfs_deprecated && dev->class == &block_class) 2251 return 0; 2252 #endif 2253 2254 /* link in the class directory pointing to the device */ 2255 error = sysfs_create_link(&dev->class->p->subsys.kobj, 2256 &dev->kobj, dev_name(dev)); 2257 if (error) 2258 goto out_device; 2259 2260 return 0; 2261 2262 out_device: 2263 sysfs_remove_link(&dev->kobj, "device"); 2264 2265 out_subsys: 2266 sysfs_remove_link(&dev->kobj, "subsystem"); 2267 out_devnode: 2268 sysfs_remove_link(&dev->kobj, "of_node"); 2269 return error; 2270 } 2271 2272 static void device_remove_class_symlinks(struct device *dev) 2273 { 2274 if (dev_of_node(dev)) 2275 sysfs_remove_link(&dev->kobj, "of_node"); 2276 2277 if (!dev->class) 2278 return; 2279 2280 if (dev->parent && device_is_not_partition(dev)) 2281 sysfs_remove_link(&dev->kobj, "device"); 2282 sysfs_remove_link(&dev->kobj, "subsystem"); 2283 #ifdef CONFIG_BLOCK 2284 if (sysfs_deprecated && dev->class == &block_class) 2285 return; 2286 #endif 2287 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev)); 2288 } 2289 2290 /** 2291 * dev_set_name - set a device name 2292 * @dev: device 2293 * @fmt: format string for the device's name 2294 */ 2295 int dev_set_name(struct device *dev, const char *fmt, ...) 2296 { 2297 va_list vargs; 2298 int err; 2299 2300 va_start(vargs, fmt); 2301 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 2302 va_end(vargs); 2303 return err; 2304 } 2305 EXPORT_SYMBOL_GPL(dev_set_name); 2306 2307 /** 2308 * device_to_dev_kobj - select a /sys/dev/ directory for the device 2309 * @dev: device 2310 * 2311 * By default we select char/ for new entries. Setting class->dev_obj 2312 * to NULL prevents an entry from being created. class->dev_kobj must 2313 * be set (or cleared) before any devices are registered to the class 2314 * otherwise device_create_sys_dev_entry() and 2315 * device_remove_sys_dev_entry() will disagree about the presence of 2316 * the link. 2317 */ 2318 static struct kobject *device_to_dev_kobj(struct device *dev) 2319 { 2320 struct kobject *kobj; 2321 2322 if (dev->class) 2323 kobj = dev->class->dev_kobj; 2324 else 2325 kobj = sysfs_dev_char_kobj; 2326 2327 return kobj; 2328 } 2329 2330 static int device_create_sys_dev_entry(struct device *dev) 2331 { 2332 struct kobject *kobj = device_to_dev_kobj(dev); 2333 int error = 0; 2334 char devt_str[15]; 2335 2336 if (kobj) { 2337 format_dev_t(devt_str, dev->devt); 2338 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 2339 } 2340 2341 return error; 2342 } 2343 2344 static void device_remove_sys_dev_entry(struct device *dev) 2345 { 2346 struct kobject *kobj = device_to_dev_kobj(dev); 2347 char devt_str[15]; 2348 2349 if (kobj) { 2350 format_dev_t(devt_str, dev->devt); 2351 sysfs_remove_link(kobj, devt_str); 2352 } 2353 } 2354 2355 static int device_private_init(struct device *dev) 2356 { 2357 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 2358 if (!dev->p) 2359 return -ENOMEM; 2360 dev->p->device = dev; 2361 klist_init(&dev->p->klist_children, klist_children_get, 2362 klist_children_put); 2363 INIT_LIST_HEAD(&dev->p->deferred_probe); 2364 return 0; 2365 } 2366 2367 static u32 fw_devlink_flags; 2368 static int __init fw_devlink_setup(char *arg) 2369 { 2370 if (!arg) 2371 return -EINVAL; 2372 2373 if (strcmp(arg, "off") == 0) { 2374 fw_devlink_flags = 0; 2375 } else if (strcmp(arg, "permissive") == 0) { 2376 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY; 2377 } else if (strcmp(arg, "on") == 0) { 2378 fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER; 2379 } else if (strcmp(arg, "rpm") == 0) { 2380 fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER | 2381 DL_FLAG_PM_RUNTIME; 2382 } 2383 return 0; 2384 } 2385 early_param("fw_devlink", fw_devlink_setup); 2386 2387 u32 fw_devlink_get_flags(void) 2388 { 2389 return fw_devlink_flags; 2390 } 2391 2392 static bool fw_devlink_is_permissive(void) 2393 { 2394 return fw_devlink_flags == DL_FLAG_SYNC_STATE_ONLY; 2395 } 2396 2397 /** 2398 * device_add - add device to device hierarchy. 2399 * @dev: device. 2400 * 2401 * This is part 2 of device_register(), though may be called 2402 * separately _iff_ device_initialize() has been called separately. 2403 * 2404 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 2405 * to the global and sibling lists for the device, then 2406 * adds it to the other relevant subsystems of the driver model. 2407 * 2408 * Do not call this routine or device_register() more than once for 2409 * any device structure. The driver model core is not designed to work 2410 * with devices that get unregistered and then spring back to life. 2411 * (Among other things, it's very hard to guarantee that all references 2412 * to the previous incarnation of @dev have been dropped.) Allocate 2413 * and register a fresh new struct device instead. 2414 * 2415 * NOTE: _Never_ directly free @dev after calling this function, even 2416 * if it returned an error! Always use put_device() to give up your 2417 * reference instead. 2418 * 2419 * Rule of thumb is: if device_add() succeeds, you should call 2420 * device_del() when you want to get rid of it. If device_add() has 2421 * *not* succeeded, use *only* put_device() to drop the reference 2422 * count. 2423 */ 2424 int device_add(struct device *dev) 2425 { 2426 struct device *parent; 2427 struct kobject *kobj; 2428 struct class_interface *class_intf; 2429 int error = -EINVAL, fw_ret; 2430 struct kobject *glue_dir = NULL; 2431 bool is_fwnode_dev = false; 2432 2433 dev = get_device(dev); 2434 if (!dev) 2435 goto done; 2436 2437 if (!dev->p) { 2438 error = device_private_init(dev); 2439 if (error) 2440 goto done; 2441 } 2442 2443 /* 2444 * for statically allocated devices, which should all be converted 2445 * some day, we need to initialize the name. We prevent reading back 2446 * the name, and force the use of dev_name() 2447 */ 2448 if (dev->init_name) { 2449 dev_set_name(dev, "%s", dev->init_name); 2450 dev->init_name = NULL; 2451 } 2452 2453 /* subsystems can specify simple device enumeration */ 2454 if (!dev_name(dev) && dev->bus && dev->bus->dev_name) 2455 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 2456 2457 if (!dev_name(dev)) { 2458 error = -EINVAL; 2459 goto name_error; 2460 } 2461 2462 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 2463 2464 parent = get_device(dev->parent); 2465 kobj = get_device_parent(dev, parent); 2466 if (IS_ERR(kobj)) { 2467 error = PTR_ERR(kobj); 2468 goto parent_error; 2469 } 2470 if (kobj) 2471 dev->kobj.parent = kobj; 2472 2473 /* use parent numa_node */ 2474 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 2475 set_dev_node(dev, dev_to_node(parent)); 2476 2477 /* first, register with generic layer. */ 2478 /* we require the name to be set before, and pass NULL */ 2479 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 2480 if (error) { 2481 glue_dir = get_glue_dir(dev); 2482 goto Error; 2483 } 2484 2485 /* notify platform of device entry */ 2486 error = device_platform_notify(dev, KOBJ_ADD); 2487 if (error) 2488 goto platform_error; 2489 2490 error = device_create_file(dev, &dev_attr_uevent); 2491 if (error) 2492 goto attrError; 2493 2494 error = device_add_class_symlinks(dev); 2495 if (error) 2496 goto SymlinkError; 2497 error = device_add_attrs(dev); 2498 if (error) 2499 goto AttrsError; 2500 error = bus_add_device(dev); 2501 if (error) 2502 goto BusError; 2503 error = dpm_sysfs_add(dev); 2504 if (error) 2505 goto DPMError; 2506 device_pm_add(dev); 2507 2508 if (MAJOR(dev->devt)) { 2509 error = device_create_file(dev, &dev_attr_dev); 2510 if (error) 2511 goto DevAttrError; 2512 2513 error = device_create_sys_dev_entry(dev); 2514 if (error) 2515 goto SysEntryError; 2516 2517 devtmpfs_create_node(dev); 2518 } 2519 2520 /* Notify clients of device addition. This call must come 2521 * after dpm_sysfs_add() and before kobject_uevent(). 2522 */ 2523 if (dev->bus) 2524 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 2525 BUS_NOTIFY_ADD_DEVICE, dev); 2526 2527 kobject_uevent(&dev->kobj, KOBJ_ADD); 2528 2529 if (dev->fwnode && !dev->fwnode->dev) { 2530 dev->fwnode->dev = dev; 2531 is_fwnode_dev = true; 2532 } 2533 2534 /* 2535 * Check if any of the other devices (consumers) have been waiting for 2536 * this device (supplier) to be added so that they can create a device 2537 * link to it. 2538 * 2539 * This needs to happen after device_pm_add() because device_link_add() 2540 * requires the supplier be registered before it's called. 2541 * 2542 * But this also needs to happe before bus_probe_device() to make sure 2543 * waiting consumers can link to it before the driver is bound to the 2544 * device and the driver sync_state callback is called for this device. 2545 */ 2546 device_link_add_missing_supplier_links(); 2547 2548 if (fw_devlink_flags && is_fwnode_dev && 2549 fwnode_has_op(dev->fwnode, add_links)) { 2550 fw_ret = fwnode_call_int_op(dev->fwnode, add_links, dev); 2551 if (fw_ret == -ENODEV && !fw_devlink_is_permissive()) 2552 device_link_wait_for_mandatory_supplier(dev); 2553 else if (fw_ret) 2554 device_link_wait_for_optional_supplier(dev); 2555 } 2556 2557 bus_probe_device(dev); 2558 if (parent) 2559 klist_add_tail(&dev->p->knode_parent, 2560 &parent->p->klist_children); 2561 2562 if (dev->class) { 2563 mutex_lock(&dev->class->p->mutex); 2564 /* tie the class to the device */ 2565 klist_add_tail(&dev->p->knode_class, 2566 &dev->class->p->klist_devices); 2567 2568 /* notify any interfaces that the device is here */ 2569 list_for_each_entry(class_intf, 2570 &dev->class->p->interfaces, node) 2571 if (class_intf->add_dev) 2572 class_intf->add_dev(dev, class_intf); 2573 mutex_unlock(&dev->class->p->mutex); 2574 } 2575 done: 2576 put_device(dev); 2577 return error; 2578 SysEntryError: 2579 if (MAJOR(dev->devt)) 2580 device_remove_file(dev, &dev_attr_dev); 2581 DevAttrError: 2582 device_pm_remove(dev); 2583 dpm_sysfs_remove(dev); 2584 DPMError: 2585 bus_remove_device(dev); 2586 BusError: 2587 device_remove_attrs(dev); 2588 AttrsError: 2589 device_remove_class_symlinks(dev); 2590 SymlinkError: 2591 device_remove_file(dev, &dev_attr_uevent); 2592 attrError: 2593 device_platform_notify(dev, KOBJ_REMOVE); 2594 platform_error: 2595 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 2596 glue_dir = get_glue_dir(dev); 2597 kobject_del(&dev->kobj); 2598 Error: 2599 cleanup_glue_dir(dev, glue_dir); 2600 parent_error: 2601 put_device(parent); 2602 name_error: 2603 kfree(dev->p); 2604 dev->p = NULL; 2605 goto done; 2606 } 2607 EXPORT_SYMBOL_GPL(device_add); 2608 2609 /** 2610 * device_register - register a device with the system. 2611 * @dev: pointer to the device structure 2612 * 2613 * This happens in two clean steps - initialize the device 2614 * and add it to the system. The two steps can be called 2615 * separately, but this is the easiest and most common. 2616 * I.e. you should only call the two helpers separately if 2617 * have a clearly defined need to use and refcount the device 2618 * before it is added to the hierarchy. 2619 * 2620 * For more information, see the kerneldoc for device_initialize() 2621 * and device_add(). 2622 * 2623 * NOTE: _Never_ directly free @dev after calling this function, even 2624 * if it returned an error! Always use put_device() to give up the 2625 * reference initialized in this function instead. 2626 */ 2627 int device_register(struct device *dev) 2628 { 2629 device_initialize(dev); 2630 return device_add(dev); 2631 } 2632 EXPORT_SYMBOL_GPL(device_register); 2633 2634 /** 2635 * get_device - increment reference count for device. 2636 * @dev: device. 2637 * 2638 * This simply forwards the call to kobject_get(), though 2639 * we do take care to provide for the case that we get a NULL 2640 * pointer passed in. 2641 */ 2642 struct device *get_device(struct device *dev) 2643 { 2644 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 2645 } 2646 EXPORT_SYMBOL_GPL(get_device); 2647 2648 /** 2649 * put_device - decrement reference count. 2650 * @dev: device in question. 2651 */ 2652 void put_device(struct device *dev) 2653 { 2654 /* might_sleep(); */ 2655 if (dev) 2656 kobject_put(&dev->kobj); 2657 } 2658 EXPORT_SYMBOL_GPL(put_device); 2659 2660 bool kill_device(struct device *dev) 2661 { 2662 /* 2663 * Require the device lock and set the "dead" flag to guarantee that 2664 * the update behavior is consistent with the other bitfields near 2665 * it and that we cannot have an asynchronous probe routine trying 2666 * to run while we are tearing out the bus/class/sysfs from 2667 * underneath the device. 2668 */ 2669 lockdep_assert_held(&dev->mutex); 2670 2671 if (dev->p->dead) 2672 return false; 2673 dev->p->dead = true; 2674 return true; 2675 } 2676 EXPORT_SYMBOL_GPL(kill_device); 2677 2678 /** 2679 * device_del - delete device from system. 2680 * @dev: device. 2681 * 2682 * This is the first part of the device unregistration 2683 * sequence. This removes the device from the lists we control 2684 * from here, has it removed from the other driver model 2685 * subsystems it was added to in device_add(), and removes it 2686 * from the kobject hierarchy. 2687 * 2688 * NOTE: this should be called manually _iff_ device_add() was 2689 * also called manually. 2690 */ 2691 void device_del(struct device *dev) 2692 { 2693 struct device *parent = dev->parent; 2694 struct kobject *glue_dir = NULL; 2695 struct class_interface *class_intf; 2696 2697 device_lock(dev); 2698 kill_device(dev); 2699 device_unlock(dev); 2700 2701 if (dev->fwnode && dev->fwnode->dev == dev) 2702 dev->fwnode->dev = NULL; 2703 2704 /* Notify clients of device removal. This call must come 2705 * before dpm_sysfs_remove(). 2706 */ 2707 if (dev->bus) 2708 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 2709 BUS_NOTIFY_DEL_DEVICE, dev); 2710 2711 dpm_sysfs_remove(dev); 2712 if (parent) 2713 klist_del(&dev->p->knode_parent); 2714 if (MAJOR(dev->devt)) { 2715 devtmpfs_delete_node(dev); 2716 device_remove_sys_dev_entry(dev); 2717 device_remove_file(dev, &dev_attr_dev); 2718 } 2719 if (dev->class) { 2720 device_remove_class_symlinks(dev); 2721 2722 mutex_lock(&dev->class->p->mutex); 2723 /* notify any interfaces that the device is now gone */ 2724 list_for_each_entry(class_intf, 2725 &dev->class->p->interfaces, node) 2726 if (class_intf->remove_dev) 2727 class_intf->remove_dev(dev, class_intf); 2728 /* remove the device from the class list */ 2729 klist_del(&dev->p->knode_class); 2730 mutex_unlock(&dev->class->p->mutex); 2731 } 2732 device_remove_file(dev, &dev_attr_uevent); 2733 device_remove_attrs(dev); 2734 bus_remove_device(dev); 2735 device_pm_remove(dev); 2736 driver_deferred_probe_del(dev); 2737 device_platform_notify(dev, KOBJ_REMOVE); 2738 device_remove_properties(dev); 2739 device_links_purge(dev); 2740 2741 if (dev->bus) 2742 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 2743 BUS_NOTIFY_REMOVED_DEVICE, dev); 2744 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 2745 glue_dir = get_glue_dir(dev); 2746 kobject_del(&dev->kobj); 2747 cleanup_glue_dir(dev, glue_dir); 2748 put_device(parent); 2749 } 2750 EXPORT_SYMBOL_GPL(device_del); 2751 2752 /** 2753 * device_unregister - unregister device from system. 2754 * @dev: device going away. 2755 * 2756 * We do this in two parts, like we do device_register(). First, 2757 * we remove it from all the subsystems with device_del(), then 2758 * we decrement the reference count via put_device(). If that 2759 * is the final reference count, the device will be cleaned up 2760 * via device_release() above. Otherwise, the structure will 2761 * stick around until the final reference to the device is dropped. 2762 */ 2763 void device_unregister(struct device *dev) 2764 { 2765 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 2766 device_del(dev); 2767 put_device(dev); 2768 } 2769 EXPORT_SYMBOL_GPL(device_unregister); 2770 2771 static struct device *prev_device(struct klist_iter *i) 2772 { 2773 struct klist_node *n = klist_prev(i); 2774 struct device *dev = NULL; 2775 struct device_private *p; 2776 2777 if (n) { 2778 p = to_device_private_parent(n); 2779 dev = p->device; 2780 } 2781 return dev; 2782 } 2783 2784 static struct device *next_device(struct klist_iter *i) 2785 { 2786 struct klist_node *n = klist_next(i); 2787 struct device *dev = NULL; 2788 struct device_private *p; 2789 2790 if (n) { 2791 p = to_device_private_parent(n); 2792 dev = p->device; 2793 } 2794 return dev; 2795 } 2796 2797 /** 2798 * device_get_devnode - path of device node file 2799 * @dev: device 2800 * @mode: returned file access mode 2801 * @uid: returned file owner 2802 * @gid: returned file group 2803 * @tmp: possibly allocated string 2804 * 2805 * Return the relative path of a possible device node. 2806 * Non-default names may need to allocate a memory to compose 2807 * a name. This memory is returned in tmp and needs to be 2808 * freed by the caller. 2809 */ 2810 const char *device_get_devnode(struct device *dev, 2811 umode_t *mode, kuid_t *uid, kgid_t *gid, 2812 const char **tmp) 2813 { 2814 char *s; 2815 2816 *tmp = NULL; 2817 2818 /* the device type may provide a specific name */ 2819 if (dev->type && dev->type->devnode) 2820 *tmp = dev->type->devnode(dev, mode, uid, gid); 2821 if (*tmp) 2822 return *tmp; 2823 2824 /* the class may provide a specific name */ 2825 if (dev->class && dev->class->devnode) 2826 *tmp = dev->class->devnode(dev, mode); 2827 if (*tmp) 2828 return *tmp; 2829 2830 /* return name without allocation, tmp == NULL */ 2831 if (strchr(dev_name(dev), '!') == NULL) 2832 return dev_name(dev); 2833 2834 /* replace '!' in the name with '/' */ 2835 s = kstrdup(dev_name(dev), GFP_KERNEL); 2836 if (!s) 2837 return NULL; 2838 strreplace(s, '!', '/'); 2839 return *tmp = s; 2840 } 2841 2842 /** 2843 * device_for_each_child - device child iterator. 2844 * @parent: parent struct device. 2845 * @fn: function to be called for each device. 2846 * @data: data for the callback. 2847 * 2848 * Iterate over @parent's child devices, and call @fn for each, 2849 * passing it @data. 2850 * 2851 * We check the return of @fn each time. If it returns anything 2852 * other than 0, we break out and return that value. 2853 */ 2854 int device_for_each_child(struct device *parent, void *data, 2855 int (*fn)(struct device *dev, void *data)) 2856 { 2857 struct klist_iter i; 2858 struct device *child; 2859 int error = 0; 2860 2861 if (!parent->p) 2862 return 0; 2863 2864 klist_iter_init(&parent->p->klist_children, &i); 2865 while (!error && (child = next_device(&i))) 2866 error = fn(child, data); 2867 klist_iter_exit(&i); 2868 return error; 2869 } 2870 EXPORT_SYMBOL_GPL(device_for_each_child); 2871 2872 /** 2873 * device_for_each_child_reverse - device child iterator in reversed order. 2874 * @parent: parent struct device. 2875 * @fn: function to be called for each device. 2876 * @data: data for the callback. 2877 * 2878 * Iterate over @parent's child devices, and call @fn for each, 2879 * passing it @data. 2880 * 2881 * We check the return of @fn each time. If it returns anything 2882 * other than 0, we break out and return that value. 2883 */ 2884 int device_for_each_child_reverse(struct device *parent, void *data, 2885 int (*fn)(struct device *dev, void *data)) 2886 { 2887 struct klist_iter i; 2888 struct device *child; 2889 int error = 0; 2890 2891 if (!parent->p) 2892 return 0; 2893 2894 klist_iter_init(&parent->p->klist_children, &i); 2895 while ((child = prev_device(&i)) && !error) 2896 error = fn(child, data); 2897 klist_iter_exit(&i); 2898 return error; 2899 } 2900 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 2901 2902 /** 2903 * device_find_child - device iterator for locating a particular device. 2904 * @parent: parent struct device 2905 * @match: Callback function to check device 2906 * @data: Data to pass to match function 2907 * 2908 * This is similar to the device_for_each_child() function above, but it 2909 * returns a reference to a device that is 'found' for later use, as 2910 * determined by the @match callback. 2911 * 2912 * The callback should return 0 if the device doesn't match and non-zero 2913 * if it does. If the callback returns non-zero and a reference to the 2914 * current device can be obtained, this function will return to the caller 2915 * and not iterate over any more devices. 2916 * 2917 * NOTE: you will need to drop the reference with put_device() after use. 2918 */ 2919 struct device *device_find_child(struct device *parent, void *data, 2920 int (*match)(struct device *dev, void *data)) 2921 { 2922 struct klist_iter i; 2923 struct device *child; 2924 2925 if (!parent) 2926 return NULL; 2927 2928 klist_iter_init(&parent->p->klist_children, &i); 2929 while ((child = next_device(&i))) 2930 if (match(child, data) && get_device(child)) 2931 break; 2932 klist_iter_exit(&i); 2933 return child; 2934 } 2935 EXPORT_SYMBOL_GPL(device_find_child); 2936 2937 /** 2938 * device_find_child_by_name - device iterator for locating a child device. 2939 * @parent: parent struct device 2940 * @name: name of the child device 2941 * 2942 * This is similar to the device_find_child() function above, but it 2943 * returns a reference to a device that has the name @name. 2944 * 2945 * NOTE: you will need to drop the reference with put_device() after use. 2946 */ 2947 struct device *device_find_child_by_name(struct device *parent, 2948 const char *name) 2949 { 2950 struct klist_iter i; 2951 struct device *child; 2952 2953 if (!parent) 2954 return NULL; 2955 2956 klist_iter_init(&parent->p->klist_children, &i); 2957 while ((child = next_device(&i))) 2958 if (!strcmp(dev_name(child), name) && get_device(child)) 2959 break; 2960 klist_iter_exit(&i); 2961 return child; 2962 } 2963 EXPORT_SYMBOL_GPL(device_find_child_by_name); 2964 2965 int __init devices_init(void) 2966 { 2967 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 2968 if (!devices_kset) 2969 return -ENOMEM; 2970 dev_kobj = kobject_create_and_add("dev", NULL); 2971 if (!dev_kobj) 2972 goto dev_kobj_err; 2973 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 2974 if (!sysfs_dev_block_kobj) 2975 goto block_kobj_err; 2976 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 2977 if (!sysfs_dev_char_kobj) 2978 goto char_kobj_err; 2979 2980 return 0; 2981 2982 char_kobj_err: 2983 kobject_put(sysfs_dev_block_kobj); 2984 block_kobj_err: 2985 kobject_put(dev_kobj); 2986 dev_kobj_err: 2987 kset_unregister(devices_kset); 2988 return -ENOMEM; 2989 } 2990 2991 static int device_check_offline(struct device *dev, void *not_used) 2992 { 2993 int ret; 2994 2995 ret = device_for_each_child(dev, NULL, device_check_offline); 2996 if (ret) 2997 return ret; 2998 2999 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 3000 } 3001 3002 /** 3003 * device_offline - Prepare the device for hot-removal. 3004 * @dev: Device to be put offline. 3005 * 3006 * Execute the device bus type's .offline() callback, if present, to prepare 3007 * the device for a subsequent hot-removal. If that succeeds, the device must 3008 * not be used until either it is removed or its bus type's .online() callback 3009 * is executed. 3010 * 3011 * Call under device_hotplug_lock. 3012 */ 3013 int device_offline(struct device *dev) 3014 { 3015 int ret; 3016 3017 if (dev->offline_disabled) 3018 return -EPERM; 3019 3020 ret = device_for_each_child(dev, NULL, device_check_offline); 3021 if (ret) 3022 return ret; 3023 3024 device_lock(dev); 3025 if (device_supports_offline(dev)) { 3026 if (dev->offline) { 3027 ret = 1; 3028 } else { 3029 ret = dev->bus->offline(dev); 3030 if (!ret) { 3031 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 3032 dev->offline = true; 3033 } 3034 } 3035 } 3036 device_unlock(dev); 3037 3038 return ret; 3039 } 3040 3041 /** 3042 * device_online - Put the device back online after successful device_offline(). 3043 * @dev: Device to be put back online. 3044 * 3045 * If device_offline() has been successfully executed for @dev, but the device 3046 * has not been removed subsequently, execute its bus type's .online() callback 3047 * to indicate that the device can be used again. 3048 * 3049 * Call under device_hotplug_lock. 3050 */ 3051 int device_online(struct device *dev) 3052 { 3053 int ret = 0; 3054 3055 device_lock(dev); 3056 if (device_supports_offline(dev)) { 3057 if (dev->offline) { 3058 ret = dev->bus->online(dev); 3059 if (!ret) { 3060 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 3061 dev->offline = false; 3062 } 3063 } else { 3064 ret = 1; 3065 } 3066 } 3067 device_unlock(dev); 3068 3069 return ret; 3070 } 3071 3072 struct root_device { 3073 struct device dev; 3074 struct module *owner; 3075 }; 3076 3077 static inline struct root_device *to_root_device(struct device *d) 3078 { 3079 return container_of(d, struct root_device, dev); 3080 } 3081 3082 static void root_device_release(struct device *dev) 3083 { 3084 kfree(to_root_device(dev)); 3085 } 3086 3087 /** 3088 * __root_device_register - allocate and register a root device 3089 * @name: root device name 3090 * @owner: owner module of the root device, usually THIS_MODULE 3091 * 3092 * This function allocates a root device and registers it 3093 * using device_register(). In order to free the returned 3094 * device, use root_device_unregister(). 3095 * 3096 * Root devices are dummy devices which allow other devices 3097 * to be grouped under /sys/devices. Use this function to 3098 * allocate a root device and then use it as the parent of 3099 * any device which should appear under /sys/devices/{name} 3100 * 3101 * The /sys/devices/{name} directory will also contain a 3102 * 'module' symlink which points to the @owner directory 3103 * in sysfs. 3104 * 3105 * Returns &struct device pointer on success, or ERR_PTR() on error. 3106 * 3107 * Note: You probably want to use root_device_register(). 3108 */ 3109 struct device *__root_device_register(const char *name, struct module *owner) 3110 { 3111 struct root_device *root; 3112 int err = -ENOMEM; 3113 3114 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 3115 if (!root) 3116 return ERR_PTR(err); 3117 3118 err = dev_set_name(&root->dev, "%s", name); 3119 if (err) { 3120 kfree(root); 3121 return ERR_PTR(err); 3122 } 3123 3124 root->dev.release = root_device_release; 3125 3126 err = device_register(&root->dev); 3127 if (err) { 3128 put_device(&root->dev); 3129 return ERR_PTR(err); 3130 } 3131 3132 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 3133 if (owner) { 3134 struct module_kobject *mk = &owner->mkobj; 3135 3136 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 3137 if (err) { 3138 device_unregister(&root->dev); 3139 return ERR_PTR(err); 3140 } 3141 root->owner = owner; 3142 } 3143 #endif 3144 3145 return &root->dev; 3146 } 3147 EXPORT_SYMBOL_GPL(__root_device_register); 3148 3149 /** 3150 * root_device_unregister - unregister and free a root device 3151 * @dev: device going away 3152 * 3153 * This function unregisters and cleans up a device that was created by 3154 * root_device_register(). 3155 */ 3156 void root_device_unregister(struct device *dev) 3157 { 3158 struct root_device *root = to_root_device(dev); 3159 3160 if (root->owner) 3161 sysfs_remove_link(&root->dev.kobj, "module"); 3162 3163 device_unregister(dev); 3164 } 3165 EXPORT_SYMBOL_GPL(root_device_unregister); 3166 3167 3168 static void device_create_release(struct device *dev) 3169 { 3170 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3171 kfree(dev); 3172 } 3173 3174 static __printf(6, 0) struct device * 3175 device_create_groups_vargs(struct class *class, struct device *parent, 3176 dev_t devt, void *drvdata, 3177 const struct attribute_group **groups, 3178 const char *fmt, va_list args) 3179 { 3180 struct device *dev = NULL; 3181 int retval = -ENODEV; 3182 3183 if (class == NULL || IS_ERR(class)) 3184 goto error; 3185 3186 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3187 if (!dev) { 3188 retval = -ENOMEM; 3189 goto error; 3190 } 3191 3192 device_initialize(dev); 3193 dev->devt = devt; 3194 dev->class = class; 3195 dev->parent = parent; 3196 dev->groups = groups; 3197 dev->release = device_create_release; 3198 dev_set_drvdata(dev, drvdata); 3199 3200 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 3201 if (retval) 3202 goto error; 3203 3204 retval = device_add(dev); 3205 if (retval) 3206 goto error; 3207 3208 return dev; 3209 3210 error: 3211 put_device(dev); 3212 return ERR_PTR(retval); 3213 } 3214 3215 /** 3216 * device_create - creates a device and registers it with sysfs 3217 * @class: pointer to the struct class that this device should be registered to 3218 * @parent: pointer to the parent struct device of this new device, if any 3219 * @devt: the dev_t for the char device to be added 3220 * @drvdata: the data to be added to the device for callbacks 3221 * @fmt: string for the device's name 3222 * 3223 * This function can be used by char device classes. A struct device 3224 * will be created in sysfs, registered to the specified class. 3225 * 3226 * A "dev" file will be created, showing the dev_t for the device, if 3227 * the dev_t is not 0,0. 3228 * If a pointer to a parent struct device is passed in, the newly created 3229 * struct device will be a child of that device in sysfs. 3230 * The pointer to the struct device will be returned from the call. 3231 * Any further sysfs files that might be required can be created using this 3232 * pointer. 3233 * 3234 * Returns &struct device pointer on success, or ERR_PTR() on error. 3235 * 3236 * Note: the struct class passed to this function must have previously 3237 * been created with a call to class_create(). 3238 */ 3239 struct device *device_create(struct class *class, struct device *parent, 3240 dev_t devt, void *drvdata, const char *fmt, ...) 3241 { 3242 va_list vargs; 3243 struct device *dev; 3244 3245 va_start(vargs, fmt); 3246 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL, 3247 fmt, vargs); 3248 va_end(vargs); 3249 return dev; 3250 } 3251 EXPORT_SYMBOL_GPL(device_create); 3252 3253 /** 3254 * device_create_with_groups - creates a device and registers it with sysfs 3255 * @class: pointer to the struct class that this device should be registered to 3256 * @parent: pointer to the parent struct device of this new device, if any 3257 * @devt: the dev_t for the char device to be added 3258 * @drvdata: the data to be added to the device for callbacks 3259 * @groups: NULL-terminated list of attribute groups to be created 3260 * @fmt: string for the device's name 3261 * 3262 * This function can be used by char device classes. A struct device 3263 * will be created in sysfs, registered to the specified class. 3264 * Additional attributes specified in the groups parameter will also 3265 * be created automatically. 3266 * 3267 * A "dev" file will be created, showing the dev_t for the device, if 3268 * the dev_t is not 0,0. 3269 * If a pointer to a parent struct device is passed in, the newly created 3270 * struct device will be a child of that device in sysfs. 3271 * The pointer to the struct device will be returned from the call. 3272 * Any further sysfs files that might be required can be created using this 3273 * pointer. 3274 * 3275 * Returns &struct device pointer on success, or ERR_PTR() on error. 3276 * 3277 * Note: the struct class passed to this function must have previously 3278 * been created with a call to class_create(). 3279 */ 3280 struct device *device_create_with_groups(struct class *class, 3281 struct device *parent, dev_t devt, 3282 void *drvdata, 3283 const struct attribute_group **groups, 3284 const char *fmt, ...) 3285 { 3286 va_list vargs; 3287 struct device *dev; 3288 3289 va_start(vargs, fmt); 3290 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 3291 fmt, vargs); 3292 va_end(vargs); 3293 return dev; 3294 } 3295 EXPORT_SYMBOL_GPL(device_create_with_groups); 3296 3297 /** 3298 * device_destroy - removes a device that was created with device_create() 3299 * @class: pointer to the struct class that this device was registered with 3300 * @devt: the dev_t of the device that was previously registered 3301 * 3302 * This call unregisters and cleans up a device that was created with a 3303 * call to device_create(). 3304 */ 3305 void device_destroy(struct class *class, dev_t devt) 3306 { 3307 struct device *dev; 3308 3309 dev = class_find_device_by_devt(class, devt); 3310 if (dev) { 3311 put_device(dev); 3312 device_unregister(dev); 3313 } 3314 } 3315 EXPORT_SYMBOL_GPL(device_destroy); 3316 3317 /** 3318 * device_rename - renames a device 3319 * @dev: the pointer to the struct device to be renamed 3320 * @new_name: the new name of the device 3321 * 3322 * It is the responsibility of the caller to provide mutual 3323 * exclusion between two different calls of device_rename 3324 * on the same device to ensure that new_name is valid and 3325 * won't conflict with other devices. 3326 * 3327 * Note: Don't call this function. Currently, the networking layer calls this 3328 * function, but that will change. The following text from Kay Sievers offers 3329 * some insight: 3330 * 3331 * Renaming devices is racy at many levels, symlinks and other stuff are not 3332 * replaced atomically, and you get a "move" uevent, but it's not easy to 3333 * connect the event to the old and new device. Device nodes are not renamed at 3334 * all, there isn't even support for that in the kernel now. 3335 * 3336 * In the meantime, during renaming, your target name might be taken by another 3337 * driver, creating conflicts. Or the old name is taken directly after you 3338 * renamed it -- then you get events for the same DEVPATH, before you even see 3339 * the "move" event. It's just a mess, and nothing new should ever rely on 3340 * kernel device renaming. Besides that, it's not even implemented now for 3341 * other things than (driver-core wise very simple) network devices. 3342 * 3343 * We are currently about to change network renaming in udev to completely 3344 * disallow renaming of devices in the same namespace as the kernel uses, 3345 * because we can't solve the problems properly, that arise with swapping names 3346 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only 3347 * be allowed to some other name than eth[0-9]*, for the aforementioned 3348 * reasons. 3349 * 3350 * Make up a "real" name in the driver before you register anything, or add 3351 * some other attributes for userspace to find the device, or use udev to add 3352 * symlinks -- but never rename kernel devices later, it's a complete mess. We 3353 * don't even want to get into that and try to implement the missing pieces in 3354 * the core. We really have other pieces to fix in the driver core mess. :) 3355 */ 3356 int device_rename(struct device *dev, const char *new_name) 3357 { 3358 struct kobject *kobj = &dev->kobj; 3359 char *old_device_name = NULL; 3360 int error; 3361 3362 dev = get_device(dev); 3363 if (!dev) 3364 return -EINVAL; 3365 3366 dev_dbg(dev, "renaming to %s\n", new_name); 3367 3368 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 3369 if (!old_device_name) { 3370 error = -ENOMEM; 3371 goto out; 3372 } 3373 3374 if (dev->class) { 3375 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj, 3376 kobj, old_device_name, 3377 new_name, kobject_namespace(kobj)); 3378 if (error) 3379 goto out; 3380 } 3381 3382 error = kobject_rename(kobj, new_name); 3383 if (error) 3384 goto out; 3385 3386 out: 3387 put_device(dev); 3388 3389 kfree(old_device_name); 3390 3391 return error; 3392 } 3393 EXPORT_SYMBOL_GPL(device_rename); 3394 3395 static int device_move_class_links(struct device *dev, 3396 struct device *old_parent, 3397 struct device *new_parent) 3398 { 3399 int error = 0; 3400 3401 if (old_parent) 3402 sysfs_remove_link(&dev->kobj, "device"); 3403 if (new_parent) 3404 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 3405 "device"); 3406 return error; 3407 } 3408 3409 /** 3410 * device_move - moves a device to a new parent 3411 * @dev: the pointer to the struct device to be moved 3412 * @new_parent: the new parent of the device (can be NULL) 3413 * @dpm_order: how to reorder the dpm_list 3414 */ 3415 int device_move(struct device *dev, struct device *new_parent, 3416 enum dpm_order dpm_order) 3417 { 3418 int error; 3419 struct device *old_parent; 3420 struct kobject *new_parent_kobj; 3421 3422 dev = get_device(dev); 3423 if (!dev) 3424 return -EINVAL; 3425 3426 device_pm_lock(); 3427 new_parent = get_device(new_parent); 3428 new_parent_kobj = get_device_parent(dev, new_parent); 3429 if (IS_ERR(new_parent_kobj)) { 3430 error = PTR_ERR(new_parent_kobj); 3431 put_device(new_parent); 3432 goto out; 3433 } 3434 3435 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 3436 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 3437 error = kobject_move(&dev->kobj, new_parent_kobj); 3438 if (error) { 3439 cleanup_glue_dir(dev, new_parent_kobj); 3440 put_device(new_parent); 3441 goto out; 3442 } 3443 old_parent = dev->parent; 3444 dev->parent = new_parent; 3445 if (old_parent) 3446 klist_remove(&dev->p->knode_parent); 3447 if (new_parent) { 3448 klist_add_tail(&dev->p->knode_parent, 3449 &new_parent->p->klist_children); 3450 set_dev_node(dev, dev_to_node(new_parent)); 3451 } 3452 3453 if (dev->class) { 3454 error = device_move_class_links(dev, old_parent, new_parent); 3455 if (error) { 3456 /* We ignore errors on cleanup since we're hosed anyway... */ 3457 device_move_class_links(dev, new_parent, old_parent); 3458 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 3459 if (new_parent) 3460 klist_remove(&dev->p->knode_parent); 3461 dev->parent = old_parent; 3462 if (old_parent) { 3463 klist_add_tail(&dev->p->knode_parent, 3464 &old_parent->p->klist_children); 3465 set_dev_node(dev, dev_to_node(old_parent)); 3466 } 3467 } 3468 cleanup_glue_dir(dev, new_parent_kobj); 3469 put_device(new_parent); 3470 goto out; 3471 } 3472 } 3473 switch (dpm_order) { 3474 case DPM_ORDER_NONE: 3475 break; 3476 case DPM_ORDER_DEV_AFTER_PARENT: 3477 device_pm_move_after(dev, new_parent); 3478 devices_kset_move_after(dev, new_parent); 3479 break; 3480 case DPM_ORDER_PARENT_BEFORE_DEV: 3481 device_pm_move_before(new_parent, dev); 3482 devices_kset_move_before(new_parent, dev); 3483 break; 3484 case DPM_ORDER_DEV_LAST: 3485 device_pm_move_last(dev); 3486 devices_kset_move_last(dev); 3487 break; 3488 } 3489 3490 put_device(old_parent); 3491 out: 3492 device_pm_unlock(); 3493 put_device(dev); 3494 return error; 3495 } 3496 EXPORT_SYMBOL_GPL(device_move); 3497 3498 static int device_attrs_change_owner(struct device *dev, kuid_t kuid, 3499 kgid_t kgid) 3500 { 3501 struct kobject *kobj = &dev->kobj; 3502 struct class *class = dev->class; 3503 const struct device_type *type = dev->type; 3504 int error; 3505 3506 if (class) { 3507 /* 3508 * Change the device groups of the device class for @dev to 3509 * @kuid/@kgid. 3510 */ 3511 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid, 3512 kgid); 3513 if (error) 3514 return error; 3515 } 3516 3517 if (type) { 3518 /* 3519 * Change the device groups of the device type for @dev to 3520 * @kuid/@kgid. 3521 */ 3522 error = sysfs_groups_change_owner(kobj, type->groups, kuid, 3523 kgid); 3524 if (error) 3525 return error; 3526 } 3527 3528 /* Change the device groups of @dev to @kuid/@kgid. */ 3529 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid); 3530 if (error) 3531 return error; 3532 3533 if (device_supports_offline(dev) && !dev->offline_disabled) { 3534 /* Change online device attributes of @dev to @kuid/@kgid. */ 3535 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name, 3536 kuid, kgid); 3537 if (error) 3538 return error; 3539 } 3540 3541 return 0; 3542 } 3543 3544 /** 3545 * device_change_owner - change the owner of an existing device. 3546 * @dev: device. 3547 * @kuid: new owner's kuid 3548 * @kgid: new owner's kgid 3549 * 3550 * This changes the owner of @dev and its corresponding sysfs entries to 3551 * @kuid/@kgid. This function closely mirrors how @dev was added via driver 3552 * core. 3553 * 3554 * Returns 0 on success or error code on failure. 3555 */ 3556 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid) 3557 { 3558 int error; 3559 struct kobject *kobj = &dev->kobj; 3560 3561 dev = get_device(dev); 3562 if (!dev) 3563 return -EINVAL; 3564 3565 /* 3566 * Change the kobject and the default attributes and groups of the 3567 * ktype associated with it to @kuid/@kgid. 3568 */ 3569 error = sysfs_change_owner(kobj, kuid, kgid); 3570 if (error) 3571 goto out; 3572 3573 /* 3574 * Change the uevent file for @dev to the new owner. The uevent file 3575 * was created in a separate step when @dev got added and we mirror 3576 * that step here. 3577 */ 3578 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid, 3579 kgid); 3580 if (error) 3581 goto out; 3582 3583 /* 3584 * Change the device groups, the device groups associated with the 3585 * device class, and the groups associated with the device type of @dev 3586 * to @kuid/@kgid. 3587 */ 3588 error = device_attrs_change_owner(dev, kuid, kgid); 3589 if (error) 3590 goto out; 3591 3592 error = dpm_sysfs_change_owner(dev, kuid, kgid); 3593 if (error) 3594 goto out; 3595 3596 #ifdef CONFIG_BLOCK 3597 if (sysfs_deprecated && dev->class == &block_class) 3598 goto out; 3599 #endif 3600 3601 /* 3602 * Change the owner of the symlink located in the class directory of 3603 * the device class associated with @dev which points to the actual 3604 * directory entry for @dev to @kuid/@kgid. This ensures that the 3605 * symlink shows the same permissions as its target. 3606 */ 3607 error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj, 3608 dev_name(dev), kuid, kgid); 3609 if (error) 3610 goto out; 3611 3612 out: 3613 put_device(dev); 3614 return error; 3615 } 3616 EXPORT_SYMBOL_GPL(device_change_owner); 3617 3618 /** 3619 * device_shutdown - call ->shutdown() on each device to shutdown. 3620 */ 3621 void device_shutdown(void) 3622 { 3623 struct device *dev, *parent; 3624 3625 wait_for_device_probe(); 3626 device_block_probing(); 3627 3628 cpufreq_suspend(); 3629 3630 spin_lock(&devices_kset->list_lock); 3631 /* 3632 * Walk the devices list backward, shutting down each in turn. 3633 * Beware that device unplug events may also start pulling 3634 * devices offline, even as the system is shutting down. 3635 */ 3636 while (!list_empty(&devices_kset->list)) { 3637 dev = list_entry(devices_kset->list.prev, struct device, 3638 kobj.entry); 3639 3640 /* 3641 * hold reference count of device's parent to 3642 * prevent it from being freed because parent's 3643 * lock is to be held 3644 */ 3645 parent = get_device(dev->parent); 3646 get_device(dev); 3647 /* 3648 * Make sure the device is off the kset list, in the 3649 * event that dev->*->shutdown() doesn't remove it. 3650 */ 3651 list_del_init(&dev->kobj.entry); 3652 spin_unlock(&devices_kset->list_lock); 3653 3654 /* hold lock to avoid race with probe/release */ 3655 if (parent) 3656 device_lock(parent); 3657 device_lock(dev); 3658 3659 /* Don't allow any more runtime suspends */ 3660 pm_runtime_get_noresume(dev); 3661 pm_runtime_barrier(dev); 3662 3663 if (dev->class && dev->class->shutdown_pre) { 3664 if (initcall_debug) 3665 dev_info(dev, "shutdown_pre\n"); 3666 dev->class->shutdown_pre(dev); 3667 } 3668 if (dev->bus && dev->bus->shutdown) { 3669 if (initcall_debug) 3670 dev_info(dev, "shutdown\n"); 3671 dev->bus->shutdown(dev); 3672 } else if (dev->driver && dev->driver->shutdown) { 3673 if (initcall_debug) 3674 dev_info(dev, "shutdown\n"); 3675 dev->driver->shutdown(dev); 3676 } 3677 3678 device_unlock(dev); 3679 if (parent) 3680 device_unlock(parent); 3681 3682 put_device(dev); 3683 put_device(parent); 3684 3685 spin_lock(&devices_kset->list_lock); 3686 } 3687 spin_unlock(&devices_kset->list_lock); 3688 } 3689 3690 /* 3691 * Device logging functions 3692 */ 3693 3694 #ifdef CONFIG_PRINTK 3695 static int 3696 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen) 3697 { 3698 const char *subsys; 3699 size_t pos = 0; 3700 3701 if (dev->class) 3702 subsys = dev->class->name; 3703 else if (dev->bus) 3704 subsys = dev->bus->name; 3705 else 3706 return 0; 3707 3708 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys); 3709 if (pos >= hdrlen) 3710 goto overflow; 3711 3712 /* 3713 * Add device identifier DEVICE=: 3714 * b12:8 block dev_t 3715 * c127:3 char dev_t 3716 * n8 netdev ifindex 3717 * +sound:card0 subsystem:devname 3718 */ 3719 if (MAJOR(dev->devt)) { 3720 char c; 3721 3722 if (strcmp(subsys, "block") == 0) 3723 c = 'b'; 3724 else 3725 c = 'c'; 3726 pos++; 3727 pos += snprintf(hdr + pos, hdrlen - pos, 3728 "DEVICE=%c%u:%u", 3729 c, MAJOR(dev->devt), MINOR(dev->devt)); 3730 } else if (strcmp(subsys, "net") == 0) { 3731 struct net_device *net = to_net_dev(dev); 3732 3733 pos++; 3734 pos += snprintf(hdr + pos, hdrlen - pos, 3735 "DEVICE=n%u", net->ifindex); 3736 } else { 3737 pos++; 3738 pos += snprintf(hdr + pos, hdrlen - pos, 3739 "DEVICE=+%s:%s", subsys, dev_name(dev)); 3740 } 3741 3742 if (pos >= hdrlen) 3743 goto overflow; 3744 3745 return pos; 3746 3747 overflow: 3748 dev_WARN(dev, "device/subsystem name too long"); 3749 return 0; 3750 } 3751 3752 int dev_vprintk_emit(int level, const struct device *dev, 3753 const char *fmt, va_list args) 3754 { 3755 char hdr[128]; 3756 size_t hdrlen; 3757 3758 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr)); 3759 3760 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args); 3761 } 3762 EXPORT_SYMBOL(dev_vprintk_emit); 3763 3764 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 3765 { 3766 va_list args; 3767 int r; 3768 3769 va_start(args, fmt); 3770 3771 r = dev_vprintk_emit(level, dev, fmt, args); 3772 3773 va_end(args); 3774 3775 return r; 3776 } 3777 EXPORT_SYMBOL(dev_printk_emit); 3778 3779 static void __dev_printk(const char *level, const struct device *dev, 3780 struct va_format *vaf) 3781 { 3782 if (dev) 3783 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 3784 dev_driver_string(dev), dev_name(dev), vaf); 3785 else 3786 printk("%s(NULL device *): %pV", level, vaf); 3787 } 3788 3789 void dev_printk(const char *level, const struct device *dev, 3790 const char *fmt, ...) 3791 { 3792 struct va_format vaf; 3793 va_list args; 3794 3795 va_start(args, fmt); 3796 3797 vaf.fmt = fmt; 3798 vaf.va = &args; 3799 3800 __dev_printk(level, dev, &vaf); 3801 3802 va_end(args); 3803 } 3804 EXPORT_SYMBOL(dev_printk); 3805 3806 #define define_dev_printk_level(func, kern_level) \ 3807 void func(const struct device *dev, const char *fmt, ...) \ 3808 { \ 3809 struct va_format vaf; \ 3810 va_list args; \ 3811 \ 3812 va_start(args, fmt); \ 3813 \ 3814 vaf.fmt = fmt; \ 3815 vaf.va = &args; \ 3816 \ 3817 __dev_printk(kern_level, dev, &vaf); \ 3818 \ 3819 va_end(args); \ 3820 } \ 3821 EXPORT_SYMBOL(func); 3822 3823 define_dev_printk_level(_dev_emerg, KERN_EMERG); 3824 define_dev_printk_level(_dev_alert, KERN_ALERT); 3825 define_dev_printk_level(_dev_crit, KERN_CRIT); 3826 define_dev_printk_level(_dev_err, KERN_ERR); 3827 define_dev_printk_level(_dev_warn, KERN_WARNING); 3828 define_dev_printk_level(_dev_notice, KERN_NOTICE); 3829 define_dev_printk_level(_dev_info, KERN_INFO); 3830 3831 #endif 3832 3833 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 3834 { 3835 return fwnode && !IS_ERR(fwnode->secondary); 3836 } 3837 3838 /** 3839 * set_primary_fwnode - Change the primary firmware node of a given device. 3840 * @dev: Device to handle. 3841 * @fwnode: New primary firmware node of the device. 3842 * 3843 * Set the device's firmware node pointer to @fwnode, but if a secondary 3844 * firmware node of the device is present, preserve it. 3845 */ 3846 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 3847 { 3848 if (fwnode) { 3849 struct fwnode_handle *fn = dev->fwnode; 3850 3851 if (fwnode_is_primary(fn)) 3852 fn = fn->secondary; 3853 3854 if (fn) { 3855 WARN_ON(fwnode->secondary); 3856 fwnode->secondary = fn; 3857 } 3858 dev->fwnode = fwnode; 3859 } else { 3860 dev->fwnode = fwnode_is_primary(dev->fwnode) ? 3861 dev->fwnode->secondary : NULL; 3862 } 3863 } 3864 EXPORT_SYMBOL_GPL(set_primary_fwnode); 3865 3866 /** 3867 * set_secondary_fwnode - Change the secondary firmware node of a given device. 3868 * @dev: Device to handle. 3869 * @fwnode: New secondary firmware node of the device. 3870 * 3871 * If a primary firmware node of the device is present, set its secondary 3872 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 3873 * @fwnode. 3874 */ 3875 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 3876 { 3877 if (fwnode) 3878 fwnode->secondary = ERR_PTR(-ENODEV); 3879 3880 if (fwnode_is_primary(dev->fwnode)) 3881 dev->fwnode->secondary = fwnode; 3882 else 3883 dev->fwnode = fwnode; 3884 } 3885 EXPORT_SYMBOL_GPL(set_secondary_fwnode); 3886 3887 /** 3888 * device_set_of_node_from_dev - reuse device-tree node of another device 3889 * @dev: device whose device-tree node is being set 3890 * @dev2: device whose device-tree node is being reused 3891 * 3892 * Takes another reference to the new device-tree node after first dropping 3893 * any reference held to the old node. 3894 */ 3895 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 3896 { 3897 of_node_put(dev->of_node); 3898 dev->of_node = of_node_get(dev2->of_node); 3899 dev->of_node_reused = true; 3900 } 3901 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 3902 3903 int device_match_name(struct device *dev, const void *name) 3904 { 3905 return sysfs_streq(dev_name(dev), name); 3906 } 3907 EXPORT_SYMBOL_GPL(device_match_name); 3908 3909 int device_match_of_node(struct device *dev, const void *np) 3910 { 3911 return dev->of_node == np; 3912 } 3913 EXPORT_SYMBOL_GPL(device_match_of_node); 3914 3915 int device_match_fwnode(struct device *dev, const void *fwnode) 3916 { 3917 return dev_fwnode(dev) == fwnode; 3918 } 3919 EXPORT_SYMBOL_GPL(device_match_fwnode); 3920 3921 int device_match_devt(struct device *dev, const void *pdevt) 3922 { 3923 return dev->devt == *(dev_t *)pdevt; 3924 } 3925 EXPORT_SYMBOL_GPL(device_match_devt); 3926 3927 int device_match_acpi_dev(struct device *dev, const void *adev) 3928 { 3929 return ACPI_COMPANION(dev) == adev; 3930 } 3931 EXPORT_SYMBOL(device_match_acpi_dev); 3932 3933 int device_match_any(struct device *dev, const void *unused) 3934 { 3935 return 1; 3936 } 3937 EXPORT_SYMBOL_GPL(device_match_any); 3938