xref: /openbmc/linux/drivers/base/core.c (revision bbcd53c9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sched/mm.h>
30 #include <linux/sysfs.h>
31 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
32 
33 #include "base.h"
34 #include "power/power.h"
35 
36 #ifdef CONFIG_SYSFS_DEPRECATED
37 #ifdef CONFIG_SYSFS_DEPRECATED_V2
38 long sysfs_deprecated = 1;
39 #else
40 long sysfs_deprecated = 0;
41 #endif
42 static int __init sysfs_deprecated_setup(char *arg)
43 {
44 	return kstrtol(arg, 10, &sysfs_deprecated);
45 }
46 early_param("sysfs.deprecated", sysfs_deprecated_setup);
47 #endif
48 
49 /* Device links support. */
50 static LIST_HEAD(deferred_sync);
51 static unsigned int defer_sync_state_count = 1;
52 static DEFINE_MUTEX(fwnode_link_lock);
53 static bool fw_devlink_is_permissive(void);
54 static bool fw_devlink_drv_reg_done;
55 
56 /**
57  * fwnode_link_add - Create a link between two fwnode_handles.
58  * @con: Consumer end of the link.
59  * @sup: Supplier end of the link.
60  *
61  * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
62  * represents the detail that the firmware lists @sup fwnode as supplying a
63  * resource to @con.
64  *
65  * The driver core will use the fwnode link to create a device link between the
66  * two device objects corresponding to @con and @sup when they are created. The
67  * driver core will automatically delete the fwnode link between @con and @sup
68  * after doing that.
69  *
70  * Attempts to create duplicate links between the same pair of fwnode handles
71  * are ignored and there is no reference counting.
72  */
73 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
74 {
75 	struct fwnode_link *link;
76 	int ret = 0;
77 
78 	mutex_lock(&fwnode_link_lock);
79 
80 	list_for_each_entry(link, &sup->consumers, s_hook)
81 		if (link->consumer == con)
82 			goto out;
83 
84 	link = kzalloc(sizeof(*link), GFP_KERNEL);
85 	if (!link) {
86 		ret = -ENOMEM;
87 		goto out;
88 	}
89 
90 	link->supplier = sup;
91 	INIT_LIST_HEAD(&link->s_hook);
92 	link->consumer = con;
93 	INIT_LIST_HEAD(&link->c_hook);
94 
95 	list_add(&link->s_hook, &sup->consumers);
96 	list_add(&link->c_hook, &con->suppliers);
97 out:
98 	mutex_unlock(&fwnode_link_lock);
99 
100 	return ret;
101 }
102 
103 /**
104  * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
105  * @fwnode: fwnode whose supplier links need to be deleted
106  *
107  * Deletes all supplier links connecting directly to @fwnode.
108  */
109 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
110 {
111 	struct fwnode_link *link, *tmp;
112 
113 	mutex_lock(&fwnode_link_lock);
114 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
115 		list_del(&link->s_hook);
116 		list_del(&link->c_hook);
117 		kfree(link);
118 	}
119 	mutex_unlock(&fwnode_link_lock);
120 }
121 
122 /**
123  * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
124  * @fwnode: fwnode whose consumer links need to be deleted
125  *
126  * Deletes all consumer links connecting directly to @fwnode.
127  */
128 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
129 {
130 	struct fwnode_link *link, *tmp;
131 
132 	mutex_lock(&fwnode_link_lock);
133 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
134 		list_del(&link->s_hook);
135 		list_del(&link->c_hook);
136 		kfree(link);
137 	}
138 	mutex_unlock(&fwnode_link_lock);
139 }
140 
141 /**
142  * fwnode_links_purge - Delete all links connected to a fwnode_handle.
143  * @fwnode: fwnode whose links needs to be deleted
144  *
145  * Deletes all links connecting directly to a fwnode.
146  */
147 void fwnode_links_purge(struct fwnode_handle *fwnode)
148 {
149 	fwnode_links_purge_suppliers(fwnode);
150 	fwnode_links_purge_consumers(fwnode);
151 }
152 
153 static void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
154 {
155 	struct fwnode_handle *child;
156 
157 	/* Don't purge consumer links of an added child */
158 	if (fwnode->dev)
159 		return;
160 
161 	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
162 	fwnode_links_purge_consumers(fwnode);
163 
164 	fwnode_for_each_available_child_node(fwnode, child)
165 		fw_devlink_purge_absent_suppliers(child);
166 }
167 
168 #ifdef CONFIG_SRCU
169 static DEFINE_MUTEX(device_links_lock);
170 DEFINE_STATIC_SRCU(device_links_srcu);
171 
172 static inline void device_links_write_lock(void)
173 {
174 	mutex_lock(&device_links_lock);
175 }
176 
177 static inline void device_links_write_unlock(void)
178 {
179 	mutex_unlock(&device_links_lock);
180 }
181 
182 int device_links_read_lock(void) __acquires(&device_links_srcu)
183 {
184 	return srcu_read_lock(&device_links_srcu);
185 }
186 
187 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
188 {
189 	srcu_read_unlock(&device_links_srcu, idx);
190 }
191 
192 int device_links_read_lock_held(void)
193 {
194 	return srcu_read_lock_held(&device_links_srcu);
195 }
196 #else /* !CONFIG_SRCU */
197 static DECLARE_RWSEM(device_links_lock);
198 
199 static inline void device_links_write_lock(void)
200 {
201 	down_write(&device_links_lock);
202 }
203 
204 static inline void device_links_write_unlock(void)
205 {
206 	up_write(&device_links_lock);
207 }
208 
209 int device_links_read_lock(void)
210 {
211 	down_read(&device_links_lock);
212 	return 0;
213 }
214 
215 void device_links_read_unlock(int not_used)
216 {
217 	up_read(&device_links_lock);
218 }
219 
220 #ifdef CONFIG_DEBUG_LOCK_ALLOC
221 int device_links_read_lock_held(void)
222 {
223 	return lockdep_is_held(&device_links_lock);
224 }
225 #endif
226 #endif /* !CONFIG_SRCU */
227 
228 static bool device_is_ancestor(struct device *dev, struct device *target)
229 {
230 	while (target->parent) {
231 		target = target->parent;
232 		if (dev == target)
233 			return true;
234 	}
235 	return false;
236 }
237 
238 /**
239  * device_is_dependent - Check if one device depends on another one
240  * @dev: Device to check dependencies for.
241  * @target: Device to check against.
242  *
243  * Check if @target depends on @dev or any device dependent on it (its child or
244  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
245  */
246 int device_is_dependent(struct device *dev, void *target)
247 {
248 	struct device_link *link;
249 	int ret;
250 
251 	/*
252 	 * The "ancestors" check is needed to catch the case when the target
253 	 * device has not been completely initialized yet and it is still
254 	 * missing from the list of children of its parent device.
255 	 */
256 	if (dev == target || device_is_ancestor(dev, target))
257 		return 1;
258 
259 	ret = device_for_each_child(dev, target, device_is_dependent);
260 	if (ret)
261 		return ret;
262 
263 	list_for_each_entry(link, &dev->links.consumers, s_node) {
264 		if ((link->flags & ~DL_FLAG_INFERRED) ==
265 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
266 			continue;
267 
268 		if (link->consumer == target)
269 			return 1;
270 
271 		ret = device_is_dependent(link->consumer, target);
272 		if (ret)
273 			break;
274 	}
275 	return ret;
276 }
277 
278 static void device_link_init_status(struct device_link *link,
279 				    struct device *consumer,
280 				    struct device *supplier)
281 {
282 	switch (supplier->links.status) {
283 	case DL_DEV_PROBING:
284 		switch (consumer->links.status) {
285 		case DL_DEV_PROBING:
286 			/*
287 			 * A consumer driver can create a link to a supplier
288 			 * that has not completed its probing yet as long as it
289 			 * knows that the supplier is already functional (for
290 			 * example, it has just acquired some resources from the
291 			 * supplier).
292 			 */
293 			link->status = DL_STATE_CONSUMER_PROBE;
294 			break;
295 		default:
296 			link->status = DL_STATE_DORMANT;
297 			break;
298 		}
299 		break;
300 	case DL_DEV_DRIVER_BOUND:
301 		switch (consumer->links.status) {
302 		case DL_DEV_PROBING:
303 			link->status = DL_STATE_CONSUMER_PROBE;
304 			break;
305 		case DL_DEV_DRIVER_BOUND:
306 			link->status = DL_STATE_ACTIVE;
307 			break;
308 		default:
309 			link->status = DL_STATE_AVAILABLE;
310 			break;
311 		}
312 		break;
313 	case DL_DEV_UNBINDING:
314 		link->status = DL_STATE_SUPPLIER_UNBIND;
315 		break;
316 	default:
317 		link->status = DL_STATE_DORMANT;
318 		break;
319 	}
320 }
321 
322 static int device_reorder_to_tail(struct device *dev, void *not_used)
323 {
324 	struct device_link *link;
325 
326 	/*
327 	 * Devices that have not been registered yet will be put to the ends
328 	 * of the lists during the registration, so skip them here.
329 	 */
330 	if (device_is_registered(dev))
331 		devices_kset_move_last(dev);
332 
333 	if (device_pm_initialized(dev))
334 		device_pm_move_last(dev);
335 
336 	device_for_each_child(dev, NULL, device_reorder_to_tail);
337 	list_for_each_entry(link, &dev->links.consumers, s_node) {
338 		if ((link->flags & ~DL_FLAG_INFERRED) ==
339 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
340 			continue;
341 		device_reorder_to_tail(link->consumer, NULL);
342 	}
343 
344 	return 0;
345 }
346 
347 /**
348  * device_pm_move_to_tail - Move set of devices to the end of device lists
349  * @dev: Device to move
350  *
351  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
352  *
353  * It moves the @dev along with all of its children and all of its consumers
354  * to the ends of the device_kset and dpm_list, recursively.
355  */
356 void device_pm_move_to_tail(struct device *dev)
357 {
358 	int idx;
359 
360 	idx = device_links_read_lock();
361 	device_pm_lock();
362 	device_reorder_to_tail(dev, NULL);
363 	device_pm_unlock();
364 	device_links_read_unlock(idx);
365 }
366 
367 #define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
368 
369 static ssize_t status_show(struct device *dev,
370 			   struct device_attribute *attr, char *buf)
371 {
372 	const char *output;
373 
374 	switch (to_devlink(dev)->status) {
375 	case DL_STATE_NONE:
376 		output = "not tracked";
377 		break;
378 	case DL_STATE_DORMANT:
379 		output = "dormant";
380 		break;
381 	case DL_STATE_AVAILABLE:
382 		output = "available";
383 		break;
384 	case DL_STATE_CONSUMER_PROBE:
385 		output = "consumer probing";
386 		break;
387 	case DL_STATE_ACTIVE:
388 		output = "active";
389 		break;
390 	case DL_STATE_SUPPLIER_UNBIND:
391 		output = "supplier unbinding";
392 		break;
393 	default:
394 		output = "unknown";
395 		break;
396 	}
397 
398 	return sysfs_emit(buf, "%s\n", output);
399 }
400 static DEVICE_ATTR_RO(status);
401 
402 static ssize_t auto_remove_on_show(struct device *dev,
403 				   struct device_attribute *attr, char *buf)
404 {
405 	struct device_link *link = to_devlink(dev);
406 	const char *output;
407 
408 	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
409 		output = "supplier unbind";
410 	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
411 		output = "consumer unbind";
412 	else
413 		output = "never";
414 
415 	return sysfs_emit(buf, "%s\n", output);
416 }
417 static DEVICE_ATTR_RO(auto_remove_on);
418 
419 static ssize_t runtime_pm_show(struct device *dev,
420 			       struct device_attribute *attr, char *buf)
421 {
422 	struct device_link *link = to_devlink(dev);
423 
424 	return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
425 }
426 static DEVICE_ATTR_RO(runtime_pm);
427 
428 static ssize_t sync_state_only_show(struct device *dev,
429 				    struct device_attribute *attr, char *buf)
430 {
431 	struct device_link *link = to_devlink(dev);
432 
433 	return sysfs_emit(buf, "%d\n",
434 			  !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
435 }
436 static DEVICE_ATTR_RO(sync_state_only);
437 
438 static struct attribute *devlink_attrs[] = {
439 	&dev_attr_status.attr,
440 	&dev_attr_auto_remove_on.attr,
441 	&dev_attr_runtime_pm.attr,
442 	&dev_attr_sync_state_only.attr,
443 	NULL,
444 };
445 ATTRIBUTE_GROUPS(devlink);
446 
447 static void device_link_free(struct device_link *link)
448 {
449 	while (refcount_dec_not_one(&link->rpm_active))
450 		pm_runtime_put(link->supplier);
451 
452 	put_device(link->consumer);
453 	put_device(link->supplier);
454 	kfree(link);
455 }
456 
457 #ifdef CONFIG_SRCU
458 static void __device_link_free_srcu(struct rcu_head *rhead)
459 {
460 	device_link_free(container_of(rhead, struct device_link, rcu_head));
461 }
462 
463 static void devlink_dev_release(struct device *dev)
464 {
465 	struct device_link *link = to_devlink(dev);
466 
467 	call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
468 }
469 #else
470 static void devlink_dev_release(struct device *dev)
471 {
472 	device_link_free(to_devlink(dev));
473 }
474 #endif
475 
476 static struct class devlink_class = {
477 	.name = "devlink",
478 	.owner = THIS_MODULE,
479 	.dev_groups = devlink_groups,
480 	.dev_release = devlink_dev_release,
481 };
482 
483 static int devlink_add_symlinks(struct device *dev,
484 				struct class_interface *class_intf)
485 {
486 	int ret;
487 	size_t len;
488 	struct device_link *link = to_devlink(dev);
489 	struct device *sup = link->supplier;
490 	struct device *con = link->consumer;
491 	char *buf;
492 
493 	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
494 		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
495 	len += strlen(":");
496 	len += strlen("supplier:") + 1;
497 	buf = kzalloc(len, GFP_KERNEL);
498 	if (!buf)
499 		return -ENOMEM;
500 
501 	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
502 	if (ret)
503 		goto out;
504 
505 	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
506 	if (ret)
507 		goto err_con;
508 
509 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
510 	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
511 	if (ret)
512 		goto err_con_dev;
513 
514 	snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
515 	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
516 	if (ret)
517 		goto err_sup_dev;
518 
519 	goto out;
520 
521 err_sup_dev:
522 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
523 	sysfs_remove_link(&sup->kobj, buf);
524 err_con_dev:
525 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
526 err_con:
527 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
528 out:
529 	kfree(buf);
530 	return ret;
531 }
532 
533 static void devlink_remove_symlinks(struct device *dev,
534 				   struct class_interface *class_intf)
535 {
536 	struct device_link *link = to_devlink(dev);
537 	size_t len;
538 	struct device *sup = link->supplier;
539 	struct device *con = link->consumer;
540 	char *buf;
541 
542 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
543 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
544 
545 	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
546 		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
547 	len += strlen(":");
548 	len += strlen("supplier:") + 1;
549 	buf = kzalloc(len, GFP_KERNEL);
550 	if (!buf) {
551 		WARN(1, "Unable to properly free device link symlinks!\n");
552 		return;
553 	}
554 
555 	snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
556 	sysfs_remove_link(&con->kobj, buf);
557 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
558 	sysfs_remove_link(&sup->kobj, buf);
559 	kfree(buf);
560 }
561 
562 static struct class_interface devlink_class_intf = {
563 	.class = &devlink_class,
564 	.add_dev = devlink_add_symlinks,
565 	.remove_dev = devlink_remove_symlinks,
566 };
567 
568 static int __init devlink_class_init(void)
569 {
570 	int ret;
571 
572 	ret = class_register(&devlink_class);
573 	if (ret)
574 		return ret;
575 
576 	ret = class_interface_register(&devlink_class_intf);
577 	if (ret)
578 		class_unregister(&devlink_class);
579 
580 	return ret;
581 }
582 postcore_initcall(devlink_class_init);
583 
584 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
585 			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
586 			       DL_FLAG_AUTOPROBE_CONSUMER  | \
587 			       DL_FLAG_SYNC_STATE_ONLY | \
588 			       DL_FLAG_INFERRED)
589 
590 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
591 			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
592 
593 /**
594  * device_link_add - Create a link between two devices.
595  * @consumer: Consumer end of the link.
596  * @supplier: Supplier end of the link.
597  * @flags: Link flags.
598  *
599  * The caller is responsible for the proper synchronization of the link creation
600  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
601  * runtime PM framework to take the link into account.  Second, if the
602  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
603  * be forced into the active meta state and reference-counted upon the creation
604  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
605  * ignored.
606  *
607  * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
608  * expected to release the link returned by it directly with the help of either
609  * device_link_del() or device_link_remove().
610  *
611  * If that flag is not set, however, the caller of this function is handing the
612  * management of the link over to the driver core entirely and its return value
613  * can only be used to check whether or not the link is present.  In that case,
614  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
615  * flags can be used to indicate to the driver core when the link can be safely
616  * deleted.  Namely, setting one of them in @flags indicates to the driver core
617  * that the link is not going to be used (by the given caller of this function)
618  * after unbinding the consumer or supplier driver, respectively, from its
619  * device, so the link can be deleted at that point.  If none of them is set,
620  * the link will be maintained until one of the devices pointed to by it (either
621  * the consumer or the supplier) is unregistered.
622  *
623  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
624  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
625  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
626  * be used to request the driver core to automatically probe for a consumer
627  * driver after successfully binding a driver to the supplier device.
628  *
629  * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
630  * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
631  * the same time is invalid and will cause NULL to be returned upfront.
632  * However, if a device link between the given @consumer and @supplier pair
633  * exists already when this function is called for them, the existing link will
634  * be returned regardless of its current type and status (the link's flags may
635  * be modified then).  The caller of this function is then expected to treat
636  * the link as though it has just been created, so (in particular) if
637  * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
638  * explicitly when not needed any more (as stated above).
639  *
640  * A side effect of the link creation is re-ordering of dpm_list and the
641  * devices_kset list by moving the consumer device and all devices depending
642  * on it to the ends of these lists (that does not happen to devices that have
643  * not been registered when this function is called).
644  *
645  * The supplier device is required to be registered when this function is called
646  * and NULL will be returned if that is not the case.  The consumer device need
647  * not be registered, however.
648  */
649 struct device_link *device_link_add(struct device *consumer,
650 				    struct device *supplier, u32 flags)
651 {
652 	struct device_link *link;
653 
654 	if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
655 	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
656 	    (flags & DL_FLAG_SYNC_STATE_ONLY &&
657 	     (flags & ~DL_FLAG_INFERRED) != DL_FLAG_SYNC_STATE_ONLY) ||
658 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
659 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
660 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
661 		return NULL;
662 
663 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
664 		if (pm_runtime_get_sync(supplier) < 0) {
665 			pm_runtime_put_noidle(supplier);
666 			return NULL;
667 		}
668 	}
669 
670 	if (!(flags & DL_FLAG_STATELESS))
671 		flags |= DL_FLAG_MANAGED;
672 
673 	device_links_write_lock();
674 	device_pm_lock();
675 
676 	/*
677 	 * If the supplier has not been fully registered yet or there is a
678 	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
679 	 * the supplier already in the graph, return NULL. If the link is a
680 	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
681 	 * because it only affects sync_state() callbacks.
682 	 */
683 	if (!device_pm_initialized(supplier)
684 	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
685 		  device_is_dependent(consumer, supplier))) {
686 		link = NULL;
687 		goto out;
688 	}
689 
690 	/*
691 	 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
692 	 * So, only create it if the consumer hasn't probed yet.
693 	 */
694 	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
695 	    consumer->links.status != DL_DEV_NO_DRIVER &&
696 	    consumer->links.status != DL_DEV_PROBING) {
697 		link = NULL;
698 		goto out;
699 	}
700 
701 	/*
702 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
703 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
704 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
705 	 */
706 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
707 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
708 
709 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
710 		if (link->consumer != consumer)
711 			continue;
712 
713 		if (link->flags & DL_FLAG_INFERRED &&
714 		    !(flags & DL_FLAG_INFERRED))
715 			link->flags &= ~DL_FLAG_INFERRED;
716 
717 		if (flags & DL_FLAG_PM_RUNTIME) {
718 			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
719 				pm_runtime_new_link(consumer);
720 				link->flags |= DL_FLAG_PM_RUNTIME;
721 			}
722 			if (flags & DL_FLAG_RPM_ACTIVE)
723 				refcount_inc(&link->rpm_active);
724 		}
725 
726 		if (flags & DL_FLAG_STATELESS) {
727 			kref_get(&link->kref);
728 			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
729 			    !(link->flags & DL_FLAG_STATELESS)) {
730 				link->flags |= DL_FLAG_STATELESS;
731 				goto reorder;
732 			} else {
733 				link->flags |= DL_FLAG_STATELESS;
734 				goto out;
735 			}
736 		}
737 
738 		/*
739 		 * If the life time of the link following from the new flags is
740 		 * longer than indicated by the flags of the existing link,
741 		 * update the existing link to stay around longer.
742 		 */
743 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
744 			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
745 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
746 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
747 			}
748 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
749 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
750 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
751 		}
752 		if (!(link->flags & DL_FLAG_MANAGED)) {
753 			kref_get(&link->kref);
754 			link->flags |= DL_FLAG_MANAGED;
755 			device_link_init_status(link, consumer, supplier);
756 		}
757 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
758 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
759 			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
760 			goto reorder;
761 		}
762 
763 		goto out;
764 	}
765 
766 	link = kzalloc(sizeof(*link), GFP_KERNEL);
767 	if (!link)
768 		goto out;
769 
770 	refcount_set(&link->rpm_active, 1);
771 
772 	get_device(supplier);
773 	link->supplier = supplier;
774 	INIT_LIST_HEAD(&link->s_node);
775 	get_device(consumer);
776 	link->consumer = consumer;
777 	INIT_LIST_HEAD(&link->c_node);
778 	link->flags = flags;
779 	kref_init(&link->kref);
780 
781 	link->link_dev.class = &devlink_class;
782 	device_set_pm_not_required(&link->link_dev);
783 	dev_set_name(&link->link_dev, "%s:%s--%s:%s",
784 		     dev_bus_name(supplier), dev_name(supplier),
785 		     dev_bus_name(consumer), dev_name(consumer));
786 	if (device_register(&link->link_dev)) {
787 		put_device(consumer);
788 		put_device(supplier);
789 		kfree(link);
790 		link = NULL;
791 		goto out;
792 	}
793 
794 	if (flags & DL_FLAG_PM_RUNTIME) {
795 		if (flags & DL_FLAG_RPM_ACTIVE)
796 			refcount_inc(&link->rpm_active);
797 
798 		pm_runtime_new_link(consumer);
799 	}
800 
801 	/* Determine the initial link state. */
802 	if (flags & DL_FLAG_STATELESS)
803 		link->status = DL_STATE_NONE;
804 	else
805 		device_link_init_status(link, consumer, supplier);
806 
807 	/*
808 	 * Some callers expect the link creation during consumer driver probe to
809 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
810 	 */
811 	if (link->status == DL_STATE_CONSUMER_PROBE &&
812 	    flags & DL_FLAG_PM_RUNTIME)
813 		pm_runtime_resume(supplier);
814 
815 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
816 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
817 
818 	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
819 		dev_dbg(consumer,
820 			"Linked as a sync state only consumer to %s\n",
821 			dev_name(supplier));
822 		goto out;
823 	}
824 
825 reorder:
826 	/*
827 	 * Move the consumer and all of the devices depending on it to the end
828 	 * of dpm_list and the devices_kset list.
829 	 *
830 	 * It is necessary to hold dpm_list locked throughout all that or else
831 	 * we may end up suspending with a wrong ordering of it.
832 	 */
833 	device_reorder_to_tail(consumer, NULL);
834 
835 	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
836 
837 out:
838 	device_pm_unlock();
839 	device_links_write_unlock();
840 
841 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
842 		pm_runtime_put(supplier);
843 
844 	return link;
845 }
846 EXPORT_SYMBOL_GPL(device_link_add);
847 
848 #ifdef CONFIG_SRCU
849 static void __device_link_del(struct kref *kref)
850 {
851 	struct device_link *link = container_of(kref, struct device_link, kref);
852 
853 	dev_dbg(link->consumer, "Dropping the link to %s\n",
854 		dev_name(link->supplier));
855 
856 	pm_runtime_drop_link(link);
857 
858 	list_del_rcu(&link->s_node);
859 	list_del_rcu(&link->c_node);
860 	device_unregister(&link->link_dev);
861 }
862 #else /* !CONFIG_SRCU */
863 static void __device_link_del(struct kref *kref)
864 {
865 	struct device_link *link = container_of(kref, struct device_link, kref);
866 
867 	dev_info(link->consumer, "Dropping the link to %s\n",
868 		 dev_name(link->supplier));
869 
870 	pm_runtime_drop_link(link);
871 
872 	list_del(&link->s_node);
873 	list_del(&link->c_node);
874 	device_unregister(&link->link_dev);
875 }
876 #endif /* !CONFIG_SRCU */
877 
878 static void device_link_put_kref(struct device_link *link)
879 {
880 	if (link->flags & DL_FLAG_STATELESS)
881 		kref_put(&link->kref, __device_link_del);
882 	else
883 		WARN(1, "Unable to drop a managed device link reference\n");
884 }
885 
886 /**
887  * device_link_del - Delete a stateless link between two devices.
888  * @link: Device link to delete.
889  *
890  * The caller must ensure proper synchronization of this function with runtime
891  * PM.  If the link was added multiple times, it needs to be deleted as often.
892  * Care is required for hotplugged devices:  Their links are purged on removal
893  * and calling device_link_del() is then no longer allowed.
894  */
895 void device_link_del(struct device_link *link)
896 {
897 	device_links_write_lock();
898 	device_link_put_kref(link);
899 	device_links_write_unlock();
900 }
901 EXPORT_SYMBOL_GPL(device_link_del);
902 
903 /**
904  * device_link_remove - Delete a stateless link between two devices.
905  * @consumer: Consumer end of the link.
906  * @supplier: Supplier end of the link.
907  *
908  * The caller must ensure proper synchronization of this function with runtime
909  * PM.
910  */
911 void device_link_remove(void *consumer, struct device *supplier)
912 {
913 	struct device_link *link;
914 
915 	if (WARN_ON(consumer == supplier))
916 		return;
917 
918 	device_links_write_lock();
919 
920 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
921 		if (link->consumer == consumer) {
922 			device_link_put_kref(link);
923 			break;
924 		}
925 	}
926 
927 	device_links_write_unlock();
928 }
929 EXPORT_SYMBOL_GPL(device_link_remove);
930 
931 static void device_links_missing_supplier(struct device *dev)
932 {
933 	struct device_link *link;
934 
935 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
936 		if (link->status != DL_STATE_CONSUMER_PROBE)
937 			continue;
938 
939 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
940 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
941 		} else {
942 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
943 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
944 		}
945 	}
946 }
947 
948 /**
949  * device_links_check_suppliers - Check presence of supplier drivers.
950  * @dev: Consumer device.
951  *
952  * Check links from this device to any suppliers.  Walk the list of the device's
953  * links to suppliers and see if all of them are available.  If not, simply
954  * return -EPROBE_DEFER.
955  *
956  * We need to guarantee that the supplier will not go away after the check has
957  * been positive here.  It only can go away in __device_release_driver() and
958  * that function  checks the device's links to consumers.  This means we need to
959  * mark the link as "consumer probe in progress" to make the supplier removal
960  * wait for us to complete (or bad things may happen).
961  *
962  * Links without the DL_FLAG_MANAGED flag set are ignored.
963  */
964 int device_links_check_suppliers(struct device *dev)
965 {
966 	struct device_link *link;
967 	int ret = 0;
968 
969 	/*
970 	 * Device waiting for supplier to become available is not allowed to
971 	 * probe.
972 	 */
973 	mutex_lock(&fwnode_link_lock);
974 	if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) &&
975 	    !fw_devlink_is_permissive()) {
976 		dev_dbg(dev, "probe deferral - wait for supplier %pfwP\n",
977 			list_first_entry(&dev->fwnode->suppliers,
978 			struct fwnode_link,
979 			c_hook)->supplier);
980 		mutex_unlock(&fwnode_link_lock);
981 		return -EPROBE_DEFER;
982 	}
983 	mutex_unlock(&fwnode_link_lock);
984 
985 	device_links_write_lock();
986 
987 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
988 		if (!(link->flags & DL_FLAG_MANAGED))
989 			continue;
990 
991 		if (link->status != DL_STATE_AVAILABLE &&
992 		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
993 			device_links_missing_supplier(dev);
994 			dev_dbg(dev, "probe deferral - supplier %s not ready\n",
995 				dev_name(link->supplier));
996 			ret = -EPROBE_DEFER;
997 			break;
998 		}
999 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1000 	}
1001 	dev->links.status = DL_DEV_PROBING;
1002 
1003 	device_links_write_unlock();
1004 	return ret;
1005 }
1006 
1007 /**
1008  * __device_links_queue_sync_state - Queue a device for sync_state() callback
1009  * @dev: Device to call sync_state() on
1010  * @list: List head to queue the @dev on
1011  *
1012  * Queues a device for a sync_state() callback when the device links write lock
1013  * isn't held. This allows the sync_state() execution flow to use device links
1014  * APIs.  The caller must ensure this function is called with
1015  * device_links_write_lock() held.
1016  *
1017  * This function does a get_device() to make sure the device is not freed while
1018  * on this list.
1019  *
1020  * So the caller must also ensure that device_links_flush_sync_list() is called
1021  * as soon as the caller releases device_links_write_lock().  This is necessary
1022  * to make sure the sync_state() is called in a timely fashion and the
1023  * put_device() is called on this device.
1024  */
1025 static void __device_links_queue_sync_state(struct device *dev,
1026 					    struct list_head *list)
1027 {
1028 	struct device_link *link;
1029 
1030 	if (!dev_has_sync_state(dev))
1031 		return;
1032 	if (dev->state_synced)
1033 		return;
1034 
1035 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1036 		if (!(link->flags & DL_FLAG_MANAGED))
1037 			continue;
1038 		if (link->status != DL_STATE_ACTIVE)
1039 			return;
1040 	}
1041 
1042 	/*
1043 	 * Set the flag here to avoid adding the same device to a list more
1044 	 * than once. This can happen if new consumers get added to the device
1045 	 * and probed before the list is flushed.
1046 	 */
1047 	dev->state_synced = true;
1048 
1049 	if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1050 		return;
1051 
1052 	get_device(dev);
1053 	list_add_tail(&dev->links.defer_sync, list);
1054 }
1055 
1056 /**
1057  * device_links_flush_sync_list - Call sync_state() on a list of devices
1058  * @list: List of devices to call sync_state() on
1059  * @dont_lock_dev: Device for which lock is already held by the caller
1060  *
1061  * Calls sync_state() on all the devices that have been queued for it. This
1062  * function is used in conjunction with __device_links_queue_sync_state(). The
1063  * @dont_lock_dev parameter is useful when this function is called from a
1064  * context where a device lock is already held.
1065  */
1066 static void device_links_flush_sync_list(struct list_head *list,
1067 					 struct device *dont_lock_dev)
1068 {
1069 	struct device *dev, *tmp;
1070 
1071 	list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1072 		list_del_init(&dev->links.defer_sync);
1073 
1074 		if (dev != dont_lock_dev)
1075 			device_lock(dev);
1076 
1077 		if (dev->bus->sync_state)
1078 			dev->bus->sync_state(dev);
1079 		else if (dev->driver && dev->driver->sync_state)
1080 			dev->driver->sync_state(dev);
1081 
1082 		if (dev != dont_lock_dev)
1083 			device_unlock(dev);
1084 
1085 		put_device(dev);
1086 	}
1087 }
1088 
1089 void device_links_supplier_sync_state_pause(void)
1090 {
1091 	device_links_write_lock();
1092 	defer_sync_state_count++;
1093 	device_links_write_unlock();
1094 }
1095 
1096 void device_links_supplier_sync_state_resume(void)
1097 {
1098 	struct device *dev, *tmp;
1099 	LIST_HEAD(sync_list);
1100 
1101 	device_links_write_lock();
1102 	if (!defer_sync_state_count) {
1103 		WARN(true, "Unmatched sync_state pause/resume!");
1104 		goto out;
1105 	}
1106 	defer_sync_state_count--;
1107 	if (defer_sync_state_count)
1108 		goto out;
1109 
1110 	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1111 		/*
1112 		 * Delete from deferred_sync list before queuing it to
1113 		 * sync_list because defer_sync is used for both lists.
1114 		 */
1115 		list_del_init(&dev->links.defer_sync);
1116 		__device_links_queue_sync_state(dev, &sync_list);
1117 	}
1118 out:
1119 	device_links_write_unlock();
1120 
1121 	device_links_flush_sync_list(&sync_list, NULL);
1122 }
1123 
1124 static int sync_state_resume_initcall(void)
1125 {
1126 	device_links_supplier_sync_state_resume();
1127 	return 0;
1128 }
1129 late_initcall(sync_state_resume_initcall);
1130 
1131 static void __device_links_supplier_defer_sync(struct device *sup)
1132 {
1133 	if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1134 		list_add_tail(&sup->links.defer_sync, &deferred_sync);
1135 }
1136 
1137 static void device_link_drop_managed(struct device_link *link)
1138 {
1139 	link->flags &= ~DL_FLAG_MANAGED;
1140 	WRITE_ONCE(link->status, DL_STATE_NONE);
1141 	kref_put(&link->kref, __device_link_del);
1142 }
1143 
1144 static ssize_t waiting_for_supplier_show(struct device *dev,
1145 					 struct device_attribute *attr,
1146 					 char *buf)
1147 {
1148 	bool val;
1149 
1150 	device_lock(dev);
1151 	val = !list_empty(&dev->fwnode->suppliers);
1152 	device_unlock(dev);
1153 	return sysfs_emit(buf, "%u\n", val);
1154 }
1155 static DEVICE_ATTR_RO(waiting_for_supplier);
1156 
1157 /**
1158  * device_links_force_bind - Prepares device to be force bound
1159  * @dev: Consumer device.
1160  *
1161  * device_bind_driver() force binds a device to a driver without calling any
1162  * driver probe functions. So the consumer really isn't going to wait for any
1163  * supplier before it's bound to the driver. We still want the device link
1164  * states to be sensible when this happens.
1165  *
1166  * In preparation for device_bind_driver(), this function goes through each
1167  * supplier device links and checks if the supplier is bound. If it is, then
1168  * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1169  * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1170  */
1171 void device_links_force_bind(struct device *dev)
1172 {
1173 	struct device_link *link, *ln;
1174 
1175 	device_links_write_lock();
1176 
1177 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1178 		if (!(link->flags & DL_FLAG_MANAGED))
1179 			continue;
1180 
1181 		if (link->status != DL_STATE_AVAILABLE) {
1182 			device_link_drop_managed(link);
1183 			continue;
1184 		}
1185 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1186 	}
1187 	dev->links.status = DL_DEV_PROBING;
1188 
1189 	device_links_write_unlock();
1190 }
1191 
1192 /**
1193  * device_links_driver_bound - Update device links after probing its driver.
1194  * @dev: Device to update the links for.
1195  *
1196  * The probe has been successful, so update links from this device to any
1197  * consumers by changing their status to "available".
1198  *
1199  * Also change the status of @dev's links to suppliers to "active".
1200  *
1201  * Links without the DL_FLAG_MANAGED flag set are ignored.
1202  */
1203 void device_links_driver_bound(struct device *dev)
1204 {
1205 	struct device_link *link, *ln;
1206 	LIST_HEAD(sync_list);
1207 
1208 	/*
1209 	 * If a device binds successfully, it's expected to have created all
1210 	 * the device links it needs to or make new device links as it needs
1211 	 * them. So, fw_devlink no longer needs to create device links to any
1212 	 * of the device's suppliers.
1213 	 *
1214 	 * Also, if a child firmware node of this bound device is not added as
1215 	 * a device by now, assume it is never going to be added and make sure
1216 	 * other devices don't defer probe indefinitely by waiting for such a
1217 	 * child device.
1218 	 */
1219 	if (dev->fwnode && dev->fwnode->dev == dev) {
1220 		struct fwnode_handle *child;
1221 		fwnode_links_purge_suppliers(dev->fwnode);
1222 		fwnode_for_each_available_child_node(dev->fwnode, child)
1223 			fw_devlink_purge_absent_suppliers(child);
1224 	}
1225 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1226 
1227 	device_links_write_lock();
1228 
1229 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1230 		if (!(link->flags & DL_FLAG_MANAGED))
1231 			continue;
1232 
1233 		/*
1234 		 * Links created during consumer probe may be in the "consumer
1235 		 * probe" state to start with if the supplier is still probing
1236 		 * when they are created and they may become "active" if the
1237 		 * consumer probe returns first.  Skip them here.
1238 		 */
1239 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1240 		    link->status == DL_STATE_ACTIVE)
1241 			continue;
1242 
1243 		WARN_ON(link->status != DL_STATE_DORMANT);
1244 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1245 
1246 		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1247 			driver_deferred_probe_add(link->consumer);
1248 	}
1249 
1250 	if (defer_sync_state_count)
1251 		__device_links_supplier_defer_sync(dev);
1252 	else
1253 		__device_links_queue_sync_state(dev, &sync_list);
1254 
1255 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1256 		struct device *supplier;
1257 
1258 		if (!(link->flags & DL_FLAG_MANAGED))
1259 			continue;
1260 
1261 		supplier = link->supplier;
1262 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1263 			/*
1264 			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1265 			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1266 			 * save to drop the managed link completely.
1267 			 */
1268 			device_link_drop_managed(link);
1269 		} else {
1270 			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1271 			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1272 		}
1273 
1274 		/*
1275 		 * This needs to be done even for the deleted
1276 		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1277 		 * device link that was preventing the supplier from getting a
1278 		 * sync_state() call.
1279 		 */
1280 		if (defer_sync_state_count)
1281 			__device_links_supplier_defer_sync(supplier);
1282 		else
1283 			__device_links_queue_sync_state(supplier, &sync_list);
1284 	}
1285 
1286 	dev->links.status = DL_DEV_DRIVER_BOUND;
1287 
1288 	device_links_write_unlock();
1289 
1290 	device_links_flush_sync_list(&sync_list, dev);
1291 }
1292 
1293 /**
1294  * __device_links_no_driver - Update links of a device without a driver.
1295  * @dev: Device without a drvier.
1296  *
1297  * Delete all non-persistent links from this device to any suppliers.
1298  *
1299  * Persistent links stay around, but their status is changed to "available",
1300  * unless they already are in the "supplier unbind in progress" state in which
1301  * case they need not be updated.
1302  *
1303  * Links without the DL_FLAG_MANAGED flag set are ignored.
1304  */
1305 static void __device_links_no_driver(struct device *dev)
1306 {
1307 	struct device_link *link, *ln;
1308 
1309 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1310 		if (!(link->flags & DL_FLAG_MANAGED))
1311 			continue;
1312 
1313 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1314 			device_link_drop_managed(link);
1315 			continue;
1316 		}
1317 
1318 		if (link->status != DL_STATE_CONSUMER_PROBE &&
1319 		    link->status != DL_STATE_ACTIVE)
1320 			continue;
1321 
1322 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1323 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1324 		} else {
1325 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1326 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1327 		}
1328 	}
1329 
1330 	dev->links.status = DL_DEV_NO_DRIVER;
1331 }
1332 
1333 /**
1334  * device_links_no_driver - Update links after failing driver probe.
1335  * @dev: Device whose driver has just failed to probe.
1336  *
1337  * Clean up leftover links to consumers for @dev and invoke
1338  * %__device_links_no_driver() to update links to suppliers for it as
1339  * appropriate.
1340  *
1341  * Links without the DL_FLAG_MANAGED flag set are ignored.
1342  */
1343 void device_links_no_driver(struct device *dev)
1344 {
1345 	struct device_link *link;
1346 
1347 	device_links_write_lock();
1348 
1349 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1350 		if (!(link->flags & DL_FLAG_MANAGED))
1351 			continue;
1352 
1353 		/*
1354 		 * The probe has failed, so if the status of the link is
1355 		 * "consumer probe" or "active", it must have been added by
1356 		 * a probing consumer while this device was still probing.
1357 		 * Change its state to "dormant", as it represents a valid
1358 		 * relationship, but it is not functionally meaningful.
1359 		 */
1360 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1361 		    link->status == DL_STATE_ACTIVE)
1362 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1363 	}
1364 
1365 	__device_links_no_driver(dev);
1366 
1367 	device_links_write_unlock();
1368 }
1369 
1370 /**
1371  * device_links_driver_cleanup - Update links after driver removal.
1372  * @dev: Device whose driver has just gone away.
1373  *
1374  * Update links to consumers for @dev by changing their status to "dormant" and
1375  * invoke %__device_links_no_driver() to update links to suppliers for it as
1376  * appropriate.
1377  *
1378  * Links without the DL_FLAG_MANAGED flag set are ignored.
1379  */
1380 void device_links_driver_cleanup(struct device *dev)
1381 {
1382 	struct device_link *link, *ln;
1383 
1384 	device_links_write_lock();
1385 
1386 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1387 		if (!(link->flags & DL_FLAG_MANAGED))
1388 			continue;
1389 
1390 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1391 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1392 
1393 		/*
1394 		 * autoremove the links between this @dev and its consumer
1395 		 * devices that are not active, i.e. where the link state
1396 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1397 		 */
1398 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1399 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1400 			device_link_drop_managed(link);
1401 
1402 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1403 	}
1404 
1405 	list_del_init(&dev->links.defer_sync);
1406 	__device_links_no_driver(dev);
1407 
1408 	device_links_write_unlock();
1409 }
1410 
1411 /**
1412  * device_links_busy - Check if there are any busy links to consumers.
1413  * @dev: Device to check.
1414  *
1415  * Check each consumer of the device and return 'true' if its link's status
1416  * is one of "consumer probe" or "active" (meaning that the given consumer is
1417  * probing right now or its driver is present).  Otherwise, change the link
1418  * state to "supplier unbind" to prevent the consumer from being probed
1419  * successfully going forward.
1420  *
1421  * Return 'false' if there are no probing or active consumers.
1422  *
1423  * Links without the DL_FLAG_MANAGED flag set are ignored.
1424  */
1425 bool device_links_busy(struct device *dev)
1426 {
1427 	struct device_link *link;
1428 	bool ret = false;
1429 
1430 	device_links_write_lock();
1431 
1432 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1433 		if (!(link->flags & DL_FLAG_MANAGED))
1434 			continue;
1435 
1436 		if (link->status == DL_STATE_CONSUMER_PROBE
1437 		    || link->status == DL_STATE_ACTIVE) {
1438 			ret = true;
1439 			break;
1440 		}
1441 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1442 	}
1443 
1444 	dev->links.status = DL_DEV_UNBINDING;
1445 
1446 	device_links_write_unlock();
1447 	return ret;
1448 }
1449 
1450 /**
1451  * device_links_unbind_consumers - Force unbind consumers of the given device.
1452  * @dev: Device to unbind the consumers of.
1453  *
1454  * Walk the list of links to consumers for @dev and if any of them is in the
1455  * "consumer probe" state, wait for all device probes in progress to complete
1456  * and start over.
1457  *
1458  * If that's not the case, change the status of the link to "supplier unbind"
1459  * and check if the link was in the "active" state.  If so, force the consumer
1460  * driver to unbind and start over (the consumer will not re-probe as we have
1461  * changed the state of the link already).
1462  *
1463  * Links without the DL_FLAG_MANAGED flag set are ignored.
1464  */
1465 void device_links_unbind_consumers(struct device *dev)
1466 {
1467 	struct device_link *link;
1468 
1469  start:
1470 	device_links_write_lock();
1471 
1472 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1473 		enum device_link_state status;
1474 
1475 		if (!(link->flags & DL_FLAG_MANAGED) ||
1476 		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1477 			continue;
1478 
1479 		status = link->status;
1480 		if (status == DL_STATE_CONSUMER_PROBE) {
1481 			device_links_write_unlock();
1482 
1483 			wait_for_device_probe();
1484 			goto start;
1485 		}
1486 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1487 		if (status == DL_STATE_ACTIVE) {
1488 			struct device *consumer = link->consumer;
1489 
1490 			get_device(consumer);
1491 
1492 			device_links_write_unlock();
1493 
1494 			device_release_driver_internal(consumer, NULL,
1495 						       consumer->parent);
1496 			put_device(consumer);
1497 			goto start;
1498 		}
1499 	}
1500 
1501 	device_links_write_unlock();
1502 }
1503 
1504 /**
1505  * device_links_purge - Delete existing links to other devices.
1506  * @dev: Target device.
1507  */
1508 static void device_links_purge(struct device *dev)
1509 {
1510 	struct device_link *link, *ln;
1511 
1512 	if (dev->class == &devlink_class)
1513 		return;
1514 
1515 	/*
1516 	 * Delete all of the remaining links from this device to any other
1517 	 * devices (either consumers or suppliers).
1518 	 */
1519 	device_links_write_lock();
1520 
1521 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1522 		WARN_ON(link->status == DL_STATE_ACTIVE);
1523 		__device_link_del(&link->kref);
1524 	}
1525 
1526 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1527 		WARN_ON(link->status != DL_STATE_DORMANT &&
1528 			link->status != DL_STATE_NONE);
1529 		__device_link_del(&link->kref);
1530 	}
1531 
1532 	device_links_write_unlock();
1533 }
1534 
1535 #define FW_DEVLINK_FLAGS_PERMISSIVE	(DL_FLAG_INFERRED | \
1536 					 DL_FLAG_SYNC_STATE_ONLY)
1537 #define FW_DEVLINK_FLAGS_ON		(DL_FLAG_INFERRED | \
1538 					 DL_FLAG_AUTOPROBE_CONSUMER)
1539 #define FW_DEVLINK_FLAGS_RPM		(FW_DEVLINK_FLAGS_ON | \
1540 					 DL_FLAG_PM_RUNTIME)
1541 
1542 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1543 static int __init fw_devlink_setup(char *arg)
1544 {
1545 	if (!arg)
1546 		return -EINVAL;
1547 
1548 	if (strcmp(arg, "off") == 0) {
1549 		fw_devlink_flags = 0;
1550 	} else if (strcmp(arg, "permissive") == 0) {
1551 		fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1552 	} else if (strcmp(arg, "on") == 0) {
1553 		fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1554 	} else if (strcmp(arg, "rpm") == 0) {
1555 		fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1556 	}
1557 	return 0;
1558 }
1559 early_param("fw_devlink", fw_devlink_setup);
1560 
1561 static bool fw_devlink_strict;
1562 static int __init fw_devlink_strict_setup(char *arg)
1563 {
1564 	return strtobool(arg, &fw_devlink_strict);
1565 }
1566 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1567 
1568 u32 fw_devlink_get_flags(void)
1569 {
1570 	return fw_devlink_flags;
1571 }
1572 
1573 static bool fw_devlink_is_permissive(void)
1574 {
1575 	return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1576 }
1577 
1578 bool fw_devlink_is_strict(void)
1579 {
1580 	return fw_devlink_strict && !fw_devlink_is_permissive();
1581 }
1582 
1583 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1584 {
1585 	if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1586 		return;
1587 
1588 	fwnode_call_int_op(fwnode, add_links);
1589 	fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1590 }
1591 
1592 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1593 {
1594 	struct fwnode_handle *child = NULL;
1595 
1596 	fw_devlink_parse_fwnode(fwnode);
1597 
1598 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1599 		fw_devlink_parse_fwtree(child);
1600 }
1601 
1602 static void fw_devlink_relax_link(struct device_link *link)
1603 {
1604 	if (!(link->flags & DL_FLAG_INFERRED))
1605 		return;
1606 
1607 	if (link->flags == (DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE))
1608 		return;
1609 
1610 	pm_runtime_drop_link(link);
1611 	link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1612 	dev_dbg(link->consumer, "Relaxing link with %s\n",
1613 		dev_name(link->supplier));
1614 }
1615 
1616 static int fw_devlink_no_driver(struct device *dev, void *data)
1617 {
1618 	struct device_link *link = to_devlink(dev);
1619 
1620 	if (!link->supplier->can_match)
1621 		fw_devlink_relax_link(link);
1622 
1623 	return 0;
1624 }
1625 
1626 void fw_devlink_drivers_done(void)
1627 {
1628 	fw_devlink_drv_reg_done = true;
1629 	device_links_write_lock();
1630 	class_for_each_device(&devlink_class, NULL, NULL,
1631 			      fw_devlink_no_driver);
1632 	device_links_write_unlock();
1633 }
1634 
1635 static void fw_devlink_unblock_consumers(struct device *dev)
1636 {
1637 	struct device_link *link;
1638 
1639 	if (!fw_devlink_flags || fw_devlink_is_permissive())
1640 		return;
1641 
1642 	device_links_write_lock();
1643 	list_for_each_entry(link, &dev->links.consumers, s_node)
1644 		fw_devlink_relax_link(link);
1645 	device_links_write_unlock();
1646 }
1647 
1648 /**
1649  * fw_devlink_relax_cycle - Convert cyclic links to SYNC_STATE_ONLY links
1650  * @con: Device to check dependencies for.
1651  * @sup: Device to check against.
1652  *
1653  * Check if @sup depends on @con or any device dependent on it (its child or
1654  * its consumer etc).  When such a cyclic dependency is found, convert all
1655  * device links created solely by fw_devlink into SYNC_STATE_ONLY device links.
1656  * This is the equivalent of doing fw_devlink=permissive just between the
1657  * devices in the cycle. We need to do this because, at this point, fw_devlink
1658  * can't tell which of these dependencies is not a real dependency.
1659  *
1660  * Return 1 if a cycle is found. Otherwise, return 0.
1661  */
1662 static int fw_devlink_relax_cycle(struct device *con, void *sup)
1663 {
1664 	struct device_link *link;
1665 	int ret;
1666 
1667 	if (con == sup)
1668 		return 1;
1669 
1670 	ret = device_for_each_child(con, sup, fw_devlink_relax_cycle);
1671 	if (ret)
1672 		return ret;
1673 
1674 	list_for_each_entry(link, &con->links.consumers, s_node) {
1675 		if ((link->flags & ~DL_FLAG_INFERRED) ==
1676 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
1677 			continue;
1678 
1679 		if (!fw_devlink_relax_cycle(link->consumer, sup))
1680 			continue;
1681 
1682 		ret = 1;
1683 
1684 		fw_devlink_relax_link(link);
1685 	}
1686 	return ret;
1687 }
1688 
1689 /**
1690  * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
1691  * @con: consumer device for the device link
1692  * @sup_handle: fwnode handle of supplier
1693  * @flags: devlink flags
1694  *
1695  * This function will try to create a device link between the consumer device
1696  * @con and the supplier device represented by @sup_handle.
1697  *
1698  * The supplier has to be provided as a fwnode because incorrect cycles in
1699  * fwnode links can sometimes cause the supplier device to never be created.
1700  * This function detects such cases and returns an error if it cannot create a
1701  * device link from the consumer to a missing supplier.
1702  *
1703  * Returns,
1704  * 0 on successfully creating a device link
1705  * -EINVAL if the device link cannot be created as expected
1706  * -EAGAIN if the device link cannot be created right now, but it may be
1707  *  possible to do that in the future
1708  */
1709 static int fw_devlink_create_devlink(struct device *con,
1710 				     struct fwnode_handle *sup_handle, u32 flags)
1711 {
1712 	struct device *sup_dev;
1713 	int ret = 0;
1714 
1715 	sup_dev = get_dev_from_fwnode(sup_handle);
1716 	if (sup_dev) {
1717 		/*
1718 		 * If it's one of those drivers that don't actually bind to
1719 		 * their device using driver core, then don't wait on this
1720 		 * supplier device indefinitely.
1721 		 */
1722 		if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
1723 		    sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
1724 			ret = -EINVAL;
1725 			goto out;
1726 		}
1727 
1728 		/*
1729 		 * If this fails, it is due to cycles in device links.  Just
1730 		 * give up on this link and treat it as invalid.
1731 		 */
1732 		if (!device_link_add(con, sup_dev, flags) &&
1733 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
1734 			dev_info(con, "Fixing up cyclic dependency with %s\n",
1735 				 dev_name(sup_dev));
1736 			device_links_write_lock();
1737 			fw_devlink_relax_cycle(con, sup_dev);
1738 			device_links_write_unlock();
1739 			device_link_add(con, sup_dev,
1740 					FW_DEVLINK_FLAGS_PERMISSIVE);
1741 			ret = -EINVAL;
1742 		}
1743 
1744 		goto out;
1745 	}
1746 
1747 	/* Supplier that's already initialized without a struct device. */
1748 	if (sup_handle->flags & FWNODE_FLAG_INITIALIZED)
1749 		return -EINVAL;
1750 
1751 	/*
1752 	 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports
1753 	 * cycles. So cycle detection isn't necessary and shouldn't be
1754 	 * done.
1755 	 */
1756 	if (flags & DL_FLAG_SYNC_STATE_ONLY)
1757 		return -EAGAIN;
1758 
1759 	/*
1760 	 * If we can't find the supplier device from its fwnode, it might be
1761 	 * due to a cyclic dependency between fwnodes. Some of these cycles can
1762 	 * be broken by applying logic. Check for these types of cycles and
1763 	 * break them so that devices in the cycle probe properly.
1764 	 *
1765 	 * If the supplier's parent is dependent on the consumer, then
1766 	 * the consumer-supplier dependency is a false dependency. So,
1767 	 * treat it as an invalid link.
1768 	 */
1769 	sup_dev = fwnode_get_next_parent_dev(sup_handle);
1770 	if (sup_dev && device_is_dependent(con, sup_dev)) {
1771 		dev_dbg(con, "Not linking to %pfwP - False link\n",
1772 			sup_handle);
1773 		ret = -EINVAL;
1774 	} else {
1775 		/*
1776 		 * Can't check for cycles or no cycles. So let's try
1777 		 * again later.
1778 		 */
1779 		ret = -EAGAIN;
1780 	}
1781 
1782 out:
1783 	put_device(sup_dev);
1784 	return ret;
1785 }
1786 
1787 /**
1788  * __fw_devlink_link_to_consumers - Create device links to consumers of a device
1789  * @dev: Device that needs to be linked to its consumers
1790  *
1791  * This function looks at all the consumer fwnodes of @dev and creates device
1792  * links between the consumer device and @dev (supplier).
1793  *
1794  * If the consumer device has not been added yet, then this function creates a
1795  * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
1796  * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
1797  * sync_state() callback before the real consumer device gets to be added and
1798  * then probed.
1799  *
1800  * Once device links are created from the real consumer to @dev (supplier), the
1801  * fwnode links are deleted.
1802  */
1803 static void __fw_devlink_link_to_consumers(struct device *dev)
1804 {
1805 	struct fwnode_handle *fwnode = dev->fwnode;
1806 	struct fwnode_link *link, *tmp;
1807 
1808 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
1809 		u32 dl_flags = fw_devlink_get_flags();
1810 		struct device *con_dev;
1811 		bool own_link = true;
1812 		int ret;
1813 
1814 		con_dev = get_dev_from_fwnode(link->consumer);
1815 		/*
1816 		 * If consumer device is not available yet, make a "proxy"
1817 		 * SYNC_STATE_ONLY link from the consumer's parent device to
1818 		 * the supplier device. This is necessary to make sure the
1819 		 * supplier doesn't get a sync_state() callback before the real
1820 		 * consumer can create a device link to the supplier.
1821 		 *
1822 		 * This proxy link step is needed to handle the case where the
1823 		 * consumer's parent device is added before the supplier.
1824 		 */
1825 		if (!con_dev) {
1826 			con_dev = fwnode_get_next_parent_dev(link->consumer);
1827 			/*
1828 			 * However, if the consumer's parent device is also the
1829 			 * parent of the supplier, don't create a
1830 			 * consumer-supplier link from the parent to its child
1831 			 * device. Such a dependency is impossible.
1832 			 */
1833 			if (con_dev &&
1834 			    fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
1835 				put_device(con_dev);
1836 				con_dev = NULL;
1837 			} else {
1838 				own_link = false;
1839 				dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1840 			}
1841 		}
1842 
1843 		if (!con_dev)
1844 			continue;
1845 
1846 		ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags);
1847 		put_device(con_dev);
1848 		if (!own_link || ret == -EAGAIN)
1849 			continue;
1850 
1851 		list_del(&link->s_hook);
1852 		list_del(&link->c_hook);
1853 		kfree(link);
1854 	}
1855 }
1856 
1857 /**
1858  * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
1859  * @dev: The consumer device that needs to be linked to its suppliers
1860  * @fwnode: Root of the fwnode tree that is used to create device links
1861  *
1862  * This function looks at all the supplier fwnodes of fwnode tree rooted at
1863  * @fwnode and creates device links between @dev (consumer) and all the
1864  * supplier devices of the entire fwnode tree at @fwnode.
1865  *
1866  * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
1867  * and the real suppliers of @dev. Once these device links are created, the
1868  * fwnode links are deleted. When such device links are successfully created,
1869  * this function is called recursively on those supplier devices. This is
1870  * needed to detect and break some invalid cycles in fwnode links.  See
1871  * fw_devlink_create_devlink() for more details.
1872  *
1873  * In addition, it also looks at all the suppliers of the entire fwnode tree
1874  * because some of the child devices of @dev that have not been added yet
1875  * (because @dev hasn't probed) might already have their suppliers added to
1876  * driver core. So, this function creates SYNC_STATE_ONLY device links between
1877  * @dev (consumer) and these suppliers to make sure they don't execute their
1878  * sync_state() callbacks before these child devices have a chance to create
1879  * their device links. The fwnode links that correspond to the child devices
1880  * aren't delete because they are needed later to create the device links
1881  * between the real consumer and supplier devices.
1882  */
1883 static void __fw_devlink_link_to_suppliers(struct device *dev,
1884 					   struct fwnode_handle *fwnode)
1885 {
1886 	bool own_link = (dev->fwnode == fwnode);
1887 	struct fwnode_link *link, *tmp;
1888 	struct fwnode_handle *child = NULL;
1889 	u32 dl_flags;
1890 
1891 	if (own_link)
1892 		dl_flags = fw_devlink_get_flags();
1893 	else
1894 		dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1895 
1896 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
1897 		int ret;
1898 		struct device *sup_dev;
1899 		struct fwnode_handle *sup = link->supplier;
1900 
1901 		ret = fw_devlink_create_devlink(dev, sup, dl_flags);
1902 		if (!own_link || ret == -EAGAIN)
1903 			continue;
1904 
1905 		list_del(&link->s_hook);
1906 		list_del(&link->c_hook);
1907 		kfree(link);
1908 
1909 		/* If no device link was created, nothing more to do. */
1910 		if (ret)
1911 			continue;
1912 
1913 		/*
1914 		 * If a device link was successfully created to a supplier, we
1915 		 * now need to try and link the supplier to all its suppliers.
1916 		 *
1917 		 * This is needed to detect and delete false dependencies in
1918 		 * fwnode links that haven't been converted to a device link
1919 		 * yet. See comments in fw_devlink_create_devlink() for more
1920 		 * details on the false dependency.
1921 		 *
1922 		 * Without deleting these false dependencies, some devices will
1923 		 * never probe because they'll keep waiting for their false
1924 		 * dependency fwnode links to be converted to device links.
1925 		 */
1926 		sup_dev = get_dev_from_fwnode(sup);
1927 		__fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode);
1928 		put_device(sup_dev);
1929 	}
1930 
1931 	/*
1932 	 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
1933 	 * all the descendants. This proxy link step is needed to handle the
1934 	 * case where the supplier is added before the consumer's parent device
1935 	 * (@dev).
1936 	 */
1937 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1938 		__fw_devlink_link_to_suppliers(dev, child);
1939 }
1940 
1941 static void fw_devlink_link_device(struct device *dev)
1942 {
1943 	struct fwnode_handle *fwnode = dev->fwnode;
1944 
1945 	if (!fw_devlink_flags)
1946 		return;
1947 
1948 	fw_devlink_parse_fwtree(fwnode);
1949 
1950 	mutex_lock(&fwnode_link_lock);
1951 	__fw_devlink_link_to_consumers(dev);
1952 	__fw_devlink_link_to_suppliers(dev, fwnode);
1953 	mutex_unlock(&fwnode_link_lock);
1954 }
1955 
1956 /* Device links support end. */
1957 
1958 int (*platform_notify)(struct device *dev) = NULL;
1959 int (*platform_notify_remove)(struct device *dev) = NULL;
1960 static struct kobject *dev_kobj;
1961 struct kobject *sysfs_dev_char_kobj;
1962 struct kobject *sysfs_dev_block_kobj;
1963 
1964 static DEFINE_MUTEX(device_hotplug_lock);
1965 
1966 void lock_device_hotplug(void)
1967 {
1968 	mutex_lock(&device_hotplug_lock);
1969 }
1970 
1971 void unlock_device_hotplug(void)
1972 {
1973 	mutex_unlock(&device_hotplug_lock);
1974 }
1975 
1976 int lock_device_hotplug_sysfs(void)
1977 {
1978 	if (mutex_trylock(&device_hotplug_lock))
1979 		return 0;
1980 
1981 	/* Avoid busy looping (5 ms of sleep should do). */
1982 	msleep(5);
1983 	return restart_syscall();
1984 }
1985 
1986 #ifdef CONFIG_BLOCK
1987 static inline int device_is_not_partition(struct device *dev)
1988 {
1989 	return !(dev->type == &part_type);
1990 }
1991 #else
1992 static inline int device_is_not_partition(struct device *dev)
1993 {
1994 	return 1;
1995 }
1996 #endif
1997 
1998 static int
1999 device_platform_notify(struct device *dev, enum kobject_action action)
2000 {
2001 	int ret;
2002 
2003 	ret = acpi_platform_notify(dev, action);
2004 	if (ret)
2005 		return ret;
2006 
2007 	ret = software_node_notify(dev, action);
2008 	if (ret)
2009 		return ret;
2010 
2011 	if (platform_notify && action == KOBJ_ADD)
2012 		platform_notify(dev);
2013 	else if (platform_notify_remove && action == KOBJ_REMOVE)
2014 		platform_notify_remove(dev);
2015 	return 0;
2016 }
2017 
2018 /**
2019  * dev_driver_string - Return a device's driver name, if at all possible
2020  * @dev: struct device to get the name of
2021  *
2022  * Will return the device's driver's name if it is bound to a device.  If
2023  * the device is not bound to a driver, it will return the name of the bus
2024  * it is attached to.  If it is not attached to a bus either, an empty
2025  * string will be returned.
2026  */
2027 const char *dev_driver_string(const struct device *dev)
2028 {
2029 	struct device_driver *drv;
2030 
2031 	/* dev->driver can change to NULL underneath us because of unbinding,
2032 	 * so be careful about accessing it.  dev->bus and dev->class should
2033 	 * never change once they are set, so they don't need special care.
2034 	 */
2035 	drv = READ_ONCE(dev->driver);
2036 	return drv ? drv->name : dev_bus_name(dev);
2037 }
2038 EXPORT_SYMBOL(dev_driver_string);
2039 
2040 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2041 
2042 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2043 			     char *buf)
2044 {
2045 	struct device_attribute *dev_attr = to_dev_attr(attr);
2046 	struct device *dev = kobj_to_dev(kobj);
2047 	ssize_t ret = -EIO;
2048 
2049 	if (dev_attr->show)
2050 		ret = dev_attr->show(dev, dev_attr, buf);
2051 	if (ret >= (ssize_t)PAGE_SIZE) {
2052 		printk("dev_attr_show: %pS returned bad count\n",
2053 				dev_attr->show);
2054 	}
2055 	return ret;
2056 }
2057 
2058 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2059 			      const char *buf, size_t count)
2060 {
2061 	struct device_attribute *dev_attr = to_dev_attr(attr);
2062 	struct device *dev = kobj_to_dev(kobj);
2063 	ssize_t ret = -EIO;
2064 
2065 	if (dev_attr->store)
2066 		ret = dev_attr->store(dev, dev_attr, buf, count);
2067 	return ret;
2068 }
2069 
2070 static const struct sysfs_ops dev_sysfs_ops = {
2071 	.show	= dev_attr_show,
2072 	.store	= dev_attr_store,
2073 };
2074 
2075 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2076 
2077 ssize_t device_store_ulong(struct device *dev,
2078 			   struct device_attribute *attr,
2079 			   const char *buf, size_t size)
2080 {
2081 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2082 	int ret;
2083 	unsigned long new;
2084 
2085 	ret = kstrtoul(buf, 0, &new);
2086 	if (ret)
2087 		return ret;
2088 	*(unsigned long *)(ea->var) = new;
2089 	/* Always return full write size even if we didn't consume all */
2090 	return size;
2091 }
2092 EXPORT_SYMBOL_GPL(device_store_ulong);
2093 
2094 ssize_t device_show_ulong(struct device *dev,
2095 			  struct device_attribute *attr,
2096 			  char *buf)
2097 {
2098 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2099 	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2100 }
2101 EXPORT_SYMBOL_GPL(device_show_ulong);
2102 
2103 ssize_t device_store_int(struct device *dev,
2104 			 struct device_attribute *attr,
2105 			 const char *buf, size_t size)
2106 {
2107 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2108 	int ret;
2109 	long new;
2110 
2111 	ret = kstrtol(buf, 0, &new);
2112 	if (ret)
2113 		return ret;
2114 
2115 	if (new > INT_MAX || new < INT_MIN)
2116 		return -EINVAL;
2117 	*(int *)(ea->var) = new;
2118 	/* Always return full write size even if we didn't consume all */
2119 	return size;
2120 }
2121 EXPORT_SYMBOL_GPL(device_store_int);
2122 
2123 ssize_t device_show_int(struct device *dev,
2124 			struct device_attribute *attr,
2125 			char *buf)
2126 {
2127 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2128 
2129 	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2130 }
2131 EXPORT_SYMBOL_GPL(device_show_int);
2132 
2133 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2134 			  const char *buf, size_t size)
2135 {
2136 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2137 
2138 	if (strtobool(buf, ea->var) < 0)
2139 		return -EINVAL;
2140 
2141 	return size;
2142 }
2143 EXPORT_SYMBOL_GPL(device_store_bool);
2144 
2145 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2146 			 char *buf)
2147 {
2148 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2149 
2150 	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2151 }
2152 EXPORT_SYMBOL_GPL(device_show_bool);
2153 
2154 /**
2155  * device_release - free device structure.
2156  * @kobj: device's kobject.
2157  *
2158  * This is called once the reference count for the object
2159  * reaches 0. We forward the call to the device's release
2160  * method, which should handle actually freeing the structure.
2161  */
2162 static void device_release(struct kobject *kobj)
2163 {
2164 	struct device *dev = kobj_to_dev(kobj);
2165 	struct device_private *p = dev->p;
2166 
2167 	/*
2168 	 * Some platform devices are driven without driver attached
2169 	 * and managed resources may have been acquired.  Make sure
2170 	 * all resources are released.
2171 	 *
2172 	 * Drivers still can add resources into device after device
2173 	 * is deleted but alive, so release devres here to avoid
2174 	 * possible memory leak.
2175 	 */
2176 	devres_release_all(dev);
2177 
2178 	kfree(dev->dma_range_map);
2179 
2180 	if (dev->release)
2181 		dev->release(dev);
2182 	else if (dev->type && dev->type->release)
2183 		dev->type->release(dev);
2184 	else if (dev->class && dev->class->dev_release)
2185 		dev->class->dev_release(dev);
2186 	else
2187 		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2188 			dev_name(dev));
2189 	kfree(p);
2190 }
2191 
2192 static const void *device_namespace(struct kobject *kobj)
2193 {
2194 	struct device *dev = kobj_to_dev(kobj);
2195 	const void *ns = NULL;
2196 
2197 	if (dev->class && dev->class->ns_type)
2198 		ns = dev->class->namespace(dev);
2199 
2200 	return ns;
2201 }
2202 
2203 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2204 {
2205 	struct device *dev = kobj_to_dev(kobj);
2206 
2207 	if (dev->class && dev->class->get_ownership)
2208 		dev->class->get_ownership(dev, uid, gid);
2209 }
2210 
2211 static struct kobj_type device_ktype = {
2212 	.release	= device_release,
2213 	.sysfs_ops	= &dev_sysfs_ops,
2214 	.namespace	= device_namespace,
2215 	.get_ownership	= device_get_ownership,
2216 };
2217 
2218 
2219 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
2220 {
2221 	struct kobj_type *ktype = get_ktype(kobj);
2222 
2223 	if (ktype == &device_ktype) {
2224 		struct device *dev = kobj_to_dev(kobj);
2225 		if (dev->bus)
2226 			return 1;
2227 		if (dev->class)
2228 			return 1;
2229 	}
2230 	return 0;
2231 }
2232 
2233 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
2234 {
2235 	struct device *dev = kobj_to_dev(kobj);
2236 
2237 	if (dev->bus)
2238 		return dev->bus->name;
2239 	if (dev->class)
2240 		return dev->class->name;
2241 	return NULL;
2242 }
2243 
2244 static int dev_uevent(struct kset *kset, struct kobject *kobj,
2245 		      struct kobj_uevent_env *env)
2246 {
2247 	struct device *dev = kobj_to_dev(kobj);
2248 	int retval = 0;
2249 
2250 	/* add device node properties if present */
2251 	if (MAJOR(dev->devt)) {
2252 		const char *tmp;
2253 		const char *name;
2254 		umode_t mode = 0;
2255 		kuid_t uid = GLOBAL_ROOT_UID;
2256 		kgid_t gid = GLOBAL_ROOT_GID;
2257 
2258 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2259 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2260 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2261 		if (name) {
2262 			add_uevent_var(env, "DEVNAME=%s", name);
2263 			if (mode)
2264 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2265 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
2266 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2267 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
2268 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2269 			kfree(tmp);
2270 		}
2271 	}
2272 
2273 	if (dev->type && dev->type->name)
2274 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2275 
2276 	if (dev->driver)
2277 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2278 
2279 	/* Add common DT information about the device */
2280 	of_device_uevent(dev, env);
2281 
2282 	/* have the bus specific function add its stuff */
2283 	if (dev->bus && dev->bus->uevent) {
2284 		retval = dev->bus->uevent(dev, env);
2285 		if (retval)
2286 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2287 				 dev_name(dev), __func__, retval);
2288 	}
2289 
2290 	/* have the class specific function add its stuff */
2291 	if (dev->class && dev->class->dev_uevent) {
2292 		retval = dev->class->dev_uevent(dev, env);
2293 		if (retval)
2294 			pr_debug("device: '%s': %s: class uevent() "
2295 				 "returned %d\n", dev_name(dev),
2296 				 __func__, retval);
2297 	}
2298 
2299 	/* have the device type specific function add its stuff */
2300 	if (dev->type && dev->type->uevent) {
2301 		retval = dev->type->uevent(dev, env);
2302 		if (retval)
2303 			pr_debug("device: '%s': %s: dev_type uevent() "
2304 				 "returned %d\n", dev_name(dev),
2305 				 __func__, retval);
2306 	}
2307 
2308 	return retval;
2309 }
2310 
2311 static const struct kset_uevent_ops device_uevent_ops = {
2312 	.filter =	dev_uevent_filter,
2313 	.name =		dev_uevent_name,
2314 	.uevent =	dev_uevent,
2315 };
2316 
2317 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2318 			   char *buf)
2319 {
2320 	struct kobject *top_kobj;
2321 	struct kset *kset;
2322 	struct kobj_uevent_env *env = NULL;
2323 	int i;
2324 	int len = 0;
2325 	int retval;
2326 
2327 	/* search the kset, the device belongs to */
2328 	top_kobj = &dev->kobj;
2329 	while (!top_kobj->kset && top_kobj->parent)
2330 		top_kobj = top_kobj->parent;
2331 	if (!top_kobj->kset)
2332 		goto out;
2333 
2334 	kset = top_kobj->kset;
2335 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2336 		goto out;
2337 
2338 	/* respect filter */
2339 	if (kset->uevent_ops && kset->uevent_ops->filter)
2340 		if (!kset->uevent_ops->filter(kset, &dev->kobj))
2341 			goto out;
2342 
2343 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2344 	if (!env)
2345 		return -ENOMEM;
2346 
2347 	/* let the kset specific function add its keys */
2348 	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
2349 	if (retval)
2350 		goto out;
2351 
2352 	/* copy keys to file */
2353 	for (i = 0; i < env->envp_idx; i++)
2354 		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2355 out:
2356 	kfree(env);
2357 	return len;
2358 }
2359 
2360 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2361 			    const char *buf, size_t count)
2362 {
2363 	int rc;
2364 
2365 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
2366 
2367 	if (rc) {
2368 		dev_err(dev, "uevent: failed to send synthetic uevent\n");
2369 		return rc;
2370 	}
2371 
2372 	return count;
2373 }
2374 static DEVICE_ATTR_RW(uevent);
2375 
2376 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2377 			   char *buf)
2378 {
2379 	bool val;
2380 
2381 	device_lock(dev);
2382 	val = !dev->offline;
2383 	device_unlock(dev);
2384 	return sysfs_emit(buf, "%u\n", val);
2385 }
2386 
2387 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2388 			    const char *buf, size_t count)
2389 {
2390 	bool val;
2391 	int ret;
2392 
2393 	ret = strtobool(buf, &val);
2394 	if (ret < 0)
2395 		return ret;
2396 
2397 	ret = lock_device_hotplug_sysfs();
2398 	if (ret)
2399 		return ret;
2400 
2401 	ret = val ? device_online(dev) : device_offline(dev);
2402 	unlock_device_hotplug();
2403 	return ret < 0 ? ret : count;
2404 }
2405 static DEVICE_ATTR_RW(online);
2406 
2407 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2408 {
2409 	return sysfs_create_groups(&dev->kobj, groups);
2410 }
2411 EXPORT_SYMBOL_GPL(device_add_groups);
2412 
2413 void device_remove_groups(struct device *dev,
2414 			  const struct attribute_group **groups)
2415 {
2416 	sysfs_remove_groups(&dev->kobj, groups);
2417 }
2418 EXPORT_SYMBOL_GPL(device_remove_groups);
2419 
2420 union device_attr_group_devres {
2421 	const struct attribute_group *group;
2422 	const struct attribute_group **groups;
2423 };
2424 
2425 static int devm_attr_group_match(struct device *dev, void *res, void *data)
2426 {
2427 	return ((union device_attr_group_devres *)res)->group == data;
2428 }
2429 
2430 static void devm_attr_group_remove(struct device *dev, void *res)
2431 {
2432 	union device_attr_group_devres *devres = res;
2433 	const struct attribute_group *group = devres->group;
2434 
2435 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2436 	sysfs_remove_group(&dev->kobj, group);
2437 }
2438 
2439 static void devm_attr_groups_remove(struct device *dev, void *res)
2440 {
2441 	union device_attr_group_devres *devres = res;
2442 	const struct attribute_group **groups = devres->groups;
2443 
2444 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2445 	sysfs_remove_groups(&dev->kobj, groups);
2446 }
2447 
2448 /**
2449  * devm_device_add_group - given a device, create a managed attribute group
2450  * @dev:	The device to create the group for
2451  * @grp:	The attribute group to create
2452  *
2453  * This function creates a group for the first time.  It will explicitly
2454  * warn and error if any of the attribute files being created already exist.
2455  *
2456  * Returns 0 on success or error code on failure.
2457  */
2458 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2459 {
2460 	union device_attr_group_devres *devres;
2461 	int error;
2462 
2463 	devres = devres_alloc(devm_attr_group_remove,
2464 			      sizeof(*devres), GFP_KERNEL);
2465 	if (!devres)
2466 		return -ENOMEM;
2467 
2468 	error = sysfs_create_group(&dev->kobj, grp);
2469 	if (error) {
2470 		devres_free(devres);
2471 		return error;
2472 	}
2473 
2474 	devres->group = grp;
2475 	devres_add(dev, devres);
2476 	return 0;
2477 }
2478 EXPORT_SYMBOL_GPL(devm_device_add_group);
2479 
2480 /**
2481  * devm_device_remove_group: remove a managed group from a device
2482  * @dev:	device to remove the group from
2483  * @grp:	group to remove
2484  *
2485  * This function removes a group of attributes from a device. The attributes
2486  * previously have to have been created for this group, otherwise it will fail.
2487  */
2488 void devm_device_remove_group(struct device *dev,
2489 			      const struct attribute_group *grp)
2490 {
2491 	WARN_ON(devres_release(dev, devm_attr_group_remove,
2492 			       devm_attr_group_match,
2493 			       /* cast away const */ (void *)grp));
2494 }
2495 EXPORT_SYMBOL_GPL(devm_device_remove_group);
2496 
2497 /**
2498  * devm_device_add_groups - create a bunch of managed attribute groups
2499  * @dev:	The device to create the group for
2500  * @groups:	The attribute groups to create, NULL terminated
2501  *
2502  * This function creates a bunch of managed attribute groups.  If an error
2503  * occurs when creating a group, all previously created groups will be
2504  * removed, unwinding everything back to the original state when this
2505  * function was called.  It will explicitly warn and error if any of the
2506  * attribute files being created already exist.
2507  *
2508  * Returns 0 on success or error code from sysfs_create_group on failure.
2509  */
2510 int devm_device_add_groups(struct device *dev,
2511 			   const struct attribute_group **groups)
2512 {
2513 	union device_attr_group_devres *devres;
2514 	int error;
2515 
2516 	devres = devres_alloc(devm_attr_groups_remove,
2517 			      sizeof(*devres), GFP_KERNEL);
2518 	if (!devres)
2519 		return -ENOMEM;
2520 
2521 	error = sysfs_create_groups(&dev->kobj, groups);
2522 	if (error) {
2523 		devres_free(devres);
2524 		return error;
2525 	}
2526 
2527 	devres->groups = groups;
2528 	devres_add(dev, devres);
2529 	return 0;
2530 }
2531 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2532 
2533 /**
2534  * devm_device_remove_groups - remove a list of managed groups
2535  *
2536  * @dev:	The device for the groups to be removed from
2537  * @groups:	NULL terminated list of groups to be removed
2538  *
2539  * If groups is not NULL, remove the specified groups from the device.
2540  */
2541 void devm_device_remove_groups(struct device *dev,
2542 			       const struct attribute_group **groups)
2543 {
2544 	WARN_ON(devres_release(dev, devm_attr_groups_remove,
2545 			       devm_attr_group_match,
2546 			       /* cast away const */ (void *)groups));
2547 }
2548 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2549 
2550 static int device_add_attrs(struct device *dev)
2551 {
2552 	struct class *class = dev->class;
2553 	const struct device_type *type = dev->type;
2554 	int error;
2555 
2556 	if (class) {
2557 		error = device_add_groups(dev, class->dev_groups);
2558 		if (error)
2559 			return error;
2560 	}
2561 
2562 	if (type) {
2563 		error = device_add_groups(dev, type->groups);
2564 		if (error)
2565 			goto err_remove_class_groups;
2566 	}
2567 
2568 	error = device_add_groups(dev, dev->groups);
2569 	if (error)
2570 		goto err_remove_type_groups;
2571 
2572 	if (device_supports_offline(dev) && !dev->offline_disabled) {
2573 		error = device_create_file(dev, &dev_attr_online);
2574 		if (error)
2575 			goto err_remove_dev_groups;
2576 	}
2577 
2578 	if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2579 		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2580 		if (error)
2581 			goto err_remove_dev_online;
2582 	}
2583 
2584 	return 0;
2585 
2586  err_remove_dev_online:
2587 	device_remove_file(dev, &dev_attr_online);
2588  err_remove_dev_groups:
2589 	device_remove_groups(dev, dev->groups);
2590  err_remove_type_groups:
2591 	if (type)
2592 		device_remove_groups(dev, type->groups);
2593  err_remove_class_groups:
2594 	if (class)
2595 		device_remove_groups(dev, class->dev_groups);
2596 
2597 	return error;
2598 }
2599 
2600 static void device_remove_attrs(struct device *dev)
2601 {
2602 	struct class *class = dev->class;
2603 	const struct device_type *type = dev->type;
2604 
2605 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2606 	device_remove_file(dev, &dev_attr_online);
2607 	device_remove_groups(dev, dev->groups);
2608 
2609 	if (type)
2610 		device_remove_groups(dev, type->groups);
2611 
2612 	if (class)
2613 		device_remove_groups(dev, class->dev_groups);
2614 }
2615 
2616 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2617 			char *buf)
2618 {
2619 	return print_dev_t(buf, dev->devt);
2620 }
2621 static DEVICE_ATTR_RO(dev);
2622 
2623 /* /sys/devices/ */
2624 struct kset *devices_kset;
2625 
2626 /**
2627  * devices_kset_move_before - Move device in the devices_kset's list.
2628  * @deva: Device to move.
2629  * @devb: Device @deva should come before.
2630  */
2631 static void devices_kset_move_before(struct device *deva, struct device *devb)
2632 {
2633 	if (!devices_kset)
2634 		return;
2635 	pr_debug("devices_kset: Moving %s before %s\n",
2636 		 dev_name(deva), dev_name(devb));
2637 	spin_lock(&devices_kset->list_lock);
2638 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2639 	spin_unlock(&devices_kset->list_lock);
2640 }
2641 
2642 /**
2643  * devices_kset_move_after - Move device in the devices_kset's list.
2644  * @deva: Device to move
2645  * @devb: Device @deva should come after.
2646  */
2647 static void devices_kset_move_after(struct device *deva, struct device *devb)
2648 {
2649 	if (!devices_kset)
2650 		return;
2651 	pr_debug("devices_kset: Moving %s after %s\n",
2652 		 dev_name(deva), dev_name(devb));
2653 	spin_lock(&devices_kset->list_lock);
2654 	list_move(&deva->kobj.entry, &devb->kobj.entry);
2655 	spin_unlock(&devices_kset->list_lock);
2656 }
2657 
2658 /**
2659  * devices_kset_move_last - move the device to the end of devices_kset's list.
2660  * @dev: device to move
2661  */
2662 void devices_kset_move_last(struct device *dev)
2663 {
2664 	if (!devices_kset)
2665 		return;
2666 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2667 	spin_lock(&devices_kset->list_lock);
2668 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
2669 	spin_unlock(&devices_kset->list_lock);
2670 }
2671 
2672 /**
2673  * device_create_file - create sysfs attribute file for device.
2674  * @dev: device.
2675  * @attr: device attribute descriptor.
2676  */
2677 int device_create_file(struct device *dev,
2678 		       const struct device_attribute *attr)
2679 {
2680 	int error = 0;
2681 
2682 	if (dev) {
2683 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2684 			"Attribute %s: write permission without 'store'\n",
2685 			attr->attr.name);
2686 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2687 			"Attribute %s: read permission without 'show'\n",
2688 			attr->attr.name);
2689 		error = sysfs_create_file(&dev->kobj, &attr->attr);
2690 	}
2691 
2692 	return error;
2693 }
2694 EXPORT_SYMBOL_GPL(device_create_file);
2695 
2696 /**
2697  * device_remove_file - remove sysfs attribute file.
2698  * @dev: device.
2699  * @attr: device attribute descriptor.
2700  */
2701 void device_remove_file(struct device *dev,
2702 			const struct device_attribute *attr)
2703 {
2704 	if (dev)
2705 		sysfs_remove_file(&dev->kobj, &attr->attr);
2706 }
2707 EXPORT_SYMBOL_GPL(device_remove_file);
2708 
2709 /**
2710  * device_remove_file_self - remove sysfs attribute file from its own method.
2711  * @dev: device.
2712  * @attr: device attribute descriptor.
2713  *
2714  * See kernfs_remove_self() for details.
2715  */
2716 bool device_remove_file_self(struct device *dev,
2717 			     const struct device_attribute *attr)
2718 {
2719 	if (dev)
2720 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2721 	else
2722 		return false;
2723 }
2724 EXPORT_SYMBOL_GPL(device_remove_file_self);
2725 
2726 /**
2727  * device_create_bin_file - create sysfs binary attribute file for device.
2728  * @dev: device.
2729  * @attr: device binary attribute descriptor.
2730  */
2731 int device_create_bin_file(struct device *dev,
2732 			   const struct bin_attribute *attr)
2733 {
2734 	int error = -EINVAL;
2735 	if (dev)
2736 		error = sysfs_create_bin_file(&dev->kobj, attr);
2737 	return error;
2738 }
2739 EXPORT_SYMBOL_GPL(device_create_bin_file);
2740 
2741 /**
2742  * device_remove_bin_file - remove sysfs binary attribute file
2743  * @dev: device.
2744  * @attr: device binary attribute descriptor.
2745  */
2746 void device_remove_bin_file(struct device *dev,
2747 			    const struct bin_attribute *attr)
2748 {
2749 	if (dev)
2750 		sysfs_remove_bin_file(&dev->kobj, attr);
2751 }
2752 EXPORT_SYMBOL_GPL(device_remove_bin_file);
2753 
2754 static void klist_children_get(struct klist_node *n)
2755 {
2756 	struct device_private *p = to_device_private_parent(n);
2757 	struct device *dev = p->device;
2758 
2759 	get_device(dev);
2760 }
2761 
2762 static void klist_children_put(struct klist_node *n)
2763 {
2764 	struct device_private *p = to_device_private_parent(n);
2765 	struct device *dev = p->device;
2766 
2767 	put_device(dev);
2768 }
2769 
2770 /**
2771  * device_initialize - init device structure.
2772  * @dev: device.
2773  *
2774  * This prepares the device for use by other layers by initializing
2775  * its fields.
2776  * It is the first half of device_register(), if called by
2777  * that function, though it can also be called separately, so one
2778  * may use @dev's fields. In particular, get_device()/put_device()
2779  * may be used for reference counting of @dev after calling this
2780  * function.
2781  *
2782  * All fields in @dev must be initialized by the caller to 0, except
2783  * for those explicitly set to some other value.  The simplest
2784  * approach is to use kzalloc() to allocate the structure containing
2785  * @dev.
2786  *
2787  * NOTE: Use put_device() to give up your reference instead of freeing
2788  * @dev directly once you have called this function.
2789  */
2790 void device_initialize(struct device *dev)
2791 {
2792 	dev->kobj.kset = devices_kset;
2793 	kobject_init(&dev->kobj, &device_ktype);
2794 	INIT_LIST_HEAD(&dev->dma_pools);
2795 	mutex_init(&dev->mutex);
2796 #ifdef CONFIG_PROVE_LOCKING
2797 	mutex_init(&dev->lockdep_mutex);
2798 #endif
2799 	lockdep_set_novalidate_class(&dev->mutex);
2800 	spin_lock_init(&dev->devres_lock);
2801 	INIT_LIST_HEAD(&dev->devres_head);
2802 	device_pm_init(dev);
2803 	set_dev_node(dev, -1);
2804 #ifdef CONFIG_GENERIC_MSI_IRQ
2805 	INIT_LIST_HEAD(&dev->msi_list);
2806 #endif
2807 	INIT_LIST_HEAD(&dev->links.consumers);
2808 	INIT_LIST_HEAD(&dev->links.suppliers);
2809 	INIT_LIST_HEAD(&dev->links.defer_sync);
2810 	dev->links.status = DL_DEV_NO_DRIVER;
2811 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
2812     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
2813     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
2814 	dev->dma_coherent = dma_default_coherent;
2815 #endif
2816 }
2817 EXPORT_SYMBOL_GPL(device_initialize);
2818 
2819 struct kobject *virtual_device_parent(struct device *dev)
2820 {
2821 	static struct kobject *virtual_dir = NULL;
2822 
2823 	if (!virtual_dir)
2824 		virtual_dir = kobject_create_and_add("virtual",
2825 						     &devices_kset->kobj);
2826 
2827 	return virtual_dir;
2828 }
2829 
2830 struct class_dir {
2831 	struct kobject kobj;
2832 	struct class *class;
2833 };
2834 
2835 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2836 
2837 static void class_dir_release(struct kobject *kobj)
2838 {
2839 	struct class_dir *dir = to_class_dir(kobj);
2840 	kfree(dir);
2841 }
2842 
2843 static const
2844 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2845 {
2846 	struct class_dir *dir = to_class_dir(kobj);
2847 	return dir->class->ns_type;
2848 }
2849 
2850 static struct kobj_type class_dir_ktype = {
2851 	.release	= class_dir_release,
2852 	.sysfs_ops	= &kobj_sysfs_ops,
2853 	.child_ns_type	= class_dir_child_ns_type
2854 };
2855 
2856 static struct kobject *
2857 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2858 {
2859 	struct class_dir *dir;
2860 	int retval;
2861 
2862 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2863 	if (!dir)
2864 		return ERR_PTR(-ENOMEM);
2865 
2866 	dir->class = class;
2867 	kobject_init(&dir->kobj, &class_dir_ktype);
2868 
2869 	dir->kobj.kset = &class->p->glue_dirs;
2870 
2871 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2872 	if (retval < 0) {
2873 		kobject_put(&dir->kobj);
2874 		return ERR_PTR(retval);
2875 	}
2876 	return &dir->kobj;
2877 }
2878 
2879 static DEFINE_MUTEX(gdp_mutex);
2880 
2881 static struct kobject *get_device_parent(struct device *dev,
2882 					 struct device *parent)
2883 {
2884 	if (dev->class) {
2885 		struct kobject *kobj = NULL;
2886 		struct kobject *parent_kobj;
2887 		struct kobject *k;
2888 
2889 #ifdef CONFIG_BLOCK
2890 		/* block disks show up in /sys/block */
2891 		if (sysfs_deprecated && dev->class == &block_class) {
2892 			if (parent && parent->class == &block_class)
2893 				return &parent->kobj;
2894 			return &block_class.p->subsys.kobj;
2895 		}
2896 #endif
2897 
2898 		/*
2899 		 * If we have no parent, we live in "virtual".
2900 		 * Class-devices with a non class-device as parent, live
2901 		 * in a "glue" directory to prevent namespace collisions.
2902 		 */
2903 		if (parent == NULL)
2904 			parent_kobj = virtual_device_parent(dev);
2905 		else if (parent->class && !dev->class->ns_type)
2906 			return &parent->kobj;
2907 		else
2908 			parent_kobj = &parent->kobj;
2909 
2910 		mutex_lock(&gdp_mutex);
2911 
2912 		/* find our class-directory at the parent and reference it */
2913 		spin_lock(&dev->class->p->glue_dirs.list_lock);
2914 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2915 			if (k->parent == parent_kobj) {
2916 				kobj = kobject_get(k);
2917 				break;
2918 			}
2919 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
2920 		if (kobj) {
2921 			mutex_unlock(&gdp_mutex);
2922 			return kobj;
2923 		}
2924 
2925 		/* or create a new class-directory at the parent device */
2926 		k = class_dir_create_and_add(dev->class, parent_kobj);
2927 		/* do not emit an uevent for this simple "glue" directory */
2928 		mutex_unlock(&gdp_mutex);
2929 		return k;
2930 	}
2931 
2932 	/* subsystems can specify a default root directory for their devices */
2933 	if (!parent && dev->bus && dev->bus->dev_root)
2934 		return &dev->bus->dev_root->kobj;
2935 
2936 	if (parent)
2937 		return &parent->kobj;
2938 	return NULL;
2939 }
2940 
2941 static inline bool live_in_glue_dir(struct kobject *kobj,
2942 				    struct device *dev)
2943 {
2944 	if (!kobj || !dev->class ||
2945 	    kobj->kset != &dev->class->p->glue_dirs)
2946 		return false;
2947 	return true;
2948 }
2949 
2950 static inline struct kobject *get_glue_dir(struct device *dev)
2951 {
2952 	return dev->kobj.parent;
2953 }
2954 
2955 /*
2956  * make sure cleaning up dir as the last step, we need to make
2957  * sure .release handler of kobject is run with holding the
2958  * global lock
2959  */
2960 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
2961 {
2962 	unsigned int ref;
2963 
2964 	/* see if we live in a "glue" directory */
2965 	if (!live_in_glue_dir(glue_dir, dev))
2966 		return;
2967 
2968 	mutex_lock(&gdp_mutex);
2969 	/**
2970 	 * There is a race condition between removing glue directory
2971 	 * and adding a new device under the glue directory.
2972 	 *
2973 	 * CPU1:                                         CPU2:
2974 	 *
2975 	 * device_add()
2976 	 *   get_device_parent()
2977 	 *     class_dir_create_and_add()
2978 	 *       kobject_add_internal()
2979 	 *         create_dir()    // create glue_dir
2980 	 *
2981 	 *                                               device_add()
2982 	 *                                                 get_device_parent()
2983 	 *                                                   kobject_get() // get glue_dir
2984 	 *
2985 	 * device_del()
2986 	 *   cleanup_glue_dir()
2987 	 *     kobject_del(glue_dir)
2988 	 *
2989 	 *                                               kobject_add()
2990 	 *                                                 kobject_add_internal()
2991 	 *                                                   create_dir() // in glue_dir
2992 	 *                                                     sysfs_create_dir_ns()
2993 	 *                                                       kernfs_create_dir_ns(sd)
2994 	 *
2995 	 *       sysfs_remove_dir() // glue_dir->sd=NULL
2996 	 *       sysfs_put()        // free glue_dir->sd
2997 	 *
2998 	 *                                                         // sd is freed
2999 	 *                                                         kernfs_new_node(sd)
3000 	 *                                                           kernfs_get(glue_dir)
3001 	 *                                                           kernfs_add_one()
3002 	 *                                                           kernfs_put()
3003 	 *
3004 	 * Before CPU1 remove last child device under glue dir, if CPU2 add
3005 	 * a new device under glue dir, the glue_dir kobject reference count
3006 	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3007 	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3008 	 * and sysfs_put(). This result in glue_dir->sd is freed.
3009 	 *
3010 	 * Then the CPU2 will see a stale "empty" but still potentially used
3011 	 * glue dir around in kernfs_new_node().
3012 	 *
3013 	 * In order to avoid this happening, we also should make sure that
3014 	 * kernfs_node for glue_dir is released in CPU1 only when refcount
3015 	 * for glue_dir kobj is 1.
3016 	 */
3017 	ref = kref_read(&glue_dir->kref);
3018 	if (!kobject_has_children(glue_dir) && !--ref)
3019 		kobject_del(glue_dir);
3020 	kobject_put(glue_dir);
3021 	mutex_unlock(&gdp_mutex);
3022 }
3023 
3024 static int device_add_class_symlinks(struct device *dev)
3025 {
3026 	struct device_node *of_node = dev_of_node(dev);
3027 	int error;
3028 
3029 	if (of_node) {
3030 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3031 		if (error)
3032 			dev_warn(dev, "Error %d creating of_node link\n",error);
3033 		/* An error here doesn't warrant bringing down the device */
3034 	}
3035 
3036 	if (!dev->class)
3037 		return 0;
3038 
3039 	error = sysfs_create_link(&dev->kobj,
3040 				  &dev->class->p->subsys.kobj,
3041 				  "subsystem");
3042 	if (error)
3043 		goto out_devnode;
3044 
3045 	if (dev->parent && device_is_not_partition(dev)) {
3046 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3047 					  "device");
3048 		if (error)
3049 			goto out_subsys;
3050 	}
3051 
3052 #ifdef CONFIG_BLOCK
3053 	/* /sys/block has directories and does not need symlinks */
3054 	if (sysfs_deprecated && dev->class == &block_class)
3055 		return 0;
3056 #endif
3057 
3058 	/* link in the class directory pointing to the device */
3059 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
3060 				  &dev->kobj, dev_name(dev));
3061 	if (error)
3062 		goto out_device;
3063 
3064 	return 0;
3065 
3066 out_device:
3067 	sysfs_remove_link(&dev->kobj, "device");
3068 
3069 out_subsys:
3070 	sysfs_remove_link(&dev->kobj, "subsystem");
3071 out_devnode:
3072 	sysfs_remove_link(&dev->kobj, "of_node");
3073 	return error;
3074 }
3075 
3076 static void device_remove_class_symlinks(struct device *dev)
3077 {
3078 	if (dev_of_node(dev))
3079 		sysfs_remove_link(&dev->kobj, "of_node");
3080 
3081 	if (!dev->class)
3082 		return;
3083 
3084 	if (dev->parent && device_is_not_partition(dev))
3085 		sysfs_remove_link(&dev->kobj, "device");
3086 	sysfs_remove_link(&dev->kobj, "subsystem");
3087 #ifdef CONFIG_BLOCK
3088 	if (sysfs_deprecated && dev->class == &block_class)
3089 		return;
3090 #endif
3091 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
3092 }
3093 
3094 /**
3095  * dev_set_name - set a device name
3096  * @dev: device
3097  * @fmt: format string for the device's name
3098  */
3099 int dev_set_name(struct device *dev, const char *fmt, ...)
3100 {
3101 	va_list vargs;
3102 	int err;
3103 
3104 	va_start(vargs, fmt);
3105 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3106 	va_end(vargs);
3107 	return err;
3108 }
3109 EXPORT_SYMBOL_GPL(dev_set_name);
3110 
3111 /**
3112  * device_to_dev_kobj - select a /sys/dev/ directory for the device
3113  * @dev: device
3114  *
3115  * By default we select char/ for new entries.  Setting class->dev_obj
3116  * to NULL prevents an entry from being created.  class->dev_kobj must
3117  * be set (or cleared) before any devices are registered to the class
3118  * otherwise device_create_sys_dev_entry() and
3119  * device_remove_sys_dev_entry() will disagree about the presence of
3120  * the link.
3121  */
3122 static struct kobject *device_to_dev_kobj(struct device *dev)
3123 {
3124 	struct kobject *kobj;
3125 
3126 	if (dev->class)
3127 		kobj = dev->class->dev_kobj;
3128 	else
3129 		kobj = sysfs_dev_char_kobj;
3130 
3131 	return kobj;
3132 }
3133 
3134 static int device_create_sys_dev_entry(struct device *dev)
3135 {
3136 	struct kobject *kobj = device_to_dev_kobj(dev);
3137 	int error = 0;
3138 	char devt_str[15];
3139 
3140 	if (kobj) {
3141 		format_dev_t(devt_str, dev->devt);
3142 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3143 	}
3144 
3145 	return error;
3146 }
3147 
3148 static void device_remove_sys_dev_entry(struct device *dev)
3149 {
3150 	struct kobject *kobj = device_to_dev_kobj(dev);
3151 	char devt_str[15];
3152 
3153 	if (kobj) {
3154 		format_dev_t(devt_str, dev->devt);
3155 		sysfs_remove_link(kobj, devt_str);
3156 	}
3157 }
3158 
3159 static int device_private_init(struct device *dev)
3160 {
3161 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3162 	if (!dev->p)
3163 		return -ENOMEM;
3164 	dev->p->device = dev;
3165 	klist_init(&dev->p->klist_children, klist_children_get,
3166 		   klist_children_put);
3167 	INIT_LIST_HEAD(&dev->p->deferred_probe);
3168 	return 0;
3169 }
3170 
3171 /**
3172  * device_add - add device to device hierarchy.
3173  * @dev: device.
3174  *
3175  * This is part 2 of device_register(), though may be called
3176  * separately _iff_ device_initialize() has been called separately.
3177  *
3178  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3179  * to the global and sibling lists for the device, then
3180  * adds it to the other relevant subsystems of the driver model.
3181  *
3182  * Do not call this routine or device_register() more than once for
3183  * any device structure.  The driver model core is not designed to work
3184  * with devices that get unregistered and then spring back to life.
3185  * (Among other things, it's very hard to guarantee that all references
3186  * to the previous incarnation of @dev have been dropped.)  Allocate
3187  * and register a fresh new struct device instead.
3188  *
3189  * NOTE: _Never_ directly free @dev after calling this function, even
3190  * if it returned an error! Always use put_device() to give up your
3191  * reference instead.
3192  *
3193  * Rule of thumb is: if device_add() succeeds, you should call
3194  * device_del() when you want to get rid of it. If device_add() has
3195  * *not* succeeded, use *only* put_device() to drop the reference
3196  * count.
3197  */
3198 int device_add(struct device *dev)
3199 {
3200 	struct device *parent;
3201 	struct kobject *kobj;
3202 	struct class_interface *class_intf;
3203 	int error = -EINVAL;
3204 	struct kobject *glue_dir = NULL;
3205 
3206 	dev = get_device(dev);
3207 	if (!dev)
3208 		goto done;
3209 
3210 	if (!dev->p) {
3211 		error = device_private_init(dev);
3212 		if (error)
3213 			goto done;
3214 	}
3215 
3216 	/*
3217 	 * for statically allocated devices, which should all be converted
3218 	 * some day, we need to initialize the name. We prevent reading back
3219 	 * the name, and force the use of dev_name()
3220 	 */
3221 	if (dev->init_name) {
3222 		dev_set_name(dev, "%s", dev->init_name);
3223 		dev->init_name = NULL;
3224 	}
3225 
3226 	/* subsystems can specify simple device enumeration */
3227 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
3228 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3229 
3230 	if (!dev_name(dev)) {
3231 		error = -EINVAL;
3232 		goto name_error;
3233 	}
3234 
3235 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3236 
3237 	parent = get_device(dev->parent);
3238 	kobj = get_device_parent(dev, parent);
3239 	if (IS_ERR(kobj)) {
3240 		error = PTR_ERR(kobj);
3241 		goto parent_error;
3242 	}
3243 	if (kobj)
3244 		dev->kobj.parent = kobj;
3245 
3246 	/* use parent numa_node */
3247 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3248 		set_dev_node(dev, dev_to_node(parent));
3249 
3250 	/* first, register with generic layer. */
3251 	/* we require the name to be set before, and pass NULL */
3252 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3253 	if (error) {
3254 		glue_dir = get_glue_dir(dev);
3255 		goto Error;
3256 	}
3257 
3258 	/* notify platform of device entry */
3259 	error = device_platform_notify(dev, KOBJ_ADD);
3260 	if (error)
3261 		goto platform_error;
3262 
3263 	error = device_create_file(dev, &dev_attr_uevent);
3264 	if (error)
3265 		goto attrError;
3266 
3267 	error = device_add_class_symlinks(dev);
3268 	if (error)
3269 		goto SymlinkError;
3270 	error = device_add_attrs(dev);
3271 	if (error)
3272 		goto AttrsError;
3273 	error = bus_add_device(dev);
3274 	if (error)
3275 		goto BusError;
3276 	error = dpm_sysfs_add(dev);
3277 	if (error)
3278 		goto DPMError;
3279 	device_pm_add(dev);
3280 
3281 	if (MAJOR(dev->devt)) {
3282 		error = device_create_file(dev, &dev_attr_dev);
3283 		if (error)
3284 			goto DevAttrError;
3285 
3286 		error = device_create_sys_dev_entry(dev);
3287 		if (error)
3288 			goto SysEntryError;
3289 
3290 		devtmpfs_create_node(dev);
3291 	}
3292 
3293 	/* Notify clients of device addition.  This call must come
3294 	 * after dpm_sysfs_add() and before kobject_uevent().
3295 	 */
3296 	if (dev->bus)
3297 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3298 					     BUS_NOTIFY_ADD_DEVICE, dev);
3299 
3300 	kobject_uevent(&dev->kobj, KOBJ_ADD);
3301 
3302 	/*
3303 	 * Check if any of the other devices (consumers) have been waiting for
3304 	 * this device (supplier) to be added so that they can create a device
3305 	 * link to it.
3306 	 *
3307 	 * This needs to happen after device_pm_add() because device_link_add()
3308 	 * requires the supplier be registered before it's called.
3309 	 *
3310 	 * But this also needs to happen before bus_probe_device() to make sure
3311 	 * waiting consumers can link to it before the driver is bound to the
3312 	 * device and the driver sync_state callback is called for this device.
3313 	 */
3314 	if (dev->fwnode && !dev->fwnode->dev) {
3315 		dev->fwnode->dev = dev;
3316 		fw_devlink_link_device(dev);
3317 	}
3318 
3319 	bus_probe_device(dev);
3320 
3321 	/*
3322 	 * If all driver registration is done and a newly added device doesn't
3323 	 * match with any driver, don't block its consumers from probing in
3324 	 * case the consumer device is able to operate without this supplier.
3325 	 */
3326 	if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3327 		fw_devlink_unblock_consumers(dev);
3328 
3329 	if (parent)
3330 		klist_add_tail(&dev->p->knode_parent,
3331 			       &parent->p->klist_children);
3332 
3333 	if (dev->class) {
3334 		mutex_lock(&dev->class->p->mutex);
3335 		/* tie the class to the device */
3336 		klist_add_tail(&dev->p->knode_class,
3337 			       &dev->class->p->klist_devices);
3338 
3339 		/* notify any interfaces that the device is here */
3340 		list_for_each_entry(class_intf,
3341 				    &dev->class->p->interfaces, node)
3342 			if (class_intf->add_dev)
3343 				class_intf->add_dev(dev, class_intf);
3344 		mutex_unlock(&dev->class->p->mutex);
3345 	}
3346 done:
3347 	put_device(dev);
3348 	return error;
3349  SysEntryError:
3350 	if (MAJOR(dev->devt))
3351 		device_remove_file(dev, &dev_attr_dev);
3352  DevAttrError:
3353 	device_pm_remove(dev);
3354 	dpm_sysfs_remove(dev);
3355  DPMError:
3356 	bus_remove_device(dev);
3357  BusError:
3358 	device_remove_attrs(dev);
3359  AttrsError:
3360 	device_remove_class_symlinks(dev);
3361  SymlinkError:
3362 	device_remove_file(dev, &dev_attr_uevent);
3363  attrError:
3364 	device_platform_notify(dev, KOBJ_REMOVE);
3365 platform_error:
3366 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3367 	glue_dir = get_glue_dir(dev);
3368 	kobject_del(&dev->kobj);
3369  Error:
3370 	cleanup_glue_dir(dev, glue_dir);
3371 parent_error:
3372 	put_device(parent);
3373 name_error:
3374 	kfree(dev->p);
3375 	dev->p = NULL;
3376 	goto done;
3377 }
3378 EXPORT_SYMBOL_GPL(device_add);
3379 
3380 /**
3381  * device_register - register a device with the system.
3382  * @dev: pointer to the device structure
3383  *
3384  * This happens in two clean steps - initialize the device
3385  * and add it to the system. The two steps can be called
3386  * separately, but this is the easiest and most common.
3387  * I.e. you should only call the two helpers separately if
3388  * have a clearly defined need to use and refcount the device
3389  * before it is added to the hierarchy.
3390  *
3391  * For more information, see the kerneldoc for device_initialize()
3392  * and device_add().
3393  *
3394  * NOTE: _Never_ directly free @dev after calling this function, even
3395  * if it returned an error! Always use put_device() to give up the
3396  * reference initialized in this function instead.
3397  */
3398 int device_register(struct device *dev)
3399 {
3400 	device_initialize(dev);
3401 	return device_add(dev);
3402 }
3403 EXPORT_SYMBOL_GPL(device_register);
3404 
3405 /**
3406  * get_device - increment reference count for device.
3407  * @dev: device.
3408  *
3409  * This simply forwards the call to kobject_get(), though
3410  * we do take care to provide for the case that we get a NULL
3411  * pointer passed in.
3412  */
3413 struct device *get_device(struct device *dev)
3414 {
3415 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3416 }
3417 EXPORT_SYMBOL_GPL(get_device);
3418 
3419 /**
3420  * put_device - decrement reference count.
3421  * @dev: device in question.
3422  */
3423 void put_device(struct device *dev)
3424 {
3425 	/* might_sleep(); */
3426 	if (dev)
3427 		kobject_put(&dev->kobj);
3428 }
3429 EXPORT_SYMBOL_GPL(put_device);
3430 
3431 bool kill_device(struct device *dev)
3432 {
3433 	/*
3434 	 * Require the device lock and set the "dead" flag to guarantee that
3435 	 * the update behavior is consistent with the other bitfields near
3436 	 * it and that we cannot have an asynchronous probe routine trying
3437 	 * to run while we are tearing out the bus/class/sysfs from
3438 	 * underneath the device.
3439 	 */
3440 	lockdep_assert_held(&dev->mutex);
3441 
3442 	if (dev->p->dead)
3443 		return false;
3444 	dev->p->dead = true;
3445 	return true;
3446 }
3447 EXPORT_SYMBOL_GPL(kill_device);
3448 
3449 /**
3450  * device_del - delete device from system.
3451  * @dev: device.
3452  *
3453  * This is the first part of the device unregistration
3454  * sequence. This removes the device from the lists we control
3455  * from here, has it removed from the other driver model
3456  * subsystems it was added to in device_add(), and removes it
3457  * from the kobject hierarchy.
3458  *
3459  * NOTE: this should be called manually _iff_ device_add() was
3460  * also called manually.
3461  */
3462 void device_del(struct device *dev)
3463 {
3464 	struct device *parent = dev->parent;
3465 	struct kobject *glue_dir = NULL;
3466 	struct class_interface *class_intf;
3467 	unsigned int noio_flag;
3468 
3469 	device_lock(dev);
3470 	kill_device(dev);
3471 	device_unlock(dev);
3472 
3473 	if (dev->fwnode && dev->fwnode->dev == dev)
3474 		dev->fwnode->dev = NULL;
3475 
3476 	/* Notify clients of device removal.  This call must come
3477 	 * before dpm_sysfs_remove().
3478 	 */
3479 	noio_flag = memalloc_noio_save();
3480 	if (dev->bus)
3481 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3482 					     BUS_NOTIFY_DEL_DEVICE, dev);
3483 
3484 	dpm_sysfs_remove(dev);
3485 	if (parent)
3486 		klist_del(&dev->p->knode_parent);
3487 	if (MAJOR(dev->devt)) {
3488 		devtmpfs_delete_node(dev);
3489 		device_remove_sys_dev_entry(dev);
3490 		device_remove_file(dev, &dev_attr_dev);
3491 	}
3492 	if (dev->class) {
3493 		device_remove_class_symlinks(dev);
3494 
3495 		mutex_lock(&dev->class->p->mutex);
3496 		/* notify any interfaces that the device is now gone */
3497 		list_for_each_entry(class_intf,
3498 				    &dev->class->p->interfaces, node)
3499 			if (class_intf->remove_dev)
3500 				class_intf->remove_dev(dev, class_intf);
3501 		/* remove the device from the class list */
3502 		klist_del(&dev->p->knode_class);
3503 		mutex_unlock(&dev->class->p->mutex);
3504 	}
3505 	device_remove_file(dev, &dev_attr_uevent);
3506 	device_remove_attrs(dev);
3507 	bus_remove_device(dev);
3508 	device_pm_remove(dev);
3509 	driver_deferred_probe_del(dev);
3510 	device_platform_notify(dev, KOBJ_REMOVE);
3511 	device_remove_properties(dev);
3512 	device_links_purge(dev);
3513 
3514 	if (dev->bus)
3515 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3516 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
3517 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3518 	glue_dir = get_glue_dir(dev);
3519 	kobject_del(&dev->kobj);
3520 	cleanup_glue_dir(dev, glue_dir);
3521 	memalloc_noio_restore(noio_flag);
3522 	put_device(parent);
3523 }
3524 EXPORT_SYMBOL_GPL(device_del);
3525 
3526 /**
3527  * device_unregister - unregister device from system.
3528  * @dev: device going away.
3529  *
3530  * We do this in two parts, like we do device_register(). First,
3531  * we remove it from all the subsystems with device_del(), then
3532  * we decrement the reference count via put_device(). If that
3533  * is the final reference count, the device will be cleaned up
3534  * via device_release() above. Otherwise, the structure will
3535  * stick around until the final reference to the device is dropped.
3536  */
3537 void device_unregister(struct device *dev)
3538 {
3539 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3540 	device_del(dev);
3541 	put_device(dev);
3542 }
3543 EXPORT_SYMBOL_GPL(device_unregister);
3544 
3545 static struct device *prev_device(struct klist_iter *i)
3546 {
3547 	struct klist_node *n = klist_prev(i);
3548 	struct device *dev = NULL;
3549 	struct device_private *p;
3550 
3551 	if (n) {
3552 		p = to_device_private_parent(n);
3553 		dev = p->device;
3554 	}
3555 	return dev;
3556 }
3557 
3558 static struct device *next_device(struct klist_iter *i)
3559 {
3560 	struct klist_node *n = klist_next(i);
3561 	struct device *dev = NULL;
3562 	struct device_private *p;
3563 
3564 	if (n) {
3565 		p = to_device_private_parent(n);
3566 		dev = p->device;
3567 	}
3568 	return dev;
3569 }
3570 
3571 /**
3572  * device_get_devnode - path of device node file
3573  * @dev: device
3574  * @mode: returned file access mode
3575  * @uid: returned file owner
3576  * @gid: returned file group
3577  * @tmp: possibly allocated string
3578  *
3579  * Return the relative path of a possible device node.
3580  * Non-default names may need to allocate a memory to compose
3581  * a name. This memory is returned in tmp and needs to be
3582  * freed by the caller.
3583  */
3584 const char *device_get_devnode(struct device *dev,
3585 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3586 			       const char **tmp)
3587 {
3588 	char *s;
3589 
3590 	*tmp = NULL;
3591 
3592 	/* the device type may provide a specific name */
3593 	if (dev->type && dev->type->devnode)
3594 		*tmp = dev->type->devnode(dev, mode, uid, gid);
3595 	if (*tmp)
3596 		return *tmp;
3597 
3598 	/* the class may provide a specific name */
3599 	if (dev->class && dev->class->devnode)
3600 		*tmp = dev->class->devnode(dev, mode);
3601 	if (*tmp)
3602 		return *tmp;
3603 
3604 	/* return name without allocation, tmp == NULL */
3605 	if (strchr(dev_name(dev), '!') == NULL)
3606 		return dev_name(dev);
3607 
3608 	/* replace '!' in the name with '/' */
3609 	s = kstrdup(dev_name(dev), GFP_KERNEL);
3610 	if (!s)
3611 		return NULL;
3612 	strreplace(s, '!', '/');
3613 	return *tmp = s;
3614 }
3615 
3616 /**
3617  * device_for_each_child - device child iterator.
3618  * @parent: parent struct device.
3619  * @fn: function to be called for each device.
3620  * @data: data for the callback.
3621  *
3622  * Iterate over @parent's child devices, and call @fn for each,
3623  * passing it @data.
3624  *
3625  * We check the return of @fn each time. If it returns anything
3626  * other than 0, we break out and return that value.
3627  */
3628 int device_for_each_child(struct device *parent, void *data,
3629 			  int (*fn)(struct device *dev, void *data))
3630 {
3631 	struct klist_iter i;
3632 	struct device *child;
3633 	int error = 0;
3634 
3635 	if (!parent->p)
3636 		return 0;
3637 
3638 	klist_iter_init(&parent->p->klist_children, &i);
3639 	while (!error && (child = next_device(&i)))
3640 		error = fn(child, data);
3641 	klist_iter_exit(&i);
3642 	return error;
3643 }
3644 EXPORT_SYMBOL_GPL(device_for_each_child);
3645 
3646 /**
3647  * device_for_each_child_reverse - device child iterator in reversed order.
3648  * @parent: parent struct device.
3649  * @fn: function to be called for each device.
3650  * @data: data for the callback.
3651  *
3652  * Iterate over @parent's child devices, and call @fn for each,
3653  * passing it @data.
3654  *
3655  * We check the return of @fn each time. If it returns anything
3656  * other than 0, we break out and return that value.
3657  */
3658 int device_for_each_child_reverse(struct device *parent, void *data,
3659 				  int (*fn)(struct device *dev, void *data))
3660 {
3661 	struct klist_iter i;
3662 	struct device *child;
3663 	int error = 0;
3664 
3665 	if (!parent->p)
3666 		return 0;
3667 
3668 	klist_iter_init(&parent->p->klist_children, &i);
3669 	while ((child = prev_device(&i)) && !error)
3670 		error = fn(child, data);
3671 	klist_iter_exit(&i);
3672 	return error;
3673 }
3674 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3675 
3676 /**
3677  * device_find_child - device iterator for locating a particular device.
3678  * @parent: parent struct device
3679  * @match: Callback function to check device
3680  * @data: Data to pass to match function
3681  *
3682  * This is similar to the device_for_each_child() function above, but it
3683  * returns a reference to a device that is 'found' for later use, as
3684  * determined by the @match callback.
3685  *
3686  * The callback should return 0 if the device doesn't match and non-zero
3687  * if it does.  If the callback returns non-zero and a reference to the
3688  * current device can be obtained, this function will return to the caller
3689  * and not iterate over any more devices.
3690  *
3691  * NOTE: you will need to drop the reference with put_device() after use.
3692  */
3693 struct device *device_find_child(struct device *parent, void *data,
3694 				 int (*match)(struct device *dev, void *data))
3695 {
3696 	struct klist_iter i;
3697 	struct device *child;
3698 
3699 	if (!parent)
3700 		return NULL;
3701 
3702 	klist_iter_init(&parent->p->klist_children, &i);
3703 	while ((child = next_device(&i)))
3704 		if (match(child, data) && get_device(child))
3705 			break;
3706 	klist_iter_exit(&i);
3707 	return child;
3708 }
3709 EXPORT_SYMBOL_GPL(device_find_child);
3710 
3711 /**
3712  * device_find_child_by_name - device iterator for locating a child device.
3713  * @parent: parent struct device
3714  * @name: name of the child device
3715  *
3716  * This is similar to the device_find_child() function above, but it
3717  * returns a reference to a device that has the name @name.
3718  *
3719  * NOTE: you will need to drop the reference with put_device() after use.
3720  */
3721 struct device *device_find_child_by_name(struct device *parent,
3722 					 const char *name)
3723 {
3724 	struct klist_iter i;
3725 	struct device *child;
3726 
3727 	if (!parent)
3728 		return NULL;
3729 
3730 	klist_iter_init(&parent->p->klist_children, &i);
3731 	while ((child = next_device(&i)))
3732 		if (sysfs_streq(dev_name(child), name) && get_device(child))
3733 			break;
3734 	klist_iter_exit(&i);
3735 	return child;
3736 }
3737 EXPORT_SYMBOL_GPL(device_find_child_by_name);
3738 
3739 int __init devices_init(void)
3740 {
3741 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3742 	if (!devices_kset)
3743 		return -ENOMEM;
3744 	dev_kobj = kobject_create_and_add("dev", NULL);
3745 	if (!dev_kobj)
3746 		goto dev_kobj_err;
3747 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3748 	if (!sysfs_dev_block_kobj)
3749 		goto block_kobj_err;
3750 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3751 	if (!sysfs_dev_char_kobj)
3752 		goto char_kobj_err;
3753 
3754 	return 0;
3755 
3756  char_kobj_err:
3757 	kobject_put(sysfs_dev_block_kobj);
3758  block_kobj_err:
3759 	kobject_put(dev_kobj);
3760  dev_kobj_err:
3761 	kset_unregister(devices_kset);
3762 	return -ENOMEM;
3763 }
3764 
3765 static int device_check_offline(struct device *dev, void *not_used)
3766 {
3767 	int ret;
3768 
3769 	ret = device_for_each_child(dev, NULL, device_check_offline);
3770 	if (ret)
3771 		return ret;
3772 
3773 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3774 }
3775 
3776 /**
3777  * device_offline - Prepare the device for hot-removal.
3778  * @dev: Device to be put offline.
3779  *
3780  * Execute the device bus type's .offline() callback, if present, to prepare
3781  * the device for a subsequent hot-removal.  If that succeeds, the device must
3782  * not be used until either it is removed or its bus type's .online() callback
3783  * is executed.
3784  *
3785  * Call under device_hotplug_lock.
3786  */
3787 int device_offline(struct device *dev)
3788 {
3789 	int ret;
3790 
3791 	if (dev->offline_disabled)
3792 		return -EPERM;
3793 
3794 	ret = device_for_each_child(dev, NULL, device_check_offline);
3795 	if (ret)
3796 		return ret;
3797 
3798 	device_lock(dev);
3799 	if (device_supports_offline(dev)) {
3800 		if (dev->offline) {
3801 			ret = 1;
3802 		} else {
3803 			ret = dev->bus->offline(dev);
3804 			if (!ret) {
3805 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3806 				dev->offline = true;
3807 			}
3808 		}
3809 	}
3810 	device_unlock(dev);
3811 
3812 	return ret;
3813 }
3814 
3815 /**
3816  * device_online - Put the device back online after successful device_offline().
3817  * @dev: Device to be put back online.
3818  *
3819  * If device_offline() has been successfully executed for @dev, but the device
3820  * has not been removed subsequently, execute its bus type's .online() callback
3821  * to indicate that the device can be used again.
3822  *
3823  * Call under device_hotplug_lock.
3824  */
3825 int device_online(struct device *dev)
3826 {
3827 	int ret = 0;
3828 
3829 	device_lock(dev);
3830 	if (device_supports_offline(dev)) {
3831 		if (dev->offline) {
3832 			ret = dev->bus->online(dev);
3833 			if (!ret) {
3834 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3835 				dev->offline = false;
3836 			}
3837 		} else {
3838 			ret = 1;
3839 		}
3840 	}
3841 	device_unlock(dev);
3842 
3843 	return ret;
3844 }
3845 
3846 struct root_device {
3847 	struct device dev;
3848 	struct module *owner;
3849 };
3850 
3851 static inline struct root_device *to_root_device(struct device *d)
3852 {
3853 	return container_of(d, struct root_device, dev);
3854 }
3855 
3856 static void root_device_release(struct device *dev)
3857 {
3858 	kfree(to_root_device(dev));
3859 }
3860 
3861 /**
3862  * __root_device_register - allocate and register a root device
3863  * @name: root device name
3864  * @owner: owner module of the root device, usually THIS_MODULE
3865  *
3866  * This function allocates a root device and registers it
3867  * using device_register(). In order to free the returned
3868  * device, use root_device_unregister().
3869  *
3870  * Root devices are dummy devices which allow other devices
3871  * to be grouped under /sys/devices. Use this function to
3872  * allocate a root device and then use it as the parent of
3873  * any device which should appear under /sys/devices/{name}
3874  *
3875  * The /sys/devices/{name} directory will also contain a
3876  * 'module' symlink which points to the @owner directory
3877  * in sysfs.
3878  *
3879  * Returns &struct device pointer on success, or ERR_PTR() on error.
3880  *
3881  * Note: You probably want to use root_device_register().
3882  */
3883 struct device *__root_device_register(const char *name, struct module *owner)
3884 {
3885 	struct root_device *root;
3886 	int err = -ENOMEM;
3887 
3888 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3889 	if (!root)
3890 		return ERR_PTR(err);
3891 
3892 	err = dev_set_name(&root->dev, "%s", name);
3893 	if (err) {
3894 		kfree(root);
3895 		return ERR_PTR(err);
3896 	}
3897 
3898 	root->dev.release = root_device_release;
3899 
3900 	err = device_register(&root->dev);
3901 	if (err) {
3902 		put_device(&root->dev);
3903 		return ERR_PTR(err);
3904 	}
3905 
3906 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
3907 	if (owner) {
3908 		struct module_kobject *mk = &owner->mkobj;
3909 
3910 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3911 		if (err) {
3912 			device_unregister(&root->dev);
3913 			return ERR_PTR(err);
3914 		}
3915 		root->owner = owner;
3916 	}
3917 #endif
3918 
3919 	return &root->dev;
3920 }
3921 EXPORT_SYMBOL_GPL(__root_device_register);
3922 
3923 /**
3924  * root_device_unregister - unregister and free a root device
3925  * @dev: device going away
3926  *
3927  * This function unregisters and cleans up a device that was created by
3928  * root_device_register().
3929  */
3930 void root_device_unregister(struct device *dev)
3931 {
3932 	struct root_device *root = to_root_device(dev);
3933 
3934 	if (root->owner)
3935 		sysfs_remove_link(&root->dev.kobj, "module");
3936 
3937 	device_unregister(dev);
3938 }
3939 EXPORT_SYMBOL_GPL(root_device_unregister);
3940 
3941 
3942 static void device_create_release(struct device *dev)
3943 {
3944 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3945 	kfree(dev);
3946 }
3947 
3948 static __printf(6, 0) struct device *
3949 device_create_groups_vargs(struct class *class, struct device *parent,
3950 			   dev_t devt, void *drvdata,
3951 			   const struct attribute_group **groups,
3952 			   const char *fmt, va_list args)
3953 {
3954 	struct device *dev = NULL;
3955 	int retval = -ENODEV;
3956 
3957 	if (class == NULL || IS_ERR(class))
3958 		goto error;
3959 
3960 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3961 	if (!dev) {
3962 		retval = -ENOMEM;
3963 		goto error;
3964 	}
3965 
3966 	device_initialize(dev);
3967 	dev->devt = devt;
3968 	dev->class = class;
3969 	dev->parent = parent;
3970 	dev->groups = groups;
3971 	dev->release = device_create_release;
3972 	dev_set_drvdata(dev, drvdata);
3973 
3974 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
3975 	if (retval)
3976 		goto error;
3977 
3978 	retval = device_add(dev);
3979 	if (retval)
3980 		goto error;
3981 
3982 	return dev;
3983 
3984 error:
3985 	put_device(dev);
3986 	return ERR_PTR(retval);
3987 }
3988 
3989 /**
3990  * device_create - creates a device and registers it with sysfs
3991  * @class: pointer to the struct class that this device should be registered to
3992  * @parent: pointer to the parent struct device of this new device, if any
3993  * @devt: the dev_t for the char device to be added
3994  * @drvdata: the data to be added to the device for callbacks
3995  * @fmt: string for the device's name
3996  *
3997  * This function can be used by char device classes.  A struct device
3998  * will be created in sysfs, registered to the specified class.
3999  *
4000  * A "dev" file will be created, showing the dev_t for the device, if
4001  * the dev_t is not 0,0.
4002  * If a pointer to a parent struct device is passed in, the newly created
4003  * struct device will be a child of that device in sysfs.
4004  * The pointer to the struct device will be returned from the call.
4005  * Any further sysfs files that might be required can be created using this
4006  * pointer.
4007  *
4008  * Returns &struct device pointer on success, or ERR_PTR() on error.
4009  *
4010  * Note: the struct class passed to this function must have previously
4011  * been created with a call to class_create().
4012  */
4013 struct device *device_create(struct class *class, struct device *parent,
4014 			     dev_t devt, void *drvdata, const char *fmt, ...)
4015 {
4016 	va_list vargs;
4017 	struct device *dev;
4018 
4019 	va_start(vargs, fmt);
4020 	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4021 					  fmt, vargs);
4022 	va_end(vargs);
4023 	return dev;
4024 }
4025 EXPORT_SYMBOL_GPL(device_create);
4026 
4027 /**
4028  * device_create_with_groups - creates a device and registers it with sysfs
4029  * @class: pointer to the struct class that this device should be registered to
4030  * @parent: pointer to the parent struct device of this new device, if any
4031  * @devt: the dev_t for the char device to be added
4032  * @drvdata: the data to be added to the device for callbacks
4033  * @groups: NULL-terminated list of attribute groups to be created
4034  * @fmt: string for the device's name
4035  *
4036  * This function can be used by char device classes.  A struct device
4037  * will be created in sysfs, registered to the specified class.
4038  * Additional attributes specified in the groups parameter will also
4039  * be created automatically.
4040  *
4041  * A "dev" file will be created, showing the dev_t for the device, if
4042  * the dev_t is not 0,0.
4043  * If a pointer to a parent struct device is passed in, the newly created
4044  * struct device will be a child of that device in sysfs.
4045  * The pointer to the struct device will be returned from the call.
4046  * Any further sysfs files that might be required can be created using this
4047  * pointer.
4048  *
4049  * Returns &struct device pointer on success, or ERR_PTR() on error.
4050  *
4051  * Note: the struct class passed to this function must have previously
4052  * been created with a call to class_create().
4053  */
4054 struct device *device_create_with_groups(struct class *class,
4055 					 struct device *parent, dev_t devt,
4056 					 void *drvdata,
4057 					 const struct attribute_group **groups,
4058 					 const char *fmt, ...)
4059 {
4060 	va_list vargs;
4061 	struct device *dev;
4062 
4063 	va_start(vargs, fmt);
4064 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4065 					 fmt, vargs);
4066 	va_end(vargs);
4067 	return dev;
4068 }
4069 EXPORT_SYMBOL_GPL(device_create_with_groups);
4070 
4071 /**
4072  * device_destroy - removes a device that was created with device_create()
4073  * @class: pointer to the struct class that this device was registered with
4074  * @devt: the dev_t of the device that was previously registered
4075  *
4076  * This call unregisters and cleans up a device that was created with a
4077  * call to device_create().
4078  */
4079 void device_destroy(struct class *class, dev_t devt)
4080 {
4081 	struct device *dev;
4082 
4083 	dev = class_find_device_by_devt(class, devt);
4084 	if (dev) {
4085 		put_device(dev);
4086 		device_unregister(dev);
4087 	}
4088 }
4089 EXPORT_SYMBOL_GPL(device_destroy);
4090 
4091 /**
4092  * device_rename - renames a device
4093  * @dev: the pointer to the struct device to be renamed
4094  * @new_name: the new name of the device
4095  *
4096  * It is the responsibility of the caller to provide mutual
4097  * exclusion between two different calls of device_rename
4098  * on the same device to ensure that new_name is valid and
4099  * won't conflict with other devices.
4100  *
4101  * Note: Don't call this function.  Currently, the networking layer calls this
4102  * function, but that will change.  The following text from Kay Sievers offers
4103  * some insight:
4104  *
4105  * Renaming devices is racy at many levels, symlinks and other stuff are not
4106  * replaced atomically, and you get a "move" uevent, but it's not easy to
4107  * connect the event to the old and new device. Device nodes are not renamed at
4108  * all, there isn't even support for that in the kernel now.
4109  *
4110  * In the meantime, during renaming, your target name might be taken by another
4111  * driver, creating conflicts. Or the old name is taken directly after you
4112  * renamed it -- then you get events for the same DEVPATH, before you even see
4113  * the "move" event. It's just a mess, and nothing new should ever rely on
4114  * kernel device renaming. Besides that, it's not even implemented now for
4115  * other things than (driver-core wise very simple) network devices.
4116  *
4117  * We are currently about to change network renaming in udev to completely
4118  * disallow renaming of devices in the same namespace as the kernel uses,
4119  * because we can't solve the problems properly, that arise with swapping names
4120  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
4121  * be allowed to some other name than eth[0-9]*, for the aforementioned
4122  * reasons.
4123  *
4124  * Make up a "real" name in the driver before you register anything, or add
4125  * some other attributes for userspace to find the device, or use udev to add
4126  * symlinks -- but never rename kernel devices later, it's a complete mess. We
4127  * don't even want to get into that and try to implement the missing pieces in
4128  * the core. We really have other pieces to fix in the driver core mess. :)
4129  */
4130 int device_rename(struct device *dev, const char *new_name)
4131 {
4132 	struct kobject *kobj = &dev->kobj;
4133 	char *old_device_name = NULL;
4134 	int error;
4135 
4136 	dev = get_device(dev);
4137 	if (!dev)
4138 		return -EINVAL;
4139 
4140 	dev_dbg(dev, "renaming to %s\n", new_name);
4141 
4142 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4143 	if (!old_device_name) {
4144 		error = -ENOMEM;
4145 		goto out;
4146 	}
4147 
4148 	if (dev->class) {
4149 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
4150 					     kobj, old_device_name,
4151 					     new_name, kobject_namespace(kobj));
4152 		if (error)
4153 			goto out;
4154 	}
4155 
4156 	error = kobject_rename(kobj, new_name);
4157 	if (error)
4158 		goto out;
4159 
4160 out:
4161 	put_device(dev);
4162 
4163 	kfree(old_device_name);
4164 
4165 	return error;
4166 }
4167 EXPORT_SYMBOL_GPL(device_rename);
4168 
4169 static int device_move_class_links(struct device *dev,
4170 				   struct device *old_parent,
4171 				   struct device *new_parent)
4172 {
4173 	int error = 0;
4174 
4175 	if (old_parent)
4176 		sysfs_remove_link(&dev->kobj, "device");
4177 	if (new_parent)
4178 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4179 					  "device");
4180 	return error;
4181 }
4182 
4183 /**
4184  * device_move - moves a device to a new parent
4185  * @dev: the pointer to the struct device to be moved
4186  * @new_parent: the new parent of the device (can be NULL)
4187  * @dpm_order: how to reorder the dpm_list
4188  */
4189 int device_move(struct device *dev, struct device *new_parent,
4190 		enum dpm_order dpm_order)
4191 {
4192 	int error;
4193 	struct device *old_parent;
4194 	struct kobject *new_parent_kobj;
4195 
4196 	dev = get_device(dev);
4197 	if (!dev)
4198 		return -EINVAL;
4199 
4200 	device_pm_lock();
4201 	new_parent = get_device(new_parent);
4202 	new_parent_kobj = get_device_parent(dev, new_parent);
4203 	if (IS_ERR(new_parent_kobj)) {
4204 		error = PTR_ERR(new_parent_kobj);
4205 		put_device(new_parent);
4206 		goto out;
4207 	}
4208 
4209 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4210 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4211 	error = kobject_move(&dev->kobj, new_parent_kobj);
4212 	if (error) {
4213 		cleanup_glue_dir(dev, new_parent_kobj);
4214 		put_device(new_parent);
4215 		goto out;
4216 	}
4217 	old_parent = dev->parent;
4218 	dev->parent = new_parent;
4219 	if (old_parent)
4220 		klist_remove(&dev->p->knode_parent);
4221 	if (new_parent) {
4222 		klist_add_tail(&dev->p->knode_parent,
4223 			       &new_parent->p->klist_children);
4224 		set_dev_node(dev, dev_to_node(new_parent));
4225 	}
4226 
4227 	if (dev->class) {
4228 		error = device_move_class_links(dev, old_parent, new_parent);
4229 		if (error) {
4230 			/* We ignore errors on cleanup since we're hosed anyway... */
4231 			device_move_class_links(dev, new_parent, old_parent);
4232 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4233 				if (new_parent)
4234 					klist_remove(&dev->p->knode_parent);
4235 				dev->parent = old_parent;
4236 				if (old_parent) {
4237 					klist_add_tail(&dev->p->knode_parent,
4238 						       &old_parent->p->klist_children);
4239 					set_dev_node(dev, dev_to_node(old_parent));
4240 				}
4241 			}
4242 			cleanup_glue_dir(dev, new_parent_kobj);
4243 			put_device(new_parent);
4244 			goto out;
4245 		}
4246 	}
4247 	switch (dpm_order) {
4248 	case DPM_ORDER_NONE:
4249 		break;
4250 	case DPM_ORDER_DEV_AFTER_PARENT:
4251 		device_pm_move_after(dev, new_parent);
4252 		devices_kset_move_after(dev, new_parent);
4253 		break;
4254 	case DPM_ORDER_PARENT_BEFORE_DEV:
4255 		device_pm_move_before(new_parent, dev);
4256 		devices_kset_move_before(new_parent, dev);
4257 		break;
4258 	case DPM_ORDER_DEV_LAST:
4259 		device_pm_move_last(dev);
4260 		devices_kset_move_last(dev);
4261 		break;
4262 	}
4263 
4264 	put_device(old_parent);
4265 out:
4266 	device_pm_unlock();
4267 	put_device(dev);
4268 	return error;
4269 }
4270 EXPORT_SYMBOL_GPL(device_move);
4271 
4272 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4273 				     kgid_t kgid)
4274 {
4275 	struct kobject *kobj = &dev->kobj;
4276 	struct class *class = dev->class;
4277 	const struct device_type *type = dev->type;
4278 	int error;
4279 
4280 	if (class) {
4281 		/*
4282 		 * Change the device groups of the device class for @dev to
4283 		 * @kuid/@kgid.
4284 		 */
4285 		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4286 						  kgid);
4287 		if (error)
4288 			return error;
4289 	}
4290 
4291 	if (type) {
4292 		/*
4293 		 * Change the device groups of the device type for @dev to
4294 		 * @kuid/@kgid.
4295 		 */
4296 		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4297 						  kgid);
4298 		if (error)
4299 			return error;
4300 	}
4301 
4302 	/* Change the device groups of @dev to @kuid/@kgid. */
4303 	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4304 	if (error)
4305 		return error;
4306 
4307 	if (device_supports_offline(dev) && !dev->offline_disabled) {
4308 		/* Change online device attributes of @dev to @kuid/@kgid. */
4309 		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4310 						kuid, kgid);
4311 		if (error)
4312 			return error;
4313 	}
4314 
4315 	return 0;
4316 }
4317 
4318 /**
4319  * device_change_owner - change the owner of an existing device.
4320  * @dev: device.
4321  * @kuid: new owner's kuid
4322  * @kgid: new owner's kgid
4323  *
4324  * This changes the owner of @dev and its corresponding sysfs entries to
4325  * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4326  * core.
4327  *
4328  * Returns 0 on success or error code on failure.
4329  */
4330 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4331 {
4332 	int error;
4333 	struct kobject *kobj = &dev->kobj;
4334 
4335 	dev = get_device(dev);
4336 	if (!dev)
4337 		return -EINVAL;
4338 
4339 	/*
4340 	 * Change the kobject and the default attributes and groups of the
4341 	 * ktype associated with it to @kuid/@kgid.
4342 	 */
4343 	error = sysfs_change_owner(kobj, kuid, kgid);
4344 	if (error)
4345 		goto out;
4346 
4347 	/*
4348 	 * Change the uevent file for @dev to the new owner. The uevent file
4349 	 * was created in a separate step when @dev got added and we mirror
4350 	 * that step here.
4351 	 */
4352 	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4353 					kgid);
4354 	if (error)
4355 		goto out;
4356 
4357 	/*
4358 	 * Change the device groups, the device groups associated with the
4359 	 * device class, and the groups associated with the device type of @dev
4360 	 * to @kuid/@kgid.
4361 	 */
4362 	error = device_attrs_change_owner(dev, kuid, kgid);
4363 	if (error)
4364 		goto out;
4365 
4366 	error = dpm_sysfs_change_owner(dev, kuid, kgid);
4367 	if (error)
4368 		goto out;
4369 
4370 #ifdef CONFIG_BLOCK
4371 	if (sysfs_deprecated && dev->class == &block_class)
4372 		goto out;
4373 #endif
4374 
4375 	/*
4376 	 * Change the owner of the symlink located in the class directory of
4377 	 * the device class associated with @dev which points to the actual
4378 	 * directory entry for @dev to @kuid/@kgid. This ensures that the
4379 	 * symlink shows the same permissions as its target.
4380 	 */
4381 	error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4382 					dev_name(dev), kuid, kgid);
4383 	if (error)
4384 		goto out;
4385 
4386 out:
4387 	put_device(dev);
4388 	return error;
4389 }
4390 EXPORT_SYMBOL_GPL(device_change_owner);
4391 
4392 /**
4393  * device_shutdown - call ->shutdown() on each device to shutdown.
4394  */
4395 void device_shutdown(void)
4396 {
4397 	struct device *dev, *parent;
4398 
4399 	wait_for_device_probe();
4400 	device_block_probing();
4401 
4402 	cpufreq_suspend();
4403 
4404 	spin_lock(&devices_kset->list_lock);
4405 	/*
4406 	 * Walk the devices list backward, shutting down each in turn.
4407 	 * Beware that device unplug events may also start pulling
4408 	 * devices offline, even as the system is shutting down.
4409 	 */
4410 	while (!list_empty(&devices_kset->list)) {
4411 		dev = list_entry(devices_kset->list.prev, struct device,
4412 				kobj.entry);
4413 
4414 		/*
4415 		 * hold reference count of device's parent to
4416 		 * prevent it from being freed because parent's
4417 		 * lock is to be held
4418 		 */
4419 		parent = get_device(dev->parent);
4420 		get_device(dev);
4421 		/*
4422 		 * Make sure the device is off the kset list, in the
4423 		 * event that dev->*->shutdown() doesn't remove it.
4424 		 */
4425 		list_del_init(&dev->kobj.entry);
4426 		spin_unlock(&devices_kset->list_lock);
4427 
4428 		/* hold lock to avoid race with probe/release */
4429 		if (parent)
4430 			device_lock(parent);
4431 		device_lock(dev);
4432 
4433 		/* Don't allow any more runtime suspends */
4434 		pm_runtime_get_noresume(dev);
4435 		pm_runtime_barrier(dev);
4436 
4437 		if (dev->class && dev->class->shutdown_pre) {
4438 			if (initcall_debug)
4439 				dev_info(dev, "shutdown_pre\n");
4440 			dev->class->shutdown_pre(dev);
4441 		}
4442 		if (dev->bus && dev->bus->shutdown) {
4443 			if (initcall_debug)
4444 				dev_info(dev, "shutdown\n");
4445 			dev->bus->shutdown(dev);
4446 		} else if (dev->driver && dev->driver->shutdown) {
4447 			if (initcall_debug)
4448 				dev_info(dev, "shutdown\n");
4449 			dev->driver->shutdown(dev);
4450 		}
4451 
4452 		device_unlock(dev);
4453 		if (parent)
4454 			device_unlock(parent);
4455 
4456 		put_device(dev);
4457 		put_device(parent);
4458 
4459 		spin_lock(&devices_kset->list_lock);
4460 	}
4461 	spin_unlock(&devices_kset->list_lock);
4462 }
4463 
4464 /*
4465  * Device logging functions
4466  */
4467 
4468 #ifdef CONFIG_PRINTK
4469 static void
4470 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4471 {
4472 	const char *subsys;
4473 
4474 	memset(dev_info, 0, sizeof(*dev_info));
4475 
4476 	if (dev->class)
4477 		subsys = dev->class->name;
4478 	else if (dev->bus)
4479 		subsys = dev->bus->name;
4480 	else
4481 		return;
4482 
4483 	strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4484 
4485 	/*
4486 	 * Add device identifier DEVICE=:
4487 	 *   b12:8         block dev_t
4488 	 *   c127:3        char dev_t
4489 	 *   n8            netdev ifindex
4490 	 *   +sound:card0  subsystem:devname
4491 	 */
4492 	if (MAJOR(dev->devt)) {
4493 		char c;
4494 
4495 		if (strcmp(subsys, "block") == 0)
4496 			c = 'b';
4497 		else
4498 			c = 'c';
4499 
4500 		snprintf(dev_info->device, sizeof(dev_info->device),
4501 			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4502 	} else if (strcmp(subsys, "net") == 0) {
4503 		struct net_device *net = to_net_dev(dev);
4504 
4505 		snprintf(dev_info->device, sizeof(dev_info->device),
4506 			 "n%u", net->ifindex);
4507 	} else {
4508 		snprintf(dev_info->device, sizeof(dev_info->device),
4509 			 "+%s:%s", subsys, dev_name(dev));
4510 	}
4511 }
4512 
4513 int dev_vprintk_emit(int level, const struct device *dev,
4514 		     const char *fmt, va_list args)
4515 {
4516 	struct dev_printk_info dev_info;
4517 
4518 	set_dev_info(dev, &dev_info);
4519 
4520 	return vprintk_emit(0, level, &dev_info, fmt, args);
4521 }
4522 EXPORT_SYMBOL(dev_vprintk_emit);
4523 
4524 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4525 {
4526 	va_list args;
4527 	int r;
4528 
4529 	va_start(args, fmt);
4530 
4531 	r = dev_vprintk_emit(level, dev, fmt, args);
4532 
4533 	va_end(args);
4534 
4535 	return r;
4536 }
4537 EXPORT_SYMBOL(dev_printk_emit);
4538 
4539 static void __dev_printk(const char *level, const struct device *dev,
4540 			struct va_format *vaf)
4541 {
4542 	if (dev)
4543 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4544 				dev_driver_string(dev), dev_name(dev), vaf);
4545 	else
4546 		printk("%s(NULL device *): %pV", level, vaf);
4547 }
4548 
4549 void dev_printk(const char *level, const struct device *dev,
4550 		const char *fmt, ...)
4551 {
4552 	struct va_format vaf;
4553 	va_list args;
4554 
4555 	va_start(args, fmt);
4556 
4557 	vaf.fmt = fmt;
4558 	vaf.va = &args;
4559 
4560 	__dev_printk(level, dev, &vaf);
4561 
4562 	va_end(args);
4563 }
4564 EXPORT_SYMBOL(dev_printk);
4565 
4566 #define define_dev_printk_level(func, kern_level)		\
4567 void func(const struct device *dev, const char *fmt, ...)	\
4568 {								\
4569 	struct va_format vaf;					\
4570 	va_list args;						\
4571 								\
4572 	va_start(args, fmt);					\
4573 								\
4574 	vaf.fmt = fmt;						\
4575 	vaf.va = &args;						\
4576 								\
4577 	__dev_printk(kern_level, dev, &vaf);			\
4578 								\
4579 	va_end(args);						\
4580 }								\
4581 EXPORT_SYMBOL(func);
4582 
4583 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4584 define_dev_printk_level(_dev_alert, KERN_ALERT);
4585 define_dev_printk_level(_dev_crit, KERN_CRIT);
4586 define_dev_printk_level(_dev_err, KERN_ERR);
4587 define_dev_printk_level(_dev_warn, KERN_WARNING);
4588 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4589 define_dev_printk_level(_dev_info, KERN_INFO);
4590 
4591 #endif
4592 
4593 /**
4594  * dev_err_probe - probe error check and log helper
4595  * @dev: the pointer to the struct device
4596  * @err: error value to test
4597  * @fmt: printf-style format string
4598  * @...: arguments as specified in the format string
4599  *
4600  * This helper implements common pattern present in probe functions for error
4601  * checking: print debug or error message depending if the error value is
4602  * -EPROBE_DEFER and propagate error upwards.
4603  * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4604  * checked later by reading devices_deferred debugfs attribute.
4605  * It replaces code sequence::
4606  *
4607  * 	if (err != -EPROBE_DEFER)
4608  * 		dev_err(dev, ...);
4609  * 	else
4610  * 		dev_dbg(dev, ...);
4611  * 	return err;
4612  *
4613  * with::
4614  *
4615  * 	return dev_err_probe(dev, err, ...);
4616  *
4617  * Returns @err.
4618  *
4619  */
4620 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4621 {
4622 	struct va_format vaf;
4623 	va_list args;
4624 
4625 	va_start(args, fmt);
4626 	vaf.fmt = fmt;
4627 	vaf.va = &args;
4628 
4629 	if (err != -EPROBE_DEFER) {
4630 		dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4631 	} else {
4632 		device_set_deferred_probe_reason(dev, &vaf);
4633 		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4634 	}
4635 
4636 	va_end(args);
4637 
4638 	return err;
4639 }
4640 EXPORT_SYMBOL_GPL(dev_err_probe);
4641 
4642 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4643 {
4644 	return fwnode && !IS_ERR(fwnode->secondary);
4645 }
4646 
4647 /**
4648  * set_primary_fwnode - Change the primary firmware node of a given device.
4649  * @dev: Device to handle.
4650  * @fwnode: New primary firmware node of the device.
4651  *
4652  * Set the device's firmware node pointer to @fwnode, but if a secondary
4653  * firmware node of the device is present, preserve it.
4654  *
4655  * Valid fwnode cases are:
4656  *  - primary --> secondary --> -ENODEV
4657  *  - primary --> NULL
4658  *  - secondary --> -ENODEV
4659  *  - NULL
4660  */
4661 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4662 {
4663 	struct device *parent = dev->parent;
4664 	struct fwnode_handle *fn = dev->fwnode;
4665 
4666 	if (fwnode) {
4667 		if (fwnode_is_primary(fn))
4668 			fn = fn->secondary;
4669 
4670 		if (fn) {
4671 			WARN_ON(fwnode->secondary);
4672 			fwnode->secondary = fn;
4673 		}
4674 		dev->fwnode = fwnode;
4675 	} else {
4676 		if (fwnode_is_primary(fn)) {
4677 			dev->fwnode = fn->secondary;
4678 			/* Set fn->secondary = NULL, so fn remains the primary fwnode */
4679 			if (!(parent && fn == parent->fwnode))
4680 				fn->secondary = NULL;
4681 		} else {
4682 			dev->fwnode = NULL;
4683 		}
4684 	}
4685 }
4686 EXPORT_SYMBOL_GPL(set_primary_fwnode);
4687 
4688 /**
4689  * set_secondary_fwnode - Change the secondary firmware node of a given device.
4690  * @dev: Device to handle.
4691  * @fwnode: New secondary firmware node of the device.
4692  *
4693  * If a primary firmware node of the device is present, set its secondary
4694  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
4695  * @fwnode.
4696  */
4697 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4698 {
4699 	if (fwnode)
4700 		fwnode->secondary = ERR_PTR(-ENODEV);
4701 
4702 	if (fwnode_is_primary(dev->fwnode))
4703 		dev->fwnode->secondary = fwnode;
4704 	else
4705 		dev->fwnode = fwnode;
4706 }
4707 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4708 
4709 /**
4710  * device_set_of_node_from_dev - reuse device-tree node of another device
4711  * @dev: device whose device-tree node is being set
4712  * @dev2: device whose device-tree node is being reused
4713  *
4714  * Takes another reference to the new device-tree node after first dropping
4715  * any reference held to the old node.
4716  */
4717 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4718 {
4719 	of_node_put(dev->of_node);
4720 	dev->of_node = of_node_get(dev2->of_node);
4721 	dev->of_node_reused = true;
4722 }
4723 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4724 
4725 int device_match_name(struct device *dev, const void *name)
4726 {
4727 	return sysfs_streq(dev_name(dev), name);
4728 }
4729 EXPORT_SYMBOL_GPL(device_match_name);
4730 
4731 int device_match_of_node(struct device *dev, const void *np)
4732 {
4733 	return dev->of_node == np;
4734 }
4735 EXPORT_SYMBOL_GPL(device_match_of_node);
4736 
4737 int device_match_fwnode(struct device *dev, const void *fwnode)
4738 {
4739 	return dev_fwnode(dev) == fwnode;
4740 }
4741 EXPORT_SYMBOL_GPL(device_match_fwnode);
4742 
4743 int device_match_devt(struct device *dev, const void *pdevt)
4744 {
4745 	return dev->devt == *(dev_t *)pdevt;
4746 }
4747 EXPORT_SYMBOL_GPL(device_match_devt);
4748 
4749 int device_match_acpi_dev(struct device *dev, const void *adev)
4750 {
4751 	return ACPI_COMPANION(dev) == adev;
4752 }
4753 EXPORT_SYMBOL(device_match_acpi_dev);
4754 
4755 int device_match_any(struct device *dev, const void *unused)
4756 {
4757 	return 1;
4758 }
4759 EXPORT_SYMBOL_GPL(device_match_any);
4760