xref: /openbmc/linux/drivers/base/core.c (revision c6b99bed)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/blkdev.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sched/mm.h>
30 #include <linux/swiotlb.h>
31 #include <linux/sysfs.h>
32 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
33 
34 #include "base.h"
35 #include "power/power.h"
36 
37 #ifdef CONFIG_SYSFS_DEPRECATED
38 #ifdef CONFIG_SYSFS_DEPRECATED_V2
39 long sysfs_deprecated = 1;
40 #else
41 long sysfs_deprecated = 0;
42 #endif
43 static int __init sysfs_deprecated_setup(char *arg)
44 {
45 	return kstrtol(arg, 10, &sysfs_deprecated);
46 }
47 early_param("sysfs.deprecated", sysfs_deprecated_setup);
48 #endif
49 
50 /* Device links support. */
51 static LIST_HEAD(deferred_sync);
52 static unsigned int defer_sync_state_count = 1;
53 static DEFINE_MUTEX(fwnode_link_lock);
54 static bool fw_devlink_is_permissive(void);
55 static bool fw_devlink_drv_reg_done;
56 
57 /**
58  * fwnode_link_add - Create a link between two fwnode_handles.
59  * @con: Consumer end of the link.
60  * @sup: Supplier end of the link.
61  *
62  * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
63  * represents the detail that the firmware lists @sup fwnode as supplying a
64  * resource to @con.
65  *
66  * The driver core will use the fwnode link to create a device link between the
67  * two device objects corresponding to @con and @sup when they are created. The
68  * driver core will automatically delete the fwnode link between @con and @sup
69  * after doing that.
70  *
71  * Attempts to create duplicate links between the same pair of fwnode handles
72  * are ignored and there is no reference counting.
73  */
74 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
75 {
76 	struct fwnode_link *link;
77 	int ret = 0;
78 
79 	mutex_lock(&fwnode_link_lock);
80 
81 	list_for_each_entry(link, &sup->consumers, s_hook)
82 		if (link->consumer == con)
83 			goto out;
84 
85 	link = kzalloc(sizeof(*link), GFP_KERNEL);
86 	if (!link) {
87 		ret = -ENOMEM;
88 		goto out;
89 	}
90 
91 	link->supplier = sup;
92 	INIT_LIST_HEAD(&link->s_hook);
93 	link->consumer = con;
94 	INIT_LIST_HEAD(&link->c_hook);
95 
96 	list_add(&link->s_hook, &sup->consumers);
97 	list_add(&link->c_hook, &con->suppliers);
98 	pr_debug("%pfwP Linked as a fwnode consumer to %pfwP\n",
99 		 con, sup);
100 out:
101 	mutex_unlock(&fwnode_link_lock);
102 
103 	return ret;
104 }
105 
106 /**
107  * __fwnode_link_del - Delete a link between two fwnode_handles.
108  * @link: the fwnode_link to be deleted
109  *
110  * The fwnode_link_lock needs to be held when this function is called.
111  */
112 static void __fwnode_link_del(struct fwnode_link *link)
113 {
114 	pr_debug("%pfwP Dropping the fwnode link to %pfwP\n",
115 		 link->consumer, link->supplier);
116 	list_del(&link->s_hook);
117 	list_del(&link->c_hook);
118 	kfree(link);
119 }
120 
121 /**
122  * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
123  * @fwnode: fwnode whose supplier links need to be deleted
124  *
125  * Deletes all supplier links connecting directly to @fwnode.
126  */
127 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
128 {
129 	struct fwnode_link *link, *tmp;
130 
131 	mutex_lock(&fwnode_link_lock);
132 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
133 		__fwnode_link_del(link);
134 	mutex_unlock(&fwnode_link_lock);
135 }
136 
137 /**
138  * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
139  * @fwnode: fwnode whose consumer links need to be deleted
140  *
141  * Deletes all consumer links connecting directly to @fwnode.
142  */
143 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
144 {
145 	struct fwnode_link *link, *tmp;
146 
147 	mutex_lock(&fwnode_link_lock);
148 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
149 		__fwnode_link_del(link);
150 	mutex_unlock(&fwnode_link_lock);
151 }
152 
153 /**
154  * fwnode_links_purge - Delete all links connected to a fwnode_handle.
155  * @fwnode: fwnode whose links needs to be deleted
156  *
157  * Deletes all links connecting directly to a fwnode.
158  */
159 void fwnode_links_purge(struct fwnode_handle *fwnode)
160 {
161 	fwnode_links_purge_suppliers(fwnode);
162 	fwnode_links_purge_consumers(fwnode);
163 }
164 
165 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
166 {
167 	struct fwnode_handle *child;
168 
169 	/* Don't purge consumer links of an added child */
170 	if (fwnode->dev)
171 		return;
172 
173 	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
174 	fwnode_links_purge_consumers(fwnode);
175 
176 	fwnode_for_each_available_child_node(fwnode, child)
177 		fw_devlink_purge_absent_suppliers(child);
178 }
179 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
180 
181 #ifdef CONFIG_SRCU
182 static DEFINE_MUTEX(device_links_lock);
183 DEFINE_STATIC_SRCU(device_links_srcu);
184 
185 static inline void device_links_write_lock(void)
186 {
187 	mutex_lock(&device_links_lock);
188 }
189 
190 static inline void device_links_write_unlock(void)
191 {
192 	mutex_unlock(&device_links_lock);
193 }
194 
195 int device_links_read_lock(void) __acquires(&device_links_srcu)
196 {
197 	return srcu_read_lock(&device_links_srcu);
198 }
199 
200 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
201 {
202 	srcu_read_unlock(&device_links_srcu, idx);
203 }
204 
205 int device_links_read_lock_held(void)
206 {
207 	return srcu_read_lock_held(&device_links_srcu);
208 }
209 
210 static void device_link_synchronize_removal(void)
211 {
212 	synchronize_srcu(&device_links_srcu);
213 }
214 
215 static void device_link_remove_from_lists(struct device_link *link)
216 {
217 	list_del_rcu(&link->s_node);
218 	list_del_rcu(&link->c_node);
219 }
220 #else /* !CONFIG_SRCU */
221 static DECLARE_RWSEM(device_links_lock);
222 
223 static inline void device_links_write_lock(void)
224 {
225 	down_write(&device_links_lock);
226 }
227 
228 static inline void device_links_write_unlock(void)
229 {
230 	up_write(&device_links_lock);
231 }
232 
233 int device_links_read_lock(void)
234 {
235 	down_read(&device_links_lock);
236 	return 0;
237 }
238 
239 void device_links_read_unlock(int not_used)
240 {
241 	up_read(&device_links_lock);
242 }
243 
244 #ifdef CONFIG_DEBUG_LOCK_ALLOC
245 int device_links_read_lock_held(void)
246 {
247 	return lockdep_is_held(&device_links_lock);
248 }
249 #endif
250 
251 static inline void device_link_synchronize_removal(void)
252 {
253 }
254 
255 static void device_link_remove_from_lists(struct device_link *link)
256 {
257 	list_del(&link->s_node);
258 	list_del(&link->c_node);
259 }
260 #endif /* !CONFIG_SRCU */
261 
262 static bool device_is_ancestor(struct device *dev, struct device *target)
263 {
264 	while (target->parent) {
265 		target = target->parent;
266 		if (dev == target)
267 			return true;
268 	}
269 	return false;
270 }
271 
272 /**
273  * device_is_dependent - Check if one device depends on another one
274  * @dev: Device to check dependencies for.
275  * @target: Device to check against.
276  *
277  * Check if @target depends on @dev or any device dependent on it (its child or
278  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
279  */
280 int device_is_dependent(struct device *dev, void *target)
281 {
282 	struct device_link *link;
283 	int ret;
284 
285 	/*
286 	 * The "ancestors" check is needed to catch the case when the target
287 	 * device has not been completely initialized yet and it is still
288 	 * missing from the list of children of its parent device.
289 	 */
290 	if (dev == target || device_is_ancestor(dev, target))
291 		return 1;
292 
293 	ret = device_for_each_child(dev, target, device_is_dependent);
294 	if (ret)
295 		return ret;
296 
297 	list_for_each_entry(link, &dev->links.consumers, s_node) {
298 		if ((link->flags & ~DL_FLAG_INFERRED) ==
299 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
300 			continue;
301 
302 		if (link->consumer == target)
303 			return 1;
304 
305 		ret = device_is_dependent(link->consumer, target);
306 		if (ret)
307 			break;
308 	}
309 	return ret;
310 }
311 
312 static void device_link_init_status(struct device_link *link,
313 				    struct device *consumer,
314 				    struct device *supplier)
315 {
316 	switch (supplier->links.status) {
317 	case DL_DEV_PROBING:
318 		switch (consumer->links.status) {
319 		case DL_DEV_PROBING:
320 			/*
321 			 * A consumer driver can create a link to a supplier
322 			 * that has not completed its probing yet as long as it
323 			 * knows that the supplier is already functional (for
324 			 * example, it has just acquired some resources from the
325 			 * supplier).
326 			 */
327 			link->status = DL_STATE_CONSUMER_PROBE;
328 			break;
329 		default:
330 			link->status = DL_STATE_DORMANT;
331 			break;
332 		}
333 		break;
334 	case DL_DEV_DRIVER_BOUND:
335 		switch (consumer->links.status) {
336 		case DL_DEV_PROBING:
337 			link->status = DL_STATE_CONSUMER_PROBE;
338 			break;
339 		case DL_DEV_DRIVER_BOUND:
340 			link->status = DL_STATE_ACTIVE;
341 			break;
342 		default:
343 			link->status = DL_STATE_AVAILABLE;
344 			break;
345 		}
346 		break;
347 	case DL_DEV_UNBINDING:
348 		link->status = DL_STATE_SUPPLIER_UNBIND;
349 		break;
350 	default:
351 		link->status = DL_STATE_DORMANT;
352 		break;
353 	}
354 }
355 
356 static int device_reorder_to_tail(struct device *dev, void *not_used)
357 {
358 	struct device_link *link;
359 
360 	/*
361 	 * Devices that have not been registered yet will be put to the ends
362 	 * of the lists during the registration, so skip them here.
363 	 */
364 	if (device_is_registered(dev))
365 		devices_kset_move_last(dev);
366 
367 	if (device_pm_initialized(dev))
368 		device_pm_move_last(dev);
369 
370 	device_for_each_child(dev, NULL, device_reorder_to_tail);
371 	list_for_each_entry(link, &dev->links.consumers, s_node) {
372 		if ((link->flags & ~DL_FLAG_INFERRED) ==
373 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
374 			continue;
375 		device_reorder_to_tail(link->consumer, NULL);
376 	}
377 
378 	return 0;
379 }
380 
381 /**
382  * device_pm_move_to_tail - Move set of devices to the end of device lists
383  * @dev: Device to move
384  *
385  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
386  *
387  * It moves the @dev along with all of its children and all of its consumers
388  * to the ends of the device_kset and dpm_list, recursively.
389  */
390 void device_pm_move_to_tail(struct device *dev)
391 {
392 	int idx;
393 
394 	idx = device_links_read_lock();
395 	device_pm_lock();
396 	device_reorder_to_tail(dev, NULL);
397 	device_pm_unlock();
398 	device_links_read_unlock(idx);
399 }
400 
401 #define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
402 
403 static ssize_t status_show(struct device *dev,
404 			   struct device_attribute *attr, char *buf)
405 {
406 	const char *output;
407 
408 	switch (to_devlink(dev)->status) {
409 	case DL_STATE_NONE:
410 		output = "not tracked";
411 		break;
412 	case DL_STATE_DORMANT:
413 		output = "dormant";
414 		break;
415 	case DL_STATE_AVAILABLE:
416 		output = "available";
417 		break;
418 	case DL_STATE_CONSUMER_PROBE:
419 		output = "consumer probing";
420 		break;
421 	case DL_STATE_ACTIVE:
422 		output = "active";
423 		break;
424 	case DL_STATE_SUPPLIER_UNBIND:
425 		output = "supplier unbinding";
426 		break;
427 	default:
428 		output = "unknown";
429 		break;
430 	}
431 
432 	return sysfs_emit(buf, "%s\n", output);
433 }
434 static DEVICE_ATTR_RO(status);
435 
436 static ssize_t auto_remove_on_show(struct device *dev,
437 				   struct device_attribute *attr, char *buf)
438 {
439 	struct device_link *link = to_devlink(dev);
440 	const char *output;
441 
442 	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
443 		output = "supplier unbind";
444 	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
445 		output = "consumer unbind";
446 	else
447 		output = "never";
448 
449 	return sysfs_emit(buf, "%s\n", output);
450 }
451 static DEVICE_ATTR_RO(auto_remove_on);
452 
453 static ssize_t runtime_pm_show(struct device *dev,
454 			       struct device_attribute *attr, char *buf)
455 {
456 	struct device_link *link = to_devlink(dev);
457 
458 	return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
459 }
460 static DEVICE_ATTR_RO(runtime_pm);
461 
462 static ssize_t sync_state_only_show(struct device *dev,
463 				    struct device_attribute *attr, char *buf)
464 {
465 	struct device_link *link = to_devlink(dev);
466 
467 	return sysfs_emit(buf, "%d\n",
468 			  !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
469 }
470 static DEVICE_ATTR_RO(sync_state_only);
471 
472 static struct attribute *devlink_attrs[] = {
473 	&dev_attr_status.attr,
474 	&dev_attr_auto_remove_on.attr,
475 	&dev_attr_runtime_pm.attr,
476 	&dev_attr_sync_state_only.attr,
477 	NULL,
478 };
479 ATTRIBUTE_GROUPS(devlink);
480 
481 static void device_link_release_fn(struct work_struct *work)
482 {
483 	struct device_link *link = container_of(work, struct device_link, rm_work);
484 
485 	/* Ensure that all references to the link object have been dropped. */
486 	device_link_synchronize_removal();
487 
488 	pm_runtime_release_supplier(link, true);
489 
490 	put_device(link->consumer);
491 	put_device(link->supplier);
492 	kfree(link);
493 }
494 
495 static void devlink_dev_release(struct device *dev)
496 {
497 	struct device_link *link = to_devlink(dev);
498 
499 	INIT_WORK(&link->rm_work, device_link_release_fn);
500 	/*
501 	 * It may take a while to complete this work because of the SRCU
502 	 * synchronization in device_link_release_fn() and if the consumer or
503 	 * supplier devices get deleted when it runs, so put it into the "long"
504 	 * workqueue.
505 	 */
506 	queue_work(system_long_wq, &link->rm_work);
507 }
508 
509 static struct class devlink_class = {
510 	.name = "devlink",
511 	.owner = THIS_MODULE,
512 	.dev_groups = devlink_groups,
513 	.dev_release = devlink_dev_release,
514 };
515 
516 static int devlink_add_symlinks(struct device *dev,
517 				struct class_interface *class_intf)
518 {
519 	int ret;
520 	size_t len;
521 	struct device_link *link = to_devlink(dev);
522 	struct device *sup = link->supplier;
523 	struct device *con = link->consumer;
524 	char *buf;
525 
526 	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
527 		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
528 	len += strlen(":");
529 	len += strlen("supplier:") + 1;
530 	buf = kzalloc(len, GFP_KERNEL);
531 	if (!buf)
532 		return -ENOMEM;
533 
534 	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
535 	if (ret)
536 		goto out;
537 
538 	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
539 	if (ret)
540 		goto err_con;
541 
542 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
543 	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
544 	if (ret)
545 		goto err_con_dev;
546 
547 	snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
548 	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
549 	if (ret)
550 		goto err_sup_dev;
551 
552 	goto out;
553 
554 err_sup_dev:
555 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
556 	sysfs_remove_link(&sup->kobj, buf);
557 err_con_dev:
558 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
559 err_con:
560 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
561 out:
562 	kfree(buf);
563 	return ret;
564 }
565 
566 static void devlink_remove_symlinks(struct device *dev,
567 				   struct class_interface *class_intf)
568 {
569 	struct device_link *link = to_devlink(dev);
570 	size_t len;
571 	struct device *sup = link->supplier;
572 	struct device *con = link->consumer;
573 	char *buf;
574 
575 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
576 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
577 
578 	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
579 		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
580 	len += strlen(":");
581 	len += strlen("supplier:") + 1;
582 	buf = kzalloc(len, GFP_KERNEL);
583 	if (!buf) {
584 		WARN(1, "Unable to properly free device link symlinks!\n");
585 		return;
586 	}
587 
588 	if (device_is_registered(con)) {
589 		snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
590 		sysfs_remove_link(&con->kobj, buf);
591 	}
592 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
593 	sysfs_remove_link(&sup->kobj, buf);
594 	kfree(buf);
595 }
596 
597 static struct class_interface devlink_class_intf = {
598 	.class = &devlink_class,
599 	.add_dev = devlink_add_symlinks,
600 	.remove_dev = devlink_remove_symlinks,
601 };
602 
603 static int __init devlink_class_init(void)
604 {
605 	int ret;
606 
607 	ret = class_register(&devlink_class);
608 	if (ret)
609 		return ret;
610 
611 	ret = class_interface_register(&devlink_class_intf);
612 	if (ret)
613 		class_unregister(&devlink_class);
614 
615 	return ret;
616 }
617 postcore_initcall(devlink_class_init);
618 
619 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
620 			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
621 			       DL_FLAG_AUTOPROBE_CONSUMER  | \
622 			       DL_FLAG_SYNC_STATE_ONLY | \
623 			       DL_FLAG_INFERRED)
624 
625 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
626 			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
627 
628 /**
629  * device_link_add - Create a link between two devices.
630  * @consumer: Consumer end of the link.
631  * @supplier: Supplier end of the link.
632  * @flags: Link flags.
633  *
634  * The caller is responsible for the proper synchronization of the link creation
635  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
636  * runtime PM framework to take the link into account.  Second, if the
637  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
638  * be forced into the active meta state and reference-counted upon the creation
639  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
640  * ignored.
641  *
642  * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
643  * expected to release the link returned by it directly with the help of either
644  * device_link_del() or device_link_remove().
645  *
646  * If that flag is not set, however, the caller of this function is handing the
647  * management of the link over to the driver core entirely and its return value
648  * can only be used to check whether or not the link is present.  In that case,
649  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
650  * flags can be used to indicate to the driver core when the link can be safely
651  * deleted.  Namely, setting one of them in @flags indicates to the driver core
652  * that the link is not going to be used (by the given caller of this function)
653  * after unbinding the consumer or supplier driver, respectively, from its
654  * device, so the link can be deleted at that point.  If none of them is set,
655  * the link will be maintained until one of the devices pointed to by it (either
656  * the consumer or the supplier) is unregistered.
657  *
658  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
659  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
660  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
661  * be used to request the driver core to automatically probe for a consumer
662  * driver after successfully binding a driver to the supplier device.
663  *
664  * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
665  * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
666  * the same time is invalid and will cause NULL to be returned upfront.
667  * However, if a device link between the given @consumer and @supplier pair
668  * exists already when this function is called for them, the existing link will
669  * be returned regardless of its current type and status (the link's flags may
670  * be modified then).  The caller of this function is then expected to treat
671  * the link as though it has just been created, so (in particular) if
672  * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
673  * explicitly when not needed any more (as stated above).
674  *
675  * A side effect of the link creation is re-ordering of dpm_list and the
676  * devices_kset list by moving the consumer device and all devices depending
677  * on it to the ends of these lists (that does not happen to devices that have
678  * not been registered when this function is called).
679  *
680  * The supplier device is required to be registered when this function is called
681  * and NULL will be returned if that is not the case.  The consumer device need
682  * not be registered, however.
683  */
684 struct device_link *device_link_add(struct device *consumer,
685 				    struct device *supplier, u32 flags)
686 {
687 	struct device_link *link;
688 
689 	if (!consumer || !supplier || consumer == supplier ||
690 	    flags & ~DL_ADD_VALID_FLAGS ||
691 	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
692 	    (flags & DL_FLAG_SYNC_STATE_ONLY &&
693 	     (flags & ~DL_FLAG_INFERRED) != DL_FLAG_SYNC_STATE_ONLY) ||
694 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
695 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
696 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
697 		return NULL;
698 
699 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
700 		if (pm_runtime_get_sync(supplier) < 0) {
701 			pm_runtime_put_noidle(supplier);
702 			return NULL;
703 		}
704 	}
705 
706 	if (!(flags & DL_FLAG_STATELESS))
707 		flags |= DL_FLAG_MANAGED;
708 
709 	device_links_write_lock();
710 	device_pm_lock();
711 
712 	/*
713 	 * If the supplier has not been fully registered yet or there is a
714 	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
715 	 * the supplier already in the graph, return NULL. If the link is a
716 	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
717 	 * because it only affects sync_state() callbacks.
718 	 */
719 	if (!device_pm_initialized(supplier)
720 	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
721 		  device_is_dependent(consumer, supplier))) {
722 		link = NULL;
723 		goto out;
724 	}
725 
726 	/*
727 	 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
728 	 * So, only create it if the consumer hasn't probed yet.
729 	 */
730 	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
731 	    consumer->links.status != DL_DEV_NO_DRIVER &&
732 	    consumer->links.status != DL_DEV_PROBING) {
733 		link = NULL;
734 		goto out;
735 	}
736 
737 	/*
738 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
739 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
740 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
741 	 */
742 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
743 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
744 
745 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
746 		if (link->consumer != consumer)
747 			continue;
748 
749 		if (link->flags & DL_FLAG_INFERRED &&
750 		    !(flags & DL_FLAG_INFERRED))
751 			link->flags &= ~DL_FLAG_INFERRED;
752 
753 		if (flags & DL_FLAG_PM_RUNTIME) {
754 			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
755 				pm_runtime_new_link(consumer);
756 				link->flags |= DL_FLAG_PM_RUNTIME;
757 			}
758 			if (flags & DL_FLAG_RPM_ACTIVE)
759 				refcount_inc(&link->rpm_active);
760 		}
761 
762 		if (flags & DL_FLAG_STATELESS) {
763 			kref_get(&link->kref);
764 			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
765 			    !(link->flags & DL_FLAG_STATELESS)) {
766 				link->flags |= DL_FLAG_STATELESS;
767 				goto reorder;
768 			} else {
769 				link->flags |= DL_FLAG_STATELESS;
770 				goto out;
771 			}
772 		}
773 
774 		/*
775 		 * If the life time of the link following from the new flags is
776 		 * longer than indicated by the flags of the existing link,
777 		 * update the existing link to stay around longer.
778 		 */
779 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
780 			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
781 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
782 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
783 			}
784 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
785 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
786 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
787 		}
788 		if (!(link->flags & DL_FLAG_MANAGED)) {
789 			kref_get(&link->kref);
790 			link->flags |= DL_FLAG_MANAGED;
791 			device_link_init_status(link, consumer, supplier);
792 		}
793 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
794 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
795 			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
796 			goto reorder;
797 		}
798 
799 		goto out;
800 	}
801 
802 	link = kzalloc(sizeof(*link), GFP_KERNEL);
803 	if (!link)
804 		goto out;
805 
806 	refcount_set(&link->rpm_active, 1);
807 
808 	get_device(supplier);
809 	link->supplier = supplier;
810 	INIT_LIST_HEAD(&link->s_node);
811 	get_device(consumer);
812 	link->consumer = consumer;
813 	INIT_LIST_HEAD(&link->c_node);
814 	link->flags = flags;
815 	kref_init(&link->kref);
816 
817 	link->link_dev.class = &devlink_class;
818 	device_set_pm_not_required(&link->link_dev);
819 	dev_set_name(&link->link_dev, "%s:%s--%s:%s",
820 		     dev_bus_name(supplier), dev_name(supplier),
821 		     dev_bus_name(consumer), dev_name(consumer));
822 	if (device_register(&link->link_dev)) {
823 		put_device(&link->link_dev);
824 		link = NULL;
825 		goto out;
826 	}
827 
828 	if (flags & DL_FLAG_PM_RUNTIME) {
829 		if (flags & DL_FLAG_RPM_ACTIVE)
830 			refcount_inc(&link->rpm_active);
831 
832 		pm_runtime_new_link(consumer);
833 	}
834 
835 	/* Determine the initial link state. */
836 	if (flags & DL_FLAG_STATELESS)
837 		link->status = DL_STATE_NONE;
838 	else
839 		device_link_init_status(link, consumer, supplier);
840 
841 	/*
842 	 * Some callers expect the link creation during consumer driver probe to
843 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
844 	 */
845 	if (link->status == DL_STATE_CONSUMER_PROBE &&
846 	    flags & DL_FLAG_PM_RUNTIME)
847 		pm_runtime_resume(supplier);
848 
849 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
850 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
851 
852 	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
853 		dev_dbg(consumer,
854 			"Linked as a sync state only consumer to %s\n",
855 			dev_name(supplier));
856 		goto out;
857 	}
858 
859 reorder:
860 	/*
861 	 * Move the consumer and all of the devices depending on it to the end
862 	 * of dpm_list and the devices_kset list.
863 	 *
864 	 * It is necessary to hold dpm_list locked throughout all that or else
865 	 * we may end up suspending with a wrong ordering of it.
866 	 */
867 	device_reorder_to_tail(consumer, NULL);
868 
869 	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
870 
871 out:
872 	device_pm_unlock();
873 	device_links_write_unlock();
874 
875 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
876 		pm_runtime_put(supplier);
877 
878 	return link;
879 }
880 EXPORT_SYMBOL_GPL(device_link_add);
881 
882 static void __device_link_del(struct kref *kref)
883 {
884 	struct device_link *link = container_of(kref, struct device_link, kref);
885 
886 	dev_dbg(link->consumer, "Dropping the link to %s\n",
887 		dev_name(link->supplier));
888 
889 	pm_runtime_drop_link(link);
890 
891 	device_link_remove_from_lists(link);
892 	device_unregister(&link->link_dev);
893 }
894 
895 static void device_link_put_kref(struct device_link *link)
896 {
897 	if (link->flags & DL_FLAG_STATELESS)
898 		kref_put(&link->kref, __device_link_del);
899 	else if (!device_is_registered(link->consumer))
900 		__device_link_del(&link->kref);
901 	else
902 		WARN(1, "Unable to drop a managed device link reference\n");
903 }
904 
905 /**
906  * device_link_del - Delete a stateless link between two devices.
907  * @link: Device link to delete.
908  *
909  * The caller must ensure proper synchronization of this function with runtime
910  * PM.  If the link was added multiple times, it needs to be deleted as often.
911  * Care is required for hotplugged devices:  Their links are purged on removal
912  * and calling device_link_del() is then no longer allowed.
913  */
914 void device_link_del(struct device_link *link)
915 {
916 	device_links_write_lock();
917 	device_link_put_kref(link);
918 	device_links_write_unlock();
919 }
920 EXPORT_SYMBOL_GPL(device_link_del);
921 
922 /**
923  * device_link_remove - Delete a stateless link between two devices.
924  * @consumer: Consumer end of the link.
925  * @supplier: Supplier end of the link.
926  *
927  * The caller must ensure proper synchronization of this function with runtime
928  * PM.
929  */
930 void device_link_remove(void *consumer, struct device *supplier)
931 {
932 	struct device_link *link;
933 
934 	if (WARN_ON(consumer == supplier))
935 		return;
936 
937 	device_links_write_lock();
938 
939 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
940 		if (link->consumer == consumer) {
941 			device_link_put_kref(link);
942 			break;
943 		}
944 	}
945 
946 	device_links_write_unlock();
947 }
948 EXPORT_SYMBOL_GPL(device_link_remove);
949 
950 static void device_links_missing_supplier(struct device *dev)
951 {
952 	struct device_link *link;
953 
954 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
955 		if (link->status != DL_STATE_CONSUMER_PROBE)
956 			continue;
957 
958 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
959 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
960 		} else {
961 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
962 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
963 		}
964 	}
965 }
966 
967 /**
968  * device_links_check_suppliers - Check presence of supplier drivers.
969  * @dev: Consumer device.
970  *
971  * Check links from this device to any suppliers.  Walk the list of the device's
972  * links to suppliers and see if all of them are available.  If not, simply
973  * return -EPROBE_DEFER.
974  *
975  * We need to guarantee that the supplier will not go away after the check has
976  * been positive here.  It only can go away in __device_release_driver() and
977  * that function  checks the device's links to consumers.  This means we need to
978  * mark the link as "consumer probe in progress" to make the supplier removal
979  * wait for us to complete (or bad things may happen).
980  *
981  * Links without the DL_FLAG_MANAGED flag set are ignored.
982  */
983 int device_links_check_suppliers(struct device *dev)
984 {
985 	struct device_link *link;
986 	int ret = 0;
987 	struct fwnode_handle *sup_fw;
988 
989 	/*
990 	 * Device waiting for supplier to become available is not allowed to
991 	 * probe.
992 	 */
993 	mutex_lock(&fwnode_link_lock);
994 	if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) &&
995 	    !fw_devlink_is_permissive()) {
996 		sup_fw = list_first_entry(&dev->fwnode->suppliers,
997 					  struct fwnode_link,
998 					  c_hook)->supplier;
999 		dev_err_probe(dev, -EPROBE_DEFER, "wait for supplier %pfwP\n",
1000 			      sup_fw);
1001 		mutex_unlock(&fwnode_link_lock);
1002 		return -EPROBE_DEFER;
1003 	}
1004 	mutex_unlock(&fwnode_link_lock);
1005 
1006 	device_links_write_lock();
1007 
1008 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
1009 		if (!(link->flags & DL_FLAG_MANAGED))
1010 			continue;
1011 
1012 		if (link->status != DL_STATE_AVAILABLE &&
1013 		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1014 			device_links_missing_supplier(dev);
1015 			dev_err_probe(dev, -EPROBE_DEFER,
1016 				      "supplier %s not ready\n",
1017 				      dev_name(link->supplier));
1018 			ret = -EPROBE_DEFER;
1019 			break;
1020 		}
1021 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1022 	}
1023 	dev->links.status = DL_DEV_PROBING;
1024 
1025 	device_links_write_unlock();
1026 	return ret;
1027 }
1028 
1029 /**
1030  * __device_links_queue_sync_state - Queue a device for sync_state() callback
1031  * @dev: Device to call sync_state() on
1032  * @list: List head to queue the @dev on
1033  *
1034  * Queues a device for a sync_state() callback when the device links write lock
1035  * isn't held. This allows the sync_state() execution flow to use device links
1036  * APIs.  The caller must ensure this function is called with
1037  * device_links_write_lock() held.
1038  *
1039  * This function does a get_device() to make sure the device is not freed while
1040  * on this list.
1041  *
1042  * So the caller must also ensure that device_links_flush_sync_list() is called
1043  * as soon as the caller releases device_links_write_lock().  This is necessary
1044  * to make sure the sync_state() is called in a timely fashion and the
1045  * put_device() is called on this device.
1046  */
1047 static void __device_links_queue_sync_state(struct device *dev,
1048 					    struct list_head *list)
1049 {
1050 	struct device_link *link;
1051 
1052 	if (!dev_has_sync_state(dev))
1053 		return;
1054 	if (dev->state_synced)
1055 		return;
1056 
1057 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1058 		if (!(link->flags & DL_FLAG_MANAGED))
1059 			continue;
1060 		if (link->status != DL_STATE_ACTIVE)
1061 			return;
1062 	}
1063 
1064 	/*
1065 	 * Set the flag here to avoid adding the same device to a list more
1066 	 * than once. This can happen if new consumers get added to the device
1067 	 * and probed before the list is flushed.
1068 	 */
1069 	dev->state_synced = true;
1070 
1071 	if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1072 		return;
1073 
1074 	get_device(dev);
1075 	list_add_tail(&dev->links.defer_sync, list);
1076 }
1077 
1078 /**
1079  * device_links_flush_sync_list - Call sync_state() on a list of devices
1080  * @list: List of devices to call sync_state() on
1081  * @dont_lock_dev: Device for which lock is already held by the caller
1082  *
1083  * Calls sync_state() on all the devices that have been queued for it. This
1084  * function is used in conjunction with __device_links_queue_sync_state(). The
1085  * @dont_lock_dev parameter is useful when this function is called from a
1086  * context where a device lock is already held.
1087  */
1088 static void device_links_flush_sync_list(struct list_head *list,
1089 					 struct device *dont_lock_dev)
1090 {
1091 	struct device *dev, *tmp;
1092 
1093 	list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1094 		list_del_init(&dev->links.defer_sync);
1095 
1096 		if (dev != dont_lock_dev)
1097 			device_lock(dev);
1098 
1099 		if (dev->bus->sync_state)
1100 			dev->bus->sync_state(dev);
1101 		else if (dev->driver && dev->driver->sync_state)
1102 			dev->driver->sync_state(dev);
1103 
1104 		if (dev != dont_lock_dev)
1105 			device_unlock(dev);
1106 
1107 		put_device(dev);
1108 	}
1109 }
1110 
1111 void device_links_supplier_sync_state_pause(void)
1112 {
1113 	device_links_write_lock();
1114 	defer_sync_state_count++;
1115 	device_links_write_unlock();
1116 }
1117 
1118 void device_links_supplier_sync_state_resume(void)
1119 {
1120 	struct device *dev, *tmp;
1121 	LIST_HEAD(sync_list);
1122 
1123 	device_links_write_lock();
1124 	if (!defer_sync_state_count) {
1125 		WARN(true, "Unmatched sync_state pause/resume!");
1126 		goto out;
1127 	}
1128 	defer_sync_state_count--;
1129 	if (defer_sync_state_count)
1130 		goto out;
1131 
1132 	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1133 		/*
1134 		 * Delete from deferred_sync list before queuing it to
1135 		 * sync_list because defer_sync is used for both lists.
1136 		 */
1137 		list_del_init(&dev->links.defer_sync);
1138 		__device_links_queue_sync_state(dev, &sync_list);
1139 	}
1140 out:
1141 	device_links_write_unlock();
1142 
1143 	device_links_flush_sync_list(&sync_list, NULL);
1144 }
1145 
1146 static int sync_state_resume_initcall(void)
1147 {
1148 	device_links_supplier_sync_state_resume();
1149 	return 0;
1150 }
1151 late_initcall(sync_state_resume_initcall);
1152 
1153 static void __device_links_supplier_defer_sync(struct device *sup)
1154 {
1155 	if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1156 		list_add_tail(&sup->links.defer_sync, &deferred_sync);
1157 }
1158 
1159 static void device_link_drop_managed(struct device_link *link)
1160 {
1161 	link->flags &= ~DL_FLAG_MANAGED;
1162 	WRITE_ONCE(link->status, DL_STATE_NONE);
1163 	kref_put(&link->kref, __device_link_del);
1164 }
1165 
1166 static ssize_t waiting_for_supplier_show(struct device *dev,
1167 					 struct device_attribute *attr,
1168 					 char *buf)
1169 {
1170 	bool val;
1171 
1172 	device_lock(dev);
1173 	val = !list_empty(&dev->fwnode->suppliers);
1174 	device_unlock(dev);
1175 	return sysfs_emit(buf, "%u\n", val);
1176 }
1177 static DEVICE_ATTR_RO(waiting_for_supplier);
1178 
1179 /**
1180  * device_links_force_bind - Prepares device to be force bound
1181  * @dev: Consumer device.
1182  *
1183  * device_bind_driver() force binds a device to a driver without calling any
1184  * driver probe functions. So the consumer really isn't going to wait for any
1185  * supplier before it's bound to the driver. We still want the device link
1186  * states to be sensible when this happens.
1187  *
1188  * In preparation for device_bind_driver(), this function goes through each
1189  * supplier device links and checks if the supplier is bound. If it is, then
1190  * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1191  * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1192  */
1193 void device_links_force_bind(struct device *dev)
1194 {
1195 	struct device_link *link, *ln;
1196 
1197 	device_links_write_lock();
1198 
1199 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1200 		if (!(link->flags & DL_FLAG_MANAGED))
1201 			continue;
1202 
1203 		if (link->status != DL_STATE_AVAILABLE) {
1204 			device_link_drop_managed(link);
1205 			continue;
1206 		}
1207 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1208 	}
1209 	dev->links.status = DL_DEV_PROBING;
1210 
1211 	device_links_write_unlock();
1212 }
1213 
1214 /**
1215  * device_links_driver_bound - Update device links after probing its driver.
1216  * @dev: Device to update the links for.
1217  *
1218  * The probe has been successful, so update links from this device to any
1219  * consumers by changing their status to "available".
1220  *
1221  * Also change the status of @dev's links to suppliers to "active".
1222  *
1223  * Links without the DL_FLAG_MANAGED flag set are ignored.
1224  */
1225 void device_links_driver_bound(struct device *dev)
1226 {
1227 	struct device_link *link, *ln;
1228 	LIST_HEAD(sync_list);
1229 
1230 	/*
1231 	 * If a device binds successfully, it's expected to have created all
1232 	 * the device links it needs to or make new device links as it needs
1233 	 * them. So, fw_devlink no longer needs to create device links to any
1234 	 * of the device's suppliers.
1235 	 *
1236 	 * Also, if a child firmware node of this bound device is not added as
1237 	 * a device by now, assume it is never going to be added and make sure
1238 	 * other devices don't defer probe indefinitely by waiting for such a
1239 	 * child device.
1240 	 */
1241 	if (dev->fwnode && dev->fwnode->dev == dev) {
1242 		struct fwnode_handle *child;
1243 		fwnode_links_purge_suppliers(dev->fwnode);
1244 		fwnode_for_each_available_child_node(dev->fwnode, child)
1245 			fw_devlink_purge_absent_suppliers(child);
1246 	}
1247 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1248 
1249 	device_links_write_lock();
1250 
1251 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1252 		if (!(link->flags & DL_FLAG_MANAGED))
1253 			continue;
1254 
1255 		/*
1256 		 * Links created during consumer probe may be in the "consumer
1257 		 * probe" state to start with if the supplier is still probing
1258 		 * when they are created and they may become "active" if the
1259 		 * consumer probe returns first.  Skip them here.
1260 		 */
1261 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1262 		    link->status == DL_STATE_ACTIVE)
1263 			continue;
1264 
1265 		WARN_ON(link->status != DL_STATE_DORMANT);
1266 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1267 
1268 		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1269 			driver_deferred_probe_add(link->consumer);
1270 	}
1271 
1272 	if (defer_sync_state_count)
1273 		__device_links_supplier_defer_sync(dev);
1274 	else
1275 		__device_links_queue_sync_state(dev, &sync_list);
1276 
1277 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1278 		struct device *supplier;
1279 
1280 		if (!(link->flags & DL_FLAG_MANAGED))
1281 			continue;
1282 
1283 		supplier = link->supplier;
1284 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1285 			/*
1286 			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1287 			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1288 			 * save to drop the managed link completely.
1289 			 */
1290 			device_link_drop_managed(link);
1291 		} else {
1292 			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1293 			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1294 		}
1295 
1296 		/*
1297 		 * This needs to be done even for the deleted
1298 		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1299 		 * device link that was preventing the supplier from getting a
1300 		 * sync_state() call.
1301 		 */
1302 		if (defer_sync_state_count)
1303 			__device_links_supplier_defer_sync(supplier);
1304 		else
1305 			__device_links_queue_sync_state(supplier, &sync_list);
1306 	}
1307 
1308 	dev->links.status = DL_DEV_DRIVER_BOUND;
1309 
1310 	device_links_write_unlock();
1311 
1312 	device_links_flush_sync_list(&sync_list, dev);
1313 }
1314 
1315 /**
1316  * __device_links_no_driver - Update links of a device without a driver.
1317  * @dev: Device without a drvier.
1318  *
1319  * Delete all non-persistent links from this device to any suppliers.
1320  *
1321  * Persistent links stay around, but their status is changed to "available",
1322  * unless they already are in the "supplier unbind in progress" state in which
1323  * case they need not be updated.
1324  *
1325  * Links without the DL_FLAG_MANAGED flag set are ignored.
1326  */
1327 static void __device_links_no_driver(struct device *dev)
1328 {
1329 	struct device_link *link, *ln;
1330 
1331 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1332 		if (!(link->flags & DL_FLAG_MANAGED))
1333 			continue;
1334 
1335 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1336 			device_link_drop_managed(link);
1337 			continue;
1338 		}
1339 
1340 		if (link->status != DL_STATE_CONSUMER_PROBE &&
1341 		    link->status != DL_STATE_ACTIVE)
1342 			continue;
1343 
1344 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1345 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1346 		} else {
1347 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1348 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1349 		}
1350 	}
1351 
1352 	dev->links.status = DL_DEV_NO_DRIVER;
1353 }
1354 
1355 /**
1356  * device_links_no_driver - Update links after failing driver probe.
1357  * @dev: Device whose driver has just failed to probe.
1358  *
1359  * Clean up leftover links to consumers for @dev and invoke
1360  * %__device_links_no_driver() to update links to suppliers for it as
1361  * appropriate.
1362  *
1363  * Links without the DL_FLAG_MANAGED flag set are ignored.
1364  */
1365 void device_links_no_driver(struct device *dev)
1366 {
1367 	struct device_link *link;
1368 
1369 	device_links_write_lock();
1370 
1371 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1372 		if (!(link->flags & DL_FLAG_MANAGED))
1373 			continue;
1374 
1375 		/*
1376 		 * The probe has failed, so if the status of the link is
1377 		 * "consumer probe" or "active", it must have been added by
1378 		 * a probing consumer while this device was still probing.
1379 		 * Change its state to "dormant", as it represents a valid
1380 		 * relationship, but it is not functionally meaningful.
1381 		 */
1382 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1383 		    link->status == DL_STATE_ACTIVE)
1384 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1385 	}
1386 
1387 	__device_links_no_driver(dev);
1388 
1389 	device_links_write_unlock();
1390 }
1391 
1392 /**
1393  * device_links_driver_cleanup - Update links after driver removal.
1394  * @dev: Device whose driver has just gone away.
1395  *
1396  * Update links to consumers for @dev by changing their status to "dormant" and
1397  * invoke %__device_links_no_driver() to update links to suppliers for it as
1398  * appropriate.
1399  *
1400  * Links without the DL_FLAG_MANAGED flag set are ignored.
1401  */
1402 void device_links_driver_cleanup(struct device *dev)
1403 {
1404 	struct device_link *link, *ln;
1405 
1406 	device_links_write_lock();
1407 
1408 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1409 		if (!(link->flags & DL_FLAG_MANAGED))
1410 			continue;
1411 
1412 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1413 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1414 
1415 		/*
1416 		 * autoremove the links between this @dev and its consumer
1417 		 * devices that are not active, i.e. where the link state
1418 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1419 		 */
1420 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1421 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1422 			device_link_drop_managed(link);
1423 
1424 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1425 	}
1426 
1427 	list_del_init(&dev->links.defer_sync);
1428 	__device_links_no_driver(dev);
1429 
1430 	device_links_write_unlock();
1431 }
1432 
1433 /**
1434  * device_links_busy - Check if there are any busy links to consumers.
1435  * @dev: Device to check.
1436  *
1437  * Check each consumer of the device and return 'true' if its link's status
1438  * is one of "consumer probe" or "active" (meaning that the given consumer is
1439  * probing right now or its driver is present).  Otherwise, change the link
1440  * state to "supplier unbind" to prevent the consumer from being probed
1441  * successfully going forward.
1442  *
1443  * Return 'false' if there are no probing or active consumers.
1444  *
1445  * Links without the DL_FLAG_MANAGED flag set are ignored.
1446  */
1447 bool device_links_busy(struct device *dev)
1448 {
1449 	struct device_link *link;
1450 	bool ret = false;
1451 
1452 	device_links_write_lock();
1453 
1454 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1455 		if (!(link->flags & DL_FLAG_MANAGED))
1456 			continue;
1457 
1458 		if (link->status == DL_STATE_CONSUMER_PROBE
1459 		    || link->status == DL_STATE_ACTIVE) {
1460 			ret = true;
1461 			break;
1462 		}
1463 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1464 	}
1465 
1466 	dev->links.status = DL_DEV_UNBINDING;
1467 
1468 	device_links_write_unlock();
1469 	return ret;
1470 }
1471 
1472 /**
1473  * device_links_unbind_consumers - Force unbind consumers of the given device.
1474  * @dev: Device to unbind the consumers of.
1475  *
1476  * Walk the list of links to consumers for @dev and if any of them is in the
1477  * "consumer probe" state, wait for all device probes in progress to complete
1478  * and start over.
1479  *
1480  * If that's not the case, change the status of the link to "supplier unbind"
1481  * and check if the link was in the "active" state.  If so, force the consumer
1482  * driver to unbind and start over (the consumer will not re-probe as we have
1483  * changed the state of the link already).
1484  *
1485  * Links without the DL_FLAG_MANAGED flag set are ignored.
1486  */
1487 void device_links_unbind_consumers(struct device *dev)
1488 {
1489 	struct device_link *link;
1490 
1491  start:
1492 	device_links_write_lock();
1493 
1494 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1495 		enum device_link_state status;
1496 
1497 		if (!(link->flags & DL_FLAG_MANAGED) ||
1498 		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1499 			continue;
1500 
1501 		status = link->status;
1502 		if (status == DL_STATE_CONSUMER_PROBE) {
1503 			device_links_write_unlock();
1504 
1505 			wait_for_device_probe();
1506 			goto start;
1507 		}
1508 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1509 		if (status == DL_STATE_ACTIVE) {
1510 			struct device *consumer = link->consumer;
1511 
1512 			get_device(consumer);
1513 
1514 			device_links_write_unlock();
1515 
1516 			device_release_driver_internal(consumer, NULL,
1517 						       consumer->parent);
1518 			put_device(consumer);
1519 			goto start;
1520 		}
1521 	}
1522 
1523 	device_links_write_unlock();
1524 }
1525 
1526 /**
1527  * device_links_purge - Delete existing links to other devices.
1528  * @dev: Target device.
1529  */
1530 static void device_links_purge(struct device *dev)
1531 {
1532 	struct device_link *link, *ln;
1533 
1534 	if (dev->class == &devlink_class)
1535 		return;
1536 
1537 	/*
1538 	 * Delete all of the remaining links from this device to any other
1539 	 * devices (either consumers or suppliers).
1540 	 */
1541 	device_links_write_lock();
1542 
1543 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1544 		WARN_ON(link->status == DL_STATE_ACTIVE);
1545 		__device_link_del(&link->kref);
1546 	}
1547 
1548 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1549 		WARN_ON(link->status != DL_STATE_DORMANT &&
1550 			link->status != DL_STATE_NONE);
1551 		__device_link_del(&link->kref);
1552 	}
1553 
1554 	device_links_write_unlock();
1555 }
1556 
1557 #define FW_DEVLINK_FLAGS_PERMISSIVE	(DL_FLAG_INFERRED | \
1558 					 DL_FLAG_SYNC_STATE_ONLY)
1559 #define FW_DEVLINK_FLAGS_ON		(DL_FLAG_INFERRED | \
1560 					 DL_FLAG_AUTOPROBE_CONSUMER)
1561 #define FW_DEVLINK_FLAGS_RPM		(FW_DEVLINK_FLAGS_ON | \
1562 					 DL_FLAG_PM_RUNTIME)
1563 
1564 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1565 static int __init fw_devlink_setup(char *arg)
1566 {
1567 	if (!arg)
1568 		return -EINVAL;
1569 
1570 	if (strcmp(arg, "off") == 0) {
1571 		fw_devlink_flags = 0;
1572 	} else if (strcmp(arg, "permissive") == 0) {
1573 		fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1574 	} else if (strcmp(arg, "on") == 0) {
1575 		fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1576 	} else if (strcmp(arg, "rpm") == 0) {
1577 		fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1578 	}
1579 	return 0;
1580 }
1581 early_param("fw_devlink", fw_devlink_setup);
1582 
1583 static bool fw_devlink_strict;
1584 static int __init fw_devlink_strict_setup(char *arg)
1585 {
1586 	return strtobool(arg, &fw_devlink_strict);
1587 }
1588 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1589 
1590 u32 fw_devlink_get_flags(void)
1591 {
1592 	return fw_devlink_flags;
1593 }
1594 
1595 static bool fw_devlink_is_permissive(void)
1596 {
1597 	return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1598 }
1599 
1600 bool fw_devlink_is_strict(void)
1601 {
1602 	return fw_devlink_strict && !fw_devlink_is_permissive();
1603 }
1604 
1605 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1606 {
1607 	if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1608 		return;
1609 
1610 	fwnode_call_int_op(fwnode, add_links);
1611 	fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1612 }
1613 
1614 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1615 {
1616 	struct fwnode_handle *child = NULL;
1617 
1618 	fw_devlink_parse_fwnode(fwnode);
1619 
1620 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1621 		fw_devlink_parse_fwtree(child);
1622 }
1623 
1624 static void fw_devlink_relax_link(struct device_link *link)
1625 {
1626 	if (!(link->flags & DL_FLAG_INFERRED))
1627 		return;
1628 
1629 	if (link->flags == (DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE))
1630 		return;
1631 
1632 	pm_runtime_drop_link(link);
1633 	link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1634 	dev_dbg(link->consumer, "Relaxing link with %s\n",
1635 		dev_name(link->supplier));
1636 }
1637 
1638 static int fw_devlink_no_driver(struct device *dev, void *data)
1639 {
1640 	struct device_link *link = to_devlink(dev);
1641 
1642 	if (!link->supplier->can_match)
1643 		fw_devlink_relax_link(link);
1644 
1645 	return 0;
1646 }
1647 
1648 void fw_devlink_drivers_done(void)
1649 {
1650 	fw_devlink_drv_reg_done = true;
1651 	device_links_write_lock();
1652 	class_for_each_device(&devlink_class, NULL, NULL,
1653 			      fw_devlink_no_driver);
1654 	device_links_write_unlock();
1655 }
1656 
1657 static void fw_devlink_unblock_consumers(struct device *dev)
1658 {
1659 	struct device_link *link;
1660 
1661 	if (!fw_devlink_flags || fw_devlink_is_permissive())
1662 		return;
1663 
1664 	device_links_write_lock();
1665 	list_for_each_entry(link, &dev->links.consumers, s_node)
1666 		fw_devlink_relax_link(link);
1667 	device_links_write_unlock();
1668 }
1669 
1670 /**
1671  * fw_devlink_relax_cycle - Convert cyclic links to SYNC_STATE_ONLY links
1672  * @con: Device to check dependencies for.
1673  * @sup: Device to check against.
1674  *
1675  * Check if @sup depends on @con or any device dependent on it (its child or
1676  * its consumer etc).  When such a cyclic dependency is found, convert all
1677  * device links created solely by fw_devlink into SYNC_STATE_ONLY device links.
1678  * This is the equivalent of doing fw_devlink=permissive just between the
1679  * devices in the cycle. We need to do this because, at this point, fw_devlink
1680  * can't tell which of these dependencies is not a real dependency.
1681  *
1682  * Return 1 if a cycle is found. Otherwise, return 0.
1683  */
1684 static int fw_devlink_relax_cycle(struct device *con, void *sup)
1685 {
1686 	struct device_link *link;
1687 	int ret;
1688 
1689 	if (con == sup)
1690 		return 1;
1691 
1692 	ret = device_for_each_child(con, sup, fw_devlink_relax_cycle);
1693 	if (ret)
1694 		return ret;
1695 
1696 	list_for_each_entry(link, &con->links.consumers, s_node) {
1697 		if ((link->flags & ~DL_FLAG_INFERRED) ==
1698 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
1699 			continue;
1700 
1701 		if (!fw_devlink_relax_cycle(link->consumer, sup))
1702 			continue;
1703 
1704 		ret = 1;
1705 
1706 		fw_devlink_relax_link(link);
1707 	}
1708 	return ret;
1709 }
1710 
1711 /**
1712  * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
1713  * @con: consumer device for the device link
1714  * @sup_handle: fwnode handle of supplier
1715  * @flags: devlink flags
1716  *
1717  * This function will try to create a device link between the consumer device
1718  * @con and the supplier device represented by @sup_handle.
1719  *
1720  * The supplier has to be provided as a fwnode because incorrect cycles in
1721  * fwnode links can sometimes cause the supplier device to never be created.
1722  * This function detects such cases and returns an error if it cannot create a
1723  * device link from the consumer to a missing supplier.
1724  *
1725  * Returns,
1726  * 0 on successfully creating a device link
1727  * -EINVAL if the device link cannot be created as expected
1728  * -EAGAIN if the device link cannot be created right now, but it may be
1729  *  possible to do that in the future
1730  */
1731 static int fw_devlink_create_devlink(struct device *con,
1732 				     struct fwnode_handle *sup_handle, u32 flags)
1733 {
1734 	struct device *sup_dev;
1735 	int ret = 0;
1736 
1737 	/*
1738 	 * In some cases, a device P might also be a supplier to its child node
1739 	 * C. However, this would defer the probe of C until the probe of P
1740 	 * completes successfully. This is perfectly fine in the device driver
1741 	 * model. device_add() doesn't guarantee probe completion of the device
1742 	 * by the time it returns.
1743 	 *
1744 	 * However, there are a few drivers that assume C will finish probing
1745 	 * as soon as it's added and before P finishes probing. So, we provide
1746 	 * a flag to let fw_devlink know not to delay the probe of C until the
1747 	 * probe of P completes successfully.
1748 	 *
1749 	 * When such a flag is set, we can't create device links where P is the
1750 	 * supplier of C as that would delay the probe of C.
1751 	 */
1752 	if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
1753 	    fwnode_is_ancestor_of(sup_handle, con->fwnode))
1754 		return -EINVAL;
1755 
1756 	sup_dev = get_dev_from_fwnode(sup_handle);
1757 	if (sup_dev) {
1758 		/*
1759 		 * If it's one of those drivers that don't actually bind to
1760 		 * their device using driver core, then don't wait on this
1761 		 * supplier device indefinitely.
1762 		 */
1763 		if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
1764 		    sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
1765 			ret = -EINVAL;
1766 			goto out;
1767 		}
1768 
1769 		/*
1770 		 * If this fails, it is due to cycles in device links.  Just
1771 		 * give up on this link and treat it as invalid.
1772 		 */
1773 		if (!device_link_add(con, sup_dev, flags) &&
1774 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
1775 			dev_info(con, "Fixing up cyclic dependency with %s\n",
1776 				 dev_name(sup_dev));
1777 			device_links_write_lock();
1778 			fw_devlink_relax_cycle(con, sup_dev);
1779 			device_links_write_unlock();
1780 			device_link_add(con, sup_dev,
1781 					FW_DEVLINK_FLAGS_PERMISSIVE);
1782 			ret = -EINVAL;
1783 		}
1784 
1785 		goto out;
1786 	}
1787 
1788 	/* Supplier that's already initialized without a struct device. */
1789 	if (sup_handle->flags & FWNODE_FLAG_INITIALIZED)
1790 		return -EINVAL;
1791 
1792 	/*
1793 	 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports
1794 	 * cycles. So cycle detection isn't necessary and shouldn't be
1795 	 * done.
1796 	 */
1797 	if (flags & DL_FLAG_SYNC_STATE_ONLY)
1798 		return -EAGAIN;
1799 
1800 	/*
1801 	 * If we can't find the supplier device from its fwnode, it might be
1802 	 * due to a cyclic dependency between fwnodes. Some of these cycles can
1803 	 * be broken by applying logic. Check for these types of cycles and
1804 	 * break them so that devices in the cycle probe properly.
1805 	 *
1806 	 * If the supplier's parent is dependent on the consumer, then the
1807 	 * consumer and supplier have a cyclic dependency. Since fw_devlink
1808 	 * can't tell which of the inferred dependencies are incorrect, don't
1809 	 * enforce probe ordering between any of the devices in this cyclic
1810 	 * dependency. Do this by relaxing all the fw_devlink device links in
1811 	 * this cycle and by treating the fwnode link between the consumer and
1812 	 * the supplier as an invalid dependency.
1813 	 */
1814 	sup_dev = fwnode_get_next_parent_dev(sup_handle);
1815 	if (sup_dev && device_is_dependent(con, sup_dev)) {
1816 		dev_info(con, "Fixing up cyclic dependency with %pfwP (%s)\n",
1817 			 sup_handle, dev_name(sup_dev));
1818 		device_links_write_lock();
1819 		fw_devlink_relax_cycle(con, sup_dev);
1820 		device_links_write_unlock();
1821 		ret = -EINVAL;
1822 	} else {
1823 		/*
1824 		 * Can't check for cycles or no cycles. So let's try
1825 		 * again later.
1826 		 */
1827 		ret = -EAGAIN;
1828 	}
1829 
1830 out:
1831 	put_device(sup_dev);
1832 	return ret;
1833 }
1834 
1835 /**
1836  * __fw_devlink_link_to_consumers - Create device links to consumers of a device
1837  * @dev: Device that needs to be linked to its consumers
1838  *
1839  * This function looks at all the consumer fwnodes of @dev and creates device
1840  * links between the consumer device and @dev (supplier).
1841  *
1842  * If the consumer device has not been added yet, then this function creates a
1843  * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
1844  * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
1845  * sync_state() callback before the real consumer device gets to be added and
1846  * then probed.
1847  *
1848  * Once device links are created from the real consumer to @dev (supplier), the
1849  * fwnode links are deleted.
1850  */
1851 static void __fw_devlink_link_to_consumers(struct device *dev)
1852 {
1853 	struct fwnode_handle *fwnode = dev->fwnode;
1854 	struct fwnode_link *link, *tmp;
1855 
1856 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
1857 		u32 dl_flags = fw_devlink_get_flags();
1858 		struct device *con_dev;
1859 		bool own_link = true;
1860 		int ret;
1861 
1862 		con_dev = get_dev_from_fwnode(link->consumer);
1863 		/*
1864 		 * If consumer device is not available yet, make a "proxy"
1865 		 * SYNC_STATE_ONLY link from the consumer's parent device to
1866 		 * the supplier device. This is necessary to make sure the
1867 		 * supplier doesn't get a sync_state() callback before the real
1868 		 * consumer can create a device link to the supplier.
1869 		 *
1870 		 * This proxy link step is needed to handle the case where the
1871 		 * consumer's parent device is added before the supplier.
1872 		 */
1873 		if (!con_dev) {
1874 			con_dev = fwnode_get_next_parent_dev(link->consumer);
1875 			/*
1876 			 * However, if the consumer's parent device is also the
1877 			 * parent of the supplier, don't create a
1878 			 * consumer-supplier link from the parent to its child
1879 			 * device. Such a dependency is impossible.
1880 			 */
1881 			if (con_dev &&
1882 			    fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
1883 				put_device(con_dev);
1884 				con_dev = NULL;
1885 			} else {
1886 				own_link = false;
1887 				dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1888 			}
1889 		}
1890 
1891 		if (!con_dev)
1892 			continue;
1893 
1894 		ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags);
1895 		put_device(con_dev);
1896 		if (!own_link || ret == -EAGAIN)
1897 			continue;
1898 
1899 		__fwnode_link_del(link);
1900 	}
1901 }
1902 
1903 /**
1904  * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
1905  * @dev: The consumer device that needs to be linked to its suppliers
1906  * @fwnode: Root of the fwnode tree that is used to create device links
1907  *
1908  * This function looks at all the supplier fwnodes of fwnode tree rooted at
1909  * @fwnode and creates device links between @dev (consumer) and all the
1910  * supplier devices of the entire fwnode tree at @fwnode.
1911  *
1912  * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
1913  * and the real suppliers of @dev. Once these device links are created, the
1914  * fwnode links are deleted. When such device links are successfully created,
1915  * this function is called recursively on those supplier devices. This is
1916  * needed to detect and break some invalid cycles in fwnode links.  See
1917  * fw_devlink_create_devlink() for more details.
1918  *
1919  * In addition, it also looks at all the suppliers of the entire fwnode tree
1920  * because some of the child devices of @dev that have not been added yet
1921  * (because @dev hasn't probed) might already have their suppliers added to
1922  * driver core. So, this function creates SYNC_STATE_ONLY device links between
1923  * @dev (consumer) and these suppliers to make sure they don't execute their
1924  * sync_state() callbacks before these child devices have a chance to create
1925  * their device links. The fwnode links that correspond to the child devices
1926  * aren't delete because they are needed later to create the device links
1927  * between the real consumer and supplier devices.
1928  */
1929 static void __fw_devlink_link_to_suppliers(struct device *dev,
1930 					   struct fwnode_handle *fwnode)
1931 {
1932 	bool own_link = (dev->fwnode == fwnode);
1933 	struct fwnode_link *link, *tmp;
1934 	struct fwnode_handle *child = NULL;
1935 	u32 dl_flags;
1936 
1937 	if (own_link)
1938 		dl_flags = fw_devlink_get_flags();
1939 	else
1940 		dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1941 
1942 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
1943 		int ret;
1944 		struct device *sup_dev;
1945 		struct fwnode_handle *sup = link->supplier;
1946 
1947 		ret = fw_devlink_create_devlink(dev, sup, dl_flags);
1948 		if (!own_link || ret == -EAGAIN)
1949 			continue;
1950 
1951 		__fwnode_link_del(link);
1952 
1953 		/* If no device link was created, nothing more to do. */
1954 		if (ret)
1955 			continue;
1956 
1957 		/*
1958 		 * If a device link was successfully created to a supplier, we
1959 		 * now need to try and link the supplier to all its suppliers.
1960 		 *
1961 		 * This is needed to detect and delete false dependencies in
1962 		 * fwnode links that haven't been converted to a device link
1963 		 * yet. See comments in fw_devlink_create_devlink() for more
1964 		 * details on the false dependency.
1965 		 *
1966 		 * Without deleting these false dependencies, some devices will
1967 		 * never probe because they'll keep waiting for their false
1968 		 * dependency fwnode links to be converted to device links.
1969 		 */
1970 		sup_dev = get_dev_from_fwnode(sup);
1971 		__fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode);
1972 		put_device(sup_dev);
1973 	}
1974 
1975 	/*
1976 	 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
1977 	 * all the descendants. This proxy link step is needed to handle the
1978 	 * case where the supplier is added before the consumer's parent device
1979 	 * (@dev).
1980 	 */
1981 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1982 		__fw_devlink_link_to_suppliers(dev, child);
1983 }
1984 
1985 static void fw_devlink_link_device(struct device *dev)
1986 {
1987 	struct fwnode_handle *fwnode = dev->fwnode;
1988 
1989 	if (!fw_devlink_flags)
1990 		return;
1991 
1992 	fw_devlink_parse_fwtree(fwnode);
1993 
1994 	mutex_lock(&fwnode_link_lock);
1995 	__fw_devlink_link_to_consumers(dev);
1996 	__fw_devlink_link_to_suppliers(dev, fwnode);
1997 	mutex_unlock(&fwnode_link_lock);
1998 }
1999 
2000 /* Device links support end. */
2001 
2002 int (*platform_notify)(struct device *dev) = NULL;
2003 int (*platform_notify_remove)(struct device *dev) = NULL;
2004 static struct kobject *dev_kobj;
2005 struct kobject *sysfs_dev_char_kobj;
2006 struct kobject *sysfs_dev_block_kobj;
2007 
2008 static DEFINE_MUTEX(device_hotplug_lock);
2009 
2010 void lock_device_hotplug(void)
2011 {
2012 	mutex_lock(&device_hotplug_lock);
2013 }
2014 
2015 void unlock_device_hotplug(void)
2016 {
2017 	mutex_unlock(&device_hotplug_lock);
2018 }
2019 
2020 int lock_device_hotplug_sysfs(void)
2021 {
2022 	if (mutex_trylock(&device_hotplug_lock))
2023 		return 0;
2024 
2025 	/* Avoid busy looping (5 ms of sleep should do). */
2026 	msleep(5);
2027 	return restart_syscall();
2028 }
2029 
2030 #ifdef CONFIG_BLOCK
2031 static inline int device_is_not_partition(struct device *dev)
2032 {
2033 	return !(dev->type == &part_type);
2034 }
2035 #else
2036 static inline int device_is_not_partition(struct device *dev)
2037 {
2038 	return 1;
2039 }
2040 #endif
2041 
2042 static void device_platform_notify(struct device *dev)
2043 {
2044 	acpi_device_notify(dev);
2045 
2046 	software_node_notify(dev);
2047 
2048 	if (platform_notify)
2049 		platform_notify(dev);
2050 }
2051 
2052 static void device_platform_notify_remove(struct device *dev)
2053 {
2054 	acpi_device_notify_remove(dev);
2055 
2056 	software_node_notify_remove(dev);
2057 
2058 	if (platform_notify_remove)
2059 		platform_notify_remove(dev);
2060 }
2061 
2062 /**
2063  * dev_driver_string - Return a device's driver name, if at all possible
2064  * @dev: struct device to get the name of
2065  *
2066  * Will return the device's driver's name if it is bound to a device.  If
2067  * the device is not bound to a driver, it will return the name of the bus
2068  * it is attached to.  If it is not attached to a bus either, an empty
2069  * string will be returned.
2070  */
2071 const char *dev_driver_string(const struct device *dev)
2072 {
2073 	struct device_driver *drv;
2074 
2075 	/* dev->driver can change to NULL underneath us because of unbinding,
2076 	 * so be careful about accessing it.  dev->bus and dev->class should
2077 	 * never change once they are set, so they don't need special care.
2078 	 */
2079 	drv = READ_ONCE(dev->driver);
2080 	return drv ? drv->name : dev_bus_name(dev);
2081 }
2082 EXPORT_SYMBOL(dev_driver_string);
2083 
2084 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2085 
2086 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2087 			     char *buf)
2088 {
2089 	struct device_attribute *dev_attr = to_dev_attr(attr);
2090 	struct device *dev = kobj_to_dev(kobj);
2091 	ssize_t ret = -EIO;
2092 
2093 	if (dev_attr->show)
2094 		ret = dev_attr->show(dev, dev_attr, buf);
2095 	if (ret >= (ssize_t)PAGE_SIZE) {
2096 		printk("dev_attr_show: %pS returned bad count\n",
2097 				dev_attr->show);
2098 	}
2099 	return ret;
2100 }
2101 
2102 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2103 			      const char *buf, size_t count)
2104 {
2105 	struct device_attribute *dev_attr = to_dev_attr(attr);
2106 	struct device *dev = kobj_to_dev(kobj);
2107 	ssize_t ret = -EIO;
2108 
2109 	if (dev_attr->store)
2110 		ret = dev_attr->store(dev, dev_attr, buf, count);
2111 	return ret;
2112 }
2113 
2114 static const struct sysfs_ops dev_sysfs_ops = {
2115 	.show	= dev_attr_show,
2116 	.store	= dev_attr_store,
2117 };
2118 
2119 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2120 
2121 ssize_t device_store_ulong(struct device *dev,
2122 			   struct device_attribute *attr,
2123 			   const char *buf, size_t size)
2124 {
2125 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2126 	int ret;
2127 	unsigned long new;
2128 
2129 	ret = kstrtoul(buf, 0, &new);
2130 	if (ret)
2131 		return ret;
2132 	*(unsigned long *)(ea->var) = new;
2133 	/* Always return full write size even if we didn't consume all */
2134 	return size;
2135 }
2136 EXPORT_SYMBOL_GPL(device_store_ulong);
2137 
2138 ssize_t device_show_ulong(struct device *dev,
2139 			  struct device_attribute *attr,
2140 			  char *buf)
2141 {
2142 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2143 	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2144 }
2145 EXPORT_SYMBOL_GPL(device_show_ulong);
2146 
2147 ssize_t device_store_int(struct device *dev,
2148 			 struct device_attribute *attr,
2149 			 const char *buf, size_t size)
2150 {
2151 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2152 	int ret;
2153 	long new;
2154 
2155 	ret = kstrtol(buf, 0, &new);
2156 	if (ret)
2157 		return ret;
2158 
2159 	if (new > INT_MAX || new < INT_MIN)
2160 		return -EINVAL;
2161 	*(int *)(ea->var) = new;
2162 	/* Always return full write size even if we didn't consume all */
2163 	return size;
2164 }
2165 EXPORT_SYMBOL_GPL(device_store_int);
2166 
2167 ssize_t device_show_int(struct device *dev,
2168 			struct device_attribute *attr,
2169 			char *buf)
2170 {
2171 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2172 
2173 	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2174 }
2175 EXPORT_SYMBOL_GPL(device_show_int);
2176 
2177 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2178 			  const char *buf, size_t size)
2179 {
2180 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2181 
2182 	if (strtobool(buf, ea->var) < 0)
2183 		return -EINVAL;
2184 
2185 	return size;
2186 }
2187 EXPORT_SYMBOL_GPL(device_store_bool);
2188 
2189 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2190 			 char *buf)
2191 {
2192 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2193 
2194 	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2195 }
2196 EXPORT_SYMBOL_GPL(device_show_bool);
2197 
2198 /**
2199  * device_release - free device structure.
2200  * @kobj: device's kobject.
2201  *
2202  * This is called once the reference count for the object
2203  * reaches 0. We forward the call to the device's release
2204  * method, which should handle actually freeing the structure.
2205  */
2206 static void device_release(struct kobject *kobj)
2207 {
2208 	struct device *dev = kobj_to_dev(kobj);
2209 	struct device_private *p = dev->p;
2210 
2211 	/*
2212 	 * Some platform devices are driven without driver attached
2213 	 * and managed resources may have been acquired.  Make sure
2214 	 * all resources are released.
2215 	 *
2216 	 * Drivers still can add resources into device after device
2217 	 * is deleted but alive, so release devres here to avoid
2218 	 * possible memory leak.
2219 	 */
2220 	devres_release_all(dev);
2221 
2222 	kfree(dev->dma_range_map);
2223 
2224 	if (dev->release)
2225 		dev->release(dev);
2226 	else if (dev->type && dev->type->release)
2227 		dev->type->release(dev);
2228 	else if (dev->class && dev->class->dev_release)
2229 		dev->class->dev_release(dev);
2230 	else
2231 		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2232 			dev_name(dev));
2233 	kfree(p);
2234 }
2235 
2236 static const void *device_namespace(struct kobject *kobj)
2237 {
2238 	struct device *dev = kobj_to_dev(kobj);
2239 	const void *ns = NULL;
2240 
2241 	if (dev->class && dev->class->ns_type)
2242 		ns = dev->class->namespace(dev);
2243 
2244 	return ns;
2245 }
2246 
2247 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2248 {
2249 	struct device *dev = kobj_to_dev(kobj);
2250 
2251 	if (dev->class && dev->class->get_ownership)
2252 		dev->class->get_ownership(dev, uid, gid);
2253 }
2254 
2255 static struct kobj_type device_ktype = {
2256 	.release	= device_release,
2257 	.sysfs_ops	= &dev_sysfs_ops,
2258 	.namespace	= device_namespace,
2259 	.get_ownership	= device_get_ownership,
2260 };
2261 
2262 
2263 static int dev_uevent_filter(struct kobject *kobj)
2264 {
2265 	const struct kobj_type *ktype = get_ktype(kobj);
2266 
2267 	if (ktype == &device_ktype) {
2268 		struct device *dev = kobj_to_dev(kobj);
2269 		if (dev->bus)
2270 			return 1;
2271 		if (dev->class)
2272 			return 1;
2273 	}
2274 	return 0;
2275 }
2276 
2277 static const char *dev_uevent_name(struct kobject *kobj)
2278 {
2279 	struct device *dev = kobj_to_dev(kobj);
2280 
2281 	if (dev->bus)
2282 		return dev->bus->name;
2283 	if (dev->class)
2284 		return dev->class->name;
2285 	return NULL;
2286 }
2287 
2288 static int dev_uevent(struct kobject *kobj, struct kobj_uevent_env *env)
2289 {
2290 	struct device *dev = kobj_to_dev(kobj);
2291 	int retval = 0;
2292 
2293 	/* add device node properties if present */
2294 	if (MAJOR(dev->devt)) {
2295 		const char *tmp;
2296 		const char *name;
2297 		umode_t mode = 0;
2298 		kuid_t uid = GLOBAL_ROOT_UID;
2299 		kgid_t gid = GLOBAL_ROOT_GID;
2300 
2301 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2302 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2303 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2304 		if (name) {
2305 			add_uevent_var(env, "DEVNAME=%s", name);
2306 			if (mode)
2307 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2308 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
2309 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2310 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
2311 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2312 			kfree(tmp);
2313 		}
2314 	}
2315 
2316 	if (dev->type && dev->type->name)
2317 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2318 
2319 	if (dev->driver)
2320 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2321 
2322 	/* Add common DT information about the device */
2323 	of_device_uevent(dev, env);
2324 
2325 	/* have the bus specific function add its stuff */
2326 	if (dev->bus && dev->bus->uevent) {
2327 		retval = dev->bus->uevent(dev, env);
2328 		if (retval)
2329 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2330 				 dev_name(dev), __func__, retval);
2331 	}
2332 
2333 	/* have the class specific function add its stuff */
2334 	if (dev->class && dev->class->dev_uevent) {
2335 		retval = dev->class->dev_uevent(dev, env);
2336 		if (retval)
2337 			pr_debug("device: '%s': %s: class uevent() "
2338 				 "returned %d\n", dev_name(dev),
2339 				 __func__, retval);
2340 	}
2341 
2342 	/* have the device type specific function add its stuff */
2343 	if (dev->type && dev->type->uevent) {
2344 		retval = dev->type->uevent(dev, env);
2345 		if (retval)
2346 			pr_debug("device: '%s': %s: dev_type uevent() "
2347 				 "returned %d\n", dev_name(dev),
2348 				 __func__, retval);
2349 	}
2350 
2351 	return retval;
2352 }
2353 
2354 static const struct kset_uevent_ops device_uevent_ops = {
2355 	.filter =	dev_uevent_filter,
2356 	.name =		dev_uevent_name,
2357 	.uevent =	dev_uevent,
2358 };
2359 
2360 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2361 			   char *buf)
2362 {
2363 	struct kobject *top_kobj;
2364 	struct kset *kset;
2365 	struct kobj_uevent_env *env = NULL;
2366 	int i;
2367 	int len = 0;
2368 	int retval;
2369 
2370 	/* search the kset, the device belongs to */
2371 	top_kobj = &dev->kobj;
2372 	while (!top_kobj->kset && top_kobj->parent)
2373 		top_kobj = top_kobj->parent;
2374 	if (!top_kobj->kset)
2375 		goto out;
2376 
2377 	kset = top_kobj->kset;
2378 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2379 		goto out;
2380 
2381 	/* respect filter */
2382 	if (kset->uevent_ops && kset->uevent_ops->filter)
2383 		if (!kset->uevent_ops->filter(&dev->kobj))
2384 			goto out;
2385 
2386 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2387 	if (!env)
2388 		return -ENOMEM;
2389 
2390 	/* let the kset specific function add its keys */
2391 	retval = kset->uevent_ops->uevent(&dev->kobj, env);
2392 	if (retval)
2393 		goto out;
2394 
2395 	/* copy keys to file */
2396 	for (i = 0; i < env->envp_idx; i++)
2397 		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2398 out:
2399 	kfree(env);
2400 	return len;
2401 }
2402 
2403 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2404 			    const char *buf, size_t count)
2405 {
2406 	int rc;
2407 
2408 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
2409 
2410 	if (rc) {
2411 		dev_err(dev, "uevent: failed to send synthetic uevent\n");
2412 		return rc;
2413 	}
2414 
2415 	return count;
2416 }
2417 static DEVICE_ATTR_RW(uevent);
2418 
2419 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2420 			   char *buf)
2421 {
2422 	bool val;
2423 
2424 	device_lock(dev);
2425 	val = !dev->offline;
2426 	device_unlock(dev);
2427 	return sysfs_emit(buf, "%u\n", val);
2428 }
2429 
2430 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2431 			    const char *buf, size_t count)
2432 {
2433 	bool val;
2434 	int ret;
2435 
2436 	ret = strtobool(buf, &val);
2437 	if (ret < 0)
2438 		return ret;
2439 
2440 	ret = lock_device_hotplug_sysfs();
2441 	if (ret)
2442 		return ret;
2443 
2444 	ret = val ? device_online(dev) : device_offline(dev);
2445 	unlock_device_hotplug();
2446 	return ret < 0 ? ret : count;
2447 }
2448 static DEVICE_ATTR_RW(online);
2449 
2450 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2451 			      char *buf)
2452 {
2453 	const char *loc;
2454 
2455 	switch (dev->removable) {
2456 	case DEVICE_REMOVABLE:
2457 		loc = "removable";
2458 		break;
2459 	case DEVICE_FIXED:
2460 		loc = "fixed";
2461 		break;
2462 	default:
2463 		loc = "unknown";
2464 	}
2465 	return sysfs_emit(buf, "%s\n", loc);
2466 }
2467 static DEVICE_ATTR_RO(removable);
2468 
2469 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2470 {
2471 	return sysfs_create_groups(&dev->kobj, groups);
2472 }
2473 EXPORT_SYMBOL_GPL(device_add_groups);
2474 
2475 void device_remove_groups(struct device *dev,
2476 			  const struct attribute_group **groups)
2477 {
2478 	sysfs_remove_groups(&dev->kobj, groups);
2479 }
2480 EXPORT_SYMBOL_GPL(device_remove_groups);
2481 
2482 union device_attr_group_devres {
2483 	const struct attribute_group *group;
2484 	const struct attribute_group **groups;
2485 };
2486 
2487 static int devm_attr_group_match(struct device *dev, void *res, void *data)
2488 {
2489 	return ((union device_attr_group_devres *)res)->group == data;
2490 }
2491 
2492 static void devm_attr_group_remove(struct device *dev, void *res)
2493 {
2494 	union device_attr_group_devres *devres = res;
2495 	const struct attribute_group *group = devres->group;
2496 
2497 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2498 	sysfs_remove_group(&dev->kobj, group);
2499 }
2500 
2501 static void devm_attr_groups_remove(struct device *dev, void *res)
2502 {
2503 	union device_attr_group_devres *devres = res;
2504 	const struct attribute_group **groups = devres->groups;
2505 
2506 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2507 	sysfs_remove_groups(&dev->kobj, groups);
2508 }
2509 
2510 /**
2511  * devm_device_add_group - given a device, create a managed attribute group
2512  * @dev:	The device to create the group for
2513  * @grp:	The attribute group to create
2514  *
2515  * This function creates a group for the first time.  It will explicitly
2516  * warn and error if any of the attribute files being created already exist.
2517  *
2518  * Returns 0 on success or error code on failure.
2519  */
2520 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2521 {
2522 	union device_attr_group_devres *devres;
2523 	int error;
2524 
2525 	devres = devres_alloc(devm_attr_group_remove,
2526 			      sizeof(*devres), GFP_KERNEL);
2527 	if (!devres)
2528 		return -ENOMEM;
2529 
2530 	error = sysfs_create_group(&dev->kobj, grp);
2531 	if (error) {
2532 		devres_free(devres);
2533 		return error;
2534 	}
2535 
2536 	devres->group = grp;
2537 	devres_add(dev, devres);
2538 	return 0;
2539 }
2540 EXPORT_SYMBOL_GPL(devm_device_add_group);
2541 
2542 /**
2543  * devm_device_remove_group: remove a managed group from a device
2544  * @dev:	device to remove the group from
2545  * @grp:	group to remove
2546  *
2547  * This function removes a group of attributes from a device. The attributes
2548  * previously have to have been created for this group, otherwise it will fail.
2549  */
2550 void devm_device_remove_group(struct device *dev,
2551 			      const struct attribute_group *grp)
2552 {
2553 	WARN_ON(devres_release(dev, devm_attr_group_remove,
2554 			       devm_attr_group_match,
2555 			       /* cast away const */ (void *)grp));
2556 }
2557 EXPORT_SYMBOL_GPL(devm_device_remove_group);
2558 
2559 /**
2560  * devm_device_add_groups - create a bunch of managed attribute groups
2561  * @dev:	The device to create the group for
2562  * @groups:	The attribute groups to create, NULL terminated
2563  *
2564  * This function creates a bunch of managed attribute groups.  If an error
2565  * occurs when creating a group, all previously created groups will be
2566  * removed, unwinding everything back to the original state when this
2567  * function was called.  It will explicitly warn and error if any of the
2568  * attribute files being created already exist.
2569  *
2570  * Returns 0 on success or error code from sysfs_create_group on failure.
2571  */
2572 int devm_device_add_groups(struct device *dev,
2573 			   const struct attribute_group **groups)
2574 {
2575 	union device_attr_group_devres *devres;
2576 	int error;
2577 
2578 	devres = devres_alloc(devm_attr_groups_remove,
2579 			      sizeof(*devres), GFP_KERNEL);
2580 	if (!devres)
2581 		return -ENOMEM;
2582 
2583 	error = sysfs_create_groups(&dev->kobj, groups);
2584 	if (error) {
2585 		devres_free(devres);
2586 		return error;
2587 	}
2588 
2589 	devres->groups = groups;
2590 	devres_add(dev, devres);
2591 	return 0;
2592 }
2593 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2594 
2595 /**
2596  * devm_device_remove_groups - remove a list of managed groups
2597  *
2598  * @dev:	The device for the groups to be removed from
2599  * @groups:	NULL terminated list of groups to be removed
2600  *
2601  * If groups is not NULL, remove the specified groups from the device.
2602  */
2603 void devm_device_remove_groups(struct device *dev,
2604 			       const struct attribute_group **groups)
2605 {
2606 	WARN_ON(devres_release(dev, devm_attr_groups_remove,
2607 			       devm_attr_group_match,
2608 			       /* cast away const */ (void *)groups));
2609 }
2610 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2611 
2612 static int device_add_attrs(struct device *dev)
2613 {
2614 	struct class *class = dev->class;
2615 	const struct device_type *type = dev->type;
2616 	int error;
2617 
2618 	if (class) {
2619 		error = device_add_groups(dev, class->dev_groups);
2620 		if (error)
2621 			return error;
2622 	}
2623 
2624 	if (type) {
2625 		error = device_add_groups(dev, type->groups);
2626 		if (error)
2627 			goto err_remove_class_groups;
2628 	}
2629 
2630 	error = device_add_groups(dev, dev->groups);
2631 	if (error)
2632 		goto err_remove_type_groups;
2633 
2634 	if (device_supports_offline(dev) && !dev->offline_disabled) {
2635 		error = device_create_file(dev, &dev_attr_online);
2636 		if (error)
2637 			goto err_remove_dev_groups;
2638 	}
2639 
2640 	if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2641 		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2642 		if (error)
2643 			goto err_remove_dev_online;
2644 	}
2645 
2646 	if (dev_removable_is_valid(dev)) {
2647 		error = device_create_file(dev, &dev_attr_removable);
2648 		if (error)
2649 			goto err_remove_dev_waiting_for_supplier;
2650 	}
2651 
2652 	return 0;
2653 
2654  err_remove_dev_waiting_for_supplier:
2655 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2656  err_remove_dev_online:
2657 	device_remove_file(dev, &dev_attr_online);
2658  err_remove_dev_groups:
2659 	device_remove_groups(dev, dev->groups);
2660  err_remove_type_groups:
2661 	if (type)
2662 		device_remove_groups(dev, type->groups);
2663  err_remove_class_groups:
2664 	if (class)
2665 		device_remove_groups(dev, class->dev_groups);
2666 
2667 	return error;
2668 }
2669 
2670 static void device_remove_attrs(struct device *dev)
2671 {
2672 	struct class *class = dev->class;
2673 	const struct device_type *type = dev->type;
2674 
2675 	device_remove_file(dev, &dev_attr_removable);
2676 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2677 	device_remove_file(dev, &dev_attr_online);
2678 	device_remove_groups(dev, dev->groups);
2679 
2680 	if (type)
2681 		device_remove_groups(dev, type->groups);
2682 
2683 	if (class)
2684 		device_remove_groups(dev, class->dev_groups);
2685 }
2686 
2687 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2688 			char *buf)
2689 {
2690 	return print_dev_t(buf, dev->devt);
2691 }
2692 static DEVICE_ATTR_RO(dev);
2693 
2694 /* /sys/devices/ */
2695 struct kset *devices_kset;
2696 
2697 /**
2698  * devices_kset_move_before - Move device in the devices_kset's list.
2699  * @deva: Device to move.
2700  * @devb: Device @deva should come before.
2701  */
2702 static void devices_kset_move_before(struct device *deva, struct device *devb)
2703 {
2704 	if (!devices_kset)
2705 		return;
2706 	pr_debug("devices_kset: Moving %s before %s\n",
2707 		 dev_name(deva), dev_name(devb));
2708 	spin_lock(&devices_kset->list_lock);
2709 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2710 	spin_unlock(&devices_kset->list_lock);
2711 }
2712 
2713 /**
2714  * devices_kset_move_after - Move device in the devices_kset's list.
2715  * @deva: Device to move
2716  * @devb: Device @deva should come after.
2717  */
2718 static void devices_kset_move_after(struct device *deva, struct device *devb)
2719 {
2720 	if (!devices_kset)
2721 		return;
2722 	pr_debug("devices_kset: Moving %s after %s\n",
2723 		 dev_name(deva), dev_name(devb));
2724 	spin_lock(&devices_kset->list_lock);
2725 	list_move(&deva->kobj.entry, &devb->kobj.entry);
2726 	spin_unlock(&devices_kset->list_lock);
2727 }
2728 
2729 /**
2730  * devices_kset_move_last - move the device to the end of devices_kset's list.
2731  * @dev: device to move
2732  */
2733 void devices_kset_move_last(struct device *dev)
2734 {
2735 	if (!devices_kset)
2736 		return;
2737 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2738 	spin_lock(&devices_kset->list_lock);
2739 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
2740 	spin_unlock(&devices_kset->list_lock);
2741 }
2742 
2743 /**
2744  * device_create_file - create sysfs attribute file for device.
2745  * @dev: device.
2746  * @attr: device attribute descriptor.
2747  */
2748 int device_create_file(struct device *dev,
2749 		       const struct device_attribute *attr)
2750 {
2751 	int error = 0;
2752 
2753 	if (dev) {
2754 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2755 			"Attribute %s: write permission without 'store'\n",
2756 			attr->attr.name);
2757 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2758 			"Attribute %s: read permission without 'show'\n",
2759 			attr->attr.name);
2760 		error = sysfs_create_file(&dev->kobj, &attr->attr);
2761 	}
2762 
2763 	return error;
2764 }
2765 EXPORT_SYMBOL_GPL(device_create_file);
2766 
2767 /**
2768  * device_remove_file - remove sysfs attribute file.
2769  * @dev: device.
2770  * @attr: device attribute descriptor.
2771  */
2772 void device_remove_file(struct device *dev,
2773 			const struct device_attribute *attr)
2774 {
2775 	if (dev)
2776 		sysfs_remove_file(&dev->kobj, &attr->attr);
2777 }
2778 EXPORT_SYMBOL_GPL(device_remove_file);
2779 
2780 /**
2781  * device_remove_file_self - remove sysfs attribute file from its own method.
2782  * @dev: device.
2783  * @attr: device attribute descriptor.
2784  *
2785  * See kernfs_remove_self() for details.
2786  */
2787 bool device_remove_file_self(struct device *dev,
2788 			     const struct device_attribute *attr)
2789 {
2790 	if (dev)
2791 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2792 	else
2793 		return false;
2794 }
2795 EXPORT_SYMBOL_GPL(device_remove_file_self);
2796 
2797 /**
2798  * device_create_bin_file - create sysfs binary attribute file for device.
2799  * @dev: device.
2800  * @attr: device binary attribute descriptor.
2801  */
2802 int device_create_bin_file(struct device *dev,
2803 			   const struct bin_attribute *attr)
2804 {
2805 	int error = -EINVAL;
2806 	if (dev)
2807 		error = sysfs_create_bin_file(&dev->kobj, attr);
2808 	return error;
2809 }
2810 EXPORT_SYMBOL_GPL(device_create_bin_file);
2811 
2812 /**
2813  * device_remove_bin_file - remove sysfs binary attribute file
2814  * @dev: device.
2815  * @attr: device binary attribute descriptor.
2816  */
2817 void device_remove_bin_file(struct device *dev,
2818 			    const struct bin_attribute *attr)
2819 {
2820 	if (dev)
2821 		sysfs_remove_bin_file(&dev->kobj, attr);
2822 }
2823 EXPORT_SYMBOL_GPL(device_remove_bin_file);
2824 
2825 static void klist_children_get(struct klist_node *n)
2826 {
2827 	struct device_private *p = to_device_private_parent(n);
2828 	struct device *dev = p->device;
2829 
2830 	get_device(dev);
2831 }
2832 
2833 static void klist_children_put(struct klist_node *n)
2834 {
2835 	struct device_private *p = to_device_private_parent(n);
2836 	struct device *dev = p->device;
2837 
2838 	put_device(dev);
2839 }
2840 
2841 /**
2842  * device_initialize - init device structure.
2843  * @dev: device.
2844  *
2845  * This prepares the device for use by other layers by initializing
2846  * its fields.
2847  * It is the first half of device_register(), if called by
2848  * that function, though it can also be called separately, so one
2849  * may use @dev's fields. In particular, get_device()/put_device()
2850  * may be used for reference counting of @dev after calling this
2851  * function.
2852  *
2853  * All fields in @dev must be initialized by the caller to 0, except
2854  * for those explicitly set to some other value.  The simplest
2855  * approach is to use kzalloc() to allocate the structure containing
2856  * @dev.
2857  *
2858  * NOTE: Use put_device() to give up your reference instead of freeing
2859  * @dev directly once you have called this function.
2860  */
2861 void device_initialize(struct device *dev)
2862 {
2863 	dev->kobj.kset = devices_kset;
2864 	kobject_init(&dev->kobj, &device_ktype);
2865 	INIT_LIST_HEAD(&dev->dma_pools);
2866 	mutex_init(&dev->mutex);
2867 	lockdep_set_novalidate_class(&dev->mutex);
2868 	spin_lock_init(&dev->devres_lock);
2869 	INIT_LIST_HEAD(&dev->devres_head);
2870 	device_pm_init(dev);
2871 	set_dev_node(dev, NUMA_NO_NODE);
2872 	INIT_LIST_HEAD(&dev->links.consumers);
2873 	INIT_LIST_HEAD(&dev->links.suppliers);
2874 	INIT_LIST_HEAD(&dev->links.defer_sync);
2875 	dev->links.status = DL_DEV_NO_DRIVER;
2876 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
2877     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
2878     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
2879 	dev->dma_coherent = dma_default_coherent;
2880 #endif
2881 #ifdef CONFIG_SWIOTLB
2882 	dev->dma_io_tlb_mem = &io_tlb_default_mem;
2883 #endif
2884 }
2885 EXPORT_SYMBOL_GPL(device_initialize);
2886 
2887 struct kobject *virtual_device_parent(struct device *dev)
2888 {
2889 	static struct kobject *virtual_dir = NULL;
2890 
2891 	if (!virtual_dir)
2892 		virtual_dir = kobject_create_and_add("virtual",
2893 						     &devices_kset->kobj);
2894 
2895 	return virtual_dir;
2896 }
2897 
2898 struct class_dir {
2899 	struct kobject kobj;
2900 	struct class *class;
2901 };
2902 
2903 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2904 
2905 static void class_dir_release(struct kobject *kobj)
2906 {
2907 	struct class_dir *dir = to_class_dir(kobj);
2908 	kfree(dir);
2909 }
2910 
2911 static const
2912 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2913 {
2914 	struct class_dir *dir = to_class_dir(kobj);
2915 	return dir->class->ns_type;
2916 }
2917 
2918 static struct kobj_type class_dir_ktype = {
2919 	.release	= class_dir_release,
2920 	.sysfs_ops	= &kobj_sysfs_ops,
2921 	.child_ns_type	= class_dir_child_ns_type
2922 };
2923 
2924 static struct kobject *
2925 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2926 {
2927 	struct class_dir *dir;
2928 	int retval;
2929 
2930 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2931 	if (!dir)
2932 		return ERR_PTR(-ENOMEM);
2933 
2934 	dir->class = class;
2935 	kobject_init(&dir->kobj, &class_dir_ktype);
2936 
2937 	dir->kobj.kset = &class->p->glue_dirs;
2938 
2939 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2940 	if (retval < 0) {
2941 		kobject_put(&dir->kobj);
2942 		return ERR_PTR(retval);
2943 	}
2944 	return &dir->kobj;
2945 }
2946 
2947 static DEFINE_MUTEX(gdp_mutex);
2948 
2949 static struct kobject *get_device_parent(struct device *dev,
2950 					 struct device *parent)
2951 {
2952 	if (dev->class) {
2953 		struct kobject *kobj = NULL;
2954 		struct kobject *parent_kobj;
2955 		struct kobject *k;
2956 
2957 #ifdef CONFIG_BLOCK
2958 		/* block disks show up in /sys/block */
2959 		if (sysfs_deprecated && dev->class == &block_class) {
2960 			if (parent && parent->class == &block_class)
2961 				return &parent->kobj;
2962 			return &block_class.p->subsys.kobj;
2963 		}
2964 #endif
2965 
2966 		/*
2967 		 * If we have no parent, we live in "virtual".
2968 		 * Class-devices with a non class-device as parent, live
2969 		 * in a "glue" directory to prevent namespace collisions.
2970 		 */
2971 		if (parent == NULL)
2972 			parent_kobj = virtual_device_parent(dev);
2973 		else if (parent->class && !dev->class->ns_type)
2974 			return &parent->kobj;
2975 		else
2976 			parent_kobj = &parent->kobj;
2977 
2978 		mutex_lock(&gdp_mutex);
2979 
2980 		/* find our class-directory at the parent and reference it */
2981 		spin_lock(&dev->class->p->glue_dirs.list_lock);
2982 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2983 			if (k->parent == parent_kobj) {
2984 				kobj = kobject_get(k);
2985 				break;
2986 			}
2987 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
2988 		if (kobj) {
2989 			mutex_unlock(&gdp_mutex);
2990 			return kobj;
2991 		}
2992 
2993 		/* or create a new class-directory at the parent device */
2994 		k = class_dir_create_and_add(dev->class, parent_kobj);
2995 		/* do not emit an uevent for this simple "glue" directory */
2996 		mutex_unlock(&gdp_mutex);
2997 		return k;
2998 	}
2999 
3000 	/* subsystems can specify a default root directory for their devices */
3001 	if (!parent && dev->bus && dev->bus->dev_root)
3002 		return &dev->bus->dev_root->kobj;
3003 
3004 	if (parent)
3005 		return &parent->kobj;
3006 	return NULL;
3007 }
3008 
3009 static inline bool live_in_glue_dir(struct kobject *kobj,
3010 				    struct device *dev)
3011 {
3012 	if (!kobj || !dev->class ||
3013 	    kobj->kset != &dev->class->p->glue_dirs)
3014 		return false;
3015 	return true;
3016 }
3017 
3018 static inline struct kobject *get_glue_dir(struct device *dev)
3019 {
3020 	return dev->kobj.parent;
3021 }
3022 
3023 /**
3024  * kobject_has_children - Returns whether a kobject has children.
3025  * @kobj: the object to test
3026  *
3027  * This will return whether a kobject has other kobjects as children.
3028  *
3029  * It does NOT account for the presence of attribute files, only sub
3030  * directories. It also assumes there is no concurrent addition or
3031  * removal of such children, and thus relies on external locking.
3032  */
3033 static inline bool kobject_has_children(struct kobject *kobj)
3034 {
3035 	WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
3036 
3037 	return kobj->sd && kobj->sd->dir.subdirs;
3038 }
3039 
3040 /*
3041  * make sure cleaning up dir as the last step, we need to make
3042  * sure .release handler of kobject is run with holding the
3043  * global lock
3044  */
3045 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3046 {
3047 	unsigned int ref;
3048 
3049 	/* see if we live in a "glue" directory */
3050 	if (!live_in_glue_dir(glue_dir, dev))
3051 		return;
3052 
3053 	mutex_lock(&gdp_mutex);
3054 	/**
3055 	 * There is a race condition between removing glue directory
3056 	 * and adding a new device under the glue directory.
3057 	 *
3058 	 * CPU1:                                         CPU2:
3059 	 *
3060 	 * device_add()
3061 	 *   get_device_parent()
3062 	 *     class_dir_create_and_add()
3063 	 *       kobject_add_internal()
3064 	 *         create_dir()    // create glue_dir
3065 	 *
3066 	 *                                               device_add()
3067 	 *                                                 get_device_parent()
3068 	 *                                                   kobject_get() // get glue_dir
3069 	 *
3070 	 * device_del()
3071 	 *   cleanup_glue_dir()
3072 	 *     kobject_del(glue_dir)
3073 	 *
3074 	 *                                               kobject_add()
3075 	 *                                                 kobject_add_internal()
3076 	 *                                                   create_dir() // in glue_dir
3077 	 *                                                     sysfs_create_dir_ns()
3078 	 *                                                       kernfs_create_dir_ns(sd)
3079 	 *
3080 	 *       sysfs_remove_dir() // glue_dir->sd=NULL
3081 	 *       sysfs_put()        // free glue_dir->sd
3082 	 *
3083 	 *                                                         // sd is freed
3084 	 *                                                         kernfs_new_node(sd)
3085 	 *                                                           kernfs_get(glue_dir)
3086 	 *                                                           kernfs_add_one()
3087 	 *                                                           kernfs_put()
3088 	 *
3089 	 * Before CPU1 remove last child device under glue dir, if CPU2 add
3090 	 * a new device under glue dir, the glue_dir kobject reference count
3091 	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3092 	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3093 	 * and sysfs_put(). This result in glue_dir->sd is freed.
3094 	 *
3095 	 * Then the CPU2 will see a stale "empty" but still potentially used
3096 	 * glue dir around in kernfs_new_node().
3097 	 *
3098 	 * In order to avoid this happening, we also should make sure that
3099 	 * kernfs_node for glue_dir is released in CPU1 only when refcount
3100 	 * for glue_dir kobj is 1.
3101 	 */
3102 	ref = kref_read(&glue_dir->kref);
3103 	if (!kobject_has_children(glue_dir) && !--ref)
3104 		kobject_del(glue_dir);
3105 	kobject_put(glue_dir);
3106 	mutex_unlock(&gdp_mutex);
3107 }
3108 
3109 static int device_add_class_symlinks(struct device *dev)
3110 {
3111 	struct device_node *of_node = dev_of_node(dev);
3112 	int error;
3113 
3114 	if (of_node) {
3115 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3116 		if (error)
3117 			dev_warn(dev, "Error %d creating of_node link\n",error);
3118 		/* An error here doesn't warrant bringing down the device */
3119 	}
3120 
3121 	if (!dev->class)
3122 		return 0;
3123 
3124 	error = sysfs_create_link(&dev->kobj,
3125 				  &dev->class->p->subsys.kobj,
3126 				  "subsystem");
3127 	if (error)
3128 		goto out_devnode;
3129 
3130 	if (dev->parent && device_is_not_partition(dev)) {
3131 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3132 					  "device");
3133 		if (error)
3134 			goto out_subsys;
3135 	}
3136 
3137 #ifdef CONFIG_BLOCK
3138 	/* /sys/block has directories and does not need symlinks */
3139 	if (sysfs_deprecated && dev->class == &block_class)
3140 		return 0;
3141 #endif
3142 
3143 	/* link in the class directory pointing to the device */
3144 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
3145 				  &dev->kobj, dev_name(dev));
3146 	if (error)
3147 		goto out_device;
3148 
3149 	return 0;
3150 
3151 out_device:
3152 	sysfs_remove_link(&dev->kobj, "device");
3153 
3154 out_subsys:
3155 	sysfs_remove_link(&dev->kobj, "subsystem");
3156 out_devnode:
3157 	sysfs_remove_link(&dev->kobj, "of_node");
3158 	return error;
3159 }
3160 
3161 static void device_remove_class_symlinks(struct device *dev)
3162 {
3163 	if (dev_of_node(dev))
3164 		sysfs_remove_link(&dev->kobj, "of_node");
3165 
3166 	if (!dev->class)
3167 		return;
3168 
3169 	if (dev->parent && device_is_not_partition(dev))
3170 		sysfs_remove_link(&dev->kobj, "device");
3171 	sysfs_remove_link(&dev->kobj, "subsystem");
3172 #ifdef CONFIG_BLOCK
3173 	if (sysfs_deprecated && dev->class == &block_class)
3174 		return;
3175 #endif
3176 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
3177 }
3178 
3179 /**
3180  * dev_set_name - set a device name
3181  * @dev: device
3182  * @fmt: format string for the device's name
3183  */
3184 int dev_set_name(struct device *dev, const char *fmt, ...)
3185 {
3186 	va_list vargs;
3187 	int err;
3188 
3189 	va_start(vargs, fmt);
3190 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3191 	va_end(vargs);
3192 	return err;
3193 }
3194 EXPORT_SYMBOL_GPL(dev_set_name);
3195 
3196 /**
3197  * device_to_dev_kobj - select a /sys/dev/ directory for the device
3198  * @dev: device
3199  *
3200  * By default we select char/ for new entries.  Setting class->dev_obj
3201  * to NULL prevents an entry from being created.  class->dev_kobj must
3202  * be set (or cleared) before any devices are registered to the class
3203  * otherwise device_create_sys_dev_entry() and
3204  * device_remove_sys_dev_entry() will disagree about the presence of
3205  * the link.
3206  */
3207 static struct kobject *device_to_dev_kobj(struct device *dev)
3208 {
3209 	struct kobject *kobj;
3210 
3211 	if (dev->class)
3212 		kobj = dev->class->dev_kobj;
3213 	else
3214 		kobj = sysfs_dev_char_kobj;
3215 
3216 	return kobj;
3217 }
3218 
3219 static int device_create_sys_dev_entry(struct device *dev)
3220 {
3221 	struct kobject *kobj = device_to_dev_kobj(dev);
3222 	int error = 0;
3223 	char devt_str[15];
3224 
3225 	if (kobj) {
3226 		format_dev_t(devt_str, dev->devt);
3227 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3228 	}
3229 
3230 	return error;
3231 }
3232 
3233 static void device_remove_sys_dev_entry(struct device *dev)
3234 {
3235 	struct kobject *kobj = device_to_dev_kobj(dev);
3236 	char devt_str[15];
3237 
3238 	if (kobj) {
3239 		format_dev_t(devt_str, dev->devt);
3240 		sysfs_remove_link(kobj, devt_str);
3241 	}
3242 }
3243 
3244 static int device_private_init(struct device *dev)
3245 {
3246 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3247 	if (!dev->p)
3248 		return -ENOMEM;
3249 	dev->p->device = dev;
3250 	klist_init(&dev->p->klist_children, klist_children_get,
3251 		   klist_children_put);
3252 	INIT_LIST_HEAD(&dev->p->deferred_probe);
3253 	return 0;
3254 }
3255 
3256 /**
3257  * device_add - add device to device hierarchy.
3258  * @dev: device.
3259  *
3260  * This is part 2 of device_register(), though may be called
3261  * separately _iff_ device_initialize() has been called separately.
3262  *
3263  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3264  * to the global and sibling lists for the device, then
3265  * adds it to the other relevant subsystems of the driver model.
3266  *
3267  * Do not call this routine or device_register() more than once for
3268  * any device structure.  The driver model core is not designed to work
3269  * with devices that get unregistered and then spring back to life.
3270  * (Among other things, it's very hard to guarantee that all references
3271  * to the previous incarnation of @dev have been dropped.)  Allocate
3272  * and register a fresh new struct device instead.
3273  *
3274  * NOTE: _Never_ directly free @dev after calling this function, even
3275  * if it returned an error! Always use put_device() to give up your
3276  * reference instead.
3277  *
3278  * Rule of thumb is: if device_add() succeeds, you should call
3279  * device_del() when you want to get rid of it. If device_add() has
3280  * *not* succeeded, use *only* put_device() to drop the reference
3281  * count.
3282  */
3283 int device_add(struct device *dev)
3284 {
3285 	struct device *parent;
3286 	struct kobject *kobj;
3287 	struct class_interface *class_intf;
3288 	int error = -EINVAL;
3289 	struct kobject *glue_dir = NULL;
3290 
3291 	dev = get_device(dev);
3292 	if (!dev)
3293 		goto done;
3294 
3295 	if (!dev->p) {
3296 		error = device_private_init(dev);
3297 		if (error)
3298 			goto done;
3299 	}
3300 
3301 	/*
3302 	 * for statically allocated devices, which should all be converted
3303 	 * some day, we need to initialize the name. We prevent reading back
3304 	 * the name, and force the use of dev_name()
3305 	 */
3306 	if (dev->init_name) {
3307 		dev_set_name(dev, "%s", dev->init_name);
3308 		dev->init_name = NULL;
3309 	}
3310 
3311 	/* subsystems can specify simple device enumeration */
3312 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
3313 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3314 
3315 	if (!dev_name(dev)) {
3316 		error = -EINVAL;
3317 		goto name_error;
3318 	}
3319 
3320 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3321 
3322 	parent = get_device(dev->parent);
3323 	kobj = get_device_parent(dev, parent);
3324 	if (IS_ERR(kobj)) {
3325 		error = PTR_ERR(kobj);
3326 		goto parent_error;
3327 	}
3328 	if (kobj)
3329 		dev->kobj.parent = kobj;
3330 
3331 	/* use parent numa_node */
3332 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3333 		set_dev_node(dev, dev_to_node(parent));
3334 
3335 	/* first, register with generic layer. */
3336 	/* we require the name to be set before, and pass NULL */
3337 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3338 	if (error) {
3339 		glue_dir = get_glue_dir(dev);
3340 		goto Error;
3341 	}
3342 
3343 	/* notify platform of device entry */
3344 	device_platform_notify(dev);
3345 
3346 	error = device_create_file(dev, &dev_attr_uevent);
3347 	if (error)
3348 		goto attrError;
3349 
3350 	error = device_add_class_symlinks(dev);
3351 	if (error)
3352 		goto SymlinkError;
3353 	error = device_add_attrs(dev);
3354 	if (error)
3355 		goto AttrsError;
3356 	error = bus_add_device(dev);
3357 	if (error)
3358 		goto BusError;
3359 	error = dpm_sysfs_add(dev);
3360 	if (error)
3361 		goto DPMError;
3362 	device_pm_add(dev);
3363 
3364 	if (MAJOR(dev->devt)) {
3365 		error = device_create_file(dev, &dev_attr_dev);
3366 		if (error)
3367 			goto DevAttrError;
3368 
3369 		error = device_create_sys_dev_entry(dev);
3370 		if (error)
3371 			goto SysEntryError;
3372 
3373 		devtmpfs_create_node(dev);
3374 	}
3375 
3376 	/* Notify clients of device addition.  This call must come
3377 	 * after dpm_sysfs_add() and before kobject_uevent().
3378 	 */
3379 	if (dev->bus)
3380 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3381 					     BUS_NOTIFY_ADD_DEVICE, dev);
3382 
3383 	kobject_uevent(&dev->kobj, KOBJ_ADD);
3384 
3385 	/*
3386 	 * Check if any of the other devices (consumers) have been waiting for
3387 	 * this device (supplier) to be added so that they can create a device
3388 	 * link to it.
3389 	 *
3390 	 * This needs to happen after device_pm_add() because device_link_add()
3391 	 * requires the supplier be registered before it's called.
3392 	 *
3393 	 * But this also needs to happen before bus_probe_device() to make sure
3394 	 * waiting consumers can link to it before the driver is bound to the
3395 	 * device and the driver sync_state callback is called for this device.
3396 	 */
3397 	if (dev->fwnode && !dev->fwnode->dev) {
3398 		dev->fwnode->dev = dev;
3399 		fw_devlink_link_device(dev);
3400 	}
3401 
3402 	bus_probe_device(dev);
3403 
3404 	/*
3405 	 * If all driver registration is done and a newly added device doesn't
3406 	 * match with any driver, don't block its consumers from probing in
3407 	 * case the consumer device is able to operate without this supplier.
3408 	 */
3409 	if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3410 		fw_devlink_unblock_consumers(dev);
3411 
3412 	if (parent)
3413 		klist_add_tail(&dev->p->knode_parent,
3414 			       &parent->p->klist_children);
3415 
3416 	if (dev->class) {
3417 		mutex_lock(&dev->class->p->mutex);
3418 		/* tie the class to the device */
3419 		klist_add_tail(&dev->p->knode_class,
3420 			       &dev->class->p->klist_devices);
3421 
3422 		/* notify any interfaces that the device is here */
3423 		list_for_each_entry(class_intf,
3424 				    &dev->class->p->interfaces, node)
3425 			if (class_intf->add_dev)
3426 				class_intf->add_dev(dev, class_intf);
3427 		mutex_unlock(&dev->class->p->mutex);
3428 	}
3429 done:
3430 	put_device(dev);
3431 	return error;
3432  SysEntryError:
3433 	if (MAJOR(dev->devt))
3434 		device_remove_file(dev, &dev_attr_dev);
3435  DevAttrError:
3436 	device_pm_remove(dev);
3437 	dpm_sysfs_remove(dev);
3438  DPMError:
3439 	bus_remove_device(dev);
3440  BusError:
3441 	device_remove_attrs(dev);
3442  AttrsError:
3443 	device_remove_class_symlinks(dev);
3444  SymlinkError:
3445 	device_remove_file(dev, &dev_attr_uevent);
3446  attrError:
3447 	device_platform_notify_remove(dev);
3448 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3449 	glue_dir = get_glue_dir(dev);
3450 	kobject_del(&dev->kobj);
3451  Error:
3452 	cleanup_glue_dir(dev, glue_dir);
3453 parent_error:
3454 	put_device(parent);
3455 name_error:
3456 	kfree(dev->p);
3457 	dev->p = NULL;
3458 	goto done;
3459 }
3460 EXPORT_SYMBOL_GPL(device_add);
3461 
3462 /**
3463  * device_register - register a device with the system.
3464  * @dev: pointer to the device structure
3465  *
3466  * This happens in two clean steps - initialize the device
3467  * and add it to the system. The two steps can be called
3468  * separately, but this is the easiest and most common.
3469  * I.e. you should only call the two helpers separately if
3470  * have a clearly defined need to use and refcount the device
3471  * before it is added to the hierarchy.
3472  *
3473  * For more information, see the kerneldoc for device_initialize()
3474  * and device_add().
3475  *
3476  * NOTE: _Never_ directly free @dev after calling this function, even
3477  * if it returned an error! Always use put_device() to give up the
3478  * reference initialized in this function instead.
3479  */
3480 int device_register(struct device *dev)
3481 {
3482 	device_initialize(dev);
3483 	return device_add(dev);
3484 }
3485 EXPORT_SYMBOL_GPL(device_register);
3486 
3487 /**
3488  * get_device - increment reference count for device.
3489  * @dev: device.
3490  *
3491  * This simply forwards the call to kobject_get(), though
3492  * we do take care to provide for the case that we get a NULL
3493  * pointer passed in.
3494  */
3495 struct device *get_device(struct device *dev)
3496 {
3497 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3498 }
3499 EXPORT_SYMBOL_GPL(get_device);
3500 
3501 /**
3502  * put_device - decrement reference count.
3503  * @dev: device in question.
3504  */
3505 void put_device(struct device *dev)
3506 {
3507 	/* might_sleep(); */
3508 	if (dev)
3509 		kobject_put(&dev->kobj);
3510 }
3511 EXPORT_SYMBOL_GPL(put_device);
3512 
3513 bool kill_device(struct device *dev)
3514 {
3515 	/*
3516 	 * Require the device lock and set the "dead" flag to guarantee that
3517 	 * the update behavior is consistent with the other bitfields near
3518 	 * it and that we cannot have an asynchronous probe routine trying
3519 	 * to run while we are tearing out the bus/class/sysfs from
3520 	 * underneath the device.
3521 	 */
3522 	device_lock_assert(dev);
3523 
3524 	if (dev->p->dead)
3525 		return false;
3526 	dev->p->dead = true;
3527 	return true;
3528 }
3529 EXPORT_SYMBOL_GPL(kill_device);
3530 
3531 /**
3532  * device_del - delete device from system.
3533  * @dev: device.
3534  *
3535  * This is the first part of the device unregistration
3536  * sequence. This removes the device from the lists we control
3537  * from here, has it removed from the other driver model
3538  * subsystems it was added to in device_add(), and removes it
3539  * from the kobject hierarchy.
3540  *
3541  * NOTE: this should be called manually _iff_ device_add() was
3542  * also called manually.
3543  */
3544 void device_del(struct device *dev)
3545 {
3546 	struct device *parent = dev->parent;
3547 	struct kobject *glue_dir = NULL;
3548 	struct class_interface *class_intf;
3549 	unsigned int noio_flag;
3550 
3551 	device_lock(dev);
3552 	kill_device(dev);
3553 	device_unlock(dev);
3554 
3555 	if (dev->fwnode && dev->fwnode->dev == dev)
3556 		dev->fwnode->dev = NULL;
3557 
3558 	/* Notify clients of device removal.  This call must come
3559 	 * before dpm_sysfs_remove().
3560 	 */
3561 	noio_flag = memalloc_noio_save();
3562 	if (dev->bus)
3563 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3564 					     BUS_NOTIFY_DEL_DEVICE, dev);
3565 
3566 	dpm_sysfs_remove(dev);
3567 	if (parent)
3568 		klist_del(&dev->p->knode_parent);
3569 	if (MAJOR(dev->devt)) {
3570 		devtmpfs_delete_node(dev);
3571 		device_remove_sys_dev_entry(dev);
3572 		device_remove_file(dev, &dev_attr_dev);
3573 	}
3574 	if (dev->class) {
3575 		device_remove_class_symlinks(dev);
3576 
3577 		mutex_lock(&dev->class->p->mutex);
3578 		/* notify any interfaces that the device is now gone */
3579 		list_for_each_entry(class_intf,
3580 				    &dev->class->p->interfaces, node)
3581 			if (class_intf->remove_dev)
3582 				class_intf->remove_dev(dev, class_intf);
3583 		/* remove the device from the class list */
3584 		klist_del(&dev->p->knode_class);
3585 		mutex_unlock(&dev->class->p->mutex);
3586 	}
3587 	device_remove_file(dev, &dev_attr_uevent);
3588 	device_remove_attrs(dev);
3589 	bus_remove_device(dev);
3590 	device_pm_remove(dev);
3591 	driver_deferred_probe_del(dev);
3592 	device_platform_notify_remove(dev);
3593 	device_links_purge(dev);
3594 
3595 	if (dev->bus)
3596 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3597 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
3598 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3599 	glue_dir = get_glue_dir(dev);
3600 	kobject_del(&dev->kobj);
3601 	cleanup_glue_dir(dev, glue_dir);
3602 	memalloc_noio_restore(noio_flag);
3603 	put_device(parent);
3604 }
3605 EXPORT_SYMBOL_GPL(device_del);
3606 
3607 /**
3608  * device_unregister - unregister device from system.
3609  * @dev: device going away.
3610  *
3611  * We do this in two parts, like we do device_register(). First,
3612  * we remove it from all the subsystems with device_del(), then
3613  * we decrement the reference count via put_device(). If that
3614  * is the final reference count, the device will be cleaned up
3615  * via device_release() above. Otherwise, the structure will
3616  * stick around until the final reference to the device is dropped.
3617  */
3618 void device_unregister(struct device *dev)
3619 {
3620 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3621 	device_del(dev);
3622 	put_device(dev);
3623 }
3624 EXPORT_SYMBOL_GPL(device_unregister);
3625 
3626 static struct device *prev_device(struct klist_iter *i)
3627 {
3628 	struct klist_node *n = klist_prev(i);
3629 	struct device *dev = NULL;
3630 	struct device_private *p;
3631 
3632 	if (n) {
3633 		p = to_device_private_parent(n);
3634 		dev = p->device;
3635 	}
3636 	return dev;
3637 }
3638 
3639 static struct device *next_device(struct klist_iter *i)
3640 {
3641 	struct klist_node *n = klist_next(i);
3642 	struct device *dev = NULL;
3643 	struct device_private *p;
3644 
3645 	if (n) {
3646 		p = to_device_private_parent(n);
3647 		dev = p->device;
3648 	}
3649 	return dev;
3650 }
3651 
3652 /**
3653  * device_get_devnode - path of device node file
3654  * @dev: device
3655  * @mode: returned file access mode
3656  * @uid: returned file owner
3657  * @gid: returned file group
3658  * @tmp: possibly allocated string
3659  *
3660  * Return the relative path of a possible device node.
3661  * Non-default names may need to allocate a memory to compose
3662  * a name. This memory is returned in tmp and needs to be
3663  * freed by the caller.
3664  */
3665 const char *device_get_devnode(struct device *dev,
3666 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3667 			       const char **tmp)
3668 {
3669 	char *s;
3670 
3671 	*tmp = NULL;
3672 
3673 	/* the device type may provide a specific name */
3674 	if (dev->type && dev->type->devnode)
3675 		*tmp = dev->type->devnode(dev, mode, uid, gid);
3676 	if (*tmp)
3677 		return *tmp;
3678 
3679 	/* the class may provide a specific name */
3680 	if (dev->class && dev->class->devnode)
3681 		*tmp = dev->class->devnode(dev, mode);
3682 	if (*tmp)
3683 		return *tmp;
3684 
3685 	/* return name without allocation, tmp == NULL */
3686 	if (strchr(dev_name(dev), '!') == NULL)
3687 		return dev_name(dev);
3688 
3689 	/* replace '!' in the name with '/' */
3690 	s = kstrdup(dev_name(dev), GFP_KERNEL);
3691 	if (!s)
3692 		return NULL;
3693 	strreplace(s, '!', '/');
3694 	return *tmp = s;
3695 }
3696 
3697 /**
3698  * device_for_each_child - device child iterator.
3699  * @parent: parent struct device.
3700  * @fn: function to be called for each device.
3701  * @data: data for the callback.
3702  *
3703  * Iterate over @parent's child devices, and call @fn for each,
3704  * passing it @data.
3705  *
3706  * We check the return of @fn each time. If it returns anything
3707  * other than 0, we break out and return that value.
3708  */
3709 int device_for_each_child(struct device *parent, void *data,
3710 			  int (*fn)(struct device *dev, void *data))
3711 {
3712 	struct klist_iter i;
3713 	struct device *child;
3714 	int error = 0;
3715 
3716 	if (!parent->p)
3717 		return 0;
3718 
3719 	klist_iter_init(&parent->p->klist_children, &i);
3720 	while (!error && (child = next_device(&i)))
3721 		error = fn(child, data);
3722 	klist_iter_exit(&i);
3723 	return error;
3724 }
3725 EXPORT_SYMBOL_GPL(device_for_each_child);
3726 
3727 /**
3728  * device_for_each_child_reverse - device child iterator in reversed order.
3729  * @parent: parent struct device.
3730  * @fn: function to be called for each device.
3731  * @data: data for the callback.
3732  *
3733  * Iterate over @parent's child devices, and call @fn for each,
3734  * passing it @data.
3735  *
3736  * We check the return of @fn each time. If it returns anything
3737  * other than 0, we break out and return that value.
3738  */
3739 int device_for_each_child_reverse(struct device *parent, void *data,
3740 				  int (*fn)(struct device *dev, void *data))
3741 {
3742 	struct klist_iter i;
3743 	struct device *child;
3744 	int error = 0;
3745 
3746 	if (!parent->p)
3747 		return 0;
3748 
3749 	klist_iter_init(&parent->p->klist_children, &i);
3750 	while ((child = prev_device(&i)) && !error)
3751 		error = fn(child, data);
3752 	klist_iter_exit(&i);
3753 	return error;
3754 }
3755 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3756 
3757 /**
3758  * device_find_child - device iterator for locating a particular device.
3759  * @parent: parent struct device
3760  * @match: Callback function to check device
3761  * @data: Data to pass to match function
3762  *
3763  * This is similar to the device_for_each_child() function above, but it
3764  * returns a reference to a device that is 'found' for later use, as
3765  * determined by the @match callback.
3766  *
3767  * The callback should return 0 if the device doesn't match and non-zero
3768  * if it does.  If the callback returns non-zero and a reference to the
3769  * current device can be obtained, this function will return to the caller
3770  * and not iterate over any more devices.
3771  *
3772  * NOTE: you will need to drop the reference with put_device() after use.
3773  */
3774 struct device *device_find_child(struct device *parent, void *data,
3775 				 int (*match)(struct device *dev, void *data))
3776 {
3777 	struct klist_iter i;
3778 	struct device *child;
3779 
3780 	if (!parent)
3781 		return NULL;
3782 
3783 	klist_iter_init(&parent->p->klist_children, &i);
3784 	while ((child = next_device(&i)))
3785 		if (match(child, data) && get_device(child))
3786 			break;
3787 	klist_iter_exit(&i);
3788 	return child;
3789 }
3790 EXPORT_SYMBOL_GPL(device_find_child);
3791 
3792 /**
3793  * device_find_child_by_name - device iterator for locating a child device.
3794  * @parent: parent struct device
3795  * @name: name of the child device
3796  *
3797  * This is similar to the device_find_child() function above, but it
3798  * returns a reference to a device that has the name @name.
3799  *
3800  * NOTE: you will need to drop the reference with put_device() after use.
3801  */
3802 struct device *device_find_child_by_name(struct device *parent,
3803 					 const char *name)
3804 {
3805 	struct klist_iter i;
3806 	struct device *child;
3807 
3808 	if (!parent)
3809 		return NULL;
3810 
3811 	klist_iter_init(&parent->p->klist_children, &i);
3812 	while ((child = next_device(&i)))
3813 		if (sysfs_streq(dev_name(child), name) && get_device(child))
3814 			break;
3815 	klist_iter_exit(&i);
3816 	return child;
3817 }
3818 EXPORT_SYMBOL_GPL(device_find_child_by_name);
3819 
3820 int __init devices_init(void)
3821 {
3822 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3823 	if (!devices_kset)
3824 		return -ENOMEM;
3825 	dev_kobj = kobject_create_and_add("dev", NULL);
3826 	if (!dev_kobj)
3827 		goto dev_kobj_err;
3828 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3829 	if (!sysfs_dev_block_kobj)
3830 		goto block_kobj_err;
3831 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3832 	if (!sysfs_dev_char_kobj)
3833 		goto char_kobj_err;
3834 
3835 	return 0;
3836 
3837  char_kobj_err:
3838 	kobject_put(sysfs_dev_block_kobj);
3839  block_kobj_err:
3840 	kobject_put(dev_kobj);
3841  dev_kobj_err:
3842 	kset_unregister(devices_kset);
3843 	return -ENOMEM;
3844 }
3845 
3846 static int device_check_offline(struct device *dev, void *not_used)
3847 {
3848 	int ret;
3849 
3850 	ret = device_for_each_child(dev, NULL, device_check_offline);
3851 	if (ret)
3852 		return ret;
3853 
3854 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3855 }
3856 
3857 /**
3858  * device_offline - Prepare the device for hot-removal.
3859  * @dev: Device to be put offline.
3860  *
3861  * Execute the device bus type's .offline() callback, if present, to prepare
3862  * the device for a subsequent hot-removal.  If that succeeds, the device must
3863  * not be used until either it is removed or its bus type's .online() callback
3864  * is executed.
3865  *
3866  * Call under device_hotplug_lock.
3867  */
3868 int device_offline(struct device *dev)
3869 {
3870 	int ret;
3871 
3872 	if (dev->offline_disabled)
3873 		return -EPERM;
3874 
3875 	ret = device_for_each_child(dev, NULL, device_check_offline);
3876 	if (ret)
3877 		return ret;
3878 
3879 	device_lock(dev);
3880 	if (device_supports_offline(dev)) {
3881 		if (dev->offline) {
3882 			ret = 1;
3883 		} else {
3884 			ret = dev->bus->offline(dev);
3885 			if (!ret) {
3886 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3887 				dev->offline = true;
3888 			}
3889 		}
3890 	}
3891 	device_unlock(dev);
3892 
3893 	return ret;
3894 }
3895 
3896 /**
3897  * device_online - Put the device back online after successful device_offline().
3898  * @dev: Device to be put back online.
3899  *
3900  * If device_offline() has been successfully executed for @dev, but the device
3901  * has not been removed subsequently, execute its bus type's .online() callback
3902  * to indicate that the device can be used again.
3903  *
3904  * Call under device_hotplug_lock.
3905  */
3906 int device_online(struct device *dev)
3907 {
3908 	int ret = 0;
3909 
3910 	device_lock(dev);
3911 	if (device_supports_offline(dev)) {
3912 		if (dev->offline) {
3913 			ret = dev->bus->online(dev);
3914 			if (!ret) {
3915 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3916 				dev->offline = false;
3917 			}
3918 		} else {
3919 			ret = 1;
3920 		}
3921 	}
3922 	device_unlock(dev);
3923 
3924 	return ret;
3925 }
3926 
3927 struct root_device {
3928 	struct device dev;
3929 	struct module *owner;
3930 };
3931 
3932 static inline struct root_device *to_root_device(struct device *d)
3933 {
3934 	return container_of(d, struct root_device, dev);
3935 }
3936 
3937 static void root_device_release(struct device *dev)
3938 {
3939 	kfree(to_root_device(dev));
3940 }
3941 
3942 /**
3943  * __root_device_register - allocate and register a root device
3944  * @name: root device name
3945  * @owner: owner module of the root device, usually THIS_MODULE
3946  *
3947  * This function allocates a root device and registers it
3948  * using device_register(). In order to free the returned
3949  * device, use root_device_unregister().
3950  *
3951  * Root devices are dummy devices which allow other devices
3952  * to be grouped under /sys/devices. Use this function to
3953  * allocate a root device and then use it as the parent of
3954  * any device which should appear under /sys/devices/{name}
3955  *
3956  * The /sys/devices/{name} directory will also contain a
3957  * 'module' symlink which points to the @owner directory
3958  * in sysfs.
3959  *
3960  * Returns &struct device pointer on success, or ERR_PTR() on error.
3961  *
3962  * Note: You probably want to use root_device_register().
3963  */
3964 struct device *__root_device_register(const char *name, struct module *owner)
3965 {
3966 	struct root_device *root;
3967 	int err = -ENOMEM;
3968 
3969 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3970 	if (!root)
3971 		return ERR_PTR(err);
3972 
3973 	err = dev_set_name(&root->dev, "%s", name);
3974 	if (err) {
3975 		kfree(root);
3976 		return ERR_PTR(err);
3977 	}
3978 
3979 	root->dev.release = root_device_release;
3980 
3981 	err = device_register(&root->dev);
3982 	if (err) {
3983 		put_device(&root->dev);
3984 		return ERR_PTR(err);
3985 	}
3986 
3987 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
3988 	if (owner) {
3989 		struct module_kobject *mk = &owner->mkobj;
3990 
3991 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3992 		if (err) {
3993 			device_unregister(&root->dev);
3994 			return ERR_PTR(err);
3995 		}
3996 		root->owner = owner;
3997 	}
3998 #endif
3999 
4000 	return &root->dev;
4001 }
4002 EXPORT_SYMBOL_GPL(__root_device_register);
4003 
4004 /**
4005  * root_device_unregister - unregister and free a root device
4006  * @dev: device going away
4007  *
4008  * This function unregisters and cleans up a device that was created by
4009  * root_device_register().
4010  */
4011 void root_device_unregister(struct device *dev)
4012 {
4013 	struct root_device *root = to_root_device(dev);
4014 
4015 	if (root->owner)
4016 		sysfs_remove_link(&root->dev.kobj, "module");
4017 
4018 	device_unregister(dev);
4019 }
4020 EXPORT_SYMBOL_GPL(root_device_unregister);
4021 
4022 
4023 static void device_create_release(struct device *dev)
4024 {
4025 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4026 	kfree(dev);
4027 }
4028 
4029 static __printf(6, 0) struct device *
4030 device_create_groups_vargs(struct class *class, struct device *parent,
4031 			   dev_t devt, void *drvdata,
4032 			   const struct attribute_group **groups,
4033 			   const char *fmt, va_list args)
4034 {
4035 	struct device *dev = NULL;
4036 	int retval = -ENODEV;
4037 
4038 	if (class == NULL || IS_ERR(class))
4039 		goto error;
4040 
4041 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4042 	if (!dev) {
4043 		retval = -ENOMEM;
4044 		goto error;
4045 	}
4046 
4047 	device_initialize(dev);
4048 	dev->devt = devt;
4049 	dev->class = class;
4050 	dev->parent = parent;
4051 	dev->groups = groups;
4052 	dev->release = device_create_release;
4053 	dev_set_drvdata(dev, drvdata);
4054 
4055 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4056 	if (retval)
4057 		goto error;
4058 
4059 	retval = device_add(dev);
4060 	if (retval)
4061 		goto error;
4062 
4063 	return dev;
4064 
4065 error:
4066 	put_device(dev);
4067 	return ERR_PTR(retval);
4068 }
4069 
4070 /**
4071  * device_create - creates a device and registers it with sysfs
4072  * @class: pointer to the struct class that this device should be registered to
4073  * @parent: pointer to the parent struct device of this new device, if any
4074  * @devt: the dev_t for the char device to be added
4075  * @drvdata: the data to be added to the device for callbacks
4076  * @fmt: string for the device's name
4077  *
4078  * This function can be used by char device classes.  A struct device
4079  * will be created in sysfs, registered to the specified class.
4080  *
4081  * A "dev" file will be created, showing the dev_t for the device, if
4082  * the dev_t is not 0,0.
4083  * If a pointer to a parent struct device is passed in, the newly created
4084  * struct device will be a child of that device in sysfs.
4085  * The pointer to the struct device will be returned from the call.
4086  * Any further sysfs files that might be required can be created using this
4087  * pointer.
4088  *
4089  * Returns &struct device pointer on success, or ERR_PTR() on error.
4090  *
4091  * Note: the struct class passed to this function must have previously
4092  * been created with a call to class_create().
4093  */
4094 struct device *device_create(struct class *class, struct device *parent,
4095 			     dev_t devt, void *drvdata, const char *fmt, ...)
4096 {
4097 	va_list vargs;
4098 	struct device *dev;
4099 
4100 	va_start(vargs, fmt);
4101 	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4102 					  fmt, vargs);
4103 	va_end(vargs);
4104 	return dev;
4105 }
4106 EXPORT_SYMBOL_GPL(device_create);
4107 
4108 /**
4109  * device_create_with_groups - creates a device and registers it with sysfs
4110  * @class: pointer to the struct class that this device should be registered to
4111  * @parent: pointer to the parent struct device of this new device, if any
4112  * @devt: the dev_t for the char device to be added
4113  * @drvdata: the data to be added to the device for callbacks
4114  * @groups: NULL-terminated list of attribute groups to be created
4115  * @fmt: string for the device's name
4116  *
4117  * This function can be used by char device classes.  A struct device
4118  * will be created in sysfs, registered to the specified class.
4119  * Additional attributes specified in the groups parameter will also
4120  * be created automatically.
4121  *
4122  * A "dev" file will be created, showing the dev_t for the device, if
4123  * the dev_t is not 0,0.
4124  * If a pointer to a parent struct device is passed in, the newly created
4125  * struct device will be a child of that device in sysfs.
4126  * The pointer to the struct device will be returned from the call.
4127  * Any further sysfs files that might be required can be created using this
4128  * pointer.
4129  *
4130  * Returns &struct device pointer on success, or ERR_PTR() on error.
4131  *
4132  * Note: the struct class passed to this function must have previously
4133  * been created with a call to class_create().
4134  */
4135 struct device *device_create_with_groups(struct class *class,
4136 					 struct device *parent, dev_t devt,
4137 					 void *drvdata,
4138 					 const struct attribute_group **groups,
4139 					 const char *fmt, ...)
4140 {
4141 	va_list vargs;
4142 	struct device *dev;
4143 
4144 	va_start(vargs, fmt);
4145 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4146 					 fmt, vargs);
4147 	va_end(vargs);
4148 	return dev;
4149 }
4150 EXPORT_SYMBOL_GPL(device_create_with_groups);
4151 
4152 /**
4153  * device_destroy - removes a device that was created with device_create()
4154  * @class: pointer to the struct class that this device was registered with
4155  * @devt: the dev_t of the device that was previously registered
4156  *
4157  * This call unregisters and cleans up a device that was created with a
4158  * call to device_create().
4159  */
4160 void device_destroy(struct class *class, dev_t devt)
4161 {
4162 	struct device *dev;
4163 
4164 	dev = class_find_device_by_devt(class, devt);
4165 	if (dev) {
4166 		put_device(dev);
4167 		device_unregister(dev);
4168 	}
4169 }
4170 EXPORT_SYMBOL_GPL(device_destroy);
4171 
4172 /**
4173  * device_rename - renames a device
4174  * @dev: the pointer to the struct device to be renamed
4175  * @new_name: the new name of the device
4176  *
4177  * It is the responsibility of the caller to provide mutual
4178  * exclusion between two different calls of device_rename
4179  * on the same device to ensure that new_name is valid and
4180  * won't conflict with other devices.
4181  *
4182  * Note: Don't call this function.  Currently, the networking layer calls this
4183  * function, but that will change.  The following text from Kay Sievers offers
4184  * some insight:
4185  *
4186  * Renaming devices is racy at many levels, symlinks and other stuff are not
4187  * replaced atomically, and you get a "move" uevent, but it's not easy to
4188  * connect the event to the old and new device. Device nodes are not renamed at
4189  * all, there isn't even support for that in the kernel now.
4190  *
4191  * In the meantime, during renaming, your target name might be taken by another
4192  * driver, creating conflicts. Or the old name is taken directly after you
4193  * renamed it -- then you get events for the same DEVPATH, before you even see
4194  * the "move" event. It's just a mess, and nothing new should ever rely on
4195  * kernel device renaming. Besides that, it's not even implemented now for
4196  * other things than (driver-core wise very simple) network devices.
4197  *
4198  * We are currently about to change network renaming in udev to completely
4199  * disallow renaming of devices in the same namespace as the kernel uses,
4200  * because we can't solve the problems properly, that arise with swapping names
4201  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
4202  * be allowed to some other name than eth[0-9]*, for the aforementioned
4203  * reasons.
4204  *
4205  * Make up a "real" name in the driver before you register anything, or add
4206  * some other attributes for userspace to find the device, or use udev to add
4207  * symlinks -- but never rename kernel devices later, it's a complete mess. We
4208  * don't even want to get into that and try to implement the missing pieces in
4209  * the core. We really have other pieces to fix in the driver core mess. :)
4210  */
4211 int device_rename(struct device *dev, const char *new_name)
4212 {
4213 	struct kobject *kobj = &dev->kobj;
4214 	char *old_device_name = NULL;
4215 	int error;
4216 
4217 	dev = get_device(dev);
4218 	if (!dev)
4219 		return -EINVAL;
4220 
4221 	dev_dbg(dev, "renaming to %s\n", new_name);
4222 
4223 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4224 	if (!old_device_name) {
4225 		error = -ENOMEM;
4226 		goto out;
4227 	}
4228 
4229 	if (dev->class) {
4230 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
4231 					     kobj, old_device_name,
4232 					     new_name, kobject_namespace(kobj));
4233 		if (error)
4234 			goto out;
4235 	}
4236 
4237 	error = kobject_rename(kobj, new_name);
4238 	if (error)
4239 		goto out;
4240 
4241 out:
4242 	put_device(dev);
4243 
4244 	kfree(old_device_name);
4245 
4246 	return error;
4247 }
4248 EXPORT_SYMBOL_GPL(device_rename);
4249 
4250 static int device_move_class_links(struct device *dev,
4251 				   struct device *old_parent,
4252 				   struct device *new_parent)
4253 {
4254 	int error = 0;
4255 
4256 	if (old_parent)
4257 		sysfs_remove_link(&dev->kobj, "device");
4258 	if (new_parent)
4259 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4260 					  "device");
4261 	return error;
4262 }
4263 
4264 /**
4265  * device_move - moves a device to a new parent
4266  * @dev: the pointer to the struct device to be moved
4267  * @new_parent: the new parent of the device (can be NULL)
4268  * @dpm_order: how to reorder the dpm_list
4269  */
4270 int device_move(struct device *dev, struct device *new_parent,
4271 		enum dpm_order dpm_order)
4272 {
4273 	int error;
4274 	struct device *old_parent;
4275 	struct kobject *new_parent_kobj;
4276 
4277 	dev = get_device(dev);
4278 	if (!dev)
4279 		return -EINVAL;
4280 
4281 	device_pm_lock();
4282 	new_parent = get_device(new_parent);
4283 	new_parent_kobj = get_device_parent(dev, new_parent);
4284 	if (IS_ERR(new_parent_kobj)) {
4285 		error = PTR_ERR(new_parent_kobj);
4286 		put_device(new_parent);
4287 		goto out;
4288 	}
4289 
4290 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4291 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4292 	error = kobject_move(&dev->kobj, new_parent_kobj);
4293 	if (error) {
4294 		cleanup_glue_dir(dev, new_parent_kobj);
4295 		put_device(new_parent);
4296 		goto out;
4297 	}
4298 	old_parent = dev->parent;
4299 	dev->parent = new_parent;
4300 	if (old_parent)
4301 		klist_remove(&dev->p->knode_parent);
4302 	if (new_parent) {
4303 		klist_add_tail(&dev->p->knode_parent,
4304 			       &new_parent->p->klist_children);
4305 		set_dev_node(dev, dev_to_node(new_parent));
4306 	}
4307 
4308 	if (dev->class) {
4309 		error = device_move_class_links(dev, old_parent, new_parent);
4310 		if (error) {
4311 			/* We ignore errors on cleanup since we're hosed anyway... */
4312 			device_move_class_links(dev, new_parent, old_parent);
4313 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4314 				if (new_parent)
4315 					klist_remove(&dev->p->knode_parent);
4316 				dev->parent = old_parent;
4317 				if (old_parent) {
4318 					klist_add_tail(&dev->p->knode_parent,
4319 						       &old_parent->p->klist_children);
4320 					set_dev_node(dev, dev_to_node(old_parent));
4321 				}
4322 			}
4323 			cleanup_glue_dir(dev, new_parent_kobj);
4324 			put_device(new_parent);
4325 			goto out;
4326 		}
4327 	}
4328 	switch (dpm_order) {
4329 	case DPM_ORDER_NONE:
4330 		break;
4331 	case DPM_ORDER_DEV_AFTER_PARENT:
4332 		device_pm_move_after(dev, new_parent);
4333 		devices_kset_move_after(dev, new_parent);
4334 		break;
4335 	case DPM_ORDER_PARENT_BEFORE_DEV:
4336 		device_pm_move_before(new_parent, dev);
4337 		devices_kset_move_before(new_parent, dev);
4338 		break;
4339 	case DPM_ORDER_DEV_LAST:
4340 		device_pm_move_last(dev);
4341 		devices_kset_move_last(dev);
4342 		break;
4343 	}
4344 
4345 	put_device(old_parent);
4346 out:
4347 	device_pm_unlock();
4348 	put_device(dev);
4349 	return error;
4350 }
4351 EXPORT_SYMBOL_GPL(device_move);
4352 
4353 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4354 				     kgid_t kgid)
4355 {
4356 	struct kobject *kobj = &dev->kobj;
4357 	struct class *class = dev->class;
4358 	const struct device_type *type = dev->type;
4359 	int error;
4360 
4361 	if (class) {
4362 		/*
4363 		 * Change the device groups of the device class for @dev to
4364 		 * @kuid/@kgid.
4365 		 */
4366 		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4367 						  kgid);
4368 		if (error)
4369 			return error;
4370 	}
4371 
4372 	if (type) {
4373 		/*
4374 		 * Change the device groups of the device type for @dev to
4375 		 * @kuid/@kgid.
4376 		 */
4377 		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4378 						  kgid);
4379 		if (error)
4380 			return error;
4381 	}
4382 
4383 	/* Change the device groups of @dev to @kuid/@kgid. */
4384 	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4385 	if (error)
4386 		return error;
4387 
4388 	if (device_supports_offline(dev) && !dev->offline_disabled) {
4389 		/* Change online device attributes of @dev to @kuid/@kgid. */
4390 		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4391 						kuid, kgid);
4392 		if (error)
4393 			return error;
4394 	}
4395 
4396 	return 0;
4397 }
4398 
4399 /**
4400  * device_change_owner - change the owner of an existing device.
4401  * @dev: device.
4402  * @kuid: new owner's kuid
4403  * @kgid: new owner's kgid
4404  *
4405  * This changes the owner of @dev and its corresponding sysfs entries to
4406  * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4407  * core.
4408  *
4409  * Returns 0 on success or error code on failure.
4410  */
4411 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4412 {
4413 	int error;
4414 	struct kobject *kobj = &dev->kobj;
4415 
4416 	dev = get_device(dev);
4417 	if (!dev)
4418 		return -EINVAL;
4419 
4420 	/*
4421 	 * Change the kobject and the default attributes and groups of the
4422 	 * ktype associated with it to @kuid/@kgid.
4423 	 */
4424 	error = sysfs_change_owner(kobj, kuid, kgid);
4425 	if (error)
4426 		goto out;
4427 
4428 	/*
4429 	 * Change the uevent file for @dev to the new owner. The uevent file
4430 	 * was created in a separate step when @dev got added and we mirror
4431 	 * that step here.
4432 	 */
4433 	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4434 					kgid);
4435 	if (error)
4436 		goto out;
4437 
4438 	/*
4439 	 * Change the device groups, the device groups associated with the
4440 	 * device class, and the groups associated with the device type of @dev
4441 	 * to @kuid/@kgid.
4442 	 */
4443 	error = device_attrs_change_owner(dev, kuid, kgid);
4444 	if (error)
4445 		goto out;
4446 
4447 	error = dpm_sysfs_change_owner(dev, kuid, kgid);
4448 	if (error)
4449 		goto out;
4450 
4451 #ifdef CONFIG_BLOCK
4452 	if (sysfs_deprecated && dev->class == &block_class)
4453 		goto out;
4454 #endif
4455 
4456 	/*
4457 	 * Change the owner of the symlink located in the class directory of
4458 	 * the device class associated with @dev which points to the actual
4459 	 * directory entry for @dev to @kuid/@kgid. This ensures that the
4460 	 * symlink shows the same permissions as its target.
4461 	 */
4462 	error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4463 					dev_name(dev), kuid, kgid);
4464 	if (error)
4465 		goto out;
4466 
4467 out:
4468 	put_device(dev);
4469 	return error;
4470 }
4471 EXPORT_SYMBOL_GPL(device_change_owner);
4472 
4473 /**
4474  * device_shutdown - call ->shutdown() on each device to shutdown.
4475  */
4476 void device_shutdown(void)
4477 {
4478 	struct device *dev, *parent;
4479 
4480 	wait_for_device_probe();
4481 	device_block_probing();
4482 
4483 	cpufreq_suspend();
4484 
4485 	spin_lock(&devices_kset->list_lock);
4486 	/*
4487 	 * Walk the devices list backward, shutting down each in turn.
4488 	 * Beware that device unplug events may also start pulling
4489 	 * devices offline, even as the system is shutting down.
4490 	 */
4491 	while (!list_empty(&devices_kset->list)) {
4492 		dev = list_entry(devices_kset->list.prev, struct device,
4493 				kobj.entry);
4494 
4495 		/*
4496 		 * hold reference count of device's parent to
4497 		 * prevent it from being freed because parent's
4498 		 * lock is to be held
4499 		 */
4500 		parent = get_device(dev->parent);
4501 		get_device(dev);
4502 		/*
4503 		 * Make sure the device is off the kset list, in the
4504 		 * event that dev->*->shutdown() doesn't remove it.
4505 		 */
4506 		list_del_init(&dev->kobj.entry);
4507 		spin_unlock(&devices_kset->list_lock);
4508 
4509 		/* hold lock to avoid race with probe/release */
4510 		if (parent)
4511 			device_lock(parent);
4512 		device_lock(dev);
4513 
4514 		/* Don't allow any more runtime suspends */
4515 		pm_runtime_get_noresume(dev);
4516 		pm_runtime_barrier(dev);
4517 
4518 		if (dev->class && dev->class->shutdown_pre) {
4519 			if (initcall_debug)
4520 				dev_info(dev, "shutdown_pre\n");
4521 			dev->class->shutdown_pre(dev);
4522 		}
4523 		if (dev->bus && dev->bus->shutdown) {
4524 			if (initcall_debug)
4525 				dev_info(dev, "shutdown\n");
4526 			dev->bus->shutdown(dev);
4527 		} else if (dev->driver && dev->driver->shutdown) {
4528 			if (initcall_debug)
4529 				dev_info(dev, "shutdown\n");
4530 			dev->driver->shutdown(dev);
4531 		}
4532 
4533 		device_unlock(dev);
4534 		if (parent)
4535 			device_unlock(parent);
4536 
4537 		put_device(dev);
4538 		put_device(parent);
4539 
4540 		spin_lock(&devices_kset->list_lock);
4541 	}
4542 	spin_unlock(&devices_kset->list_lock);
4543 }
4544 
4545 /*
4546  * Device logging functions
4547  */
4548 
4549 #ifdef CONFIG_PRINTK
4550 static void
4551 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4552 {
4553 	const char *subsys;
4554 
4555 	memset(dev_info, 0, sizeof(*dev_info));
4556 
4557 	if (dev->class)
4558 		subsys = dev->class->name;
4559 	else if (dev->bus)
4560 		subsys = dev->bus->name;
4561 	else
4562 		return;
4563 
4564 	strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4565 
4566 	/*
4567 	 * Add device identifier DEVICE=:
4568 	 *   b12:8         block dev_t
4569 	 *   c127:3        char dev_t
4570 	 *   n8            netdev ifindex
4571 	 *   +sound:card0  subsystem:devname
4572 	 */
4573 	if (MAJOR(dev->devt)) {
4574 		char c;
4575 
4576 		if (strcmp(subsys, "block") == 0)
4577 			c = 'b';
4578 		else
4579 			c = 'c';
4580 
4581 		snprintf(dev_info->device, sizeof(dev_info->device),
4582 			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4583 	} else if (strcmp(subsys, "net") == 0) {
4584 		struct net_device *net = to_net_dev(dev);
4585 
4586 		snprintf(dev_info->device, sizeof(dev_info->device),
4587 			 "n%u", net->ifindex);
4588 	} else {
4589 		snprintf(dev_info->device, sizeof(dev_info->device),
4590 			 "+%s:%s", subsys, dev_name(dev));
4591 	}
4592 }
4593 
4594 int dev_vprintk_emit(int level, const struct device *dev,
4595 		     const char *fmt, va_list args)
4596 {
4597 	struct dev_printk_info dev_info;
4598 
4599 	set_dev_info(dev, &dev_info);
4600 
4601 	return vprintk_emit(0, level, &dev_info, fmt, args);
4602 }
4603 EXPORT_SYMBOL(dev_vprintk_emit);
4604 
4605 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4606 {
4607 	va_list args;
4608 	int r;
4609 
4610 	va_start(args, fmt);
4611 
4612 	r = dev_vprintk_emit(level, dev, fmt, args);
4613 
4614 	va_end(args);
4615 
4616 	return r;
4617 }
4618 EXPORT_SYMBOL(dev_printk_emit);
4619 
4620 static void __dev_printk(const char *level, const struct device *dev,
4621 			struct va_format *vaf)
4622 {
4623 	if (dev)
4624 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4625 				dev_driver_string(dev), dev_name(dev), vaf);
4626 	else
4627 		printk("%s(NULL device *): %pV", level, vaf);
4628 }
4629 
4630 void _dev_printk(const char *level, const struct device *dev,
4631 		 const char *fmt, ...)
4632 {
4633 	struct va_format vaf;
4634 	va_list args;
4635 
4636 	va_start(args, fmt);
4637 
4638 	vaf.fmt = fmt;
4639 	vaf.va = &args;
4640 
4641 	__dev_printk(level, dev, &vaf);
4642 
4643 	va_end(args);
4644 }
4645 EXPORT_SYMBOL(_dev_printk);
4646 
4647 #define define_dev_printk_level(func, kern_level)		\
4648 void func(const struct device *dev, const char *fmt, ...)	\
4649 {								\
4650 	struct va_format vaf;					\
4651 	va_list args;						\
4652 								\
4653 	va_start(args, fmt);					\
4654 								\
4655 	vaf.fmt = fmt;						\
4656 	vaf.va = &args;						\
4657 								\
4658 	__dev_printk(kern_level, dev, &vaf);			\
4659 								\
4660 	va_end(args);						\
4661 }								\
4662 EXPORT_SYMBOL(func);
4663 
4664 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4665 define_dev_printk_level(_dev_alert, KERN_ALERT);
4666 define_dev_printk_level(_dev_crit, KERN_CRIT);
4667 define_dev_printk_level(_dev_err, KERN_ERR);
4668 define_dev_printk_level(_dev_warn, KERN_WARNING);
4669 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4670 define_dev_printk_level(_dev_info, KERN_INFO);
4671 
4672 #endif
4673 
4674 /**
4675  * dev_err_probe - probe error check and log helper
4676  * @dev: the pointer to the struct device
4677  * @err: error value to test
4678  * @fmt: printf-style format string
4679  * @...: arguments as specified in the format string
4680  *
4681  * This helper implements common pattern present in probe functions for error
4682  * checking: print debug or error message depending if the error value is
4683  * -EPROBE_DEFER and propagate error upwards.
4684  * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4685  * checked later by reading devices_deferred debugfs attribute.
4686  * It replaces code sequence::
4687  *
4688  * 	if (err != -EPROBE_DEFER)
4689  * 		dev_err(dev, ...);
4690  * 	else
4691  * 		dev_dbg(dev, ...);
4692  * 	return err;
4693  *
4694  * with::
4695  *
4696  * 	return dev_err_probe(dev, err, ...);
4697  *
4698  * Note that it is deemed acceptable to use this function for error
4699  * prints during probe even if the @err is known to never be -EPROBE_DEFER.
4700  * The benefit compared to a normal dev_err() is the standardized format
4701  * of the error code and the fact that the error code is returned.
4702  *
4703  * Returns @err.
4704  *
4705  */
4706 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4707 {
4708 	struct va_format vaf;
4709 	va_list args;
4710 
4711 	va_start(args, fmt);
4712 	vaf.fmt = fmt;
4713 	vaf.va = &args;
4714 
4715 	if (err != -EPROBE_DEFER) {
4716 		dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4717 	} else {
4718 		device_set_deferred_probe_reason(dev, &vaf);
4719 		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4720 	}
4721 
4722 	va_end(args);
4723 
4724 	return err;
4725 }
4726 EXPORT_SYMBOL_GPL(dev_err_probe);
4727 
4728 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4729 {
4730 	return fwnode && !IS_ERR(fwnode->secondary);
4731 }
4732 
4733 /**
4734  * set_primary_fwnode - Change the primary firmware node of a given device.
4735  * @dev: Device to handle.
4736  * @fwnode: New primary firmware node of the device.
4737  *
4738  * Set the device's firmware node pointer to @fwnode, but if a secondary
4739  * firmware node of the device is present, preserve it.
4740  *
4741  * Valid fwnode cases are:
4742  *  - primary --> secondary --> -ENODEV
4743  *  - primary --> NULL
4744  *  - secondary --> -ENODEV
4745  *  - NULL
4746  */
4747 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4748 {
4749 	struct device *parent = dev->parent;
4750 	struct fwnode_handle *fn = dev->fwnode;
4751 
4752 	if (fwnode) {
4753 		if (fwnode_is_primary(fn))
4754 			fn = fn->secondary;
4755 
4756 		if (fn) {
4757 			WARN_ON(fwnode->secondary);
4758 			fwnode->secondary = fn;
4759 		}
4760 		dev->fwnode = fwnode;
4761 	} else {
4762 		if (fwnode_is_primary(fn)) {
4763 			dev->fwnode = fn->secondary;
4764 			/* Set fn->secondary = NULL, so fn remains the primary fwnode */
4765 			if (!(parent && fn == parent->fwnode))
4766 				fn->secondary = NULL;
4767 		} else {
4768 			dev->fwnode = NULL;
4769 		}
4770 	}
4771 }
4772 EXPORT_SYMBOL_GPL(set_primary_fwnode);
4773 
4774 /**
4775  * set_secondary_fwnode - Change the secondary firmware node of a given device.
4776  * @dev: Device to handle.
4777  * @fwnode: New secondary firmware node of the device.
4778  *
4779  * If a primary firmware node of the device is present, set its secondary
4780  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
4781  * @fwnode.
4782  */
4783 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4784 {
4785 	if (fwnode)
4786 		fwnode->secondary = ERR_PTR(-ENODEV);
4787 
4788 	if (fwnode_is_primary(dev->fwnode))
4789 		dev->fwnode->secondary = fwnode;
4790 	else
4791 		dev->fwnode = fwnode;
4792 }
4793 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4794 
4795 /**
4796  * device_set_of_node_from_dev - reuse device-tree node of another device
4797  * @dev: device whose device-tree node is being set
4798  * @dev2: device whose device-tree node is being reused
4799  *
4800  * Takes another reference to the new device-tree node after first dropping
4801  * any reference held to the old node.
4802  */
4803 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4804 {
4805 	of_node_put(dev->of_node);
4806 	dev->of_node = of_node_get(dev2->of_node);
4807 	dev->of_node_reused = true;
4808 }
4809 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4810 
4811 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
4812 {
4813 	dev->fwnode = fwnode;
4814 	dev->of_node = to_of_node(fwnode);
4815 }
4816 EXPORT_SYMBOL_GPL(device_set_node);
4817 
4818 int device_match_name(struct device *dev, const void *name)
4819 {
4820 	return sysfs_streq(dev_name(dev), name);
4821 }
4822 EXPORT_SYMBOL_GPL(device_match_name);
4823 
4824 int device_match_of_node(struct device *dev, const void *np)
4825 {
4826 	return dev->of_node == np;
4827 }
4828 EXPORT_SYMBOL_GPL(device_match_of_node);
4829 
4830 int device_match_fwnode(struct device *dev, const void *fwnode)
4831 {
4832 	return dev_fwnode(dev) == fwnode;
4833 }
4834 EXPORT_SYMBOL_GPL(device_match_fwnode);
4835 
4836 int device_match_devt(struct device *dev, const void *pdevt)
4837 {
4838 	return dev->devt == *(dev_t *)pdevt;
4839 }
4840 EXPORT_SYMBOL_GPL(device_match_devt);
4841 
4842 int device_match_acpi_dev(struct device *dev, const void *adev)
4843 {
4844 	return ACPI_COMPANION(dev) == adev;
4845 }
4846 EXPORT_SYMBOL(device_match_acpi_dev);
4847 
4848 int device_match_acpi_handle(struct device *dev, const void *handle)
4849 {
4850 	return ACPI_HANDLE(dev) == handle;
4851 }
4852 EXPORT_SYMBOL(device_match_acpi_handle);
4853 
4854 int device_match_any(struct device *dev, const void *unused)
4855 {
4856 	return 1;
4857 }
4858 EXPORT_SYMBOL_GPL(device_match_any);
4859