xref: /openbmc/linux/drivers/base/core.c (revision bfeda968)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/kstrtox.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/string.h>
21 #include <linux/kdev_t.h>
22 #include <linux/notifier.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/blkdev.h>
26 #include <linux/mutex.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/netdevice.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/mm.h>
31 #include <linux/swiotlb.h>
32 #include <linux/sysfs.h>
33 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
34 
35 #include "base.h"
36 #include "physical_location.h"
37 #include "power/power.h"
38 
39 #ifdef CONFIG_SYSFS_DEPRECATED
40 #ifdef CONFIG_SYSFS_DEPRECATED_V2
41 long sysfs_deprecated = 1;
42 #else
43 long sysfs_deprecated = 0;
44 #endif
45 static int __init sysfs_deprecated_setup(char *arg)
46 {
47 	return kstrtol(arg, 10, &sysfs_deprecated);
48 }
49 early_param("sysfs.deprecated", sysfs_deprecated_setup);
50 #endif
51 
52 /* Device links support. */
53 static LIST_HEAD(deferred_sync);
54 static unsigned int defer_sync_state_count = 1;
55 static DEFINE_MUTEX(fwnode_link_lock);
56 static bool fw_devlink_is_permissive(void);
57 static bool fw_devlink_drv_reg_done;
58 static bool fw_devlink_best_effort;
59 
60 /**
61  * fwnode_link_add - Create a link between two fwnode_handles.
62  * @con: Consumer end of the link.
63  * @sup: Supplier end of the link.
64  *
65  * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
66  * represents the detail that the firmware lists @sup fwnode as supplying a
67  * resource to @con.
68  *
69  * The driver core will use the fwnode link to create a device link between the
70  * two device objects corresponding to @con and @sup when they are created. The
71  * driver core will automatically delete the fwnode link between @con and @sup
72  * after doing that.
73  *
74  * Attempts to create duplicate links between the same pair of fwnode handles
75  * are ignored and there is no reference counting.
76  */
77 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
78 {
79 	struct fwnode_link *link;
80 	int ret = 0;
81 
82 	mutex_lock(&fwnode_link_lock);
83 
84 	list_for_each_entry(link, &sup->consumers, s_hook)
85 		if (link->consumer == con)
86 			goto out;
87 
88 	link = kzalloc(sizeof(*link), GFP_KERNEL);
89 	if (!link) {
90 		ret = -ENOMEM;
91 		goto out;
92 	}
93 
94 	link->supplier = sup;
95 	INIT_LIST_HEAD(&link->s_hook);
96 	link->consumer = con;
97 	INIT_LIST_HEAD(&link->c_hook);
98 
99 	list_add(&link->s_hook, &sup->consumers);
100 	list_add(&link->c_hook, &con->suppliers);
101 	pr_debug("%pfwP Linked as a fwnode consumer to %pfwP\n",
102 		 con, sup);
103 out:
104 	mutex_unlock(&fwnode_link_lock);
105 
106 	return ret;
107 }
108 
109 /**
110  * __fwnode_link_del - Delete a link between two fwnode_handles.
111  * @link: the fwnode_link to be deleted
112  *
113  * The fwnode_link_lock needs to be held when this function is called.
114  */
115 static void __fwnode_link_del(struct fwnode_link *link)
116 {
117 	pr_debug("%pfwP Dropping the fwnode link to %pfwP\n",
118 		 link->consumer, link->supplier);
119 	list_del(&link->s_hook);
120 	list_del(&link->c_hook);
121 	kfree(link);
122 }
123 
124 /**
125  * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
126  * @fwnode: fwnode whose supplier links need to be deleted
127  *
128  * Deletes all supplier links connecting directly to @fwnode.
129  */
130 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
131 {
132 	struct fwnode_link *link, *tmp;
133 
134 	mutex_lock(&fwnode_link_lock);
135 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
136 		__fwnode_link_del(link);
137 	mutex_unlock(&fwnode_link_lock);
138 }
139 
140 /**
141  * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
142  * @fwnode: fwnode whose consumer links need to be deleted
143  *
144  * Deletes all consumer links connecting directly to @fwnode.
145  */
146 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
147 {
148 	struct fwnode_link *link, *tmp;
149 
150 	mutex_lock(&fwnode_link_lock);
151 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
152 		__fwnode_link_del(link);
153 	mutex_unlock(&fwnode_link_lock);
154 }
155 
156 /**
157  * fwnode_links_purge - Delete all links connected to a fwnode_handle.
158  * @fwnode: fwnode whose links needs to be deleted
159  *
160  * Deletes all links connecting directly to a fwnode.
161  */
162 void fwnode_links_purge(struct fwnode_handle *fwnode)
163 {
164 	fwnode_links_purge_suppliers(fwnode);
165 	fwnode_links_purge_consumers(fwnode);
166 }
167 
168 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
169 {
170 	struct fwnode_handle *child;
171 
172 	/* Don't purge consumer links of an added child */
173 	if (fwnode->dev)
174 		return;
175 
176 	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
177 	fwnode_links_purge_consumers(fwnode);
178 
179 	fwnode_for_each_available_child_node(fwnode, child)
180 		fw_devlink_purge_absent_suppliers(child);
181 }
182 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
183 
184 static DEFINE_MUTEX(device_links_lock);
185 DEFINE_STATIC_SRCU(device_links_srcu);
186 
187 static inline void device_links_write_lock(void)
188 {
189 	mutex_lock(&device_links_lock);
190 }
191 
192 static inline void device_links_write_unlock(void)
193 {
194 	mutex_unlock(&device_links_lock);
195 }
196 
197 int device_links_read_lock(void) __acquires(&device_links_srcu)
198 {
199 	return srcu_read_lock(&device_links_srcu);
200 }
201 
202 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
203 {
204 	srcu_read_unlock(&device_links_srcu, idx);
205 }
206 
207 int device_links_read_lock_held(void)
208 {
209 	return srcu_read_lock_held(&device_links_srcu);
210 }
211 
212 static void device_link_synchronize_removal(void)
213 {
214 	synchronize_srcu(&device_links_srcu);
215 }
216 
217 static void device_link_remove_from_lists(struct device_link *link)
218 {
219 	list_del_rcu(&link->s_node);
220 	list_del_rcu(&link->c_node);
221 }
222 
223 static bool device_is_ancestor(struct device *dev, struct device *target)
224 {
225 	while (target->parent) {
226 		target = target->parent;
227 		if (dev == target)
228 			return true;
229 	}
230 	return false;
231 }
232 
233 /**
234  * device_is_dependent - Check if one device depends on another one
235  * @dev: Device to check dependencies for.
236  * @target: Device to check against.
237  *
238  * Check if @target depends on @dev or any device dependent on it (its child or
239  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
240  */
241 int device_is_dependent(struct device *dev, void *target)
242 {
243 	struct device_link *link;
244 	int ret;
245 
246 	/*
247 	 * The "ancestors" check is needed to catch the case when the target
248 	 * device has not been completely initialized yet and it is still
249 	 * missing from the list of children of its parent device.
250 	 */
251 	if (dev == target || device_is_ancestor(dev, target))
252 		return 1;
253 
254 	ret = device_for_each_child(dev, target, device_is_dependent);
255 	if (ret)
256 		return ret;
257 
258 	list_for_each_entry(link, &dev->links.consumers, s_node) {
259 		if ((link->flags & ~DL_FLAG_INFERRED) ==
260 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
261 			continue;
262 
263 		if (link->consumer == target)
264 			return 1;
265 
266 		ret = device_is_dependent(link->consumer, target);
267 		if (ret)
268 			break;
269 	}
270 	return ret;
271 }
272 
273 static void device_link_init_status(struct device_link *link,
274 				    struct device *consumer,
275 				    struct device *supplier)
276 {
277 	switch (supplier->links.status) {
278 	case DL_DEV_PROBING:
279 		switch (consumer->links.status) {
280 		case DL_DEV_PROBING:
281 			/*
282 			 * A consumer driver can create a link to a supplier
283 			 * that has not completed its probing yet as long as it
284 			 * knows that the supplier is already functional (for
285 			 * example, it has just acquired some resources from the
286 			 * supplier).
287 			 */
288 			link->status = DL_STATE_CONSUMER_PROBE;
289 			break;
290 		default:
291 			link->status = DL_STATE_DORMANT;
292 			break;
293 		}
294 		break;
295 	case DL_DEV_DRIVER_BOUND:
296 		switch (consumer->links.status) {
297 		case DL_DEV_PROBING:
298 			link->status = DL_STATE_CONSUMER_PROBE;
299 			break;
300 		case DL_DEV_DRIVER_BOUND:
301 			link->status = DL_STATE_ACTIVE;
302 			break;
303 		default:
304 			link->status = DL_STATE_AVAILABLE;
305 			break;
306 		}
307 		break;
308 	case DL_DEV_UNBINDING:
309 		link->status = DL_STATE_SUPPLIER_UNBIND;
310 		break;
311 	default:
312 		link->status = DL_STATE_DORMANT;
313 		break;
314 	}
315 }
316 
317 static int device_reorder_to_tail(struct device *dev, void *not_used)
318 {
319 	struct device_link *link;
320 
321 	/*
322 	 * Devices that have not been registered yet will be put to the ends
323 	 * of the lists during the registration, so skip them here.
324 	 */
325 	if (device_is_registered(dev))
326 		devices_kset_move_last(dev);
327 
328 	if (device_pm_initialized(dev))
329 		device_pm_move_last(dev);
330 
331 	device_for_each_child(dev, NULL, device_reorder_to_tail);
332 	list_for_each_entry(link, &dev->links.consumers, s_node) {
333 		if ((link->flags & ~DL_FLAG_INFERRED) ==
334 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
335 			continue;
336 		device_reorder_to_tail(link->consumer, NULL);
337 	}
338 
339 	return 0;
340 }
341 
342 /**
343  * device_pm_move_to_tail - Move set of devices to the end of device lists
344  * @dev: Device to move
345  *
346  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
347  *
348  * It moves the @dev along with all of its children and all of its consumers
349  * to the ends of the device_kset and dpm_list, recursively.
350  */
351 void device_pm_move_to_tail(struct device *dev)
352 {
353 	int idx;
354 
355 	idx = device_links_read_lock();
356 	device_pm_lock();
357 	device_reorder_to_tail(dev, NULL);
358 	device_pm_unlock();
359 	device_links_read_unlock(idx);
360 }
361 
362 #define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
363 
364 static ssize_t status_show(struct device *dev,
365 			   struct device_attribute *attr, char *buf)
366 {
367 	const char *output;
368 
369 	switch (to_devlink(dev)->status) {
370 	case DL_STATE_NONE:
371 		output = "not tracked";
372 		break;
373 	case DL_STATE_DORMANT:
374 		output = "dormant";
375 		break;
376 	case DL_STATE_AVAILABLE:
377 		output = "available";
378 		break;
379 	case DL_STATE_CONSUMER_PROBE:
380 		output = "consumer probing";
381 		break;
382 	case DL_STATE_ACTIVE:
383 		output = "active";
384 		break;
385 	case DL_STATE_SUPPLIER_UNBIND:
386 		output = "supplier unbinding";
387 		break;
388 	default:
389 		output = "unknown";
390 		break;
391 	}
392 
393 	return sysfs_emit(buf, "%s\n", output);
394 }
395 static DEVICE_ATTR_RO(status);
396 
397 static ssize_t auto_remove_on_show(struct device *dev,
398 				   struct device_attribute *attr, char *buf)
399 {
400 	struct device_link *link = to_devlink(dev);
401 	const char *output;
402 
403 	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
404 		output = "supplier unbind";
405 	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
406 		output = "consumer unbind";
407 	else
408 		output = "never";
409 
410 	return sysfs_emit(buf, "%s\n", output);
411 }
412 static DEVICE_ATTR_RO(auto_remove_on);
413 
414 static ssize_t runtime_pm_show(struct device *dev,
415 			       struct device_attribute *attr, char *buf)
416 {
417 	struct device_link *link = to_devlink(dev);
418 
419 	return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
420 }
421 static DEVICE_ATTR_RO(runtime_pm);
422 
423 static ssize_t sync_state_only_show(struct device *dev,
424 				    struct device_attribute *attr, char *buf)
425 {
426 	struct device_link *link = to_devlink(dev);
427 
428 	return sysfs_emit(buf, "%d\n",
429 			  !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
430 }
431 static DEVICE_ATTR_RO(sync_state_only);
432 
433 static struct attribute *devlink_attrs[] = {
434 	&dev_attr_status.attr,
435 	&dev_attr_auto_remove_on.attr,
436 	&dev_attr_runtime_pm.attr,
437 	&dev_attr_sync_state_only.attr,
438 	NULL,
439 };
440 ATTRIBUTE_GROUPS(devlink);
441 
442 static void device_link_release_fn(struct work_struct *work)
443 {
444 	struct device_link *link = container_of(work, struct device_link, rm_work);
445 
446 	/* Ensure that all references to the link object have been dropped. */
447 	device_link_synchronize_removal();
448 
449 	pm_runtime_release_supplier(link);
450 	/*
451 	 * If supplier_preactivated is set, the link has been dropped between
452 	 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
453 	 * in __driver_probe_device().  In that case, drop the supplier's
454 	 * PM-runtime usage counter to remove the reference taken by
455 	 * pm_runtime_get_suppliers().
456 	 */
457 	if (link->supplier_preactivated)
458 		pm_runtime_put_noidle(link->supplier);
459 
460 	pm_request_idle(link->supplier);
461 
462 	put_device(link->consumer);
463 	put_device(link->supplier);
464 	kfree(link);
465 }
466 
467 static void devlink_dev_release(struct device *dev)
468 {
469 	struct device_link *link = to_devlink(dev);
470 
471 	INIT_WORK(&link->rm_work, device_link_release_fn);
472 	/*
473 	 * It may take a while to complete this work because of the SRCU
474 	 * synchronization in device_link_release_fn() and if the consumer or
475 	 * supplier devices get deleted when it runs, so put it into the "long"
476 	 * workqueue.
477 	 */
478 	queue_work(system_long_wq, &link->rm_work);
479 }
480 
481 static struct class devlink_class = {
482 	.name = "devlink",
483 	.owner = THIS_MODULE,
484 	.dev_groups = devlink_groups,
485 	.dev_release = devlink_dev_release,
486 };
487 
488 static int devlink_add_symlinks(struct device *dev,
489 				struct class_interface *class_intf)
490 {
491 	int ret;
492 	size_t len;
493 	struct device_link *link = to_devlink(dev);
494 	struct device *sup = link->supplier;
495 	struct device *con = link->consumer;
496 	char *buf;
497 
498 	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
499 		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
500 	len += strlen(":");
501 	len += strlen("supplier:") + 1;
502 	buf = kzalloc(len, GFP_KERNEL);
503 	if (!buf)
504 		return -ENOMEM;
505 
506 	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
507 	if (ret)
508 		goto out;
509 
510 	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
511 	if (ret)
512 		goto err_con;
513 
514 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
515 	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
516 	if (ret)
517 		goto err_con_dev;
518 
519 	snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
520 	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
521 	if (ret)
522 		goto err_sup_dev;
523 
524 	goto out;
525 
526 err_sup_dev:
527 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
528 	sysfs_remove_link(&sup->kobj, buf);
529 err_con_dev:
530 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
531 err_con:
532 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
533 out:
534 	kfree(buf);
535 	return ret;
536 }
537 
538 static void devlink_remove_symlinks(struct device *dev,
539 				   struct class_interface *class_intf)
540 {
541 	struct device_link *link = to_devlink(dev);
542 	size_t len;
543 	struct device *sup = link->supplier;
544 	struct device *con = link->consumer;
545 	char *buf;
546 
547 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
548 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
549 
550 	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
551 		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
552 	len += strlen(":");
553 	len += strlen("supplier:") + 1;
554 	buf = kzalloc(len, GFP_KERNEL);
555 	if (!buf) {
556 		WARN(1, "Unable to properly free device link symlinks!\n");
557 		return;
558 	}
559 
560 	if (device_is_registered(con)) {
561 		snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
562 		sysfs_remove_link(&con->kobj, buf);
563 	}
564 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
565 	sysfs_remove_link(&sup->kobj, buf);
566 	kfree(buf);
567 }
568 
569 static struct class_interface devlink_class_intf = {
570 	.class = &devlink_class,
571 	.add_dev = devlink_add_symlinks,
572 	.remove_dev = devlink_remove_symlinks,
573 };
574 
575 static int __init devlink_class_init(void)
576 {
577 	int ret;
578 
579 	ret = class_register(&devlink_class);
580 	if (ret)
581 		return ret;
582 
583 	ret = class_interface_register(&devlink_class_intf);
584 	if (ret)
585 		class_unregister(&devlink_class);
586 
587 	return ret;
588 }
589 postcore_initcall(devlink_class_init);
590 
591 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
592 			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
593 			       DL_FLAG_AUTOPROBE_CONSUMER  | \
594 			       DL_FLAG_SYNC_STATE_ONLY | \
595 			       DL_FLAG_INFERRED)
596 
597 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
598 			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
599 
600 /**
601  * device_link_add - Create a link between two devices.
602  * @consumer: Consumer end of the link.
603  * @supplier: Supplier end of the link.
604  * @flags: Link flags.
605  *
606  * The caller is responsible for the proper synchronization of the link creation
607  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
608  * runtime PM framework to take the link into account.  Second, if the
609  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
610  * be forced into the active meta state and reference-counted upon the creation
611  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
612  * ignored.
613  *
614  * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
615  * expected to release the link returned by it directly with the help of either
616  * device_link_del() or device_link_remove().
617  *
618  * If that flag is not set, however, the caller of this function is handing the
619  * management of the link over to the driver core entirely and its return value
620  * can only be used to check whether or not the link is present.  In that case,
621  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
622  * flags can be used to indicate to the driver core when the link can be safely
623  * deleted.  Namely, setting one of them in @flags indicates to the driver core
624  * that the link is not going to be used (by the given caller of this function)
625  * after unbinding the consumer or supplier driver, respectively, from its
626  * device, so the link can be deleted at that point.  If none of them is set,
627  * the link will be maintained until one of the devices pointed to by it (either
628  * the consumer or the supplier) is unregistered.
629  *
630  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
631  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
632  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
633  * be used to request the driver core to automatically probe for a consumer
634  * driver after successfully binding a driver to the supplier device.
635  *
636  * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
637  * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
638  * the same time is invalid and will cause NULL to be returned upfront.
639  * However, if a device link between the given @consumer and @supplier pair
640  * exists already when this function is called for them, the existing link will
641  * be returned regardless of its current type and status (the link's flags may
642  * be modified then).  The caller of this function is then expected to treat
643  * the link as though it has just been created, so (in particular) if
644  * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
645  * explicitly when not needed any more (as stated above).
646  *
647  * A side effect of the link creation is re-ordering of dpm_list and the
648  * devices_kset list by moving the consumer device and all devices depending
649  * on it to the ends of these lists (that does not happen to devices that have
650  * not been registered when this function is called).
651  *
652  * The supplier device is required to be registered when this function is called
653  * and NULL will be returned if that is not the case.  The consumer device need
654  * not be registered, however.
655  */
656 struct device_link *device_link_add(struct device *consumer,
657 				    struct device *supplier, u32 flags)
658 {
659 	struct device_link *link;
660 
661 	if (!consumer || !supplier || consumer == supplier ||
662 	    flags & ~DL_ADD_VALID_FLAGS ||
663 	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
664 	    (flags & DL_FLAG_SYNC_STATE_ONLY &&
665 	     (flags & ~DL_FLAG_INFERRED) != DL_FLAG_SYNC_STATE_ONLY) ||
666 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
667 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
668 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
669 		return NULL;
670 
671 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
672 		if (pm_runtime_get_sync(supplier) < 0) {
673 			pm_runtime_put_noidle(supplier);
674 			return NULL;
675 		}
676 	}
677 
678 	if (!(flags & DL_FLAG_STATELESS))
679 		flags |= DL_FLAG_MANAGED;
680 
681 	device_links_write_lock();
682 	device_pm_lock();
683 
684 	/*
685 	 * If the supplier has not been fully registered yet or there is a
686 	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
687 	 * the supplier already in the graph, return NULL. If the link is a
688 	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
689 	 * because it only affects sync_state() callbacks.
690 	 */
691 	if (!device_pm_initialized(supplier)
692 	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
693 		  device_is_dependent(consumer, supplier))) {
694 		link = NULL;
695 		goto out;
696 	}
697 
698 	/*
699 	 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
700 	 * So, only create it if the consumer hasn't probed yet.
701 	 */
702 	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
703 	    consumer->links.status != DL_DEV_NO_DRIVER &&
704 	    consumer->links.status != DL_DEV_PROBING) {
705 		link = NULL;
706 		goto out;
707 	}
708 
709 	/*
710 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
711 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
712 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
713 	 */
714 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
715 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
716 
717 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
718 		if (link->consumer != consumer)
719 			continue;
720 
721 		if (link->flags & DL_FLAG_INFERRED &&
722 		    !(flags & DL_FLAG_INFERRED))
723 			link->flags &= ~DL_FLAG_INFERRED;
724 
725 		if (flags & DL_FLAG_PM_RUNTIME) {
726 			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
727 				pm_runtime_new_link(consumer);
728 				link->flags |= DL_FLAG_PM_RUNTIME;
729 			}
730 			if (flags & DL_FLAG_RPM_ACTIVE)
731 				refcount_inc(&link->rpm_active);
732 		}
733 
734 		if (flags & DL_FLAG_STATELESS) {
735 			kref_get(&link->kref);
736 			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
737 			    !(link->flags & DL_FLAG_STATELESS)) {
738 				link->flags |= DL_FLAG_STATELESS;
739 				goto reorder;
740 			} else {
741 				link->flags |= DL_FLAG_STATELESS;
742 				goto out;
743 			}
744 		}
745 
746 		/*
747 		 * If the life time of the link following from the new flags is
748 		 * longer than indicated by the flags of the existing link,
749 		 * update the existing link to stay around longer.
750 		 */
751 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
752 			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
753 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
754 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
755 			}
756 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
757 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
758 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
759 		}
760 		if (!(link->flags & DL_FLAG_MANAGED)) {
761 			kref_get(&link->kref);
762 			link->flags |= DL_FLAG_MANAGED;
763 			device_link_init_status(link, consumer, supplier);
764 		}
765 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
766 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
767 			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
768 			goto reorder;
769 		}
770 
771 		goto out;
772 	}
773 
774 	link = kzalloc(sizeof(*link), GFP_KERNEL);
775 	if (!link)
776 		goto out;
777 
778 	refcount_set(&link->rpm_active, 1);
779 
780 	get_device(supplier);
781 	link->supplier = supplier;
782 	INIT_LIST_HEAD(&link->s_node);
783 	get_device(consumer);
784 	link->consumer = consumer;
785 	INIT_LIST_HEAD(&link->c_node);
786 	link->flags = flags;
787 	kref_init(&link->kref);
788 
789 	link->link_dev.class = &devlink_class;
790 	device_set_pm_not_required(&link->link_dev);
791 	dev_set_name(&link->link_dev, "%s:%s--%s:%s",
792 		     dev_bus_name(supplier), dev_name(supplier),
793 		     dev_bus_name(consumer), dev_name(consumer));
794 	if (device_register(&link->link_dev)) {
795 		put_device(&link->link_dev);
796 		link = NULL;
797 		goto out;
798 	}
799 
800 	if (flags & DL_FLAG_PM_RUNTIME) {
801 		if (flags & DL_FLAG_RPM_ACTIVE)
802 			refcount_inc(&link->rpm_active);
803 
804 		pm_runtime_new_link(consumer);
805 	}
806 
807 	/* Determine the initial link state. */
808 	if (flags & DL_FLAG_STATELESS)
809 		link->status = DL_STATE_NONE;
810 	else
811 		device_link_init_status(link, consumer, supplier);
812 
813 	/*
814 	 * Some callers expect the link creation during consumer driver probe to
815 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
816 	 */
817 	if (link->status == DL_STATE_CONSUMER_PROBE &&
818 	    flags & DL_FLAG_PM_RUNTIME)
819 		pm_runtime_resume(supplier);
820 
821 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
822 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
823 
824 	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
825 		dev_dbg(consumer,
826 			"Linked as a sync state only consumer to %s\n",
827 			dev_name(supplier));
828 		goto out;
829 	}
830 
831 reorder:
832 	/*
833 	 * Move the consumer and all of the devices depending on it to the end
834 	 * of dpm_list and the devices_kset list.
835 	 *
836 	 * It is necessary to hold dpm_list locked throughout all that or else
837 	 * we may end up suspending with a wrong ordering of it.
838 	 */
839 	device_reorder_to_tail(consumer, NULL);
840 
841 	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
842 
843 out:
844 	device_pm_unlock();
845 	device_links_write_unlock();
846 
847 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
848 		pm_runtime_put(supplier);
849 
850 	return link;
851 }
852 EXPORT_SYMBOL_GPL(device_link_add);
853 
854 static void __device_link_del(struct kref *kref)
855 {
856 	struct device_link *link = container_of(kref, struct device_link, kref);
857 
858 	dev_dbg(link->consumer, "Dropping the link to %s\n",
859 		dev_name(link->supplier));
860 
861 	pm_runtime_drop_link(link);
862 
863 	device_link_remove_from_lists(link);
864 	device_unregister(&link->link_dev);
865 }
866 
867 static void device_link_put_kref(struct device_link *link)
868 {
869 	if (link->flags & DL_FLAG_STATELESS)
870 		kref_put(&link->kref, __device_link_del);
871 	else if (!device_is_registered(link->consumer))
872 		__device_link_del(&link->kref);
873 	else
874 		WARN(1, "Unable to drop a managed device link reference\n");
875 }
876 
877 /**
878  * device_link_del - Delete a stateless link between two devices.
879  * @link: Device link to delete.
880  *
881  * The caller must ensure proper synchronization of this function with runtime
882  * PM.  If the link was added multiple times, it needs to be deleted as often.
883  * Care is required for hotplugged devices:  Their links are purged on removal
884  * and calling device_link_del() is then no longer allowed.
885  */
886 void device_link_del(struct device_link *link)
887 {
888 	device_links_write_lock();
889 	device_link_put_kref(link);
890 	device_links_write_unlock();
891 }
892 EXPORT_SYMBOL_GPL(device_link_del);
893 
894 /**
895  * device_link_remove - Delete a stateless link between two devices.
896  * @consumer: Consumer end of the link.
897  * @supplier: Supplier end of the link.
898  *
899  * The caller must ensure proper synchronization of this function with runtime
900  * PM.
901  */
902 void device_link_remove(void *consumer, struct device *supplier)
903 {
904 	struct device_link *link;
905 
906 	if (WARN_ON(consumer == supplier))
907 		return;
908 
909 	device_links_write_lock();
910 
911 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
912 		if (link->consumer == consumer) {
913 			device_link_put_kref(link);
914 			break;
915 		}
916 	}
917 
918 	device_links_write_unlock();
919 }
920 EXPORT_SYMBOL_GPL(device_link_remove);
921 
922 static void device_links_missing_supplier(struct device *dev)
923 {
924 	struct device_link *link;
925 
926 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
927 		if (link->status != DL_STATE_CONSUMER_PROBE)
928 			continue;
929 
930 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
931 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
932 		} else {
933 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
934 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
935 		}
936 	}
937 }
938 
939 static bool dev_is_best_effort(struct device *dev)
940 {
941 	return (fw_devlink_best_effort && dev->can_match) ||
942 		(dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT));
943 }
944 
945 /**
946  * device_links_check_suppliers - Check presence of supplier drivers.
947  * @dev: Consumer device.
948  *
949  * Check links from this device to any suppliers.  Walk the list of the device's
950  * links to suppliers and see if all of them are available.  If not, simply
951  * return -EPROBE_DEFER.
952  *
953  * We need to guarantee that the supplier will not go away after the check has
954  * been positive here.  It only can go away in __device_release_driver() and
955  * that function  checks the device's links to consumers.  This means we need to
956  * mark the link as "consumer probe in progress" to make the supplier removal
957  * wait for us to complete (or bad things may happen).
958  *
959  * Links without the DL_FLAG_MANAGED flag set are ignored.
960  */
961 int device_links_check_suppliers(struct device *dev)
962 {
963 	struct device_link *link;
964 	int ret = 0, fwnode_ret = 0;
965 	struct fwnode_handle *sup_fw;
966 
967 	/*
968 	 * Device waiting for supplier to become available is not allowed to
969 	 * probe.
970 	 */
971 	mutex_lock(&fwnode_link_lock);
972 	if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) &&
973 	    !fw_devlink_is_permissive()) {
974 		sup_fw = list_first_entry(&dev->fwnode->suppliers,
975 					  struct fwnode_link,
976 					  c_hook)->supplier;
977 		if (!dev_is_best_effort(dev)) {
978 			fwnode_ret = -EPROBE_DEFER;
979 			dev_err_probe(dev, -EPROBE_DEFER,
980 				    "wait for supplier %pfwP\n", sup_fw);
981 		} else {
982 			fwnode_ret = -EAGAIN;
983 		}
984 	}
985 	mutex_unlock(&fwnode_link_lock);
986 	if (fwnode_ret == -EPROBE_DEFER)
987 		return fwnode_ret;
988 
989 	device_links_write_lock();
990 
991 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
992 		if (!(link->flags & DL_FLAG_MANAGED))
993 			continue;
994 
995 		if (link->status != DL_STATE_AVAILABLE &&
996 		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
997 
998 			if (dev_is_best_effort(dev) &&
999 			    link->flags & DL_FLAG_INFERRED &&
1000 			    !link->supplier->can_match) {
1001 				ret = -EAGAIN;
1002 				continue;
1003 			}
1004 
1005 			device_links_missing_supplier(dev);
1006 			dev_err_probe(dev, -EPROBE_DEFER,
1007 				      "supplier %s not ready\n",
1008 				      dev_name(link->supplier));
1009 			ret = -EPROBE_DEFER;
1010 			break;
1011 		}
1012 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1013 	}
1014 	dev->links.status = DL_DEV_PROBING;
1015 
1016 	device_links_write_unlock();
1017 
1018 	return ret ? ret : fwnode_ret;
1019 }
1020 
1021 /**
1022  * __device_links_queue_sync_state - Queue a device for sync_state() callback
1023  * @dev: Device to call sync_state() on
1024  * @list: List head to queue the @dev on
1025  *
1026  * Queues a device for a sync_state() callback when the device links write lock
1027  * isn't held. This allows the sync_state() execution flow to use device links
1028  * APIs.  The caller must ensure this function is called with
1029  * device_links_write_lock() held.
1030  *
1031  * This function does a get_device() to make sure the device is not freed while
1032  * on this list.
1033  *
1034  * So the caller must also ensure that device_links_flush_sync_list() is called
1035  * as soon as the caller releases device_links_write_lock().  This is necessary
1036  * to make sure the sync_state() is called in a timely fashion and the
1037  * put_device() is called on this device.
1038  */
1039 static void __device_links_queue_sync_state(struct device *dev,
1040 					    struct list_head *list)
1041 {
1042 	struct device_link *link;
1043 
1044 	if (!dev_has_sync_state(dev))
1045 		return;
1046 	if (dev->state_synced)
1047 		return;
1048 
1049 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1050 		if (!(link->flags & DL_FLAG_MANAGED))
1051 			continue;
1052 		if (link->status != DL_STATE_ACTIVE)
1053 			return;
1054 	}
1055 
1056 	/*
1057 	 * Set the flag here to avoid adding the same device to a list more
1058 	 * than once. This can happen if new consumers get added to the device
1059 	 * and probed before the list is flushed.
1060 	 */
1061 	dev->state_synced = true;
1062 
1063 	if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1064 		return;
1065 
1066 	get_device(dev);
1067 	list_add_tail(&dev->links.defer_sync, list);
1068 }
1069 
1070 /**
1071  * device_links_flush_sync_list - Call sync_state() on a list of devices
1072  * @list: List of devices to call sync_state() on
1073  * @dont_lock_dev: Device for which lock is already held by the caller
1074  *
1075  * Calls sync_state() on all the devices that have been queued for it. This
1076  * function is used in conjunction with __device_links_queue_sync_state(). The
1077  * @dont_lock_dev parameter is useful when this function is called from a
1078  * context where a device lock is already held.
1079  */
1080 static void device_links_flush_sync_list(struct list_head *list,
1081 					 struct device *dont_lock_dev)
1082 {
1083 	struct device *dev, *tmp;
1084 
1085 	list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1086 		list_del_init(&dev->links.defer_sync);
1087 
1088 		if (dev != dont_lock_dev)
1089 			device_lock(dev);
1090 
1091 		if (dev->bus->sync_state)
1092 			dev->bus->sync_state(dev);
1093 		else if (dev->driver && dev->driver->sync_state)
1094 			dev->driver->sync_state(dev);
1095 
1096 		if (dev != dont_lock_dev)
1097 			device_unlock(dev);
1098 
1099 		put_device(dev);
1100 	}
1101 }
1102 
1103 void device_links_supplier_sync_state_pause(void)
1104 {
1105 	device_links_write_lock();
1106 	defer_sync_state_count++;
1107 	device_links_write_unlock();
1108 }
1109 
1110 void device_links_supplier_sync_state_resume(void)
1111 {
1112 	struct device *dev, *tmp;
1113 	LIST_HEAD(sync_list);
1114 
1115 	device_links_write_lock();
1116 	if (!defer_sync_state_count) {
1117 		WARN(true, "Unmatched sync_state pause/resume!");
1118 		goto out;
1119 	}
1120 	defer_sync_state_count--;
1121 	if (defer_sync_state_count)
1122 		goto out;
1123 
1124 	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1125 		/*
1126 		 * Delete from deferred_sync list before queuing it to
1127 		 * sync_list because defer_sync is used for both lists.
1128 		 */
1129 		list_del_init(&dev->links.defer_sync);
1130 		__device_links_queue_sync_state(dev, &sync_list);
1131 	}
1132 out:
1133 	device_links_write_unlock();
1134 
1135 	device_links_flush_sync_list(&sync_list, NULL);
1136 }
1137 
1138 static int sync_state_resume_initcall(void)
1139 {
1140 	device_links_supplier_sync_state_resume();
1141 	return 0;
1142 }
1143 late_initcall(sync_state_resume_initcall);
1144 
1145 static void __device_links_supplier_defer_sync(struct device *sup)
1146 {
1147 	if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1148 		list_add_tail(&sup->links.defer_sync, &deferred_sync);
1149 }
1150 
1151 static void device_link_drop_managed(struct device_link *link)
1152 {
1153 	link->flags &= ~DL_FLAG_MANAGED;
1154 	WRITE_ONCE(link->status, DL_STATE_NONE);
1155 	kref_put(&link->kref, __device_link_del);
1156 }
1157 
1158 static ssize_t waiting_for_supplier_show(struct device *dev,
1159 					 struct device_attribute *attr,
1160 					 char *buf)
1161 {
1162 	bool val;
1163 
1164 	device_lock(dev);
1165 	val = !list_empty(&dev->fwnode->suppliers);
1166 	device_unlock(dev);
1167 	return sysfs_emit(buf, "%u\n", val);
1168 }
1169 static DEVICE_ATTR_RO(waiting_for_supplier);
1170 
1171 /**
1172  * device_links_force_bind - Prepares device to be force bound
1173  * @dev: Consumer device.
1174  *
1175  * device_bind_driver() force binds a device to a driver without calling any
1176  * driver probe functions. So the consumer really isn't going to wait for any
1177  * supplier before it's bound to the driver. We still want the device link
1178  * states to be sensible when this happens.
1179  *
1180  * In preparation for device_bind_driver(), this function goes through each
1181  * supplier device links and checks if the supplier is bound. If it is, then
1182  * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1183  * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1184  */
1185 void device_links_force_bind(struct device *dev)
1186 {
1187 	struct device_link *link, *ln;
1188 
1189 	device_links_write_lock();
1190 
1191 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1192 		if (!(link->flags & DL_FLAG_MANAGED))
1193 			continue;
1194 
1195 		if (link->status != DL_STATE_AVAILABLE) {
1196 			device_link_drop_managed(link);
1197 			continue;
1198 		}
1199 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1200 	}
1201 	dev->links.status = DL_DEV_PROBING;
1202 
1203 	device_links_write_unlock();
1204 }
1205 
1206 /**
1207  * device_links_driver_bound - Update device links after probing its driver.
1208  * @dev: Device to update the links for.
1209  *
1210  * The probe has been successful, so update links from this device to any
1211  * consumers by changing their status to "available".
1212  *
1213  * Also change the status of @dev's links to suppliers to "active".
1214  *
1215  * Links without the DL_FLAG_MANAGED flag set are ignored.
1216  */
1217 void device_links_driver_bound(struct device *dev)
1218 {
1219 	struct device_link *link, *ln;
1220 	LIST_HEAD(sync_list);
1221 
1222 	/*
1223 	 * If a device binds successfully, it's expected to have created all
1224 	 * the device links it needs to or make new device links as it needs
1225 	 * them. So, fw_devlink no longer needs to create device links to any
1226 	 * of the device's suppliers.
1227 	 *
1228 	 * Also, if a child firmware node of this bound device is not added as
1229 	 * a device by now, assume it is never going to be added and make sure
1230 	 * other devices don't defer probe indefinitely by waiting for such a
1231 	 * child device.
1232 	 */
1233 	if (dev->fwnode && dev->fwnode->dev == dev) {
1234 		struct fwnode_handle *child;
1235 		fwnode_links_purge_suppliers(dev->fwnode);
1236 		fwnode_for_each_available_child_node(dev->fwnode, child)
1237 			fw_devlink_purge_absent_suppliers(child);
1238 	}
1239 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1240 
1241 	device_links_write_lock();
1242 
1243 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1244 		if (!(link->flags & DL_FLAG_MANAGED))
1245 			continue;
1246 
1247 		/*
1248 		 * Links created during consumer probe may be in the "consumer
1249 		 * probe" state to start with if the supplier is still probing
1250 		 * when they are created and they may become "active" if the
1251 		 * consumer probe returns first.  Skip them here.
1252 		 */
1253 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1254 		    link->status == DL_STATE_ACTIVE)
1255 			continue;
1256 
1257 		WARN_ON(link->status != DL_STATE_DORMANT);
1258 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1259 
1260 		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1261 			driver_deferred_probe_add(link->consumer);
1262 	}
1263 
1264 	if (defer_sync_state_count)
1265 		__device_links_supplier_defer_sync(dev);
1266 	else
1267 		__device_links_queue_sync_state(dev, &sync_list);
1268 
1269 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1270 		struct device *supplier;
1271 
1272 		if (!(link->flags & DL_FLAG_MANAGED))
1273 			continue;
1274 
1275 		supplier = link->supplier;
1276 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1277 			/*
1278 			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1279 			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1280 			 * save to drop the managed link completely.
1281 			 */
1282 			device_link_drop_managed(link);
1283 		} else if (dev_is_best_effort(dev) &&
1284 			   link->flags & DL_FLAG_INFERRED &&
1285 			   link->status != DL_STATE_CONSUMER_PROBE &&
1286 			   !link->supplier->can_match) {
1287 			/*
1288 			 * When dev_is_best_effort() is true, we ignore device
1289 			 * links to suppliers that don't have a driver.  If the
1290 			 * consumer device still managed to probe, there's no
1291 			 * point in maintaining a device link in a weird state
1292 			 * (consumer probed before supplier). So delete it.
1293 			 */
1294 			device_link_drop_managed(link);
1295 		} else {
1296 			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1297 			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1298 		}
1299 
1300 		/*
1301 		 * This needs to be done even for the deleted
1302 		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1303 		 * device link that was preventing the supplier from getting a
1304 		 * sync_state() call.
1305 		 */
1306 		if (defer_sync_state_count)
1307 			__device_links_supplier_defer_sync(supplier);
1308 		else
1309 			__device_links_queue_sync_state(supplier, &sync_list);
1310 	}
1311 
1312 	dev->links.status = DL_DEV_DRIVER_BOUND;
1313 
1314 	device_links_write_unlock();
1315 
1316 	device_links_flush_sync_list(&sync_list, dev);
1317 }
1318 
1319 /**
1320  * __device_links_no_driver - Update links of a device without a driver.
1321  * @dev: Device without a drvier.
1322  *
1323  * Delete all non-persistent links from this device to any suppliers.
1324  *
1325  * Persistent links stay around, but their status is changed to "available",
1326  * unless they already are in the "supplier unbind in progress" state in which
1327  * case they need not be updated.
1328  *
1329  * Links without the DL_FLAG_MANAGED flag set are ignored.
1330  */
1331 static void __device_links_no_driver(struct device *dev)
1332 {
1333 	struct device_link *link, *ln;
1334 
1335 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1336 		if (!(link->flags & DL_FLAG_MANAGED))
1337 			continue;
1338 
1339 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1340 			device_link_drop_managed(link);
1341 			continue;
1342 		}
1343 
1344 		if (link->status != DL_STATE_CONSUMER_PROBE &&
1345 		    link->status != DL_STATE_ACTIVE)
1346 			continue;
1347 
1348 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1349 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1350 		} else {
1351 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1352 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1353 		}
1354 	}
1355 
1356 	dev->links.status = DL_DEV_NO_DRIVER;
1357 }
1358 
1359 /**
1360  * device_links_no_driver - Update links after failing driver probe.
1361  * @dev: Device whose driver has just failed to probe.
1362  *
1363  * Clean up leftover links to consumers for @dev and invoke
1364  * %__device_links_no_driver() to update links to suppliers for it as
1365  * appropriate.
1366  *
1367  * Links without the DL_FLAG_MANAGED flag set are ignored.
1368  */
1369 void device_links_no_driver(struct device *dev)
1370 {
1371 	struct device_link *link;
1372 
1373 	device_links_write_lock();
1374 
1375 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1376 		if (!(link->flags & DL_FLAG_MANAGED))
1377 			continue;
1378 
1379 		/*
1380 		 * The probe has failed, so if the status of the link is
1381 		 * "consumer probe" or "active", it must have been added by
1382 		 * a probing consumer while this device was still probing.
1383 		 * Change its state to "dormant", as it represents a valid
1384 		 * relationship, but it is not functionally meaningful.
1385 		 */
1386 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1387 		    link->status == DL_STATE_ACTIVE)
1388 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1389 	}
1390 
1391 	__device_links_no_driver(dev);
1392 
1393 	device_links_write_unlock();
1394 }
1395 
1396 /**
1397  * device_links_driver_cleanup - Update links after driver removal.
1398  * @dev: Device whose driver has just gone away.
1399  *
1400  * Update links to consumers for @dev by changing their status to "dormant" and
1401  * invoke %__device_links_no_driver() to update links to suppliers for it as
1402  * appropriate.
1403  *
1404  * Links without the DL_FLAG_MANAGED flag set are ignored.
1405  */
1406 void device_links_driver_cleanup(struct device *dev)
1407 {
1408 	struct device_link *link, *ln;
1409 
1410 	device_links_write_lock();
1411 
1412 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1413 		if (!(link->flags & DL_FLAG_MANAGED))
1414 			continue;
1415 
1416 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1417 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1418 
1419 		/*
1420 		 * autoremove the links between this @dev and its consumer
1421 		 * devices that are not active, i.e. where the link state
1422 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1423 		 */
1424 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1425 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1426 			device_link_drop_managed(link);
1427 
1428 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1429 	}
1430 
1431 	list_del_init(&dev->links.defer_sync);
1432 	__device_links_no_driver(dev);
1433 
1434 	device_links_write_unlock();
1435 }
1436 
1437 /**
1438  * device_links_busy - Check if there are any busy links to consumers.
1439  * @dev: Device to check.
1440  *
1441  * Check each consumer of the device and return 'true' if its link's status
1442  * is one of "consumer probe" or "active" (meaning that the given consumer is
1443  * probing right now or its driver is present).  Otherwise, change the link
1444  * state to "supplier unbind" to prevent the consumer from being probed
1445  * successfully going forward.
1446  *
1447  * Return 'false' if there are no probing or active consumers.
1448  *
1449  * Links without the DL_FLAG_MANAGED flag set are ignored.
1450  */
1451 bool device_links_busy(struct device *dev)
1452 {
1453 	struct device_link *link;
1454 	bool ret = false;
1455 
1456 	device_links_write_lock();
1457 
1458 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1459 		if (!(link->flags & DL_FLAG_MANAGED))
1460 			continue;
1461 
1462 		if (link->status == DL_STATE_CONSUMER_PROBE
1463 		    || link->status == DL_STATE_ACTIVE) {
1464 			ret = true;
1465 			break;
1466 		}
1467 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1468 	}
1469 
1470 	dev->links.status = DL_DEV_UNBINDING;
1471 
1472 	device_links_write_unlock();
1473 	return ret;
1474 }
1475 
1476 /**
1477  * device_links_unbind_consumers - Force unbind consumers of the given device.
1478  * @dev: Device to unbind the consumers of.
1479  *
1480  * Walk the list of links to consumers for @dev and if any of them is in the
1481  * "consumer probe" state, wait for all device probes in progress to complete
1482  * and start over.
1483  *
1484  * If that's not the case, change the status of the link to "supplier unbind"
1485  * and check if the link was in the "active" state.  If so, force the consumer
1486  * driver to unbind and start over (the consumer will not re-probe as we have
1487  * changed the state of the link already).
1488  *
1489  * Links without the DL_FLAG_MANAGED flag set are ignored.
1490  */
1491 void device_links_unbind_consumers(struct device *dev)
1492 {
1493 	struct device_link *link;
1494 
1495  start:
1496 	device_links_write_lock();
1497 
1498 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1499 		enum device_link_state status;
1500 
1501 		if (!(link->flags & DL_FLAG_MANAGED) ||
1502 		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1503 			continue;
1504 
1505 		status = link->status;
1506 		if (status == DL_STATE_CONSUMER_PROBE) {
1507 			device_links_write_unlock();
1508 
1509 			wait_for_device_probe();
1510 			goto start;
1511 		}
1512 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1513 		if (status == DL_STATE_ACTIVE) {
1514 			struct device *consumer = link->consumer;
1515 
1516 			get_device(consumer);
1517 
1518 			device_links_write_unlock();
1519 
1520 			device_release_driver_internal(consumer, NULL,
1521 						       consumer->parent);
1522 			put_device(consumer);
1523 			goto start;
1524 		}
1525 	}
1526 
1527 	device_links_write_unlock();
1528 }
1529 
1530 /**
1531  * device_links_purge - Delete existing links to other devices.
1532  * @dev: Target device.
1533  */
1534 static void device_links_purge(struct device *dev)
1535 {
1536 	struct device_link *link, *ln;
1537 
1538 	if (dev->class == &devlink_class)
1539 		return;
1540 
1541 	/*
1542 	 * Delete all of the remaining links from this device to any other
1543 	 * devices (either consumers or suppliers).
1544 	 */
1545 	device_links_write_lock();
1546 
1547 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1548 		WARN_ON(link->status == DL_STATE_ACTIVE);
1549 		__device_link_del(&link->kref);
1550 	}
1551 
1552 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1553 		WARN_ON(link->status != DL_STATE_DORMANT &&
1554 			link->status != DL_STATE_NONE);
1555 		__device_link_del(&link->kref);
1556 	}
1557 
1558 	device_links_write_unlock();
1559 }
1560 
1561 #define FW_DEVLINK_FLAGS_PERMISSIVE	(DL_FLAG_INFERRED | \
1562 					 DL_FLAG_SYNC_STATE_ONLY)
1563 #define FW_DEVLINK_FLAGS_ON		(DL_FLAG_INFERRED | \
1564 					 DL_FLAG_AUTOPROBE_CONSUMER)
1565 #define FW_DEVLINK_FLAGS_RPM		(FW_DEVLINK_FLAGS_ON | \
1566 					 DL_FLAG_PM_RUNTIME)
1567 
1568 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1569 static int __init fw_devlink_setup(char *arg)
1570 {
1571 	if (!arg)
1572 		return -EINVAL;
1573 
1574 	if (strcmp(arg, "off") == 0) {
1575 		fw_devlink_flags = 0;
1576 	} else if (strcmp(arg, "permissive") == 0) {
1577 		fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1578 	} else if (strcmp(arg, "on") == 0) {
1579 		fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1580 	} else if (strcmp(arg, "rpm") == 0) {
1581 		fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1582 	}
1583 	return 0;
1584 }
1585 early_param("fw_devlink", fw_devlink_setup);
1586 
1587 static bool fw_devlink_strict;
1588 static int __init fw_devlink_strict_setup(char *arg)
1589 {
1590 	return kstrtobool(arg, &fw_devlink_strict);
1591 }
1592 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1593 
1594 u32 fw_devlink_get_flags(void)
1595 {
1596 	return fw_devlink_flags;
1597 }
1598 
1599 static bool fw_devlink_is_permissive(void)
1600 {
1601 	return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1602 }
1603 
1604 bool fw_devlink_is_strict(void)
1605 {
1606 	return fw_devlink_strict && !fw_devlink_is_permissive();
1607 }
1608 
1609 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1610 {
1611 	if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1612 		return;
1613 
1614 	fwnode_call_int_op(fwnode, add_links);
1615 	fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1616 }
1617 
1618 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1619 {
1620 	struct fwnode_handle *child = NULL;
1621 
1622 	fw_devlink_parse_fwnode(fwnode);
1623 
1624 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1625 		fw_devlink_parse_fwtree(child);
1626 }
1627 
1628 static void fw_devlink_relax_link(struct device_link *link)
1629 {
1630 	if (!(link->flags & DL_FLAG_INFERRED))
1631 		return;
1632 
1633 	if (link->flags == (DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE))
1634 		return;
1635 
1636 	pm_runtime_drop_link(link);
1637 	link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1638 	dev_dbg(link->consumer, "Relaxing link with %s\n",
1639 		dev_name(link->supplier));
1640 }
1641 
1642 static int fw_devlink_no_driver(struct device *dev, void *data)
1643 {
1644 	struct device_link *link = to_devlink(dev);
1645 
1646 	if (!link->supplier->can_match)
1647 		fw_devlink_relax_link(link);
1648 
1649 	return 0;
1650 }
1651 
1652 void fw_devlink_drivers_done(void)
1653 {
1654 	fw_devlink_drv_reg_done = true;
1655 	device_links_write_lock();
1656 	class_for_each_device(&devlink_class, NULL, NULL,
1657 			      fw_devlink_no_driver);
1658 	device_links_write_unlock();
1659 }
1660 
1661 /**
1662  * wait_for_init_devices_probe - Try to probe any device needed for init
1663  *
1664  * Some devices might need to be probed and bound successfully before the kernel
1665  * boot sequence can finish and move on to init/userspace. For example, a
1666  * network interface might need to be bound to be able to mount a NFS rootfs.
1667  *
1668  * With fw_devlink=on by default, some of these devices might be blocked from
1669  * probing because they are waiting on a optional supplier that doesn't have a
1670  * driver. While fw_devlink will eventually identify such devices and unblock
1671  * the probing automatically, it might be too late by the time it unblocks the
1672  * probing of devices. For example, the IP4 autoconfig might timeout before
1673  * fw_devlink unblocks probing of the network interface.
1674  *
1675  * This function is available to temporarily try and probe all devices that have
1676  * a driver even if some of their suppliers haven't been added or don't have
1677  * drivers.
1678  *
1679  * The drivers can then decide which of the suppliers are optional vs mandatory
1680  * and probe the device if possible. By the time this function returns, all such
1681  * "best effort" probes are guaranteed to be completed. If a device successfully
1682  * probes in this mode, we delete all fw_devlink discovered dependencies of that
1683  * device where the supplier hasn't yet probed successfully because they have to
1684  * be optional dependencies.
1685  *
1686  * Any devices that didn't successfully probe go back to being treated as if
1687  * this function was never called.
1688  *
1689  * This also means that some devices that aren't needed for init and could have
1690  * waited for their optional supplier to probe (when the supplier's module is
1691  * loaded later on) would end up probing prematurely with limited functionality.
1692  * So call this function only when boot would fail without it.
1693  */
1694 void __init wait_for_init_devices_probe(void)
1695 {
1696 	if (!fw_devlink_flags || fw_devlink_is_permissive())
1697 		return;
1698 
1699 	/*
1700 	 * Wait for all ongoing probes to finish so that the "best effort" is
1701 	 * only applied to devices that can't probe otherwise.
1702 	 */
1703 	wait_for_device_probe();
1704 
1705 	pr_info("Trying to probe devices needed for running init ...\n");
1706 	fw_devlink_best_effort = true;
1707 	driver_deferred_probe_trigger();
1708 
1709 	/*
1710 	 * Wait for all "best effort" probes to finish before going back to
1711 	 * normal enforcement.
1712 	 */
1713 	wait_for_device_probe();
1714 	fw_devlink_best_effort = false;
1715 }
1716 
1717 static void fw_devlink_unblock_consumers(struct device *dev)
1718 {
1719 	struct device_link *link;
1720 
1721 	if (!fw_devlink_flags || fw_devlink_is_permissive())
1722 		return;
1723 
1724 	device_links_write_lock();
1725 	list_for_each_entry(link, &dev->links.consumers, s_node)
1726 		fw_devlink_relax_link(link);
1727 	device_links_write_unlock();
1728 }
1729 
1730 /**
1731  * fw_devlink_relax_cycle - Convert cyclic links to SYNC_STATE_ONLY links
1732  * @con: Device to check dependencies for.
1733  * @sup: Device to check against.
1734  *
1735  * Check if @sup depends on @con or any device dependent on it (its child or
1736  * its consumer etc).  When such a cyclic dependency is found, convert all
1737  * device links created solely by fw_devlink into SYNC_STATE_ONLY device links.
1738  * This is the equivalent of doing fw_devlink=permissive just between the
1739  * devices in the cycle. We need to do this because, at this point, fw_devlink
1740  * can't tell which of these dependencies is not a real dependency.
1741  *
1742  * Return 1 if a cycle is found. Otherwise, return 0.
1743  */
1744 static int fw_devlink_relax_cycle(struct device *con, void *sup)
1745 {
1746 	struct device_link *link;
1747 	int ret;
1748 
1749 	if (con == sup)
1750 		return 1;
1751 
1752 	ret = device_for_each_child(con, sup, fw_devlink_relax_cycle);
1753 	if (ret)
1754 		return ret;
1755 
1756 	list_for_each_entry(link, &con->links.consumers, s_node) {
1757 		if ((link->flags & ~DL_FLAG_INFERRED) ==
1758 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
1759 			continue;
1760 
1761 		if (!fw_devlink_relax_cycle(link->consumer, sup))
1762 			continue;
1763 
1764 		ret = 1;
1765 
1766 		fw_devlink_relax_link(link);
1767 	}
1768 	return ret;
1769 }
1770 
1771 /**
1772  * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
1773  * @con: consumer device for the device link
1774  * @sup_handle: fwnode handle of supplier
1775  * @flags: devlink flags
1776  *
1777  * This function will try to create a device link between the consumer device
1778  * @con and the supplier device represented by @sup_handle.
1779  *
1780  * The supplier has to be provided as a fwnode because incorrect cycles in
1781  * fwnode links can sometimes cause the supplier device to never be created.
1782  * This function detects such cases and returns an error if it cannot create a
1783  * device link from the consumer to a missing supplier.
1784  *
1785  * Returns,
1786  * 0 on successfully creating a device link
1787  * -EINVAL if the device link cannot be created as expected
1788  * -EAGAIN if the device link cannot be created right now, but it may be
1789  *  possible to do that in the future
1790  */
1791 static int fw_devlink_create_devlink(struct device *con,
1792 				     struct fwnode_handle *sup_handle, u32 flags)
1793 {
1794 	struct device *sup_dev;
1795 	int ret = 0;
1796 
1797 	/*
1798 	 * In some cases, a device P might also be a supplier to its child node
1799 	 * C. However, this would defer the probe of C until the probe of P
1800 	 * completes successfully. This is perfectly fine in the device driver
1801 	 * model. device_add() doesn't guarantee probe completion of the device
1802 	 * by the time it returns.
1803 	 *
1804 	 * However, there are a few drivers that assume C will finish probing
1805 	 * as soon as it's added and before P finishes probing. So, we provide
1806 	 * a flag to let fw_devlink know not to delay the probe of C until the
1807 	 * probe of P completes successfully.
1808 	 *
1809 	 * When such a flag is set, we can't create device links where P is the
1810 	 * supplier of C as that would delay the probe of C.
1811 	 */
1812 	if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
1813 	    fwnode_is_ancestor_of(sup_handle, con->fwnode))
1814 		return -EINVAL;
1815 
1816 	sup_dev = get_dev_from_fwnode(sup_handle);
1817 	if (sup_dev) {
1818 		/*
1819 		 * If it's one of those drivers that don't actually bind to
1820 		 * their device using driver core, then don't wait on this
1821 		 * supplier device indefinitely.
1822 		 */
1823 		if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
1824 		    sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
1825 			ret = -EINVAL;
1826 			goto out;
1827 		}
1828 
1829 		/*
1830 		 * If this fails, it is due to cycles in device links.  Just
1831 		 * give up on this link and treat it as invalid.
1832 		 */
1833 		if (!device_link_add(con, sup_dev, flags) &&
1834 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
1835 			dev_info(con, "Fixing up cyclic dependency with %s\n",
1836 				 dev_name(sup_dev));
1837 			device_links_write_lock();
1838 			fw_devlink_relax_cycle(con, sup_dev);
1839 			device_links_write_unlock();
1840 			device_link_add(con, sup_dev,
1841 					FW_DEVLINK_FLAGS_PERMISSIVE);
1842 			ret = -EINVAL;
1843 		}
1844 
1845 		goto out;
1846 	}
1847 
1848 	/* Supplier that's already initialized without a struct device. */
1849 	if (sup_handle->flags & FWNODE_FLAG_INITIALIZED)
1850 		return -EINVAL;
1851 
1852 	/*
1853 	 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports
1854 	 * cycles. So cycle detection isn't necessary and shouldn't be
1855 	 * done.
1856 	 */
1857 	if (flags & DL_FLAG_SYNC_STATE_ONLY)
1858 		return -EAGAIN;
1859 
1860 	/*
1861 	 * If we can't find the supplier device from its fwnode, it might be
1862 	 * due to a cyclic dependency between fwnodes. Some of these cycles can
1863 	 * be broken by applying logic. Check for these types of cycles and
1864 	 * break them so that devices in the cycle probe properly.
1865 	 *
1866 	 * If the supplier's parent is dependent on the consumer, then the
1867 	 * consumer and supplier have a cyclic dependency. Since fw_devlink
1868 	 * can't tell which of the inferred dependencies are incorrect, don't
1869 	 * enforce probe ordering between any of the devices in this cyclic
1870 	 * dependency. Do this by relaxing all the fw_devlink device links in
1871 	 * this cycle and by treating the fwnode link between the consumer and
1872 	 * the supplier as an invalid dependency.
1873 	 */
1874 	sup_dev = fwnode_get_next_parent_dev(sup_handle);
1875 	if (sup_dev && device_is_dependent(con, sup_dev)) {
1876 		dev_info(con, "Fixing up cyclic dependency with %pfwP (%s)\n",
1877 			 sup_handle, dev_name(sup_dev));
1878 		device_links_write_lock();
1879 		fw_devlink_relax_cycle(con, sup_dev);
1880 		device_links_write_unlock();
1881 		ret = -EINVAL;
1882 	} else {
1883 		/*
1884 		 * Can't check for cycles or no cycles. So let's try
1885 		 * again later.
1886 		 */
1887 		ret = -EAGAIN;
1888 	}
1889 
1890 out:
1891 	put_device(sup_dev);
1892 	return ret;
1893 }
1894 
1895 /**
1896  * __fw_devlink_link_to_consumers - Create device links to consumers of a device
1897  * @dev: Device that needs to be linked to its consumers
1898  *
1899  * This function looks at all the consumer fwnodes of @dev and creates device
1900  * links between the consumer device and @dev (supplier).
1901  *
1902  * If the consumer device has not been added yet, then this function creates a
1903  * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
1904  * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
1905  * sync_state() callback before the real consumer device gets to be added and
1906  * then probed.
1907  *
1908  * Once device links are created from the real consumer to @dev (supplier), the
1909  * fwnode links are deleted.
1910  */
1911 static void __fw_devlink_link_to_consumers(struct device *dev)
1912 {
1913 	struct fwnode_handle *fwnode = dev->fwnode;
1914 	struct fwnode_link *link, *tmp;
1915 
1916 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
1917 		u32 dl_flags = fw_devlink_get_flags();
1918 		struct device *con_dev;
1919 		bool own_link = true;
1920 		int ret;
1921 
1922 		con_dev = get_dev_from_fwnode(link->consumer);
1923 		/*
1924 		 * If consumer device is not available yet, make a "proxy"
1925 		 * SYNC_STATE_ONLY link from the consumer's parent device to
1926 		 * the supplier device. This is necessary to make sure the
1927 		 * supplier doesn't get a sync_state() callback before the real
1928 		 * consumer can create a device link to the supplier.
1929 		 *
1930 		 * This proxy link step is needed to handle the case where the
1931 		 * consumer's parent device is added before the supplier.
1932 		 */
1933 		if (!con_dev) {
1934 			con_dev = fwnode_get_next_parent_dev(link->consumer);
1935 			/*
1936 			 * However, if the consumer's parent device is also the
1937 			 * parent of the supplier, don't create a
1938 			 * consumer-supplier link from the parent to its child
1939 			 * device. Such a dependency is impossible.
1940 			 */
1941 			if (con_dev &&
1942 			    fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
1943 				put_device(con_dev);
1944 				con_dev = NULL;
1945 			} else {
1946 				own_link = false;
1947 				dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1948 			}
1949 		}
1950 
1951 		if (!con_dev)
1952 			continue;
1953 
1954 		ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags);
1955 		put_device(con_dev);
1956 		if (!own_link || ret == -EAGAIN)
1957 			continue;
1958 
1959 		__fwnode_link_del(link);
1960 	}
1961 }
1962 
1963 /**
1964  * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
1965  * @dev: The consumer device that needs to be linked to its suppliers
1966  * @fwnode: Root of the fwnode tree that is used to create device links
1967  *
1968  * This function looks at all the supplier fwnodes of fwnode tree rooted at
1969  * @fwnode and creates device links between @dev (consumer) and all the
1970  * supplier devices of the entire fwnode tree at @fwnode.
1971  *
1972  * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
1973  * and the real suppliers of @dev. Once these device links are created, the
1974  * fwnode links are deleted. When such device links are successfully created,
1975  * this function is called recursively on those supplier devices. This is
1976  * needed to detect and break some invalid cycles in fwnode links.  See
1977  * fw_devlink_create_devlink() for more details.
1978  *
1979  * In addition, it also looks at all the suppliers of the entire fwnode tree
1980  * because some of the child devices of @dev that have not been added yet
1981  * (because @dev hasn't probed) might already have their suppliers added to
1982  * driver core. So, this function creates SYNC_STATE_ONLY device links between
1983  * @dev (consumer) and these suppliers to make sure they don't execute their
1984  * sync_state() callbacks before these child devices have a chance to create
1985  * their device links. The fwnode links that correspond to the child devices
1986  * aren't delete because they are needed later to create the device links
1987  * between the real consumer and supplier devices.
1988  */
1989 static void __fw_devlink_link_to_suppliers(struct device *dev,
1990 					   struct fwnode_handle *fwnode)
1991 {
1992 	bool own_link = (dev->fwnode == fwnode);
1993 	struct fwnode_link *link, *tmp;
1994 	struct fwnode_handle *child = NULL;
1995 	u32 dl_flags;
1996 
1997 	if (own_link)
1998 		dl_flags = fw_devlink_get_flags();
1999 	else
2000 		dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
2001 
2002 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
2003 		int ret;
2004 		struct device *sup_dev;
2005 		struct fwnode_handle *sup = link->supplier;
2006 
2007 		ret = fw_devlink_create_devlink(dev, sup, dl_flags);
2008 		if (!own_link || ret == -EAGAIN)
2009 			continue;
2010 
2011 		__fwnode_link_del(link);
2012 
2013 		/* If no device link was created, nothing more to do. */
2014 		if (ret)
2015 			continue;
2016 
2017 		/*
2018 		 * If a device link was successfully created to a supplier, we
2019 		 * now need to try and link the supplier to all its suppliers.
2020 		 *
2021 		 * This is needed to detect and delete false dependencies in
2022 		 * fwnode links that haven't been converted to a device link
2023 		 * yet. See comments in fw_devlink_create_devlink() for more
2024 		 * details on the false dependency.
2025 		 *
2026 		 * Without deleting these false dependencies, some devices will
2027 		 * never probe because they'll keep waiting for their false
2028 		 * dependency fwnode links to be converted to device links.
2029 		 */
2030 		sup_dev = get_dev_from_fwnode(sup);
2031 		__fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode);
2032 		put_device(sup_dev);
2033 	}
2034 
2035 	/*
2036 	 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
2037 	 * all the descendants. This proxy link step is needed to handle the
2038 	 * case where the supplier is added before the consumer's parent device
2039 	 * (@dev).
2040 	 */
2041 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
2042 		__fw_devlink_link_to_suppliers(dev, child);
2043 }
2044 
2045 static void fw_devlink_link_device(struct device *dev)
2046 {
2047 	struct fwnode_handle *fwnode = dev->fwnode;
2048 
2049 	if (!fw_devlink_flags)
2050 		return;
2051 
2052 	fw_devlink_parse_fwtree(fwnode);
2053 
2054 	mutex_lock(&fwnode_link_lock);
2055 	__fw_devlink_link_to_consumers(dev);
2056 	__fw_devlink_link_to_suppliers(dev, fwnode);
2057 	mutex_unlock(&fwnode_link_lock);
2058 }
2059 
2060 /* Device links support end. */
2061 
2062 int (*platform_notify)(struct device *dev) = NULL;
2063 int (*platform_notify_remove)(struct device *dev) = NULL;
2064 static struct kobject *dev_kobj;
2065 struct kobject *sysfs_dev_char_kobj;
2066 struct kobject *sysfs_dev_block_kobj;
2067 
2068 static DEFINE_MUTEX(device_hotplug_lock);
2069 
2070 void lock_device_hotplug(void)
2071 {
2072 	mutex_lock(&device_hotplug_lock);
2073 }
2074 
2075 void unlock_device_hotplug(void)
2076 {
2077 	mutex_unlock(&device_hotplug_lock);
2078 }
2079 
2080 int lock_device_hotplug_sysfs(void)
2081 {
2082 	if (mutex_trylock(&device_hotplug_lock))
2083 		return 0;
2084 
2085 	/* Avoid busy looping (5 ms of sleep should do). */
2086 	msleep(5);
2087 	return restart_syscall();
2088 }
2089 
2090 #ifdef CONFIG_BLOCK
2091 static inline int device_is_not_partition(struct device *dev)
2092 {
2093 	return !(dev->type == &part_type);
2094 }
2095 #else
2096 static inline int device_is_not_partition(struct device *dev)
2097 {
2098 	return 1;
2099 }
2100 #endif
2101 
2102 static void device_platform_notify(struct device *dev)
2103 {
2104 	acpi_device_notify(dev);
2105 
2106 	software_node_notify(dev);
2107 
2108 	if (platform_notify)
2109 		platform_notify(dev);
2110 }
2111 
2112 static void device_platform_notify_remove(struct device *dev)
2113 {
2114 	acpi_device_notify_remove(dev);
2115 
2116 	software_node_notify_remove(dev);
2117 
2118 	if (platform_notify_remove)
2119 		platform_notify_remove(dev);
2120 }
2121 
2122 /**
2123  * dev_driver_string - Return a device's driver name, if at all possible
2124  * @dev: struct device to get the name of
2125  *
2126  * Will return the device's driver's name if it is bound to a device.  If
2127  * the device is not bound to a driver, it will return the name of the bus
2128  * it is attached to.  If it is not attached to a bus either, an empty
2129  * string will be returned.
2130  */
2131 const char *dev_driver_string(const struct device *dev)
2132 {
2133 	struct device_driver *drv;
2134 
2135 	/* dev->driver can change to NULL underneath us because of unbinding,
2136 	 * so be careful about accessing it.  dev->bus and dev->class should
2137 	 * never change once they are set, so they don't need special care.
2138 	 */
2139 	drv = READ_ONCE(dev->driver);
2140 	return drv ? drv->name : dev_bus_name(dev);
2141 }
2142 EXPORT_SYMBOL(dev_driver_string);
2143 
2144 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2145 
2146 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2147 			     char *buf)
2148 {
2149 	struct device_attribute *dev_attr = to_dev_attr(attr);
2150 	struct device *dev = kobj_to_dev(kobj);
2151 	ssize_t ret = -EIO;
2152 
2153 	if (dev_attr->show)
2154 		ret = dev_attr->show(dev, dev_attr, buf);
2155 	if (ret >= (ssize_t)PAGE_SIZE) {
2156 		printk("dev_attr_show: %pS returned bad count\n",
2157 				dev_attr->show);
2158 	}
2159 	return ret;
2160 }
2161 
2162 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2163 			      const char *buf, size_t count)
2164 {
2165 	struct device_attribute *dev_attr = to_dev_attr(attr);
2166 	struct device *dev = kobj_to_dev(kobj);
2167 	ssize_t ret = -EIO;
2168 
2169 	if (dev_attr->store)
2170 		ret = dev_attr->store(dev, dev_attr, buf, count);
2171 	return ret;
2172 }
2173 
2174 static const struct sysfs_ops dev_sysfs_ops = {
2175 	.show	= dev_attr_show,
2176 	.store	= dev_attr_store,
2177 };
2178 
2179 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2180 
2181 ssize_t device_store_ulong(struct device *dev,
2182 			   struct device_attribute *attr,
2183 			   const char *buf, size_t size)
2184 {
2185 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2186 	int ret;
2187 	unsigned long new;
2188 
2189 	ret = kstrtoul(buf, 0, &new);
2190 	if (ret)
2191 		return ret;
2192 	*(unsigned long *)(ea->var) = new;
2193 	/* Always return full write size even if we didn't consume all */
2194 	return size;
2195 }
2196 EXPORT_SYMBOL_GPL(device_store_ulong);
2197 
2198 ssize_t device_show_ulong(struct device *dev,
2199 			  struct device_attribute *attr,
2200 			  char *buf)
2201 {
2202 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2203 	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2204 }
2205 EXPORT_SYMBOL_GPL(device_show_ulong);
2206 
2207 ssize_t device_store_int(struct device *dev,
2208 			 struct device_attribute *attr,
2209 			 const char *buf, size_t size)
2210 {
2211 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2212 	int ret;
2213 	long new;
2214 
2215 	ret = kstrtol(buf, 0, &new);
2216 	if (ret)
2217 		return ret;
2218 
2219 	if (new > INT_MAX || new < INT_MIN)
2220 		return -EINVAL;
2221 	*(int *)(ea->var) = new;
2222 	/* Always return full write size even if we didn't consume all */
2223 	return size;
2224 }
2225 EXPORT_SYMBOL_GPL(device_store_int);
2226 
2227 ssize_t device_show_int(struct device *dev,
2228 			struct device_attribute *attr,
2229 			char *buf)
2230 {
2231 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2232 
2233 	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2234 }
2235 EXPORT_SYMBOL_GPL(device_show_int);
2236 
2237 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2238 			  const char *buf, size_t size)
2239 {
2240 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2241 
2242 	if (kstrtobool(buf, ea->var) < 0)
2243 		return -EINVAL;
2244 
2245 	return size;
2246 }
2247 EXPORT_SYMBOL_GPL(device_store_bool);
2248 
2249 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2250 			 char *buf)
2251 {
2252 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2253 
2254 	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2255 }
2256 EXPORT_SYMBOL_GPL(device_show_bool);
2257 
2258 /**
2259  * device_release - free device structure.
2260  * @kobj: device's kobject.
2261  *
2262  * This is called once the reference count for the object
2263  * reaches 0. We forward the call to the device's release
2264  * method, which should handle actually freeing the structure.
2265  */
2266 static void device_release(struct kobject *kobj)
2267 {
2268 	struct device *dev = kobj_to_dev(kobj);
2269 	struct device_private *p = dev->p;
2270 
2271 	/*
2272 	 * Some platform devices are driven without driver attached
2273 	 * and managed resources may have been acquired.  Make sure
2274 	 * all resources are released.
2275 	 *
2276 	 * Drivers still can add resources into device after device
2277 	 * is deleted but alive, so release devres here to avoid
2278 	 * possible memory leak.
2279 	 */
2280 	devres_release_all(dev);
2281 
2282 	kfree(dev->dma_range_map);
2283 
2284 	if (dev->release)
2285 		dev->release(dev);
2286 	else if (dev->type && dev->type->release)
2287 		dev->type->release(dev);
2288 	else if (dev->class && dev->class->dev_release)
2289 		dev->class->dev_release(dev);
2290 	else
2291 		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2292 			dev_name(dev));
2293 	kfree(p);
2294 }
2295 
2296 static const void *device_namespace(const struct kobject *kobj)
2297 {
2298 	const struct device *dev = kobj_to_dev(kobj);
2299 	const void *ns = NULL;
2300 
2301 	if (dev->class && dev->class->ns_type)
2302 		ns = dev->class->namespace(dev);
2303 
2304 	return ns;
2305 }
2306 
2307 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2308 {
2309 	const struct device *dev = kobj_to_dev(kobj);
2310 
2311 	if (dev->class && dev->class->get_ownership)
2312 		dev->class->get_ownership(dev, uid, gid);
2313 }
2314 
2315 static struct kobj_type device_ktype = {
2316 	.release	= device_release,
2317 	.sysfs_ops	= &dev_sysfs_ops,
2318 	.namespace	= device_namespace,
2319 	.get_ownership	= device_get_ownership,
2320 };
2321 
2322 
2323 static int dev_uevent_filter(const struct kobject *kobj)
2324 {
2325 	const struct kobj_type *ktype = get_ktype(kobj);
2326 
2327 	if (ktype == &device_ktype) {
2328 		const struct device *dev = kobj_to_dev(kobj);
2329 		if (dev->bus)
2330 			return 1;
2331 		if (dev->class)
2332 			return 1;
2333 	}
2334 	return 0;
2335 }
2336 
2337 static const char *dev_uevent_name(const struct kobject *kobj)
2338 {
2339 	const struct device *dev = kobj_to_dev(kobj);
2340 
2341 	if (dev->bus)
2342 		return dev->bus->name;
2343 	if (dev->class)
2344 		return dev->class->name;
2345 	return NULL;
2346 }
2347 
2348 static int dev_uevent(struct kobject *kobj, struct kobj_uevent_env *env)
2349 {
2350 	struct device *dev = kobj_to_dev(kobj);
2351 	int retval = 0;
2352 
2353 	/* add device node properties if present */
2354 	if (MAJOR(dev->devt)) {
2355 		const char *tmp;
2356 		const char *name;
2357 		umode_t mode = 0;
2358 		kuid_t uid = GLOBAL_ROOT_UID;
2359 		kgid_t gid = GLOBAL_ROOT_GID;
2360 
2361 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2362 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2363 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2364 		if (name) {
2365 			add_uevent_var(env, "DEVNAME=%s", name);
2366 			if (mode)
2367 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2368 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
2369 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2370 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
2371 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2372 			kfree(tmp);
2373 		}
2374 	}
2375 
2376 	if (dev->type && dev->type->name)
2377 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2378 
2379 	if (dev->driver)
2380 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2381 
2382 	/* Add common DT information about the device */
2383 	of_device_uevent(dev, env);
2384 
2385 	/* have the bus specific function add its stuff */
2386 	if (dev->bus && dev->bus->uevent) {
2387 		retval = dev->bus->uevent(dev, env);
2388 		if (retval)
2389 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2390 				 dev_name(dev), __func__, retval);
2391 	}
2392 
2393 	/* have the class specific function add its stuff */
2394 	if (dev->class && dev->class->dev_uevent) {
2395 		retval = dev->class->dev_uevent(dev, env);
2396 		if (retval)
2397 			pr_debug("device: '%s': %s: class uevent() "
2398 				 "returned %d\n", dev_name(dev),
2399 				 __func__, retval);
2400 	}
2401 
2402 	/* have the device type specific function add its stuff */
2403 	if (dev->type && dev->type->uevent) {
2404 		retval = dev->type->uevent(dev, env);
2405 		if (retval)
2406 			pr_debug("device: '%s': %s: dev_type uevent() "
2407 				 "returned %d\n", dev_name(dev),
2408 				 __func__, retval);
2409 	}
2410 
2411 	return retval;
2412 }
2413 
2414 static const struct kset_uevent_ops device_uevent_ops = {
2415 	.filter =	dev_uevent_filter,
2416 	.name =		dev_uevent_name,
2417 	.uevent =	dev_uevent,
2418 };
2419 
2420 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2421 			   char *buf)
2422 {
2423 	struct kobject *top_kobj;
2424 	struct kset *kset;
2425 	struct kobj_uevent_env *env = NULL;
2426 	int i;
2427 	int len = 0;
2428 	int retval;
2429 
2430 	/* search the kset, the device belongs to */
2431 	top_kobj = &dev->kobj;
2432 	while (!top_kobj->kset && top_kobj->parent)
2433 		top_kobj = top_kobj->parent;
2434 	if (!top_kobj->kset)
2435 		goto out;
2436 
2437 	kset = top_kobj->kset;
2438 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2439 		goto out;
2440 
2441 	/* respect filter */
2442 	if (kset->uevent_ops && kset->uevent_ops->filter)
2443 		if (!kset->uevent_ops->filter(&dev->kobj))
2444 			goto out;
2445 
2446 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2447 	if (!env)
2448 		return -ENOMEM;
2449 
2450 	/* let the kset specific function add its keys */
2451 	retval = kset->uevent_ops->uevent(&dev->kobj, env);
2452 	if (retval)
2453 		goto out;
2454 
2455 	/* copy keys to file */
2456 	for (i = 0; i < env->envp_idx; i++)
2457 		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2458 out:
2459 	kfree(env);
2460 	return len;
2461 }
2462 
2463 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2464 			    const char *buf, size_t count)
2465 {
2466 	int rc;
2467 
2468 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
2469 
2470 	if (rc) {
2471 		dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc);
2472 		return rc;
2473 	}
2474 
2475 	return count;
2476 }
2477 static DEVICE_ATTR_RW(uevent);
2478 
2479 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2480 			   char *buf)
2481 {
2482 	bool val;
2483 
2484 	device_lock(dev);
2485 	val = !dev->offline;
2486 	device_unlock(dev);
2487 	return sysfs_emit(buf, "%u\n", val);
2488 }
2489 
2490 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2491 			    const char *buf, size_t count)
2492 {
2493 	bool val;
2494 	int ret;
2495 
2496 	ret = kstrtobool(buf, &val);
2497 	if (ret < 0)
2498 		return ret;
2499 
2500 	ret = lock_device_hotplug_sysfs();
2501 	if (ret)
2502 		return ret;
2503 
2504 	ret = val ? device_online(dev) : device_offline(dev);
2505 	unlock_device_hotplug();
2506 	return ret < 0 ? ret : count;
2507 }
2508 static DEVICE_ATTR_RW(online);
2509 
2510 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2511 			      char *buf)
2512 {
2513 	const char *loc;
2514 
2515 	switch (dev->removable) {
2516 	case DEVICE_REMOVABLE:
2517 		loc = "removable";
2518 		break;
2519 	case DEVICE_FIXED:
2520 		loc = "fixed";
2521 		break;
2522 	default:
2523 		loc = "unknown";
2524 	}
2525 	return sysfs_emit(buf, "%s\n", loc);
2526 }
2527 static DEVICE_ATTR_RO(removable);
2528 
2529 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2530 {
2531 	return sysfs_create_groups(&dev->kobj, groups);
2532 }
2533 EXPORT_SYMBOL_GPL(device_add_groups);
2534 
2535 void device_remove_groups(struct device *dev,
2536 			  const struct attribute_group **groups)
2537 {
2538 	sysfs_remove_groups(&dev->kobj, groups);
2539 }
2540 EXPORT_SYMBOL_GPL(device_remove_groups);
2541 
2542 union device_attr_group_devres {
2543 	const struct attribute_group *group;
2544 	const struct attribute_group **groups;
2545 };
2546 
2547 static void devm_attr_group_remove(struct device *dev, void *res)
2548 {
2549 	union device_attr_group_devres *devres = res;
2550 	const struct attribute_group *group = devres->group;
2551 
2552 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2553 	sysfs_remove_group(&dev->kobj, group);
2554 }
2555 
2556 static void devm_attr_groups_remove(struct device *dev, void *res)
2557 {
2558 	union device_attr_group_devres *devres = res;
2559 	const struct attribute_group **groups = devres->groups;
2560 
2561 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2562 	sysfs_remove_groups(&dev->kobj, groups);
2563 }
2564 
2565 /**
2566  * devm_device_add_group - given a device, create a managed attribute group
2567  * @dev:	The device to create the group for
2568  * @grp:	The attribute group to create
2569  *
2570  * This function creates a group for the first time.  It will explicitly
2571  * warn and error if any of the attribute files being created already exist.
2572  *
2573  * Returns 0 on success or error code on failure.
2574  */
2575 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2576 {
2577 	union device_attr_group_devres *devres;
2578 	int error;
2579 
2580 	devres = devres_alloc(devm_attr_group_remove,
2581 			      sizeof(*devres), GFP_KERNEL);
2582 	if (!devres)
2583 		return -ENOMEM;
2584 
2585 	error = sysfs_create_group(&dev->kobj, grp);
2586 	if (error) {
2587 		devres_free(devres);
2588 		return error;
2589 	}
2590 
2591 	devres->group = grp;
2592 	devres_add(dev, devres);
2593 	return 0;
2594 }
2595 EXPORT_SYMBOL_GPL(devm_device_add_group);
2596 
2597 /**
2598  * devm_device_add_groups - create a bunch of managed attribute groups
2599  * @dev:	The device to create the group for
2600  * @groups:	The attribute groups to create, NULL terminated
2601  *
2602  * This function creates a bunch of managed attribute groups.  If an error
2603  * occurs when creating a group, all previously created groups will be
2604  * removed, unwinding everything back to the original state when this
2605  * function was called.  It will explicitly warn and error if any of the
2606  * attribute files being created already exist.
2607  *
2608  * Returns 0 on success or error code from sysfs_create_group on failure.
2609  */
2610 int devm_device_add_groups(struct device *dev,
2611 			   const struct attribute_group **groups)
2612 {
2613 	union device_attr_group_devres *devres;
2614 	int error;
2615 
2616 	devres = devres_alloc(devm_attr_groups_remove,
2617 			      sizeof(*devres), GFP_KERNEL);
2618 	if (!devres)
2619 		return -ENOMEM;
2620 
2621 	error = sysfs_create_groups(&dev->kobj, groups);
2622 	if (error) {
2623 		devres_free(devres);
2624 		return error;
2625 	}
2626 
2627 	devres->groups = groups;
2628 	devres_add(dev, devres);
2629 	return 0;
2630 }
2631 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2632 
2633 static int device_add_attrs(struct device *dev)
2634 {
2635 	struct class *class = dev->class;
2636 	const struct device_type *type = dev->type;
2637 	int error;
2638 
2639 	if (class) {
2640 		error = device_add_groups(dev, class->dev_groups);
2641 		if (error)
2642 			return error;
2643 	}
2644 
2645 	if (type) {
2646 		error = device_add_groups(dev, type->groups);
2647 		if (error)
2648 			goto err_remove_class_groups;
2649 	}
2650 
2651 	error = device_add_groups(dev, dev->groups);
2652 	if (error)
2653 		goto err_remove_type_groups;
2654 
2655 	if (device_supports_offline(dev) && !dev->offline_disabled) {
2656 		error = device_create_file(dev, &dev_attr_online);
2657 		if (error)
2658 			goto err_remove_dev_groups;
2659 	}
2660 
2661 	if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2662 		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2663 		if (error)
2664 			goto err_remove_dev_online;
2665 	}
2666 
2667 	if (dev_removable_is_valid(dev)) {
2668 		error = device_create_file(dev, &dev_attr_removable);
2669 		if (error)
2670 			goto err_remove_dev_waiting_for_supplier;
2671 	}
2672 
2673 	if (dev_add_physical_location(dev)) {
2674 		error = device_add_group(dev,
2675 			&dev_attr_physical_location_group);
2676 		if (error)
2677 			goto err_remove_dev_removable;
2678 	}
2679 
2680 	return 0;
2681 
2682  err_remove_dev_removable:
2683 	device_remove_file(dev, &dev_attr_removable);
2684  err_remove_dev_waiting_for_supplier:
2685 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2686  err_remove_dev_online:
2687 	device_remove_file(dev, &dev_attr_online);
2688  err_remove_dev_groups:
2689 	device_remove_groups(dev, dev->groups);
2690  err_remove_type_groups:
2691 	if (type)
2692 		device_remove_groups(dev, type->groups);
2693  err_remove_class_groups:
2694 	if (class)
2695 		device_remove_groups(dev, class->dev_groups);
2696 
2697 	return error;
2698 }
2699 
2700 static void device_remove_attrs(struct device *dev)
2701 {
2702 	struct class *class = dev->class;
2703 	const struct device_type *type = dev->type;
2704 
2705 	if (dev->physical_location) {
2706 		device_remove_group(dev, &dev_attr_physical_location_group);
2707 		kfree(dev->physical_location);
2708 	}
2709 
2710 	device_remove_file(dev, &dev_attr_removable);
2711 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2712 	device_remove_file(dev, &dev_attr_online);
2713 	device_remove_groups(dev, dev->groups);
2714 
2715 	if (type)
2716 		device_remove_groups(dev, type->groups);
2717 
2718 	if (class)
2719 		device_remove_groups(dev, class->dev_groups);
2720 }
2721 
2722 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2723 			char *buf)
2724 {
2725 	return print_dev_t(buf, dev->devt);
2726 }
2727 static DEVICE_ATTR_RO(dev);
2728 
2729 /* /sys/devices/ */
2730 struct kset *devices_kset;
2731 
2732 /**
2733  * devices_kset_move_before - Move device in the devices_kset's list.
2734  * @deva: Device to move.
2735  * @devb: Device @deva should come before.
2736  */
2737 static void devices_kset_move_before(struct device *deva, struct device *devb)
2738 {
2739 	if (!devices_kset)
2740 		return;
2741 	pr_debug("devices_kset: Moving %s before %s\n",
2742 		 dev_name(deva), dev_name(devb));
2743 	spin_lock(&devices_kset->list_lock);
2744 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2745 	spin_unlock(&devices_kset->list_lock);
2746 }
2747 
2748 /**
2749  * devices_kset_move_after - Move device in the devices_kset's list.
2750  * @deva: Device to move
2751  * @devb: Device @deva should come after.
2752  */
2753 static void devices_kset_move_after(struct device *deva, struct device *devb)
2754 {
2755 	if (!devices_kset)
2756 		return;
2757 	pr_debug("devices_kset: Moving %s after %s\n",
2758 		 dev_name(deva), dev_name(devb));
2759 	spin_lock(&devices_kset->list_lock);
2760 	list_move(&deva->kobj.entry, &devb->kobj.entry);
2761 	spin_unlock(&devices_kset->list_lock);
2762 }
2763 
2764 /**
2765  * devices_kset_move_last - move the device to the end of devices_kset's list.
2766  * @dev: device to move
2767  */
2768 void devices_kset_move_last(struct device *dev)
2769 {
2770 	if (!devices_kset)
2771 		return;
2772 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2773 	spin_lock(&devices_kset->list_lock);
2774 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
2775 	spin_unlock(&devices_kset->list_lock);
2776 }
2777 
2778 /**
2779  * device_create_file - create sysfs attribute file for device.
2780  * @dev: device.
2781  * @attr: device attribute descriptor.
2782  */
2783 int device_create_file(struct device *dev,
2784 		       const struct device_attribute *attr)
2785 {
2786 	int error = 0;
2787 
2788 	if (dev) {
2789 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2790 			"Attribute %s: write permission without 'store'\n",
2791 			attr->attr.name);
2792 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2793 			"Attribute %s: read permission without 'show'\n",
2794 			attr->attr.name);
2795 		error = sysfs_create_file(&dev->kobj, &attr->attr);
2796 	}
2797 
2798 	return error;
2799 }
2800 EXPORT_SYMBOL_GPL(device_create_file);
2801 
2802 /**
2803  * device_remove_file - remove sysfs attribute file.
2804  * @dev: device.
2805  * @attr: device attribute descriptor.
2806  */
2807 void device_remove_file(struct device *dev,
2808 			const struct device_attribute *attr)
2809 {
2810 	if (dev)
2811 		sysfs_remove_file(&dev->kobj, &attr->attr);
2812 }
2813 EXPORT_SYMBOL_GPL(device_remove_file);
2814 
2815 /**
2816  * device_remove_file_self - remove sysfs attribute file from its own method.
2817  * @dev: device.
2818  * @attr: device attribute descriptor.
2819  *
2820  * See kernfs_remove_self() for details.
2821  */
2822 bool device_remove_file_self(struct device *dev,
2823 			     const struct device_attribute *attr)
2824 {
2825 	if (dev)
2826 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2827 	else
2828 		return false;
2829 }
2830 EXPORT_SYMBOL_GPL(device_remove_file_self);
2831 
2832 /**
2833  * device_create_bin_file - create sysfs binary attribute file for device.
2834  * @dev: device.
2835  * @attr: device binary attribute descriptor.
2836  */
2837 int device_create_bin_file(struct device *dev,
2838 			   const struct bin_attribute *attr)
2839 {
2840 	int error = -EINVAL;
2841 	if (dev)
2842 		error = sysfs_create_bin_file(&dev->kobj, attr);
2843 	return error;
2844 }
2845 EXPORT_SYMBOL_GPL(device_create_bin_file);
2846 
2847 /**
2848  * device_remove_bin_file - remove sysfs binary attribute file
2849  * @dev: device.
2850  * @attr: device binary attribute descriptor.
2851  */
2852 void device_remove_bin_file(struct device *dev,
2853 			    const struct bin_attribute *attr)
2854 {
2855 	if (dev)
2856 		sysfs_remove_bin_file(&dev->kobj, attr);
2857 }
2858 EXPORT_SYMBOL_GPL(device_remove_bin_file);
2859 
2860 static void klist_children_get(struct klist_node *n)
2861 {
2862 	struct device_private *p = to_device_private_parent(n);
2863 	struct device *dev = p->device;
2864 
2865 	get_device(dev);
2866 }
2867 
2868 static void klist_children_put(struct klist_node *n)
2869 {
2870 	struct device_private *p = to_device_private_parent(n);
2871 	struct device *dev = p->device;
2872 
2873 	put_device(dev);
2874 }
2875 
2876 /**
2877  * device_initialize - init device structure.
2878  * @dev: device.
2879  *
2880  * This prepares the device for use by other layers by initializing
2881  * its fields.
2882  * It is the first half of device_register(), if called by
2883  * that function, though it can also be called separately, so one
2884  * may use @dev's fields. In particular, get_device()/put_device()
2885  * may be used for reference counting of @dev after calling this
2886  * function.
2887  *
2888  * All fields in @dev must be initialized by the caller to 0, except
2889  * for those explicitly set to some other value.  The simplest
2890  * approach is to use kzalloc() to allocate the structure containing
2891  * @dev.
2892  *
2893  * NOTE: Use put_device() to give up your reference instead of freeing
2894  * @dev directly once you have called this function.
2895  */
2896 void device_initialize(struct device *dev)
2897 {
2898 	dev->kobj.kset = devices_kset;
2899 	kobject_init(&dev->kobj, &device_ktype);
2900 	INIT_LIST_HEAD(&dev->dma_pools);
2901 	mutex_init(&dev->mutex);
2902 	lockdep_set_novalidate_class(&dev->mutex);
2903 	spin_lock_init(&dev->devres_lock);
2904 	INIT_LIST_HEAD(&dev->devres_head);
2905 	device_pm_init(dev);
2906 	set_dev_node(dev, NUMA_NO_NODE);
2907 	INIT_LIST_HEAD(&dev->links.consumers);
2908 	INIT_LIST_HEAD(&dev->links.suppliers);
2909 	INIT_LIST_HEAD(&dev->links.defer_sync);
2910 	dev->links.status = DL_DEV_NO_DRIVER;
2911 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
2912     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
2913     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
2914 	dev->dma_coherent = dma_default_coherent;
2915 #endif
2916 #ifdef CONFIG_SWIOTLB
2917 	dev->dma_io_tlb_mem = &io_tlb_default_mem;
2918 #endif
2919 }
2920 EXPORT_SYMBOL_GPL(device_initialize);
2921 
2922 struct kobject *virtual_device_parent(struct device *dev)
2923 {
2924 	static struct kobject *virtual_dir = NULL;
2925 
2926 	if (!virtual_dir)
2927 		virtual_dir = kobject_create_and_add("virtual",
2928 						     &devices_kset->kobj);
2929 
2930 	return virtual_dir;
2931 }
2932 
2933 struct class_dir {
2934 	struct kobject kobj;
2935 	struct class *class;
2936 };
2937 
2938 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2939 
2940 static void class_dir_release(struct kobject *kobj)
2941 {
2942 	struct class_dir *dir = to_class_dir(kobj);
2943 	kfree(dir);
2944 }
2945 
2946 static const
2947 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj)
2948 {
2949 	const struct class_dir *dir = to_class_dir(kobj);
2950 	return dir->class->ns_type;
2951 }
2952 
2953 static struct kobj_type class_dir_ktype = {
2954 	.release	= class_dir_release,
2955 	.sysfs_ops	= &kobj_sysfs_ops,
2956 	.child_ns_type	= class_dir_child_ns_type
2957 };
2958 
2959 static struct kobject *
2960 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2961 {
2962 	struct class_dir *dir;
2963 	int retval;
2964 
2965 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2966 	if (!dir)
2967 		return ERR_PTR(-ENOMEM);
2968 
2969 	dir->class = class;
2970 	kobject_init(&dir->kobj, &class_dir_ktype);
2971 
2972 	dir->kobj.kset = &class->p->glue_dirs;
2973 
2974 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2975 	if (retval < 0) {
2976 		kobject_put(&dir->kobj);
2977 		return ERR_PTR(retval);
2978 	}
2979 	return &dir->kobj;
2980 }
2981 
2982 static DEFINE_MUTEX(gdp_mutex);
2983 
2984 static struct kobject *get_device_parent(struct device *dev,
2985 					 struct device *parent)
2986 {
2987 	if (dev->class) {
2988 		struct kobject *kobj = NULL;
2989 		struct kobject *parent_kobj;
2990 		struct kobject *k;
2991 
2992 #ifdef CONFIG_BLOCK
2993 		/* block disks show up in /sys/block */
2994 		if (sysfs_deprecated && dev->class == &block_class) {
2995 			if (parent && parent->class == &block_class)
2996 				return &parent->kobj;
2997 			return &block_class.p->subsys.kobj;
2998 		}
2999 #endif
3000 
3001 		/*
3002 		 * If we have no parent, we live in "virtual".
3003 		 * Class-devices with a non class-device as parent, live
3004 		 * in a "glue" directory to prevent namespace collisions.
3005 		 */
3006 		if (parent == NULL)
3007 			parent_kobj = virtual_device_parent(dev);
3008 		else if (parent->class && !dev->class->ns_type)
3009 			return &parent->kobj;
3010 		else
3011 			parent_kobj = &parent->kobj;
3012 
3013 		mutex_lock(&gdp_mutex);
3014 
3015 		/* find our class-directory at the parent and reference it */
3016 		spin_lock(&dev->class->p->glue_dirs.list_lock);
3017 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
3018 			if (k->parent == parent_kobj) {
3019 				kobj = kobject_get(k);
3020 				break;
3021 			}
3022 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
3023 		if (kobj) {
3024 			mutex_unlock(&gdp_mutex);
3025 			return kobj;
3026 		}
3027 
3028 		/* or create a new class-directory at the parent device */
3029 		k = class_dir_create_and_add(dev->class, parent_kobj);
3030 		/* do not emit an uevent for this simple "glue" directory */
3031 		mutex_unlock(&gdp_mutex);
3032 		return k;
3033 	}
3034 
3035 	/* subsystems can specify a default root directory for their devices */
3036 	if (!parent && dev->bus && dev->bus->dev_root)
3037 		return &dev->bus->dev_root->kobj;
3038 
3039 	if (parent)
3040 		return &parent->kobj;
3041 	return NULL;
3042 }
3043 
3044 static inline bool live_in_glue_dir(struct kobject *kobj,
3045 				    struct device *dev)
3046 {
3047 	if (!kobj || !dev->class ||
3048 	    kobj->kset != &dev->class->p->glue_dirs)
3049 		return false;
3050 	return true;
3051 }
3052 
3053 static inline struct kobject *get_glue_dir(struct device *dev)
3054 {
3055 	return dev->kobj.parent;
3056 }
3057 
3058 /**
3059  * kobject_has_children - Returns whether a kobject has children.
3060  * @kobj: the object to test
3061  *
3062  * This will return whether a kobject has other kobjects as children.
3063  *
3064  * It does NOT account for the presence of attribute files, only sub
3065  * directories. It also assumes there is no concurrent addition or
3066  * removal of such children, and thus relies on external locking.
3067  */
3068 static inline bool kobject_has_children(struct kobject *kobj)
3069 {
3070 	WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
3071 
3072 	return kobj->sd && kobj->sd->dir.subdirs;
3073 }
3074 
3075 /*
3076  * make sure cleaning up dir as the last step, we need to make
3077  * sure .release handler of kobject is run with holding the
3078  * global lock
3079  */
3080 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3081 {
3082 	unsigned int ref;
3083 
3084 	/* see if we live in a "glue" directory */
3085 	if (!live_in_glue_dir(glue_dir, dev))
3086 		return;
3087 
3088 	mutex_lock(&gdp_mutex);
3089 	/**
3090 	 * There is a race condition between removing glue directory
3091 	 * and adding a new device under the glue directory.
3092 	 *
3093 	 * CPU1:                                         CPU2:
3094 	 *
3095 	 * device_add()
3096 	 *   get_device_parent()
3097 	 *     class_dir_create_and_add()
3098 	 *       kobject_add_internal()
3099 	 *         create_dir()    // create glue_dir
3100 	 *
3101 	 *                                               device_add()
3102 	 *                                                 get_device_parent()
3103 	 *                                                   kobject_get() // get glue_dir
3104 	 *
3105 	 * device_del()
3106 	 *   cleanup_glue_dir()
3107 	 *     kobject_del(glue_dir)
3108 	 *
3109 	 *                                               kobject_add()
3110 	 *                                                 kobject_add_internal()
3111 	 *                                                   create_dir() // in glue_dir
3112 	 *                                                     sysfs_create_dir_ns()
3113 	 *                                                       kernfs_create_dir_ns(sd)
3114 	 *
3115 	 *       sysfs_remove_dir() // glue_dir->sd=NULL
3116 	 *       sysfs_put()        // free glue_dir->sd
3117 	 *
3118 	 *                                                         // sd is freed
3119 	 *                                                         kernfs_new_node(sd)
3120 	 *                                                           kernfs_get(glue_dir)
3121 	 *                                                           kernfs_add_one()
3122 	 *                                                           kernfs_put()
3123 	 *
3124 	 * Before CPU1 remove last child device under glue dir, if CPU2 add
3125 	 * a new device under glue dir, the glue_dir kobject reference count
3126 	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3127 	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3128 	 * and sysfs_put(). This result in glue_dir->sd is freed.
3129 	 *
3130 	 * Then the CPU2 will see a stale "empty" but still potentially used
3131 	 * glue dir around in kernfs_new_node().
3132 	 *
3133 	 * In order to avoid this happening, we also should make sure that
3134 	 * kernfs_node for glue_dir is released in CPU1 only when refcount
3135 	 * for glue_dir kobj is 1.
3136 	 */
3137 	ref = kref_read(&glue_dir->kref);
3138 	if (!kobject_has_children(glue_dir) && !--ref)
3139 		kobject_del(glue_dir);
3140 	kobject_put(glue_dir);
3141 	mutex_unlock(&gdp_mutex);
3142 }
3143 
3144 static int device_add_class_symlinks(struct device *dev)
3145 {
3146 	struct device_node *of_node = dev_of_node(dev);
3147 	int error;
3148 
3149 	if (of_node) {
3150 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3151 		if (error)
3152 			dev_warn(dev, "Error %d creating of_node link\n",error);
3153 		/* An error here doesn't warrant bringing down the device */
3154 	}
3155 
3156 	if (!dev->class)
3157 		return 0;
3158 
3159 	error = sysfs_create_link(&dev->kobj,
3160 				  &dev->class->p->subsys.kobj,
3161 				  "subsystem");
3162 	if (error)
3163 		goto out_devnode;
3164 
3165 	if (dev->parent && device_is_not_partition(dev)) {
3166 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3167 					  "device");
3168 		if (error)
3169 			goto out_subsys;
3170 	}
3171 
3172 #ifdef CONFIG_BLOCK
3173 	/* /sys/block has directories and does not need symlinks */
3174 	if (sysfs_deprecated && dev->class == &block_class)
3175 		return 0;
3176 #endif
3177 
3178 	/* link in the class directory pointing to the device */
3179 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
3180 				  &dev->kobj, dev_name(dev));
3181 	if (error)
3182 		goto out_device;
3183 
3184 	return 0;
3185 
3186 out_device:
3187 	sysfs_remove_link(&dev->kobj, "device");
3188 
3189 out_subsys:
3190 	sysfs_remove_link(&dev->kobj, "subsystem");
3191 out_devnode:
3192 	sysfs_remove_link(&dev->kobj, "of_node");
3193 	return error;
3194 }
3195 
3196 static void device_remove_class_symlinks(struct device *dev)
3197 {
3198 	if (dev_of_node(dev))
3199 		sysfs_remove_link(&dev->kobj, "of_node");
3200 
3201 	if (!dev->class)
3202 		return;
3203 
3204 	if (dev->parent && device_is_not_partition(dev))
3205 		sysfs_remove_link(&dev->kobj, "device");
3206 	sysfs_remove_link(&dev->kobj, "subsystem");
3207 #ifdef CONFIG_BLOCK
3208 	if (sysfs_deprecated && dev->class == &block_class)
3209 		return;
3210 #endif
3211 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
3212 }
3213 
3214 /**
3215  * dev_set_name - set a device name
3216  * @dev: device
3217  * @fmt: format string for the device's name
3218  */
3219 int dev_set_name(struct device *dev, const char *fmt, ...)
3220 {
3221 	va_list vargs;
3222 	int err;
3223 
3224 	va_start(vargs, fmt);
3225 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3226 	va_end(vargs);
3227 	return err;
3228 }
3229 EXPORT_SYMBOL_GPL(dev_set_name);
3230 
3231 /**
3232  * device_to_dev_kobj - select a /sys/dev/ directory for the device
3233  * @dev: device
3234  *
3235  * By default we select char/ for new entries.  Setting class->dev_obj
3236  * to NULL prevents an entry from being created.  class->dev_kobj must
3237  * be set (or cleared) before any devices are registered to the class
3238  * otherwise device_create_sys_dev_entry() and
3239  * device_remove_sys_dev_entry() will disagree about the presence of
3240  * the link.
3241  */
3242 static struct kobject *device_to_dev_kobj(struct device *dev)
3243 {
3244 	struct kobject *kobj;
3245 
3246 	if (dev->class)
3247 		kobj = dev->class->dev_kobj;
3248 	else
3249 		kobj = sysfs_dev_char_kobj;
3250 
3251 	return kobj;
3252 }
3253 
3254 static int device_create_sys_dev_entry(struct device *dev)
3255 {
3256 	struct kobject *kobj = device_to_dev_kobj(dev);
3257 	int error = 0;
3258 	char devt_str[15];
3259 
3260 	if (kobj) {
3261 		format_dev_t(devt_str, dev->devt);
3262 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3263 	}
3264 
3265 	return error;
3266 }
3267 
3268 static void device_remove_sys_dev_entry(struct device *dev)
3269 {
3270 	struct kobject *kobj = device_to_dev_kobj(dev);
3271 	char devt_str[15];
3272 
3273 	if (kobj) {
3274 		format_dev_t(devt_str, dev->devt);
3275 		sysfs_remove_link(kobj, devt_str);
3276 	}
3277 }
3278 
3279 static int device_private_init(struct device *dev)
3280 {
3281 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3282 	if (!dev->p)
3283 		return -ENOMEM;
3284 	dev->p->device = dev;
3285 	klist_init(&dev->p->klist_children, klist_children_get,
3286 		   klist_children_put);
3287 	INIT_LIST_HEAD(&dev->p->deferred_probe);
3288 	return 0;
3289 }
3290 
3291 /**
3292  * device_add - add device to device hierarchy.
3293  * @dev: device.
3294  *
3295  * This is part 2 of device_register(), though may be called
3296  * separately _iff_ device_initialize() has been called separately.
3297  *
3298  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3299  * to the global and sibling lists for the device, then
3300  * adds it to the other relevant subsystems of the driver model.
3301  *
3302  * Do not call this routine or device_register() more than once for
3303  * any device structure.  The driver model core is not designed to work
3304  * with devices that get unregistered and then spring back to life.
3305  * (Among other things, it's very hard to guarantee that all references
3306  * to the previous incarnation of @dev have been dropped.)  Allocate
3307  * and register a fresh new struct device instead.
3308  *
3309  * NOTE: _Never_ directly free @dev after calling this function, even
3310  * if it returned an error! Always use put_device() to give up your
3311  * reference instead.
3312  *
3313  * Rule of thumb is: if device_add() succeeds, you should call
3314  * device_del() when you want to get rid of it. If device_add() has
3315  * *not* succeeded, use *only* put_device() to drop the reference
3316  * count.
3317  */
3318 int device_add(struct device *dev)
3319 {
3320 	struct device *parent;
3321 	struct kobject *kobj;
3322 	struct class_interface *class_intf;
3323 	int error = -EINVAL;
3324 	struct kobject *glue_dir = NULL;
3325 
3326 	dev = get_device(dev);
3327 	if (!dev)
3328 		goto done;
3329 
3330 	if (!dev->p) {
3331 		error = device_private_init(dev);
3332 		if (error)
3333 			goto done;
3334 	}
3335 
3336 	/*
3337 	 * for statically allocated devices, which should all be converted
3338 	 * some day, we need to initialize the name. We prevent reading back
3339 	 * the name, and force the use of dev_name()
3340 	 */
3341 	if (dev->init_name) {
3342 		dev_set_name(dev, "%s", dev->init_name);
3343 		dev->init_name = NULL;
3344 	}
3345 
3346 	/* subsystems can specify simple device enumeration */
3347 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
3348 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3349 
3350 	if (!dev_name(dev)) {
3351 		error = -EINVAL;
3352 		goto name_error;
3353 	}
3354 
3355 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3356 
3357 	parent = get_device(dev->parent);
3358 	kobj = get_device_parent(dev, parent);
3359 	if (IS_ERR(kobj)) {
3360 		error = PTR_ERR(kobj);
3361 		goto parent_error;
3362 	}
3363 	if (kobj)
3364 		dev->kobj.parent = kobj;
3365 
3366 	/* use parent numa_node */
3367 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3368 		set_dev_node(dev, dev_to_node(parent));
3369 
3370 	/* first, register with generic layer. */
3371 	/* we require the name to be set before, and pass NULL */
3372 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3373 	if (error) {
3374 		glue_dir = get_glue_dir(dev);
3375 		goto Error;
3376 	}
3377 
3378 	/* notify platform of device entry */
3379 	device_platform_notify(dev);
3380 
3381 	error = device_create_file(dev, &dev_attr_uevent);
3382 	if (error)
3383 		goto attrError;
3384 
3385 	error = device_add_class_symlinks(dev);
3386 	if (error)
3387 		goto SymlinkError;
3388 	error = device_add_attrs(dev);
3389 	if (error)
3390 		goto AttrsError;
3391 	error = bus_add_device(dev);
3392 	if (error)
3393 		goto BusError;
3394 	error = dpm_sysfs_add(dev);
3395 	if (error)
3396 		goto DPMError;
3397 	device_pm_add(dev);
3398 
3399 	if (MAJOR(dev->devt)) {
3400 		error = device_create_file(dev, &dev_attr_dev);
3401 		if (error)
3402 			goto DevAttrError;
3403 
3404 		error = device_create_sys_dev_entry(dev);
3405 		if (error)
3406 			goto SysEntryError;
3407 
3408 		devtmpfs_create_node(dev);
3409 	}
3410 
3411 	/* Notify clients of device addition.  This call must come
3412 	 * after dpm_sysfs_add() and before kobject_uevent().
3413 	 */
3414 	if (dev->bus)
3415 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3416 					     BUS_NOTIFY_ADD_DEVICE, dev);
3417 
3418 	kobject_uevent(&dev->kobj, KOBJ_ADD);
3419 
3420 	/*
3421 	 * Check if any of the other devices (consumers) have been waiting for
3422 	 * this device (supplier) to be added so that they can create a device
3423 	 * link to it.
3424 	 *
3425 	 * This needs to happen after device_pm_add() because device_link_add()
3426 	 * requires the supplier be registered before it's called.
3427 	 *
3428 	 * But this also needs to happen before bus_probe_device() to make sure
3429 	 * waiting consumers can link to it before the driver is bound to the
3430 	 * device and the driver sync_state callback is called for this device.
3431 	 */
3432 	if (dev->fwnode && !dev->fwnode->dev) {
3433 		dev->fwnode->dev = dev;
3434 		fw_devlink_link_device(dev);
3435 	}
3436 
3437 	bus_probe_device(dev);
3438 
3439 	/*
3440 	 * If all driver registration is done and a newly added device doesn't
3441 	 * match with any driver, don't block its consumers from probing in
3442 	 * case the consumer device is able to operate without this supplier.
3443 	 */
3444 	if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3445 		fw_devlink_unblock_consumers(dev);
3446 
3447 	if (parent)
3448 		klist_add_tail(&dev->p->knode_parent,
3449 			       &parent->p->klist_children);
3450 
3451 	if (dev->class) {
3452 		mutex_lock(&dev->class->p->mutex);
3453 		/* tie the class to the device */
3454 		klist_add_tail(&dev->p->knode_class,
3455 			       &dev->class->p->klist_devices);
3456 
3457 		/* notify any interfaces that the device is here */
3458 		list_for_each_entry(class_intf,
3459 				    &dev->class->p->interfaces, node)
3460 			if (class_intf->add_dev)
3461 				class_intf->add_dev(dev, class_intf);
3462 		mutex_unlock(&dev->class->p->mutex);
3463 	}
3464 done:
3465 	put_device(dev);
3466 	return error;
3467  SysEntryError:
3468 	if (MAJOR(dev->devt))
3469 		device_remove_file(dev, &dev_attr_dev);
3470  DevAttrError:
3471 	device_pm_remove(dev);
3472 	dpm_sysfs_remove(dev);
3473  DPMError:
3474 	bus_remove_device(dev);
3475  BusError:
3476 	device_remove_attrs(dev);
3477  AttrsError:
3478 	device_remove_class_symlinks(dev);
3479  SymlinkError:
3480 	device_remove_file(dev, &dev_attr_uevent);
3481  attrError:
3482 	device_platform_notify_remove(dev);
3483 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3484 	glue_dir = get_glue_dir(dev);
3485 	kobject_del(&dev->kobj);
3486  Error:
3487 	cleanup_glue_dir(dev, glue_dir);
3488 parent_error:
3489 	put_device(parent);
3490 name_error:
3491 	kfree(dev->p);
3492 	dev->p = NULL;
3493 	goto done;
3494 }
3495 EXPORT_SYMBOL_GPL(device_add);
3496 
3497 /**
3498  * device_register - register a device with the system.
3499  * @dev: pointer to the device structure
3500  *
3501  * This happens in two clean steps - initialize the device
3502  * and add it to the system. The two steps can be called
3503  * separately, but this is the easiest and most common.
3504  * I.e. you should only call the two helpers separately if
3505  * have a clearly defined need to use and refcount the device
3506  * before it is added to the hierarchy.
3507  *
3508  * For more information, see the kerneldoc for device_initialize()
3509  * and device_add().
3510  *
3511  * NOTE: _Never_ directly free @dev after calling this function, even
3512  * if it returned an error! Always use put_device() to give up the
3513  * reference initialized in this function instead.
3514  */
3515 int device_register(struct device *dev)
3516 {
3517 	device_initialize(dev);
3518 	return device_add(dev);
3519 }
3520 EXPORT_SYMBOL_GPL(device_register);
3521 
3522 /**
3523  * get_device - increment reference count for device.
3524  * @dev: device.
3525  *
3526  * This simply forwards the call to kobject_get(), though
3527  * we do take care to provide for the case that we get a NULL
3528  * pointer passed in.
3529  */
3530 struct device *get_device(struct device *dev)
3531 {
3532 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3533 }
3534 EXPORT_SYMBOL_GPL(get_device);
3535 
3536 /**
3537  * put_device - decrement reference count.
3538  * @dev: device in question.
3539  */
3540 void put_device(struct device *dev)
3541 {
3542 	/* might_sleep(); */
3543 	if (dev)
3544 		kobject_put(&dev->kobj);
3545 }
3546 EXPORT_SYMBOL_GPL(put_device);
3547 
3548 bool kill_device(struct device *dev)
3549 {
3550 	/*
3551 	 * Require the device lock and set the "dead" flag to guarantee that
3552 	 * the update behavior is consistent with the other bitfields near
3553 	 * it and that we cannot have an asynchronous probe routine trying
3554 	 * to run while we are tearing out the bus/class/sysfs from
3555 	 * underneath the device.
3556 	 */
3557 	device_lock_assert(dev);
3558 
3559 	if (dev->p->dead)
3560 		return false;
3561 	dev->p->dead = true;
3562 	return true;
3563 }
3564 EXPORT_SYMBOL_GPL(kill_device);
3565 
3566 /**
3567  * device_del - delete device from system.
3568  * @dev: device.
3569  *
3570  * This is the first part of the device unregistration
3571  * sequence. This removes the device from the lists we control
3572  * from here, has it removed from the other driver model
3573  * subsystems it was added to in device_add(), and removes it
3574  * from the kobject hierarchy.
3575  *
3576  * NOTE: this should be called manually _iff_ device_add() was
3577  * also called manually.
3578  */
3579 void device_del(struct device *dev)
3580 {
3581 	struct device *parent = dev->parent;
3582 	struct kobject *glue_dir = NULL;
3583 	struct class_interface *class_intf;
3584 	unsigned int noio_flag;
3585 
3586 	device_lock(dev);
3587 	kill_device(dev);
3588 	device_unlock(dev);
3589 
3590 	if (dev->fwnode && dev->fwnode->dev == dev)
3591 		dev->fwnode->dev = NULL;
3592 
3593 	/* Notify clients of device removal.  This call must come
3594 	 * before dpm_sysfs_remove().
3595 	 */
3596 	noio_flag = memalloc_noio_save();
3597 	if (dev->bus)
3598 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3599 					     BUS_NOTIFY_DEL_DEVICE, dev);
3600 
3601 	dpm_sysfs_remove(dev);
3602 	if (parent)
3603 		klist_del(&dev->p->knode_parent);
3604 	if (MAJOR(dev->devt)) {
3605 		devtmpfs_delete_node(dev);
3606 		device_remove_sys_dev_entry(dev);
3607 		device_remove_file(dev, &dev_attr_dev);
3608 	}
3609 	if (dev->class) {
3610 		device_remove_class_symlinks(dev);
3611 
3612 		mutex_lock(&dev->class->p->mutex);
3613 		/* notify any interfaces that the device is now gone */
3614 		list_for_each_entry(class_intf,
3615 				    &dev->class->p->interfaces, node)
3616 			if (class_intf->remove_dev)
3617 				class_intf->remove_dev(dev, class_intf);
3618 		/* remove the device from the class list */
3619 		klist_del(&dev->p->knode_class);
3620 		mutex_unlock(&dev->class->p->mutex);
3621 	}
3622 	device_remove_file(dev, &dev_attr_uevent);
3623 	device_remove_attrs(dev);
3624 	bus_remove_device(dev);
3625 	device_pm_remove(dev);
3626 	driver_deferred_probe_del(dev);
3627 	device_platform_notify_remove(dev);
3628 	device_links_purge(dev);
3629 
3630 	if (dev->bus)
3631 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3632 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
3633 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3634 	glue_dir = get_glue_dir(dev);
3635 	kobject_del(&dev->kobj);
3636 	cleanup_glue_dir(dev, glue_dir);
3637 	memalloc_noio_restore(noio_flag);
3638 	put_device(parent);
3639 }
3640 EXPORT_SYMBOL_GPL(device_del);
3641 
3642 /**
3643  * device_unregister - unregister device from system.
3644  * @dev: device going away.
3645  *
3646  * We do this in two parts, like we do device_register(). First,
3647  * we remove it from all the subsystems with device_del(), then
3648  * we decrement the reference count via put_device(). If that
3649  * is the final reference count, the device will be cleaned up
3650  * via device_release() above. Otherwise, the structure will
3651  * stick around until the final reference to the device is dropped.
3652  */
3653 void device_unregister(struct device *dev)
3654 {
3655 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3656 	device_del(dev);
3657 	put_device(dev);
3658 }
3659 EXPORT_SYMBOL_GPL(device_unregister);
3660 
3661 static struct device *prev_device(struct klist_iter *i)
3662 {
3663 	struct klist_node *n = klist_prev(i);
3664 	struct device *dev = NULL;
3665 	struct device_private *p;
3666 
3667 	if (n) {
3668 		p = to_device_private_parent(n);
3669 		dev = p->device;
3670 	}
3671 	return dev;
3672 }
3673 
3674 static struct device *next_device(struct klist_iter *i)
3675 {
3676 	struct klist_node *n = klist_next(i);
3677 	struct device *dev = NULL;
3678 	struct device_private *p;
3679 
3680 	if (n) {
3681 		p = to_device_private_parent(n);
3682 		dev = p->device;
3683 	}
3684 	return dev;
3685 }
3686 
3687 /**
3688  * device_get_devnode - path of device node file
3689  * @dev: device
3690  * @mode: returned file access mode
3691  * @uid: returned file owner
3692  * @gid: returned file group
3693  * @tmp: possibly allocated string
3694  *
3695  * Return the relative path of a possible device node.
3696  * Non-default names may need to allocate a memory to compose
3697  * a name. This memory is returned in tmp and needs to be
3698  * freed by the caller.
3699  */
3700 const char *device_get_devnode(struct device *dev,
3701 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3702 			       const char **tmp)
3703 {
3704 	char *s;
3705 
3706 	*tmp = NULL;
3707 
3708 	/* the device type may provide a specific name */
3709 	if (dev->type && dev->type->devnode)
3710 		*tmp = dev->type->devnode(dev, mode, uid, gid);
3711 	if (*tmp)
3712 		return *tmp;
3713 
3714 	/* the class may provide a specific name */
3715 	if (dev->class && dev->class->devnode)
3716 		*tmp = dev->class->devnode(dev, mode);
3717 	if (*tmp)
3718 		return *tmp;
3719 
3720 	/* return name without allocation, tmp == NULL */
3721 	if (strchr(dev_name(dev), '!') == NULL)
3722 		return dev_name(dev);
3723 
3724 	/* replace '!' in the name with '/' */
3725 	s = kstrdup(dev_name(dev), GFP_KERNEL);
3726 	if (!s)
3727 		return NULL;
3728 	strreplace(s, '!', '/');
3729 	return *tmp = s;
3730 }
3731 
3732 /**
3733  * device_for_each_child - device child iterator.
3734  * @parent: parent struct device.
3735  * @fn: function to be called for each device.
3736  * @data: data for the callback.
3737  *
3738  * Iterate over @parent's child devices, and call @fn for each,
3739  * passing it @data.
3740  *
3741  * We check the return of @fn each time. If it returns anything
3742  * other than 0, we break out and return that value.
3743  */
3744 int device_for_each_child(struct device *parent, void *data,
3745 			  int (*fn)(struct device *dev, void *data))
3746 {
3747 	struct klist_iter i;
3748 	struct device *child;
3749 	int error = 0;
3750 
3751 	if (!parent->p)
3752 		return 0;
3753 
3754 	klist_iter_init(&parent->p->klist_children, &i);
3755 	while (!error && (child = next_device(&i)))
3756 		error = fn(child, data);
3757 	klist_iter_exit(&i);
3758 	return error;
3759 }
3760 EXPORT_SYMBOL_GPL(device_for_each_child);
3761 
3762 /**
3763  * device_for_each_child_reverse - device child iterator in reversed order.
3764  * @parent: parent struct device.
3765  * @fn: function to be called for each device.
3766  * @data: data for the callback.
3767  *
3768  * Iterate over @parent's child devices, and call @fn for each,
3769  * passing it @data.
3770  *
3771  * We check the return of @fn each time. If it returns anything
3772  * other than 0, we break out and return that value.
3773  */
3774 int device_for_each_child_reverse(struct device *parent, void *data,
3775 				  int (*fn)(struct device *dev, void *data))
3776 {
3777 	struct klist_iter i;
3778 	struct device *child;
3779 	int error = 0;
3780 
3781 	if (!parent->p)
3782 		return 0;
3783 
3784 	klist_iter_init(&parent->p->klist_children, &i);
3785 	while ((child = prev_device(&i)) && !error)
3786 		error = fn(child, data);
3787 	klist_iter_exit(&i);
3788 	return error;
3789 }
3790 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3791 
3792 /**
3793  * device_find_child - device iterator for locating a particular device.
3794  * @parent: parent struct device
3795  * @match: Callback function to check device
3796  * @data: Data to pass to match function
3797  *
3798  * This is similar to the device_for_each_child() function above, but it
3799  * returns a reference to a device that is 'found' for later use, as
3800  * determined by the @match callback.
3801  *
3802  * The callback should return 0 if the device doesn't match and non-zero
3803  * if it does.  If the callback returns non-zero and a reference to the
3804  * current device can be obtained, this function will return to the caller
3805  * and not iterate over any more devices.
3806  *
3807  * NOTE: you will need to drop the reference with put_device() after use.
3808  */
3809 struct device *device_find_child(struct device *parent, void *data,
3810 				 int (*match)(struct device *dev, void *data))
3811 {
3812 	struct klist_iter i;
3813 	struct device *child;
3814 
3815 	if (!parent)
3816 		return NULL;
3817 
3818 	klist_iter_init(&parent->p->klist_children, &i);
3819 	while ((child = next_device(&i)))
3820 		if (match(child, data) && get_device(child))
3821 			break;
3822 	klist_iter_exit(&i);
3823 	return child;
3824 }
3825 EXPORT_SYMBOL_GPL(device_find_child);
3826 
3827 /**
3828  * device_find_child_by_name - device iterator for locating a child device.
3829  * @parent: parent struct device
3830  * @name: name of the child device
3831  *
3832  * This is similar to the device_find_child() function above, but it
3833  * returns a reference to a device that has the name @name.
3834  *
3835  * NOTE: you will need to drop the reference with put_device() after use.
3836  */
3837 struct device *device_find_child_by_name(struct device *parent,
3838 					 const char *name)
3839 {
3840 	struct klist_iter i;
3841 	struct device *child;
3842 
3843 	if (!parent)
3844 		return NULL;
3845 
3846 	klist_iter_init(&parent->p->klist_children, &i);
3847 	while ((child = next_device(&i)))
3848 		if (sysfs_streq(dev_name(child), name) && get_device(child))
3849 			break;
3850 	klist_iter_exit(&i);
3851 	return child;
3852 }
3853 EXPORT_SYMBOL_GPL(device_find_child_by_name);
3854 
3855 static int match_any(struct device *dev, void *unused)
3856 {
3857 	return 1;
3858 }
3859 
3860 /**
3861  * device_find_any_child - device iterator for locating a child device, if any.
3862  * @parent: parent struct device
3863  *
3864  * This is similar to the device_find_child() function above, but it
3865  * returns a reference to a child device, if any.
3866  *
3867  * NOTE: you will need to drop the reference with put_device() after use.
3868  */
3869 struct device *device_find_any_child(struct device *parent)
3870 {
3871 	return device_find_child(parent, NULL, match_any);
3872 }
3873 EXPORT_SYMBOL_GPL(device_find_any_child);
3874 
3875 int __init devices_init(void)
3876 {
3877 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3878 	if (!devices_kset)
3879 		return -ENOMEM;
3880 	dev_kobj = kobject_create_and_add("dev", NULL);
3881 	if (!dev_kobj)
3882 		goto dev_kobj_err;
3883 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3884 	if (!sysfs_dev_block_kobj)
3885 		goto block_kobj_err;
3886 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3887 	if (!sysfs_dev_char_kobj)
3888 		goto char_kobj_err;
3889 
3890 	return 0;
3891 
3892  char_kobj_err:
3893 	kobject_put(sysfs_dev_block_kobj);
3894  block_kobj_err:
3895 	kobject_put(dev_kobj);
3896  dev_kobj_err:
3897 	kset_unregister(devices_kset);
3898 	return -ENOMEM;
3899 }
3900 
3901 static int device_check_offline(struct device *dev, void *not_used)
3902 {
3903 	int ret;
3904 
3905 	ret = device_for_each_child(dev, NULL, device_check_offline);
3906 	if (ret)
3907 		return ret;
3908 
3909 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3910 }
3911 
3912 /**
3913  * device_offline - Prepare the device for hot-removal.
3914  * @dev: Device to be put offline.
3915  *
3916  * Execute the device bus type's .offline() callback, if present, to prepare
3917  * the device for a subsequent hot-removal.  If that succeeds, the device must
3918  * not be used until either it is removed or its bus type's .online() callback
3919  * is executed.
3920  *
3921  * Call under device_hotplug_lock.
3922  */
3923 int device_offline(struct device *dev)
3924 {
3925 	int ret;
3926 
3927 	if (dev->offline_disabled)
3928 		return -EPERM;
3929 
3930 	ret = device_for_each_child(dev, NULL, device_check_offline);
3931 	if (ret)
3932 		return ret;
3933 
3934 	device_lock(dev);
3935 	if (device_supports_offline(dev)) {
3936 		if (dev->offline) {
3937 			ret = 1;
3938 		} else {
3939 			ret = dev->bus->offline(dev);
3940 			if (!ret) {
3941 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3942 				dev->offline = true;
3943 			}
3944 		}
3945 	}
3946 	device_unlock(dev);
3947 
3948 	return ret;
3949 }
3950 
3951 /**
3952  * device_online - Put the device back online after successful device_offline().
3953  * @dev: Device to be put back online.
3954  *
3955  * If device_offline() has been successfully executed for @dev, but the device
3956  * has not been removed subsequently, execute its bus type's .online() callback
3957  * to indicate that the device can be used again.
3958  *
3959  * Call under device_hotplug_lock.
3960  */
3961 int device_online(struct device *dev)
3962 {
3963 	int ret = 0;
3964 
3965 	device_lock(dev);
3966 	if (device_supports_offline(dev)) {
3967 		if (dev->offline) {
3968 			ret = dev->bus->online(dev);
3969 			if (!ret) {
3970 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3971 				dev->offline = false;
3972 			}
3973 		} else {
3974 			ret = 1;
3975 		}
3976 	}
3977 	device_unlock(dev);
3978 
3979 	return ret;
3980 }
3981 
3982 struct root_device {
3983 	struct device dev;
3984 	struct module *owner;
3985 };
3986 
3987 static inline struct root_device *to_root_device(struct device *d)
3988 {
3989 	return container_of(d, struct root_device, dev);
3990 }
3991 
3992 static void root_device_release(struct device *dev)
3993 {
3994 	kfree(to_root_device(dev));
3995 }
3996 
3997 /**
3998  * __root_device_register - allocate and register a root device
3999  * @name: root device name
4000  * @owner: owner module of the root device, usually THIS_MODULE
4001  *
4002  * This function allocates a root device and registers it
4003  * using device_register(). In order to free the returned
4004  * device, use root_device_unregister().
4005  *
4006  * Root devices are dummy devices which allow other devices
4007  * to be grouped under /sys/devices. Use this function to
4008  * allocate a root device and then use it as the parent of
4009  * any device which should appear under /sys/devices/{name}
4010  *
4011  * The /sys/devices/{name} directory will also contain a
4012  * 'module' symlink which points to the @owner directory
4013  * in sysfs.
4014  *
4015  * Returns &struct device pointer on success, or ERR_PTR() on error.
4016  *
4017  * Note: You probably want to use root_device_register().
4018  */
4019 struct device *__root_device_register(const char *name, struct module *owner)
4020 {
4021 	struct root_device *root;
4022 	int err = -ENOMEM;
4023 
4024 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
4025 	if (!root)
4026 		return ERR_PTR(err);
4027 
4028 	err = dev_set_name(&root->dev, "%s", name);
4029 	if (err) {
4030 		kfree(root);
4031 		return ERR_PTR(err);
4032 	}
4033 
4034 	root->dev.release = root_device_release;
4035 
4036 	err = device_register(&root->dev);
4037 	if (err) {
4038 		put_device(&root->dev);
4039 		return ERR_PTR(err);
4040 	}
4041 
4042 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
4043 	if (owner) {
4044 		struct module_kobject *mk = &owner->mkobj;
4045 
4046 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
4047 		if (err) {
4048 			device_unregister(&root->dev);
4049 			return ERR_PTR(err);
4050 		}
4051 		root->owner = owner;
4052 	}
4053 #endif
4054 
4055 	return &root->dev;
4056 }
4057 EXPORT_SYMBOL_GPL(__root_device_register);
4058 
4059 /**
4060  * root_device_unregister - unregister and free a root device
4061  * @dev: device going away
4062  *
4063  * This function unregisters and cleans up a device that was created by
4064  * root_device_register().
4065  */
4066 void root_device_unregister(struct device *dev)
4067 {
4068 	struct root_device *root = to_root_device(dev);
4069 
4070 	if (root->owner)
4071 		sysfs_remove_link(&root->dev.kobj, "module");
4072 
4073 	device_unregister(dev);
4074 }
4075 EXPORT_SYMBOL_GPL(root_device_unregister);
4076 
4077 
4078 static void device_create_release(struct device *dev)
4079 {
4080 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4081 	kfree(dev);
4082 }
4083 
4084 static __printf(6, 0) struct device *
4085 device_create_groups_vargs(struct class *class, struct device *parent,
4086 			   dev_t devt, void *drvdata,
4087 			   const struct attribute_group **groups,
4088 			   const char *fmt, va_list args)
4089 {
4090 	struct device *dev = NULL;
4091 	int retval = -ENODEV;
4092 
4093 	if (IS_ERR_OR_NULL(class))
4094 		goto error;
4095 
4096 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4097 	if (!dev) {
4098 		retval = -ENOMEM;
4099 		goto error;
4100 	}
4101 
4102 	device_initialize(dev);
4103 	dev->devt = devt;
4104 	dev->class = class;
4105 	dev->parent = parent;
4106 	dev->groups = groups;
4107 	dev->release = device_create_release;
4108 	dev_set_drvdata(dev, drvdata);
4109 
4110 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4111 	if (retval)
4112 		goto error;
4113 
4114 	retval = device_add(dev);
4115 	if (retval)
4116 		goto error;
4117 
4118 	return dev;
4119 
4120 error:
4121 	put_device(dev);
4122 	return ERR_PTR(retval);
4123 }
4124 
4125 /**
4126  * device_create - creates a device and registers it with sysfs
4127  * @class: pointer to the struct class that this device should be registered to
4128  * @parent: pointer to the parent struct device of this new device, if any
4129  * @devt: the dev_t for the char device to be added
4130  * @drvdata: the data to be added to the device for callbacks
4131  * @fmt: string for the device's name
4132  *
4133  * This function can be used by char device classes.  A struct device
4134  * will be created in sysfs, registered to the specified class.
4135  *
4136  * A "dev" file will be created, showing the dev_t for the device, if
4137  * the dev_t is not 0,0.
4138  * If a pointer to a parent struct device is passed in, the newly created
4139  * struct device will be a child of that device in sysfs.
4140  * The pointer to the struct device will be returned from the call.
4141  * Any further sysfs files that might be required can be created using this
4142  * pointer.
4143  *
4144  * Returns &struct device pointer on success, or ERR_PTR() on error.
4145  *
4146  * Note: the struct class passed to this function must have previously
4147  * been created with a call to class_create().
4148  */
4149 struct device *device_create(struct class *class, struct device *parent,
4150 			     dev_t devt, void *drvdata, const char *fmt, ...)
4151 {
4152 	va_list vargs;
4153 	struct device *dev;
4154 
4155 	va_start(vargs, fmt);
4156 	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4157 					  fmt, vargs);
4158 	va_end(vargs);
4159 	return dev;
4160 }
4161 EXPORT_SYMBOL_GPL(device_create);
4162 
4163 /**
4164  * device_create_with_groups - creates a device and registers it with sysfs
4165  * @class: pointer to the struct class that this device should be registered to
4166  * @parent: pointer to the parent struct device of this new device, if any
4167  * @devt: the dev_t for the char device to be added
4168  * @drvdata: the data to be added to the device for callbacks
4169  * @groups: NULL-terminated list of attribute groups to be created
4170  * @fmt: string for the device's name
4171  *
4172  * This function can be used by char device classes.  A struct device
4173  * will be created in sysfs, registered to the specified class.
4174  * Additional attributes specified in the groups parameter will also
4175  * be created automatically.
4176  *
4177  * A "dev" file will be created, showing the dev_t for the device, if
4178  * the dev_t is not 0,0.
4179  * If a pointer to a parent struct device is passed in, the newly created
4180  * struct device will be a child of that device in sysfs.
4181  * The pointer to the struct device will be returned from the call.
4182  * Any further sysfs files that might be required can be created using this
4183  * pointer.
4184  *
4185  * Returns &struct device pointer on success, or ERR_PTR() on error.
4186  *
4187  * Note: the struct class passed to this function must have previously
4188  * been created with a call to class_create().
4189  */
4190 struct device *device_create_with_groups(struct class *class,
4191 					 struct device *parent, dev_t devt,
4192 					 void *drvdata,
4193 					 const struct attribute_group **groups,
4194 					 const char *fmt, ...)
4195 {
4196 	va_list vargs;
4197 	struct device *dev;
4198 
4199 	va_start(vargs, fmt);
4200 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4201 					 fmt, vargs);
4202 	va_end(vargs);
4203 	return dev;
4204 }
4205 EXPORT_SYMBOL_GPL(device_create_with_groups);
4206 
4207 /**
4208  * device_destroy - removes a device that was created with device_create()
4209  * @class: pointer to the struct class that this device was registered with
4210  * @devt: the dev_t of the device that was previously registered
4211  *
4212  * This call unregisters and cleans up a device that was created with a
4213  * call to device_create().
4214  */
4215 void device_destroy(struct class *class, dev_t devt)
4216 {
4217 	struct device *dev;
4218 
4219 	dev = class_find_device_by_devt(class, devt);
4220 	if (dev) {
4221 		put_device(dev);
4222 		device_unregister(dev);
4223 	}
4224 }
4225 EXPORT_SYMBOL_GPL(device_destroy);
4226 
4227 /**
4228  * device_rename - renames a device
4229  * @dev: the pointer to the struct device to be renamed
4230  * @new_name: the new name of the device
4231  *
4232  * It is the responsibility of the caller to provide mutual
4233  * exclusion between two different calls of device_rename
4234  * on the same device to ensure that new_name is valid and
4235  * won't conflict with other devices.
4236  *
4237  * Note: Don't call this function.  Currently, the networking layer calls this
4238  * function, but that will change.  The following text from Kay Sievers offers
4239  * some insight:
4240  *
4241  * Renaming devices is racy at many levels, symlinks and other stuff are not
4242  * replaced atomically, and you get a "move" uevent, but it's not easy to
4243  * connect the event to the old and new device. Device nodes are not renamed at
4244  * all, there isn't even support for that in the kernel now.
4245  *
4246  * In the meantime, during renaming, your target name might be taken by another
4247  * driver, creating conflicts. Or the old name is taken directly after you
4248  * renamed it -- then you get events for the same DEVPATH, before you even see
4249  * the "move" event. It's just a mess, and nothing new should ever rely on
4250  * kernel device renaming. Besides that, it's not even implemented now for
4251  * other things than (driver-core wise very simple) network devices.
4252  *
4253  * We are currently about to change network renaming in udev to completely
4254  * disallow renaming of devices in the same namespace as the kernel uses,
4255  * because we can't solve the problems properly, that arise with swapping names
4256  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
4257  * be allowed to some other name than eth[0-9]*, for the aforementioned
4258  * reasons.
4259  *
4260  * Make up a "real" name in the driver before you register anything, or add
4261  * some other attributes for userspace to find the device, or use udev to add
4262  * symlinks -- but never rename kernel devices later, it's a complete mess. We
4263  * don't even want to get into that and try to implement the missing pieces in
4264  * the core. We really have other pieces to fix in the driver core mess. :)
4265  */
4266 int device_rename(struct device *dev, const char *new_name)
4267 {
4268 	struct kobject *kobj = &dev->kobj;
4269 	char *old_device_name = NULL;
4270 	int error;
4271 
4272 	dev = get_device(dev);
4273 	if (!dev)
4274 		return -EINVAL;
4275 
4276 	dev_dbg(dev, "renaming to %s\n", new_name);
4277 
4278 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4279 	if (!old_device_name) {
4280 		error = -ENOMEM;
4281 		goto out;
4282 	}
4283 
4284 	if (dev->class) {
4285 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
4286 					     kobj, old_device_name,
4287 					     new_name, kobject_namespace(kobj));
4288 		if (error)
4289 			goto out;
4290 	}
4291 
4292 	error = kobject_rename(kobj, new_name);
4293 	if (error)
4294 		goto out;
4295 
4296 out:
4297 	put_device(dev);
4298 
4299 	kfree(old_device_name);
4300 
4301 	return error;
4302 }
4303 EXPORT_SYMBOL_GPL(device_rename);
4304 
4305 static int device_move_class_links(struct device *dev,
4306 				   struct device *old_parent,
4307 				   struct device *new_parent)
4308 {
4309 	int error = 0;
4310 
4311 	if (old_parent)
4312 		sysfs_remove_link(&dev->kobj, "device");
4313 	if (new_parent)
4314 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4315 					  "device");
4316 	return error;
4317 }
4318 
4319 /**
4320  * device_move - moves a device to a new parent
4321  * @dev: the pointer to the struct device to be moved
4322  * @new_parent: the new parent of the device (can be NULL)
4323  * @dpm_order: how to reorder the dpm_list
4324  */
4325 int device_move(struct device *dev, struct device *new_parent,
4326 		enum dpm_order dpm_order)
4327 {
4328 	int error;
4329 	struct device *old_parent;
4330 	struct kobject *new_parent_kobj;
4331 
4332 	dev = get_device(dev);
4333 	if (!dev)
4334 		return -EINVAL;
4335 
4336 	device_pm_lock();
4337 	new_parent = get_device(new_parent);
4338 	new_parent_kobj = get_device_parent(dev, new_parent);
4339 	if (IS_ERR(new_parent_kobj)) {
4340 		error = PTR_ERR(new_parent_kobj);
4341 		put_device(new_parent);
4342 		goto out;
4343 	}
4344 
4345 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4346 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4347 	error = kobject_move(&dev->kobj, new_parent_kobj);
4348 	if (error) {
4349 		cleanup_glue_dir(dev, new_parent_kobj);
4350 		put_device(new_parent);
4351 		goto out;
4352 	}
4353 	old_parent = dev->parent;
4354 	dev->parent = new_parent;
4355 	if (old_parent)
4356 		klist_remove(&dev->p->knode_parent);
4357 	if (new_parent) {
4358 		klist_add_tail(&dev->p->knode_parent,
4359 			       &new_parent->p->klist_children);
4360 		set_dev_node(dev, dev_to_node(new_parent));
4361 	}
4362 
4363 	if (dev->class) {
4364 		error = device_move_class_links(dev, old_parent, new_parent);
4365 		if (error) {
4366 			/* We ignore errors on cleanup since we're hosed anyway... */
4367 			device_move_class_links(dev, new_parent, old_parent);
4368 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4369 				if (new_parent)
4370 					klist_remove(&dev->p->knode_parent);
4371 				dev->parent = old_parent;
4372 				if (old_parent) {
4373 					klist_add_tail(&dev->p->knode_parent,
4374 						       &old_parent->p->klist_children);
4375 					set_dev_node(dev, dev_to_node(old_parent));
4376 				}
4377 			}
4378 			cleanup_glue_dir(dev, new_parent_kobj);
4379 			put_device(new_parent);
4380 			goto out;
4381 		}
4382 	}
4383 	switch (dpm_order) {
4384 	case DPM_ORDER_NONE:
4385 		break;
4386 	case DPM_ORDER_DEV_AFTER_PARENT:
4387 		device_pm_move_after(dev, new_parent);
4388 		devices_kset_move_after(dev, new_parent);
4389 		break;
4390 	case DPM_ORDER_PARENT_BEFORE_DEV:
4391 		device_pm_move_before(new_parent, dev);
4392 		devices_kset_move_before(new_parent, dev);
4393 		break;
4394 	case DPM_ORDER_DEV_LAST:
4395 		device_pm_move_last(dev);
4396 		devices_kset_move_last(dev);
4397 		break;
4398 	}
4399 
4400 	put_device(old_parent);
4401 out:
4402 	device_pm_unlock();
4403 	put_device(dev);
4404 	return error;
4405 }
4406 EXPORT_SYMBOL_GPL(device_move);
4407 
4408 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4409 				     kgid_t kgid)
4410 {
4411 	struct kobject *kobj = &dev->kobj;
4412 	struct class *class = dev->class;
4413 	const struct device_type *type = dev->type;
4414 	int error;
4415 
4416 	if (class) {
4417 		/*
4418 		 * Change the device groups of the device class for @dev to
4419 		 * @kuid/@kgid.
4420 		 */
4421 		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4422 						  kgid);
4423 		if (error)
4424 			return error;
4425 	}
4426 
4427 	if (type) {
4428 		/*
4429 		 * Change the device groups of the device type for @dev to
4430 		 * @kuid/@kgid.
4431 		 */
4432 		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4433 						  kgid);
4434 		if (error)
4435 			return error;
4436 	}
4437 
4438 	/* Change the device groups of @dev to @kuid/@kgid. */
4439 	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4440 	if (error)
4441 		return error;
4442 
4443 	if (device_supports_offline(dev) && !dev->offline_disabled) {
4444 		/* Change online device attributes of @dev to @kuid/@kgid. */
4445 		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4446 						kuid, kgid);
4447 		if (error)
4448 			return error;
4449 	}
4450 
4451 	return 0;
4452 }
4453 
4454 /**
4455  * device_change_owner - change the owner of an existing device.
4456  * @dev: device.
4457  * @kuid: new owner's kuid
4458  * @kgid: new owner's kgid
4459  *
4460  * This changes the owner of @dev and its corresponding sysfs entries to
4461  * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4462  * core.
4463  *
4464  * Returns 0 on success or error code on failure.
4465  */
4466 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4467 {
4468 	int error;
4469 	struct kobject *kobj = &dev->kobj;
4470 
4471 	dev = get_device(dev);
4472 	if (!dev)
4473 		return -EINVAL;
4474 
4475 	/*
4476 	 * Change the kobject and the default attributes and groups of the
4477 	 * ktype associated with it to @kuid/@kgid.
4478 	 */
4479 	error = sysfs_change_owner(kobj, kuid, kgid);
4480 	if (error)
4481 		goto out;
4482 
4483 	/*
4484 	 * Change the uevent file for @dev to the new owner. The uevent file
4485 	 * was created in a separate step when @dev got added and we mirror
4486 	 * that step here.
4487 	 */
4488 	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4489 					kgid);
4490 	if (error)
4491 		goto out;
4492 
4493 	/*
4494 	 * Change the device groups, the device groups associated with the
4495 	 * device class, and the groups associated with the device type of @dev
4496 	 * to @kuid/@kgid.
4497 	 */
4498 	error = device_attrs_change_owner(dev, kuid, kgid);
4499 	if (error)
4500 		goto out;
4501 
4502 	error = dpm_sysfs_change_owner(dev, kuid, kgid);
4503 	if (error)
4504 		goto out;
4505 
4506 #ifdef CONFIG_BLOCK
4507 	if (sysfs_deprecated && dev->class == &block_class)
4508 		goto out;
4509 #endif
4510 
4511 	/*
4512 	 * Change the owner of the symlink located in the class directory of
4513 	 * the device class associated with @dev which points to the actual
4514 	 * directory entry for @dev to @kuid/@kgid. This ensures that the
4515 	 * symlink shows the same permissions as its target.
4516 	 */
4517 	error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4518 					dev_name(dev), kuid, kgid);
4519 	if (error)
4520 		goto out;
4521 
4522 out:
4523 	put_device(dev);
4524 	return error;
4525 }
4526 EXPORT_SYMBOL_GPL(device_change_owner);
4527 
4528 /**
4529  * device_shutdown - call ->shutdown() on each device to shutdown.
4530  */
4531 void device_shutdown(void)
4532 {
4533 	struct device *dev, *parent;
4534 
4535 	wait_for_device_probe();
4536 	device_block_probing();
4537 
4538 	cpufreq_suspend();
4539 
4540 	spin_lock(&devices_kset->list_lock);
4541 	/*
4542 	 * Walk the devices list backward, shutting down each in turn.
4543 	 * Beware that device unplug events may also start pulling
4544 	 * devices offline, even as the system is shutting down.
4545 	 */
4546 	while (!list_empty(&devices_kset->list)) {
4547 		dev = list_entry(devices_kset->list.prev, struct device,
4548 				kobj.entry);
4549 
4550 		/*
4551 		 * hold reference count of device's parent to
4552 		 * prevent it from being freed because parent's
4553 		 * lock is to be held
4554 		 */
4555 		parent = get_device(dev->parent);
4556 		get_device(dev);
4557 		/*
4558 		 * Make sure the device is off the kset list, in the
4559 		 * event that dev->*->shutdown() doesn't remove it.
4560 		 */
4561 		list_del_init(&dev->kobj.entry);
4562 		spin_unlock(&devices_kset->list_lock);
4563 
4564 		/* hold lock to avoid race with probe/release */
4565 		if (parent)
4566 			device_lock(parent);
4567 		device_lock(dev);
4568 
4569 		/* Don't allow any more runtime suspends */
4570 		pm_runtime_get_noresume(dev);
4571 		pm_runtime_barrier(dev);
4572 
4573 		if (dev->class && dev->class->shutdown_pre) {
4574 			if (initcall_debug)
4575 				dev_info(dev, "shutdown_pre\n");
4576 			dev->class->shutdown_pre(dev);
4577 		}
4578 		if (dev->bus && dev->bus->shutdown) {
4579 			if (initcall_debug)
4580 				dev_info(dev, "shutdown\n");
4581 			dev->bus->shutdown(dev);
4582 		} else if (dev->driver && dev->driver->shutdown) {
4583 			if (initcall_debug)
4584 				dev_info(dev, "shutdown\n");
4585 			dev->driver->shutdown(dev);
4586 		}
4587 
4588 		device_unlock(dev);
4589 		if (parent)
4590 			device_unlock(parent);
4591 
4592 		put_device(dev);
4593 		put_device(parent);
4594 
4595 		spin_lock(&devices_kset->list_lock);
4596 	}
4597 	spin_unlock(&devices_kset->list_lock);
4598 }
4599 
4600 /*
4601  * Device logging functions
4602  */
4603 
4604 #ifdef CONFIG_PRINTK
4605 static void
4606 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4607 {
4608 	const char *subsys;
4609 
4610 	memset(dev_info, 0, sizeof(*dev_info));
4611 
4612 	if (dev->class)
4613 		subsys = dev->class->name;
4614 	else if (dev->bus)
4615 		subsys = dev->bus->name;
4616 	else
4617 		return;
4618 
4619 	strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4620 
4621 	/*
4622 	 * Add device identifier DEVICE=:
4623 	 *   b12:8         block dev_t
4624 	 *   c127:3        char dev_t
4625 	 *   n8            netdev ifindex
4626 	 *   +sound:card0  subsystem:devname
4627 	 */
4628 	if (MAJOR(dev->devt)) {
4629 		char c;
4630 
4631 		if (strcmp(subsys, "block") == 0)
4632 			c = 'b';
4633 		else
4634 			c = 'c';
4635 
4636 		snprintf(dev_info->device, sizeof(dev_info->device),
4637 			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4638 	} else if (strcmp(subsys, "net") == 0) {
4639 		struct net_device *net = to_net_dev(dev);
4640 
4641 		snprintf(dev_info->device, sizeof(dev_info->device),
4642 			 "n%u", net->ifindex);
4643 	} else {
4644 		snprintf(dev_info->device, sizeof(dev_info->device),
4645 			 "+%s:%s", subsys, dev_name(dev));
4646 	}
4647 }
4648 
4649 int dev_vprintk_emit(int level, const struct device *dev,
4650 		     const char *fmt, va_list args)
4651 {
4652 	struct dev_printk_info dev_info;
4653 
4654 	set_dev_info(dev, &dev_info);
4655 
4656 	return vprintk_emit(0, level, &dev_info, fmt, args);
4657 }
4658 EXPORT_SYMBOL(dev_vprintk_emit);
4659 
4660 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4661 {
4662 	va_list args;
4663 	int r;
4664 
4665 	va_start(args, fmt);
4666 
4667 	r = dev_vprintk_emit(level, dev, fmt, args);
4668 
4669 	va_end(args);
4670 
4671 	return r;
4672 }
4673 EXPORT_SYMBOL(dev_printk_emit);
4674 
4675 static void __dev_printk(const char *level, const struct device *dev,
4676 			struct va_format *vaf)
4677 {
4678 	if (dev)
4679 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4680 				dev_driver_string(dev), dev_name(dev), vaf);
4681 	else
4682 		printk("%s(NULL device *): %pV", level, vaf);
4683 }
4684 
4685 void _dev_printk(const char *level, const struct device *dev,
4686 		 const char *fmt, ...)
4687 {
4688 	struct va_format vaf;
4689 	va_list args;
4690 
4691 	va_start(args, fmt);
4692 
4693 	vaf.fmt = fmt;
4694 	vaf.va = &args;
4695 
4696 	__dev_printk(level, dev, &vaf);
4697 
4698 	va_end(args);
4699 }
4700 EXPORT_SYMBOL(_dev_printk);
4701 
4702 #define define_dev_printk_level(func, kern_level)		\
4703 void func(const struct device *dev, const char *fmt, ...)	\
4704 {								\
4705 	struct va_format vaf;					\
4706 	va_list args;						\
4707 								\
4708 	va_start(args, fmt);					\
4709 								\
4710 	vaf.fmt = fmt;						\
4711 	vaf.va = &args;						\
4712 								\
4713 	__dev_printk(kern_level, dev, &vaf);			\
4714 								\
4715 	va_end(args);						\
4716 }								\
4717 EXPORT_SYMBOL(func);
4718 
4719 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4720 define_dev_printk_level(_dev_alert, KERN_ALERT);
4721 define_dev_printk_level(_dev_crit, KERN_CRIT);
4722 define_dev_printk_level(_dev_err, KERN_ERR);
4723 define_dev_printk_level(_dev_warn, KERN_WARNING);
4724 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4725 define_dev_printk_level(_dev_info, KERN_INFO);
4726 
4727 #endif
4728 
4729 /**
4730  * dev_err_probe - probe error check and log helper
4731  * @dev: the pointer to the struct device
4732  * @err: error value to test
4733  * @fmt: printf-style format string
4734  * @...: arguments as specified in the format string
4735  *
4736  * This helper implements common pattern present in probe functions for error
4737  * checking: print debug or error message depending if the error value is
4738  * -EPROBE_DEFER and propagate error upwards.
4739  * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4740  * checked later by reading devices_deferred debugfs attribute.
4741  * It replaces code sequence::
4742  *
4743  * 	if (err != -EPROBE_DEFER)
4744  * 		dev_err(dev, ...);
4745  * 	else
4746  * 		dev_dbg(dev, ...);
4747  * 	return err;
4748  *
4749  * with::
4750  *
4751  * 	return dev_err_probe(dev, err, ...);
4752  *
4753  * Note that it is deemed acceptable to use this function for error
4754  * prints during probe even if the @err is known to never be -EPROBE_DEFER.
4755  * The benefit compared to a normal dev_err() is the standardized format
4756  * of the error code and the fact that the error code is returned.
4757  *
4758  * Returns @err.
4759  *
4760  */
4761 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4762 {
4763 	struct va_format vaf;
4764 	va_list args;
4765 
4766 	va_start(args, fmt);
4767 	vaf.fmt = fmt;
4768 	vaf.va = &args;
4769 
4770 	if (err != -EPROBE_DEFER) {
4771 		dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4772 	} else {
4773 		device_set_deferred_probe_reason(dev, &vaf);
4774 		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4775 	}
4776 
4777 	va_end(args);
4778 
4779 	return err;
4780 }
4781 EXPORT_SYMBOL_GPL(dev_err_probe);
4782 
4783 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4784 {
4785 	return fwnode && !IS_ERR(fwnode->secondary);
4786 }
4787 
4788 /**
4789  * set_primary_fwnode - Change the primary firmware node of a given device.
4790  * @dev: Device to handle.
4791  * @fwnode: New primary firmware node of the device.
4792  *
4793  * Set the device's firmware node pointer to @fwnode, but if a secondary
4794  * firmware node of the device is present, preserve it.
4795  *
4796  * Valid fwnode cases are:
4797  *  - primary --> secondary --> -ENODEV
4798  *  - primary --> NULL
4799  *  - secondary --> -ENODEV
4800  *  - NULL
4801  */
4802 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4803 {
4804 	struct device *parent = dev->parent;
4805 	struct fwnode_handle *fn = dev->fwnode;
4806 
4807 	if (fwnode) {
4808 		if (fwnode_is_primary(fn))
4809 			fn = fn->secondary;
4810 
4811 		if (fn) {
4812 			WARN_ON(fwnode->secondary);
4813 			fwnode->secondary = fn;
4814 		}
4815 		dev->fwnode = fwnode;
4816 	} else {
4817 		if (fwnode_is_primary(fn)) {
4818 			dev->fwnode = fn->secondary;
4819 			/* Set fn->secondary = NULL, so fn remains the primary fwnode */
4820 			if (!(parent && fn == parent->fwnode))
4821 				fn->secondary = NULL;
4822 		} else {
4823 			dev->fwnode = NULL;
4824 		}
4825 	}
4826 }
4827 EXPORT_SYMBOL_GPL(set_primary_fwnode);
4828 
4829 /**
4830  * set_secondary_fwnode - Change the secondary firmware node of a given device.
4831  * @dev: Device to handle.
4832  * @fwnode: New secondary firmware node of the device.
4833  *
4834  * If a primary firmware node of the device is present, set its secondary
4835  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
4836  * @fwnode.
4837  */
4838 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4839 {
4840 	if (fwnode)
4841 		fwnode->secondary = ERR_PTR(-ENODEV);
4842 
4843 	if (fwnode_is_primary(dev->fwnode))
4844 		dev->fwnode->secondary = fwnode;
4845 	else
4846 		dev->fwnode = fwnode;
4847 }
4848 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4849 
4850 /**
4851  * device_set_of_node_from_dev - reuse device-tree node of another device
4852  * @dev: device whose device-tree node is being set
4853  * @dev2: device whose device-tree node is being reused
4854  *
4855  * Takes another reference to the new device-tree node after first dropping
4856  * any reference held to the old node.
4857  */
4858 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4859 {
4860 	of_node_put(dev->of_node);
4861 	dev->of_node = of_node_get(dev2->of_node);
4862 	dev->of_node_reused = true;
4863 }
4864 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4865 
4866 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
4867 {
4868 	dev->fwnode = fwnode;
4869 	dev->of_node = to_of_node(fwnode);
4870 }
4871 EXPORT_SYMBOL_GPL(device_set_node);
4872 
4873 int device_match_name(struct device *dev, const void *name)
4874 {
4875 	return sysfs_streq(dev_name(dev), name);
4876 }
4877 EXPORT_SYMBOL_GPL(device_match_name);
4878 
4879 int device_match_of_node(struct device *dev, const void *np)
4880 {
4881 	return dev->of_node == np;
4882 }
4883 EXPORT_SYMBOL_GPL(device_match_of_node);
4884 
4885 int device_match_fwnode(struct device *dev, const void *fwnode)
4886 {
4887 	return dev_fwnode(dev) == fwnode;
4888 }
4889 EXPORT_SYMBOL_GPL(device_match_fwnode);
4890 
4891 int device_match_devt(struct device *dev, const void *pdevt)
4892 {
4893 	return dev->devt == *(dev_t *)pdevt;
4894 }
4895 EXPORT_SYMBOL_GPL(device_match_devt);
4896 
4897 int device_match_acpi_dev(struct device *dev, const void *adev)
4898 {
4899 	return ACPI_COMPANION(dev) == adev;
4900 }
4901 EXPORT_SYMBOL(device_match_acpi_dev);
4902 
4903 int device_match_acpi_handle(struct device *dev, const void *handle)
4904 {
4905 	return ACPI_HANDLE(dev) == handle;
4906 }
4907 EXPORT_SYMBOL(device_match_acpi_handle);
4908 
4909 int device_match_any(struct device *dev, const void *unused)
4910 {
4911 	return 1;
4912 }
4913 EXPORT_SYMBOL_GPL(device_match_any);
4914