1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/cpufreq.h> 13 #include <linux/device.h> 14 #include <linux/err.h> 15 #include <linux/fwnode.h> 16 #include <linux/init.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/string.h> 20 #include <linux/kdev_t.h> 21 #include <linux/notifier.h> 22 #include <linux/of.h> 23 #include <linux/of_device.h> 24 #include <linux/genhd.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/netdevice.h> 28 #include <linux/sched/signal.h> 29 #include <linux/sched/mm.h> 30 #include <linux/sysfs.h> 31 32 #include "base.h" 33 #include "power/power.h" 34 35 #ifdef CONFIG_SYSFS_DEPRECATED 36 #ifdef CONFIG_SYSFS_DEPRECATED_V2 37 long sysfs_deprecated = 1; 38 #else 39 long sysfs_deprecated = 0; 40 #endif 41 static int __init sysfs_deprecated_setup(char *arg) 42 { 43 return kstrtol(arg, 10, &sysfs_deprecated); 44 } 45 early_param("sysfs.deprecated", sysfs_deprecated_setup); 46 #endif 47 48 /* Device links support. */ 49 static LIST_HEAD(deferred_sync); 50 static unsigned int defer_sync_state_count = 1; 51 static DEFINE_MUTEX(fwnode_link_lock); 52 static bool fw_devlink_is_permissive(void); 53 54 /** 55 * fwnode_link_add - Create a link between two fwnode_handles. 56 * @con: Consumer end of the link. 57 * @sup: Supplier end of the link. 58 * 59 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link 60 * represents the detail that the firmware lists @sup fwnode as supplying a 61 * resource to @con. 62 * 63 * The driver core will use the fwnode link to create a device link between the 64 * two device objects corresponding to @con and @sup when they are created. The 65 * driver core will automatically delete the fwnode link between @con and @sup 66 * after doing that. 67 * 68 * Attempts to create duplicate links between the same pair of fwnode handles 69 * are ignored and there is no reference counting. 70 */ 71 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup) 72 { 73 struct fwnode_link *link; 74 int ret = 0; 75 76 mutex_lock(&fwnode_link_lock); 77 78 list_for_each_entry(link, &sup->consumers, s_hook) 79 if (link->consumer == con) 80 goto out; 81 82 link = kzalloc(sizeof(*link), GFP_KERNEL); 83 if (!link) { 84 ret = -ENOMEM; 85 goto out; 86 } 87 88 link->supplier = sup; 89 INIT_LIST_HEAD(&link->s_hook); 90 link->consumer = con; 91 INIT_LIST_HEAD(&link->c_hook); 92 93 list_add(&link->s_hook, &sup->consumers); 94 list_add(&link->c_hook, &con->suppliers); 95 out: 96 mutex_unlock(&fwnode_link_lock); 97 98 return ret; 99 } 100 101 /** 102 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle. 103 * @fwnode: fwnode whose supplier links need to be deleted 104 * 105 * Deletes all supplier links connecting directly to @fwnode. 106 */ 107 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode) 108 { 109 struct fwnode_link *link, *tmp; 110 111 mutex_lock(&fwnode_link_lock); 112 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) { 113 list_del(&link->s_hook); 114 list_del(&link->c_hook); 115 kfree(link); 116 } 117 mutex_unlock(&fwnode_link_lock); 118 } 119 120 /** 121 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle. 122 * @fwnode: fwnode whose consumer links need to be deleted 123 * 124 * Deletes all consumer links connecting directly to @fwnode. 125 */ 126 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode) 127 { 128 struct fwnode_link *link, *tmp; 129 130 mutex_lock(&fwnode_link_lock); 131 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) { 132 list_del(&link->s_hook); 133 list_del(&link->c_hook); 134 kfree(link); 135 } 136 mutex_unlock(&fwnode_link_lock); 137 } 138 139 /** 140 * fwnode_links_purge - Delete all links connected to a fwnode_handle. 141 * @fwnode: fwnode whose links needs to be deleted 142 * 143 * Deletes all links connecting directly to a fwnode. 144 */ 145 void fwnode_links_purge(struct fwnode_handle *fwnode) 146 { 147 fwnode_links_purge_suppliers(fwnode); 148 fwnode_links_purge_consumers(fwnode); 149 } 150 151 #ifdef CONFIG_SRCU 152 static DEFINE_MUTEX(device_links_lock); 153 DEFINE_STATIC_SRCU(device_links_srcu); 154 155 static inline void device_links_write_lock(void) 156 { 157 mutex_lock(&device_links_lock); 158 } 159 160 static inline void device_links_write_unlock(void) 161 { 162 mutex_unlock(&device_links_lock); 163 } 164 165 int device_links_read_lock(void) __acquires(&device_links_srcu) 166 { 167 return srcu_read_lock(&device_links_srcu); 168 } 169 170 void device_links_read_unlock(int idx) __releases(&device_links_srcu) 171 { 172 srcu_read_unlock(&device_links_srcu, idx); 173 } 174 175 int device_links_read_lock_held(void) 176 { 177 return srcu_read_lock_held(&device_links_srcu); 178 } 179 #else /* !CONFIG_SRCU */ 180 static DECLARE_RWSEM(device_links_lock); 181 182 static inline void device_links_write_lock(void) 183 { 184 down_write(&device_links_lock); 185 } 186 187 static inline void device_links_write_unlock(void) 188 { 189 up_write(&device_links_lock); 190 } 191 192 int device_links_read_lock(void) 193 { 194 down_read(&device_links_lock); 195 return 0; 196 } 197 198 void device_links_read_unlock(int not_used) 199 { 200 up_read(&device_links_lock); 201 } 202 203 #ifdef CONFIG_DEBUG_LOCK_ALLOC 204 int device_links_read_lock_held(void) 205 { 206 return lockdep_is_held(&device_links_lock); 207 } 208 #endif 209 #endif /* !CONFIG_SRCU */ 210 211 static bool device_is_ancestor(struct device *dev, struct device *target) 212 { 213 while (target->parent) { 214 target = target->parent; 215 if (dev == target) 216 return true; 217 } 218 return false; 219 } 220 221 /** 222 * device_is_dependent - Check if one device depends on another one 223 * @dev: Device to check dependencies for. 224 * @target: Device to check against. 225 * 226 * Check if @target depends on @dev or any device dependent on it (its child or 227 * its consumer etc). Return 1 if that is the case or 0 otherwise. 228 */ 229 int device_is_dependent(struct device *dev, void *target) 230 { 231 struct device_link *link; 232 int ret; 233 234 /* 235 * The "ancestors" check is needed to catch the case when the target 236 * device has not been completely initialized yet and it is still 237 * missing from the list of children of its parent device. 238 */ 239 if (dev == target || device_is_ancestor(dev, target)) 240 return 1; 241 242 ret = device_for_each_child(dev, target, device_is_dependent); 243 if (ret) 244 return ret; 245 246 list_for_each_entry(link, &dev->links.consumers, s_node) { 247 if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 248 continue; 249 250 if (link->consumer == target) 251 return 1; 252 253 ret = device_is_dependent(link->consumer, target); 254 if (ret) 255 break; 256 } 257 return ret; 258 } 259 260 static void device_link_init_status(struct device_link *link, 261 struct device *consumer, 262 struct device *supplier) 263 { 264 switch (supplier->links.status) { 265 case DL_DEV_PROBING: 266 switch (consumer->links.status) { 267 case DL_DEV_PROBING: 268 /* 269 * A consumer driver can create a link to a supplier 270 * that has not completed its probing yet as long as it 271 * knows that the supplier is already functional (for 272 * example, it has just acquired some resources from the 273 * supplier). 274 */ 275 link->status = DL_STATE_CONSUMER_PROBE; 276 break; 277 default: 278 link->status = DL_STATE_DORMANT; 279 break; 280 } 281 break; 282 case DL_DEV_DRIVER_BOUND: 283 switch (consumer->links.status) { 284 case DL_DEV_PROBING: 285 link->status = DL_STATE_CONSUMER_PROBE; 286 break; 287 case DL_DEV_DRIVER_BOUND: 288 link->status = DL_STATE_ACTIVE; 289 break; 290 default: 291 link->status = DL_STATE_AVAILABLE; 292 break; 293 } 294 break; 295 case DL_DEV_UNBINDING: 296 link->status = DL_STATE_SUPPLIER_UNBIND; 297 break; 298 default: 299 link->status = DL_STATE_DORMANT; 300 break; 301 } 302 } 303 304 static int device_reorder_to_tail(struct device *dev, void *not_used) 305 { 306 struct device_link *link; 307 308 /* 309 * Devices that have not been registered yet will be put to the ends 310 * of the lists during the registration, so skip them here. 311 */ 312 if (device_is_registered(dev)) 313 devices_kset_move_last(dev); 314 315 if (device_pm_initialized(dev)) 316 device_pm_move_last(dev); 317 318 device_for_each_child(dev, NULL, device_reorder_to_tail); 319 list_for_each_entry(link, &dev->links.consumers, s_node) { 320 if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 321 continue; 322 device_reorder_to_tail(link->consumer, NULL); 323 } 324 325 return 0; 326 } 327 328 /** 329 * device_pm_move_to_tail - Move set of devices to the end of device lists 330 * @dev: Device to move 331 * 332 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 333 * 334 * It moves the @dev along with all of its children and all of its consumers 335 * to the ends of the device_kset and dpm_list, recursively. 336 */ 337 void device_pm_move_to_tail(struct device *dev) 338 { 339 int idx; 340 341 idx = device_links_read_lock(); 342 device_pm_lock(); 343 device_reorder_to_tail(dev, NULL); 344 device_pm_unlock(); 345 device_links_read_unlock(idx); 346 } 347 348 #define to_devlink(dev) container_of((dev), struct device_link, link_dev) 349 350 static ssize_t status_show(struct device *dev, 351 struct device_attribute *attr, char *buf) 352 { 353 const char *output; 354 355 switch (to_devlink(dev)->status) { 356 case DL_STATE_NONE: 357 output = "not tracked"; 358 break; 359 case DL_STATE_DORMANT: 360 output = "dormant"; 361 break; 362 case DL_STATE_AVAILABLE: 363 output = "available"; 364 break; 365 case DL_STATE_CONSUMER_PROBE: 366 output = "consumer probing"; 367 break; 368 case DL_STATE_ACTIVE: 369 output = "active"; 370 break; 371 case DL_STATE_SUPPLIER_UNBIND: 372 output = "supplier unbinding"; 373 break; 374 default: 375 output = "unknown"; 376 break; 377 } 378 379 return sysfs_emit(buf, "%s\n", output); 380 } 381 static DEVICE_ATTR_RO(status); 382 383 static ssize_t auto_remove_on_show(struct device *dev, 384 struct device_attribute *attr, char *buf) 385 { 386 struct device_link *link = to_devlink(dev); 387 const char *output; 388 389 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 390 output = "supplier unbind"; 391 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) 392 output = "consumer unbind"; 393 else 394 output = "never"; 395 396 return sysfs_emit(buf, "%s\n", output); 397 } 398 static DEVICE_ATTR_RO(auto_remove_on); 399 400 static ssize_t runtime_pm_show(struct device *dev, 401 struct device_attribute *attr, char *buf) 402 { 403 struct device_link *link = to_devlink(dev); 404 405 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME)); 406 } 407 static DEVICE_ATTR_RO(runtime_pm); 408 409 static ssize_t sync_state_only_show(struct device *dev, 410 struct device_attribute *attr, char *buf) 411 { 412 struct device_link *link = to_devlink(dev); 413 414 return sysfs_emit(buf, "%d\n", 415 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 416 } 417 static DEVICE_ATTR_RO(sync_state_only); 418 419 static struct attribute *devlink_attrs[] = { 420 &dev_attr_status.attr, 421 &dev_attr_auto_remove_on.attr, 422 &dev_attr_runtime_pm.attr, 423 &dev_attr_sync_state_only.attr, 424 NULL, 425 }; 426 ATTRIBUTE_GROUPS(devlink); 427 428 static void device_link_free(struct device_link *link) 429 { 430 while (refcount_dec_not_one(&link->rpm_active)) 431 pm_runtime_put(link->supplier); 432 433 put_device(link->consumer); 434 put_device(link->supplier); 435 kfree(link); 436 } 437 438 #ifdef CONFIG_SRCU 439 static void __device_link_free_srcu(struct rcu_head *rhead) 440 { 441 device_link_free(container_of(rhead, struct device_link, rcu_head)); 442 } 443 444 static void devlink_dev_release(struct device *dev) 445 { 446 struct device_link *link = to_devlink(dev); 447 448 call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu); 449 } 450 #else 451 static void devlink_dev_release(struct device *dev) 452 { 453 device_link_free(to_devlink(dev)); 454 } 455 #endif 456 457 static struct class devlink_class = { 458 .name = "devlink", 459 .owner = THIS_MODULE, 460 .dev_groups = devlink_groups, 461 .dev_release = devlink_dev_release, 462 }; 463 464 static int devlink_add_symlinks(struct device *dev, 465 struct class_interface *class_intf) 466 { 467 int ret; 468 size_t len; 469 struct device_link *link = to_devlink(dev); 470 struct device *sup = link->supplier; 471 struct device *con = link->consumer; 472 char *buf; 473 474 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 475 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 476 len += strlen(":"); 477 len += strlen("supplier:") + 1; 478 buf = kzalloc(len, GFP_KERNEL); 479 if (!buf) 480 return -ENOMEM; 481 482 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier"); 483 if (ret) 484 goto out; 485 486 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer"); 487 if (ret) 488 goto err_con; 489 490 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 491 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf); 492 if (ret) 493 goto err_con_dev; 494 495 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 496 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf); 497 if (ret) 498 goto err_sup_dev; 499 500 goto out; 501 502 err_sup_dev: 503 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 504 sysfs_remove_link(&sup->kobj, buf); 505 err_con_dev: 506 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 507 err_con: 508 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 509 out: 510 kfree(buf); 511 return ret; 512 } 513 514 static void devlink_remove_symlinks(struct device *dev, 515 struct class_interface *class_intf) 516 { 517 struct device_link *link = to_devlink(dev); 518 size_t len; 519 struct device *sup = link->supplier; 520 struct device *con = link->consumer; 521 char *buf; 522 523 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 524 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 525 526 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 527 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 528 len += strlen(":"); 529 len += strlen("supplier:") + 1; 530 buf = kzalloc(len, GFP_KERNEL); 531 if (!buf) { 532 WARN(1, "Unable to properly free device link symlinks!\n"); 533 return; 534 } 535 536 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 537 sysfs_remove_link(&con->kobj, buf); 538 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 539 sysfs_remove_link(&sup->kobj, buf); 540 kfree(buf); 541 } 542 543 static struct class_interface devlink_class_intf = { 544 .class = &devlink_class, 545 .add_dev = devlink_add_symlinks, 546 .remove_dev = devlink_remove_symlinks, 547 }; 548 549 static int __init devlink_class_init(void) 550 { 551 int ret; 552 553 ret = class_register(&devlink_class); 554 if (ret) 555 return ret; 556 557 ret = class_interface_register(&devlink_class_intf); 558 if (ret) 559 class_unregister(&devlink_class); 560 561 return ret; 562 } 563 postcore_initcall(devlink_class_init); 564 565 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \ 566 DL_FLAG_AUTOREMOVE_SUPPLIER | \ 567 DL_FLAG_AUTOPROBE_CONSUMER | \ 568 DL_FLAG_SYNC_STATE_ONLY) 569 570 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \ 571 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE) 572 573 /** 574 * device_link_add - Create a link between two devices. 575 * @consumer: Consumer end of the link. 576 * @supplier: Supplier end of the link. 577 * @flags: Link flags. 578 * 579 * The caller is responsible for the proper synchronization of the link creation 580 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 581 * runtime PM framework to take the link into account. Second, if the 582 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 583 * be forced into the active meta state and reference-counted upon the creation 584 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 585 * ignored. 586 * 587 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is 588 * expected to release the link returned by it directly with the help of either 589 * device_link_del() or device_link_remove(). 590 * 591 * If that flag is not set, however, the caller of this function is handing the 592 * management of the link over to the driver core entirely and its return value 593 * can only be used to check whether or not the link is present. In that case, 594 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link 595 * flags can be used to indicate to the driver core when the link can be safely 596 * deleted. Namely, setting one of them in @flags indicates to the driver core 597 * that the link is not going to be used (by the given caller of this function) 598 * after unbinding the consumer or supplier driver, respectively, from its 599 * device, so the link can be deleted at that point. If none of them is set, 600 * the link will be maintained until one of the devices pointed to by it (either 601 * the consumer or the supplier) is unregistered. 602 * 603 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and 604 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent 605 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can 606 * be used to request the driver core to automatically probe for a consumer 607 * driver after successfully binding a driver to the supplier device. 608 * 609 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER, 610 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at 611 * the same time is invalid and will cause NULL to be returned upfront. 612 * However, if a device link between the given @consumer and @supplier pair 613 * exists already when this function is called for them, the existing link will 614 * be returned regardless of its current type and status (the link's flags may 615 * be modified then). The caller of this function is then expected to treat 616 * the link as though it has just been created, so (in particular) if 617 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released 618 * explicitly when not needed any more (as stated above). 619 * 620 * A side effect of the link creation is re-ordering of dpm_list and the 621 * devices_kset list by moving the consumer device and all devices depending 622 * on it to the ends of these lists (that does not happen to devices that have 623 * not been registered when this function is called). 624 * 625 * The supplier device is required to be registered when this function is called 626 * and NULL will be returned if that is not the case. The consumer device need 627 * not be registered, however. 628 */ 629 struct device_link *device_link_add(struct device *consumer, 630 struct device *supplier, u32 flags) 631 { 632 struct device_link *link; 633 634 if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS || 635 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) || 636 (flags & DL_FLAG_SYNC_STATE_ONLY && 637 flags != DL_FLAG_SYNC_STATE_ONLY) || 638 (flags & DL_FLAG_AUTOPROBE_CONSUMER && 639 flags & (DL_FLAG_AUTOREMOVE_CONSUMER | 640 DL_FLAG_AUTOREMOVE_SUPPLIER))) 641 return NULL; 642 643 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) { 644 if (pm_runtime_get_sync(supplier) < 0) { 645 pm_runtime_put_noidle(supplier); 646 return NULL; 647 } 648 } 649 650 if (!(flags & DL_FLAG_STATELESS)) 651 flags |= DL_FLAG_MANAGED; 652 653 device_links_write_lock(); 654 device_pm_lock(); 655 656 /* 657 * If the supplier has not been fully registered yet or there is a 658 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and 659 * the supplier already in the graph, return NULL. If the link is a 660 * SYNC_STATE_ONLY link, we don't check for reverse dependencies 661 * because it only affects sync_state() callbacks. 662 */ 663 if (!device_pm_initialized(supplier) 664 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) && 665 device_is_dependent(consumer, supplier))) { 666 link = NULL; 667 goto out; 668 } 669 670 /* 671 * SYNC_STATE_ONLY links are useless once a consumer device has probed. 672 * So, only create it if the consumer hasn't probed yet. 673 */ 674 if (flags & DL_FLAG_SYNC_STATE_ONLY && 675 consumer->links.status != DL_DEV_NO_DRIVER && 676 consumer->links.status != DL_DEV_PROBING) { 677 link = NULL; 678 goto out; 679 } 680 681 /* 682 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed 683 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both 684 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER. 685 */ 686 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 687 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 688 689 list_for_each_entry(link, &supplier->links.consumers, s_node) { 690 if (link->consumer != consumer) 691 continue; 692 693 if (flags & DL_FLAG_PM_RUNTIME) { 694 if (!(link->flags & DL_FLAG_PM_RUNTIME)) { 695 pm_runtime_new_link(consumer); 696 link->flags |= DL_FLAG_PM_RUNTIME; 697 } 698 if (flags & DL_FLAG_RPM_ACTIVE) 699 refcount_inc(&link->rpm_active); 700 } 701 702 if (flags & DL_FLAG_STATELESS) { 703 kref_get(&link->kref); 704 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 705 !(link->flags & DL_FLAG_STATELESS)) { 706 link->flags |= DL_FLAG_STATELESS; 707 goto reorder; 708 } else { 709 link->flags |= DL_FLAG_STATELESS; 710 goto out; 711 } 712 } 713 714 /* 715 * If the life time of the link following from the new flags is 716 * longer than indicated by the flags of the existing link, 717 * update the existing link to stay around longer. 718 */ 719 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) { 720 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 721 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 722 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER; 723 } 724 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) { 725 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER | 726 DL_FLAG_AUTOREMOVE_SUPPLIER); 727 } 728 if (!(link->flags & DL_FLAG_MANAGED)) { 729 kref_get(&link->kref); 730 link->flags |= DL_FLAG_MANAGED; 731 device_link_init_status(link, consumer, supplier); 732 } 733 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 734 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 735 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY; 736 goto reorder; 737 } 738 739 goto out; 740 } 741 742 link = kzalloc(sizeof(*link), GFP_KERNEL); 743 if (!link) 744 goto out; 745 746 refcount_set(&link->rpm_active, 1); 747 748 get_device(supplier); 749 link->supplier = supplier; 750 INIT_LIST_HEAD(&link->s_node); 751 get_device(consumer); 752 link->consumer = consumer; 753 INIT_LIST_HEAD(&link->c_node); 754 link->flags = flags; 755 kref_init(&link->kref); 756 757 link->link_dev.class = &devlink_class; 758 device_set_pm_not_required(&link->link_dev); 759 dev_set_name(&link->link_dev, "%s:%s--%s:%s", 760 dev_bus_name(supplier), dev_name(supplier), 761 dev_bus_name(consumer), dev_name(consumer)); 762 if (device_register(&link->link_dev)) { 763 put_device(consumer); 764 put_device(supplier); 765 kfree(link); 766 link = NULL; 767 goto out; 768 } 769 770 if (flags & DL_FLAG_PM_RUNTIME) { 771 if (flags & DL_FLAG_RPM_ACTIVE) 772 refcount_inc(&link->rpm_active); 773 774 pm_runtime_new_link(consumer); 775 } 776 777 /* Determine the initial link state. */ 778 if (flags & DL_FLAG_STATELESS) 779 link->status = DL_STATE_NONE; 780 else 781 device_link_init_status(link, consumer, supplier); 782 783 /* 784 * Some callers expect the link creation during consumer driver probe to 785 * resume the supplier even without DL_FLAG_RPM_ACTIVE. 786 */ 787 if (link->status == DL_STATE_CONSUMER_PROBE && 788 flags & DL_FLAG_PM_RUNTIME) 789 pm_runtime_resume(supplier); 790 791 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 792 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 793 794 if (flags & DL_FLAG_SYNC_STATE_ONLY) { 795 dev_dbg(consumer, 796 "Linked as a sync state only consumer to %s\n", 797 dev_name(supplier)); 798 goto out; 799 } 800 801 reorder: 802 /* 803 * Move the consumer and all of the devices depending on it to the end 804 * of dpm_list and the devices_kset list. 805 * 806 * It is necessary to hold dpm_list locked throughout all that or else 807 * we may end up suspending with a wrong ordering of it. 808 */ 809 device_reorder_to_tail(consumer, NULL); 810 811 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 812 813 out: 814 device_pm_unlock(); 815 device_links_write_unlock(); 816 817 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link) 818 pm_runtime_put(supplier); 819 820 return link; 821 } 822 EXPORT_SYMBOL_GPL(device_link_add); 823 824 #ifdef CONFIG_SRCU 825 static void __device_link_del(struct kref *kref) 826 { 827 struct device_link *link = container_of(kref, struct device_link, kref); 828 829 dev_dbg(link->consumer, "Dropping the link to %s\n", 830 dev_name(link->supplier)); 831 832 pm_runtime_drop_link(link); 833 834 list_del_rcu(&link->s_node); 835 list_del_rcu(&link->c_node); 836 device_unregister(&link->link_dev); 837 } 838 #else /* !CONFIG_SRCU */ 839 static void __device_link_del(struct kref *kref) 840 { 841 struct device_link *link = container_of(kref, struct device_link, kref); 842 843 dev_info(link->consumer, "Dropping the link to %s\n", 844 dev_name(link->supplier)); 845 846 pm_runtime_drop_link(link); 847 848 list_del(&link->s_node); 849 list_del(&link->c_node); 850 device_unregister(&link->link_dev); 851 } 852 #endif /* !CONFIG_SRCU */ 853 854 static void device_link_put_kref(struct device_link *link) 855 { 856 if (link->flags & DL_FLAG_STATELESS) 857 kref_put(&link->kref, __device_link_del); 858 else 859 WARN(1, "Unable to drop a managed device link reference\n"); 860 } 861 862 /** 863 * device_link_del - Delete a stateless link between two devices. 864 * @link: Device link to delete. 865 * 866 * The caller must ensure proper synchronization of this function with runtime 867 * PM. If the link was added multiple times, it needs to be deleted as often. 868 * Care is required for hotplugged devices: Their links are purged on removal 869 * and calling device_link_del() is then no longer allowed. 870 */ 871 void device_link_del(struct device_link *link) 872 { 873 device_links_write_lock(); 874 device_link_put_kref(link); 875 device_links_write_unlock(); 876 } 877 EXPORT_SYMBOL_GPL(device_link_del); 878 879 /** 880 * device_link_remove - Delete a stateless link between two devices. 881 * @consumer: Consumer end of the link. 882 * @supplier: Supplier end of the link. 883 * 884 * The caller must ensure proper synchronization of this function with runtime 885 * PM. 886 */ 887 void device_link_remove(void *consumer, struct device *supplier) 888 { 889 struct device_link *link; 890 891 if (WARN_ON(consumer == supplier)) 892 return; 893 894 device_links_write_lock(); 895 896 list_for_each_entry(link, &supplier->links.consumers, s_node) { 897 if (link->consumer == consumer) { 898 device_link_put_kref(link); 899 break; 900 } 901 } 902 903 device_links_write_unlock(); 904 } 905 EXPORT_SYMBOL_GPL(device_link_remove); 906 907 static void device_links_missing_supplier(struct device *dev) 908 { 909 struct device_link *link; 910 911 list_for_each_entry(link, &dev->links.suppliers, c_node) { 912 if (link->status != DL_STATE_CONSUMER_PROBE) 913 continue; 914 915 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 916 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 917 } else { 918 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 919 WRITE_ONCE(link->status, DL_STATE_DORMANT); 920 } 921 } 922 } 923 924 /** 925 * device_links_check_suppliers - Check presence of supplier drivers. 926 * @dev: Consumer device. 927 * 928 * Check links from this device to any suppliers. Walk the list of the device's 929 * links to suppliers and see if all of them are available. If not, simply 930 * return -EPROBE_DEFER. 931 * 932 * We need to guarantee that the supplier will not go away after the check has 933 * been positive here. It only can go away in __device_release_driver() and 934 * that function checks the device's links to consumers. This means we need to 935 * mark the link as "consumer probe in progress" to make the supplier removal 936 * wait for us to complete (or bad things may happen). 937 * 938 * Links without the DL_FLAG_MANAGED flag set are ignored. 939 */ 940 int device_links_check_suppliers(struct device *dev) 941 { 942 struct device_link *link; 943 int ret = 0; 944 945 /* 946 * Device waiting for supplier to become available is not allowed to 947 * probe. 948 */ 949 mutex_lock(&fwnode_link_lock); 950 if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) && 951 !fw_devlink_is_permissive()) { 952 mutex_unlock(&fwnode_link_lock); 953 return -EPROBE_DEFER; 954 } 955 mutex_unlock(&fwnode_link_lock); 956 957 device_links_write_lock(); 958 959 list_for_each_entry(link, &dev->links.suppliers, c_node) { 960 if (!(link->flags & DL_FLAG_MANAGED)) 961 continue; 962 963 if (link->status != DL_STATE_AVAILABLE && 964 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) { 965 device_links_missing_supplier(dev); 966 ret = -EPROBE_DEFER; 967 break; 968 } 969 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 970 } 971 dev->links.status = DL_DEV_PROBING; 972 973 device_links_write_unlock(); 974 return ret; 975 } 976 977 /** 978 * __device_links_queue_sync_state - Queue a device for sync_state() callback 979 * @dev: Device to call sync_state() on 980 * @list: List head to queue the @dev on 981 * 982 * Queues a device for a sync_state() callback when the device links write lock 983 * isn't held. This allows the sync_state() execution flow to use device links 984 * APIs. The caller must ensure this function is called with 985 * device_links_write_lock() held. 986 * 987 * This function does a get_device() to make sure the device is not freed while 988 * on this list. 989 * 990 * So the caller must also ensure that device_links_flush_sync_list() is called 991 * as soon as the caller releases device_links_write_lock(). This is necessary 992 * to make sure the sync_state() is called in a timely fashion and the 993 * put_device() is called on this device. 994 */ 995 static void __device_links_queue_sync_state(struct device *dev, 996 struct list_head *list) 997 { 998 struct device_link *link; 999 1000 if (!dev_has_sync_state(dev)) 1001 return; 1002 if (dev->state_synced) 1003 return; 1004 1005 list_for_each_entry(link, &dev->links.consumers, s_node) { 1006 if (!(link->flags & DL_FLAG_MANAGED)) 1007 continue; 1008 if (link->status != DL_STATE_ACTIVE) 1009 return; 1010 } 1011 1012 /* 1013 * Set the flag here to avoid adding the same device to a list more 1014 * than once. This can happen if new consumers get added to the device 1015 * and probed before the list is flushed. 1016 */ 1017 dev->state_synced = true; 1018 1019 if (WARN_ON(!list_empty(&dev->links.defer_sync))) 1020 return; 1021 1022 get_device(dev); 1023 list_add_tail(&dev->links.defer_sync, list); 1024 } 1025 1026 /** 1027 * device_links_flush_sync_list - Call sync_state() on a list of devices 1028 * @list: List of devices to call sync_state() on 1029 * @dont_lock_dev: Device for which lock is already held by the caller 1030 * 1031 * Calls sync_state() on all the devices that have been queued for it. This 1032 * function is used in conjunction with __device_links_queue_sync_state(). The 1033 * @dont_lock_dev parameter is useful when this function is called from a 1034 * context where a device lock is already held. 1035 */ 1036 static void device_links_flush_sync_list(struct list_head *list, 1037 struct device *dont_lock_dev) 1038 { 1039 struct device *dev, *tmp; 1040 1041 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) { 1042 list_del_init(&dev->links.defer_sync); 1043 1044 if (dev != dont_lock_dev) 1045 device_lock(dev); 1046 1047 if (dev->bus->sync_state) 1048 dev->bus->sync_state(dev); 1049 else if (dev->driver && dev->driver->sync_state) 1050 dev->driver->sync_state(dev); 1051 1052 if (dev != dont_lock_dev) 1053 device_unlock(dev); 1054 1055 put_device(dev); 1056 } 1057 } 1058 1059 void device_links_supplier_sync_state_pause(void) 1060 { 1061 device_links_write_lock(); 1062 defer_sync_state_count++; 1063 device_links_write_unlock(); 1064 } 1065 1066 void device_links_supplier_sync_state_resume(void) 1067 { 1068 struct device *dev, *tmp; 1069 LIST_HEAD(sync_list); 1070 1071 device_links_write_lock(); 1072 if (!defer_sync_state_count) { 1073 WARN(true, "Unmatched sync_state pause/resume!"); 1074 goto out; 1075 } 1076 defer_sync_state_count--; 1077 if (defer_sync_state_count) 1078 goto out; 1079 1080 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) { 1081 /* 1082 * Delete from deferred_sync list before queuing it to 1083 * sync_list because defer_sync is used for both lists. 1084 */ 1085 list_del_init(&dev->links.defer_sync); 1086 __device_links_queue_sync_state(dev, &sync_list); 1087 } 1088 out: 1089 device_links_write_unlock(); 1090 1091 device_links_flush_sync_list(&sync_list, NULL); 1092 } 1093 1094 static int sync_state_resume_initcall(void) 1095 { 1096 device_links_supplier_sync_state_resume(); 1097 return 0; 1098 } 1099 late_initcall(sync_state_resume_initcall); 1100 1101 static void __device_links_supplier_defer_sync(struct device *sup) 1102 { 1103 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup)) 1104 list_add_tail(&sup->links.defer_sync, &deferred_sync); 1105 } 1106 1107 static void device_link_drop_managed(struct device_link *link) 1108 { 1109 link->flags &= ~DL_FLAG_MANAGED; 1110 WRITE_ONCE(link->status, DL_STATE_NONE); 1111 kref_put(&link->kref, __device_link_del); 1112 } 1113 1114 static ssize_t waiting_for_supplier_show(struct device *dev, 1115 struct device_attribute *attr, 1116 char *buf) 1117 { 1118 bool val; 1119 1120 device_lock(dev); 1121 val = !list_empty(&dev->fwnode->suppliers); 1122 device_unlock(dev); 1123 return sysfs_emit(buf, "%u\n", val); 1124 } 1125 static DEVICE_ATTR_RO(waiting_for_supplier); 1126 1127 /** 1128 * device_links_driver_bound - Update device links after probing its driver. 1129 * @dev: Device to update the links for. 1130 * 1131 * The probe has been successful, so update links from this device to any 1132 * consumers by changing their status to "available". 1133 * 1134 * Also change the status of @dev's links to suppliers to "active". 1135 * 1136 * Links without the DL_FLAG_MANAGED flag set are ignored. 1137 */ 1138 void device_links_driver_bound(struct device *dev) 1139 { 1140 struct device_link *link, *ln; 1141 LIST_HEAD(sync_list); 1142 1143 /* 1144 * If a device probes successfully, it's expected to have created all 1145 * the device links it needs to or make new device links as it needs 1146 * them. So, it no longer needs to wait on any suppliers. 1147 */ 1148 if (dev->fwnode && dev->fwnode->dev == dev) 1149 fwnode_links_purge_suppliers(dev->fwnode); 1150 device_remove_file(dev, &dev_attr_waiting_for_supplier); 1151 1152 device_links_write_lock(); 1153 1154 list_for_each_entry(link, &dev->links.consumers, s_node) { 1155 if (!(link->flags & DL_FLAG_MANAGED)) 1156 continue; 1157 1158 /* 1159 * Links created during consumer probe may be in the "consumer 1160 * probe" state to start with if the supplier is still probing 1161 * when they are created and they may become "active" if the 1162 * consumer probe returns first. Skip them here. 1163 */ 1164 if (link->status == DL_STATE_CONSUMER_PROBE || 1165 link->status == DL_STATE_ACTIVE) 1166 continue; 1167 1168 WARN_ON(link->status != DL_STATE_DORMANT); 1169 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1170 1171 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER) 1172 driver_deferred_probe_add(link->consumer); 1173 } 1174 1175 if (defer_sync_state_count) 1176 __device_links_supplier_defer_sync(dev); 1177 else 1178 __device_links_queue_sync_state(dev, &sync_list); 1179 1180 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1181 struct device *supplier; 1182 1183 if (!(link->flags & DL_FLAG_MANAGED)) 1184 continue; 1185 1186 supplier = link->supplier; 1187 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) { 1188 /* 1189 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no 1190 * other DL_MANAGED_LINK_FLAGS have been set. So, it's 1191 * save to drop the managed link completely. 1192 */ 1193 device_link_drop_managed(link); 1194 } else { 1195 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 1196 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 1197 } 1198 1199 /* 1200 * This needs to be done even for the deleted 1201 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last 1202 * device link that was preventing the supplier from getting a 1203 * sync_state() call. 1204 */ 1205 if (defer_sync_state_count) 1206 __device_links_supplier_defer_sync(supplier); 1207 else 1208 __device_links_queue_sync_state(supplier, &sync_list); 1209 } 1210 1211 dev->links.status = DL_DEV_DRIVER_BOUND; 1212 1213 device_links_write_unlock(); 1214 1215 device_links_flush_sync_list(&sync_list, dev); 1216 } 1217 1218 /** 1219 * __device_links_no_driver - Update links of a device without a driver. 1220 * @dev: Device without a drvier. 1221 * 1222 * Delete all non-persistent links from this device to any suppliers. 1223 * 1224 * Persistent links stay around, but their status is changed to "available", 1225 * unless they already are in the "supplier unbind in progress" state in which 1226 * case they need not be updated. 1227 * 1228 * Links without the DL_FLAG_MANAGED flag set are ignored. 1229 */ 1230 static void __device_links_no_driver(struct device *dev) 1231 { 1232 struct device_link *link, *ln; 1233 1234 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1235 if (!(link->flags & DL_FLAG_MANAGED)) 1236 continue; 1237 1238 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 1239 device_link_drop_managed(link); 1240 continue; 1241 } 1242 1243 if (link->status != DL_STATE_CONSUMER_PROBE && 1244 link->status != DL_STATE_ACTIVE) 1245 continue; 1246 1247 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1248 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1249 } else { 1250 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1251 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1252 } 1253 } 1254 1255 dev->links.status = DL_DEV_NO_DRIVER; 1256 } 1257 1258 /** 1259 * device_links_no_driver - Update links after failing driver probe. 1260 * @dev: Device whose driver has just failed to probe. 1261 * 1262 * Clean up leftover links to consumers for @dev and invoke 1263 * %__device_links_no_driver() to update links to suppliers for it as 1264 * appropriate. 1265 * 1266 * Links without the DL_FLAG_MANAGED flag set are ignored. 1267 */ 1268 void device_links_no_driver(struct device *dev) 1269 { 1270 struct device_link *link; 1271 1272 device_links_write_lock(); 1273 1274 list_for_each_entry(link, &dev->links.consumers, s_node) { 1275 if (!(link->flags & DL_FLAG_MANAGED)) 1276 continue; 1277 1278 /* 1279 * The probe has failed, so if the status of the link is 1280 * "consumer probe" or "active", it must have been added by 1281 * a probing consumer while this device was still probing. 1282 * Change its state to "dormant", as it represents a valid 1283 * relationship, but it is not functionally meaningful. 1284 */ 1285 if (link->status == DL_STATE_CONSUMER_PROBE || 1286 link->status == DL_STATE_ACTIVE) 1287 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1288 } 1289 1290 __device_links_no_driver(dev); 1291 1292 device_links_write_unlock(); 1293 } 1294 1295 /** 1296 * device_links_driver_cleanup - Update links after driver removal. 1297 * @dev: Device whose driver has just gone away. 1298 * 1299 * Update links to consumers for @dev by changing their status to "dormant" and 1300 * invoke %__device_links_no_driver() to update links to suppliers for it as 1301 * appropriate. 1302 * 1303 * Links without the DL_FLAG_MANAGED flag set are ignored. 1304 */ 1305 void device_links_driver_cleanup(struct device *dev) 1306 { 1307 struct device_link *link, *ln; 1308 1309 device_links_write_lock(); 1310 1311 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) { 1312 if (!(link->flags & DL_FLAG_MANAGED)) 1313 continue; 1314 1315 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER); 1316 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 1317 1318 /* 1319 * autoremove the links between this @dev and its consumer 1320 * devices that are not active, i.e. where the link state 1321 * has moved to DL_STATE_SUPPLIER_UNBIND. 1322 */ 1323 if (link->status == DL_STATE_SUPPLIER_UNBIND && 1324 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 1325 device_link_drop_managed(link); 1326 1327 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1328 } 1329 1330 list_del_init(&dev->links.defer_sync); 1331 __device_links_no_driver(dev); 1332 1333 device_links_write_unlock(); 1334 } 1335 1336 /** 1337 * device_links_busy - Check if there are any busy links to consumers. 1338 * @dev: Device to check. 1339 * 1340 * Check each consumer of the device and return 'true' if its link's status 1341 * is one of "consumer probe" or "active" (meaning that the given consumer is 1342 * probing right now or its driver is present). Otherwise, change the link 1343 * state to "supplier unbind" to prevent the consumer from being probed 1344 * successfully going forward. 1345 * 1346 * Return 'false' if there are no probing or active consumers. 1347 * 1348 * Links without the DL_FLAG_MANAGED flag set are ignored. 1349 */ 1350 bool device_links_busy(struct device *dev) 1351 { 1352 struct device_link *link; 1353 bool ret = false; 1354 1355 device_links_write_lock(); 1356 1357 list_for_each_entry(link, &dev->links.consumers, s_node) { 1358 if (!(link->flags & DL_FLAG_MANAGED)) 1359 continue; 1360 1361 if (link->status == DL_STATE_CONSUMER_PROBE 1362 || link->status == DL_STATE_ACTIVE) { 1363 ret = true; 1364 break; 1365 } 1366 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1367 } 1368 1369 dev->links.status = DL_DEV_UNBINDING; 1370 1371 device_links_write_unlock(); 1372 return ret; 1373 } 1374 1375 /** 1376 * device_links_unbind_consumers - Force unbind consumers of the given device. 1377 * @dev: Device to unbind the consumers of. 1378 * 1379 * Walk the list of links to consumers for @dev and if any of them is in the 1380 * "consumer probe" state, wait for all device probes in progress to complete 1381 * and start over. 1382 * 1383 * If that's not the case, change the status of the link to "supplier unbind" 1384 * and check if the link was in the "active" state. If so, force the consumer 1385 * driver to unbind and start over (the consumer will not re-probe as we have 1386 * changed the state of the link already). 1387 * 1388 * Links without the DL_FLAG_MANAGED flag set are ignored. 1389 */ 1390 void device_links_unbind_consumers(struct device *dev) 1391 { 1392 struct device_link *link; 1393 1394 start: 1395 device_links_write_lock(); 1396 1397 list_for_each_entry(link, &dev->links.consumers, s_node) { 1398 enum device_link_state status; 1399 1400 if (!(link->flags & DL_FLAG_MANAGED) || 1401 link->flags & DL_FLAG_SYNC_STATE_ONLY) 1402 continue; 1403 1404 status = link->status; 1405 if (status == DL_STATE_CONSUMER_PROBE) { 1406 device_links_write_unlock(); 1407 1408 wait_for_device_probe(); 1409 goto start; 1410 } 1411 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1412 if (status == DL_STATE_ACTIVE) { 1413 struct device *consumer = link->consumer; 1414 1415 get_device(consumer); 1416 1417 device_links_write_unlock(); 1418 1419 device_release_driver_internal(consumer, NULL, 1420 consumer->parent); 1421 put_device(consumer); 1422 goto start; 1423 } 1424 } 1425 1426 device_links_write_unlock(); 1427 } 1428 1429 /** 1430 * device_links_purge - Delete existing links to other devices. 1431 * @dev: Target device. 1432 */ 1433 static void device_links_purge(struct device *dev) 1434 { 1435 struct device_link *link, *ln; 1436 1437 if (dev->class == &devlink_class) 1438 return; 1439 1440 /* 1441 * Delete all of the remaining links from this device to any other 1442 * devices (either consumers or suppliers). 1443 */ 1444 device_links_write_lock(); 1445 1446 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1447 WARN_ON(link->status == DL_STATE_ACTIVE); 1448 __device_link_del(&link->kref); 1449 } 1450 1451 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 1452 WARN_ON(link->status != DL_STATE_DORMANT && 1453 link->status != DL_STATE_NONE); 1454 __device_link_del(&link->kref); 1455 } 1456 1457 device_links_write_unlock(); 1458 } 1459 1460 static u32 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY; 1461 static int __init fw_devlink_setup(char *arg) 1462 { 1463 if (!arg) 1464 return -EINVAL; 1465 1466 if (strcmp(arg, "off") == 0) { 1467 fw_devlink_flags = 0; 1468 } else if (strcmp(arg, "permissive") == 0) { 1469 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY; 1470 } else if (strcmp(arg, "on") == 0) { 1471 fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER; 1472 } else if (strcmp(arg, "rpm") == 0) { 1473 fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER | 1474 DL_FLAG_PM_RUNTIME; 1475 } 1476 return 0; 1477 } 1478 early_param("fw_devlink", fw_devlink_setup); 1479 1480 u32 fw_devlink_get_flags(void) 1481 { 1482 return fw_devlink_flags; 1483 } 1484 1485 static bool fw_devlink_is_permissive(void) 1486 { 1487 return fw_devlink_flags == DL_FLAG_SYNC_STATE_ONLY; 1488 } 1489 1490 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode) 1491 { 1492 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED) 1493 return; 1494 1495 fwnode_call_int_op(fwnode, add_links); 1496 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED; 1497 } 1498 1499 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode) 1500 { 1501 struct fwnode_handle *child = NULL; 1502 1503 fw_devlink_parse_fwnode(fwnode); 1504 1505 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 1506 fw_devlink_parse_fwtree(child); 1507 } 1508 1509 /** 1510 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode 1511 * @con - Consumer device for the device link 1512 * @sup_handle - fwnode handle of supplier 1513 * 1514 * This function will try to create a device link between the consumer device 1515 * @con and the supplier device represented by @sup_handle. 1516 * 1517 * The supplier has to be provided as a fwnode because incorrect cycles in 1518 * fwnode links can sometimes cause the supplier device to never be created. 1519 * This function detects such cases and returns an error if it cannot create a 1520 * device link from the consumer to a missing supplier. 1521 * 1522 * Returns, 1523 * 0 on successfully creating a device link 1524 * -EINVAL if the device link cannot be created as expected 1525 * -EAGAIN if the device link cannot be created right now, but it may be 1526 * possible to do that in the future 1527 */ 1528 static int fw_devlink_create_devlink(struct device *con, 1529 struct fwnode_handle *sup_handle, u32 flags) 1530 { 1531 struct device *sup_dev; 1532 int ret = 0; 1533 1534 sup_dev = get_dev_from_fwnode(sup_handle); 1535 if (sup_dev) { 1536 /* 1537 * If this fails, it is due to cycles in device links. Just 1538 * give up on this link and treat it as invalid. 1539 */ 1540 if (!device_link_add(con, sup_dev, flags)) 1541 ret = -EINVAL; 1542 1543 goto out; 1544 } 1545 1546 /* 1547 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports 1548 * cycles. So cycle detection isn't necessary and shouldn't be 1549 * done. 1550 */ 1551 if (flags & DL_FLAG_SYNC_STATE_ONLY) 1552 return -EAGAIN; 1553 1554 /* 1555 * If we can't find the supplier device from its fwnode, it might be 1556 * due to a cyclic dependency between fwnodes. Some of these cycles can 1557 * be broken by applying logic. Check for these types of cycles and 1558 * break them so that devices in the cycle probe properly. 1559 * 1560 * If the supplier's parent is dependent on the consumer, then 1561 * the consumer-supplier dependency is a false dependency. So, 1562 * treat it as an invalid link. 1563 */ 1564 sup_dev = fwnode_get_next_parent_dev(sup_handle); 1565 if (sup_dev && device_is_dependent(con, sup_dev)) { 1566 dev_dbg(con, "Not linking to %pfwP - False link\n", 1567 sup_handle); 1568 ret = -EINVAL; 1569 } else { 1570 /* 1571 * Can't check for cycles or no cycles. So let's try 1572 * again later. 1573 */ 1574 ret = -EAGAIN; 1575 } 1576 1577 out: 1578 put_device(sup_dev); 1579 return ret; 1580 } 1581 1582 /** 1583 * __fw_devlink_link_to_consumers - Create device links to consumers of a device 1584 * @dev - Device that needs to be linked to its consumers 1585 * 1586 * This function looks at all the consumer fwnodes of @dev and creates device 1587 * links between the consumer device and @dev (supplier). 1588 * 1589 * If the consumer device has not been added yet, then this function creates a 1590 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device 1591 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a 1592 * sync_state() callback before the real consumer device gets to be added and 1593 * then probed. 1594 * 1595 * Once device links are created from the real consumer to @dev (supplier), the 1596 * fwnode links are deleted. 1597 */ 1598 static void __fw_devlink_link_to_consumers(struct device *dev) 1599 { 1600 struct fwnode_handle *fwnode = dev->fwnode; 1601 struct fwnode_link *link, *tmp; 1602 1603 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) { 1604 u32 dl_flags = fw_devlink_get_flags(); 1605 struct device *con_dev; 1606 bool own_link = true; 1607 int ret; 1608 1609 con_dev = get_dev_from_fwnode(link->consumer); 1610 /* 1611 * If consumer device is not available yet, make a "proxy" 1612 * SYNC_STATE_ONLY link from the consumer's parent device to 1613 * the supplier device. This is necessary to make sure the 1614 * supplier doesn't get a sync_state() callback before the real 1615 * consumer can create a device link to the supplier. 1616 * 1617 * This proxy link step is needed to handle the case where the 1618 * consumer's parent device is added before the supplier. 1619 */ 1620 if (!con_dev) { 1621 con_dev = fwnode_get_next_parent_dev(link->consumer); 1622 /* 1623 * However, if the consumer's parent device is also the 1624 * parent of the supplier, don't create a 1625 * consumer-supplier link from the parent to its child 1626 * device. Such a dependency is impossible. 1627 */ 1628 if (con_dev && 1629 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) { 1630 put_device(con_dev); 1631 con_dev = NULL; 1632 } else { 1633 own_link = false; 1634 dl_flags = DL_FLAG_SYNC_STATE_ONLY; 1635 } 1636 } 1637 1638 if (!con_dev) 1639 continue; 1640 1641 ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags); 1642 put_device(con_dev); 1643 if (!own_link || ret == -EAGAIN) 1644 continue; 1645 1646 list_del(&link->s_hook); 1647 list_del(&link->c_hook); 1648 kfree(link); 1649 } 1650 } 1651 1652 /** 1653 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device 1654 * @dev - The consumer device that needs to be linked to its suppliers 1655 * @fwnode - Root of the fwnode tree that is used to create device links 1656 * 1657 * This function looks at all the supplier fwnodes of fwnode tree rooted at 1658 * @fwnode and creates device links between @dev (consumer) and all the 1659 * supplier devices of the entire fwnode tree at @fwnode. 1660 * 1661 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev 1662 * and the real suppliers of @dev. Once these device links are created, the 1663 * fwnode links are deleted. When such device links are successfully created, 1664 * this function is called recursively on those supplier devices. This is 1665 * needed to detect and break some invalid cycles in fwnode links. See 1666 * fw_devlink_create_devlink() for more details. 1667 * 1668 * In addition, it also looks at all the suppliers of the entire fwnode tree 1669 * because some of the child devices of @dev that have not been added yet 1670 * (because @dev hasn't probed) might already have their suppliers added to 1671 * driver core. So, this function creates SYNC_STATE_ONLY device links between 1672 * @dev (consumer) and these suppliers to make sure they don't execute their 1673 * sync_state() callbacks before these child devices have a chance to create 1674 * their device links. The fwnode links that correspond to the child devices 1675 * aren't delete because they are needed later to create the device links 1676 * between the real consumer and supplier devices. 1677 */ 1678 static void __fw_devlink_link_to_suppliers(struct device *dev, 1679 struct fwnode_handle *fwnode) 1680 { 1681 bool own_link = (dev->fwnode == fwnode); 1682 struct fwnode_link *link, *tmp; 1683 struct fwnode_handle *child = NULL; 1684 u32 dl_flags; 1685 1686 if (own_link) 1687 dl_flags = fw_devlink_get_flags(); 1688 else 1689 dl_flags = DL_FLAG_SYNC_STATE_ONLY; 1690 1691 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) { 1692 int ret; 1693 struct device *sup_dev; 1694 struct fwnode_handle *sup = link->supplier; 1695 1696 ret = fw_devlink_create_devlink(dev, sup, dl_flags); 1697 if (!own_link || ret == -EAGAIN) 1698 continue; 1699 1700 list_del(&link->s_hook); 1701 list_del(&link->c_hook); 1702 kfree(link); 1703 1704 /* If no device link was created, nothing more to do. */ 1705 if (ret) 1706 continue; 1707 1708 /* 1709 * If a device link was successfully created to a supplier, we 1710 * now need to try and link the supplier to all its suppliers. 1711 * 1712 * This is needed to detect and delete false dependencies in 1713 * fwnode links that haven't been converted to a device link 1714 * yet. See comments in fw_devlink_create_devlink() for more 1715 * details on the false dependency. 1716 * 1717 * Without deleting these false dependencies, some devices will 1718 * never probe because they'll keep waiting for their false 1719 * dependency fwnode links to be converted to device links. 1720 */ 1721 sup_dev = get_dev_from_fwnode(sup); 1722 __fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode); 1723 put_device(sup_dev); 1724 } 1725 1726 /* 1727 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of 1728 * all the descendants. This proxy link step is needed to handle the 1729 * case where the supplier is added before the consumer's parent device 1730 * (@dev). 1731 */ 1732 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 1733 __fw_devlink_link_to_suppliers(dev, child); 1734 } 1735 1736 static void fw_devlink_link_device(struct device *dev) 1737 { 1738 struct fwnode_handle *fwnode = dev->fwnode; 1739 1740 if (!fw_devlink_flags) 1741 return; 1742 1743 fw_devlink_parse_fwtree(fwnode); 1744 1745 mutex_lock(&fwnode_link_lock); 1746 __fw_devlink_link_to_consumers(dev); 1747 __fw_devlink_link_to_suppliers(dev, fwnode); 1748 mutex_unlock(&fwnode_link_lock); 1749 } 1750 1751 /* Device links support end. */ 1752 1753 int (*platform_notify)(struct device *dev) = NULL; 1754 int (*platform_notify_remove)(struct device *dev) = NULL; 1755 static struct kobject *dev_kobj; 1756 struct kobject *sysfs_dev_char_kobj; 1757 struct kobject *sysfs_dev_block_kobj; 1758 1759 static DEFINE_MUTEX(device_hotplug_lock); 1760 1761 void lock_device_hotplug(void) 1762 { 1763 mutex_lock(&device_hotplug_lock); 1764 } 1765 1766 void unlock_device_hotplug(void) 1767 { 1768 mutex_unlock(&device_hotplug_lock); 1769 } 1770 1771 int lock_device_hotplug_sysfs(void) 1772 { 1773 if (mutex_trylock(&device_hotplug_lock)) 1774 return 0; 1775 1776 /* Avoid busy looping (5 ms of sleep should do). */ 1777 msleep(5); 1778 return restart_syscall(); 1779 } 1780 1781 #ifdef CONFIG_BLOCK 1782 static inline int device_is_not_partition(struct device *dev) 1783 { 1784 return !(dev->type == &part_type); 1785 } 1786 #else 1787 static inline int device_is_not_partition(struct device *dev) 1788 { 1789 return 1; 1790 } 1791 #endif 1792 1793 static int 1794 device_platform_notify(struct device *dev, enum kobject_action action) 1795 { 1796 int ret; 1797 1798 ret = acpi_platform_notify(dev, action); 1799 if (ret) 1800 return ret; 1801 1802 ret = software_node_notify(dev, action); 1803 if (ret) 1804 return ret; 1805 1806 if (platform_notify && action == KOBJ_ADD) 1807 platform_notify(dev); 1808 else if (platform_notify_remove && action == KOBJ_REMOVE) 1809 platform_notify_remove(dev); 1810 return 0; 1811 } 1812 1813 /** 1814 * dev_driver_string - Return a device's driver name, if at all possible 1815 * @dev: struct device to get the name of 1816 * 1817 * Will return the device's driver's name if it is bound to a device. If 1818 * the device is not bound to a driver, it will return the name of the bus 1819 * it is attached to. If it is not attached to a bus either, an empty 1820 * string will be returned. 1821 */ 1822 const char *dev_driver_string(const struct device *dev) 1823 { 1824 struct device_driver *drv; 1825 1826 /* dev->driver can change to NULL underneath us because of unbinding, 1827 * so be careful about accessing it. dev->bus and dev->class should 1828 * never change once they are set, so they don't need special care. 1829 */ 1830 drv = READ_ONCE(dev->driver); 1831 return drv ? drv->name : dev_bus_name(dev); 1832 } 1833 EXPORT_SYMBOL(dev_driver_string); 1834 1835 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 1836 1837 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 1838 char *buf) 1839 { 1840 struct device_attribute *dev_attr = to_dev_attr(attr); 1841 struct device *dev = kobj_to_dev(kobj); 1842 ssize_t ret = -EIO; 1843 1844 if (dev_attr->show) 1845 ret = dev_attr->show(dev, dev_attr, buf); 1846 if (ret >= (ssize_t)PAGE_SIZE) { 1847 printk("dev_attr_show: %pS returned bad count\n", 1848 dev_attr->show); 1849 } 1850 return ret; 1851 } 1852 1853 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 1854 const char *buf, size_t count) 1855 { 1856 struct device_attribute *dev_attr = to_dev_attr(attr); 1857 struct device *dev = kobj_to_dev(kobj); 1858 ssize_t ret = -EIO; 1859 1860 if (dev_attr->store) 1861 ret = dev_attr->store(dev, dev_attr, buf, count); 1862 return ret; 1863 } 1864 1865 static const struct sysfs_ops dev_sysfs_ops = { 1866 .show = dev_attr_show, 1867 .store = dev_attr_store, 1868 }; 1869 1870 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 1871 1872 ssize_t device_store_ulong(struct device *dev, 1873 struct device_attribute *attr, 1874 const char *buf, size_t size) 1875 { 1876 struct dev_ext_attribute *ea = to_ext_attr(attr); 1877 int ret; 1878 unsigned long new; 1879 1880 ret = kstrtoul(buf, 0, &new); 1881 if (ret) 1882 return ret; 1883 *(unsigned long *)(ea->var) = new; 1884 /* Always return full write size even if we didn't consume all */ 1885 return size; 1886 } 1887 EXPORT_SYMBOL_GPL(device_store_ulong); 1888 1889 ssize_t device_show_ulong(struct device *dev, 1890 struct device_attribute *attr, 1891 char *buf) 1892 { 1893 struct dev_ext_attribute *ea = to_ext_attr(attr); 1894 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var)); 1895 } 1896 EXPORT_SYMBOL_GPL(device_show_ulong); 1897 1898 ssize_t device_store_int(struct device *dev, 1899 struct device_attribute *attr, 1900 const char *buf, size_t size) 1901 { 1902 struct dev_ext_attribute *ea = to_ext_attr(attr); 1903 int ret; 1904 long new; 1905 1906 ret = kstrtol(buf, 0, &new); 1907 if (ret) 1908 return ret; 1909 1910 if (new > INT_MAX || new < INT_MIN) 1911 return -EINVAL; 1912 *(int *)(ea->var) = new; 1913 /* Always return full write size even if we didn't consume all */ 1914 return size; 1915 } 1916 EXPORT_SYMBOL_GPL(device_store_int); 1917 1918 ssize_t device_show_int(struct device *dev, 1919 struct device_attribute *attr, 1920 char *buf) 1921 { 1922 struct dev_ext_attribute *ea = to_ext_attr(attr); 1923 1924 return sysfs_emit(buf, "%d\n", *(int *)(ea->var)); 1925 } 1926 EXPORT_SYMBOL_GPL(device_show_int); 1927 1928 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 1929 const char *buf, size_t size) 1930 { 1931 struct dev_ext_attribute *ea = to_ext_attr(attr); 1932 1933 if (strtobool(buf, ea->var) < 0) 1934 return -EINVAL; 1935 1936 return size; 1937 } 1938 EXPORT_SYMBOL_GPL(device_store_bool); 1939 1940 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 1941 char *buf) 1942 { 1943 struct dev_ext_attribute *ea = to_ext_attr(attr); 1944 1945 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var)); 1946 } 1947 EXPORT_SYMBOL_GPL(device_show_bool); 1948 1949 /** 1950 * device_release - free device structure. 1951 * @kobj: device's kobject. 1952 * 1953 * This is called once the reference count for the object 1954 * reaches 0. We forward the call to the device's release 1955 * method, which should handle actually freeing the structure. 1956 */ 1957 static void device_release(struct kobject *kobj) 1958 { 1959 struct device *dev = kobj_to_dev(kobj); 1960 struct device_private *p = dev->p; 1961 1962 /* 1963 * Some platform devices are driven without driver attached 1964 * and managed resources may have been acquired. Make sure 1965 * all resources are released. 1966 * 1967 * Drivers still can add resources into device after device 1968 * is deleted but alive, so release devres here to avoid 1969 * possible memory leak. 1970 */ 1971 devres_release_all(dev); 1972 1973 kfree(dev->dma_range_map); 1974 1975 if (dev->release) 1976 dev->release(dev); 1977 else if (dev->type && dev->type->release) 1978 dev->type->release(dev); 1979 else if (dev->class && dev->class->dev_release) 1980 dev->class->dev_release(dev); 1981 else 1982 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n", 1983 dev_name(dev)); 1984 kfree(p); 1985 } 1986 1987 static const void *device_namespace(struct kobject *kobj) 1988 { 1989 struct device *dev = kobj_to_dev(kobj); 1990 const void *ns = NULL; 1991 1992 if (dev->class && dev->class->ns_type) 1993 ns = dev->class->namespace(dev); 1994 1995 return ns; 1996 } 1997 1998 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid) 1999 { 2000 struct device *dev = kobj_to_dev(kobj); 2001 2002 if (dev->class && dev->class->get_ownership) 2003 dev->class->get_ownership(dev, uid, gid); 2004 } 2005 2006 static struct kobj_type device_ktype = { 2007 .release = device_release, 2008 .sysfs_ops = &dev_sysfs_ops, 2009 .namespace = device_namespace, 2010 .get_ownership = device_get_ownership, 2011 }; 2012 2013 2014 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj) 2015 { 2016 struct kobj_type *ktype = get_ktype(kobj); 2017 2018 if (ktype == &device_ktype) { 2019 struct device *dev = kobj_to_dev(kobj); 2020 if (dev->bus) 2021 return 1; 2022 if (dev->class) 2023 return 1; 2024 } 2025 return 0; 2026 } 2027 2028 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj) 2029 { 2030 struct device *dev = kobj_to_dev(kobj); 2031 2032 if (dev->bus) 2033 return dev->bus->name; 2034 if (dev->class) 2035 return dev->class->name; 2036 return NULL; 2037 } 2038 2039 static int dev_uevent(struct kset *kset, struct kobject *kobj, 2040 struct kobj_uevent_env *env) 2041 { 2042 struct device *dev = kobj_to_dev(kobj); 2043 int retval = 0; 2044 2045 /* add device node properties if present */ 2046 if (MAJOR(dev->devt)) { 2047 const char *tmp; 2048 const char *name; 2049 umode_t mode = 0; 2050 kuid_t uid = GLOBAL_ROOT_UID; 2051 kgid_t gid = GLOBAL_ROOT_GID; 2052 2053 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 2054 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 2055 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 2056 if (name) { 2057 add_uevent_var(env, "DEVNAME=%s", name); 2058 if (mode) 2059 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 2060 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 2061 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 2062 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 2063 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 2064 kfree(tmp); 2065 } 2066 } 2067 2068 if (dev->type && dev->type->name) 2069 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 2070 2071 if (dev->driver) 2072 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 2073 2074 /* Add common DT information about the device */ 2075 of_device_uevent(dev, env); 2076 2077 /* have the bus specific function add its stuff */ 2078 if (dev->bus && dev->bus->uevent) { 2079 retval = dev->bus->uevent(dev, env); 2080 if (retval) 2081 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 2082 dev_name(dev), __func__, retval); 2083 } 2084 2085 /* have the class specific function add its stuff */ 2086 if (dev->class && dev->class->dev_uevent) { 2087 retval = dev->class->dev_uevent(dev, env); 2088 if (retval) 2089 pr_debug("device: '%s': %s: class uevent() " 2090 "returned %d\n", dev_name(dev), 2091 __func__, retval); 2092 } 2093 2094 /* have the device type specific function add its stuff */ 2095 if (dev->type && dev->type->uevent) { 2096 retval = dev->type->uevent(dev, env); 2097 if (retval) 2098 pr_debug("device: '%s': %s: dev_type uevent() " 2099 "returned %d\n", dev_name(dev), 2100 __func__, retval); 2101 } 2102 2103 return retval; 2104 } 2105 2106 static const struct kset_uevent_ops device_uevent_ops = { 2107 .filter = dev_uevent_filter, 2108 .name = dev_uevent_name, 2109 .uevent = dev_uevent, 2110 }; 2111 2112 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 2113 char *buf) 2114 { 2115 struct kobject *top_kobj; 2116 struct kset *kset; 2117 struct kobj_uevent_env *env = NULL; 2118 int i; 2119 int len = 0; 2120 int retval; 2121 2122 /* search the kset, the device belongs to */ 2123 top_kobj = &dev->kobj; 2124 while (!top_kobj->kset && top_kobj->parent) 2125 top_kobj = top_kobj->parent; 2126 if (!top_kobj->kset) 2127 goto out; 2128 2129 kset = top_kobj->kset; 2130 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 2131 goto out; 2132 2133 /* respect filter */ 2134 if (kset->uevent_ops && kset->uevent_ops->filter) 2135 if (!kset->uevent_ops->filter(kset, &dev->kobj)) 2136 goto out; 2137 2138 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 2139 if (!env) 2140 return -ENOMEM; 2141 2142 /* let the kset specific function add its keys */ 2143 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env); 2144 if (retval) 2145 goto out; 2146 2147 /* copy keys to file */ 2148 for (i = 0; i < env->envp_idx; i++) 2149 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]); 2150 out: 2151 kfree(env); 2152 return len; 2153 } 2154 2155 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 2156 const char *buf, size_t count) 2157 { 2158 int rc; 2159 2160 rc = kobject_synth_uevent(&dev->kobj, buf, count); 2161 2162 if (rc) { 2163 dev_err(dev, "uevent: failed to send synthetic uevent\n"); 2164 return rc; 2165 } 2166 2167 return count; 2168 } 2169 static DEVICE_ATTR_RW(uevent); 2170 2171 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 2172 char *buf) 2173 { 2174 bool val; 2175 2176 device_lock(dev); 2177 val = !dev->offline; 2178 device_unlock(dev); 2179 return sysfs_emit(buf, "%u\n", val); 2180 } 2181 2182 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 2183 const char *buf, size_t count) 2184 { 2185 bool val; 2186 int ret; 2187 2188 ret = strtobool(buf, &val); 2189 if (ret < 0) 2190 return ret; 2191 2192 ret = lock_device_hotplug_sysfs(); 2193 if (ret) 2194 return ret; 2195 2196 ret = val ? device_online(dev) : device_offline(dev); 2197 unlock_device_hotplug(); 2198 return ret < 0 ? ret : count; 2199 } 2200 static DEVICE_ATTR_RW(online); 2201 2202 int device_add_groups(struct device *dev, const struct attribute_group **groups) 2203 { 2204 return sysfs_create_groups(&dev->kobj, groups); 2205 } 2206 EXPORT_SYMBOL_GPL(device_add_groups); 2207 2208 void device_remove_groups(struct device *dev, 2209 const struct attribute_group **groups) 2210 { 2211 sysfs_remove_groups(&dev->kobj, groups); 2212 } 2213 EXPORT_SYMBOL_GPL(device_remove_groups); 2214 2215 union device_attr_group_devres { 2216 const struct attribute_group *group; 2217 const struct attribute_group **groups; 2218 }; 2219 2220 static int devm_attr_group_match(struct device *dev, void *res, void *data) 2221 { 2222 return ((union device_attr_group_devres *)res)->group == data; 2223 } 2224 2225 static void devm_attr_group_remove(struct device *dev, void *res) 2226 { 2227 union device_attr_group_devres *devres = res; 2228 const struct attribute_group *group = devres->group; 2229 2230 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 2231 sysfs_remove_group(&dev->kobj, group); 2232 } 2233 2234 static void devm_attr_groups_remove(struct device *dev, void *res) 2235 { 2236 union device_attr_group_devres *devres = res; 2237 const struct attribute_group **groups = devres->groups; 2238 2239 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups); 2240 sysfs_remove_groups(&dev->kobj, groups); 2241 } 2242 2243 /** 2244 * devm_device_add_group - given a device, create a managed attribute group 2245 * @dev: The device to create the group for 2246 * @grp: The attribute group to create 2247 * 2248 * This function creates a group for the first time. It will explicitly 2249 * warn and error if any of the attribute files being created already exist. 2250 * 2251 * Returns 0 on success or error code on failure. 2252 */ 2253 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 2254 { 2255 union device_attr_group_devres *devres; 2256 int error; 2257 2258 devres = devres_alloc(devm_attr_group_remove, 2259 sizeof(*devres), GFP_KERNEL); 2260 if (!devres) 2261 return -ENOMEM; 2262 2263 error = sysfs_create_group(&dev->kobj, grp); 2264 if (error) { 2265 devres_free(devres); 2266 return error; 2267 } 2268 2269 devres->group = grp; 2270 devres_add(dev, devres); 2271 return 0; 2272 } 2273 EXPORT_SYMBOL_GPL(devm_device_add_group); 2274 2275 /** 2276 * devm_device_remove_group: remove a managed group from a device 2277 * @dev: device to remove the group from 2278 * @grp: group to remove 2279 * 2280 * This function removes a group of attributes from a device. The attributes 2281 * previously have to have been created for this group, otherwise it will fail. 2282 */ 2283 void devm_device_remove_group(struct device *dev, 2284 const struct attribute_group *grp) 2285 { 2286 WARN_ON(devres_release(dev, devm_attr_group_remove, 2287 devm_attr_group_match, 2288 /* cast away const */ (void *)grp)); 2289 } 2290 EXPORT_SYMBOL_GPL(devm_device_remove_group); 2291 2292 /** 2293 * devm_device_add_groups - create a bunch of managed attribute groups 2294 * @dev: The device to create the group for 2295 * @groups: The attribute groups to create, NULL terminated 2296 * 2297 * This function creates a bunch of managed attribute groups. If an error 2298 * occurs when creating a group, all previously created groups will be 2299 * removed, unwinding everything back to the original state when this 2300 * function was called. It will explicitly warn and error if any of the 2301 * attribute files being created already exist. 2302 * 2303 * Returns 0 on success or error code from sysfs_create_group on failure. 2304 */ 2305 int devm_device_add_groups(struct device *dev, 2306 const struct attribute_group **groups) 2307 { 2308 union device_attr_group_devres *devres; 2309 int error; 2310 2311 devres = devres_alloc(devm_attr_groups_remove, 2312 sizeof(*devres), GFP_KERNEL); 2313 if (!devres) 2314 return -ENOMEM; 2315 2316 error = sysfs_create_groups(&dev->kobj, groups); 2317 if (error) { 2318 devres_free(devres); 2319 return error; 2320 } 2321 2322 devres->groups = groups; 2323 devres_add(dev, devres); 2324 return 0; 2325 } 2326 EXPORT_SYMBOL_GPL(devm_device_add_groups); 2327 2328 /** 2329 * devm_device_remove_groups - remove a list of managed groups 2330 * 2331 * @dev: The device for the groups to be removed from 2332 * @groups: NULL terminated list of groups to be removed 2333 * 2334 * If groups is not NULL, remove the specified groups from the device. 2335 */ 2336 void devm_device_remove_groups(struct device *dev, 2337 const struct attribute_group **groups) 2338 { 2339 WARN_ON(devres_release(dev, devm_attr_groups_remove, 2340 devm_attr_group_match, 2341 /* cast away const */ (void *)groups)); 2342 } 2343 EXPORT_SYMBOL_GPL(devm_device_remove_groups); 2344 2345 static int device_add_attrs(struct device *dev) 2346 { 2347 struct class *class = dev->class; 2348 const struct device_type *type = dev->type; 2349 int error; 2350 2351 if (class) { 2352 error = device_add_groups(dev, class->dev_groups); 2353 if (error) 2354 return error; 2355 } 2356 2357 if (type) { 2358 error = device_add_groups(dev, type->groups); 2359 if (error) 2360 goto err_remove_class_groups; 2361 } 2362 2363 error = device_add_groups(dev, dev->groups); 2364 if (error) 2365 goto err_remove_type_groups; 2366 2367 if (device_supports_offline(dev) && !dev->offline_disabled) { 2368 error = device_create_file(dev, &dev_attr_online); 2369 if (error) 2370 goto err_remove_dev_groups; 2371 } 2372 2373 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) { 2374 error = device_create_file(dev, &dev_attr_waiting_for_supplier); 2375 if (error) 2376 goto err_remove_dev_online; 2377 } 2378 2379 return 0; 2380 2381 err_remove_dev_online: 2382 device_remove_file(dev, &dev_attr_online); 2383 err_remove_dev_groups: 2384 device_remove_groups(dev, dev->groups); 2385 err_remove_type_groups: 2386 if (type) 2387 device_remove_groups(dev, type->groups); 2388 err_remove_class_groups: 2389 if (class) 2390 device_remove_groups(dev, class->dev_groups); 2391 2392 return error; 2393 } 2394 2395 static void device_remove_attrs(struct device *dev) 2396 { 2397 struct class *class = dev->class; 2398 const struct device_type *type = dev->type; 2399 2400 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2401 device_remove_file(dev, &dev_attr_online); 2402 device_remove_groups(dev, dev->groups); 2403 2404 if (type) 2405 device_remove_groups(dev, type->groups); 2406 2407 if (class) 2408 device_remove_groups(dev, class->dev_groups); 2409 } 2410 2411 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 2412 char *buf) 2413 { 2414 return print_dev_t(buf, dev->devt); 2415 } 2416 static DEVICE_ATTR_RO(dev); 2417 2418 /* /sys/devices/ */ 2419 struct kset *devices_kset; 2420 2421 /** 2422 * devices_kset_move_before - Move device in the devices_kset's list. 2423 * @deva: Device to move. 2424 * @devb: Device @deva should come before. 2425 */ 2426 static void devices_kset_move_before(struct device *deva, struct device *devb) 2427 { 2428 if (!devices_kset) 2429 return; 2430 pr_debug("devices_kset: Moving %s before %s\n", 2431 dev_name(deva), dev_name(devb)); 2432 spin_lock(&devices_kset->list_lock); 2433 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 2434 spin_unlock(&devices_kset->list_lock); 2435 } 2436 2437 /** 2438 * devices_kset_move_after - Move device in the devices_kset's list. 2439 * @deva: Device to move 2440 * @devb: Device @deva should come after. 2441 */ 2442 static void devices_kset_move_after(struct device *deva, struct device *devb) 2443 { 2444 if (!devices_kset) 2445 return; 2446 pr_debug("devices_kset: Moving %s after %s\n", 2447 dev_name(deva), dev_name(devb)); 2448 spin_lock(&devices_kset->list_lock); 2449 list_move(&deva->kobj.entry, &devb->kobj.entry); 2450 spin_unlock(&devices_kset->list_lock); 2451 } 2452 2453 /** 2454 * devices_kset_move_last - move the device to the end of devices_kset's list. 2455 * @dev: device to move 2456 */ 2457 void devices_kset_move_last(struct device *dev) 2458 { 2459 if (!devices_kset) 2460 return; 2461 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 2462 spin_lock(&devices_kset->list_lock); 2463 list_move_tail(&dev->kobj.entry, &devices_kset->list); 2464 spin_unlock(&devices_kset->list_lock); 2465 } 2466 2467 /** 2468 * device_create_file - create sysfs attribute file for device. 2469 * @dev: device. 2470 * @attr: device attribute descriptor. 2471 */ 2472 int device_create_file(struct device *dev, 2473 const struct device_attribute *attr) 2474 { 2475 int error = 0; 2476 2477 if (dev) { 2478 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 2479 "Attribute %s: write permission without 'store'\n", 2480 attr->attr.name); 2481 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 2482 "Attribute %s: read permission without 'show'\n", 2483 attr->attr.name); 2484 error = sysfs_create_file(&dev->kobj, &attr->attr); 2485 } 2486 2487 return error; 2488 } 2489 EXPORT_SYMBOL_GPL(device_create_file); 2490 2491 /** 2492 * device_remove_file - remove sysfs attribute file. 2493 * @dev: device. 2494 * @attr: device attribute descriptor. 2495 */ 2496 void device_remove_file(struct device *dev, 2497 const struct device_attribute *attr) 2498 { 2499 if (dev) 2500 sysfs_remove_file(&dev->kobj, &attr->attr); 2501 } 2502 EXPORT_SYMBOL_GPL(device_remove_file); 2503 2504 /** 2505 * device_remove_file_self - remove sysfs attribute file from its own method. 2506 * @dev: device. 2507 * @attr: device attribute descriptor. 2508 * 2509 * See kernfs_remove_self() for details. 2510 */ 2511 bool device_remove_file_self(struct device *dev, 2512 const struct device_attribute *attr) 2513 { 2514 if (dev) 2515 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 2516 else 2517 return false; 2518 } 2519 EXPORT_SYMBOL_GPL(device_remove_file_self); 2520 2521 /** 2522 * device_create_bin_file - create sysfs binary attribute file for device. 2523 * @dev: device. 2524 * @attr: device binary attribute descriptor. 2525 */ 2526 int device_create_bin_file(struct device *dev, 2527 const struct bin_attribute *attr) 2528 { 2529 int error = -EINVAL; 2530 if (dev) 2531 error = sysfs_create_bin_file(&dev->kobj, attr); 2532 return error; 2533 } 2534 EXPORT_SYMBOL_GPL(device_create_bin_file); 2535 2536 /** 2537 * device_remove_bin_file - remove sysfs binary attribute file 2538 * @dev: device. 2539 * @attr: device binary attribute descriptor. 2540 */ 2541 void device_remove_bin_file(struct device *dev, 2542 const struct bin_attribute *attr) 2543 { 2544 if (dev) 2545 sysfs_remove_bin_file(&dev->kobj, attr); 2546 } 2547 EXPORT_SYMBOL_GPL(device_remove_bin_file); 2548 2549 static void klist_children_get(struct klist_node *n) 2550 { 2551 struct device_private *p = to_device_private_parent(n); 2552 struct device *dev = p->device; 2553 2554 get_device(dev); 2555 } 2556 2557 static void klist_children_put(struct klist_node *n) 2558 { 2559 struct device_private *p = to_device_private_parent(n); 2560 struct device *dev = p->device; 2561 2562 put_device(dev); 2563 } 2564 2565 /** 2566 * device_initialize - init device structure. 2567 * @dev: device. 2568 * 2569 * This prepares the device for use by other layers by initializing 2570 * its fields. 2571 * It is the first half of device_register(), if called by 2572 * that function, though it can also be called separately, so one 2573 * may use @dev's fields. In particular, get_device()/put_device() 2574 * may be used for reference counting of @dev after calling this 2575 * function. 2576 * 2577 * All fields in @dev must be initialized by the caller to 0, except 2578 * for those explicitly set to some other value. The simplest 2579 * approach is to use kzalloc() to allocate the structure containing 2580 * @dev. 2581 * 2582 * NOTE: Use put_device() to give up your reference instead of freeing 2583 * @dev directly once you have called this function. 2584 */ 2585 void device_initialize(struct device *dev) 2586 { 2587 dev->kobj.kset = devices_kset; 2588 kobject_init(&dev->kobj, &device_ktype); 2589 INIT_LIST_HEAD(&dev->dma_pools); 2590 mutex_init(&dev->mutex); 2591 #ifdef CONFIG_PROVE_LOCKING 2592 mutex_init(&dev->lockdep_mutex); 2593 #endif 2594 lockdep_set_novalidate_class(&dev->mutex); 2595 spin_lock_init(&dev->devres_lock); 2596 INIT_LIST_HEAD(&dev->devres_head); 2597 device_pm_init(dev); 2598 set_dev_node(dev, -1); 2599 #ifdef CONFIG_GENERIC_MSI_IRQ 2600 INIT_LIST_HEAD(&dev->msi_list); 2601 #endif 2602 INIT_LIST_HEAD(&dev->links.consumers); 2603 INIT_LIST_HEAD(&dev->links.suppliers); 2604 INIT_LIST_HEAD(&dev->links.defer_sync); 2605 dev->links.status = DL_DEV_NO_DRIVER; 2606 } 2607 EXPORT_SYMBOL_GPL(device_initialize); 2608 2609 struct kobject *virtual_device_parent(struct device *dev) 2610 { 2611 static struct kobject *virtual_dir = NULL; 2612 2613 if (!virtual_dir) 2614 virtual_dir = kobject_create_and_add("virtual", 2615 &devices_kset->kobj); 2616 2617 return virtual_dir; 2618 } 2619 2620 struct class_dir { 2621 struct kobject kobj; 2622 struct class *class; 2623 }; 2624 2625 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 2626 2627 static void class_dir_release(struct kobject *kobj) 2628 { 2629 struct class_dir *dir = to_class_dir(kobj); 2630 kfree(dir); 2631 } 2632 2633 static const 2634 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj) 2635 { 2636 struct class_dir *dir = to_class_dir(kobj); 2637 return dir->class->ns_type; 2638 } 2639 2640 static struct kobj_type class_dir_ktype = { 2641 .release = class_dir_release, 2642 .sysfs_ops = &kobj_sysfs_ops, 2643 .child_ns_type = class_dir_child_ns_type 2644 }; 2645 2646 static struct kobject * 2647 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj) 2648 { 2649 struct class_dir *dir; 2650 int retval; 2651 2652 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 2653 if (!dir) 2654 return ERR_PTR(-ENOMEM); 2655 2656 dir->class = class; 2657 kobject_init(&dir->kobj, &class_dir_ktype); 2658 2659 dir->kobj.kset = &class->p->glue_dirs; 2660 2661 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name); 2662 if (retval < 0) { 2663 kobject_put(&dir->kobj); 2664 return ERR_PTR(retval); 2665 } 2666 return &dir->kobj; 2667 } 2668 2669 static DEFINE_MUTEX(gdp_mutex); 2670 2671 static struct kobject *get_device_parent(struct device *dev, 2672 struct device *parent) 2673 { 2674 if (dev->class) { 2675 struct kobject *kobj = NULL; 2676 struct kobject *parent_kobj; 2677 struct kobject *k; 2678 2679 #ifdef CONFIG_BLOCK 2680 /* block disks show up in /sys/block */ 2681 if (sysfs_deprecated && dev->class == &block_class) { 2682 if (parent && parent->class == &block_class) 2683 return &parent->kobj; 2684 return &block_class.p->subsys.kobj; 2685 } 2686 #endif 2687 2688 /* 2689 * If we have no parent, we live in "virtual". 2690 * Class-devices with a non class-device as parent, live 2691 * in a "glue" directory to prevent namespace collisions. 2692 */ 2693 if (parent == NULL) 2694 parent_kobj = virtual_device_parent(dev); 2695 else if (parent->class && !dev->class->ns_type) 2696 return &parent->kobj; 2697 else 2698 parent_kobj = &parent->kobj; 2699 2700 mutex_lock(&gdp_mutex); 2701 2702 /* find our class-directory at the parent and reference it */ 2703 spin_lock(&dev->class->p->glue_dirs.list_lock); 2704 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry) 2705 if (k->parent == parent_kobj) { 2706 kobj = kobject_get(k); 2707 break; 2708 } 2709 spin_unlock(&dev->class->p->glue_dirs.list_lock); 2710 if (kobj) { 2711 mutex_unlock(&gdp_mutex); 2712 return kobj; 2713 } 2714 2715 /* or create a new class-directory at the parent device */ 2716 k = class_dir_create_and_add(dev->class, parent_kobj); 2717 /* do not emit an uevent for this simple "glue" directory */ 2718 mutex_unlock(&gdp_mutex); 2719 return k; 2720 } 2721 2722 /* subsystems can specify a default root directory for their devices */ 2723 if (!parent && dev->bus && dev->bus->dev_root) 2724 return &dev->bus->dev_root->kobj; 2725 2726 if (parent) 2727 return &parent->kobj; 2728 return NULL; 2729 } 2730 2731 static inline bool live_in_glue_dir(struct kobject *kobj, 2732 struct device *dev) 2733 { 2734 if (!kobj || !dev->class || 2735 kobj->kset != &dev->class->p->glue_dirs) 2736 return false; 2737 return true; 2738 } 2739 2740 static inline struct kobject *get_glue_dir(struct device *dev) 2741 { 2742 return dev->kobj.parent; 2743 } 2744 2745 /* 2746 * make sure cleaning up dir as the last step, we need to make 2747 * sure .release handler of kobject is run with holding the 2748 * global lock 2749 */ 2750 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 2751 { 2752 unsigned int ref; 2753 2754 /* see if we live in a "glue" directory */ 2755 if (!live_in_glue_dir(glue_dir, dev)) 2756 return; 2757 2758 mutex_lock(&gdp_mutex); 2759 /** 2760 * There is a race condition between removing glue directory 2761 * and adding a new device under the glue directory. 2762 * 2763 * CPU1: CPU2: 2764 * 2765 * device_add() 2766 * get_device_parent() 2767 * class_dir_create_and_add() 2768 * kobject_add_internal() 2769 * create_dir() // create glue_dir 2770 * 2771 * device_add() 2772 * get_device_parent() 2773 * kobject_get() // get glue_dir 2774 * 2775 * device_del() 2776 * cleanup_glue_dir() 2777 * kobject_del(glue_dir) 2778 * 2779 * kobject_add() 2780 * kobject_add_internal() 2781 * create_dir() // in glue_dir 2782 * sysfs_create_dir_ns() 2783 * kernfs_create_dir_ns(sd) 2784 * 2785 * sysfs_remove_dir() // glue_dir->sd=NULL 2786 * sysfs_put() // free glue_dir->sd 2787 * 2788 * // sd is freed 2789 * kernfs_new_node(sd) 2790 * kernfs_get(glue_dir) 2791 * kernfs_add_one() 2792 * kernfs_put() 2793 * 2794 * Before CPU1 remove last child device under glue dir, if CPU2 add 2795 * a new device under glue dir, the glue_dir kobject reference count 2796 * will be increase to 2 in kobject_get(k). And CPU2 has been called 2797 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir() 2798 * and sysfs_put(). This result in glue_dir->sd is freed. 2799 * 2800 * Then the CPU2 will see a stale "empty" but still potentially used 2801 * glue dir around in kernfs_new_node(). 2802 * 2803 * In order to avoid this happening, we also should make sure that 2804 * kernfs_node for glue_dir is released in CPU1 only when refcount 2805 * for glue_dir kobj is 1. 2806 */ 2807 ref = kref_read(&glue_dir->kref); 2808 if (!kobject_has_children(glue_dir) && !--ref) 2809 kobject_del(glue_dir); 2810 kobject_put(glue_dir); 2811 mutex_unlock(&gdp_mutex); 2812 } 2813 2814 static int device_add_class_symlinks(struct device *dev) 2815 { 2816 struct device_node *of_node = dev_of_node(dev); 2817 int error; 2818 2819 if (of_node) { 2820 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 2821 if (error) 2822 dev_warn(dev, "Error %d creating of_node link\n",error); 2823 /* An error here doesn't warrant bringing down the device */ 2824 } 2825 2826 if (!dev->class) 2827 return 0; 2828 2829 error = sysfs_create_link(&dev->kobj, 2830 &dev->class->p->subsys.kobj, 2831 "subsystem"); 2832 if (error) 2833 goto out_devnode; 2834 2835 if (dev->parent && device_is_not_partition(dev)) { 2836 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 2837 "device"); 2838 if (error) 2839 goto out_subsys; 2840 } 2841 2842 #ifdef CONFIG_BLOCK 2843 /* /sys/block has directories and does not need symlinks */ 2844 if (sysfs_deprecated && dev->class == &block_class) 2845 return 0; 2846 #endif 2847 2848 /* link in the class directory pointing to the device */ 2849 error = sysfs_create_link(&dev->class->p->subsys.kobj, 2850 &dev->kobj, dev_name(dev)); 2851 if (error) 2852 goto out_device; 2853 2854 return 0; 2855 2856 out_device: 2857 sysfs_remove_link(&dev->kobj, "device"); 2858 2859 out_subsys: 2860 sysfs_remove_link(&dev->kobj, "subsystem"); 2861 out_devnode: 2862 sysfs_remove_link(&dev->kobj, "of_node"); 2863 return error; 2864 } 2865 2866 static void device_remove_class_symlinks(struct device *dev) 2867 { 2868 if (dev_of_node(dev)) 2869 sysfs_remove_link(&dev->kobj, "of_node"); 2870 2871 if (!dev->class) 2872 return; 2873 2874 if (dev->parent && device_is_not_partition(dev)) 2875 sysfs_remove_link(&dev->kobj, "device"); 2876 sysfs_remove_link(&dev->kobj, "subsystem"); 2877 #ifdef CONFIG_BLOCK 2878 if (sysfs_deprecated && dev->class == &block_class) 2879 return; 2880 #endif 2881 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev)); 2882 } 2883 2884 /** 2885 * dev_set_name - set a device name 2886 * @dev: device 2887 * @fmt: format string for the device's name 2888 */ 2889 int dev_set_name(struct device *dev, const char *fmt, ...) 2890 { 2891 va_list vargs; 2892 int err; 2893 2894 va_start(vargs, fmt); 2895 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 2896 va_end(vargs); 2897 return err; 2898 } 2899 EXPORT_SYMBOL_GPL(dev_set_name); 2900 2901 /** 2902 * device_to_dev_kobj - select a /sys/dev/ directory for the device 2903 * @dev: device 2904 * 2905 * By default we select char/ for new entries. Setting class->dev_obj 2906 * to NULL prevents an entry from being created. class->dev_kobj must 2907 * be set (or cleared) before any devices are registered to the class 2908 * otherwise device_create_sys_dev_entry() and 2909 * device_remove_sys_dev_entry() will disagree about the presence of 2910 * the link. 2911 */ 2912 static struct kobject *device_to_dev_kobj(struct device *dev) 2913 { 2914 struct kobject *kobj; 2915 2916 if (dev->class) 2917 kobj = dev->class->dev_kobj; 2918 else 2919 kobj = sysfs_dev_char_kobj; 2920 2921 return kobj; 2922 } 2923 2924 static int device_create_sys_dev_entry(struct device *dev) 2925 { 2926 struct kobject *kobj = device_to_dev_kobj(dev); 2927 int error = 0; 2928 char devt_str[15]; 2929 2930 if (kobj) { 2931 format_dev_t(devt_str, dev->devt); 2932 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 2933 } 2934 2935 return error; 2936 } 2937 2938 static void device_remove_sys_dev_entry(struct device *dev) 2939 { 2940 struct kobject *kobj = device_to_dev_kobj(dev); 2941 char devt_str[15]; 2942 2943 if (kobj) { 2944 format_dev_t(devt_str, dev->devt); 2945 sysfs_remove_link(kobj, devt_str); 2946 } 2947 } 2948 2949 static int device_private_init(struct device *dev) 2950 { 2951 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 2952 if (!dev->p) 2953 return -ENOMEM; 2954 dev->p->device = dev; 2955 klist_init(&dev->p->klist_children, klist_children_get, 2956 klist_children_put); 2957 INIT_LIST_HEAD(&dev->p->deferred_probe); 2958 return 0; 2959 } 2960 2961 /** 2962 * device_add - add device to device hierarchy. 2963 * @dev: device. 2964 * 2965 * This is part 2 of device_register(), though may be called 2966 * separately _iff_ device_initialize() has been called separately. 2967 * 2968 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 2969 * to the global and sibling lists for the device, then 2970 * adds it to the other relevant subsystems of the driver model. 2971 * 2972 * Do not call this routine or device_register() more than once for 2973 * any device structure. The driver model core is not designed to work 2974 * with devices that get unregistered and then spring back to life. 2975 * (Among other things, it's very hard to guarantee that all references 2976 * to the previous incarnation of @dev have been dropped.) Allocate 2977 * and register a fresh new struct device instead. 2978 * 2979 * NOTE: _Never_ directly free @dev after calling this function, even 2980 * if it returned an error! Always use put_device() to give up your 2981 * reference instead. 2982 * 2983 * Rule of thumb is: if device_add() succeeds, you should call 2984 * device_del() when you want to get rid of it. If device_add() has 2985 * *not* succeeded, use *only* put_device() to drop the reference 2986 * count. 2987 */ 2988 int device_add(struct device *dev) 2989 { 2990 struct device *parent; 2991 struct kobject *kobj; 2992 struct class_interface *class_intf; 2993 int error = -EINVAL; 2994 struct kobject *glue_dir = NULL; 2995 2996 dev = get_device(dev); 2997 if (!dev) 2998 goto done; 2999 3000 if (!dev->p) { 3001 error = device_private_init(dev); 3002 if (error) 3003 goto done; 3004 } 3005 3006 /* 3007 * for statically allocated devices, which should all be converted 3008 * some day, we need to initialize the name. We prevent reading back 3009 * the name, and force the use of dev_name() 3010 */ 3011 if (dev->init_name) { 3012 dev_set_name(dev, "%s", dev->init_name); 3013 dev->init_name = NULL; 3014 } 3015 3016 /* subsystems can specify simple device enumeration */ 3017 if (!dev_name(dev) && dev->bus && dev->bus->dev_name) 3018 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 3019 3020 if (!dev_name(dev)) { 3021 error = -EINVAL; 3022 goto name_error; 3023 } 3024 3025 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3026 3027 parent = get_device(dev->parent); 3028 kobj = get_device_parent(dev, parent); 3029 if (IS_ERR(kobj)) { 3030 error = PTR_ERR(kobj); 3031 goto parent_error; 3032 } 3033 if (kobj) 3034 dev->kobj.parent = kobj; 3035 3036 /* use parent numa_node */ 3037 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 3038 set_dev_node(dev, dev_to_node(parent)); 3039 3040 /* first, register with generic layer. */ 3041 /* we require the name to be set before, and pass NULL */ 3042 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 3043 if (error) { 3044 glue_dir = get_glue_dir(dev); 3045 goto Error; 3046 } 3047 3048 /* notify platform of device entry */ 3049 error = device_platform_notify(dev, KOBJ_ADD); 3050 if (error) 3051 goto platform_error; 3052 3053 error = device_create_file(dev, &dev_attr_uevent); 3054 if (error) 3055 goto attrError; 3056 3057 error = device_add_class_symlinks(dev); 3058 if (error) 3059 goto SymlinkError; 3060 error = device_add_attrs(dev); 3061 if (error) 3062 goto AttrsError; 3063 error = bus_add_device(dev); 3064 if (error) 3065 goto BusError; 3066 error = dpm_sysfs_add(dev); 3067 if (error) 3068 goto DPMError; 3069 device_pm_add(dev); 3070 3071 if (MAJOR(dev->devt)) { 3072 error = device_create_file(dev, &dev_attr_dev); 3073 if (error) 3074 goto DevAttrError; 3075 3076 error = device_create_sys_dev_entry(dev); 3077 if (error) 3078 goto SysEntryError; 3079 3080 devtmpfs_create_node(dev); 3081 } 3082 3083 /* Notify clients of device addition. This call must come 3084 * after dpm_sysfs_add() and before kobject_uevent(). 3085 */ 3086 if (dev->bus) 3087 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 3088 BUS_NOTIFY_ADD_DEVICE, dev); 3089 3090 kobject_uevent(&dev->kobj, KOBJ_ADD); 3091 3092 /* 3093 * Check if any of the other devices (consumers) have been waiting for 3094 * this device (supplier) to be added so that they can create a device 3095 * link to it. 3096 * 3097 * This needs to happen after device_pm_add() because device_link_add() 3098 * requires the supplier be registered before it's called. 3099 * 3100 * But this also needs to happen before bus_probe_device() to make sure 3101 * waiting consumers can link to it before the driver is bound to the 3102 * device and the driver sync_state callback is called for this device. 3103 */ 3104 if (dev->fwnode && !dev->fwnode->dev) { 3105 dev->fwnode->dev = dev; 3106 fw_devlink_link_device(dev); 3107 } 3108 3109 bus_probe_device(dev); 3110 if (parent) 3111 klist_add_tail(&dev->p->knode_parent, 3112 &parent->p->klist_children); 3113 3114 if (dev->class) { 3115 mutex_lock(&dev->class->p->mutex); 3116 /* tie the class to the device */ 3117 klist_add_tail(&dev->p->knode_class, 3118 &dev->class->p->klist_devices); 3119 3120 /* notify any interfaces that the device is here */ 3121 list_for_each_entry(class_intf, 3122 &dev->class->p->interfaces, node) 3123 if (class_intf->add_dev) 3124 class_intf->add_dev(dev, class_intf); 3125 mutex_unlock(&dev->class->p->mutex); 3126 } 3127 done: 3128 put_device(dev); 3129 return error; 3130 SysEntryError: 3131 if (MAJOR(dev->devt)) 3132 device_remove_file(dev, &dev_attr_dev); 3133 DevAttrError: 3134 device_pm_remove(dev); 3135 dpm_sysfs_remove(dev); 3136 DPMError: 3137 bus_remove_device(dev); 3138 BusError: 3139 device_remove_attrs(dev); 3140 AttrsError: 3141 device_remove_class_symlinks(dev); 3142 SymlinkError: 3143 device_remove_file(dev, &dev_attr_uevent); 3144 attrError: 3145 device_platform_notify(dev, KOBJ_REMOVE); 3146 platform_error: 3147 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3148 glue_dir = get_glue_dir(dev); 3149 kobject_del(&dev->kobj); 3150 Error: 3151 cleanup_glue_dir(dev, glue_dir); 3152 parent_error: 3153 put_device(parent); 3154 name_error: 3155 kfree(dev->p); 3156 dev->p = NULL; 3157 goto done; 3158 } 3159 EXPORT_SYMBOL_GPL(device_add); 3160 3161 /** 3162 * device_register - register a device with the system. 3163 * @dev: pointer to the device structure 3164 * 3165 * This happens in two clean steps - initialize the device 3166 * and add it to the system. The two steps can be called 3167 * separately, but this is the easiest and most common. 3168 * I.e. you should only call the two helpers separately if 3169 * have a clearly defined need to use and refcount the device 3170 * before it is added to the hierarchy. 3171 * 3172 * For more information, see the kerneldoc for device_initialize() 3173 * and device_add(). 3174 * 3175 * NOTE: _Never_ directly free @dev after calling this function, even 3176 * if it returned an error! Always use put_device() to give up the 3177 * reference initialized in this function instead. 3178 */ 3179 int device_register(struct device *dev) 3180 { 3181 device_initialize(dev); 3182 return device_add(dev); 3183 } 3184 EXPORT_SYMBOL_GPL(device_register); 3185 3186 /** 3187 * get_device - increment reference count for device. 3188 * @dev: device. 3189 * 3190 * This simply forwards the call to kobject_get(), though 3191 * we do take care to provide for the case that we get a NULL 3192 * pointer passed in. 3193 */ 3194 struct device *get_device(struct device *dev) 3195 { 3196 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 3197 } 3198 EXPORT_SYMBOL_GPL(get_device); 3199 3200 /** 3201 * put_device - decrement reference count. 3202 * @dev: device in question. 3203 */ 3204 void put_device(struct device *dev) 3205 { 3206 /* might_sleep(); */ 3207 if (dev) 3208 kobject_put(&dev->kobj); 3209 } 3210 EXPORT_SYMBOL_GPL(put_device); 3211 3212 bool kill_device(struct device *dev) 3213 { 3214 /* 3215 * Require the device lock and set the "dead" flag to guarantee that 3216 * the update behavior is consistent with the other bitfields near 3217 * it and that we cannot have an asynchronous probe routine trying 3218 * to run while we are tearing out the bus/class/sysfs from 3219 * underneath the device. 3220 */ 3221 lockdep_assert_held(&dev->mutex); 3222 3223 if (dev->p->dead) 3224 return false; 3225 dev->p->dead = true; 3226 return true; 3227 } 3228 EXPORT_SYMBOL_GPL(kill_device); 3229 3230 /** 3231 * device_del - delete device from system. 3232 * @dev: device. 3233 * 3234 * This is the first part of the device unregistration 3235 * sequence. This removes the device from the lists we control 3236 * from here, has it removed from the other driver model 3237 * subsystems it was added to in device_add(), and removes it 3238 * from the kobject hierarchy. 3239 * 3240 * NOTE: this should be called manually _iff_ device_add() was 3241 * also called manually. 3242 */ 3243 void device_del(struct device *dev) 3244 { 3245 struct device *parent = dev->parent; 3246 struct kobject *glue_dir = NULL; 3247 struct class_interface *class_intf; 3248 unsigned int noio_flag; 3249 3250 device_lock(dev); 3251 kill_device(dev); 3252 device_unlock(dev); 3253 3254 if (dev->fwnode && dev->fwnode->dev == dev) 3255 dev->fwnode->dev = NULL; 3256 3257 /* Notify clients of device removal. This call must come 3258 * before dpm_sysfs_remove(). 3259 */ 3260 noio_flag = memalloc_noio_save(); 3261 if (dev->bus) 3262 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 3263 BUS_NOTIFY_DEL_DEVICE, dev); 3264 3265 dpm_sysfs_remove(dev); 3266 if (parent) 3267 klist_del(&dev->p->knode_parent); 3268 if (MAJOR(dev->devt)) { 3269 devtmpfs_delete_node(dev); 3270 device_remove_sys_dev_entry(dev); 3271 device_remove_file(dev, &dev_attr_dev); 3272 } 3273 if (dev->class) { 3274 device_remove_class_symlinks(dev); 3275 3276 mutex_lock(&dev->class->p->mutex); 3277 /* notify any interfaces that the device is now gone */ 3278 list_for_each_entry(class_intf, 3279 &dev->class->p->interfaces, node) 3280 if (class_intf->remove_dev) 3281 class_intf->remove_dev(dev, class_intf); 3282 /* remove the device from the class list */ 3283 klist_del(&dev->p->knode_class); 3284 mutex_unlock(&dev->class->p->mutex); 3285 } 3286 device_remove_file(dev, &dev_attr_uevent); 3287 device_remove_attrs(dev); 3288 bus_remove_device(dev); 3289 device_pm_remove(dev); 3290 driver_deferred_probe_del(dev); 3291 device_platform_notify(dev, KOBJ_REMOVE); 3292 device_remove_properties(dev); 3293 device_links_purge(dev); 3294 3295 if (dev->bus) 3296 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 3297 BUS_NOTIFY_REMOVED_DEVICE, dev); 3298 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3299 glue_dir = get_glue_dir(dev); 3300 kobject_del(&dev->kobj); 3301 cleanup_glue_dir(dev, glue_dir); 3302 memalloc_noio_restore(noio_flag); 3303 put_device(parent); 3304 } 3305 EXPORT_SYMBOL_GPL(device_del); 3306 3307 /** 3308 * device_unregister - unregister device from system. 3309 * @dev: device going away. 3310 * 3311 * We do this in two parts, like we do device_register(). First, 3312 * we remove it from all the subsystems with device_del(), then 3313 * we decrement the reference count via put_device(). If that 3314 * is the final reference count, the device will be cleaned up 3315 * via device_release() above. Otherwise, the structure will 3316 * stick around until the final reference to the device is dropped. 3317 */ 3318 void device_unregister(struct device *dev) 3319 { 3320 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3321 device_del(dev); 3322 put_device(dev); 3323 } 3324 EXPORT_SYMBOL_GPL(device_unregister); 3325 3326 static struct device *prev_device(struct klist_iter *i) 3327 { 3328 struct klist_node *n = klist_prev(i); 3329 struct device *dev = NULL; 3330 struct device_private *p; 3331 3332 if (n) { 3333 p = to_device_private_parent(n); 3334 dev = p->device; 3335 } 3336 return dev; 3337 } 3338 3339 static struct device *next_device(struct klist_iter *i) 3340 { 3341 struct klist_node *n = klist_next(i); 3342 struct device *dev = NULL; 3343 struct device_private *p; 3344 3345 if (n) { 3346 p = to_device_private_parent(n); 3347 dev = p->device; 3348 } 3349 return dev; 3350 } 3351 3352 /** 3353 * device_get_devnode - path of device node file 3354 * @dev: device 3355 * @mode: returned file access mode 3356 * @uid: returned file owner 3357 * @gid: returned file group 3358 * @tmp: possibly allocated string 3359 * 3360 * Return the relative path of a possible device node. 3361 * Non-default names may need to allocate a memory to compose 3362 * a name. This memory is returned in tmp and needs to be 3363 * freed by the caller. 3364 */ 3365 const char *device_get_devnode(struct device *dev, 3366 umode_t *mode, kuid_t *uid, kgid_t *gid, 3367 const char **tmp) 3368 { 3369 char *s; 3370 3371 *tmp = NULL; 3372 3373 /* the device type may provide a specific name */ 3374 if (dev->type && dev->type->devnode) 3375 *tmp = dev->type->devnode(dev, mode, uid, gid); 3376 if (*tmp) 3377 return *tmp; 3378 3379 /* the class may provide a specific name */ 3380 if (dev->class && dev->class->devnode) 3381 *tmp = dev->class->devnode(dev, mode); 3382 if (*tmp) 3383 return *tmp; 3384 3385 /* return name without allocation, tmp == NULL */ 3386 if (strchr(dev_name(dev), '!') == NULL) 3387 return dev_name(dev); 3388 3389 /* replace '!' in the name with '/' */ 3390 s = kstrdup(dev_name(dev), GFP_KERNEL); 3391 if (!s) 3392 return NULL; 3393 strreplace(s, '!', '/'); 3394 return *tmp = s; 3395 } 3396 3397 /** 3398 * device_for_each_child - device child iterator. 3399 * @parent: parent struct device. 3400 * @fn: function to be called for each device. 3401 * @data: data for the callback. 3402 * 3403 * Iterate over @parent's child devices, and call @fn for each, 3404 * passing it @data. 3405 * 3406 * We check the return of @fn each time. If it returns anything 3407 * other than 0, we break out and return that value. 3408 */ 3409 int device_for_each_child(struct device *parent, void *data, 3410 int (*fn)(struct device *dev, void *data)) 3411 { 3412 struct klist_iter i; 3413 struct device *child; 3414 int error = 0; 3415 3416 if (!parent->p) 3417 return 0; 3418 3419 klist_iter_init(&parent->p->klist_children, &i); 3420 while (!error && (child = next_device(&i))) 3421 error = fn(child, data); 3422 klist_iter_exit(&i); 3423 return error; 3424 } 3425 EXPORT_SYMBOL_GPL(device_for_each_child); 3426 3427 /** 3428 * device_for_each_child_reverse - device child iterator in reversed order. 3429 * @parent: parent struct device. 3430 * @fn: function to be called for each device. 3431 * @data: data for the callback. 3432 * 3433 * Iterate over @parent's child devices, and call @fn for each, 3434 * passing it @data. 3435 * 3436 * We check the return of @fn each time. If it returns anything 3437 * other than 0, we break out and return that value. 3438 */ 3439 int device_for_each_child_reverse(struct device *parent, void *data, 3440 int (*fn)(struct device *dev, void *data)) 3441 { 3442 struct klist_iter i; 3443 struct device *child; 3444 int error = 0; 3445 3446 if (!parent->p) 3447 return 0; 3448 3449 klist_iter_init(&parent->p->klist_children, &i); 3450 while ((child = prev_device(&i)) && !error) 3451 error = fn(child, data); 3452 klist_iter_exit(&i); 3453 return error; 3454 } 3455 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 3456 3457 /** 3458 * device_find_child - device iterator for locating a particular device. 3459 * @parent: parent struct device 3460 * @match: Callback function to check device 3461 * @data: Data to pass to match function 3462 * 3463 * This is similar to the device_for_each_child() function above, but it 3464 * returns a reference to a device that is 'found' for later use, as 3465 * determined by the @match callback. 3466 * 3467 * The callback should return 0 if the device doesn't match and non-zero 3468 * if it does. If the callback returns non-zero and a reference to the 3469 * current device can be obtained, this function will return to the caller 3470 * and not iterate over any more devices. 3471 * 3472 * NOTE: you will need to drop the reference with put_device() after use. 3473 */ 3474 struct device *device_find_child(struct device *parent, void *data, 3475 int (*match)(struct device *dev, void *data)) 3476 { 3477 struct klist_iter i; 3478 struct device *child; 3479 3480 if (!parent) 3481 return NULL; 3482 3483 klist_iter_init(&parent->p->klist_children, &i); 3484 while ((child = next_device(&i))) 3485 if (match(child, data) && get_device(child)) 3486 break; 3487 klist_iter_exit(&i); 3488 return child; 3489 } 3490 EXPORT_SYMBOL_GPL(device_find_child); 3491 3492 /** 3493 * device_find_child_by_name - device iterator for locating a child device. 3494 * @parent: parent struct device 3495 * @name: name of the child device 3496 * 3497 * This is similar to the device_find_child() function above, but it 3498 * returns a reference to a device that has the name @name. 3499 * 3500 * NOTE: you will need to drop the reference with put_device() after use. 3501 */ 3502 struct device *device_find_child_by_name(struct device *parent, 3503 const char *name) 3504 { 3505 struct klist_iter i; 3506 struct device *child; 3507 3508 if (!parent) 3509 return NULL; 3510 3511 klist_iter_init(&parent->p->klist_children, &i); 3512 while ((child = next_device(&i))) 3513 if (sysfs_streq(dev_name(child), name) && get_device(child)) 3514 break; 3515 klist_iter_exit(&i); 3516 return child; 3517 } 3518 EXPORT_SYMBOL_GPL(device_find_child_by_name); 3519 3520 int __init devices_init(void) 3521 { 3522 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 3523 if (!devices_kset) 3524 return -ENOMEM; 3525 dev_kobj = kobject_create_and_add("dev", NULL); 3526 if (!dev_kobj) 3527 goto dev_kobj_err; 3528 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 3529 if (!sysfs_dev_block_kobj) 3530 goto block_kobj_err; 3531 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 3532 if (!sysfs_dev_char_kobj) 3533 goto char_kobj_err; 3534 3535 return 0; 3536 3537 char_kobj_err: 3538 kobject_put(sysfs_dev_block_kobj); 3539 block_kobj_err: 3540 kobject_put(dev_kobj); 3541 dev_kobj_err: 3542 kset_unregister(devices_kset); 3543 return -ENOMEM; 3544 } 3545 3546 static int device_check_offline(struct device *dev, void *not_used) 3547 { 3548 int ret; 3549 3550 ret = device_for_each_child(dev, NULL, device_check_offline); 3551 if (ret) 3552 return ret; 3553 3554 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 3555 } 3556 3557 /** 3558 * device_offline - Prepare the device for hot-removal. 3559 * @dev: Device to be put offline. 3560 * 3561 * Execute the device bus type's .offline() callback, if present, to prepare 3562 * the device for a subsequent hot-removal. If that succeeds, the device must 3563 * not be used until either it is removed or its bus type's .online() callback 3564 * is executed. 3565 * 3566 * Call under device_hotplug_lock. 3567 */ 3568 int device_offline(struct device *dev) 3569 { 3570 int ret; 3571 3572 if (dev->offline_disabled) 3573 return -EPERM; 3574 3575 ret = device_for_each_child(dev, NULL, device_check_offline); 3576 if (ret) 3577 return ret; 3578 3579 device_lock(dev); 3580 if (device_supports_offline(dev)) { 3581 if (dev->offline) { 3582 ret = 1; 3583 } else { 3584 ret = dev->bus->offline(dev); 3585 if (!ret) { 3586 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 3587 dev->offline = true; 3588 } 3589 } 3590 } 3591 device_unlock(dev); 3592 3593 return ret; 3594 } 3595 3596 /** 3597 * device_online - Put the device back online after successful device_offline(). 3598 * @dev: Device to be put back online. 3599 * 3600 * If device_offline() has been successfully executed for @dev, but the device 3601 * has not been removed subsequently, execute its bus type's .online() callback 3602 * to indicate that the device can be used again. 3603 * 3604 * Call under device_hotplug_lock. 3605 */ 3606 int device_online(struct device *dev) 3607 { 3608 int ret = 0; 3609 3610 device_lock(dev); 3611 if (device_supports_offline(dev)) { 3612 if (dev->offline) { 3613 ret = dev->bus->online(dev); 3614 if (!ret) { 3615 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 3616 dev->offline = false; 3617 } 3618 } else { 3619 ret = 1; 3620 } 3621 } 3622 device_unlock(dev); 3623 3624 return ret; 3625 } 3626 3627 struct root_device { 3628 struct device dev; 3629 struct module *owner; 3630 }; 3631 3632 static inline struct root_device *to_root_device(struct device *d) 3633 { 3634 return container_of(d, struct root_device, dev); 3635 } 3636 3637 static void root_device_release(struct device *dev) 3638 { 3639 kfree(to_root_device(dev)); 3640 } 3641 3642 /** 3643 * __root_device_register - allocate and register a root device 3644 * @name: root device name 3645 * @owner: owner module of the root device, usually THIS_MODULE 3646 * 3647 * This function allocates a root device and registers it 3648 * using device_register(). In order to free the returned 3649 * device, use root_device_unregister(). 3650 * 3651 * Root devices are dummy devices which allow other devices 3652 * to be grouped under /sys/devices. Use this function to 3653 * allocate a root device and then use it as the parent of 3654 * any device which should appear under /sys/devices/{name} 3655 * 3656 * The /sys/devices/{name} directory will also contain a 3657 * 'module' symlink which points to the @owner directory 3658 * in sysfs. 3659 * 3660 * Returns &struct device pointer on success, or ERR_PTR() on error. 3661 * 3662 * Note: You probably want to use root_device_register(). 3663 */ 3664 struct device *__root_device_register(const char *name, struct module *owner) 3665 { 3666 struct root_device *root; 3667 int err = -ENOMEM; 3668 3669 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 3670 if (!root) 3671 return ERR_PTR(err); 3672 3673 err = dev_set_name(&root->dev, "%s", name); 3674 if (err) { 3675 kfree(root); 3676 return ERR_PTR(err); 3677 } 3678 3679 root->dev.release = root_device_release; 3680 3681 err = device_register(&root->dev); 3682 if (err) { 3683 put_device(&root->dev); 3684 return ERR_PTR(err); 3685 } 3686 3687 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 3688 if (owner) { 3689 struct module_kobject *mk = &owner->mkobj; 3690 3691 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 3692 if (err) { 3693 device_unregister(&root->dev); 3694 return ERR_PTR(err); 3695 } 3696 root->owner = owner; 3697 } 3698 #endif 3699 3700 return &root->dev; 3701 } 3702 EXPORT_SYMBOL_GPL(__root_device_register); 3703 3704 /** 3705 * root_device_unregister - unregister and free a root device 3706 * @dev: device going away 3707 * 3708 * This function unregisters and cleans up a device that was created by 3709 * root_device_register(). 3710 */ 3711 void root_device_unregister(struct device *dev) 3712 { 3713 struct root_device *root = to_root_device(dev); 3714 3715 if (root->owner) 3716 sysfs_remove_link(&root->dev.kobj, "module"); 3717 3718 device_unregister(dev); 3719 } 3720 EXPORT_SYMBOL_GPL(root_device_unregister); 3721 3722 3723 static void device_create_release(struct device *dev) 3724 { 3725 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3726 kfree(dev); 3727 } 3728 3729 static __printf(6, 0) struct device * 3730 device_create_groups_vargs(struct class *class, struct device *parent, 3731 dev_t devt, void *drvdata, 3732 const struct attribute_group **groups, 3733 const char *fmt, va_list args) 3734 { 3735 struct device *dev = NULL; 3736 int retval = -ENODEV; 3737 3738 if (class == NULL || IS_ERR(class)) 3739 goto error; 3740 3741 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3742 if (!dev) { 3743 retval = -ENOMEM; 3744 goto error; 3745 } 3746 3747 device_initialize(dev); 3748 dev->devt = devt; 3749 dev->class = class; 3750 dev->parent = parent; 3751 dev->groups = groups; 3752 dev->release = device_create_release; 3753 dev_set_drvdata(dev, drvdata); 3754 3755 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 3756 if (retval) 3757 goto error; 3758 3759 retval = device_add(dev); 3760 if (retval) 3761 goto error; 3762 3763 return dev; 3764 3765 error: 3766 put_device(dev); 3767 return ERR_PTR(retval); 3768 } 3769 3770 /** 3771 * device_create - creates a device and registers it with sysfs 3772 * @class: pointer to the struct class that this device should be registered to 3773 * @parent: pointer to the parent struct device of this new device, if any 3774 * @devt: the dev_t for the char device to be added 3775 * @drvdata: the data to be added to the device for callbacks 3776 * @fmt: string for the device's name 3777 * 3778 * This function can be used by char device classes. A struct device 3779 * will be created in sysfs, registered to the specified class. 3780 * 3781 * A "dev" file will be created, showing the dev_t for the device, if 3782 * the dev_t is not 0,0. 3783 * If a pointer to a parent struct device is passed in, the newly created 3784 * struct device will be a child of that device in sysfs. 3785 * The pointer to the struct device will be returned from the call. 3786 * Any further sysfs files that might be required can be created using this 3787 * pointer. 3788 * 3789 * Returns &struct device pointer on success, or ERR_PTR() on error. 3790 * 3791 * Note: the struct class passed to this function must have previously 3792 * been created with a call to class_create(). 3793 */ 3794 struct device *device_create(struct class *class, struct device *parent, 3795 dev_t devt, void *drvdata, const char *fmt, ...) 3796 { 3797 va_list vargs; 3798 struct device *dev; 3799 3800 va_start(vargs, fmt); 3801 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL, 3802 fmt, vargs); 3803 va_end(vargs); 3804 return dev; 3805 } 3806 EXPORT_SYMBOL_GPL(device_create); 3807 3808 /** 3809 * device_create_with_groups - creates a device and registers it with sysfs 3810 * @class: pointer to the struct class that this device should be registered to 3811 * @parent: pointer to the parent struct device of this new device, if any 3812 * @devt: the dev_t for the char device to be added 3813 * @drvdata: the data to be added to the device for callbacks 3814 * @groups: NULL-terminated list of attribute groups to be created 3815 * @fmt: string for the device's name 3816 * 3817 * This function can be used by char device classes. A struct device 3818 * will be created in sysfs, registered to the specified class. 3819 * Additional attributes specified in the groups parameter will also 3820 * be created automatically. 3821 * 3822 * A "dev" file will be created, showing the dev_t for the device, if 3823 * the dev_t is not 0,0. 3824 * If a pointer to a parent struct device is passed in, the newly created 3825 * struct device will be a child of that device in sysfs. 3826 * The pointer to the struct device will be returned from the call. 3827 * Any further sysfs files that might be required can be created using this 3828 * pointer. 3829 * 3830 * Returns &struct device pointer on success, or ERR_PTR() on error. 3831 * 3832 * Note: the struct class passed to this function must have previously 3833 * been created with a call to class_create(). 3834 */ 3835 struct device *device_create_with_groups(struct class *class, 3836 struct device *parent, dev_t devt, 3837 void *drvdata, 3838 const struct attribute_group **groups, 3839 const char *fmt, ...) 3840 { 3841 va_list vargs; 3842 struct device *dev; 3843 3844 va_start(vargs, fmt); 3845 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 3846 fmt, vargs); 3847 va_end(vargs); 3848 return dev; 3849 } 3850 EXPORT_SYMBOL_GPL(device_create_with_groups); 3851 3852 /** 3853 * device_destroy - removes a device that was created with device_create() 3854 * @class: pointer to the struct class that this device was registered with 3855 * @devt: the dev_t of the device that was previously registered 3856 * 3857 * This call unregisters and cleans up a device that was created with a 3858 * call to device_create(). 3859 */ 3860 void device_destroy(struct class *class, dev_t devt) 3861 { 3862 struct device *dev; 3863 3864 dev = class_find_device_by_devt(class, devt); 3865 if (dev) { 3866 put_device(dev); 3867 device_unregister(dev); 3868 } 3869 } 3870 EXPORT_SYMBOL_GPL(device_destroy); 3871 3872 /** 3873 * device_rename - renames a device 3874 * @dev: the pointer to the struct device to be renamed 3875 * @new_name: the new name of the device 3876 * 3877 * It is the responsibility of the caller to provide mutual 3878 * exclusion between two different calls of device_rename 3879 * on the same device to ensure that new_name is valid and 3880 * won't conflict with other devices. 3881 * 3882 * Note: Don't call this function. Currently, the networking layer calls this 3883 * function, but that will change. The following text from Kay Sievers offers 3884 * some insight: 3885 * 3886 * Renaming devices is racy at many levels, symlinks and other stuff are not 3887 * replaced atomically, and you get a "move" uevent, but it's not easy to 3888 * connect the event to the old and new device. Device nodes are not renamed at 3889 * all, there isn't even support for that in the kernel now. 3890 * 3891 * In the meantime, during renaming, your target name might be taken by another 3892 * driver, creating conflicts. Or the old name is taken directly after you 3893 * renamed it -- then you get events for the same DEVPATH, before you even see 3894 * the "move" event. It's just a mess, and nothing new should ever rely on 3895 * kernel device renaming. Besides that, it's not even implemented now for 3896 * other things than (driver-core wise very simple) network devices. 3897 * 3898 * We are currently about to change network renaming in udev to completely 3899 * disallow renaming of devices in the same namespace as the kernel uses, 3900 * because we can't solve the problems properly, that arise with swapping names 3901 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only 3902 * be allowed to some other name than eth[0-9]*, for the aforementioned 3903 * reasons. 3904 * 3905 * Make up a "real" name in the driver before you register anything, or add 3906 * some other attributes for userspace to find the device, or use udev to add 3907 * symlinks -- but never rename kernel devices later, it's a complete mess. We 3908 * don't even want to get into that and try to implement the missing pieces in 3909 * the core. We really have other pieces to fix in the driver core mess. :) 3910 */ 3911 int device_rename(struct device *dev, const char *new_name) 3912 { 3913 struct kobject *kobj = &dev->kobj; 3914 char *old_device_name = NULL; 3915 int error; 3916 3917 dev = get_device(dev); 3918 if (!dev) 3919 return -EINVAL; 3920 3921 dev_dbg(dev, "renaming to %s\n", new_name); 3922 3923 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 3924 if (!old_device_name) { 3925 error = -ENOMEM; 3926 goto out; 3927 } 3928 3929 if (dev->class) { 3930 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj, 3931 kobj, old_device_name, 3932 new_name, kobject_namespace(kobj)); 3933 if (error) 3934 goto out; 3935 } 3936 3937 error = kobject_rename(kobj, new_name); 3938 if (error) 3939 goto out; 3940 3941 out: 3942 put_device(dev); 3943 3944 kfree(old_device_name); 3945 3946 return error; 3947 } 3948 EXPORT_SYMBOL_GPL(device_rename); 3949 3950 static int device_move_class_links(struct device *dev, 3951 struct device *old_parent, 3952 struct device *new_parent) 3953 { 3954 int error = 0; 3955 3956 if (old_parent) 3957 sysfs_remove_link(&dev->kobj, "device"); 3958 if (new_parent) 3959 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 3960 "device"); 3961 return error; 3962 } 3963 3964 /** 3965 * device_move - moves a device to a new parent 3966 * @dev: the pointer to the struct device to be moved 3967 * @new_parent: the new parent of the device (can be NULL) 3968 * @dpm_order: how to reorder the dpm_list 3969 */ 3970 int device_move(struct device *dev, struct device *new_parent, 3971 enum dpm_order dpm_order) 3972 { 3973 int error; 3974 struct device *old_parent; 3975 struct kobject *new_parent_kobj; 3976 3977 dev = get_device(dev); 3978 if (!dev) 3979 return -EINVAL; 3980 3981 device_pm_lock(); 3982 new_parent = get_device(new_parent); 3983 new_parent_kobj = get_device_parent(dev, new_parent); 3984 if (IS_ERR(new_parent_kobj)) { 3985 error = PTR_ERR(new_parent_kobj); 3986 put_device(new_parent); 3987 goto out; 3988 } 3989 3990 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 3991 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 3992 error = kobject_move(&dev->kobj, new_parent_kobj); 3993 if (error) { 3994 cleanup_glue_dir(dev, new_parent_kobj); 3995 put_device(new_parent); 3996 goto out; 3997 } 3998 old_parent = dev->parent; 3999 dev->parent = new_parent; 4000 if (old_parent) 4001 klist_remove(&dev->p->knode_parent); 4002 if (new_parent) { 4003 klist_add_tail(&dev->p->knode_parent, 4004 &new_parent->p->klist_children); 4005 set_dev_node(dev, dev_to_node(new_parent)); 4006 } 4007 4008 if (dev->class) { 4009 error = device_move_class_links(dev, old_parent, new_parent); 4010 if (error) { 4011 /* We ignore errors on cleanup since we're hosed anyway... */ 4012 device_move_class_links(dev, new_parent, old_parent); 4013 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 4014 if (new_parent) 4015 klist_remove(&dev->p->knode_parent); 4016 dev->parent = old_parent; 4017 if (old_parent) { 4018 klist_add_tail(&dev->p->knode_parent, 4019 &old_parent->p->klist_children); 4020 set_dev_node(dev, dev_to_node(old_parent)); 4021 } 4022 } 4023 cleanup_glue_dir(dev, new_parent_kobj); 4024 put_device(new_parent); 4025 goto out; 4026 } 4027 } 4028 switch (dpm_order) { 4029 case DPM_ORDER_NONE: 4030 break; 4031 case DPM_ORDER_DEV_AFTER_PARENT: 4032 device_pm_move_after(dev, new_parent); 4033 devices_kset_move_after(dev, new_parent); 4034 break; 4035 case DPM_ORDER_PARENT_BEFORE_DEV: 4036 device_pm_move_before(new_parent, dev); 4037 devices_kset_move_before(new_parent, dev); 4038 break; 4039 case DPM_ORDER_DEV_LAST: 4040 device_pm_move_last(dev); 4041 devices_kset_move_last(dev); 4042 break; 4043 } 4044 4045 put_device(old_parent); 4046 out: 4047 device_pm_unlock(); 4048 put_device(dev); 4049 return error; 4050 } 4051 EXPORT_SYMBOL_GPL(device_move); 4052 4053 static int device_attrs_change_owner(struct device *dev, kuid_t kuid, 4054 kgid_t kgid) 4055 { 4056 struct kobject *kobj = &dev->kobj; 4057 struct class *class = dev->class; 4058 const struct device_type *type = dev->type; 4059 int error; 4060 4061 if (class) { 4062 /* 4063 * Change the device groups of the device class for @dev to 4064 * @kuid/@kgid. 4065 */ 4066 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid, 4067 kgid); 4068 if (error) 4069 return error; 4070 } 4071 4072 if (type) { 4073 /* 4074 * Change the device groups of the device type for @dev to 4075 * @kuid/@kgid. 4076 */ 4077 error = sysfs_groups_change_owner(kobj, type->groups, kuid, 4078 kgid); 4079 if (error) 4080 return error; 4081 } 4082 4083 /* Change the device groups of @dev to @kuid/@kgid. */ 4084 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid); 4085 if (error) 4086 return error; 4087 4088 if (device_supports_offline(dev) && !dev->offline_disabled) { 4089 /* Change online device attributes of @dev to @kuid/@kgid. */ 4090 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name, 4091 kuid, kgid); 4092 if (error) 4093 return error; 4094 } 4095 4096 return 0; 4097 } 4098 4099 /** 4100 * device_change_owner - change the owner of an existing device. 4101 * @dev: device. 4102 * @kuid: new owner's kuid 4103 * @kgid: new owner's kgid 4104 * 4105 * This changes the owner of @dev and its corresponding sysfs entries to 4106 * @kuid/@kgid. This function closely mirrors how @dev was added via driver 4107 * core. 4108 * 4109 * Returns 0 on success or error code on failure. 4110 */ 4111 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid) 4112 { 4113 int error; 4114 struct kobject *kobj = &dev->kobj; 4115 4116 dev = get_device(dev); 4117 if (!dev) 4118 return -EINVAL; 4119 4120 /* 4121 * Change the kobject and the default attributes and groups of the 4122 * ktype associated with it to @kuid/@kgid. 4123 */ 4124 error = sysfs_change_owner(kobj, kuid, kgid); 4125 if (error) 4126 goto out; 4127 4128 /* 4129 * Change the uevent file for @dev to the new owner. The uevent file 4130 * was created in a separate step when @dev got added and we mirror 4131 * that step here. 4132 */ 4133 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid, 4134 kgid); 4135 if (error) 4136 goto out; 4137 4138 /* 4139 * Change the device groups, the device groups associated with the 4140 * device class, and the groups associated with the device type of @dev 4141 * to @kuid/@kgid. 4142 */ 4143 error = device_attrs_change_owner(dev, kuid, kgid); 4144 if (error) 4145 goto out; 4146 4147 error = dpm_sysfs_change_owner(dev, kuid, kgid); 4148 if (error) 4149 goto out; 4150 4151 #ifdef CONFIG_BLOCK 4152 if (sysfs_deprecated && dev->class == &block_class) 4153 goto out; 4154 #endif 4155 4156 /* 4157 * Change the owner of the symlink located in the class directory of 4158 * the device class associated with @dev which points to the actual 4159 * directory entry for @dev to @kuid/@kgid. This ensures that the 4160 * symlink shows the same permissions as its target. 4161 */ 4162 error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj, 4163 dev_name(dev), kuid, kgid); 4164 if (error) 4165 goto out; 4166 4167 out: 4168 put_device(dev); 4169 return error; 4170 } 4171 EXPORT_SYMBOL_GPL(device_change_owner); 4172 4173 /** 4174 * device_shutdown - call ->shutdown() on each device to shutdown. 4175 */ 4176 void device_shutdown(void) 4177 { 4178 struct device *dev, *parent; 4179 4180 wait_for_device_probe(); 4181 device_block_probing(); 4182 4183 cpufreq_suspend(); 4184 4185 spin_lock(&devices_kset->list_lock); 4186 /* 4187 * Walk the devices list backward, shutting down each in turn. 4188 * Beware that device unplug events may also start pulling 4189 * devices offline, even as the system is shutting down. 4190 */ 4191 while (!list_empty(&devices_kset->list)) { 4192 dev = list_entry(devices_kset->list.prev, struct device, 4193 kobj.entry); 4194 4195 /* 4196 * hold reference count of device's parent to 4197 * prevent it from being freed because parent's 4198 * lock is to be held 4199 */ 4200 parent = get_device(dev->parent); 4201 get_device(dev); 4202 /* 4203 * Make sure the device is off the kset list, in the 4204 * event that dev->*->shutdown() doesn't remove it. 4205 */ 4206 list_del_init(&dev->kobj.entry); 4207 spin_unlock(&devices_kset->list_lock); 4208 4209 /* hold lock to avoid race with probe/release */ 4210 if (parent) 4211 device_lock(parent); 4212 device_lock(dev); 4213 4214 /* Don't allow any more runtime suspends */ 4215 pm_runtime_get_noresume(dev); 4216 pm_runtime_barrier(dev); 4217 4218 if (dev->class && dev->class->shutdown_pre) { 4219 if (initcall_debug) 4220 dev_info(dev, "shutdown_pre\n"); 4221 dev->class->shutdown_pre(dev); 4222 } 4223 if (dev->bus && dev->bus->shutdown) { 4224 if (initcall_debug) 4225 dev_info(dev, "shutdown\n"); 4226 dev->bus->shutdown(dev); 4227 } else if (dev->driver && dev->driver->shutdown) { 4228 if (initcall_debug) 4229 dev_info(dev, "shutdown\n"); 4230 dev->driver->shutdown(dev); 4231 } 4232 4233 device_unlock(dev); 4234 if (parent) 4235 device_unlock(parent); 4236 4237 put_device(dev); 4238 put_device(parent); 4239 4240 spin_lock(&devices_kset->list_lock); 4241 } 4242 spin_unlock(&devices_kset->list_lock); 4243 } 4244 4245 /* 4246 * Device logging functions 4247 */ 4248 4249 #ifdef CONFIG_PRINTK 4250 static void 4251 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info) 4252 { 4253 const char *subsys; 4254 4255 memset(dev_info, 0, sizeof(*dev_info)); 4256 4257 if (dev->class) 4258 subsys = dev->class->name; 4259 else if (dev->bus) 4260 subsys = dev->bus->name; 4261 else 4262 return; 4263 4264 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem)); 4265 4266 /* 4267 * Add device identifier DEVICE=: 4268 * b12:8 block dev_t 4269 * c127:3 char dev_t 4270 * n8 netdev ifindex 4271 * +sound:card0 subsystem:devname 4272 */ 4273 if (MAJOR(dev->devt)) { 4274 char c; 4275 4276 if (strcmp(subsys, "block") == 0) 4277 c = 'b'; 4278 else 4279 c = 'c'; 4280 4281 snprintf(dev_info->device, sizeof(dev_info->device), 4282 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt)); 4283 } else if (strcmp(subsys, "net") == 0) { 4284 struct net_device *net = to_net_dev(dev); 4285 4286 snprintf(dev_info->device, sizeof(dev_info->device), 4287 "n%u", net->ifindex); 4288 } else { 4289 snprintf(dev_info->device, sizeof(dev_info->device), 4290 "+%s:%s", subsys, dev_name(dev)); 4291 } 4292 } 4293 4294 int dev_vprintk_emit(int level, const struct device *dev, 4295 const char *fmt, va_list args) 4296 { 4297 struct dev_printk_info dev_info; 4298 4299 set_dev_info(dev, &dev_info); 4300 4301 return vprintk_emit(0, level, &dev_info, fmt, args); 4302 } 4303 EXPORT_SYMBOL(dev_vprintk_emit); 4304 4305 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 4306 { 4307 va_list args; 4308 int r; 4309 4310 va_start(args, fmt); 4311 4312 r = dev_vprintk_emit(level, dev, fmt, args); 4313 4314 va_end(args); 4315 4316 return r; 4317 } 4318 EXPORT_SYMBOL(dev_printk_emit); 4319 4320 static void __dev_printk(const char *level, const struct device *dev, 4321 struct va_format *vaf) 4322 { 4323 if (dev) 4324 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 4325 dev_driver_string(dev), dev_name(dev), vaf); 4326 else 4327 printk("%s(NULL device *): %pV", level, vaf); 4328 } 4329 4330 void dev_printk(const char *level, const struct device *dev, 4331 const char *fmt, ...) 4332 { 4333 struct va_format vaf; 4334 va_list args; 4335 4336 va_start(args, fmt); 4337 4338 vaf.fmt = fmt; 4339 vaf.va = &args; 4340 4341 __dev_printk(level, dev, &vaf); 4342 4343 va_end(args); 4344 } 4345 EXPORT_SYMBOL(dev_printk); 4346 4347 #define define_dev_printk_level(func, kern_level) \ 4348 void func(const struct device *dev, const char *fmt, ...) \ 4349 { \ 4350 struct va_format vaf; \ 4351 va_list args; \ 4352 \ 4353 va_start(args, fmt); \ 4354 \ 4355 vaf.fmt = fmt; \ 4356 vaf.va = &args; \ 4357 \ 4358 __dev_printk(kern_level, dev, &vaf); \ 4359 \ 4360 va_end(args); \ 4361 } \ 4362 EXPORT_SYMBOL(func); 4363 4364 define_dev_printk_level(_dev_emerg, KERN_EMERG); 4365 define_dev_printk_level(_dev_alert, KERN_ALERT); 4366 define_dev_printk_level(_dev_crit, KERN_CRIT); 4367 define_dev_printk_level(_dev_err, KERN_ERR); 4368 define_dev_printk_level(_dev_warn, KERN_WARNING); 4369 define_dev_printk_level(_dev_notice, KERN_NOTICE); 4370 define_dev_printk_level(_dev_info, KERN_INFO); 4371 4372 #endif 4373 4374 /** 4375 * dev_err_probe - probe error check and log helper 4376 * @dev: the pointer to the struct device 4377 * @err: error value to test 4378 * @fmt: printf-style format string 4379 * @...: arguments as specified in the format string 4380 * 4381 * This helper implements common pattern present in probe functions for error 4382 * checking: print debug or error message depending if the error value is 4383 * -EPROBE_DEFER and propagate error upwards. 4384 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be 4385 * checked later by reading devices_deferred debugfs attribute. 4386 * It replaces code sequence:: 4387 * 4388 * if (err != -EPROBE_DEFER) 4389 * dev_err(dev, ...); 4390 * else 4391 * dev_dbg(dev, ...); 4392 * return err; 4393 * 4394 * with:: 4395 * 4396 * return dev_err_probe(dev, err, ...); 4397 * 4398 * Returns @err. 4399 * 4400 */ 4401 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...) 4402 { 4403 struct va_format vaf; 4404 va_list args; 4405 4406 va_start(args, fmt); 4407 vaf.fmt = fmt; 4408 vaf.va = &args; 4409 4410 if (err != -EPROBE_DEFER) { 4411 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 4412 } else { 4413 device_set_deferred_probe_reason(dev, &vaf); 4414 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 4415 } 4416 4417 va_end(args); 4418 4419 return err; 4420 } 4421 EXPORT_SYMBOL_GPL(dev_err_probe); 4422 4423 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 4424 { 4425 return fwnode && !IS_ERR(fwnode->secondary); 4426 } 4427 4428 /** 4429 * set_primary_fwnode - Change the primary firmware node of a given device. 4430 * @dev: Device to handle. 4431 * @fwnode: New primary firmware node of the device. 4432 * 4433 * Set the device's firmware node pointer to @fwnode, but if a secondary 4434 * firmware node of the device is present, preserve it. 4435 * 4436 * Valid fwnode cases are: 4437 * - primary --> secondary --> -ENODEV 4438 * - primary --> NULL 4439 * - secondary --> -ENODEV 4440 * - NULL 4441 */ 4442 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 4443 { 4444 struct device *parent = dev->parent; 4445 struct fwnode_handle *fn = dev->fwnode; 4446 4447 if (fwnode) { 4448 if (fwnode_is_primary(fn)) 4449 fn = fn->secondary; 4450 4451 if (fn) { 4452 WARN_ON(fwnode->secondary); 4453 fwnode->secondary = fn; 4454 } 4455 dev->fwnode = fwnode; 4456 } else { 4457 if (fwnode_is_primary(fn)) { 4458 dev->fwnode = fn->secondary; 4459 /* Set fn->secondary = NULL, so fn remains the primary fwnode */ 4460 if (!(parent && fn == parent->fwnode)) 4461 fn->secondary = NULL; 4462 } else { 4463 dev->fwnode = NULL; 4464 } 4465 } 4466 } 4467 EXPORT_SYMBOL_GPL(set_primary_fwnode); 4468 4469 /** 4470 * set_secondary_fwnode - Change the secondary firmware node of a given device. 4471 * @dev: Device to handle. 4472 * @fwnode: New secondary firmware node of the device. 4473 * 4474 * If a primary firmware node of the device is present, set its secondary 4475 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 4476 * @fwnode. 4477 */ 4478 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 4479 { 4480 if (fwnode) 4481 fwnode->secondary = ERR_PTR(-ENODEV); 4482 4483 if (fwnode_is_primary(dev->fwnode)) 4484 dev->fwnode->secondary = fwnode; 4485 else 4486 dev->fwnode = fwnode; 4487 } 4488 EXPORT_SYMBOL_GPL(set_secondary_fwnode); 4489 4490 /** 4491 * device_set_of_node_from_dev - reuse device-tree node of another device 4492 * @dev: device whose device-tree node is being set 4493 * @dev2: device whose device-tree node is being reused 4494 * 4495 * Takes another reference to the new device-tree node after first dropping 4496 * any reference held to the old node. 4497 */ 4498 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 4499 { 4500 of_node_put(dev->of_node); 4501 dev->of_node = of_node_get(dev2->of_node); 4502 dev->of_node_reused = true; 4503 } 4504 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 4505 4506 int device_match_name(struct device *dev, const void *name) 4507 { 4508 return sysfs_streq(dev_name(dev), name); 4509 } 4510 EXPORT_SYMBOL_GPL(device_match_name); 4511 4512 int device_match_of_node(struct device *dev, const void *np) 4513 { 4514 return dev->of_node == np; 4515 } 4516 EXPORT_SYMBOL_GPL(device_match_of_node); 4517 4518 int device_match_fwnode(struct device *dev, const void *fwnode) 4519 { 4520 return dev_fwnode(dev) == fwnode; 4521 } 4522 EXPORT_SYMBOL_GPL(device_match_fwnode); 4523 4524 int device_match_devt(struct device *dev, const void *pdevt) 4525 { 4526 return dev->devt == *(dev_t *)pdevt; 4527 } 4528 EXPORT_SYMBOL_GPL(device_match_devt); 4529 4530 int device_match_acpi_dev(struct device *dev, const void *adev) 4531 { 4532 return ACPI_COMPANION(dev) == adev; 4533 } 4534 EXPORT_SYMBOL(device_match_acpi_dev); 4535 4536 int device_match_any(struct device *dev, const void *unused) 4537 { 4538 return 1; 4539 } 4540 EXPORT_SYMBOL_GPL(device_match_any); 4541