1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/cpufreq.h> 13 #include <linux/device.h> 14 #include <linux/err.h> 15 #include <linux/fwnode.h> 16 #include <linux/init.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/string.h> 20 #include <linux/kdev_t.h> 21 #include <linux/notifier.h> 22 #include <linux/of.h> 23 #include <linux/of_device.h> 24 #include <linux/genhd.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/netdevice.h> 28 #include <linux/sched/signal.h> 29 #include <linux/sysfs.h> 30 31 #include "base.h" 32 #include "power/power.h" 33 34 #ifdef CONFIG_SYSFS_DEPRECATED 35 #ifdef CONFIG_SYSFS_DEPRECATED_V2 36 long sysfs_deprecated = 1; 37 #else 38 long sysfs_deprecated = 0; 39 #endif 40 static int __init sysfs_deprecated_setup(char *arg) 41 { 42 return kstrtol(arg, 10, &sysfs_deprecated); 43 } 44 early_param("sysfs.deprecated", sysfs_deprecated_setup); 45 #endif 46 47 /* Device links support. */ 48 static LIST_HEAD(wait_for_suppliers); 49 static DEFINE_MUTEX(wfs_lock); 50 static LIST_HEAD(deferred_sync); 51 static unsigned int defer_sync_state_count = 1; 52 static unsigned int defer_fw_devlink_count; 53 static LIST_HEAD(deferred_fw_devlink); 54 static DEFINE_MUTEX(defer_fw_devlink_lock); 55 static bool fw_devlink_is_permissive(void); 56 57 #ifdef CONFIG_SRCU 58 static DEFINE_MUTEX(device_links_lock); 59 DEFINE_STATIC_SRCU(device_links_srcu); 60 61 static inline void device_links_write_lock(void) 62 { 63 mutex_lock(&device_links_lock); 64 } 65 66 static inline void device_links_write_unlock(void) 67 { 68 mutex_unlock(&device_links_lock); 69 } 70 71 int device_links_read_lock(void) __acquires(&device_links_srcu) 72 { 73 return srcu_read_lock(&device_links_srcu); 74 } 75 76 void device_links_read_unlock(int idx) __releases(&device_links_srcu) 77 { 78 srcu_read_unlock(&device_links_srcu, idx); 79 } 80 81 int device_links_read_lock_held(void) 82 { 83 return srcu_read_lock_held(&device_links_srcu); 84 } 85 #else /* !CONFIG_SRCU */ 86 static DECLARE_RWSEM(device_links_lock); 87 88 static inline void device_links_write_lock(void) 89 { 90 down_write(&device_links_lock); 91 } 92 93 static inline void device_links_write_unlock(void) 94 { 95 up_write(&device_links_lock); 96 } 97 98 int device_links_read_lock(void) 99 { 100 down_read(&device_links_lock); 101 return 0; 102 } 103 104 void device_links_read_unlock(int not_used) 105 { 106 up_read(&device_links_lock); 107 } 108 109 #ifdef CONFIG_DEBUG_LOCK_ALLOC 110 int device_links_read_lock_held(void) 111 { 112 return lockdep_is_held(&device_links_lock); 113 } 114 #endif 115 #endif /* !CONFIG_SRCU */ 116 117 /** 118 * device_is_dependent - Check if one device depends on another one 119 * @dev: Device to check dependencies for. 120 * @target: Device to check against. 121 * 122 * Check if @target depends on @dev or any device dependent on it (its child or 123 * its consumer etc). Return 1 if that is the case or 0 otherwise. 124 */ 125 int device_is_dependent(struct device *dev, void *target) 126 { 127 struct device_link *link; 128 int ret; 129 130 if (dev == target) 131 return 1; 132 133 ret = device_for_each_child(dev, target, device_is_dependent); 134 if (ret) 135 return ret; 136 137 list_for_each_entry(link, &dev->links.consumers, s_node) { 138 if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 139 continue; 140 141 if (link->consumer == target) 142 return 1; 143 144 ret = device_is_dependent(link->consumer, target); 145 if (ret) 146 break; 147 } 148 return ret; 149 } 150 151 static void device_link_init_status(struct device_link *link, 152 struct device *consumer, 153 struct device *supplier) 154 { 155 switch (supplier->links.status) { 156 case DL_DEV_PROBING: 157 switch (consumer->links.status) { 158 case DL_DEV_PROBING: 159 /* 160 * A consumer driver can create a link to a supplier 161 * that has not completed its probing yet as long as it 162 * knows that the supplier is already functional (for 163 * example, it has just acquired some resources from the 164 * supplier). 165 */ 166 link->status = DL_STATE_CONSUMER_PROBE; 167 break; 168 default: 169 link->status = DL_STATE_DORMANT; 170 break; 171 } 172 break; 173 case DL_DEV_DRIVER_BOUND: 174 switch (consumer->links.status) { 175 case DL_DEV_PROBING: 176 link->status = DL_STATE_CONSUMER_PROBE; 177 break; 178 case DL_DEV_DRIVER_BOUND: 179 link->status = DL_STATE_ACTIVE; 180 break; 181 default: 182 link->status = DL_STATE_AVAILABLE; 183 break; 184 } 185 break; 186 case DL_DEV_UNBINDING: 187 link->status = DL_STATE_SUPPLIER_UNBIND; 188 break; 189 default: 190 link->status = DL_STATE_DORMANT; 191 break; 192 } 193 } 194 195 static int device_reorder_to_tail(struct device *dev, void *not_used) 196 { 197 struct device_link *link; 198 199 /* 200 * Devices that have not been registered yet will be put to the ends 201 * of the lists during the registration, so skip them here. 202 */ 203 if (device_is_registered(dev)) 204 devices_kset_move_last(dev); 205 206 if (device_pm_initialized(dev)) 207 device_pm_move_last(dev); 208 209 device_for_each_child(dev, NULL, device_reorder_to_tail); 210 list_for_each_entry(link, &dev->links.consumers, s_node) { 211 if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 212 continue; 213 device_reorder_to_tail(link->consumer, NULL); 214 } 215 216 return 0; 217 } 218 219 /** 220 * device_pm_move_to_tail - Move set of devices to the end of device lists 221 * @dev: Device to move 222 * 223 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 224 * 225 * It moves the @dev along with all of its children and all of its consumers 226 * to the ends of the device_kset and dpm_list, recursively. 227 */ 228 void device_pm_move_to_tail(struct device *dev) 229 { 230 int idx; 231 232 idx = device_links_read_lock(); 233 device_pm_lock(); 234 device_reorder_to_tail(dev, NULL); 235 device_pm_unlock(); 236 device_links_read_unlock(idx); 237 } 238 239 #define to_devlink(dev) container_of((dev), struct device_link, link_dev) 240 241 static ssize_t status_show(struct device *dev, 242 struct device_attribute *attr, char *buf) 243 { 244 char *status; 245 246 switch (to_devlink(dev)->status) { 247 case DL_STATE_NONE: 248 status = "not tracked"; break; 249 case DL_STATE_DORMANT: 250 status = "dormant"; break; 251 case DL_STATE_AVAILABLE: 252 status = "available"; break; 253 case DL_STATE_CONSUMER_PROBE: 254 status = "consumer probing"; break; 255 case DL_STATE_ACTIVE: 256 status = "active"; break; 257 case DL_STATE_SUPPLIER_UNBIND: 258 status = "supplier unbinding"; break; 259 default: 260 status = "unknown"; break; 261 } 262 return sprintf(buf, "%s\n", status); 263 } 264 static DEVICE_ATTR_RO(status); 265 266 static ssize_t auto_remove_on_show(struct device *dev, 267 struct device_attribute *attr, char *buf) 268 { 269 struct device_link *link = to_devlink(dev); 270 char *str; 271 272 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 273 str = "supplier unbind"; 274 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) 275 str = "consumer unbind"; 276 else 277 str = "never"; 278 279 return sprintf(buf, "%s\n", str); 280 } 281 static DEVICE_ATTR_RO(auto_remove_on); 282 283 static ssize_t runtime_pm_show(struct device *dev, 284 struct device_attribute *attr, char *buf) 285 { 286 struct device_link *link = to_devlink(dev); 287 288 return sprintf(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME)); 289 } 290 static DEVICE_ATTR_RO(runtime_pm); 291 292 static ssize_t sync_state_only_show(struct device *dev, 293 struct device_attribute *attr, char *buf) 294 { 295 struct device_link *link = to_devlink(dev); 296 297 return sprintf(buf, "%d\n", !!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 298 } 299 static DEVICE_ATTR_RO(sync_state_only); 300 301 static struct attribute *devlink_attrs[] = { 302 &dev_attr_status.attr, 303 &dev_attr_auto_remove_on.attr, 304 &dev_attr_runtime_pm.attr, 305 &dev_attr_sync_state_only.attr, 306 NULL, 307 }; 308 ATTRIBUTE_GROUPS(devlink); 309 310 static void device_link_free(struct device_link *link) 311 { 312 while (refcount_dec_not_one(&link->rpm_active)) 313 pm_runtime_put(link->supplier); 314 315 put_device(link->consumer); 316 put_device(link->supplier); 317 kfree(link); 318 } 319 320 #ifdef CONFIG_SRCU 321 static void __device_link_free_srcu(struct rcu_head *rhead) 322 { 323 device_link_free(container_of(rhead, struct device_link, rcu_head)); 324 } 325 326 static void devlink_dev_release(struct device *dev) 327 { 328 struct device_link *link = to_devlink(dev); 329 330 call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu); 331 } 332 #else 333 static void devlink_dev_release(struct device *dev) 334 { 335 device_link_free(to_devlink(dev)); 336 } 337 #endif 338 339 static struct class devlink_class = { 340 .name = "devlink", 341 .owner = THIS_MODULE, 342 .dev_groups = devlink_groups, 343 .dev_release = devlink_dev_release, 344 }; 345 346 static int devlink_add_symlinks(struct device *dev, 347 struct class_interface *class_intf) 348 { 349 int ret; 350 size_t len; 351 struct device_link *link = to_devlink(dev); 352 struct device *sup = link->supplier; 353 struct device *con = link->consumer; 354 char *buf; 355 356 len = max(strlen(dev_name(sup)), strlen(dev_name(con))); 357 len += strlen("supplier:") + 1; 358 buf = kzalloc(len, GFP_KERNEL); 359 if (!buf) 360 return -ENOMEM; 361 362 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier"); 363 if (ret) 364 goto out; 365 366 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer"); 367 if (ret) 368 goto err_con; 369 370 snprintf(buf, len, "consumer:%s", dev_name(con)); 371 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf); 372 if (ret) 373 goto err_con_dev; 374 375 snprintf(buf, len, "supplier:%s", dev_name(sup)); 376 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf); 377 if (ret) 378 goto err_sup_dev; 379 380 goto out; 381 382 err_sup_dev: 383 snprintf(buf, len, "consumer:%s", dev_name(con)); 384 sysfs_remove_link(&sup->kobj, buf); 385 err_con_dev: 386 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 387 err_con: 388 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 389 out: 390 kfree(buf); 391 return ret; 392 } 393 394 static void devlink_remove_symlinks(struct device *dev, 395 struct class_interface *class_intf) 396 { 397 struct device_link *link = to_devlink(dev); 398 size_t len; 399 struct device *sup = link->supplier; 400 struct device *con = link->consumer; 401 char *buf; 402 403 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 404 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 405 406 len = max(strlen(dev_name(sup)), strlen(dev_name(con))); 407 len += strlen("supplier:") + 1; 408 buf = kzalloc(len, GFP_KERNEL); 409 if (!buf) { 410 WARN(1, "Unable to properly free device link symlinks!\n"); 411 return; 412 } 413 414 snprintf(buf, len, "supplier:%s", dev_name(sup)); 415 sysfs_remove_link(&con->kobj, buf); 416 snprintf(buf, len, "consumer:%s", dev_name(con)); 417 sysfs_remove_link(&sup->kobj, buf); 418 kfree(buf); 419 } 420 421 static struct class_interface devlink_class_intf = { 422 .class = &devlink_class, 423 .add_dev = devlink_add_symlinks, 424 .remove_dev = devlink_remove_symlinks, 425 }; 426 427 static int __init devlink_class_init(void) 428 { 429 int ret; 430 431 ret = class_register(&devlink_class); 432 if (ret) 433 return ret; 434 435 ret = class_interface_register(&devlink_class_intf); 436 if (ret) 437 class_unregister(&devlink_class); 438 439 return ret; 440 } 441 postcore_initcall(devlink_class_init); 442 443 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \ 444 DL_FLAG_AUTOREMOVE_SUPPLIER | \ 445 DL_FLAG_AUTOPROBE_CONSUMER | \ 446 DL_FLAG_SYNC_STATE_ONLY) 447 448 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \ 449 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE) 450 451 /** 452 * device_link_add - Create a link between two devices. 453 * @consumer: Consumer end of the link. 454 * @supplier: Supplier end of the link. 455 * @flags: Link flags. 456 * 457 * The caller is responsible for the proper synchronization of the link creation 458 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 459 * runtime PM framework to take the link into account. Second, if the 460 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 461 * be forced into the active metastate and reference-counted upon the creation 462 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 463 * ignored. 464 * 465 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is 466 * expected to release the link returned by it directly with the help of either 467 * device_link_del() or device_link_remove(). 468 * 469 * If that flag is not set, however, the caller of this function is handing the 470 * management of the link over to the driver core entirely and its return value 471 * can only be used to check whether or not the link is present. In that case, 472 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link 473 * flags can be used to indicate to the driver core when the link can be safely 474 * deleted. Namely, setting one of them in @flags indicates to the driver core 475 * that the link is not going to be used (by the given caller of this function) 476 * after unbinding the consumer or supplier driver, respectively, from its 477 * device, so the link can be deleted at that point. If none of them is set, 478 * the link will be maintained until one of the devices pointed to by it (either 479 * the consumer or the supplier) is unregistered. 480 * 481 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and 482 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent 483 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can 484 * be used to request the driver core to automaticall probe for a consmer 485 * driver after successfully binding a driver to the supplier device. 486 * 487 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER, 488 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at 489 * the same time is invalid and will cause NULL to be returned upfront. 490 * However, if a device link between the given @consumer and @supplier pair 491 * exists already when this function is called for them, the existing link will 492 * be returned regardless of its current type and status (the link's flags may 493 * be modified then). The caller of this function is then expected to treat 494 * the link as though it has just been created, so (in particular) if 495 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released 496 * explicitly when not needed any more (as stated above). 497 * 498 * A side effect of the link creation is re-ordering of dpm_list and the 499 * devices_kset list by moving the consumer device and all devices depending 500 * on it to the ends of these lists (that does not happen to devices that have 501 * not been registered when this function is called). 502 * 503 * The supplier device is required to be registered when this function is called 504 * and NULL will be returned if that is not the case. The consumer device need 505 * not be registered, however. 506 */ 507 struct device_link *device_link_add(struct device *consumer, 508 struct device *supplier, u32 flags) 509 { 510 struct device_link *link; 511 512 if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS || 513 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) || 514 (flags & DL_FLAG_SYNC_STATE_ONLY && 515 flags != DL_FLAG_SYNC_STATE_ONLY) || 516 (flags & DL_FLAG_AUTOPROBE_CONSUMER && 517 flags & (DL_FLAG_AUTOREMOVE_CONSUMER | 518 DL_FLAG_AUTOREMOVE_SUPPLIER))) 519 return NULL; 520 521 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) { 522 if (pm_runtime_get_sync(supplier) < 0) { 523 pm_runtime_put_noidle(supplier); 524 return NULL; 525 } 526 } 527 528 if (!(flags & DL_FLAG_STATELESS)) 529 flags |= DL_FLAG_MANAGED; 530 531 device_links_write_lock(); 532 device_pm_lock(); 533 534 /* 535 * If the supplier has not been fully registered yet or there is a 536 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and 537 * the supplier already in the graph, return NULL. If the link is a 538 * SYNC_STATE_ONLY link, we don't check for reverse dependencies 539 * because it only affects sync_state() callbacks. 540 */ 541 if (!device_pm_initialized(supplier) 542 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) && 543 device_is_dependent(consumer, supplier))) { 544 link = NULL; 545 goto out; 546 } 547 548 /* 549 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed 550 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both 551 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER. 552 */ 553 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 554 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 555 556 list_for_each_entry(link, &supplier->links.consumers, s_node) { 557 if (link->consumer != consumer) 558 continue; 559 560 if (flags & DL_FLAG_PM_RUNTIME) { 561 if (!(link->flags & DL_FLAG_PM_RUNTIME)) { 562 pm_runtime_new_link(consumer); 563 link->flags |= DL_FLAG_PM_RUNTIME; 564 } 565 if (flags & DL_FLAG_RPM_ACTIVE) 566 refcount_inc(&link->rpm_active); 567 } 568 569 if (flags & DL_FLAG_STATELESS) { 570 kref_get(&link->kref); 571 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 572 !(link->flags & DL_FLAG_STATELESS)) { 573 link->flags |= DL_FLAG_STATELESS; 574 goto reorder; 575 } else { 576 link->flags |= DL_FLAG_STATELESS; 577 goto out; 578 } 579 } 580 581 /* 582 * If the life time of the link following from the new flags is 583 * longer than indicated by the flags of the existing link, 584 * update the existing link to stay around longer. 585 */ 586 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) { 587 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 588 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 589 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER; 590 } 591 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) { 592 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER | 593 DL_FLAG_AUTOREMOVE_SUPPLIER); 594 } 595 if (!(link->flags & DL_FLAG_MANAGED)) { 596 kref_get(&link->kref); 597 link->flags |= DL_FLAG_MANAGED; 598 device_link_init_status(link, consumer, supplier); 599 } 600 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 601 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 602 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY; 603 goto reorder; 604 } 605 606 goto out; 607 } 608 609 link = kzalloc(sizeof(*link), GFP_KERNEL); 610 if (!link) 611 goto out; 612 613 refcount_set(&link->rpm_active, 1); 614 615 get_device(supplier); 616 link->supplier = supplier; 617 INIT_LIST_HEAD(&link->s_node); 618 get_device(consumer); 619 link->consumer = consumer; 620 INIT_LIST_HEAD(&link->c_node); 621 link->flags = flags; 622 kref_init(&link->kref); 623 624 link->link_dev.class = &devlink_class; 625 device_set_pm_not_required(&link->link_dev); 626 dev_set_name(&link->link_dev, "%s--%s", 627 dev_name(supplier), dev_name(consumer)); 628 if (device_register(&link->link_dev)) { 629 put_device(consumer); 630 put_device(supplier); 631 kfree(link); 632 link = NULL; 633 goto out; 634 } 635 636 if (flags & DL_FLAG_PM_RUNTIME) { 637 if (flags & DL_FLAG_RPM_ACTIVE) 638 refcount_inc(&link->rpm_active); 639 640 pm_runtime_new_link(consumer); 641 } 642 643 /* Determine the initial link state. */ 644 if (flags & DL_FLAG_STATELESS) 645 link->status = DL_STATE_NONE; 646 else 647 device_link_init_status(link, consumer, supplier); 648 649 /* 650 * Some callers expect the link creation during consumer driver probe to 651 * resume the supplier even without DL_FLAG_RPM_ACTIVE. 652 */ 653 if (link->status == DL_STATE_CONSUMER_PROBE && 654 flags & DL_FLAG_PM_RUNTIME) 655 pm_runtime_resume(supplier); 656 657 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 658 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 659 660 if (flags & DL_FLAG_SYNC_STATE_ONLY) { 661 dev_dbg(consumer, 662 "Linked as a sync state only consumer to %s\n", 663 dev_name(supplier)); 664 goto out; 665 } 666 667 reorder: 668 /* 669 * Move the consumer and all of the devices depending on it to the end 670 * of dpm_list and the devices_kset list. 671 * 672 * It is necessary to hold dpm_list locked throughout all that or else 673 * we may end up suspending with a wrong ordering of it. 674 */ 675 device_reorder_to_tail(consumer, NULL); 676 677 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 678 679 out: 680 device_pm_unlock(); 681 device_links_write_unlock(); 682 683 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link) 684 pm_runtime_put(supplier); 685 686 return link; 687 } 688 EXPORT_SYMBOL_GPL(device_link_add); 689 690 /** 691 * device_link_wait_for_supplier - Add device to wait_for_suppliers list 692 * @consumer: Consumer device 693 * 694 * Marks the @consumer device as waiting for suppliers to become available by 695 * adding it to the wait_for_suppliers list. The consumer device will never be 696 * probed until it's removed from the wait_for_suppliers list. 697 * 698 * The caller is responsible for adding the links to the supplier devices once 699 * they are available and removing the @consumer device from the 700 * wait_for_suppliers list once links to all the suppliers have been created. 701 * 702 * This function is NOT meant to be called from the probe function of the 703 * consumer but rather from code that creates/adds the consumer device. 704 */ 705 static void device_link_wait_for_supplier(struct device *consumer, 706 bool need_for_probe) 707 { 708 mutex_lock(&wfs_lock); 709 list_add_tail(&consumer->links.needs_suppliers, &wait_for_suppliers); 710 consumer->links.need_for_probe = need_for_probe; 711 mutex_unlock(&wfs_lock); 712 } 713 714 static void device_link_wait_for_mandatory_supplier(struct device *consumer) 715 { 716 device_link_wait_for_supplier(consumer, true); 717 } 718 719 static void device_link_wait_for_optional_supplier(struct device *consumer) 720 { 721 device_link_wait_for_supplier(consumer, false); 722 } 723 724 /** 725 * device_link_add_missing_supplier_links - Add links from consumer devices to 726 * supplier devices, leaving any 727 * consumer with inactive suppliers on 728 * the wait_for_suppliers list 729 * 730 * Loops through all consumers waiting on suppliers and tries to add all their 731 * supplier links. If that succeeds, the consumer device is removed from 732 * wait_for_suppliers list. Otherwise, they are left in the wait_for_suppliers 733 * list. Devices left on the wait_for_suppliers list will not be probed. 734 * 735 * The fwnode add_links callback is expected to return 0 if it has found and 736 * added all the supplier links for the consumer device. It should return an 737 * error if it isn't able to do so. 738 * 739 * The caller of device_link_wait_for_supplier() is expected to call this once 740 * it's aware of potential suppliers becoming available. 741 */ 742 static void device_link_add_missing_supplier_links(void) 743 { 744 struct device *dev, *tmp; 745 746 mutex_lock(&wfs_lock); 747 list_for_each_entry_safe(dev, tmp, &wait_for_suppliers, 748 links.needs_suppliers) { 749 int ret = fwnode_call_int_op(dev->fwnode, add_links, dev); 750 if (!ret) 751 list_del_init(&dev->links.needs_suppliers); 752 else if (ret != -ENODEV || fw_devlink_is_permissive()) 753 dev->links.need_for_probe = false; 754 } 755 mutex_unlock(&wfs_lock); 756 } 757 758 #ifdef CONFIG_SRCU 759 static void __device_link_del(struct kref *kref) 760 { 761 struct device_link *link = container_of(kref, struct device_link, kref); 762 763 dev_dbg(link->consumer, "Dropping the link to %s\n", 764 dev_name(link->supplier)); 765 766 if (link->flags & DL_FLAG_PM_RUNTIME) 767 pm_runtime_drop_link(link->consumer); 768 769 list_del_rcu(&link->s_node); 770 list_del_rcu(&link->c_node); 771 device_unregister(&link->link_dev); 772 } 773 #else /* !CONFIG_SRCU */ 774 static void __device_link_del(struct kref *kref) 775 { 776 struct device_link *link = container_of(kref, struct device_link, kref); 777 778 dev_info(link->consumer, "Dropping the link to %s\n", 779 dev_name(link->supplier)); 780 781 if (link->flags & DL_FLAG_PM_RUNTIME) 782 pm_runtime_drop_link(link->consumer); 783 784 list_del(&link->s_node); 785 list_del(&link->c_node); 786 device_unregister(&link->link_dev); 787 } 788 #endif /* !CONFIG_SRCU */ 789 790 static void device_link_put_kref(struct device_link *link) 791 { 792 if (link->flags & DL_FLAG_STATELESS) 793 kref_put(&link->kref, __device_link_del); 794 else 795 WARN(1, "Unable to drop a managed device link reference\n"); 796 } 797 798 /** 799 * device_link_del - Delete a stateless link between two devices. 800 * @link: Device link to delete. 801 * 802 * The caller must ensure proper synchronization of this function with runtime 803 * PM. If the link was added multiple times, it needs to be deleted as often. 804 * Care is required for hotplugged devices: Their links are purged on removal 805 * and calling device_link_del() is then no longer allowed. 806 */ 807 void device_link_del(struct device_link *link) 808 { 809 device_links_write_lock(); 810 device_pm_lock(); 811 device_link_put_kref(link); 812 device_pm_unlock(); 813 device_links_write_unlock(); 814 } 815 EXPORT_SYMBOL_GPL(device_link_del); 816 817 /** 818 * device_link_remove - Delete a stateless link between two devices. 819 * @consumer: Consumer end of the link. 820 * @supplier: Supplier end of the link. 821 * 822 * The caller must ensure proper synchronization of this function with runtime 823 * PM. 824 */ 825 void device_link_remove(void *consumer, struct device *supplier) 826 { 827 struct device_link *link; 828 829 if (WARN_ON(consumer == supplier)) 830 return; 831 832 device_links_write_lock(); 833 device_pm_lock(); 834 835 list_for_each_entry(link, &supplier->links.consumers, s_node) { 836 if (link->consumer == consumer) { 837 device_link_put_kref(link); 838 break; 839 } 840 } 841 842 device_pm_unlock(); 843 device_links_write_unlock(); 844 } 845 EXPORT_SYMBOL_GPL(device_link_remove); 846 847 static void device_links_missing_supplier(struct device *dev) 848 { 849 struct device_link *link; 850 851 list_for_each_entry(link, &dev->links.suppliers, c_node) { 852 if (link->status != DL_STATE_CONSUMER_PROBE) 853 continue; 854 855 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 856 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 857 } else { 858 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 859 WRITE_ONCE(link->status, DL_STATE_DORMANT); 860 } 861 } 862 } 863 864 /** 865 * device_links_check_suppliers - Check presence of supplier drivers. 866 * @dev: Consumer device. 867 * 868 * Check links from this device to any suppliers. Walk the list of the device's 869 * links to suppliers and see if all of them are available. If not, simply 870 * return -EPROBE_DEFER. 871 * 872 * We need to guarantee that the supplier will not go away after the check has 873 * been positive here. It only can go away in __device_release_driver() and 874 * that function checks the device's links to consumers. This means we need to 875 * mark the link as "consumer probe in progress" to make the supplier removal 876 * wait for us to complete (or bad things may happen). 877 * 878 * Links without the DL_FLAG_MANAGED flag set are ignored. 879 */ 880 int device_links_check_suppliers(struct device *dev) 881 { 882 struct device_link *link; 883 int ret = 0; 884 885 /* 886 * Device waiting for supplier to become available is not allowed to 887 * probe. 888 */ 889 mutex_lock(&wfs_lock); 890 if (!list_empty(&dev->links.needs_suppliers) && 891 dev->links.need_for_probe) { 892 mutex_unlock(&wfs_lock); 893 return -EPROBE_DEFER; 894 } 895 mutex_unlock(&wfs_lock); 896 897 device_links_write_lock(); 898 899 list_for_each_entry(link, &dev->links.suppliers, c_node) { 900 if (!(link->flags & DL_FLAG_MANAGED)) 901 continue; 902 903 if (link->status != DL_STATE_AVAILABLE && 904 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) { 905 device_links_missing_supplier(dev); 906 ret = -EPROBE_DEFER; 907 break; 908 } 909 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 910 } 911 dev->links.status = DL_DEV_PROBING; 912 913 device_links_write_unlock(); 914 return ret; 915 } 916 917 /** 918 * __device_links_queue_sync_state - Queue a device for sync_state() callback 919 * @dev: Device to call sync_state() on 920 * @list: List head to queue the @dev on 921 * 922 * Queues a device for a sync_state() callback when the device links write lock 923 * isn't held. This allows the sync_state() execution flow to use device links 924 * APIs. The caller must ensure this function is called with 925 * device_links_write_lock() held. 926 * 927 * This function does a get_device() to make sure the device is not freed while 928 * on this list. 929 * 930 * So the caller must also ensure that device_links_flush_sync_list() is called 931 * as soon as the caller releases device_links_write_lock(). This is necessary 932 * to make sure the sync_state() is called in a timely fashion and the 933 * put_device() is called on this device. 934 */ 935 static void __device_links_queue_sync_state(struct device *dev, 936 struct list_head *list) 937 { 938 struct device_link *link; 939 940 if (!dev_has_sync_state(dev)) 941 return; 942 if (dev->state_synced) 943 return; 944 945 list_for_each_entry(link, &dev->links.consumers, s_node) { 946 if (!(link->flags & DL_FLAG_MANAGED)) 947 continue; 948 if (link->status != DL_STATE_ACTIVE) 949 return; 950 } 951 952 /* 953 * Set the flag here to avoid adding the same device to a list more 954 * than once. This can happen if new consumers get added to the device 955 * and probed before the list is flushed. 956 */ 957 dev->state_synced = true; 958 959 if (WARN_ON(!list_empty(&dev->links.defer_hook))) 960 return; 961 962 get_device(dev); 963 list_add_tail(&dev->links.defer_hook, list); 964 } 965 966 /** 967 * device_links_flush_sync_list - Call sync_state() on a list of devices 968 * @list: List of devices to call sync_state() on 969 * @dont_lock_dev: Device for which lock is already held by the caller 970 * 971 * Calls sync_state() on all the devices that have been queued for it. This 972 * function is used in conjunction with __device_links_queue_sync_state(). The 973 * @dont_lock_dev parameter is useful when this function is called from a 974 * context where a device lock is already held. 975 */ 976 static void device_links_flush_sync_list(struct list_head *list, 977 struct device *dont_lock_dev) 978 { 979 struct device *dev, *tmp; 980 981 list_for_each_entry_safe(dev, tmp, list, links.defer_hook) { 982 list_del_init(&dev->links.defer_hook); 983 984 if (dev != dont_lock_dev) 985 device_lock(dev); 986 987 if (dev->bus->sync_state) 988 dev->bus->sync_state(dev); 989 else if (dev->driver && dev->driver->sync_state) 990 dev->driver->sync_state(dev); 991 992 if (dev != dont_lock_dev) 993 device_unlock(dev); 994 995 put_device(dev); 996 } 997 } 998 999 void device_links_supplier_sync_state_pause(void) 1000 { 1001 device_links_write_lock(); 1002 defer_sync_state_count++; 1003 device_links_write_unlock(); 1004 } 1005 1006 void device_links_supplier_sync_state_resume(void) 1007 { 1008 struct device *dev, *tmp; 1009 LIST_HEAD(sync_list); 1010 1011 device_links_write_lock(); 1012 if (!defer_sync_state_count) { 1013 WARN(true, "Unmatched sync_state pause/resume!"); 1014 goto out; 1015 } 1016 defer_sync_state_count--; 1017 if (defer_sync_state_count) 1018 goto out; 1019 1020 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_hook) { 1021 /* 1022 * Delete from deferred_sync list before queuing it to 1023 * sync_list because defer_hook is used for both lists. 1024 */ 1025 list_del_init(&dev->links.defer_hook); 1026 __device_links_queue_sync_state(dev, &sync_list); 1027 } 1028 out: 1029 device_links_write_unlock(); 1030 1031 device_links_flush_sync_list(&sync_list, NULL); 1032 } 1033 1034 static int sync_state_resume_initcall(void) 1035 { 1036 device_links_supplier_sync_state_resume(); 1037 return 0; 1038 } 1039 late_initcall(sync_state_resume_initcall); 1040 1041 static void __device_links_supplier_defer_sync(struct device *sup) 1042 { 1043 if (list_empty(&sup->links.defer_hook) && dev_has_sync_state(sup)) 1044 list_add_tail(&sup->links.defer_hook, &deferred_sync); 1045 } 1046 1047 static void device_link_drop_managed(struct device_link *link) 1048 { 1049 link->flags &= ~DL_FLAG_MANAGED; 1050 WRITE_ONCE(link->status, DL_STATE_NONE); 1051 kref_put(&link->kref, __device_link_del); 1052 } 1053 1054 static ssize_t waiting_for_supplier_show(struct device *dev, 1055 struct device_attribute *attr, 1056 char *buf) 1057 { 1058 bool val; 1059 1060 device_lock(dev); 1061 mutex_lock(&wfs_lock); 1062 val = !list_empty(&dev->links.needs_suppliers) 1063 && dev->links.need_for_probe; 1064 mutex_unlock(&wfs_lock); 1065 device_unlock(dev); 1066 return sprintf(buf, "%u\n", val); 1067 } 1068 static DEVICE_ATTR_RO(waiting_for_supplier); 1069 1070 /** 1071 * device_links_driver_bound - Update device links after probing its driver. 1072 * @dev: Device to update the links for. 1073 * 1074 * The probe has been successful, so update links from this device to any 1075 * consumers by changing their status to "available". 1076 * 1077 * Also change the status of @dev's links to suppliers to "active". 1078 * 1079 * Links without the DL_FLAG_MANAGED flag set are ignored. 1080 */ 1081 void device_links_driver_bound(struct device *dev) 1082 { 1083 struct device_link *link, *ln; 1084 LIST_HEAD(sync_list); 1085 1086 /* 1087 * If a device probes successfully, it's expected to have created all 1088 * the device links it needs to or make new device links as it needs 1089 * them. So, it no longer needs to wait on any suppliers. 1090 */ 1091 mutex_lock(&wfs_lock); 1092 list_del_init(&dev->links.needs_suppliers); 1093 mutex_unlock(&wfs_lock); 1094 device_remove_file(dev, &dev_attr_waiting_for_supplier); 1095 1096 device_links_write_lock(); 1097 1098 list_for_each_entry(link, &dev->links.consumers, s_node) { 1099 if (!(link->flags & DL_FLAG_MANAGED)) 1100 continue; 1101 1102 /* 1103 * Links created during consumer probe may be in the "consumer 1104 * probe" state to start with if the supplier is still probing 1105 * when they are created and they may become "active" if the 1106 * consumer probe returns first. Skip them here. 1107 */ 1108 if (link->status == DL_STATE_CONSUMER_PROBE || 1109 link->status == DL_STATE_ACTIVE) 1110 continue; 1111 1112 WARN_ON(link->status != DL_STATE_DORMANT); 1113 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1114 1115 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER) 1116 driver_deferred_probe_add(link->consumer); 1117 } 1118 1119 if (defer_sync_state_count) 1120 __device_links_supplier_defer_sync(dev); 1121 else 1122 __device_links_queue_sync_state(dev, &sync_list); 1123 1124 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1125 struct device *supplier; 1126 1127 if (!(link->flags & DL_FLAG_MANAGED)) 1128 continue; 1129 1130 supplier = link->supplier; 1131 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) { 1132 /* 1133 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no 1134 * other DL_MANAGED_LINK_FLAGS have been set. So, it's 1135 * save to drop the managed link completely. 1136 */ 1137 device_link_drop_managed(link); 1138 } else { 1139 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 1140 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 1141 } 1142 1143 /* 1144 * This needs to be done even for the deleted 1145 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last 1146 * device link that was preventing the supplier from getting a 1147 * sync_state() call. 1148 */ 1149 if (defer_sync_state_count) 1150 __device_links_supplier_defer_sync(supplier); 1151 else 1152 __device_links_queue_sync_state(supplier, &sync_list); 1153 } 1154 1155 dev->links.status = DL_DEV_DRIVER_BOUND; 1156 1157 device_links_write_unlock(); 1158 1159 device_links_flush_sync_list(&sync_list, dev); 1160 } 1161 1162 /** 1163 * __device_links_no_driver - Update links of a device without a driver. 1164 * @dev: Device without a drvier. 1165 * 1166 * Delete all non-persistent links from this device to any suppliers. 1167 * 1168 * Persistent links stay around, but their status is changed to "available", 1169 * unless they already are in the "supplier unbind in progress" state in which 1170 * case they need not be updated. 1171 * 1172 * Links without the DL_FLAG_MANAGED flag set are ignored. 1173 */ 1174 static void __device_links_no_driver(struct device *dev) 1175 { 1176 struct device_link *link, *ln; 1177 1178 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1179 if (!(link->flags & DL_FLAG_MANAGED)) 1180 continue; 1181 1182 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 1183 device_link_drop_managed(link); 1184 continue; 1185 } 1186 1187 if (link->status != DL_STATE_CONSUMER_PROBE && 1188 link->status != DL_STATE_ACTIVE) 1189 continue; 1190 1191 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1192 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1193 } else { 1194 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1195 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1196 } 1197 } 1198 1199 dev->links.status = DL_DEV_NO_DRIVER; 1200 } 1201 1202 /** 1203 * device_links_no_driver - Update links after failing driver probe. 1204 * @dev: Device whose driver has just failed to probe. 1205 * 1206 * Clean up leftover links to consumers for @dev and invoke 1207 * %__device_links_no_driver() to update links to suppliers for it as 1208 * appropriate. 1209 * 1210 * Links without the DL_FLAG_MANAGED flag set are ignored. 1211 */ 1212 void device_links_no_driver(struct device *dev) 1213 { 1214 struct device_link *link; 1215 1216 device_links_write_lock(); 1217 1218 list_for_each_entry(link, &dev->links.consumers, s_node) { 1219 if (!(link->flags & DL_FLAG_MANAGED)) 1220 continue; 1221 1222 /* 1223 * The probe has failed, so if the status of the link is 1224 * "consumer probe" or "active", it must have been added by 1225 * a probing consumer while this device was still probing. 1226 * Change its state to "dormant", as it represents a valid 1227 * relationship, but it is not functionally meaningful. 1228 */ 1229 if (link->status == DL_STATE_CONSUMER_PROBE || 1230 link->status == DL_STATE_ACTIVE) 1231 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1232 } 1233 1234 __device_links_no_driver(dev); 1235 1236 device_links_write_unlock(); 1237 } 1238 1239 /** 1240 * device_links_driver_cleanup - Update links after driver removal. 1241 * @dev: Device whose driver has just gone away. 1242 * 1243 * Update links to consumers for @dev by changing their status to "dormant" and 1244 * invoke %__device_links_no_driver() to update links to suppliers for it as 1245 * appropriate. 1246 * 1247 * Links without the DL_FLAG_MANAGED flag set are ignored. 1248 */ 1249 void device_links_driver_cleanup(struct device *dev) 1250 { 1251 struct device_link *link, *ln; 1252 1253 device_links_write_lock(); 1254 1255 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) { 1256 if (!(link->flags & DL_FLAG_MANAGED)) 1257 continue; 1258 1259 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER); 1260 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 1261 1262 /* 1263 * autoremove the links between this @dev and its consumer 1264 * devices that are not active, i.e. where the link state 1265 * has moved to DL_STATE_SUPPLIER_UNBIND. 1266 */ 1267 if (link->status == DL_STATE_SUPPLIER_UNBIND && 1268 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 1269 device_link_drop_managed(link); 1270 1271 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1272 } 1273 1274 list_del_init(&dev->links.defer_hook); 1275 __device_links_no_driver(dev); 1276 1277 device_links_write_unlock(); 1278 } 1279 1280 /** 1281 * device_links_busy - Check if there are any busy links to consumers. 1282 * @dev: Device to check. 1283 * 1284 * Check each consumer of the device and return 'true' if its link's status 1285 * is one of "consumer probe" or "active" (meaning that the given consumer is 1286 * probing right now or its driver is present). Otherwise, change the link 1287 * state to "supplier unbind" to prevent the consumer from being probed 1288 * successfully going forward. 1289 * 1290 * Return 'false' if there are no probing or active consumers. 1291 * 1292 * Links without the DL_FLAG_MANAGED flag set are ignored. 1293 */ 1294 bool device_links_busy(struct device *dev) 1295 { 1296 struct device_link *link; 1297 bool ret = false; 1298 1299 device_links_write_lock(); 1300 1301 list_for_each_entry(link, &dev->links.consumers, s_node) { 1302 if (!(link->flags & DL_FLAG_MANAGED)) 1303 continue; 1304 1305 if (link->status == DL_STATE_CONSUMER_PROBE 1306 || link->status == DL_STATE_ACTIVE) { 1307 ret = true; 1308 break; 1309 } 1310 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1311 } 1312 1313 dev->links.status = DL_DEV_UNBINDING; 1314 1315 device_links_write_unlock(); 1316 return ret; 1317 } 1318 1319 /** 1320 * device_links_unbind_consumers - Force unbind consumers of the given device. 1321 * @dev: Device to unbind the consumers of. 1322 * 1323 * Walk the list of links to consumers for @dev and if any of them is in the 1324 * "consumer probe" state, wait for all device probes in progress to complete 1325 * and start over. 1326 * 1327 * If that's not the case, change the status of the link to "supplier unbind" 1328 * and check if the link was in the "active" state. If so, force the consumer 1329 * driver to unbind and start over (the consumer will not re-probe as we have 1330 * changed the state of the link already). 1331 * 1332 * Links without the DL_FLAG_MANAGED flag set are ignored. 1333 */ 1334 void device_links_unbind_consumers(struct device *dev) 1335 { 1336 struct device_link *link; 1337 1338 start: 1339 device_links_write_lock(); 1340 1341 list_for_each_entry(link, &dev->links.consumers, s_node) { 1342 enum device_link_state status; 1343 1344 if (!(link->flags & DL_FLAG_MANAGED) || 1345 link->flags & DL_FLAG_SYNC_STATE_ONLY) 1346 continue; 1347 1348 status = link->status; 1349 if (status == DL_STATE_CONSUMER_PROBE) { 1350 device_links_write_unlock(); 1351 1352 wait_for_device_probe(); 1353 goto start; 1354 } 1355 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1356 if (status == DL_STATE_ACTIVE) { 1357 struct device *consumer = link->consumer; 1358 1359 get_device(consumer); 1360 1361 device_links_write_unlock(); 1362 1363 device_release_driver_internal(consumer, NULL, 1364 consumer->parent); 1365 put_device(consumer); 1366 goto start; 1367 } 1368 } 1369 1370 device_links_write_unlock(); 1371 } 1372 1373 /** 1374 * device_links_purge - Delete existing links to other devices. 1375 * @dev: Target device. 1376 */ 1377 static void device_links_purge(struct device *dev) 1378 { 1379 struct device_link *link, *ln; 1380 1381 if (dev->class == &devlink_class) 1382 return; 1383 1384 mutex_lock(&wfs_lock); 1385 list_del(&dev->links.needs_suppliers); 1386 mutex_unlock(&wfs_lock); 1387 1388 /* 1389 * Delete all of the remaining links from this device to any other 1390 * devices (either consumers or suppliers). 1391 */ 1392 device_links_write_lock(); 1393 1394 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1395 WARN_ON(link->status == DL_STATE_ACTIVE); 1396 __device_link_del(&link->kref); 1397 } 1398 1399 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 1400 WARN_ON(link->status != DL_STATE_DORMANT && 1401 link->status != DL_STATE_NONE); 1402 __device_link_del(&link->kref); 1403 } 1404 1405 device_links_write_unlock(); 1406 } 1407 1408 static u32 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY; 1409 static int __init fw_devlink_setup(char *arg) 1410 { 1411 if (!arg) 1412 return -EINVAL; 1413 1414 if (strcmp(arg, "off") == 0) { 1415 fw_devlink_flags = 0; 1416 } else if (strcmp(arg, "permissive") == 0) { 1417 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY; 1418 } else if (strcmp(arg, "on") == 0) { 1419 fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER; 1420 } else if (strcmp(arg, "rpm") == 0) { 1421 fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER | 1422 DL_FLAG_PM_RUNTIME; 1423 } 1424 return 0; 1425 } 1426 early_param("fw_devlink", fw_devlink_setup); 1427 1428 u32 fw_devlink_get_flags(void) 1429 { 1430 return fw_devlink_flags; 1431 } 1432 1433 static bool fw_devlink_is_permissive(void) 1434 { 1435 return fw_devlink_flags == DL_FLAG_SYNC_STATE_ONLY; 1436 } 1437 1438 static void fw_devlink_link_device(struct device *dev) 1439 { 1440 int fw_ret; 1441 1442 if (!fw_devlink_flags) 1443 return; 1444 1445 mutex_lock(&defer_fw_devlink_lock); 1446 if (!defer_fw_devlink_count) 1447 device_link_add_missing_supplier_links(); 1448 1449 /* 1450 * The device's fwnode not having add_links() doesn't affect if other 1451 * consumers can find this device as a supplier. So, this check is 1452 * intentionally placed after device_link_add_missing_supplier_links(). 1453 */ 1454 if (!fwnode_has_op(dev->fwnode, add_links)) 1455 goto out; 1456 1457 /* 1458 * If fw_devlink is being deferred, assume all devices have mandatory 1459 * suppliers they need to link to later. Then, when the fw_devlink is 1460 * resumed, all these devices will get a chance to try and link to any 1461 * suppliers they have. 1462 */ 1463 if (!defer_fw_devlink_count) { 1464 fw_ret = fwnode_call_int_op(dev->fwnode, add_links, dev); 1465 if (fw_ret == -ENODEV && fw_devlink_is_permissive()) 1466 fw_ret = -EAGAIN; 1467 } else { 1468 fw_ret = -ENODEV; 1469 /* 1470 * defer_hook is not used to add device to deferred_sync list 1471 * until device is bound. Since deferred fw devlink also blocks 1472 * probing, same list hook can be used for deferred_fw_devlink. 1473 */ 1474 list_add_tail(&dev->links.defer_hook, &deferred_fw_devlink); 1475 } 1476 1477 if (fw_ret == -ENODEV) 1478 device_link_wait_for_mandatory_supplier(dev); 1479 else if (fw_ret) 1480 device_link_wait_for_optional_supplier(dev); 1481 1482 out: 1483 mutex_unlock(&defer_fw_devlink_lock); 1484 } 1485 1486 /** 1487 * fw_devlink_pause - Pause parsing of fwnode to create device links 1488 * 1489 * Calling this function defers any fwnode parsing to create device links until 1490 * fw_devlink_resume() is called. Both these functions are ref counted and the 1491 * caller needs to match the calls. 1492 * 1493 * While fw_devlink is paused: 1494 * - Any device that is added won't have its fwnode parsed to create device 1495 * links. 1496 * - The probe of the device will also be deferred during this period. 1497 * - Any devices that were already added, but waiting for suppliers won't be 1498 * able to link to newly added devices. 1499 * 1500 * Once fw_devlink_resume(): 1501 * - All the fwnodes that was not parsed will be parsed. 1502 * - All the devices that were deferred probing will be reattempted if they 1503 * aren't waiting for any more suppliers. 1504 * 1505 * This pair of functions, is mainly meant to optimize the parsing of fwnodes 1506 * when a lot of devices that need to link to each other are added in a short 1507 * interval of time. For example, adding all the top level devices in a system. 1508 * 1509 * For example, if N devices are added and: 1510 * - All the consumers are added before their suppliers 1511 * - All the suppliers of the N devices are part of the N devices 1512 * 1513 * Then: 1514 * 1515 * - With the use of fw_devlink_pause() and fw_devlink_resume(), each device 1516 * will only need one parsing of its fwnode because it is guaranteed to find 1517 * all the supplier devices already registered and ready to link to. It won't 1518 * have to do another pass later to find one or more suppliers it couldn't 1519 * find in the first parse of the fwnode. So, we'll only need O(N) fwnode 1520 * parses. 1521 * 1522 * - Without the use of fw_devlink_pause() and fw_devlink_resume(), we would 1523 * end up doing O(N^2) parses of fwnodes because every device that's added is 1524 * guaranteed to trigger a parse of the fwnode of every device added before 1525 * it. This O(N^2) parse is made worse by the fact that when a fwnode of a 1526 * device is parsed, all it descendant devices might need to have their 1527 * fwnodes parsed too (even if the devices themselves aren't added). 1528 */ 1529 void fw_devlink_pause(void) 1530 { 1531 mutex_lock(&defer_fw_devlink_lock); 1532 defer_fw_devlink_count++; 1533 mutex_unlock(&defer_fw_devlink_lock); 1534 } 1535 1536 /** fw_devlink_resume - Resume parsing of fwnode to create device links 1537 * 1538 * This function is used in conjunction with fw_devlink_pause() and is ref 1539 * counted. See documentation for fw_devlink_pause() for more details. 1540 */ 1541 void fw_devlink_resume(void) 1542 { 1543 struct device *dev, *tmp; 1544 LIST_HEAD(probe_list); 1545 1546 mutex_lock(&defer_fw_devlink_lock); 1547 if (!defer_fw_devlink_count) { 1548 WARN(true, "Unmatched fw_devlink pause/resume!"); 1549 goto out; 1550 } 1551 1552 defer_fw_devlink_count--; 1553 if (defer_fw_devlink_count) 1554 goto out; 1555 1556 device_link_add_missing_supplier_links(); 1557 list_splice_tail_init(&deferred_fw_devlink, &probe_list); 1558 out: 1559 mutex_unlock(&defer_fw_devlink_lock); 1560 1561 /* 1562 * bus_probe_device() can cause new devices to get added and they'll 1563 * try to grab defer_fw_devlink_lock. So, this needs to be done outside 1564 * the defer_fw_devlink_lock. 1565 */ 1566 list_for_each_entry_safe(dev, tmp, &probe_list, links.defer_hook) { 1567 list_del_init(&dev->links.defer_hook); 1568 bus_probe_device(dev); 1569 } 1570 } 1571 /* Device links support end. */ 1572 1573 int (*platform_notify)(struct device *dev) = NULL; 1574 int (*platform_notify_remove)(struct device *dev) = NULL; 1575 static struct kobject *dev_kobj; 1576 struct kobject *sysfs_dev_char_kobj; 1577 struct kobject *sysfs_dev_block_kobj; 1578 1579 static DEFINE_MUTEX(device_hotplug_lock); 1580 1581 void lock_device_hotplug(void) 1582 { 1583 mutex_lock(&device_hotplug_lock); 1584 } 1585 1586 void unlock_device_hotplug(void) 1587 { 1588 mutex_unlock(&device_hotplug_lock); 1589 } 1590 1591 int lock_device_hotplug_sysfs(void) 1592 { 1593 if (mutex_trylock(&device_hotplug_lock)) 1594 return 0; 1595 1596 /* Avoid busy looping (5 ms of sleep should do). */ 1597 msleep(5); 1598 return restart_syscall(); 1599 } 1600 1601 #ifdef CONFIG_BLOCK 1602 static inline int device_is_not_partition(struct device *dev) 1603 { 1604 return !(dev->type == &part_type); 1605 } 1606 #else 1607 static inline int device_is_not_partition(struct device *dev) 1608 { 1609 return 1; 1610 } 1611 #endif 1612 1613 static int 1614 device_platform_notify(struct device *dev, enum kobject_action action) 1615 { 1616 int ret; 1617 1618 ret = acpi_platform_notify(dev, action); 1619 if (ret) 1620 return ret; 1621 1622 ret = software_node_notify(dev, action); 1623 if (ret) 1624 return ret; 1625 1626 if (platform_notify && action == KOBJ_ADD) 1627 platform_notify(dev); 1628 else if (platform_notify_remove && action == KOBJ_REMOVE) 1629 platform_notify_remove(dev); 1630 return 0; 1631 } 1632 1633 /** 1634 * dev_driver_string - Return a device's driver name, if at all possible 1635 * @dev: struct device to get the name of 1636 * 1637 * Will return the device's driver's name if it is bound to a device. If 1638 * the device is not bound to a driver, it will return the name of the bus 1639 * it is attached to. If it is not attached to a bus either, an empty 1640 * string will be returned. 1641 */ 1642 const char *dev_driver_string(const struct device *dev) 1643 { 1644 struct device_driver *drv; 1645 1646 /* dev->driver can change to NULL underneath us because of unbinding, 1647 * so be careful about accessing it. dev->bus and dev->class should 1648 * never change once they are set, so they don't need special care. 1649 */ 1650 drv = READ_ONCE(dev->driver); 1651 return drv ? drv->name : 1652 (dev->bus ? dev->bus->name : 1653 (dev->class ? dev->class->name : "")); 1654 } 1655 EXPORT_SYMBOL(dev_driver_string); 1656 1657 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 1658 1659 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 1660 char *buf) 1661 { 1662 struct device_attribute *dev_attr = to_dev_attr(attr); 1663 struct device *dev = kobj_to_dev(kobj); 1664 ssize_t ret = -EIO; 1665 1666 if (dev_attr->show) 1667 ret = dev_attr->show(dev, dev_attr, buf); 1668 if (ret >= (ssize_t)PAGE_SIZE) { 1669 printk("dev_attr_show: %pS returned bad count\n", 1670 dev_attr->show); 1671 } 1672 return ret; 1673 } 1674 1675 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 1676 const char *buf, size_t count) 1677 { 1678 struct device_attribute *dev_attr = to_dev_attr(attr); 1679 struct device *dev = kobj_to_dev(kobj); 1680 ssize_t ret = -EIO; 1681 1682 if (dev_attr->store) 1683 ret = dev_attr->store(dev, dev_attr, buf, count); 1684 return ret; 1685 } 1686 1687 static const struct sysfs_ops dev_sysfs_ops = { 1688 .show = dev_attr_show, 1689 .store = dev_attr_store, 1690 }; 1691 1692 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 1693 1694 ssize_t device_store_ulong(struct device *dev, 1695 struct device_attribute *attr, 1696 const char *buf, size_t size) 1697 { 1698 struct dev_ext_attribute *ea = to_ext_attr(attr); 1699 int ret; 1700 unsigned long new; 1701 1702 ret = kstrtoul(buf, 0, &new); 1703 if (ret) 1704 return ret; 1705 *(unsigned long *)(ea->var) = new; 1706 /* Always return full write size even if we didn't consume all */ 1707 return size; 1708 } 1709 EXPORT_SYMBOL_GPL(device_store_ulong); 1710 1711 ssize_t device_show_ulong(struct device *dev, 1712 struct device_attribute *attr, 1713 char *buf) 1714 { 1715 struct dev_ext_attribute *ea = to_ext_attr(attr); 1716 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var)); 1717 } 1718 EXPORT_SYMBOL_GPL(device_show_ulong); 1719 1720 ssize_t device_store_int(struct device *dev, 1721 struct device_attribute *attr, 1722 const char *buf, size_t size) 1723 { 1724 struct dev_ext_attribute *ea = to_ext_attr(attr); 1725 int ret; 1726 long new; 1727 1728 ret = kstrtol(buf, 0, &new); 1729 if (ret) 1730 return ret; 1731 1732 if (new > INT_MAX || new < INT_MIN) 1733 return -EINVAL; 1734 *(int *)(ea->var) = new; 1735 /* Always return full write size even if we didn't consume all */ 1736 return size; 1737 } 1738 EXPORT_SYMBOL_GPL(device_store_int); 1739 1740 ssize_t device_show_int(struct device *dev, 1741 struct device_attribute *attr, 1742 char *buf) 1743 { 1744 struct dev_ext_attribute *ea = to_ext_attr(attr); 1745 1746 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var)); 1747 } 1748 EXPORT_SYMBOL_GPL(device_show_int); 1749 1750 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 1751 const char *buf, size_t size) 1752 { 1753 struct dev_ext_attribute *ea = to_ext_attr(attr); 1754 1755 if (strtobool(buf, ea->var) < 0) 1756 return -EINVAL; 1757 1758 return size; 1759 } 1760 EXPORT_SYMBOL_GPL(device_store_bool); 1761 1762 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 1763 char *buf) 1764 { 1765 struct dev_ext_attribute *ea = to_ext_attr(attr); 1766 1767 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var)); 1768 } 1769 EXPORT_SYMBOL_GPL(device_show_bool); 1770 1771 /** 1772 * device_release - free device structure. 1773 * @kobj: device's kobject. 1774 * 1775 * This is called once the reference count for the object 1776 * reaches 0. We forward the call to the device's release 1777 * method, which should handle actually freeing the structure. 1778 */ 1779 static void device_release(struct kobject *kobj) 1780 { 1781 struct device *dev = kobj_to_dev(kobj); 1782 struct device_private *p = dev->p; 1783 1784 /* 1785 * Some platform devices are driven without driver attached 1786 * and managed resources may have been acquired. Make sure 1787 * all resources are released. 1788 * 1789 * Drivers still can add resources into device after device 1790 * is deleted but alive, so release devres here to avoid 1791 * possible memory leak. 1792 */ 1793 devres_release_all(dev); 1794 1795 if (dev->release) 1796 dev->release(dev); 1797 else if (dev->type && dev->type->release) 1798 dev->type->release(dev); 1799 else if (dev->class && dev->class->dev_release) 1800 dev->class->dev_release(dev); 1801 else 1802 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n", 1803 dev_name(dev)); 1804 kfree(p); 1805 } 1806 1807 static const void *device_namespace(struct kobject *kobj) 1808 { 1809 struct device *dev = kobj_to_dev(kobj); 1810 const void *ns = NULL; 1811 1812 if (dev->class && dev->class->ns_type) 1813 ns = dev->class->namespace(dev); 1814 1815 return ns; 1816 } 1817 1818 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid) 1819 { 1820 struct device *dev = kobj_to_dev(kobj); 1821 1822 if (dev->class && dev->class->get_ownership) 1823 dev->class->get_ownership(dev, uid, gid); 1824 } 1825 1826 static struct kobj_type device_ktype = { 1827 .release = device_release, 1828 .sysfs_ops = &dev_sysfs_ops, 1829 .namespace = device_namespace, 1830 .get_ownership = device_get_ownership, 1831 }; 1832 1833 1834 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj) 1835 { 1836 struct kobj_type *ktype = get_ktype(kobj); 1837 1838 if (ktype == &device_ktype) { 1839 struct device *dev = kobj_to_dev(kobj); 1840 if (dev->bus) 1841 return 1; 1842 if (dev->class) 1843 return 1; 1844 } 1845 return 0; 1846 } 1847 1848 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj) 1849 { 1850 struct device *dev = kobj_to_dev(kobj); 1851 1852 if (dev->bus) 1853 return dev->bus->name; 1854 if (dev->class) 1855 return dev->class->name; 1856 return NULL; 1857 } 1858 1859 static int dev_uevent(struct kset *kset, struct kobject *kobj, 1860 struct kobj_uevent_env *env) 1861 { 1862 struct device *dev = kobj_to_dev(kobj); 1863 int retval = 0; 1864 1865 /* add device node properties if present */ 1866 if (MAJOR(dev->devt)) { 1867 const char *tmp; 1868 const char *name; 1869 umode_t mode = 0; 1870 kuid_t uid = GLOBAL_ROOT_UID; 1871 kgid_t gid = GLOBAL_ROOT_GID; 1872 1873 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 1874 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 1875 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 1876 if (name) { 1877 add_uevent_var(env, "DEVNAME=%s", name); 1878 if (mode) 1879 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 1880 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 1881 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 1882 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 1883 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 1884 kfree(tmp); 1885 } 1886 } 1887 1888 if (dev->type && dev->type->name) 1889 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 1890 1891 if (dev->driver) 1892 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 1893 1894 /* Add common DT information about the device */ 1895 of_device_uevent(dev, env); 1896 1897 /* have the bus specific function add its stuff */ 1898 if (dev->bus && dev->bus->uevent) { 1899 retval = dev->bus->uevent(dev, env); 1900 if (retval) 1901 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 1902 dev_name(dev), __func__, retval); 1903 } 1904 1905 /* have the class specific function add its stuff */ 1906 if (dev->class && dev->class->dev_uevent) { 1907 retval = dev->class->dev_uevent(dev, env); 1908 if (retval) 1909 pr_debug("device: '%s': %s: class uevent() " 1910 "returned %d\n", dev_name(dev), 1911 __func__, retval); 1912 } 1913 1914 /* have the device type specific function add its stuff */ 1915 if (dev->type && dev->type->uevent) { 1916 retval = dev->type->uevent(dev, env); 1917 if (retval) 1918 pr_debug("device: '%s': %s: dev_type uevent() " 1919 "returned %d\n", dev_name(dev), 1920 __func__, retval); 1921 } 1922 1923 return retval; 1924 } 1925 1926 static const struct kset_uevent_ops device_uevent_ops = { 1927 .filter = dev_uevent_filter, 1928 .name = dev_uevent_name, 1929 .uevent = dev_uevent, 1930 }; 1931 1932 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 1933 char *buf) 1934 { 1935 struct kobject *top_kobj; 1936 struct kset *kset; 1937 struct kobj_uevent_env *env = NULL; 1938 int i; 1939 size_t count = 0; 1940 int retval; 1941 1942 /* search the kset, the device belongs to */ 1943 top_kobj = &dev->kobj; 1944 while (!top_kobj->kset && top_kobj->parent) 1945 top_kobj = top_kobj->parent; 1946 if (!top_kobj->kset) 1947 goto out; 1948 1949 kset = top_kobj->kset; 1950 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 1951 goto out; 1952 1953 /* respect filter */ 1954 if (kset->uevent_ops && kset->uevent_ops->filter) 1955 if (!kset->uevent_ops->filter(kset, &dev->kobj)) 1956 goto out; 1957 1958 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 1959 if (!env) 1960 return -ENOMEM; 1961 1962 /* let the kset specific function add its keys */ 1963 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env); 1964 if (retval) 1965 goto out; 1966 1967 /* copy keys to file */ 1968 for (i = 0; i < env->envp_idx; i++) 1969 count += sprintf(&buf[count], "%s\n", env->envp[i]); 1970 out: 1971 kfree(env); 1972 return count; 1973 } 1974 1975 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 1976 const char *buf, size_t count) 1977 { 1978 int rc; 1979 1980 rc = kobject_synth_uevent(&dev->kobj, buf, count); 1981 1982 if (rc) { 1983 dev_err(dev, "uevent: failed to send synthetic uevent\n"); 1984 return rc; 1985 } 1986 1987 return count; 1988 } 1989 static DEVICE_ATTR_RW(uevent); 1990 1991 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 1992 char *buf) 1993 { 1994 bool val; 1995 1996 device_lock(dev); 1997 val = !dev->offline; 1998 device_unlock(dev); 1999 return sprintf(buf, "%u\n", val); 2000 } 2001 2002 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 2003 const char *buf, size_t count) 2004 { 2005 bool val; 2006 int ret; 2007 2008 ret = strtobool(buf, &val); 2009 if (ret < 0) 2010 return ret; 2011 2012 ret = lock_device_hotplug_sysfs(); 2013 if (ret) 2014 return ret; 2015 2016 ret = val ? device_online(dev) : device_offline(dev); 2017 unlock_device_hotplug(); 2018 return ret < 0 ? ret : count; 2019 } 2020 static DEVICE_ATTR_RW(online); 2021 2022 int device_add_groups(struct device *dev, const struct attribute_group **groups) 2023 { 2024 return sysfs_create_groups(&dev->kobj, groups); 2025 } 2026 EXPORT_SYMBOL_GPL(device_add_groups); 2027 2028 void device_remove_groups(struct device *dev, 2029 const struct attribute_group **groups) 2030 { 2031 sysfs_remove_groups(&dev->kobj, groups); 2032 } 2033 EXPORT_SYMBOL_GPL(device_remove_groups); 2034 2035 union device_attr_group_devres { 2036 const struct attribute_group *group; 2037 const struct attribute_group **groups; 2038 }; 2039 2040 static int devm_attr_group_match(struct device *dev, void *res, void *data) 2041 { 2042 return ((union device_attr_group_devres *)res)->group == data; 2043 } 2044 2045 static void devm_attr_group_remove(struct device *dev, void *res) 2046 { 2047 union device_attr_group_devres *devres = res; 2048 const struct attribute_group *group = devres->group; 2049 2050 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 2051 sysfs_remove_group(&dev->kobj, group); 2052 } 2053 2054 static void devm_attr_groups_remove(struct device *dev, void *res) 2055 { 2056 union device_attr_group_devres *devres = res; 2057 const struct attribute_group **groups = devres->groups; 2058 2059 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups); 2060 sysfs_remove_groups(&dev->kobj, groups); 2061 } 2062 2063 /** 2064 * devm_device_add_group - given a device, create a managed attribute group 2065 * @dev: The device to create the group for 2066 * @grp: The attribute group to create 2067 * 2068 * This function creates a group for the first time. It will explicitly 2069 * warn and error if any of the attribute files being created already exist. 2070 * 2071 * Returns 0 on success or error code on failure. 2072 */ 2073 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 2074 { 2075 union device_attr_group_devres *devres; 2076 int error; 2077 2078 devres = devres_alloc(devm_attr_group_remove, 2079 sizeof(*devres), GFP_KERNEL); 2080 if (!devres) 2081 return -ENOMEM; 2082 2083 error = sysfs_create_group(&dev->kobj, grp); 2084 if (error) { 2085 devres_free(devres); 2086 return error; 2087 } 2088 2089 devres->group = grp; 2090 devres_add(dev, devres); 2091 return 0; 2092 } 2093 EXPORT_SYMBOL_GPL(devm_device_add_group); 2094 2095 /** 2096 * devm_device_remove_group: remove a managed group from a device 2097 * @dev: device to remove the group from 2098 * @grp: group to remove 2099 * 2100 * This function removes a group of attributes from a device. The attributes 2101 * previously have to have been created for this group, otherwise it will fail. 2102 */ 2103 void devm_device_remove_group(struct device *dev, 2104 const struct attribute_group *grp) 2105 { 2106 WARN_ON(devres_release(dev, devm_attr_group_remove, 2107 devm_attr_group_match, 2108 /* cast away const */ (void *)grp)); 2109 } 2110 EXPORT_SYMBOL_GPL(devm_device_remove_group); 2111 2112 /** 2113 * devm_device_add_groups - create a bunch of managed attribute groups 2114 * @dev: The device to create the group for 2115 * @groups: The attribute groups to create, NULL terminated 2116 * 2117 * This function creates a bunch of managed attribute groups. If an error 2118 * occurs when creating a group, all previously created groups will be 2119 * removed, unwinding everything back to the original state when this 2120 * function was called. It will explicitly warn and error if any of the 2121 * attribute files being created already exist. 2122 * 2123 * Returns 0 on success or error code from sysfs_create_group on failure. 2124 */ 2125 int devm_device_add_groups(struct device *dev, 2126 const struct attribute_group **groups) 2127 { 2128 union device_attr_group_devres *devres; 2129 int error; 2130 2131 devres = devres_alloc(devm_attr_groups_remove, 2132 sizeof(*devres), GFP_KERNEL); 2133 if (!devres) 2134 return -ENOMEM; 2135 2136 error = sysfs_create_groups(&dev->kobj, groups); 2137 if (error) { 2138 devres_free(devres); 2139 return error; 2140 } 2141 2142 devres->groups = groups; 2143 devres_add(dev, devres); 2144 return 0; 2145 } 2146 EXPORT_SYMBOL_GPL(devm_device_add_groups); 2147 2148 /** 2149 * devm_device_remove_groups - remove a list of managed groups 2150 * 2151 * @dev: The device for the groups to be removed from 2152 * @groups: NULL terminated list of groups to be removed 2153 * 2154 * If groups is not NULL, remove the specified groups from the device. 2155 */ 2156 void devm_device_remove_groups(struct device *dev, 2157 const struct attribute_group **groups) 2158 { 2159 WARN_ON(devres_release(dev, devm_attr_groups_remove, 2160 devm_attr_group_match, 2161 /* cast away const */ (void *)groups)); 2162 } 2163 EXPORT_SYMBOL_GPL(devm_device_remove_groups); 2164 2165 static int device_add_attrs(struct device *dev) 2166 { 2167 struct class *class = dev->class; 2168 const struct device_type *type = dev->type; 2169 int error; 2170 2171 if (class) { 2172 error = device_add_groups(dev, class->dev_groups); 2173 if (error) 2174 return error; 2175 } 2176 2177 if (type) { 2178 error = device_add_groups(dev, type->groups); 2179 if (error) 2180 goto err_remove_class_groups; 2181 } 2182 2183 error = device_add_groups(dev, dev->groups); 2184 if (error) 2185 goto err_remove_type_groups; 2186 2187 if (device_supports_offline(dev) && !dev->offline_disabled) { 2188 error = device_create_file(dev, &dev_attr_online); 2189 if (error) 2190 goto err_remove_dev_groups; 2191 } 2192 2193 if (fw_devlink_flags && !fw_devlink_is_permissive()) { 2194 error = device_create_file(dev, &dev_attr_waiting_for_supplier); 2195 if (error) 2196 goto err_remove_dev_online; 2197 } 2198 2199 return 0; 2200 2201 err_remove_dev_online: 2202 device_remove_file(dev, &dev_attr_online); 2203 err_remove_dev_groups: 2204 device_remove_groups(dev, dev->groups); 2205 err_remove_type_groups: 2206 if (type) 2207 device_remove_groups(dev, type->groups); 2208 err_remove_class_groups: 2209 if (class) 2210 device_remove_groups(dev, class->dev_groups); 2211 2212 return error; 2213 } 2214 2215 static void device_remove_attrs(struct device *dev) 2216 { 2217 struct class *class = dev->class; 2218 const struct device_type *type = dev->type; 2219 2220 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2221 device_remove_file(dev, &dev_attr_online); 2222 device_remove_groups(dev, dev->groups); 2223 2224 if (type) 2225 device_remove_groups(dev, type->groups); 2226 2227 if (class) 2228 device_remove_groups(dev, class->dev_groups); 2229 } 2230 2231 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 2232 char *buf) 2233 { 2234 return print_dev_t(buf, dev->devt); 2235 } 2236 static DEVICE_ATTR_RO(dev); 2237 2238 /* /sys/devices/ */ 2239 struct kset *devices_kset; 2240 2241 /** 2242 * devices_kset_move_before - Move device in the devices_kset's list. 2243 * @deva: Device to move. 2244 * @devb: Device @deva should come before. 2245 */ 2246 static void devices_kset_move_before(struct device *deva, struct device *devb) 2247 { 2248 if (!devices_kset) 2249 return; 2250 pr_debug("devices_kset: Moving %s before %s\n", 2251 dev_name(deva), dev_name(devb)); 2252 spin_lock(&devices_kset->list_lock); 2253 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 2254 spin_unlock(&devices_kset->list_lock); 2255 } 2256 2257 /** 2258 * devices_kset_move_after - Move device in the devices_kset's list. 2259 * @deva: Device to move 2260 * @devb: Device @deva should come after. 2261 */ 2262 static void devices_kset_move_after(struct device *deva, struct device *devb) 2263 { 2264 if (!devices_kset) 2265 return; 2266 pr_debug("devices_kset: Moving %s after %s\n", 2267 dev_name(deva), dev_name(devb)); 2268 spin_lock(&devices_kset->list_lock); 2269 list_move(&deva->kobj.entry, &devb->kobj.entry); 2270 spin_unlock(&devices_kset->list_lock); 2271 } 2272 2273 /** 2274 * devices_kset_move_last - move the device to the end of devices_kset's list. 2275 * @dev: device to move 2276 */ 2277 void devices_kset_move_last(struct device *dev) 2278 { 2279 if (!devices_kset) 2280 return; 2281 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 2282 spin_lock(&devices_kset->list_lock); 2283 list_move_tail(&dev->kobj.entry, &devices_kset->list); 2284 spin_unlock(&devices_kset->list_lock); 2285 } 2286 2287 /** 2288 * device_create_file - create sysfs attribute file for device. 2289 * @dev: device. 2290 * @attr: device attribute descriptor. 2291 */ 2292 int device_create_file(struct device *dev, 2293 const struct device_attribute *attr) 2294 { 2295 int error = 0; 2296 2297 if (dev) { 2298 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 2299 "Attribute %s: write permission without 'store'\n", 2300 attr->attr.name); 2301 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 2302 "Attribute %s: read permission without 'show'\n", 2303 attr->attr.name); 2304 error = sysfs_create_file(&dev->kobj, &attr->attr); 2305 } 2306 2307 return error; 2308 } 2309 EXPORT_SYMBOL_GPL(device_create_file); 2310 2311 /** 2312 * device_remove_file - remove sysfs attribute file. 2313 * @dev: device. 2314 * @attr: device attribute descriptor. 2315 */ 2316 void device_remove_file(struct device *dev, 2317 const struct device_attribute *attr) 2318 { 2319 if (dev) 2320 sysfs_remove_file(&dev->kobj, &attr->attr); 2321 } 2322 EXPORT_SYMBOL_GPL(device_remove_file); 2323 2324 /** 2325 * device_remove_file_self - remove sysfs attribute file from its own method. 2326 * @dev: device. 2327 * @attr: device attribute descriptor. 2328 * 2329 * See kernfs_remove_self() for details. 2330 */ 2331 bool device_remove_file_self(struct device *dev, 2332 const struct device_attribute *attr) 2333 { 2334 if (dev) 2335 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 2336 else 2337 return false; 2338 } 2339 EXPORT_SYMBOL_GPL(device_remove_file_self); 2340 2341 /** 2342 * device_create_bin_file - create sysfs binary attribute file for device. 2343 * @dev: device. 2344 * @attr: device binary attribute descriptor. 2345 */ 2346 int device_create_bin_file(struct device *dev, 2347 const struct bin_attribute *attr) 2348 { 2349 int error = -EINVAL; 2350 if (dev) 2351 error = sysfs_create_bin_file(&dev->kobj, attr); 2352 return error; 2353 } 2354 EXPORT_SYMBOL_GPL(device_create_bin_file); 2355 2356 /** 2357 * device_remove_bin_file - remove sysfs binary attribute file 2358 * @dev: device. 2359 * @attr: device binary attribute descriptor. 2360 */ 2361 void device_remove_bin_file(struct device *dev, 2362 const struct bin_attribute *attr) 2363 { 2364 if (dev) 2365 sysfs_remove_bin_file(&dev->kobj, attr); 2366 } 2367 EXPORT_SYMBOL_GPL(device_remove_bin_file); 2368 2369 static void klist_children_get(struct klist_node *n) 2370 { 2371 struct device_private *p = to_device_private_parent(n); 2372 struct device *dev = p->device; 2373 2374 get_device(dev); 2375 } 2376 2377 static void klist_children_put(struct klist_node *n) 2378 { 2379 struct device_private *p = to_device_private_parent(n); 2380 struct device *dev = p->device; 2381 2382 put_device(dev); 2383 } 2384 2385 /** 2386 * device_initialize - init device structure. 2387 * @dev: device. 2388 * 2389 * This prepares the device for use by other layers by initializing 2390 * its fields. 2391 * It is the first half of device_register(), if called by 2392 * that function, though it can also be called separately, so one 2393 * may use @dev's fields. In particular, get_device()/put_device() 2394 * may be used for reference counting of @dev after calling this 2395 * function. 2396 * 2397 * All fields in @dev must be initialized by the caller to 0, except 2398 * for those explicitly set to some other value. The simplest 2399 * approach is to use kzalloc() to allocate the structure containing 2400 * @dev. 2401 * 2402 * NOTE: Use put_device() to give up your reference instead of freeing 2403 * @dev directly once you have called this function. 2404 */ 2405 void device_initialize(struct device *dev) 2406 { 2407 dev->kobj.kset = devices_kset; 2408 kobject_init(&dev->kobj, &device_ktype); 2409 INIT_LIST_HEAD(&dev->dma_pools); 2410 mutex_init(&dev->mutex); 2411 #ifdef CONFIG_PROVE_LOCKING 2412 mutex_init(&dev->lockdep_mutex); 2413 #endif 2414 lockdep_set_novalidate_class(&dev->mutex); 2415 spin_lock_init(&dev->devres_lock); 2416 INIT_LIST_HEAD(&dev->devres_head); 2417 device_pm_init(dev); 2418 set_dev_node(dev, -1); 2419 #ifdef CONFIG_GENERIC_MSI_IRQ 2420 INIT_LIST_HEAD(&dev->msi_list); 2421 #endif 2422 INIT_LIST_HEAD(&dev->links.consumers); 2423 INIT_LIST_HEAD(&dev->links.suppliers); 2424 INIT_LIST_HEAD(&dev->links.needs_suppliers); 2425 INIT_LIST_HEAD(&dev->links.defer_hook); 2426 dev->links.status = DL_DEV_NO_DRIVER; 2427 } 2428 EXPORT_SYMBOL_GPL(device_initialize); 2429 2430 struct kobject *virtual_device_parent(struct device *dev) 2431 { 2432 static struct kobject *virtual_dir = NULL; 2433 2434 if (!virtual_dir) 2435 virtual_dir = kobject_create_and_add("virtual", 2436 &devices_kset->kobj); 2437 2438 return virtual_dir; 2439 } 2440 2441 struct class_dir { 2442 struct kobject kobj; 2443 struct class *class; 2444 }; 2445 2446 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 2447 2448 static void class_dir_release(struct kobject *kobj) 2449 { 2450 struct class_dir *dir = to_class_dir(kobj); 2451 kfree(dir); 2452 } 2453 2454 static const 2455 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj) 2456 { 2457 struct class_dir *dir = to_class_dir(kobj); 2458 return dir->class->ns_type; 2459 } 2460 2461 static struct kobj_type class_dir_ktype = { 2462 .release = class_dir_release, 2463 .sysfs_ops = &kobj_sysfs_ops, 2464 .child_ns_type = class_dir_child_ns_type 2465 }; 2466 2467 static struct kobject * 2468 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj) 2469 { 2470 struct class_dir *dir; 2471 int retval; 2472 2473 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 2474 if (!dir) 2475 return ERR_PTR(-ENOMEM); 2476 2477 dir->class = class; 2478 kobject_init(&dir->kobj, &class_dir_ktype); 2479 2480 dir->kobj.kset = &class->p->glue_dirs; 2481 2482 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name); 2483 if (retval < 0) { 2484 kobject_put(&dir->kobj); 2485 return ERR_PTR(retval); 2486 } 2487 return &dir->kobj; 2488 } 2489 2490 static DEFINE_MUTEX(gdp_mutex); 2491 2492 static struct kobject *get_device_parent(struct device *dev, 2493 struct device *parent) 2494 { 2495 if (dev->class) { 2496 struct kobject *kobj = NULL; 2497 struct kobject *parent_kobj; 2498 struct kobject *k; 2499 2500 #ifdef CONFIG_BLOCK 2501 /* block disks show up in /sys/block */ 2502 if (sysfs_deprecated && dev->class == &block_class) { 2503 if (parent && parent->class == &block_class) 2504 return &parent->kobj; 2505 return &block_class.p->subsys.kobj; 2506 } 2507 #endif 2508 2509 /* 2510 * If we have no parent, we live in "virtual". 2511 * Class-devices with a non class-device as parent, live 2512 * in a "glue" directory to prevent namespace collisions. 2513 */ 2514 if (parent == NULL) 2515 parent_kobj = virtual_device_parent(dev); 2516 else if (parent->class && !dev->class->ns_type) 2517 return &parent->kobj; 2518 else 2519 parent_kobj = &parent->kobj; 2520 2521 mutex_lock(&gdp_mutex); 2522 2523 /* find our class-directory at the parent and reference it */ 2524 spin_lock(&dev->class->p->glue_dirs.list_lock); 2525 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry) 2526 if (k->parent == parent_kobj) { 2527 kobj = kobject_get(k); 2528 break; 2529 } 2530 spin_unlock(&dev->class->p->glue_dirs.list_lock); 2531 if (kobj) { 2532 mutex_unlock(&gdp_mutex); 2533 return kobj; 2534 } 2535 2536 /* or create a new class-directory at the parent device */ 2537 k = class_dir_create_and_add(dev->class, parent_kobj); 2538 /* do not emit an uevent for this simple "glue" directory */ 2539 mutex_unlock(&gdp_mutex); 2540 return k; 2541 } 2542 2543 /* subsystems can specify a default root directory for their devices */ 2544 if (!parent && dev->bus && dev->bus->dev_root) 2545 return &dev->bus->dev_root->kobj; 2546 2547 if (parent) 2548 return &parent->kobj; 2549 return NULL; 2550 } 2551 2552 static inline bool live_in_glue_dir(struct kobject *kobj, 2553 struct device *dev) 2554 { 2555 if (!kobj || !dev->class || 2556 kobj->kset != &dev->class->p->glue_dirs) 2557 return false; 2558 return true; 2559 } 2560 2561 static inline struct kobject *get_glue_dir(struct device *dev) 2562 { 2563 return dev->kobj.parent; 2564 } 2565 2566 /* 2567 * make sure cleaning up dir as the last step, we need to make 2568 * sure .release handler of kobject is run with holding the 2569 * global lock 2570 */ 2571 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 2572 { 2573 unsigned int ref; 2574 2575 /* see if we live in a "glue" directory */ 2576 if (!live_in_glue_dir(glue_dir, dev)) 2577 return; 2578 2579 mutex_lock(&gdp_mutex); 2580 /** 2581 * There is a race condition between removing glue directory 2582 * and adding a new device under the glue directory. 2583 * 2584 * CPU1: CPU2: 2585 * 2586 * device_add() 2587 * get_device_parent() 2588 * class_dir_create_and_add() 2589 * kobject_add_internal() 2590 * create_dir() // create glue_dir 2591 * 2592 * device_add() 2593 * get_device_parent() 2594 * kobject_get() // get glue_dir 2595 * 2596 * device_del() 2597 * cleanup_glue_dir() 2598 * kobject_del(glue_dir) 2599 * 2600 * kobject_add() 2601 * kobject_add_internal() 2602 * create_dir() // in glue_dir 2603 * sysfs_create_dir_ns() 2604 * kernfs_create_dir_ns(sd) 2605 * 2606 * sysfs_remove_dir() // glue_dir->sd=NULL 2607 * sysfs_put() // free glue_dir->sd 2608 * 2609 * // sd is freed 2610 * kernfs_new_node(sd) 2611 * kernfs_get(glue_dir) 2612 * kernfs_add_one() 2613 * kernfs_put() 2614 * 2615 * Before CPU1 remove last child device under glue dir, if CPU2 add 2616 * a new device under glue dir, the glue_dir kobject reference count 2617 * will be increase to 2 in kobject_get(k). And CPU2 has been called 2618 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir() 2619 * and sysfs_put(). This result in glue_dir->sd is freed. 2620 * 2621 * Then the CPU2 will see a stale "empty" but still potentially used 2622 * glue dir around in kernfs_new_node(). 2623 * 2624 * In order to avoid this happening, we also should make sure that 2625 * kernfs_node for glue_dir is released in CPU1 only when refcount 2626 * for glue_dir kobj is 1. 2627 */ 2628 ref = kref_read(&glue_dir->kref); 2629 if (!kobject_has_children(glue_dir) && !--ref) 2630 kobject_del(glue_dir); 2631 kobject_put(glue_dir); 2632 mutex_unlock(&gdp_mutex); 2633 } 2634 2635 static int device_add_class_symlinks(struct device *dev) 2636 { 2637 struct device_node *of_node = dev_of_node(dev); 2638 int error; 2639 2640 if (of_node) { 2641 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 2642 if (error) 2643 dev_warn(dev, "Error %d creating of_node link\n",error); 2644 /* An error here doesn't warrant bringing down the device */ 2645 } 2646 2647 if (!dev->class) 2648 return 0; 2649 2650 error = sysfs_create_link(&dev->kobj, 2651 &dev->class->p->subsys.kobj, 2652 "subsystem"); 2653 if (error) 2654 goto out_devnode; 2655 2656 if (dev->parent && device_is_not_partition(dev)) { 2657 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 2658 "device"); 2659 if (error) 2660 goto out_subsys; 2661 } 2662 2663 #ifdef CONFIG_BLOCK 2664 /* /sys/block has directories and does not need symlinks */ 2665 if (sysfs_deprecated && dev->class == &block_class) 2666 return 0; 2667 #endif 2668 2669 /* link in the class directory pointing to the device */ 2670 error = sysfs_create_link(&dev->class->p->subsys.kobj, 2671 &dev->kobj, dev_name(dev)); 2672 if (error) 2673 goto out_device; 2674 2675 return 0; 2676 2677 out_device: 2678 sysfs_remove_link(&dev->kobj, "device"); 2679 2680 out_subsys: 2681 sysfs_remove_link(&dev->kobj, "subsystem"); 2682 out_devnode: 2683 sysfs_remove_link(&dev->kobj, "of_node"); 2684 return error; 2685 } 2686 2687 static void device_remove_class_symlinks(struct device *dev) 2688 { 2689 if (dev_of_node(dev)) 2690 sysfs_remove_link(&dev->kobj, "of_node"); 2691 2692 if (!dev->class) 2693 return; 2694 2695 if (dev->parent && device_is_not_partition(dev)) 2696 sysfs_remove_link(&dev->kobj, "device"); 2697 sysfs_remove_link(&dev->kobj, "subsystem"); 2698 #ifdef CONFIG_BLOCK 2699 if (sysfs_deprecated && dev->class == &block_class) 2700 return; 2701 #endif 2702 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev)); 2703 } 2704 2705 /** 2706 * dev_set_name - set a device name 2707 * @dev: device 2708 * @fmt: format string for the device's name 2709 */ 2710 int dev_set_name(struct device *dev, const char *fmt, ...) 2711 { 2712 va_list vargs; 2713 int err; 2714 2715 va_start(vargs, fmt); 2716 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 2717 va_end(vargs); 2718 return err; 2719 } 2720 EXPORT_SYMBOL_GPL(dev_set_name); 2721 2722 /** 2723 * device_to_dev_kobj - select a /sys/dev/ directory for the device 2724 * @dev: device 2725 * 2726 * By default we select char/ for new entries. Setting class->dev_obj 2727 * to NULL prevents an entry from being created. class->dev_kobj must 2728 * be set (or cleared) before any devices are registered to the class 2729 * otherwise device_create_sys_dev_entry() and 2730 * device_remove_sys_dev_entry() will disagree about the presence of 2731 * the link. 2732 */ 2733 static struct kobject *device_to_dev_kobj(struct device *dev) 2734 { 2735 struct kobject *kobj; 2736 2737 if (dev->class) 2738 kobj = dev->class->dev_kobj; 2739 else 2740 kobj = sysfs_dev_char_kobj; 2741 2742 return kobj; 2743 } 2744 2745 static int device_create_sys_dev_entry(struct device *dev) 2746 { 2747 struct kobject *kobj = device_to_dev_kobj(dev); 2748 int error = 0; 2749 char devt_str[15]; 2750 2751 if (kobj) { 2752 format_dev_t(devt_str, dev->devt); 2753 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 2754 } 2755 2756 return error; 2757 } 2758 2759 static void device_remove_sys_dev_entry(struct device *dev) 2760 { 2761 struct kobject *kobj = device_to_dev_kobj(dev); 2762 char devt_str[15]; 2763 2764 if (kobj) { 2765 format_dev_t(devt_str, dev->devt); 2766 sysfs_remove_link(kobj, devt_str); 2767 } 2768 } 2769 2770 static int device_private_init(struct device *dev) 2771 { 2772 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 2773 if (!dev->p) 2774 return -ENOMEM; 2775 dev->p->device = dev; 2776 klist_init(&dev->p->klist_children, klist_children_get, 2777 klist_children_put); 2778 INIT_LIST_HEAD(&dev->p->deferred_probe); 2779 return 0; 2780 } 2781 2782 /** 2783 * device_add - add device to device hierarchy. 2784 * @dev: device. 2785 * 2786 * This is part 2 of device_register(), though may be called 2787 * separately _iff_ device_initialize() has been called separately. 2788 * 2789 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 2790 * to the global and sibling lists for the device, then 2791 * adds it to the other relevant subsystems of the driver model. 2792 * 2793 * Do not call this routine or device_register() more than once for 2794 * any device structure. The driver model core is not designed to work 2795 * with devices that get unregistered and then spring back to life. 2796 * (Among other things, it's very hard to guarantee that all references 2797 * to the previous incarnation of @dev have been dropped.) Allocate 2798 * and register a fresh new struct device instead. 2799 * 2800 * NOTE: _Never_ directly free @dev after calling this function, even 2801 * if it returned an error! Always use put_device() to give up your 2802 * reference instead. 2803 * 2804 * Rule of thumb is: if device_add() succeeds, you should call 2805 * device_del() when you want to get rid of it. If device_add() has 2806 * *not* succeeded, use *only* put_device() to drop the reference 2807 * count. 2808 */ 2809 int device_add(struct device *dev) 2810 { 2811 struct device *parent; 2812 struct kobject *kobj; 2813 struct class_interface *class_intf; 2814 int error = -EINVAL; 2815 struct kobject *glue_dir = NULL; 2816 2817 dev = get_device(dev); 2818 if (!dev) 2819 goto done; 2820 2821 if (!dev->p) { 2822 error = device_private_init(dev); 2823 if (error) 2824 goto done; 2825 } 2826 2827 /* 2828 * for statically allocated devices, which should all be converted 2829 * some day, we need to initialize the name. We prevent reading back 2830 * the name, and force the use of dev_name() 2831 */ 2832 if (dev->init_name) { 2833 dev_set_name(dev, "%s", dev->init_name); 2834 dev->init_name = NULL; 2835 } 2836 2837 /* subsystems can specify simple device enumeration */ 2838 if (!dev_name(dev) && dev->bus && dev->bus->dev_name) 2839 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 2840 2841 if (!dev_name(dev)) { 2842 error = -EINVAL; 2843 goto name_error; 2844 } 2845 2846 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 2847 2848 parent = get_device(dev->parent); 2849 kobj = get_device_parent(dev, parent); 2850 if (IS_ERR(kobj)) { 2851 error = PTR_ERR(kobj); 2852 goto parent_error; 2853 } 2854 if (kobj) 2855 dev->kobj.parent = kobj; 2856 2857 /* use parent numa_node */ 2858 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 2859 set_dev_node(dev, dev_to_node(parent)); 2860 2861 /* first, register with generic layer. */ 2862 /* we require the name to be set before, and pass NULL */ 2863 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 2864 if (error) { 2865 glue_dir = get_glue_dir(dev); 2866 goto Error; 2867 } 2868 2869 /* notify platform of device entry */ 2870 error = device_platform_notify(dev, KOBJ_ADD); 2871 if (error) 2872 goto platform_error; 2873 2874 error = device_create_file(dev, &dev_attr_uevent); 2875 if (error) 2876 goto attrError; 2877 2878 error = device_add_class_symlinks(dev); 2879 if (error) 2880 goto SymlinkError; 2881 error = device_add_attrs(dev); 2882 if (error) 2883 goto AttrsError; 2884 error = bus_add_device(dev); 2885 if (error) 2886 goto BusError; 2887 error = dpm_sysfs_add(dev); 2888 if (error) 2889 goto DPMError; 2890 device_pm_add(dev); 2891 2892 if (MAJOR(dev->devt)) { 2893 error = device_create_file(dev, &dev_attr_dev); 2894 if (error) 2895 goto DevAttrError; 2896 2897 error = device_create_sys_dev_entry(dev); 2898 if (error) 2899 goto SysEntryError; 2900 2901 devtmpfs_create_node(dev); 2902 } 2903 2904 /* Notify clients of device addition. This call must come 2905 * after dpm_sysfs_add() and before kobject_uevent(). 2906 */ 2907 if (dev->bus) 2908 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 2909 BUS_NOTIFY_ADD_DEVICE, dev); 2910 2911 kobject_uevent(&dev->kobj, KOBJ_ADD); 2912 2913 /* 2914 * Check if any of the other devices (consumers) have been waiting for 2915 * this device (supplier) to be added so that they can create a device 2916 * link to it. 2917 * 2918 * This needs to happen after device_pm_add() because device_link_add() 2919 * requires the supplier be registered before it's called. 2920 * 2921 * But this also needs to happen before bus_probe_device() to make sure 2922 * waiting consumers can link to it before the driver is bound to the 2923 * device and the driver sync_state callback is called for this device. 2924 */ 2925 if (dev->fwnode && !dev->fwnode->dev) { 2926 dev->fwnode->dev = dev; 2927 fw_devlink_link_device(dev); 2928 } 2929 2930 bus_probe_device(dev); 2931 if (parent) 2932 klist_add_tail(&dev->p->knode_parent, 2933 &parent->p->klist_children); 2934 2935 if (dev->class) { 2936 mutex_lock(&dev->class->p->mutex); 2937 /* tie the class to the device */ 2938 klist_add_tail(&dev->p->knode_class, 2939 &dev->class->p->klist_devices); 2940 2941 /* notify any interfaces that the device is here */ 2942 list_for_each_entry(class_intf, 2943 &dev->class->p->interfaces, node) 2944 if (class_intf->add_dev) 2945 class_intf->add_dev(dev, class_intf); 2946 mutex_unlock(&dev->class->p->mutex); 2947 } 2948 done: 2949 put_device(dev); 2950 return error; 2951 SysEntryError: 2952 if (MAJOR(dev->devt)) 2953 device_remove_file(dev, &dev_attr_dev); 2954 DevAttrError: 2955 device_pm_remove(dev); 2956 dpm_sysfs_remove(dev); 2957 DPMError: 2958 bus_remove_device(dev); 2959 BusError: 2960 device_remove_attrs(dev); 2961 AttrsError: 2962 device_remove_class_symlinks(dev); 2963 SymlinkError: 2964 device_remove_file(dev, &dev_attr_uevent); 2965 attrError: 2966 device_platform_notify(dev, KOBJ_REMOVE); 2967 platform_error: 2968 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 2969 glue_dir = get_glue_dir(dev); 2970 kobject_del(&dev->kobj); 2971 Error: 2972 cleanup_glue_dir(dev, glue_dir); 2973 parent_error: 2974 put_device(parent); 2975 name_error: 2976 kfree(dev->p); 2977 dev->p = NULL; 2978 goto done; 2979 } 2980 EXPORT_SYMBOL_GPL(device_add); 2981 2982 /** 2983 * device_register - register a device with the system. 2984 * @dev: pointer to the device structure 2985 * 2986 * This happens in two clean steps - initialize the device 2987 * and add it to the system. The two steps can be called 2988 * separately, but this is the easiest and most common. 2989 * I.e. you should only call the two helpers separately if 2990 * have a clearly defined need to use and refcount the device 2991 * before it is added to the hierarchy. 2992 * 2993 * For more information, see the kerneldoc for device_initialize() 2994 * and device_add(). 2995 * 2996 * NOTE: _Never_ directly free @dev after calling this function, even 2997 * if it returned an error! Always use put_device() to give up the 2998 * reference initialized in this function instead. 2999 */ 3000 int device_register(struct device *dev) 3001 { 3002 device_initialize(dev); 3003 return device_add(dev); 3004 } 3005 EXPORT_SYMBOL_GPL(device_register); 3006 3007 /** 3008 * get_device - increment reference count for device. 3009 * @dev: device. 3010 * 3011 * This simply forwards the call to kobject_get(), though 3012 * we do take care to provide for the case that we get a NULL 3013 * pointer passed in. 3014 */ 3015 struct device *get_device(struct device *dev) 3016 { 3017 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 3018 } 3019 EXPORT_SYMBOL_GPL(get_device); 3020 3021 /** 3022 * put_device - decrement reference count. 3023 * @dev: device in question. 3024 */ 3025 void put_device(struct device *dev) 3026 { 3027 /* might_sleep(); */ 3028 if (dev) 3029 kobject_put(&dev->kobj); 3030 } 3031 EXPORT_SYMBOL_GPL(put_device); 3032 3033 bool kill_device(struct device *dev) 3034 { 3035 /* 3036 * Require the device lock and set the "dead" flag to guarantee that 3037 * the update behavior is consistent with the other bitfields near 3038 * it and that we cannot have an asynchronous probe routine trying 3039 * to run while we are tearing out the bus/class/sysfs from 3040 * underneath the device. 3041 */ 3042 lockdep_assert_held(&dev->mutex); 3043 3044 if (dev->p->dead) 3045 return false; 3046 dev->p->dead = true; 3047 return true; 3048 } 3049 EXPORT_SYMBOL_GPL(kill_device); 3050 3051 /** 3052 * device_del - delete device from system. 3053 * @dev: device. 3054 * 3055 * This is the first part of the device unregistration 3056 * sequence. This removes the device from the lists we control 3057 * from here, has it removed from the other driver model 3058 * subsystems it was added to in device_add(), and removes it 3059 * from the kobject hierarchy. 3060 * 3061 * NOTE: this should be called manually _iff_ device_add() was 3062 * also called manually. 3063 */ 3064 void device_del(struct device *dev) 3065 { 3066 struct device *parent = dev->parent; 3067 struct kobject *glue_dir = NULL; 3068 struct class_interface *class_intf; 3069 3070 device_lock(dev); 3071 kill_device(dev); 3072 device_unlock(dev); 3073 3074 if (dev->fwnode && dev->fwnode->dev == dev) 3075 dev->fwnode->dev = NULL; 3076 3077 /* Notify clients of device removal. This call must come 3078 * before dpm_sysfs_remove(). 3079 */ 3080 if (dev->bus) 3081 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 3082 BUS_NOTIFY_DEL_DEVICE, dev); 3083 3084 dpm_sysfs_remove(dev); 3085 if (parent) 3086 klist_del(&dev->p->knode_parent); 3087 if (MAJOR(dev->devt)) { 3088 devtmpfs_delete_node(dev); 3089 device_remove_sys_dev_entry(dev); 3090 device_remove_file(dev, &dev_attr_dev); 3091 } 3092 if (dev->class) { 3093 device_remove_class_symlinks(dev); 3094 3095 mutex_lock(&dev->class->p->mutex); 3096 /* notify any interfaces that the device is now gone */ 3097 list_for_each_entry(class_intf, 3098 &dev->class->p->interfaces, node) 3099 if (class_intf->remove_dev) 3100 class_intf->remove_dev(dev, class_intf); 3101 /* remove the device from the class list */ 3102 klist_del(&dev->p->knode_class); 3103 mutex_unlock(&dev->class->p->mutex); 3104 } 3105 device_remove_file(dev, &dev_attr_uevent); 3106 device_remove_attrs(dev); 3107 bus_remove_device(dev); 3108 device_pm_remove(dev); 3109 driver_deferred_probe_del(dev); 3110 device_platform_notify(dev, KOBJ_REMOVE); 3111 device_remove_properties(dev); 3112 device_links_purge(dev); 3113 3114 if (dev->bus) 3115 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 3116 BUS_NOTIFY_REMOVED_DEVICE, dev); 3117 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3118 glue_dir = get_glue_dir(dev); 3119 kobject_del(&dev->kobj); 3120 cleanup_glue_dir(dev, glue_dir); 3121 put_device(parent); 3122 } 3123 EXPORT_SYMBOL_GPL(device_del); 3124 3125 /** 3126 * device_unregister - unregister device from system. 3127 * @dev: device going away. 3128 * 3129 * We do this in two parts, like we do device_register(). First, 3130 * we remove it from all the subsystems with device_del(), then 3131 * we decrement the reference count via put_device(). If that 3132 * is the final reference count, the device will be cleaned up 3133 * via device_release() above. Otherwise, the structure will 3134 * stick around until the final reference to the device is dropped. 3135 */ 3136 void device_unregister(struct device *dev) 3137 { 3138 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3139 device_del(dev); 3140 put_device(dev); 3141 } 3142 EXPORT_SYMBOL_GPL(device_unregister); 3143 3144 static struct device *prev_device(struct klist_iter *i) 3145 { 3146 struct klist_node *n = klist_prev(i); 3147 struct device *dev = NULL; 3148 struct device_private *p; 3149 3150 if (n) { 3151 p = to_device_private_parent(n); 3152 dev = p->device; 3153 } 3154 return dev; 3155 } 3156 3157 static struct device *next_device(struct klist_iter *i) 3158 { 3159 struct klist_node *n = klist_next(i); 3160 struct device *dev = NULL; 3161 struct device_private *p; 3162 3163 if (n) { 3164 p = to_device_private_parent(n); 3165 dev = p->device; 3166 } 3167 return dev; 3168 } 3169 3170 /** 3171 * device_get_devnode - path of device node file 3172 * @dev: device 3173 * @mode: returned file access mode 3174 * @uid: returned file owner 3175 * @gid: returned file group 3176 * @tmp: possibly allocated string 3177 * 3178 * Return the relative path of a possible device node. 3179 * Non-default names may need to allocate a memory to compose 3180 * a name. This memory is returned in tmp and needs to be 3181 * freed by the caller. 3182 */ 3183 const char *device_get_devnode(struct device *dev, 3184 umode_t *mode, kuid_t *uid, kgid_t *gid, 3185 const char **tmp) 3186 { 3187 char *s; 3188 3189 *tmp = NULL; 3190 3191 /* the device type may provide a specific name */ 3192 if (dev->type && dev->type->devnode) 3193 *tmp = dev->type->devnode(dev, mode, uid, gid); 3194 if (*tmp) 3195 return *tmp; 3196 3197 /* the class may provide a specific name */ 3198 if (dev->class && dev->class->devnode) 3199 *tmp = dev->class->devnode(dev, mode); 3200 if (*tmp) 3201 return *tmp; 3202 3203 /* return name without allocation, tmp == NULL */ 3204 if (strchr(dev_name(dev), '!') == NULL) 3205 return dev_name(dev); 3206 3207 /* replace '!' in the name with '/' */ 3208 s = kstrdup(dev_name(dev), GFP_KERNEL); 3209 if (!s) 3210 return NULL; 3211 strreplace(s, '!', '/'); 3212 return *tmp = s; 3213 } 3214 3215 /** 3216 * device_for_each_child - device child iterator. 3217 * @parent: parent struct device. 3218 * @fn: function to be called for each device. 3219 * @data: data for the callback. 3220 * 3221 * Iterate over @parent's child devices, and call @fn for each, 3222 * passing it @data. 3223 * 3224 * We check the return of @fn each time. If it returns anything 3225 * other than 0, we break out and return that value. 3226 */ 3227 int device_for_each_child(struct device *parent, void *data, 3228 int (*fn)(struct device *dev, void *data)) 3229 { 3230 struct klist_iter i; 3231 struct device *child; 3232 int error = 0; 3233 3234 if (!parent->p) 3235 return 0; 3236 3237 klist_iter_init(&parent->p->klist_children, &i); 3238 while (!error && (child = next_device(&i))) 3239 error = fn(child, data); 3240 klist_iter_exit(&i); 3241 return error; 3242 } 3243 EXPORT_SYMBOL_GPL(device_for_each_child); 3244 3245 /** 3246 * device_for_each_child_reverse - device child iterator in reversed order. 3247 * @parent: parent struct device. 3248 * @fn: function to be called for each device. 3249 * @data: data for the callback. 3250 * 3251 * Iterate over @parent's child devices, and call @fn for each, 3252 * passing it @data. 3253 * 3254 * We check the return of @fn each time. If it returns anything 3255 * other than 0, we break out and return that value. 3256 */ 3257 int device_for_each_child_reverse(struct device *parent, void *data, 3258 int (*fn)(struct device *dev, void *data)) 3259 { 3260 struct klist_iter i; 3261 struct device *child; 3262 int error = 0; 3263 3264 if (!parent->p) 3265 return 0; 3266 3267 klist_iter_init(&parent->p->klist_children, &i); 3268 while ((child = prev_device(&i)) && !error) 3269 error = fn(child, data); 3270 klist_iter_exit(&i); 3271 return error; 3272 } 3273 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 3274 3275 /** 3276 * device_find_child - device iterator for locating a particular device. 3277 * @parent: parent struct device 3278 * @match: Callback function to check device 3279 * @data: Data to pass to match function 3280 * 3281 * This is similar to the device_for_each_child() function above, but it 3282 * returns a reference to a device that is 'found' for later use, as 3283 * determined by the @match callback. 3284 * 3285 * The callback should return 0 if the device doesn't match and non-zero 3286 * if it does. If the callback returns non-zero and a reference to the 3287 * current device can be obtained, this function will return to the caller 3288 * and not iterate over any more devices. 3289 * 3290 * NOTE: you will need to drop the reference with put_device() after use. 3291 */ 3292 struct device *device_find_child(struct device *parent, void *data, 3293 int (*match)(struct device *dev, void *data)) 3294 { 3295 struct klist_iter i; 3296 struct device *child; 3297 3298 if (!parent) 3299 return NULL; 3300 3301 klist_iter_init(&parent->p->klist_children, &i); 3302 while ((child = next_device(&i))) 3303 if (match(child, data) && get_device(child)) 3304 break; 3305 klist_iter_exit(&i); 3306 return child; 3307 } 3308 EXPORT_SYMBOL_GPL(device_find_child); 3309 3310 /** 3311 * device_find_child_by_name - device iterator for locating a child device. 3312 * @parent: parent struct device 3313 * @name: name of the child device 3314 * 3315 * This is similar to the device_find_child() function above, but it 3316 * returns a reference to a device that has the name @name. 3317 * 3318 * NOTE: you will need to drop the reference with put_device() after use. 3319 */ 3320 struct device *device_find_child_by_name(struct device *parent, 3321 const char *name) 3322 { 3323 struct klist_iter i; 3324 struct device *child; 3325 3326 if (!parent) 3327 return NULL; 3328 3329 klist_iter_init(&parent->p->klist_children, &i); 3330 while ((child = next_device(&i))) 3331 if (!strcmp(dev_name(child), name) && get_device(child)) 3332 break; 3333 klist_iter_exit(&i); 3334 return child; 3335 } 3336 EXPORT_SYMBOL_GPL(device_find_child_by_name); 3337 3338 int __init devices_init(void) 3339 { 3340 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 3341 if (!devices_kset) 3342 return -ENOMEM; 3343 dev_kobj = kobject_create_and_add("dev", NULL); 3344 if (!dev_kobj) 3345 goto dev_kobj_err; 3346 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 3347 if (!sysfs_dev_block_kobj) 3348 goto block_kobj_err; 3349 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 3350 if (!sysfs_dev_char_kobj) 3351 goto char_kobj_err; 3352 3353 return 0; 3354 3355 char_kobj_err: 3356 kobject_put(sysfs_dev_block_kobj); 3357 block_kobj_err: 3358 kobject_put(dev_kobj); 3359 dev_kobj_err: 3360 kset_unregister(devices_kset); 3361 return -ENOMEM; 3362 } 3363 3364 static int device_check_offline(struct device *dev, void *not_used) 3365 { 3366 int ret; 3367 3368 ret = device_for_each_child(dev, NULL, device_check_offline); 3369 if (ret) 3370 return ret; 3371 3372 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 3373 } 3374 3375 /** 3376 * device_offline - Prepare the device for hot-removal. 3377 * @dev: Device to be put offline. 3378 * 3379 * Execute the device bus type's .offline() callback, if present, to prepare 3380 * the device for a subsequent hot-removal. If that succeeds, the device must 3381 * not be used until either it is removed or its bus type's .online() callback 3382 * is executed. 3383 * 3384 * Call under device_hotplug_lock. 3385 */ 3386 int device_offline(struct device *dev) 3387 { 3388 int ret; 3389 3390 if (dev->offline_disabled) 3391 return -EPERM; 3392 3393 ret = device_for_each_child(dev, NULL, device_check_offline); 3394 if (ret) 3395 return ret; 3396 3397 device_lock(dev); 3398 if (device_supports_offline(dev)) { 3399 if (dev->offline) { 3400 ret = 1; 3401 } else { 3402 ret = dev->bus->offline(dev); 3403 if (!ret) { 3404 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 3405 dev->offline = true; 3406 } 3407 } 3408 } 3409 device_unlock(dev); 3410 3411 return ret; 3412 } 3413 3414 /** 3415 * device_online - Put the device back online after successful device_offline(). 3416 * @dev: Device to be put back online. 3417 * 3418 * If device_offline() has been successfully executed for @dev, but the device 3419 * has not been removed subsequently, execute its bus type's .online() callback 3420 * to indicate that the device can be used again. 3421 * 3422 * Call under device_hotplug_lock. 3423 */ 3424 int device_online(struct device *dev) 3425 { 3426 int ret = 0; 3427 3428 device_lock(dev); 3429 if (device_supports_offline(dev)) { 3430 if (dev->offline) { 3431 ret = dev->bus->online(dev); 3432 if (!ret) { 3433 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 3434 dev->offline = false; 3435 } 3436 } else { 3437 ret = 1; 3438 } 3439 } 3440 device_unlock(dev); 3441 3442 return ret; 3443 } 3444 3445 struct root_device { 3446 struct device dev; 3447 struct module *owner; 3448 }; 3449 3450 static inline struct root_device *to_root_device(struct device *d) 3451 { 3452 return container_of(d, struct root_device, dev); 3453 } 3454 3455 static void root_device_release(struct device *dev) 3456 { 3457 kfree(to_root_device(dev)); 3458 } 3459 3460 /** 3461 * __root_device_register - allocate and register a root device 3462 * @name: root device name 3463 * @owner: owner module of the root device, usually THIS_MODULE 3464 * 3465 * This function allocates a root device and registers it 3466 * using device_register(). In order to free the returned 3467 * device, use root_device_unregister(). 3468 * 3469 * Root devices are dummy devices which allow other devices 3470 * to be grouped under /sys/devices. Use this function to 3471 * allocate a root device and then use it as the parent of 3472 * any device which should appear under /sys/devices/{name} 3473 * 3474 * The /sys/devices/{name} directory will also contain a 3475 * 'module' symlink which points to the @owner directory 3476 * in sysfs. 3477 * 3478 * Returns &struct device pointer on success, or ERR_PTR() on error. 3479 * 3480 * Note: You probably want to use root_device_register(). 3481 */ 3482 struct device *__root_device_register(const char *name, struct module *owner) 3483 { 3484 struct root_device *root; 3485 int err = -ENOMEM; 3486 3487 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 3488 if (!root) 3489 return ERR_PTR(err); 3490 3491 err = dev_set_name(&root->dev, "%s", name); 3492 if (err) { 3493 kfree(root); 3494 return ERR_PTR(err); 3495 } 3496 3497 root->dev.release = root_device_release; 3498 3499 err = device_register(&root->dev); 3500 if (err) { 3501 put_device(&root->dev); 3502 return ERR_PTR(err); 3503 } 3504 3505 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 3506 if (owner) { 3507 struct module_kobject *mk = &owner->mkobj; 3508 3509 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 3510 if (err) { 3511 device_unregister(&root->dev); 3512 return ERR_PTR(err); 3513 } 3514 root->owner = owner; 3515 } 3516 #endif 3517 3518 return &root->dev; 3519 } 3520 EXPORT_SYMBOL_GPL(__root_device_register); 3521 3522 /** 3523 * root_device_unregister - unregister and free a root device 3524 * @dev: device going away 3525 * 3526 * This function unregisters and cleans up a device that was created by 3527 * root_device_register(). 3528 */ 3529 void root_device_unregister(struct device *dev) 3530 { 3531 struct root_device *root = to_root_device(dev); 3532 3533 if (root->owner) 3534 sysfs_remove_link(&root->dev.kobj, "module"); 3535 3536 device_unregister(dev); 3537 } 3538 EXPORT_SYMBOL_GPL(root_device_unregister); 3539 3540 3541 static void device_create_release(struct device *dev) 3542 { 3543 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3544 kfree(dev); 3545 } 3546 3547 static __printf(6, 0) struct device * 3548 device_create_groups_vargs(struct class *class, struct device *parent, 3549 dev_t devt, void *drvdata, 3550 const struct attribute_group **groups, 3551 const char *fmt, va_list args) 3552 { 3553 struct device *dev = NULL; 3554 int retval = -ENODEV; 3555 3556 if (class == NULL || IS_ERR(class)) 3557 goto error; 3558 3559 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3560 if (!dev) { 3561 retval = -ENOMEM; 3562 goto error; 3563 } 3564 3565 device_initialize(dev); 3566 dev->devt = devt; 3567 dev->class = class; 3568 dev->parent = parent; 3569 dev->groups = groups; 3570 dev->release = device_create_release; 3571 dev_set_drvdata(dev, drvdata); 3572 3573 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 3574 if (retval) 3575 goto error; 3576 3577 retval = device_add(dev); 3578 if (retval) 3579 goto error; 3580 3581 return dev; 3582 3583 error: 3584 put_device(dev); 3585 return ERR_PTR(retval); 3586 } 3587 3588 /** 3589 * device_create - creates a device and registers it with sysfs 3590 * @class: pointer to the struct class that this device should be registered to 3591 * @parent: pointer to the parent struct device of this new device, if any 3592 * @devt: the dev_t for the char device to be added 3593 * @drvdata: the data to be added to the device for callbacks 3594 * @fmt: string for the device's name 3595 * 3596 * This function can be used by char device classes. A struct device 3597 * will be created in sysfs, registered to the specified class. 3598 * 3599 * A "dev" file will be created, showing the dev_t for the device, if 3600 * the dev_t is not 0,0. 3601 * If a pointer to a parent struct device is passed in, the newly created 3602 * struct device will be a child of that device in sysfs. 3603 * The pointer to the struct device will be returned from the call. 3604 * Any further sysfs files that might be required can be created using this 3605 * pointer. 3606 * 3607 * Returns &struct device pointer on success, or ERR_PTR() on error. 3608 * 3609 * Note: the struct class passed to this function must have previously 3610 * been created with a call to class_create(). 3611 */ 3612 struct device *device_create(struct class *class, struct device *parent, 3613 dev_t devt, void *drvdata, const char *fmt, ...) 3614 { 3615 va_list vargs; 3616 struct device *dev; 3617 3618 va_start(vargs, fmt); 3619 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL, 3620 fmt, vargs); 3621 va_end(vargs); 3622 return dev; 3623 } 3624 EXPORT_SYMBOL_GPL(device_create); 3625 3626 /** 3627 * device_create_with_groups - creates a device and registers it with sysfs 3628 * @class: pointer to the struct class that this device should be registered to 3629 * @parent: pointer to the parent struct device of this new device, if any 3630 * @devt: the dev_t for the char device to be added 3631 * @drvdata: the data to be added to the device for callbacks 3632 * @groups: NULL-terminated list of attribute groups to be created 3633 * @fmt: string for the device's name 3634 * 3635 * This function can be used by char device classes. A struct device 3636 * will be created in sysfs, registered to the specified class. 3637 * Additional attributes specified in the groups parameter will also 3638 * be created automatically. 3639 * 3640 * A "dev" file will be created, showing the dev_t for the device, if 3641 * the dev_t is not 0,0. 3642 * If a pointer to a parent struct device is passed in, the newly created 3643 * struct device will be a child of that device in sysfs. 3644 * The pointer to the struct device will be returned from the call. 3645 * Any further sysfs files that might be required can be created using this 3646 * pointer. 3647 * 3648 * Returns &struct device pointer on success, or ERR_PTR() on error. 3649 * 3650 * Note: the struct class passed to this function must have previously 3651 * been created with a call to class_create(). 3652 */ 3653 struct device *device_create_with_groups(struct class *class, 3654 struct device *parent, dev_t devt, 3655 void *drvdata, 3656 const struct attribute_group **groups, 3657 const char *fmt, ...) 3658 { 3659 va_list vargs; 3660 struct device *dev; 3661 3662 va_start(vargs, fmt); 3663 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 3664 fmt, vargs); 3665 va_end(vargs); 3666 return dev; 3667 } 3668 EXPORT_SYMBOL_GPL(device_create_with_groups); 3669 3670 /** 3671 * device_destroy - removes a device that was created with device_create() 3672 * @class: pointer to the struct class that this device was registered with 3673 * @devt: the dev_t of the device that was previously registered 3674 * 3675 * This call unregisters and cleans up a device that was created with a 3676 * call to device_create(). 3677 */ 3678 void device_destroy(struct class *class, dev_t devt) 3679 { 3680 struct device *dev; 3681 3682 dev = class_find_device_by_devt(class, devt); 3683 if (dev) { 3684 put_device(dev); 3685 device_unregister(dev); 3686 } 3687 } 3688 EXPORT_SYMBOL_GPL(device_destroy); 3689 3690 /** 3691 * device_rename - renames a device 3692 * @dev: the pointer to the struct device to be renamed 3693 * @new_name: the new name of the device 3694 * 3695 * It is the responsibility of the caller to provide mutual 3696 * exclusion between two different calls of device_rename 3697 * on the same device to ensure that new_name is valid and 3698 * won't conflict with other devices. 3699 * 3700 * Note: Don't call this function. Currently, the networking layer calls this 3701 * function, but that will change. The following text from Kay Sievers offers 3702 * some insight: 3703 * 3704 * Renaming devices is racy at many levels, symlinks and other stuff are not 3705 * replaced atomically, and you get a "move" uevent, but it's not easy to 3706 * connect the event to the old and new device. Device nodes are not renamed at 3707 * all, there isn't even support for that in the kernel now. 3708 * 3709 * In the meantime, during renaming, your target name might be taken by another 3710 * driver, creating conflicts. Or the old name is taken directly after you 3711 * renamed it -- then you get events for the same DEVPATH, before you even see 3712 * the "move" event. It's just a mess, and nothing new should ever rely on 3713 * kernel device renaming. Besides that, it's not even implemented now for 3714 * other things than (driver-core wise very simple) network devices. 3715 * 3716 * We are currently about to change network renaming in udev to completely 3717 * disallow renaming of devices in the same namespace as the kernel uses, 3718 * because we can't solve the problems properly, that arise with swapping names 3719 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only 3720 * be allowed to some other name than eth[0-9]*, for the aforementioned 3721 * reasons. 3722 * 3723 * Make up a "real" name in the driver before you register anything, or add 3724 * some other attributes for userspace to find the device, or use udev to add 3725 * symlinks -- but never rename kernel devices later, it's a complete mess. We 3726 * don't even want to get into that and try to implement the missing pieces in 3727 * the core. We really have other pieces to fix in the driver core mess. :) 3728 */ 3729 int device_rename(struct device *dev, const char *new_name) 3730 { 3731 struct kobject *kobj = &dev->kobj; 3732 char *old_device_name = NULL; 3733 int error; 3734 3735 dev = get_device(dev); 3736 if (!dev) 3737 return -EINVAL; 3738 3739 dev_dbg(dev, "renaming to %s\n", new_name); 3740 3741 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 3742 if (!old_device_name) { 3743 error = -ENOMEM; 3744 goto out; 3745 } 3746 3747 if (dev->class) { 3748 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj, 3749 kobj, old_device_name, 3750 new_name, kobject_namespace(kobj)); 3751 if (error) 3752 goto out; 3753 } 3754 3755 error = kobject_rename(kobj, new_name); 3756 if (error) 3757 goto out; 3758 3759 out: 3760 put_device(dev); 3761 3762 kfree(old_device_name); 3763 3764 return error; 3765 } 3766 EXPORT_SYMBOL_GPL(device_rename); 3767 3768 static int device_move_class_links(struct device *dev, 3769 struct device *old_parent, 3770 struct device *new_parent) 3771 { 3772 int error = 0; 3773 3774 if (old_parent) 3775 sysfs_remove_link(&dev->kobj, "device"); 3776 if (new_parent) 3777 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 3778 "device"); 3779 return error; 3780 } 3781 3782 /** 3783 * device_move - moves a device to a new parent 3784 * @dev: the pointer to the struct device to be moved 3785 * @new_parent: the new parent of the device (can be NULL) 3786 * @dpm_order: how to reorder the dpm_list 3787 */ 3788 int device_move(struct device *dev, struct device *new_parent, 3789 enum dpm_order dpm_order) 3790 { 3791 int error; 3792 struct device *old_parent; 3793 struct kobject *new_parent_kobj; 3794 3795 dev = get_device(dev); 3796 if (!dev) 3797 return -EINVAL; 3798 3799 device_pm_lock(); 3800 new_parent = get_device(new_parent); 3801 new_parent_kobj = get_device_parent(dev, new_parent); 3802 if (IS_ERR(new_parent_kobj)) { 3803 error = PTR_ERR(new_parent_kobj); 3804 put_device(new_parent); 3805 goto out; 3806 } 3807 3808 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 3809 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 3810 error = kobject_move(&dev->kobj, new_parent_kobj); 3811 if (error) { 3812 cleanup_glue_dir(dev, new_parent_kobj); 3813 put_device(new_parent); 3814 goto out; 3815 } 3816 old_parent = dev->parent; 3817 dev->parent = new_parent; 3818 if (old_parent) 3819 klist_remove(&dev->p->knode_parent); 3820 if (new_parent) { 3821 klist_add_tail(&dev->p->knode_parent, 3822 &new_parent->p->klist_children); 3823 set_dev_node(dev, dev_to_node(new_parent)); 3824 } 3825 3826 if (dev->class) { 3827 error = device_move_class_links(dev, old_parent, new_parent); 3828 if (error) { 3829 /* We ignore errors on cleanup since we're hosed anyway... */ 3830 device_move_class_links(dev, new_parent, old_parent); 3831 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 3832 if (new_parent) 3833 klist_remove(&dev->p->knode_parent); 3834 dev->parent = old_parent; 3835 if (old_parent) { 3836 klist_add_tail(&dev->p->knode_parent, 3837 &old_parent->p->klist_children); 3838 set_dev_node(dev, dev_to_node(old_parent)); 3839 } 3840 } 3841 cleanup_glue_dir(dev, new_parent_kobj); 3842 put_device(new_parent); 3843 goto out; 3844 } 3845 } 3846 switch (dpm_order) { 3847 case DPM_ORDER_NONE: 3848 break; 3849 case DPM_ORDER_DEV_AFTER_PARENT: 3850 device_pm_move_after(dev, new_parent); 3851 devices_kset_move_after(dev, new_parent); 3852 break; 3853 case DPM_ORDER_PARENT_BEFORE_DEV: 3854 device_pm_move_before(new_parent, dev); 3855 devices_kset_move_before(new_parent, dev); 3856 break; 3857 case DPM_ORDER_DEV_LAST: 3858 device_pm_move_last(dev); 3859 devices_kset_move_last(dev); 3860 break; 3861 } 3862 3863 put_device(old_parent); 3864 out: 3865 device_pm_unlock(); 3866 put_device(dev); 3867 return error; 3868 } 3869 EXPORT_SYMBOL_GPL(device_move); 3870 3871 static int device_attrs_change_owner(struct device *dev, kuid_t kuid, 3872 kgid_t kgid) 3873 { 3874 struct kobject *kobj = &dev->kobj; 3875 struct class *class = dev->class; 3876 const struct device_type *type = dev->type; 3877 int error; 3878 3879 if (class) { 3880 /* 3881 * Change the device groups of the device class for @dev to 3882 * @kuid/@kgid. 3883 */ 3884 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid, 3885 kgid); 3886 if (error) 3887 return error; 3888 } 3889 3890 if (type) { 3891 /* 3892 * Change the device groups of the device type for @dev to 3893 * @kuid/@kgid. 3894 */ 3895 error = sysfs_groups_change_owner(kobj, type->groups, kuid, 3896 kgid); 3897 if (error) 3898 return error; 3899 } 3900 3901 /* Change the device groups of @dev to @kuid/@kgid. */ 3902 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid); 3903 if (error) 3904 return error; 3905 3906 if (device_supports_offline(dev) && !dev->offline_disabled) { 3907 /* Change online device attributes of @dev to @kuid/@kgid. */ 3908 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name, 3909 kuid, kgid); 3910 if (error) 3911 return error; 3912 } 3913 3914 return 0; 3915 } 3916 3917 /** 3918 * device_change_owner - change the owner of an existing device. 3919 * @dev: device. 3920 * @kuid: new owner's kuid 3921 * @kgid: new owner's kgid 3922 * 3923 * This changes the owner of @dev and its corresponding sysfs entries to 3924 * @kuid/@kgid. This function closely mirrors how @dev was added via driver 3925 * core. 3926 * 3927 * Returns 0 on success or error code on failure. 3928 */ 3929 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid) 3930 { 3931 int error; 3932 struct kobject *kobj = &dev->kobj; 3933 3934 dev = get_device(dev); 3935 if (!dev) 3936 return -EINVAL; 3937 3938 /* 3939 * Change the kobject and the default attributes and groups of the 3940 * ktype associated with it to @kuid/@kgid. 3941 */ 3942 error = sysfs_change_owner(kobj, kuid, kgid); 3943 if (error) 3944 goto out; 3945 3946 /* 3947 * Change the uevent file for @dev to the new owner. The uevent file 3948 * was created in a separate step when @dev got added and we mirror 3949 * that step here. 3950 */ 3951 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid, 3952 kgid); 3953 if (error) 3954 goto out; 3955 3956 /* 3957 * Change the device groups, the device groups associated with the 3958 * device class, and the groups associated with the device type of @dev 3959 * to @kuid/@kgid. 3960 */ 3961 error = device_attrs_change_owner(dev, kuid, kgid); 3962 if (error) 3963 goto out; 3964 3965 error = dpm_sysfs_change_owner(dev, kuid, kgid); 3966 if (error) 3967 goto out; 3968 3969 #ifdef CONFIG_BLOCK 3970 if (sysfs_deprecated && dev->class == &block_class) 3971 goto out; 3972 #endif 3973 3974 /* 3975 * Change the owner of the symlink located in the class directory of 3976 * the device class associated with @dev which points to the actual 3977 * directory entry for @dev to @kuid/@kgid. This ensures that the 3978 * symlink shows the same permissions as its target. 3979 */ 3980 error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj, 3981 dev_name(dev), kuid, kgid); 3982 if (error) 3983 goto out; 3984 3985 out: 3986 put_device(dev); 3987 return error; 3988 } 3989 EXPORT_SYMBOL_GPL(device_change_owner); 3990 3991 /** 3992 * device_shutdown - call ->shutdown() on each device to shutdown. 3993 */ 3994 void device_shutdown(void) 3995 { 3996 struct device *dev, *parent; 3997 3998 wait_for_device_probe(); 3999 device_block_probing(); 4000 4001 cpufreq_suspend(); 4002 4003 spin_lock(&devices_kset->list_lock); 4004 /* 4005 * Walk the devices list backward, shutting down each in turn. 4006 * Beware that device unplug events may also start pulling 4007 * devices offline, even as the system is shutting down. 4008 */ 4009 while (!list_empty(&devices_kset->list)) { 4010 dev = list_entry(devices_kset->list.prev, struct device, 4011 kobj.entry); 4012 4013 /* 4014 * hold reference count of device's parent to 4015 * prevent it from being freed because parent's 4016 * lock is to be held 4017 */ 4018 parent = get_device(dev->parent); 4019 get_device(dev); 4020 /* 4021 * Make sure the device is off the kset list, in the 4022 * event that dev->*->shutdown() doesn't remove it. 4023 */ 4024 list_del_init(&dev->kobj.entry); 4025 spin_unlock(&devices_kset->list_lock); 4026 4027 /* hold lock to avoid race with probe/release */ 4028 if (parent) 4029 device_lock(parent); 4030 device_lock(dev); 4031 4032 /* Don't allow any more runtime suspends */ 4033 pm_runtime_get_noresume(dev); 4034 pm_runtime_barrier(dev); 4035 4036 if (dev->class && dev->class->shutdown_pre) { 4037 if (initcall_debug) 4038 dev_info(dev, "shutdown_pre\n"); 4039 dev->class->shutdown_pre(dev); 4040 } 4041 if (dev->bus && dev->bus->shutdown) { 4042 if (initcall_debug) 4043 dev_info(dev, "shutdown\n"); 4044 dev->bus->shutdown(dev); 4045 } else if (dev->driver && dev->driver->shutdown) { 4046 if (initcall_debug) 4047 dev_info(dev, "shutdown\n"); 4048 dev->driver->shutdown(dev); 4049 } 4050 4051 device_unlock(dev); 4052 if (parent) 4053 device_unlock(parent); 4054 4055 put_device(dev); 4056 put_device(parent); 4057 4058 spin_lock(&devices_kset->list_lock); 4059 } 4060 spin_unlock(&devices_kset->list_lock); 4061 } 4062 4063 /* 4064 * Device logging functions 4065 */ 4066 4067 #ifdef CONFIG_PRINTK 4068 static int 4069 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen) 4070 { 4071 const char *subsys; 4072 size_t pos = 0; 4073 4074 if (dev->class) 4075 subsys = dev->class->name; 4076 else if (dev->bus) 4077 subsys = dev->bus->name; 4078 else 4079 return 0; 4080 4081 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys); 4082 if (pos >= hdrlen) 4083 goto overflow; 4084 4085 /* 4086 * Add device identifier DEVICE=: 4087 * b12:8 block dev_t 4088 * c127:3 char dev_t 4089 * n8 netdev ifindex 4090 * +sound:card0 subsystem:devname 4091 */ 4092 if (MAJOR(dev->devt)) { 4093 char c; 4094 4095 if (strcmp(subsys, "block") == 0) 4096 c = 'b'; 4097 else 4098 c = 'c'; 4099 pos++; 4100 pos += snprintf(hdr + pos, hdrlen - pos, 4101 "DEVICE=%c%u:%u", 4102 c, MAJOR(dev->devt), MINOR(dev->devt)); 4103 } else if (strcmp(subsys, "net") == 0) { 4104 struct net_device *net = to_net_dev(dev); 4105 4106 pos++; 4107 pos += snprintf(hdr + pos, hdrlen - pos, 4108 "DEVICE=n%u", net->ifindex); 4109 } else { 4110 pos++; 4111 pos += snprintf(hdr + pos, hdrlen - pos, 4112 "DEVICE=+%s:%s", subsys, dev_name(dev)); 4113 } 4114 4115 if (pos >= hdrlen) 4116 goto overflow; 4117 4118 return pos; 4119 4120 overflow: 4121 dev_WARN(dev, "device/subsystem name too long"); 4122 return 0; 4123 } 4124 4125 int dev_vprintk_emit(int level, const struct device *dev, 4126 const char *fmt, va_list args) 4127 { 4128 char hdr[128]; 4129 size_t hdrlen; 4130 4131 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr)); 4132 4133 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args); 4134 } 4135 EXPORT_SYMBOL(dev_vprintk_emit); 4136 4137 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 4138 { 4139 va_list args; 4140 int r; 4141 4142 va_start(args, fmt); 4143 4144 r = dev_vprintk_emit(level, dev, fmt, args); 4145 4146 va_end(args); 4147 4148 return r; 4149 } 4150 EXPORT_SYMBOL(dev_printk_emit); 4151 4152 static void __dev_printk(const char *level, const struct device *dev, 4153 struct va_format *vaf) 4154 { 4155 if (dev) 4156 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 4157 dev_driver_string(dev), dev_name(dev), vaf); 4158 else 4159 printk("%s(NULL device *): %pV", level, vaf); 4160 } 4161 4162 void dev_printk(const char *level, const struct device *dev, 4163 const char *fmt, ...) 4164 { 4165 struct va_format vaf; 4166 va_list args; 4167 4168 va_start(args, fmt); 4169 4170 vaf.fmt = fmt; 4171 vaf.va = &args; 4172 4173 __dev_printk(level, dev, &vaf); 4174 4175 va_end(args); 4176 } 4177 EXPORT_SYMBOL(dev_printk); 4178 4179 #define define_dev_printk_level(func, kern_level) \ 4180 void func(const struct device *dev, const char *fmt, ...) \ 4181 { \ 4182 struct va_format vaf; \ 4183 va_list args; \ 4184 \ 4185 va_start(args, fmt); \ 4186 \ 4187 vaf.fmt = fmt; \ 4188 vaf.va = &args; \ 4189 \ 4190 __dev_printk(kern_level, dev, &vaf); \ 4191 \ 4192 va_end(args); \ 4193 } \ 4194 EXPORT_SYMBOL(func); 4195 4196 define_dev_printk_level(_dev_emerg, KERN_EMERG); 4197 define_dev_printk_level(_dev_alert, KERN_ALERT); 4198 define_dev_printk_level(_dev_crit, KERN_CRIT); 4199 define_dev_printk_level(_dev_err, KERN_ERR); 4200 define_dev_printk_level(_dev_warn, KERN_WARNING); 4201 define_dev_printk_level(_dev_notice, KERN_NOTICE); 4202 define_dev_printk_level(_dev_info, KERN_INFO); 4203 4204 #endif 4205 4206 /** 4207 * dev_err_probe - probe error check and log helper 4208 * @dev: the pointer to the struct device 4209 * @err: error value to test 4210 * @fmt: printf-style format string 4211 * @...: arguments as specified in the format string 4212 * 4213 * This helper implements common pattern present in probe functions for error 4214 * checking: print debug or error message depending if the error value is 4215 * -EPROBE_DEFER and propagate error upwards. 4216 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be 4217 * checked later by reading devices_deferred debugfs attribute. 4218 * It replaces code sequence: 4219 * if (err != -EPROBE_DEFER) 4220 * dev_err(dev, ...); 4221 * else 4222 * dev_dbg(dev, ...); 4223 * return err; 4224 * with 4225 * return dev_err_probe(dev, err, ...); 4226 * 4227 * Returns @err. 4228 * 4229 */ 4230 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...) 4231 { 4232 struct va_format vaf; 4233 va_list args; 4234 4235 va_start(args, fmt); 4236 vaf.fmt = fmt; 4237 vaf.va = &args; 4238 4239 if (err != -EPROBE_DEFER) { 4240 dev_err(dev, "error %d: %pV", err, &vaf); 4241 } else { 4242 device_set_deferred_probe_reason(dev, &vaf); 4243 dev_dbg(dev, "error %d: %pV", err, &vaf); 4244 } 4245 4246 va_end(args); 4247 4248 return err; 4249 } 4250 EXPORT_SYMBOL_GPL(dev_err_probe); 4251 4252 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 4253 { 4254 return fwnode && !IS_ERR(fwnode->secondary); 4255 } 4256 4257 /** 4258 * set_primary_fwnode - Change the primary firmware node of a given device. 4259 * @dev: Device to handle. 4260 * @fwnode: New primary firmware node of the device. 4261 * 4262 * Set the device's firmware node pointer to @fwnode, but if a secondary 4263 * firmware node of the device is present, preserve it. 4264 */ 4265 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 4266 { 4267 if (fwnode) { 4268 struct fwnode_handle *fn = dev->fwnode; 4269 4270 if (fwnode_is_primary(fn)) 4271 fn = fn->secondary; 4272 4273 if (fn) { 4274 WARN_ON(fwnode->secondary); 4275 fwnode->secondary = fn; 4276 } 4277 dev->fwnode = fwnode; 4278 } else { 4279 dev->fwnode = fwnode_is_primary(dev->fwnode) ? 4280 dev->fwnode->secondary : NULL; 4281 } 4282 } 4283 EXPORT_SYMBOL_GPL(set_primary_fwnode); 4284 4285 /** 4286 * set_secondary_fwnode - Change the secondary firmware node of a given device. 4287 * @dev: Device to handle. 4288 * @fwnode: New secondary firmware node of the device. 4289 * 4290 * If a primary firmware node of the device is present, set its secondary 4291 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 4292 * @fwnode. 4293 */ 4294 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 4295 { 4296 if (fwnode) 4297 fwnode->secondary = ERR_PTR(-ENODEV); 4298 4299 if (fwnode_is_primary(dev->fwnode)) 4300 dev->fwnode->secondary = fwnode; 4301 else 4302 dev->fwnode = fwnode; 4303 } 4304 EXPORT_SYMBOL_GPL(set_secondary_fwnode); 4305 4306 /** 4307 * device_set_of_node_from_dev - reuse device-tree node of another device 4308 * @dev: device whose device-tree node is being set 4309 * @dev2: device whose device-tree node is being reused 4310 * 4311 * Takes another reference to the new device-tree node after first dropping 4312 * any reference held to the old node. 4313 */ 4314 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 4315 { 4316 of_node_put(dev->of_node); 4317 dev->of_node = of_node_get(dev2->of_node); 4318 dev->of_node_reused = true; 4319 } 4320 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 4321 4322 int device_match_name(struct device *dev, const void *name) 4323 { 4324 return sysfs_streq(dev_name(dev), name); 4325 } 4326 EXPORT_SYMBOL_GPL(device_match_name); 4327 4328 int device_match_of_node(struct device *dev, const void *np) 4329 { 4330 return dev->of_node == np; 4331 } 4332 EXPORT_SYMBOL_GPL(device_match_of_node); 4333 4334 int device_match_fwnode(struct device *dev, const void *fwnode) 4335 { 4336 return dev_fwnode(dev) == fwnode; 4337 } 4338 EXPORT_SYMBOL_GPL(device_match_fwnode); 4339 4340 int device_match_devt(struct device *dev, const void *pdevt) 4341 { 4342 return dev->devt == *(dev_t *)pdevt; 4343 } 4344 EXPORT_SYMBOL_GPL(device_match_devt); 4345 4346 int device_match_acpi_dev(struct device *dev, const void *adev) 4347 { 4348 return ACPI_COMPANION(dev) == adev; 4349 } 4350 EXPORT_SYMBOL(device_match_acpi_dev); 4351 4352 int device_match_any(struct device *dev, const void *unused) 4353 { 4354 return 1; 4355 } 4356 EXPORT_SYMBOL_GPL(device_match_any); 4357