xref: /openbmc/linux/drivers/base/core.c (revision add48ba4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sysfs.h>
30 
31 #include "base.h"
32 #include "power/power.h"
33 
34 #ifdef CONFIG_SYSFS_DEPRECATED
35 #ifdef CONFIG_SYSFS_DEPRECATED_V2
36 long sysfs_deprecated = 1;
37 #else
38 long sysfs_deprecated = 0;
39 #endif
40 static int __init sysfs_deprecated_setup(char *arg)
41 {
42 	return kstrtol(arg, 10, &sysfs_deprecated);
43 }
44 early_param("sysfs.deprecated", sysfs_deprecated_setup);
45 #endif
46 
47 /* Device links support. */
48 static LIST_HEAD(wait_for_suppliers);
49 static DEFINE_MUTEX(wfs_lock);
50 static LIST_HEAD(deferred_sync);
51 static unsigned int defer_sync_state_count = 1;
52 static unsigned int defer_fw_devlink_count;
53 static DEFINE_MUTEX(defer_fw_devlink_lock);
54 static bool fw_devlink_is_permissive(void);
55 
56 #ifdef CONFIG_SRCU
57 static DEFINE_MUTEX(device_links_lock);
58 DEFINE_STATIC_SRCU(device_links_srcu);
59 
60 static inline void device_links_write_lock(void)
61 {
62 	mutex_lock(&device_links_lock);
63 }
64 
65 static inline void device_links_write_unlock(void)
66 {
67 	mutex_unlock(&device_links_lock);
68 }
69 
70 int device_links_read_lock(void) __acquires(&device_links_srcu)
71 {
72 	return srcu_read_lock(&device_links_srcu);
73 }
74 
75 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
76 {
77 	srcu_read_unlock(&device_links_srcu, idx);
78 }
79 
80 int device_links_read_lock_held(void)
81 {
82 	return srcu_read_lock_held(&device_links_srcu);
83 }
84 #else /* !CONFIG_SRCU */
85 static DECLARE_RWSEM(device_links_lock);
86 
87 static inline void device_links_write_lock(void)
88 {
89 	down_write(&device_links_lock);
90 }
91 
92 static inline void device_links_write_unlock(void)
93 {
94 	up_write(&device_links_lock);
95 }
96 
97 int device_links_read_lock(void)
98 {
99 	down_read(&device_links_lock);
100 	return 0;
101 }
102 
103 void device_links_read_unlock(int not_used)
104 {
105 	up_read(&device_links_lock);
106 }
107 
108 #ifdef CONFIG_DEBUG_LOCK_ALLOC
109 int device_links_read_lock_held(void)
110 {
111 	return lockdep_is_held(&device_links_lock);
112 }
113 #endif
114 #endif /* !CONFIG_SRCU */
115 
116 /**
117  * device_is_dependent - Check if one device depends on another one
118  * @dev: Device to check dependencies for.
119  * @target: Device to check against.
120  *
121  * Check if @target depends on @dev or any device dependent on it (its child or
122  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
123  */
124 int device_is_dependent(struct device *dev, void *target)
125 {
126 	struct device_link *link;
127 	int ret;
128 
129 	if (dev == target)
130 		return 1;
131 
132 	ret = device_for_each_child(dev, target, device_is_dependent);
133 	if (ret)
134 		return ret;
135 
136 	list_for_each_entry(link, &dev->links.consumers, s_node) {
137 		if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
138 			continue;
139 
140 		if (link->consumer == target)
141 			return 1;
142 
143 		ret = device_is_dependent(link->consumer, target);
144 		if (ret)
145 			break;
146 	}
147 	return ret;
148 }
149 
150 static void device_link_init_status(struct device_link *link,
151 				    struct device *consumer,
152 				    struct device *supplier)
153 {
154 	switch (supplier->links.status) {
155 	case DL_DEV_PROBING:
156 		switch (consumer->links.status) {
157 		case DL_DEV_PROBING:
158 			/*
159 			 * A consumer driver can create a link to a supplier
160 			 * that has not completed its probing yet as long as it
161 			 * knows that the supplier is already functional (for
162 			 * example, it has just acquired some resources from the
163 			 * supplier).
164 			 */
165 			link->status = DL_STATE_CONSUMER_PROBE;
166 			break;
167 		default:
168 			link->status = DL_STATE_DORMANT;
169 			break;
170 		}
171 		break;
172 	case DL_DEV_DRIVER_BOUND:
173 		switch (consumer->links.status) {
174 		case DL_DEV_PROBING:
175 			link->status = DL_STATE_CONSUMER_PROBE;
176 			break;
177 		case DL_DEV_DRIVER_BOUND:
178 			link->status = DL_STATE_ACTIVE;
179 			break;
180 		default:
181 			link->status = DL_STATE_AVAILABLE;
182 			break;
183 		}
184 		break;
185 	case DL_DEV_UNBINDING:
186 		link->status = DL_STATE_SUPPLIER_UNBIND;
187 		break;
188 	default:
189 		link->status = DL_STATE_DORMANT;
190 		break;
191 	}
192 }
193 
194 static int device_reorder_to_tail(struct device *dev, void *not_used)
195 {
196 	struct device_link *link;
197 
198 	/*
199 	 * Devices that have not been registered yet will be put to the ends
200 	 * of the lists during the registration, so skip them here.
201 	 */
202 	if (device_is_registered(dev))
203 		devices_kset_move_last(dev);
204 
205 	if (device_pm_initialized(dev))
206 		device_pm_move_last(dev);
207 
208 	device_for_each_child(dev, NULL, device_reorder_to_tail);
209 	list_for_each_entry(link, &dev->links.consumers, s_node) {
210 		if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
211 			continue;
212 		device_reorder_to_tail(link->consumer, NULL);
213 	}
214 
215 	return 0;
216 }
217 
218 /**
219  * device_pm_move_to_tail - Move set of devices to the end of device lists
220  * @dev: Device to move
221  *
222  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
223  *
224  * It moves the @dev along with all of its children and all of its consumers
225  * to the ends of the device_kset and dpm_list, recursively.
226  */
227 void device_pm_move_to_tail(struct device *dev)
228 {
229 	int idx;
230 
231 	idx = device_links_read_lock();
232 	device_pm_lock();
233 	device_reorder_to_tail(dev, NULL);
234 	device_pm_unlock();
235 	device_links_read_unlock(idx);
236 }
237 
238 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
239 			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
240 			       DL_FLAG_AUTOPROBE_CONSUMER  | \
241 			       DL_FLAG_SYNC_STATE_ONLY)
242 
243 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
244 			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
245 
246 /**
247  * device_link_add - Create a link between two devices.
248  * @consumer: Consumer end of the link.
249  * @supplier: Supplier end of the link.
250  * @flags: Link flags.
251  *
252  * The caller is responsible for the proper synchronization of the link creation
253  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
254  * runtime PM framework to take the link into account.  Second, if the
255  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
256  * be forced into the active metastate and reference-counted upon the creation
257  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
258  * ignored.
259  *
260  * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
261  * expected to release the link returned by it directly with the help of either
262  * device_link_del() or device_link_remove().
263  *
264  * If that flag is not set, however, the caller of this function is handing the
265  * management of the link over to the driver core entirely and its return value
266  * can only be used to check whether or not the link is present.  In that case,
267  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
268  * flags can be used to indicate to the driver core when the link can be safely
269  * deleted.  Namely, setting one of them in @flags indicates to the driver core
270  * that the link is not going to be used (by the given caller of this function)
271  * after unbinding the consumer or supplier driver, respectively, from its
272  * device, so the link can be deleted at that point.  If none of them is set,
273  * the link will be maintained until one of the devices pointed to by it (either
274  * the consumer or the supplier) is unregistered.
275  *
276  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
277  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
278  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
279  * be used to request the driver core to automaticall probe for a consmer
280  * driver after successfully binding a driver to the supplier device.
281  *
282  * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
283  * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
284  * the same time is invalid and will cause NULL to be returned upfront.
285  * However, if a device link between the given @consumer and @supplier pair
286  * exists already when this function is called for them, the existing link will
287  * be returned regardless of its current type and status (the link's flags may
288  * be modified then).  The caller of this function is then expected to treat
289  * the link as though it has just been created, so (in particular) if
290  * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
291  * explicitly when not needed any more (as stated above).
292  *
293  * A side effect of the link creation is re-ordering of dpm_list and the
294  * devices_kset list by moving the consumer device and all devices depending
295  * on it to the ends of these lists (that does not happen to devices that have
296  * not been registered when this function is called).
297  *
298  * The supplier device is required to be registered when this function is called
299  * and NULL will be returned if that is not the case.  The consumer device need
300  * not be registered, however.
301  */
302 struct device_link *device_link_add(struct device *consumer,
303 				    struct device *supplier, u32 flags)
304 {
305 	struct device_link *link;
306 
307 	if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
308 	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
309 	    (flags & DL_FLAG_SYNC_STATE_ONLY &&
310 	     flags != DL_FLAG_SYNC_STATE_ONLY) ||
311 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
312 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
313 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
314 		return NULL;
315 
316 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
317 		if (pm_runtime_get_sync(supplier) < 0) {
318 			pm_runtime_put_noidle(supplier);
319 			return NULL;
320 		}
321 	}
322 
323 	if (!(flags & DL_FLAG_STATELESS))
324 		flags |= DL_FLAG_MANAGED;
325 
326 	device_links_write_lock();
327 	device_pm_lock();
328 
329 	/*
330 	 * If the supplier has not been fully registered yet or there is a
331 	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
332 	 * the supplier already in the graph, return NULL. If the link is a
333 	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
334 	 * because it only affects sync_state() callbacks.
335 	 */
336 	if (!device_pm_initialized(supplier)
337 	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
338 		  device_is_dependent(consumer, supplier))) {
339 		link = NULL;
340 		goto out;
341 	}
342 
343 	/*
344 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
345 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
346 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
347 	 */
348 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
349 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
350 
351 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
352 		if (link->consumer != consumer)
353 			continue;
354 
355 		if (flags & DL_FLAG_PM_RUNTIME) {
356 			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
357 				pm_runtime_new_link(consumer);
358 				link->flags |= DL_FLAG_PM_RUNTIME;
359 			}
360 			if (flags & DL_FLAG_RPM_ACTIVE)
361 				refcount_inc(&link->rpm_active);
362 		}
363 
364 		if (flags & DL_FLAG_STATELESS) {
365 			kref_get(&link->kref);
366 			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
367 			    !(link->flags & DL_FLAG_STATELESS)) {
368 				link->flags |= DL_FLAG_STATELESS;
369 				goto reorder;
370 			} else {
371 				link->flags |= DL_FLAG_STATELESS;
372 				goto out;
373 			}
374 		}
375 
376 		/*
377 		 * If the life time of the link following from the new flags is
378 		 * longer than indicated by the flags of the existing link,
379 		 * update the existing link to stay around longer.
380 		 */
381 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
382 			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
383 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
384 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
385 			}
386 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
387 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
388 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
389 		}
390 		if (!(link->flags & DL_FLAG_MANAGED)) {
391 			kref_get(&link->kref);
392 			link->flags |= DL_FLAG_MANAGED;
393 			device_link_init_status(link, consumer, supplier);
394 		}
395 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
396 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
397 			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
398 			goto reorder;
399 		}
400 
401 		goto out;
402 	}
403 
404 	link = kzalloc(sizeof(*link), GFP_KERNEL);
405 	if (!link)
406 		goto out;
407 
408 	refcount_set(&link->rpm_active, 1);
409 
410 	if (flags & DL_FLAG_PM_RUNTIME) {
411 		if (flags & DL_FLAG_RPM_ACTIVE)
412 			refcount_inc(&link->rpm_active);
413 
414 		pm_runtime_new_link(consumer);
415 	}
416 
417 	get_device(supplier);
418 	link->supplier = supplier;
419 	INIT_LIST_HEAD(&link->s_node);
420 	get_device(consumer);
421 	link->consumer = consumer;
422 	INIT_LIST_HEAD(&link->c_node);
423 	link->flags = flags;
424 	kref_init(&link->kref);
425 
426 	/* Determine the initial link state. */
427 	if (flags & DL_FLAG_STATELESS)
428 		link->status = DL_STATE_NONE;
429 	else
430 		device_link_init_status(link, consumer, supplier);
431 
432 	/*
433 	 * Some callers expect the link creation during consumer driver probe to
434 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
435 	 */
436 	if (link->status == DL_STATE_CONSUMER_PROBE &&
437 	    flags & DL_FLAG_PM_RUNTIME)
438 		pm_runtime_resume(supplier);
439 
440 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
441 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
442 
443 	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
444 		dev_dbg(consumer,
445 			"Linked as a sync state only consumer to %s\n",
446 			dev_name(supplier));
447 		goto out;
448 	}
449 
450 reorder:
451 	/*
452 	 * Move the consumer and all of the devices depending on it to the end
453 	 * of dpm_list and the devices_kset list.
454 	 *
455 	 * It is necessary to hold dpm_list locked throughout all that or else
456 	 * we may end up suspending with a wrong ordering of it.
457 	 */
458 	device_reorder_to_tail(consumer, NULL);
459 
460 	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
461 
462 out:
463 	device_pm_unlock();
464 	device_links_write_unlock();
465 
466 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
467 		pm_runtime_put(supplier);
468 
469 	return link;
470 }
471 EXPORT_SYMBOL_GPL(device_link_add);
472 
473 /**
474  * device_link_wait_for_supplier - Add device to wait_for_suppliers list
475  * @consumer: Consumer device
476  *
477  * Marks the @consumer device as waiting for suppliers to become available by
478  * adding it to the wait_for_suppliers list. The consumer device will never be
479  * probed until it's removed from the wait_for_suppliers list.
480  *
481  * The caller is responsible for adding the links to the supplier devices once
482  * they are available and removing the @consumer device from the
483  * wait_for_suppliers list once links to all the suppliers have been created.
484  *
485  * This function is NOT meant to be called from the probe function of the
486  * consumer but rather from code that creates/adds the consumer device.
487  */
488 static void device_link_wait_for_supplier(struct device *consumer,
489 					  bool need_for_probe)
490 {
491 	mutex_lock(&wfs_lock);
492 	list_add_tail(&consumer->links.needs_suppliers, &wait_for_suppliers);
493 	consumer->links.need_for_probe = need_for_probe;
494 	mutex_unlock(&wfs_lock);
495 }
496 
497 static void device_link_wait_for_mandatory_supplier(struct device *consumer)
498 {
499 	device_link_wait_for_supplier(consumer, true);
500 }
501 
502 static void device_link_wait_for_optional_supplier(struct device *consumer)
503 {
504 	device_link_wait_for_supplier(consumer, false);
505 }
506 
507 /**
508  * device_link_add_missing_supplier_links - Add links from consumer devices to
509  *					    supplier devices, leaving any
510  *					    consumer with inactive suppliers on
511  *					    the wait_for_suppliers list
512  *
513  * Loops through all consumers waiting on suppliers and tries to add all their
514  * supplier links. If that succeeds, the consumer device is removed from
515  * wait_for_suppliers list. Otherwise, they are left in the wait_for_suppliers
516  * list.  Devices left on the wait_for_suppliers list will not be probed.
517  *
518  * The fwnode add_links callback is expected to return 0 if it has found and
519  * added all the supplier links for the consumer device. It should return an
520  * error if it isn't able to do so.
521  *
522  * The caller of device_link_wait_for_supplier() is expected to call this once
523  * it's aware of potential suppliers becoming available.
524  */
525 static void device_link_add_missing_supplier_links(void)
526 {
527 	struct device *dev, *tmp;
528 
529 	mutex_lock(&wfs_lock);
530 	list_for_each_entry_safe(dev, tmp, &wait_for_suppliers,
531 				 links.needs_suppliers) {
532 		int ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
533 		if (!ret)
534 			list_del_init(&dev->links.needs_suppliers);
535 		else if (ret != -ENODEV || fw_devlink_is_permissive())
536 			dev->links.need_for_probe = false;
537 	}
538 	mutex_unlock(&wfs_lock);
539 }
540 
541 static void device_link_free(struct device_link *link)
542 {
543 	while (refcount_dec_not_one(&link->rpm_active))
544 		pm_runtime_put(link->supplier);
545 
546 	put_device(link->consumer);
547 	put_device(link->supplier);
548 	kfree(link);
549 }
550 
551 #ifdef CONFIG_SRCU
552 static void __device_link_free_srcu(struct rcu_head *rhead)
553 {
554 	device_link_free(container_of(rhead, struct device_link, rcu_head));
555 }
556 
557 static void __device_link_del(struct kref *kref)
558 {
559 	struct device_link *link = container_of(kref, struct device_link, kref);
560 
561 	dev_dbg(link->consumer, "Dropping the link to %s\n",
562 		dev_name(link->supplier));
563 
564 	if (link->flags & DL_FLAG_PM_RUNTIME)
565 		pm_runtime_drop_link(link->consumer);
566 
567 	list_del_rcu(&link->s_node);
568 	list_del_rcu(&link->c_node);
569 	call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
570 }
571 #else /* !CONFIG_SRCU */
572 static void __device_link_del(struct kref *kref)
573 {
574 	struct device_link *link = container_of(kref, struct device_link, kref);
575 
576 	dev_info(link->consumer, "Dropping the link to %s\n",
577 		 dev_name(link->supplier));
578 
579 	if (link->flags & DL_FLAG_PM_RUNTIME)
580 		pm_runtime_drop_link(link->consumer);
581 
582 	list_del(&link->s_node);
583 	list_del(&link->c_node);
584 	device_link_free(link);
585 }
586 #endif /* !CONFIG_SRCU */
587 
588 static void device_link_put_kref(struct device_link *link)
589 {
590 	if (link->flags & DL_FLAG_STATELESS)
591 		kref_put(&link->kref, __device_link_del);
592 	else
593 		WARN(1, "Unable to drop a managed device link reference\n");
594 }
595 
596 /**
597  * device_link_del - Delete a stateless link between two devices.
598  * @link: Device link to delete.
599  *
600  * The caller must ensure proper synchronization of this function with runtime
601  * PM.  If the link was added multiple times, it needs to be deleted as often.
602  * Care is required for hotplugged devices:  Their links are purged on removal
603  * and calling device_link_del() is then no longer allowed.
604  */
605 void device_link_del(struct device_link *link)
606 {
607 	device_links_write_lock();
608 	device_pm_lock();
609 	device_link_put_kref(link);
610 	device_pm_unlock();
611 	device_links_write_unlock();
612 }
613 EXPORT_SYMBOL_GPL(device_link_del);
614 
615 /**
616  * device_link_remove - Delete a stateless link between two devices.
617  * @consumer: Consumer end of the link.
618  * @supplier: Supplier end of the link.
619  *
620  * The caller must ensure proper synchronization of this function with runtime
621  * PM.
622  */
623 void device_link_remove(void *consumer, struct device *supplier)
624 {
625 	struct device_link *link;
626 
627 	if (WARN_ON(consumer == supplier))
628 		return;
629 
630 	device_links_write_lock();
631 	device_pm_lock();
632 
633 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
634 		if (link->consumer == consumer) {
635 			device_link_put_kref(link);
636 			break;
637 		}
638 	}
639 
640 	device_pm_unlock();
641 	device_links_write_unlock();
642 }
643 EXPORT_SYMBOL_GPL(device_link_remove);
644 
645 static void device_links_missing_supplier(struct device *dev)
646 {
647 	struct device_link *link;
648 
649 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
650 		if (link->status != DL_STATE_CONSUMER_PROBE)
651 			continue;
652 
653 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
654 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
655 		} else {
656 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
657 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
658 		}
659 	}
660 }
661 
662 /**
663  * device_links_check_suppliers - Check presence of supplier drivers.
664  * @dev: Consumer device.
665  *
666  * Check links from this device to any suppliers.  Walk the list of the device's
667  * links to suppliers and see if all of them are available.  If not, simply
668  * return -EPROBE_DEFER.
669  *
670  * We need to guarantee that the supplier will not go away after the check has
671  * been positive here.  It only can go away in __device_release_driver() and
672  * that function  checks the device's links to consumers.  This means we need to
673  * mark the link as "consumer probe in progress" to make the supplier removal
674  * wait for us to complete (or bad things may happen).
675  *
676  * Links without the DL_FLAG_MANAGED flag set are ignored.
677  */
678 int device_links_check_suppliers(struct device *dev)
679 {
680 	struct device_link *link;
681 	int ret = 0;
682 
683 	/*
684 	 * Device waiting for supplier to become available is not allowed to
685 	 * probe.
686 	 */
687 	mutex_lock(&wfs_lock);
688 	if (!list_empty(&dev->links.needs_suppliers) &&
689 	    dev->links.need_for_probe) {
690 		mutex_unlock(&wfs_lock);
691 		return -EPROBE_DEFER;
692 	}
693 	mutex_unlock(&wfs_lock);
694 
695 	device_links_write_lock();
696 
697 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
698 		if (!(link->flags & DL_FLAG_MANAGED))
699 			continue;
700 
701 		if (link->status != DL_STATE_AVAILABLE &&
702 		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
703 			device_links_missing_supplier(dev);
704 			ret = -EPROBE_DEFER;
705 			break;
706 		}
707 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
708 	}
709 	dev->links.status = DL_DEV_PROBING;
710 
711 	device_links_write_unlock();
712 	return ret;
713 }
714 
715 /**
716  * __device_links_queue_sync_state - Queue a device for sync_state() callback
717  * @dev: Device to call sync_state() on
718  * @list: List head to queue the @dev on
719  *
720  * Queues a device for a sync_state() callback when the device links write lock
721  * isn't held. This allows the sync_state() execution flow to use device links
722  * APIs.  The caller must ensure this function is called with
723  * device_links_write_lock() held.
724  *
725  * This function does a get_device() to make sure the device is not freed while
726  * on this list.
727  *
728  * So the caller must also ensure that device_links_flush_sync_list() is called
729  * as soon as the caller releases device_links_write_lock().  This is necessary
730  * to make sure the sync_state() is called in a timely fashion and the
731  * put_device() is called on this device.
732  */
733 static void __device_links_queue_sync_state(struct device *dev,
734 					    struct list_head *list)
735 {
736 	struct device_link *link;
737 
738 	if (!dev_has_sync_state(dev))
739 		return;
740 	if (dev->state_synced)
741 		return;
742 
743 	list_for_each_entry(link, &dev->links.consumers, s_node) {
744 		if (!(link->flags & DL_FLAG_MANAGED))
745 			continue;
746 		if (link->status != DL_STATE_ACTIVE)
747 			return;
748 	}
749 
750 	/*
751 	 * Set the flag here to avoid adding the same device to a list more
752 	 * than once. This can happen if new consumers get added to the device
753 	 * and probed before the list is flushed.
754 	 */
755 	dev->state_synced = true;
756 
757 	if (WARN_ON(!list_empty(&dev->links.defer_sync)))
758 		return;
759 
760 	get_device(dev);
761 	list_add_tail(&dev->links.defer_sync, list);
762 }
763 
764 /**
765  * device_links_flush_sync_list - Call sync_state() on a list of devices
766  * @list: List of devices to call sync_state() on
767  * @dont_lock_dev: Device for which lock is already held by the caller
768  *
769  * Calls sync_state() on all the devices that have been queued for it. This
770  * function is used in conjunction with __device_links_queue_sync_state(). The
771  * @dont_lock_dev parameter is useful when this function is called from a
772  * context where a device lock is already held.
773  */
774 static void device_links_flush_sync_list(struct list_head *list,
775 					 struct device *dont_lock_dev)
776 {
777 	struct device *dev, *tmp;
778 
779 	list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
780 		list_del_init(&dev->links.defer_sync);
781 
782 		if (dev != dont_lock_dev)
783 			device_lock(dev);
784 
785 		if (dev->bus->sync_state)
786 			dev->bus->sync_state(dev);
787 		else if (dev->driver && dev->driver->sync_state)
788 			dev->driver->sync_state(dev);
789 
790 		if (dev != dont_lock_dev)
791 			device_unlock(dev);
792 
793 		put_device(dev);
794 	}
795 }
796 
797 void device_links_supplier_sync_state_pause(void)
798 {
799 	device_links_write_lock();
800 	defer_sync_state_count++;
801 	device_links_write_unlock();
802 }
803 
804 void device_links_supplier_sync_state_resume(void)
805 {
806 	struct device *dev, *tmp;
807 	LIST_HEAD(sync_list);
808 
809 	device_links_write_lock();
810 	if (!defer_sync_state_count) {
811 		WARN(true, "Unmatched sync_state pause/resume!");
812 		goto out;
813 	}
814 	defer_sync_state_count--;
815 	if (defer_sync_state_count)
816 		goto out;
817 
818 	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
819 		/*
820 		 * Delete from deferred_sync list before queuing it to
821 		 * sync_list because defer_sync is used for both lists.
822 		 */
823 		list_del_init(&dev->links.defer_sync);
824 		__device_links_queue_sync_state(dev, &sync_list);
825 	}
826 out:
827 	device_links_write_unlock();
828 
829 	device_links_flush_sync_list(&sync_list, NULL);
830 }
831 
832 static int sync_state_resume_initcall(void)
833 {
834 	device_links_supplier_sync_state_resume();
835 	return 0;
836 }
837 late_initcall(sync_state_resume_initcall);
838 
839 static void __device_links_supplier_defer_sync(struct device *sup)
840 {
841 	if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
842 		list_add_tail(&sup->links.defer_sync, &deferred_sync);
843 }
844 
845 static void device_link_drop_managed(struct device_link *link)
846 {
847 	link->flags &= ~DL_FLAG_MANAGED;
848 	WRITE_ONCE(link->status, DL_STATE_NONE);
849 	kref_put(&link->kref, __device_link_del);
850 }
851 
852 /**
853  * device_links_driver_bound - Update device links after probing its driver.
854  * @dev: Device to update the links for.
855  *
856  * The probe has been successful, so update links from this device to any
857  * consumers by changing their status to "available".
858  *
859  * Also change the status of @dev's links to suppliers to "active".
860  *
861  * Links without the DL_FLAG_MANAGED flag set are ignored.
862  */
863 void device_links_driver_bound(struct device *dev)
864 {
865 	struct device_link *link, *ln;
866 	LIST_HEAD(sync_list);
867 
868 	/*
869 	 * If a device probes successfully, it's expected to have created all
870 	 * the device links it needs to or make new device links as it needs
871 	 * them. So, it no longer needs to wait on any suppliers.
872 	 */
873 	mutex_lock(&wfs_lock);
874 	list_del_init(&dev->links.needs_suppliers);
875 	mutex_unlock(&wfs_lock);
876 
877 	device_links_write_lock();
878 
879 	list_for_each_entry(link, &dev->links.consumers, s_node) {
880 		if (!(link->flags & DL_FLAG_MANAGED))
881 			continue;
882 
883 		/*
884 		 * Links created during consumer probe may be in the "consumer
885 		 * probe" state to start with if the supplier is still probing
886 		 * when they are created and they may become "active" if the
887 		 * consumer probe returns first.  Skip them here.
888 		 */
889 		if (link->status == DL_STATE_CONSUMER_PROBE ||
890 		    link->status == DL_STATE_ACTIVE)
891 			continue;
892 
893 		WARN_ON(link->status != DL_STATE_DORMANT);
894 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
895 
896 		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
897 			driver_deferred_probe_add(link->consumer);
898 	}
899 
900 	if (defer_sync_state_count)
901 		__device_links_supplier_defer_sync(dev);
902 	else
903 		__device_links_queue_sync_state(dev, &sync_list);
904 
905 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
906 		struct device *supplier;
907 
908 		if (!(link->flags & DL_FLAG_MANAGED))
909 			continue;
910 
911 		supplier = link->supplier;
912 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
913 			/*
914 			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
915 			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
916 			 * save to drop the managed link completely.
917 			 */
918 			device_link_drop_managed(link);
919 		} else {
920 			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
921 			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
922 		}
923 
924 		/*
925 		 * This needs to be done even for the deleted
926 		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
927 		 * device link that was preventing the supplier from getting a
928 		 * sync_state() call.
929 		 */
930 		if (defer_sync_state_count)
931 			__device_links_supplier_defer_sync(supplier);
932 		else
933 			__device_links_queue_sync_state(supplier, &sync_list);
934 	}
935 
936 	dev->links.status = DL_DEV_DRIVER_BOUND;
937 
938 	device_links_write_unlock();
939 
940 	device_links_flush_sync_list(&sync_list, dev);
941 }
942 
943 /**
944  * __device_links_no_driver - Update links of a device without a driver.
945  * @dev: Device without a drvier.
946  *
947  * Delete all non-persistent links from this device to any suppliers.
948  *
949  * Persistent links stay around, but their status is changed to "available",
950  * unless they already are in the "supplier unbind in progress" state in which
951  * case they need not be updated.
952  *
953  * Links without the DL_FLAG_MANAGED flag set are ignored.
954  */
955 static void __device_links_no_driver(struct device *dev)
956 {
957 	struct device_link *link, *ln;
958 
959 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
960 		if (!(link->flags & DL_FLAG_MANAGED))
961 			continue;
962 
963 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
964 			device_link_drop_managed(link);
965 			continue;
966 		}
967 
968 		if (link->status != DL_STATE_CONSUMER_PROBE &&
969 		    link->status != DL_STATE_ACTIVE)
970 			continue;
971 
972 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
973 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
974 		} else {
975 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
976 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
977 		}
978 	}
979 
980 	dev->links.status = DL_DEV_NO_DRIVER;
981 }
982 
983 /**
984  * device_links_no_driver - Update links after failing driver probe.
985  * @dev: Device whose driver has just failed to probe.
986  *
987  * Clean up leftover links to consumers for @dev and invoke
988  * %__device_links_no_driver() to update links to suppliers for it as
989  * appropriate.
990  *
991  * Links without the DL_FLAG_MANAGED flag set are ignored.
992  */
993 void device_links_no_driver(struct device *dev)
994 {
995 	struct device_link *link;
996 
997 	device_links_write_lock();
998 
999 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1000 		if (!(link->flags & DL_FLAG_MANAGED))
1001 			continue;
1002 
1003 		/*
1004 		 * The probe has failed, so if the status of the link is
1005 		 * "consumer probe" or "active", it must have been added by
1006 		 * a probing consumer while this device was still probing.
1007 		 * Change its state to "dormant", as it represents a valid
1008 		 * relationship, but it is not functionally meaningful.
1009 		 */
1010 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1011 		    link->status == DL_STATE_ACTIVE)
1012 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1013 	}
1014 
1015 	__device_links_no_driver(dev);
1016 
1017 	device_links_write_unlock();
1018 }
1019 
1020 /**
1021  * device_links_driver_cleanup - Update links after driver removal.
1022  * @dev: Device whose driver has just gone away.
1023  *
1024  * Update links to consumers for @dev by changing their status to "dormant" and
1025  * invoke %__device_links_no_driver() to update links to suppliers for it as
1026  * appropriate.
1027  *
1028  * Links without the DL_FLAG_MANAGED flag set are ignored.
1029  */
1030 void device_links_driver_cleanup(struct device *dev)
1031 {
1032 	struct device_link *link, *ln;
1033 
1034 	device_links_write_lock();
1035 
1036 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1037 		if (!(link->flags & DL_FLAG_MANAGED))
1038 			continue;
1039 
1040 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1041 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1042 
1043 		/*
1044 		 * autoremove the links between this @dev and its consumer
1045 		 * devices that are not active, i.e. where the link state
1046 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1047 		 */
1048 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1049 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1050 			device_link_drop_managed(link);
1051 
1052 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1053 	}
1054 
1055 	list_del_init(&dev->links.defer_sync);
1056 	__device_links_no_driver(dev);
1057 
1058 	device_links_write_unlock();
1059 }
1060 
1061 /**
1062  * device_links_busy - Check if there are any busy links to consumers.
1063  * @dev: Device to check.
1064  *
1065  * Check each consumer of the device and return 'true' if its link's status
1066  * is one of "consumer probe" or "active" (meaning that the given consumer is
1067  * probing right now or its driver is present).  Otherwise, change the link
1068  * state to "supplier unbind" to prevent the consumer from being probed
1069  * successfully going forward.
1070  *
1071  * Return 'false' if there are no probing or active consumers.
1072  *
1073  * Links without the DL_FLAG_MANAGED flag set are ignored.
1074  */
1075 bool device_links_busy(struct device *dev)
1076 {
1077 	struct device_link *link;
1078 	bool ret = false;
1079 
1080 	device_links_write_lock();
1081 
1082 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1083 		if (!(link->flags & DL_FLAG_MANAGED))
1084 			continue;
1085 
1086 		if (link->status == DL_STATE_CONSUMER_PROBE
1087 		    || link->status == DL_STATE_ACTIVE) {
1088 			ret = true;
1089 			break;
1090 		}
1091 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1092 	}
1093 
1094 	dev->links.status = DL_DEV_UNBINDING;
1095 
1096 	device_links_write_unlock();
1097 	return ret;
1098 }
1099 
1100 /**
1101  * device_links_unbind_consumers - Force unbind consumers of the given device.
1102  * @dev: Device to unbind the consumers of.
1103  *
1104  * Walk the list of links to consumers for @dev and if any of them is in the
1105  * "consumer probe" state, wait for all device probes in progress to complete
1106  * and start over.
1107  *
1108  * If that's not the case, change the status of the link to "supplier unbind"
1109  * and check if the link was in the "active" state.  If so, force the consumer
1110  * driver to unbind and start over (the consumer will not re-probe as we have
1111  * changed the state of the link already).
1112  *
1113  * Links without the DL_FLAG_MANAGED flag set are ignored.
1114  */
1115 void device_links_unbind_consumers(struct device *dev)
1116 {
1117 	struct device_link *link;
1118 
1119  start:
1120 	device_links_write_lock();
1121 
1122 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1123 		enum device_link_state status;
1124 
1125 		if (!(link->flags & DL_FLAG_MANAGED) ||
1126 		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1127 			continue;
1128 
1129 		status = link->status;
1130 		if (status == DL_STATE_CONSUMER_PROBE) {
1131 			device_links_write_unlock();
1132 
1133 			wait_for_device_probe();
1134 			goto start;
1135 		}
1136 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1137 		if (status == DL_STATE_ACTIVE) {
1138 			struct device *consumer = link->consumer;
1139 
1140 			get_device(consumer);
1141 
1142 			device_links_write_unlock();
1143 
1144 			device_release_driver_internal(consumer, NULL,
1145 						       consumer->parent);
1146 			put_device(consumer);
1147 			goto start;
1148 		}
1149 	}
1150 
1151 	device_links_write_unlock();
1152 }
1153 
1154 /**
1155  * device_links_purge - Delete existing links to other devices.
1156  * @dev: Target device.
1157  */
1158 static void device_links_purge(struct device *dev)
1159 {
1160 	struct device_link *link, *ln;
1161 
1162 	mutex_lock(&wfs_lock);
1163 	list_del(&dev->links.needs_suppliers);
1164 	mutex_unlock(&wfs_lock);
1165 
1166 	/*
1167 	 * Delete all of the remaining links from this device to any other
1168 	 * devices (either consumers or suppliers).
1169 	 */
1170 	device_links_write_lock();
1171 
1172 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1173 		WARN_ON(link->status == DL_STATE_ACTIVE);
1174 		__device_link_del(&link->kref);
1175 	}
1176 
1177 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1178 		WARN_ON(link->status != DL_STATE_DORMANT &&
1179 			link->status != DL_STATE_NONE);
1180 		__device_link_del(&link->kref);
1181 	}
1182 
1183 	device_links_write_unlock();
1184 }
1185 
1186 static u32 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
1187 static int __init fw_devlink_setup(char *arg)
1188 {
1189 	if (!arg)
1190 		return -EINVAL;
1191 
1192 	if (strcmp(arg, "off") == 0) {
1193 		fw_devlink_flags = 0;
1194 	} else if (strcmp(arg, "permissive") == 0) {
1195 		fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
1196 	} else if (strcmp(arg, "on") == 0) {
1197 		fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER;
1198 	} else if (strcmp(arg, "rpm") == 0) {
1199 		fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER |
1200 				   DL_FLAG_PM_RUNTIME;
1201 	}
1202 	return 0;
1203 }
1204 early_param("fw_devlink", fw_devlink_setup);
1205 
1206 u32 fw_devlink_get_flags(void)
1207 {
1208 	return fw_devlink_flags;
1209 }
1210 
1211 static bool fw_devlink_is_permissive(void)
1212 {
1213 	return fw_devlink_flags == DL_FLAG_SYNC_STATE_ONLY;
1214 }
1215 
1216 static void fw_devlink_link_device(struct device *dev)
1217 {
1218 	int fw_ret;
1219 
1220 	if (!fw_devlink_flags)
1221 		return;
1222 
1223 	mutex_lock(&defer_fw_devlink_lock);
1224 	if (!defer_fw_devlink_count)
1225 		device_link_add_missing_supplier_links();
1226 
1227 	/*
1228 	 * The device's fwnode not having add_links() doesn't affect if other
1229 	 * consumers can find this device as a supplier.  So, this check is
1230 	 * intentionally placed after device_link_add_missing_supplier_links().
1231 	 */
1232 	if (!fwnode_has_op(dev->fwnode, add_links))
1233 		goto out;
1234 
1235 	/*
1236 	 * If fw_devlink is being deferred, assume all devices have mandatory
1237 	 * suppliers they need to link to later. Then, when the fw_devlink is
1238 	 * resumed, all these devices will get a chance to try and link to any
1239 	 * suppliers they have.
1240 	 */
1241 	if (!defer_fw_devlink_count) {
1242 		fw_ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
1243 		if (fw_ret == -ENODEV && fw_devlink_is_permissive())
1244 			fw_ret = -EAGAIN;
1245 	} else {
1246 		fw_ret = -ENODEV;
1247 	}
1248 
1249 	if (fw_ret == -ENODEV)
1250 		device_link_wait_for_mandatory_supplier(dev);
1251 	else if (fw_ret)
1252 		device_link_wait_for_optional_supplier(dev);
1253 
1254 out:
1255 	mutex_unlock(&defer_fw_devlink_lock);
1256 }
1257 
1258 /**
1259  * fw_devlink_pause - Pause parsing of fwnode to create device links
1260  *
1261  * Calling this function defers any fwnode parsing to create device links until
1262  * fw_devlink_resume() is called. Both these functions are ref counted and the
1263  * caller needs to match the calls.
1264  *
1265  * While fw_devlink is paused:
1266  * - Any device that is added won't have its fwnode parsed to create device
1267  *   links.
1268  * - The probe of the device will also be deferred during this period.
1269  * - Any devices that were already added, but waiting for suppliers won't be
1270  *   able to link to newly added devices.
1271  *
1272  * Once fw_devlink_resume():
1273  * - All the fwnodes that was not parsed will be parsed.
1274  * - All the devices that were deferred probing will be reattempted if they
1275  *   aren't waiting for any more suppliers.
1276  *
1277  * This pair of functions, is mainly meant to optimize the parsing of fwnodes
1278  * when a lot of devices that need to link to each other are added in a short
1279  * interval of time. For example, adding all the top level devices in a system.
1280  *
1281  * For example, if N devices are added and:
1282  * - All the consumers are added before their suppliers
1283  * - All the suppliers of the N devices are part of the N devices
1284  *
1285  * Then:
1286  *
1287  * - With the use of fw_devlink_pause() and fw_devlink_resume(), each device
1288  *   will only need one parsing of its fwnode because it is guaranteed to find
1289  *   all the supplier devices already registered and ready to link to. It won't
1290  *   have to do another pass later to find one or more suppliers it couldn't
1291  *   find in the first parse of the fwnode. So, we'll only need O(N) fwnode
1292  *   parses.
1293  *
1294  * - Without the use of fw_devlink_pause() and fw_devlink_resume(), we would
1295  *   end up doing O(N^2) parses of fwnodes because every device that's added is
1296  *   guaranteed to trigger a parse of the fwnode of every device added before
1297  *   it. This O(N^2) parse is made worse by the fact that when a fwnode of a
1298  *   device is parsed, all it descendant devices might need to have their
1299  *   fwnodes parsed too (even if the devices themselves aren't added).
1300  */
1301 void fw_devlink_pause(void)
1302 {
1303 	mutex_lock(&defer_fw_devlink_lock);
1304 	defer_fw_devlink_count++;
1305 	mutex_unlock(&defer_fw_devlink_lock);
1306 }
1307 
1308 /** fw_devlink_resume - Resume parsing of fwnode to create device links
1309  *
1310  * This function is used in conjunction with fw_devlink_pause() and is ref
1311  * counted. See documentation for fw_devlink_pause() for more details.
1312  */
1313 void fw_devlink_resume(void)
1314 {
1315 	mutex_lock(&defer_fw_devlink_lock);
1316 	if (!defer_fw_devlink_count) {
1317 		WARN(true, "Unmatched fw_devlink pause/resume!");
1318 		goto out;
1319 	}
1320 
1321 	defer_fw_devlink_count--;
1322 	if (defer_fw_devlink_count)
1323 		goto out;
1324 
1325 	device_link_add_missing_supplier_links();
1326 	driver_deferred_probe_force_trigger();
1327 out:
1328 	mutex_unlock(&defer_fw_devlink_lock);
1329 }
1330 /* Device links support end. */
1331 
1332 int (*platform_notify)(struct device *dev) = NULL;
1333 int (*platform_notify_remove)(struct device *dev) = NULL;
1334 static struct kobject *dev_kobj;
1335 struct kobject *sysfs_dev_char_kobj;
1336 struct kobject *sysfs_dev_block_kobj;
1337 
1338 static DEFINE_MUTEX(device_hotplug_lock);
1339 
1340 void lock_device_hotplug(void)
1341 {
1342 	mutex_lock(&device_hotplug_lock);
1343 }
1344 
1345 void unlock_device_hotplug(void)
1346 {
1347 	mutex_unlock(&device_hotplug_lock);
1348 }
1349 
1350 int lock_device_hotplug_sysfs(void)
1351 {
1352 	if (mutex_trylock(&device_hotplug_lock))
1353 		return 0;
1354 
1355 	/* Avoid busy looping (5 ms of sleep should do). */
1356 	msleep(5);
1357 	return restart_syscall();
1358 }
1359 
1360 #ifdef CONFIG_BLOCK
1361 static inline int device_is_not_partition(struct device *dev)
1362 {
1363 	return !(dev->type == &part_type);
1364 }
1365 #else
1366 static inline int device_is_not_partition(struct device *dev)
1367 {
1368 	return 1;
1369 }
1370 #endif
1371 
1372 static int
1373 device_platform_notify(struct device *dev, enum kobject_action action)
1374 {
1375 	int ret;
1376 
1377 	ret = acpi_platform_notify(dev, action);
1378 	if (ret)
1379 		return ret;
1380 
1381 	ret = software_node_notify(dev, action);
1382 	if (ret)
1383 		return ret;
1384 
1385 	if (platform_notify && action == KOBJ_ADD)
1386 		platform_notify(dev);
1387 	else if (platform_notify_remove && action == KOBJ_REMOVE)
1388 		platform_notify_remove(dev);
1389 	return 0;
1390 }
1391 
1392 /**
1393  * dev_driver_string - Return a device's driver name, if at all possible
1394  * @dev: struct device to get the name of
1395  *
1396  * Will return the device's driver's name if it is bound to a device.  If
1397  * the device is not bound to a driver, it will return the name of the bus
1398  * it is attached to.  If it is not attached to a bus either, an empty
1399  * string will be returned.
1400  */
1401 const char *dev_driver_string(const struct device *dev)
1402 {
1403 	struct device_driver *drv;
1404 
1405 	/* dev->driver can change to NULL underneath us because of unbinding,
1406 	 * so be careful about accessing it.  dev->bus and dev->class should
1407 	 * never change once they are set, so they don't need special care.
1408 	 */
1409 	drv = READ_ONCE(dev->driver);
1410 	return drv ? drv->name :
1411 			(dev->bus ? dev->bus->name :
1412 			(dev->class ? dev->class->name : ""));
1413 }
1414 EXPORT_SYMBOL(dev_driver_string);
1415 
1416 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
1417 
1418 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
1419 			     char *buf)
1420 {
1421 	struct device_attribute *dev_attr = to_dev_attr(attr);
1422 	struct device *dev = kobj_to_dev(kobj);
1423 	ssize_t ret = -EIO;
1424 
1425 	if (dev_attr->show)
1426 		ret = dev_attr->show(dev, dev_attr, buf);
1427 	if (ret >= (ssize_t)PAGE_SIZE) {
1428 		printk("dev_attr_show: %pS returned bad count\n",
1429 				dev_attr->show);
1430 	}
1431 	return ret;
1432 }
1433 
1434 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
1435 			      const char *buf, size_t count)
1436 {
1437 	struct device_attribute *dev_attr = to_dev_attr(attr);
1438 	struct device *dev = kobj_to_dev(kobj);
1439 	ssize_t ret = -EIO;
1440 
1441 	if (dev_attr->store)
1442 		ret = dev_attr->store(dev, dev_attr, buf, count);
1443 	return ret;
1444 }
1445 
1446 static const struct sysfs_ops dev_sysfs_ops = {
1447 	.show	= dev_attr_show,
1448 	.store	= dev_attr_store,
1449 };
1450 
1451 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
1452 
1453 ssize_t device_store_ulong(struct device *dev,
1454 			   struct device_attribute *attr,
1455 			   const char *buf, size_t size)
1456 {
1457 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1458 	int ret;
1459 	unsigned long new;
1460 
1461 	ret = kstrtoul(buf, 0, &new);
1462 	if (ret)
1463 		return ret;
1464 	*(unsigned long *)(ea->var) = new;
1465 	/* Always return full write size even if we didn't consume all */
1466 	return size;
1467 }
1468 EXPORT_SYMBOL_GPL(device_store_ulong);
1469 
1470 ssize_t device_show_ulong(struct device *dev,
1471 			  struct device_attribute *attr,
1472 			  char *buf)
1473 {
1474 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1475 	return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
1476 }
1477 EXPORT_SYMBOL_GPL(device_show_ulong);
1478 
1479 ssize_t device_store_int(struct device *dev,
1480 			 struct device_attribute *attr,
1481 			 const char *buf, size_t size)
1482 {
1483 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1484 	int ret;
1485 	long new;
1486 
1487 	ret = kstrtol(buf, 0, &new);
1488 	if (ret)
1489 		return ret;
1490 
1491 	if (new > INT_MAX || new < INT_MIN)
1492 		return -EINVAL;
1493 	*(int *)(ea->var) = new;
1494 	/* Always return full write size even if we didn't consume all */
1495 	return size;
1496 }
1497 EXPORT_SYMBOL_GPL(device_store_int);
1498 
1499 ssize_t device_show_int(struct device *dev,
1500 			struct device_attribute *attr,
1501 			char *buf)
1502 {
1503 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1504 
1505 	return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
1506 }
1507 EXPORT_SYMBOL_GPL(device_show_int);
1508 
1509 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
1510 			  const char *buf, size_t size)
1511 {
1512 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1513 
1514 	if (strtobool(buf, ea->var) < 0)
1515 		return -EINVAL;
1516 
1517 	return size;
1518 }
1519 EXPORT_SYMBOL_GPL(device_store_bool);
1520 
1521 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
1522 			 char *buf)
1523 {
1524 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1525 
1526 	return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
1527 }
1528 EXPORT_SYMBOL_GPL(device_show_bool);
1529 
1530 /**
1531  * device_release - free device structure.
1532  * @kobj: device's kobject.
1533  *
1534  * This is called once the reference count for the object
1535  * reaches 0. We forward the call to the device's release
1536  * method, which should handle actually freeing the structure.
1537  */
1538 static void device_release(struct kobject *kobj)
1539 {
1540 	struct device *dev = kobj_to_dev(kobj);
1541 	struct device_private *p = dev->p;
1542 
1543 	/*
1544 	 * Some platform devices are driven without driver attached
1545 	 * and managed resources may have been acquired.  Make sure
1546 	 * all resources are released.
1547 	 *
1548 	 * Drivers still can add resources into device after device
1549 	 * is deleted but alive, so release devres here to avoid
1550 	 * possible memory leak.
1551 	 */
1552 	devres_release_all(dev);
1553 
1554 	if (dev->release)
1555 		dev->release(dev);
1556 	else if (dev->type && dev->type->release)
1557 		dev->type->release(dev);
1558 	else if (dev->class && dev->class->dev_release)
1559 		dev->class->dev_release(dev);
1560 	else
1561 		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
1562 			dev_name(dev));
1563 	kfree(p);
1564 }
1565 
1566 static const void *device_namespace(struct kobject *kobj)
1567 {
1568 	struct device *dev = kobj_to_dev(kobj);
1569 	const void *ns = NULL;
1570 
1571 	if (dev->class && dev->class->ns_type)
1572 		ns = dev->class->namespace(dev);
1573 
1574 	return ns;
1575 }
1576 
1577 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
1578 {
1579 	struct device *dev = kobj_to_dev(kobj);
1580 
1581 	if (dev->class && dev->class->get_ownership)
1582 		dev->class->get_ownership(dev, uid, gid);
1583 }
1584 
1585 static struct kobj_type device_ktype = {
1586 	.release	= device_release,
1587 	.sysfs_ops	= &dev_sysfs_ops,
1588 	.namespace	= device_namespace,
1589 	.get_ownership	= device_get_ownership,
1590 };
1591 
1592 
1593 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
1594 {
1595 	struct kobj_type *ktype = get_ktype(kobj);
1596 
1597 	if (ktype == &device_ktype) {
1598 		struct device *dev = kobj_to_dev(kobj);
1599 		if (dev->bus)
1600 			return 1;
1601 		if (dev->class)
1602 			return 1;
1603 	}
1604 	return 0;
1605 }
1606 
1607 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
1608 {
1609 	struct device *dev = kobj_to_dev(kobj);
1610 
1611 	if (dev->bus)
1612 		return dev->bus->name;
1613 	if (dev->class)
1614 		return dev->class->name;
1615 	return NULL;
1616 }
1617 
1618 static int dev_uevent(struct kset *kset, struct kobject *kobj,
1619 		      struct kobj_uevent_env *env)
1620 {
1621 	struct device *dev = kobj_to_dev(kobj);
1622 	int retval = 0;
1623 
1624 	/* add device node properties if present */
1625 	if (MAJOR(dev->devt)) {
1626 		const char *tmp;
1627 		const char *name;
1628 		umode_t mode = 0;
1629 		kuid_t uid = GLOBAL_ROOT_UID;
1630 		kgid_t gid = GLOBAL_ROOT_GID;
1631 
1632 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
1633 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
1634 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
1635 		if (name) {
1636 			add_uevent_var(env, "DEVNAME=%s", name);
1637 			if (mode)
1638 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
1639 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
1640 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
1641 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
1642 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
1643 			kfree(tmp);
1644 		}
1645 	}
1646 
1647 	if (dev->type && dev->type->name)
1648 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
1649 
1650 	if (dev->driver)
1651 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
1652 
1653 	/* Add common DT information about the device */
1654 	of_device_uevent(dev, env);
1655 
1656 	/* have the bus specific function add its stuff */
1657 	if (dev->bus && dev->bus->uevent) {
1658 		retval = dev->bus->uevent(dev, env);
1659 		if (retval)
1660 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
1661 				 dev_name(dev), __func__, retval);
1662 	}
1663 
1664 	/* have the class specific function add its stuff */
1665 	if (dev->class && dev->class->dev_uevent) {
1666 		retval = dev->class->dev_uevent(dev, env);
1667 		if (retval)
1668 			pr_debug("device: '%s': %s: class uevent() "
1669 				 "returned %d\n", dev_name(dev),
1670 				 __func__, retval);
1671 	}
1672 
1673 	/* have the device type specific function add its stuff */
1674 	if (dev->type && dev->type->uevent) {
1675 		retval = dev->type->uevent(dev, env);
1676 		if (retval)
1677 			pr_debug("device: '%s': %s: dev_type uevent() "
1678 				 "returned %d\n", dev_name(dev),
1679 				 __func__, retval);
1680 	}
1681 
1682 	return retval;
1683 }
1684 
1685 static const struct kset_uevent_ops device_uevent_ops = {
1686 	.filter =	dev_uevent_filter,
1687 	.name =		dev_uevent_name,
1688 	.uevent =	dev_uevent,
1689 };
1690 
1691 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
1692 			   char *buf)
1693 {
1694 	struct kobject *top_kobj;
1695 	struct kset *kset;
1696 	struct kobj_uevent_env *env = NULL;
1697 	int i;
1698 	size_t count = 0;
1699 	int retval;
1700 
1701 	/* search the kset, the device belongs to */
1702 	top_kobj = &dev->kobj;
1703 	while (!top_kobj->kset && top_kobj->parent)
1704 		top_kobj = top_kobj->parent;
1705 	if (!top_kobj->kset)
1706 		goto out;
1707 
1708 	kset = top_kobj->kset;
1709 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
1710 		goto out;
1711 
1712 	/* respect filter */
1713 	if (kset->uevent_ops && kset->uevent_ops->filter)
1714 		if (!kset->uevent_ops->filter(kset, &dev->kobj))
1715 			goto out;
1716 
1717 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1718 	if (!env)
1719 		return -ENOMEM;
1720 
1721 	/* let the kset specific function add its keys */
1722 	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
1723 	if (retval)
1724 		goto out;
1725 
1726 	/* copy keys to file */
1727 	for (i = 0; i < env->envp_idx; i++)
1728 		count += sprintf(&buf[count], "%s\n", env->envp[i]);
1729 out:
1730 	kfree(env);
1731 	return count;
1732 }
1733 
1734 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
1735 			    const char *buf, size_t count)
1736 {
1737 	int rc;
1738 
1739 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
1740 
1741 	if (rc) {
1742 		dev_err(dev, "uevent: failed to send synthetic uevent\n");
1743 		return rc;
1744 	}
1745 
1746 	return count;
1747 }
1748 static DEVICE_ATTR_RW(uevent);
1749 
1750 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1751 			   char *buf)
1752 {
1753 	bool val;
1754 
1755 	device_lock(dev);
1756 	val = !dev->offline;
1757 	device_unlock(dev);
1758 	return sprintf(buf, "%u\n", val);
1759 }
1760 
1761 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1762 			    const char *buf, size_t count)
1763 {
1764 	bool val;
1765 	int ret;
1766 
1767 	ret = strtobool(buf, &val);
1768 	if (ret < 0)
1769 		return ret;
1770 
1771 	ret = lock_device_hotplug_sysfs();
1772 	if (ret)
1773 		return ret;
1774 
1775 	ret = val ? device_online(dev) : device_offline(dev);
1776 	unlock_device_hotplug();
1777 	return ret < 0 ? ret : count;
1778 }
1779 static DEVICE_ATTR_RW(online);
1780 
1781 int device_add_groups(struct device *dev, const struct attribute_group **groups)
1782 {
1783 	return sysfs_create_groups(&dev->kobj, groups);
1784 }
1785 EXPORT_SYMBOL_GPL(device_add_groups);
1786 
1787 void device_remove_groups(struct device *dev,
1788 			  const struct attribute_group **groups)
1789 {
1790 	sysfs_remove_groups(&dev->kobj, groups);
1791 }
1792 EXPORT_SYMBOL_GPL(device_remove_groups);
1793 
1794 union device_attr_group_devres {
1795 	const struct attribute_group *group;
1796 	const struct attribute_group **groups;
1797 };
1798 
1799 static int devm_attr_group_match(struct device *dev, void *res, void *data)
1800 {
1801 	return ((union device_attr_group_devres *)res)->group == data;
1802 }
1803 
1804 static void devm_attr_group_remove(struct device *dev, void *res)
1805 {
1806 	union device_attr_group_devres *devres = res;
1807 	const struct attribute_group *group = devres->group;
1808 
1809 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
1810 	sysfs_remove_group(&dev->kobj, group);
1811 }
1812 
1813 static void devm_attr_groups_remove(struct device *dev, void *res)
1814 {
1815 	union device_attr_group_devres *devres = res;
1816 	const struct attribute_group **groups = devres->groups;
1817 
1818 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
1819 	sysfs_remove_groups(&dev->kobj, groups);
1820 }
1821 
1822 /**
1823  * devm_device_add_group - given a device, create a managed attribute group
1824  * @dev:	The device to create the group for
1825  * @grp:	The attribute group to create
1826  *
1827  * This function creates a group for the first time.  It will explicitly
1828  * warn and error if any of the attribute files being created already exist.
1829  *
1830  * Returns 0 on success or error code on failure.
1831  */
1832 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
1833 {
1834 	union device_attr_group_devres *devres;
1835 	int error;
1836 
1837 	devres = devres_alloc(devm_attr_group_remove,
1838 			      sizeof(*devres), GFP_KERNEL);
1839 	if (!devres)
1840 		return -ENOMEM;
1841 
1842 	error = sysfs_create_group(&dev->kobj, grp);
1843 	if (error) {
1844 		devres_free(devres);
1845 		return error;
1846 	}
1847 
1848 	devres->group = grp;
1849 	devres_add(dev, devres);
1850 	return 0;
1851 }
1852 EXPORT_SYMBOL_GPL(devm_device_add_group);
1853 
1854 /**
1855  * devm_device_remove_group: remove a managed group from a device
1856  * @dev:	device to remove the group from
1857  * @grp:	group to remove
1858  *
1859  * This function removes a group of attributes from a device. The attributes
1860  * previously have to have been created for this group, otherwise it will fail.
1861  */
1862 void devm_device_remove_group(struct device *dev,
1863 			      const struct attribute_group *grp)
1864 {
1865 	WARN_ON(devres_release(dev, devm_attr_group_remove,
1866 			       devm_attr_group_match,
1867 			       /* cast away const */ (void *)grp));
1868 }
1869 EXPORT_SYMBOL_GPL(devm_device_remove_group);
1870 
1871 /**
1872  * devm_device_add_groups - create a bunch of managed attribute groups
1873  * @dev:	The device to create the group for
1874  * @groups:	The attribute groups to create, NULL terminated
1875  *
1876  * This function creates a bunch of managed attribute groups.  If an error
1877  * occurs when creating a group, all previously created groups will be
1878  * removed, unwinding everything back to the original state when this
1879  * function was called.  It will explicitly warn and error if any of the
1880  * attribute files being created already exist.
1881  *
1882  * Returns 0 on success or error code from sysfs_create_group on failure.
1883  */
1884 int devm_device_add_groups(struct device *dev,
1885 			   const struct attribute_group **groups)
1886 {
1887 	union device_attr_group_devres *devres;
1888 	int error;
1889 
1890 	devres = devres_alloc(devm_attr_groups_remove,
1891 			      sizeof(*devres), GFP_KERNEL);
1892 	if (!devres)
1893 		return -ENOMEM;
1894 
1895 	error = sysfs_create_groups(&dev->kobj, groups);
1896 	if (error) {
1897 		devres_free(devres);
1898 		return error;
1899 	}
1900 
1901 	devres->groups = groups;
1902 	devres_add(dev, devres);
1903 	return 0;
1904 }
1905 EXPORT_SYMBOL_GPL(devm_device_add_groups);
1906 
1907 /**
1908  * devm_device_remove_groups - remove a list of managed groups
1909  *
1910  * @dev:	The device for the groups to be removed from
1911  * @groups:	NULL terminated list of groups to be removed
1912  *
1913  * If groups is not NULL, remove the specified groups from the device.
1914  */
1915 void devm_device_remove_groups(struct device *dev,
1916 			       const struct attribute_group **groups)
1917 {
1918 	WARN_ON(devres_release(dev, devm_attr_groups_remove,
1919 			       devm_attr_group_match,
1920 			       /* cast away const */ (void *)groups));
1921 }
1922 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
1923 
1924 static int device_add_attrs(struct device *dev)
1925 {
1926 	struct class *class = dev->class;
1927 	const struct device_type *type = dev->type;
1928 	int error;
1929 
1930 	if (class) {
1931 		error = device_add_groups(dev, class->dev_groups);
1932 		if (error)
1933 			return error;
1934 	}
1935 
1936 	if (type) {
1937 		error = device_add_groups(dev, type->groups);
1938 		if (error)
1939 			goto err_remove_class_groups;
1940 	}
1941 
1942 	error = device_add_groups(dev, dev->groups);
1943 	if (error)
1944 		goto err_remove_type_groups;
1945 
1946 	if (device_supports_offline(dev) && !dev->offline_disabled) {
1947 		error = device_create_file(dev, &dev_attr_online);
1948 		if (error)
1949 			goto err_remove_dev_groups;
1950 	}
1951 
1952 	return 0;
1953 
1954  err_remove_dev_groups:
1955 	device_remove_groups(dev, dev->groups);
1956  err_remove_type_groups:
1957 	if (type)
1958 		device_remove_groups(dev, type->groups);
1959  err_remove_class_groups:
1960 	if (class)
1961 		device_remove_groups(dev, class->dev_groups);
1962 
1963 	return error;
1964 }
1965 
1966 static void device_remove_attrs(struct device *dev)
1967 {
1968 	struct class *class = dev->class;
1969 	const struct device_type *type = dev->type;
1970 
1971 	device_remove_file(dev, &dev_attr_online);
1972 	device_remove_groups(dev, dev->groups);
1973 
1974 	if (type)
1975 		device_remove_groups(dev, type->groups);
1976 
1977 	if (class)
1978 		device_remove_groups(dev, class->dev_groups);
1979 }
1980 
1981 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1982 			char *buf)
1983 {
1984 	return print_dev_t(buf, dev->devt);
1985 }
1986 static DEVICE_ATTR_RO(dev);
1987 
1988 /* /sys/devices/ */
1989 struct kset *devices_kset;
1990 
1991 /**
1992  * devices_kset_move_before - Move device in the devices_kset's list.
1993  * @deva: Device to move.
1994  * @devb: Device @deva should come before.
1995  */
1996 static void devices_kset_move_before(struct device *deva, struct device *devb)
1997 {
1998 	if (!devices_kset)
1999 		return;
2000 	pr_debug("devices_kset: Moving %s before %s\n",
2001 		 dev_name(deva), dev_name(devb));
2002 	spin_lock(&devices_kset->list_lock);
2003 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2004 	spin_unlock(&devices_kset->list_lock);
2005 }
2006 
2007 /**
2008  * devices_kset_move_after - Move device in the devices_kset's list.
2009  * @deva: Device to move
2010  * @devb: Device @deva should come after.
2011  */
2012 static void devices_kset_move_after(struct device *deva, struct device *devb)
2013 {
2014 	if (!devices_kset)
2015 		return;
2016 	pr_debug("devices_kset: Moving %s after %s\n",
2017 		 dev_name(deva), dev_name(devb));
2018 	spin_lock(&devices_kset->list_lock);
2019 	list_move(&deva->kobj.entry, &devb->kobj.entry);
2020 	spin_unlock(&devices_kset->list_lock);
2021 }
2022 
2023 /**
2024  * devices_kset_move_last - move the device to the end of devices_kset's list.
2025  * @dev: device to move
2026  */
2027 void devices_kset_move_last(struct device *dev)
2028 {
2029 	if (!devices_kset)
2030 		return;
2031 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2032 	spin_lock(&devices_kset->list_lock);
2033 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
2034 	spin_unlock(&devices_kset->list_lock);
2035 }
2036 
2037 /**
2038  * device_create_file - create sysfs attribute file for device.
2039  * @dev: device.
2040  * @attr: device attribute descriptor.
2041  */
2042 int device_create_file(struct device *dev,
2043 		       const struct device_attribute *attr)
2044 {
2045 	int error = 0;
2046 
2047 	if (dev) {
2048 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2049 			"Attribute %s: write permission without 'store'\n",
2050 			attr->attr.name);
2051 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2052 			"Attribute %s: read permission without 'show'\n",
2053 			attr->attr.name);
2054 		error = sysfs_create_file(&dev->kobj, &attr->attr);
2055 	}
2056 
2057 	return error;
2058 }
2059 EXPORT_SYMBOL_GPL(device_create_file);
2060 
2061 /**
2062  * device_remove_file - remove sysfs attribute file.
2063  * @dev: device.
2064  * @attr: device attribute descriptor.
2065  */
2066 void device_remove_file(struct device *dev,
2067 			const struct device_attribute *attr)
2068 {
2069 	if (dev)
2070 		sysfs_remove_file(&dev->kobj, &attr->attr);
2071 }
2072 EXPORT_SYMBOL_GPL(device_remove_file);
2073 
2074 /**
2075  * device_remove_file_self - remove sysfs attribute file from its own method.
2076  * @dev: device.
2077  * @attr: device attribute descriptor.
2078  *
2079  * See kernfs_remove_self() for details.
2080  */
2081 bool device_remove_file_self(struct device *dev,
2082 			     const struct device_attribute *attr)
2083 {
2084 	if (dev)
2085 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2086 	else
2087 		return false;
2088 }
2089 EXPORT_SYMBOL_GPL(device_remove_file_self);
2090 
2091 /**
2092  * device_create_bin_file - create sysfs binary attribute file for device.
2093  * @dev: device.
2094  * @attr: device binary attribute descriptor.
2095  */
2096 int device_create_bin_file(struct device *dev,
2097 			   const struct bin_attribute *attr)
2098 {
2099 	int error = -EINVAL;
2100 	if (dev)
2101 		error = sysfs_create_bin_file(&dev->kobj, attr);
2102 	return error;
2103 }
2104 EXPORT_SYMBOL_GPL(device_create_bin_file);
2105 
2106 /**
2107  * device_remove_bin_file - remove sysfs binary attribute file
2108  * @dev: device.
2109  * @attr: device binary attribute descriptor.
2110  */
2111 void device_remove_bin_file(struct device *dev,
2112 			    const struct bin_attribute *attr)
2113 {
2114 	if (dev)
2115 		sysfs_remove_bin_file(&dev->kobj, attr);
2116 }
2117 EXPORT_SYMBOL_GPL(device_remove_bin_file);
2118 
2119 static void klist_children_get(struct klist_node *n)
2120 {
2121 	struct device_private *p = to_device_private_parent(n);
2122 	struct device *dev = p->device;
2123 
2124 	get_device(dev);
2125 }
2126 
2127 static void klist_children_put(struct klist_node *n)
2128 {
2129 	struct device_private *p = to_device_private_parent(n);
2130 	struct device *dev = p->device;
2131 
2132 	put_device(dev);
2133 }
2134 
2135 /**
2136  * device_initialize - init device structure.
2137  * @dev: device.
2138  *
2139  * This prepares the device for use by other layers by initializing
2140  * its fields.
2141  * It is the first half of device_register(), if called by
2142  * that function, though it can also be called separately, so one
2143  * may use @dev's fields. In particular, get_device()/put_device()
2144  * may be used for reference counting of @dev after calling this
2145  * function.
2146  *
2147  * All fields in @dev must be initialized by the caller to 0, except
2148  * for those explicitly set to some other value.  The simplest
2149  * approach is to use kzalloc() to allocate the structure containing
2150  * @dev.
2151  *
2152  * NOTE: Use put_device() to give up your reference instead of freeing
2153  * @dev directly once you have called this function.
2154  */
2155 void device_initialize(struct device *dev)
2156 {
2157 	dev->kobj.kset = devices_kset;
2158 	kobject_init(&dev->kobj, &device_ktype);
2159 	INIT_LIST_HEAD(&dev->dma_pools);
2160 	mutex_init(&dev->mutex);
2161 #ifdef CONFIG_PROVE_LOCKING
2162 	mutex_init(&dev->lockdep_mutex);
2163 #endif
2164 	lockdep_set_novalidate_class(&dev->mutex);
2165 	spin_lock_init(&dev->devres_lock);
2166 	INIT_LIST_HEAD(&dev->devres_head);
2167 	device_pm_init(dev);
2168 	set_dev_node(dev, -1);
2169 #ifdef CONFIG_GENERIC_MSI_IRQ
2170 	INIT_LIST_HEAD(&dev->msi_list);
2171 #endif
2172 	INIT_LIST_HEAD(&dev->links.consumers);
2173 	INIT_LIST_HEAD(&dev->links.suppliers);
2174 	INIT_LIST_HEAD(&dev->links.needs_suppliers);
2175 	INIT_LIST_HEAD(&dev->links.defer_sync);
2176 	dev->links.status = DL_DEV_NO_DRIVER;
2177 }
2178 EXPORT_SYMBOL_GPL(device_initialize);
2179 
2180 struct kobject *virtual_device_parent(struct device *dev)
2181 {
2182 	static struct kobject *virtual_dir = NULL;
2183 
2184 	if (!virtual_dir)
2185 		virtual_dir = kobject_create_and_add("virtual",
2186 						     &devices_kset->kobj);
2187 
2188 	return virtual_dir;
2189 }
2190 
2191 struct class_dir {
2192 	struct kobject kobj;
2193 	struct class *class;
2194 };
2195 
2196 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2197 
2198 static void class_dir_release(struct kobject *kobj)
2199 {
2200 	struct class_dir *dir = to_class_dir(kobj);
2201 	kfree(dir);
2202 }
2203 
2204 static const
2205 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2206 {
2207 	struct class_dir *dir = to_class_dir(kobj);
2208 	return dir->class->ns_type;
2209 }
2210 
2211 static struct kobj_type class_dir_ktype = {
2212 	.release	= class_dir_release,
2213 	.sysfs_ops	= &kobj_sysfs_ops,
2214 	.child_ns_type	= class_dir_child_ns_type
2215 };
2216 
2217 static struct kobject *
2218 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2219 {
2220 	struct class_dir *dir;
2221 	int retval;
2222 
2223 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2224 	if (!dir)
2225 		return ERR_PTR(-ENOMEM);
2226 
2227 	dir->class = class;
2228 	kobject_init(&dir->kobj, &class_dir_ktype);
2229 
2230 	dir->kobj.kset = &class->p->glue_dirs;
2231 
2232 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2233 	if (retval < 0) {
2234 		kobject_put(&dir->kobj);
2235 		return ERR_PTR(retval);
2236 	}
2237 	return &dir->kobj;
2238 }
2239 
2240 static DEFINE_MUTEX(gdp_mutex);
2241 
2242 static struct kobject *get_device_parent(struct device *dev,
2243 					 struct device *parent)
2244 {
2245 	if (dev->class) {
2246 		struct kobject *kobj = NULL;
2247 		struct kobject *parent_kobj;
2248 		struct kobject *k;
2249 
2250 #ifdef CONFIG_BLOCK
2251 		/* block disks show up in /sys/block */
2252 		if (sysfs_deprecated && dev->class == &block_class) {
2253 			if (parent && parent->class == &block_class)
2254 				return &parent->kobj;
2255 			return &block_class.p->subsys.kobj;
2256 		}
2257 #endif
2258 
2259 		/*
2260 		 * If we have no parent, we live in "virtual".
2261 		 * Class-devices with a non class-device as parent, live
2262 		 * in a "glue" directory to prevent namespace collisions.
2263 		 */
2264 		if (parent == NULL)
2265 			parent_kobj = virtual_device_parent(dev);
2266 		else if (parent->class && !dev->class->ns_type)
2267 			return &parent->kobj;
2268 		else
2269 			parent_kobj = &parent->kobj;
2270 
2271 		mutex_lock(&gdp_mutex);
2272 
2273 		/* find our class-directory at the parent and reference it */
2274 		spin_lock(&dev->class->p->glue_dirs.list_lock);
2275 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2276 			if (k->parent == parent_kobj) {
2277 				kobj = kobject_get(k);
2278 				break;
2279 			}
2280 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
2281 		if (kobj) {
2282 			mutex_unlock(&gdp_mutex);
2283 			return kobj;
2284 		}
2285 
2286 		/* or create a new class-directory at the parent device */
2287 		k = class_dir_create_and_add(dev->class, parent_kobj);
2288 		/* do not emit an uevent for this simple "glue" directory */
2289 		mutex_unlock(&gdp_mutex);
2290 		return k;
2291 	}
2292 
2293 	/* subsystems can specify a default root directory for their devices */
2294 	if (!parent && dev->bus && dev->bus->dev_root)
2295 		return &dev->bus->dev_root->kobj;
2296 
2297 	if (parent)
2298 		return &parent->kobj;
2299 	return NULL;
2300 }
2301 
2302 static inline bool live_in_glue_dir(struct kobject *kobj,
2303 				    struct device *dev)
2304 {
2305 	if (!kobj || !dev->class ||
2306 	    kobj->kset != &dev->class->p->glue_dirs)
2307 		return false;
2308 	return true;
2309 }
2310 
2311 static inline struct kobject *get_glue_dir(struct device *dev)
2312 {
2313 	return dev->kobj.parent;
2314 }
2315 
2316 /*
2317  * make sure cleaning up dir as the last step, we need to make
2318  * sure .release handler of kobject is run with holding the
2319  * global lock
2320  */
2321 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
2322 {
2323 	unsigned int ref;
2324 
2325 	/* see if we live in a "glue" directory */
2326 	if (!live_in_glue_dir(glue_dir, dev))
2327 		return;
2328 
2329 	mutex_lock(&gdp_mutex);
2330 	/**
2331 	 * There is a race condition between removing glue directory
2332 	 * and adding a new device under the glue directory.
2333 	 *
2334 	 * CPU1:                                         CPU2:
2335 	 *
2336 	 * device_add()
2337 	 *   get_device_parent()
2338 	 *     class_dir_create_and_add()
2339 	 *       kobject_add_internal()
2340 	 *         create_dir()    // create glue_dir
2341 	 *
2342 	 *                                               device_add()
2343 	 *                                                 get_device_parent()
2344 	 *                                                   kobject_get() // get glue_dir
2345 	 *
2346 	 * device_del()
2347 	 *   cleanup_glue_dir()
2348 	 *     kobject_del(glue_dir)
2349 	 *
2350 	 *                                               kobject_add()
2351 	 *                                                 kobject_add_internal()
2352 	 *                                                   create_dir() // in glue_dir
2353 	 *                                                     sysfs_create_dir_ns()
2354 	 *                                                       kernfs_create_dir_ns(sd)
2355 	 *
2356 	 *       sysfs_remove_dir() // glue_dir->sd=NULL
2357 	 *       sysfs_put()        // free glue_dir->sd
2358 	 *
2359 	 *                                                         // sd is freed
2360 	 *                                                         kernfs_new_node(sd)
2361 	 *                                                           kernfs_get(glue_dir)
2362 	 *                                                           kernfs_add_one()
2363 	 *                                                           kernfs_put()
2364 	 *
2365 	 * Before CPU1 remove last child device under glue dir, if CPU2 add
2366 	 * a new device under glue dir, the glue_dir kobject reference count
2367 	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
2368 	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
2369 	 * and sysfs_put(). This result in glue_dir->sd is freed.
2370 	 *
2371 	 * Then the CPU2 will see a stale "empty" but still potentially used
2372 	 * glue dir around in kernfs_new_node().
2373 	 *
2374 	 * In order to avoid this happening, we also should make sure that
2375 	 * kernfs_node for glue_dir is released in CPU1 only when refcount
2376 	 * for glue_dir kobj is 1.
2377 	 */
2378 	ref = kref_read(&glue_dir->kref);
2379 	if (!kobject_has_children(glue_dir) && !--ref)
2380 		kobject_del(glue_dir);
2381 	kobject_put(glue_dir);
2382 	mutex_unlock(&gdp_mutex);
2383 }
2384 
2385 static int device_add_class_symlinks(struct device *dev)
2386 {
2387 	struct device_node *of_node = dev_of_node(dev);
2388 	int error;
2389 
2390 	if (of_node) {
2391 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
2392 		if (error)
2393 			dev_warn(dev, "Error %d creating of_node link\n",error);
2394 		/* An error here doesn't warrant bringing down the device */
2395 	}
2396 
2397 	if (!dev->class)
2398 		return 0;
2399 
2400 	error = sysfs_create_link(&dev->kobj,
2401 				  &dev->class->p->subsys.kobj,
2402 				  "subsystem");
2403 	if (error)
2404 		goto out_devnode;
2405 
2406 	if (dev->parent && device_is_not_partition(dev)) {
2407 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
2408 					  "device");
2409 		if (error)
2410 			goto out_subsys;
2411 	}
2412 
2413 #ifdef CONFIG_BLOCK
2414 	/* /sys/block has directories and does not need symlinks */
2415 	if (sysfs_deprecated && dev->class == &block_class)
2416 		return 0;
2417 #endif
2418 
2419 	/* link in the class directory pointing to the device */
2420 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
2421 				  &dev->kobj, dev_name(dev));
2422 	if (error)
2423 		goto out_device;
2424 
2425 	return 0;
2426 
2427 out_device:
2428 	sysfs_remove_link(&dev->kobj, "device");
2429 
2430 out_subsys:
2431 	sysfs_remove_link(&dev->kobj, "subsystem");
2432 out_devnode:
2433 	sysfs_remove_link(&dev->kobj, "of_node");
2434 	return error;
2435 }
2436 
2437 static void device_remove_class_symlinks(struct device *dev)
2438 {
2439 	if (dev_of_node(dev))
2440 		sysfs_remove_link(&dev->kobj, "of_node");
2441 
2442 	if (!dev->class)
2443 		return;
2444 
2445 	if (dev->parent && device_is_not_partition(dev))
2446 		sysfs_remove_link(&dev->kobj, "device");
2447 	sysfs_remove_link(&dev->kobj, "subsystem");
2448 #ifdef CONFIG_BLOCK
2449 	if (sysfs_deprecated && dev->class == &block_class)
2450 		return;
2451 #endif
2452 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
2453 }
2454 
2455 /**
2456  * dev_set_name - set a device name
2457  * @dev: device
2458  * @fmt: format string for the device's name
2459  */
2460 int dev_set_name(struct device *dev, const char *fmt, ...)
2461 {
2462 	va_list vargs;
2463 	int err;
2464 
2465 	va_start(vargs, fmt);
2466 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
2467 	va_end(vargs);
2468 	return err;
2469 }
2470 EXPORT_SYMBOL_GPL(dev_set_name);
2471 
2472 /**
2473  * device_to_dev_kobj - select a /sys/dev/ directory for the device
2474  * @dev: device
2475  *
2476  * By default we select char/ for new entries.  Setting class->dev_obj
2477  * to NULL prevents an entry from being created.  class->dev_kobj must
2478  * be set (or cleared) before any devices are registered to the class
2479  * otherwise device_create_sys_dev_entry() and
2480  * device_remove_sys_dev_entry() will disagree about the presence of
2481  * the link.
2482  */
2483 static struct kobject *device_to_dev_kobj(struct device *dev)
2484 {
2485 	struct kobject *kobj;
2486 
2487 	if (dev->class)
2488 		kobj = dev->class->dev_kobj;
2489 	else
2490 		kobj = sysfs_dev_char_kobj;
2491 
2492 	return kobj;
2493 }
2494 
2495 static int device_create_sys_dev_entry(struct device *dev)
2496 {
2497 	struct kobject *kobj = device_to_dev_kobj(dev);
2498 	int error = 0;
2499 	char devt_str[15];
2500 
2501 	if (kobj) {
2502 		format_dev_t(devt_str, dev->devt);
2503 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
2504 	}
2505 
2506 	return error;
2507 }
2508 
2509 static void device_remove_sys_dev_entry(struct device *dev)
2510 {
2511 	struct kobject *kobj = device_to_dev_kobj(dev);
2512 	char devt_str[15];
2513 
2514 	if (kobj) {
2515 		format_dev_t(devt_str, dev->devt);
2516 		sysfs_remove_link(kobj, devt_str);
2517 	}
2518 }
2519 
2520 static int device_private_init(struct device *dev)
2521 {
2522 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
2523 	if (!dev->p)
2524 		return -ENOMEM;
2525 	dev->p->device = dev;
2526 	klist_init(&dev->p->klist_children, klist_children_get,
2527 		   klist_children_put);
2528 	INIT_LIST_HEAD(&dev->p->deferred_probe);
2529 	return 0;
2530 }
2531 
2532 /**
2533  * device_add - add device to device hierarchy.
2534  * @dev: device.
2535  *
2536  * This is part 2 of device_register(), though may be called
2537  * separately _iff_ device_initialize() has been called separately.
2538  *
2539  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
2540  * to the global and sibling lists for the device, then
2541  * adds it to the other relevant subsystems of the driver model.
2542  *
2543  * Do not call this routine or device_register() more than once for
2544  * any device structure.  The driver model core is not designed to work
2545  * with devices that get unregistered and then spring back to life.
2546  * (Among other things, it's very hard to guarantee that all references
2547  * to the previous incarnation of @dev have been dropped.)  Allocate
2548  * and register a fresh new struct device instead.
2549  *
2550  * NOTE: _Never_ directly free @dev after calling this function, even
2551  * if it returned an error! Always use put_device() to give up your
2552  * reference instead.
2553  *
2554  * Rule of thumb is: if device_add() succeeds, you should call
2555  * device_del() when you want to get rid of it. If device_add() has
2556  * *not* succeeded, use *only* put_device() to drop the reference
2557  * count.
2558  */
2559 int device_add(struct device *dev)
2560 {
2561 	struct device *parent;
2562 	struct kobject *kobj;
2563 	struct class_interface *class_intf;
2564 	int error = -EINVAL;
2565 	struct kobject *glue_dir = NULL;
2566 
2567 	dev = get_device(dev);
2568 	if (!dev)
2569 		goto done;
2570 
2571 	if (!dev->p) {
2572 		error = device_private_init(dev);
2573 		if (error)
2574 			goto done;
2575 	}
2576 
2577 	/*
2578 	 * for statically allocated devices, which should all be converted
2579 	 * some day, we need to initialize the name. We prevent reading back
2580 	 * the name, and force the use of dev_name()
2581 	 */
2582 	if (dev->init_name) {
2583 		dev_set_name(dev, "%s", dev->init_name);
2584 		dev->init_name = NULL;
2585 	}
2586 
2587 	/* subsystems can specify simple device enumeration */
2588 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
2589 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
2590 
2591 	if (!dev_name(dev)) {
2592 		error = -EINVAL;
2593 		goto name_error;
2594 	}
2595 
2596 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2597 
2598 	parent = get_device(dev->parent);
2599 	kobj = get_device_parent(dev, parent);
2600 	if (IS_ERR(kobj)) {
2601 		error = PTR_ERR(kobj);
2602 		goto parent_error;
2603 	}
2604 	if (kobj)
2605 		dev->kobj.parent = kobj;
2606 
2607 	/* use parent numa_node */
2608 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
2609 		set_dev_node(dev, dev_to_node(parent));
2610 
2611 	/* first, register with generic layer. */
2612 	/* we require the name to be set before, and pass NULL */
2613 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
2614 	if (error) {
2615 		glue_dir = get_glue_dir(dev);
2616 		goto Error;
2617 	}
2618 
2619 	/* notify platform of device entry */
2620 	error = device_platform_notify(dev, KOBJ_ADD);
2621 	if (error)
2622 		goto platform_error;
2623 
2624 	error = device_create_file(dev, &dev_attr_uevent);
2625 	if (error)
2626 		goto attrError;
2627 
2628 	error = device_add_class_symlinks(dev);
2629 	if (error)
2630 		goto SymlinkError;
2631 	error = device_add_attrs(dev);
2632 	if (error)
2633 		goto AttrsError;
2634 	error = bus_add_device(dev);
2635 	if (error)
2636 		goto BusError;
2637 	error = dpm_sysfs_add(dev);
2638 	if (error)
2639 		goto DPMError;
2640 	device_pm_add(dev);
2641 
2642 	if (MAJOR(dev->devt)) {
2643 		error = device_create_file(dev, &dev_attr_dev);
2644 		if (error)
2645 			goto DevAttrError;
2646 
2647 		error = device_create_sys_dev_entry(dev);
2648 		if (error)
2649 			goto SysEntryError;
2650 
2651 		devtmpfs_create_node(dev);
2652 	}
2653 
2654 	/* Notify clients of device addition.  This call must come
2655 	 * after dpm_sysfs_add() and before kobject_uevent().
2656 	 */
2657 	if (dev->bus)
2658 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2659 					     BUS_NOTIFY_ADD_DEVICE, dev);
2660 
2661 	kobject_uevent(&dev->kobj, KOBJ_ADD);
2662 
2663 	/*
2664 	 * Check if any of the other devices (consumers) have been waiting for
2665 	 * this device (supplier) to be added so that they can create a device
2666 	 * link to it.
2667 	 *
2668 	 * This needs to happen after device_pm_add() because device_link_add()
2669 	 * requires the supplier be registered before it's called.
2670 	 *
2671 	 * But this also needs to happen before bus_probe_device() to make sure
2672 	 * waiting consumers can link to it before the driver is bound to the
2673 	 * device and the driver sync_state callback is called for this device.
2674 	 */
2675 	if (dev->fwnode && !dev->fwnode->dev) {
2676 		dev->fwnode->dev = dev;
2677 		fw_devlink_link_device(dev);
2678 	}
2679 
2680 	bus_probe_device(dev);
2681 	if (parent)
2682 		klist_add_tail(&dev->p->knode_parent,
2683 			       &parent->p->klist_children);
2684 
2685 	if (dev->class) {
2686 		mutex_lock(&dev->class->p->mutex);
2687 		/* tie the class to the device */
2688 		klist_add_tail(&dev->p->knode_class,
2689 			       &dev->class->p->klist_devices);
2690 
2691 		/* notify any interfaces that the device is here */
2692 		list_for_each_entry(class_intf,
2693 				    &dev->class->p->interfaces, node)
2694 			if (class_intf->add_dev)
2695 				class_intf->add_dev(dev, class_intf);
2696 		mutex_unlock(&dev->class->p->mutex);
2697 	}
2698 done:
2699 	put_device(dev);
2700 	return error;
2701  SysEntryError:
2702 	if (MAJOR(dev->devt))
2703 		device_remove_file(dev, &dev_attr_dev);
2704  DevAttrError:
2705 	device_pm_remove(dev);
2706 	dpm_sysfs_remove(dev);
2707  DPMError:
2708 	bus_remove_device(dev);
2709  BusError:
2710 	device_remove_attrs(dev);
2711  AttrsError:
2712 	device_remove_class_symlinks(dev);
2713  SymlinkError:
2714 	device_remove_file(dev, &dev_attr_uevent);
2715  attrError:
2716 	device_platform_notify(dev, KOBJ_REMOVE);
2717 platform_error:
2718 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2719 	glue_dir = get_glue_dir(dev);
2720 	kobject_del(&dev->kobj);
2721  Error:
2722 	cleanup_glue_dir(dev, glue_dir);
2723 parent_error:
2724 	put_device(parent);
2725 name_error:
2726 	kfree(dev->p);
2727 	dev->p = NULL;
2728 	goto done;
2729 }
2730 EXPORT_SYMBOL_GPL(device_add);
2731 
2732 /**
2733  * device_register - register a device with the system.
2734  * @dev: pointer to the device structure
2735  *
2736  * This happens in two clean steps - initialize the device
2737  * and add it to the system. The two steps can be called
2738  * separately, but this is the easiest and most common.
2739  * I.e. you should only call the two helpers separately if
2740  * have a clearly defined need to use and refcount the device
2741  * before it is added to the hierarchy.
2742  *
2743  * For more information, see the kerneldoc for device_initialize()
2744  * and device_add().
2745  *
2746  * NOTE: _Never_ directly free @dev after calling this function, even
2747  * if it returned an error! Always use put_device() to give up the
2748  * reference initialized in this function instead.
2749  */
2750 int device_register(struct device *dev)
2751 {
2752 	device_initialize(dev);
2753 	return device_add(dev);
2754 }
2755 EXPORT_SYMBOL_GPL(device_register);
2756 
2757 /**
2758  * get_device - increment reference count for device.
2759  * @dev: device.
2760  *
2761  * This simply forwards the call to kobject_get(), though
2762  * we do take care to provide for the case that we get a NULL
2763  * pointer passed in.
2764  */
2765 struct device *get_device(struct device *dev)
2766 {
2767 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
2768 }
2769 EXPORT_SYMBOL_GPL(get_device);
2770 
2771 /**
2772  * put_device - decrement reference count.
2773  * @dev: device in question.
2774  */
2775 void put_device(struct device *dev)
2776 {
2777 	/* might_sleep(); */
2778 	if (dev)
2779 		kobject_put(&dev->kobj);
2780 }
2781 EXPORT_SYMBOL_GPL(put_device);
2782 
2783 bool kill_device(struct device *dev)
2784 {
2785 	/*
2786 	 * Require the device lock and set the "dead" flag to guarantee that
2787 	 * the update behavior is consistent with the other bitfields near
2788 	 * it and that we cannot have an asynchronous probe routine trying
2789 	 * to run while we are tearing out the bus/class/sysfs from
2790 	 * underneath the device.
2791 	 */
2792 	lockdep_assert_held(&dev->mutex);
2793 
2794 	if (dev->p->dead)
2795 		return false;
2796 	dev->p->dead = true;
2797 	return true;
2798 }
2799 EXPORT_SYMBOL_GPL(kill_device);
2800 
2801 /**
2802  * device_del - delete device from system.
2803  * @dev: device.
2804  *
2805  * This is the first part of the device unregistration
2806  * sequence. This removes the device from the lists we control
2807  * from here, has it removed from the other driver model
2808  * subsystems it was added to in device_add(), and removes it
2809  * from the kobject hierarchy.
2810  *
2811  * NOTE: this should be called manually _iff_ device_add() was
2812  * also called manually.
2813  */
2814 void device_del(struct device *dev)
2815 {
2816 	struct device *parent = dev->parent;
2817 	struct kobject *glue_dir = NULL;
2818 	struct class_interface *class_intf;
2819 
2820 	device_lock(dev);
2821 	kill_device(dev);
2822 	device_unlock(dev);
2823 
2824 	if (dev->fwnode && dev->fwnode->dev == dev)
2825 		dev->fwnode->dev = NULL;
2826 
2827 	/* Notify clients of device removal.  This call must come
2828 	 * before dpm_sysfs_remove().
2829 	 */
2830 	if (dev->bus)
2831 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2832 					     BUS_NOTIFY_DEL_DEVICE, dev);
2833 
2834 	dpm_sysfs_remove(dev);
2835 	if (parent)
2836 		klist_del(&dev->p->knode_parent);
2837 	if (MAJOR(dev->devt)) {
2838 		devtmpfs_delete_node(dev);
2839 		device_remove_sys_dev_entry(dev);
2840 		device_remove_file(dev, &dev_attr_dev);
2841 	}
2842 	if (dev->class) {
2843 		device_remove_class_symlinks(dev);
2844 
2845 		mutex_lock(&dev->class->p->mutex);
2846 		/* notify any interfaces that the device is now gone */
2847 		list_for_each_entry(class_intf,
2848 				    &dev->class->p->interfaces, node)
2849 			if (class_intf->remove_dev)
2850 				class_intf->remove_dev(dev, class_intf);
2851 		/* remove the device from the class list */
2852 		klist_del(&dev->p->knode_class);
2853 		mutex_unlock(&dev->class->p->mutex);
2854 	}
2855 	device_remove_file(dev, &dev_attr_uevent);
2856 	device_remove_attrs(dev);
2857 	bus_remove_device(dev);
2858 	device_pm_remove(dev);
2859 	driver_deferred_probe_del(dev);
2860 	device_platform_notify(dev, KOBJ_REMOVE);
2861 	device_remove_properties(dev);
2862 	device_links_purge(dev);
2863 
2864 	if (dev->bus)
2865 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2866 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
2867 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2868 	glue_dir = get_glue_dir(dev);
2869 	kobject_del(&dev->kobj);
2870 	cleanup_glue_dir(dev, glue_dir);
2871 	put_device(parent);
2872 }
2873 EXPORT_SYMBOL_GPL(device_del);
2874 
2875 /**
2876  * device_unregister - unregister device from system.
2877  * @dev: device going away.
2878  *
2879  * We do this in two parts, like we do device_register(). First,
2880  * we remove it from all the subsystems with device_del(), then
2881  * we decrement the reference count via put_device(). If that
2882  * is the final reference count, the device will be cleaned up
2883  * via device_release() above. Otherwise, the structure will
2884  * stick around until the final reference to the device is dropped.
2885  */
2886 void device_unregister(struct device *dev)
2887 {
2888 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2889 	device_del(dev);
2890 	put_device(dev);
2891 }
2892 EXPORT_SYMBOL_GPL(device_unregister);
2893 
2894 static struct device *prev_device(struct klist_iter *i)
2895 {
2896 	struct klist_node *n = klist_prev(i);
2897 	struct device *dev = NULL;
2898 	struct device_private *p;
2899 
2900 	if (n) {
2901 		p = to_device_private_parent(n);
2902 		dev = p->device;
2903 	}
2904 	return dev;
2905 }
2906 
2907 static struct device *next_device(struct klist_iter *i)
2908 {
2909 	struct klist_node *n = klist_next(i);
2910 	struct device *dev = NULL;
2911 	struct device_private *p;
2912 
2913 	if (n) {
2914 		p = to_device_private_parent(n);
2915 		dev = p->device;
2916 	}
2917 	return dev;
2918 }
2919 
2920 /**
2921  * device_get_devnode - path of device node file
2922  * @dev: device
2923  * @mode: returned file access mode
2924  * @uid: returned file owner
2925  * @gid: returned file group
2926  * @tmp: possibly allocated string
2927  *
2928  * Return the relative path of a possible device node.
2929  * Non-default names may need to allocate a memory to compose
2930  * a name. This memory is returned in tmp and needs to be
2931  * freed by the caller.
2932  */
2933 const char *device_get_devnode(struct device *dev,
2934 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
2935 			       const char **tmp)
2936 {
2937 	char *s;
2938 
2939 	*tmp = NULL;
2940 
2941 	/* the device type may provide a specific name */
2942 	if (dev->type && dev->type->devnode)
2943 		*tmp = dev->type->devnode(dev, mode, uid, gid);
2944 	if (*tmp)
2945 		return *tmp;
2946 
2947 	/* the class may provide a specific name */
2948 	if (dev->class && dev->class->devnode)
2949 		*tmp = dev->class->devnode(dev, mode);
2950 	if (*tmp)
2951 		return *tmp;
2952 
2953 	/* return name without allocation, tmp == NULL */
2954 	if (strchr(dev_name(dev), '!') == NULL)
2955 		return dev_name(dev);
2956 
2957 	/* replace '!' in the name with '/' */
2958 	s = kstrdup(dev_name(dev), GFP_KERNEL);
2959 	if (!s)
2960 		return NULL;
2961 	strreplace(s, '!', '/');
2962 	return *tmp = s;
2963 }
2964 
2965 /**
2966  * device_for_each_child - device child iterator.
2967  * @parent: parent struct device.
2968  * @fn: function to be called for each device.
2969  * @data: data for the callback.
2970  *
2971  * Iterate over @parent's child devices, and call @fn for each,
2972  * passing it @data.
2973  *
2974  * We check the return of @fn each time. If it returns anything
2975  * other than 0, we break out and return that value.
2976  */
2977 int device_for_each_child(struct device *parent, void *data,
2978 			  int (*fn)(struct device *dev, void *data))
2979 {
2980 	struct klist_iter i;
2981 	struct device *child;
2982 	int error = 0;
2983 
2984 	if (!parent->p)
2985 		return 0;
2986 
2987 	klist_iter_init(&parent->p->klist_children, &i);
2988 	while (!error && (child = next_device(&i)))
2989 		error = fn(child, data);
2990 	klist_iter_exit(&i);
2991 	return error;
2992 }
2993 EXPORT_SYMBOL_GPL(device_for_each_child);
2994 
2995 /**
2996  * device_for_each_child_reverse - device child iterator in reversed order.
2997  * @parent: parent struct device.
2998  * @fn: function to be called for each device.
2999  * @data: data for the callback.
3000  *
3001  * Iterate over @parent's child devices, and call @fn for each,
3002  * passing it @data.
3003  *
3004  * We check the return of @fn each time. If it returns anything
3005  * other than 0, we break out and return that value.
3006  */
3007 int device_for_each_child_reverse(struct device *parent, void *data,
3008 				  int (*fn)(struct device *dev, void *data))
3009 {
3010 	struct klist_iter i;
3011 	struct device *child;
3012 	int error = 0;
3013 
3014 	if (!parent->p)
3015 		return 0;
3016 
3017 	klist_iter_init(&parent->p->klist_children, &i);
3018 	while ((child = prev_device(&i)) && !error)
3019 		error = fn(child, data);
3020 	klist_iter_exit(&i);
3021 	return error;
3022 }
3023 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3024 
3025 /**
3026  * device_find_child - device iterator for locating a particular device.
3027  * @parent: parent struct device
3028  * @match: Callback function to check device
3029  * @data: Data to pass to match function
3030  *
3031  * This is similar to the device_for_each_child() function above, but it
3032  * returns a reference to a device that is 'found' for later use, as
3033  * determined by the @match callback.
3034  *
3035  * The callback should return 0 if the device doesn't match and non-zero
3036  * if it does.  If the callback returns non-zero and a reference to the
3037  * current device can be obtained, this function will return to the caller
3038  * and not iterate over any more devices.
3039  *
3040  * NOTE: you will need to drop the reference with put_device() after use.
3041  */
3042 struct device *device_find_child(struct device *parent, void *data,
3043 				 int (*match)(struct device *dev, void *data))
3044 {
3045 	struct klist_iter i;
3046 	struct device *child;
3047 
3048 	if (!parent)
3049 		return NULL;
3050 
3051 	klist_iter_init(&parent->p->klist_children, &i);
3052 	while ((child = next_device(&i)))
3053 		if (match(child, data) && get_device(child))
3054 			break;
3055 	klist_iter_exit(&i);
3056 	return child;
3057 }
3058 EXPORT_SYMBOL_GPL(device_find_child);
3059 
3060 /**
3061  * device_find_child_by_name - device iterator for locating a child device.
3062  * @parent: parent struct device
3063  * @name: name of the child device
3064  *
3065  * This is similar to the device_find_child() function above, but it
3066  * returns a reference to a device that has the name @name.
3067  *
3068  * NOTE: you will need to drop the reference with put_device() after use.
3069  */
3070 struct device *device_find_child_by_name(struct device *parent,
3071 					 const char *name)
3072 {
3073 	struct klist_iter i;
3074 	struct device *child;
3075 
3076 	if (!parent)
3077 		return NULL;
3078 
3079 	klist_iter_init(&parent->p->klist_children, &i);
3080 	while ((child = next_device(&i)))
3081 		if (!strcmp(dev_name(child), name) && get_device(child))
3082 			break;
3083 	klist_iter_exit(&i);
3084 	return child;
3085 }
3086 EXPORT_SYMBOL_GPL(device_find_child_by_name);
3087 
3088 int __init devices_init(void)
3089 {
3090 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3091 	if (!devices_kset)
3092 		return -ENOMEM;
3093 	dev_kobj = kobject_create_and_add("dev", NULL);
3094 	if (!dev_kobj)
3095 		goto dev_kobj_err;
3096 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3097 	if (!sysfs_dev_block_kobj)
3098 		goto block_kobj_err;
3099 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3100 	if (!sysfs_dev_char_kobj)
3101 		goto char_kobj_err;
3102 
3103 	return 0;
3104 
3105  char_kobj_err:
3106 	kobject_put(sysfs_dev_block_kobj);
3107  block_kobj_err:
3108 	kobject_put(dev_kobj);
3109  dev_kobj_err:
3110 	kset_unregister(devices_kset);
3111 	return -ENOMEM;
3112 }
3113 
3114 static int device_check_offline(struct device *dev, void *not_used)
3115 {
3116 	int ret;
3117 
3118 	ret = device_for_each_child(dev, NULL, device_check_offline);
3119 	if (ret)
3120 		return ret;
3121 
3122 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3123 }
3124 
3125 /**
3126  * device_offline - Prepare the device for hot-removal.
3127  * @dev: Device to be put offline.
3128  *
3129  * Execute the device bus type's .offline() callback, if present, to prepare
3130  * the device for a subsequent hot-removal.  If that succeeds, the device must
3131  * not be used until either it is removed or its bus type's .online() callback
3132  * is executed.
3133  *
3134  * Call under device_hotplug_lock.
3135  */
3136 int device_offline(struct device *dev)
3137 {
3138 	int ret;
3139 
3140 	if (dev->offline_disabled)
3141 		return -EPERM;
3142 
3143 	ret = device_for_each_child(dev, NULL, device_check_offline);
3144 	if (ret)
3145 		return ret;
3146 
3147 	device_lock(dev);
3148 	if (device_supports_offline(dev)) {
3149 		if (dev->offline) {
3150 			ret = 1;
3151 		} else {
3152 			ret = dev->bus->offline(dev);
3153 			if (!ret) {
3154 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3155 				dev->offline = true;
3156 			}
3157 		}
3158 	}
3159 	device_unlock(dev);
3160 
3161 	return ret;
3162 }
3163 
3164 /**
3165  * device_online - Put the device back online after successful device_offline().
3166  * @dev: Device to be put back online.
3167  *
3168  * If device_offline() has been successfully executed for @dev, but the device
3169  * has not been removed subsequently, execute its bus type's .online() callback
3170  * to indicate that the device can be used again.
3171  *
3172  * Call under device_hotplug_lock.
3173  */
3174 int device_online(struct device *dev)
3175 {
3176 	int ret = 0;
3177 
3178 	device_lock(dev);
3179 	if (device_supports_offline(dev)) {
3180 		if (dev->offline) {
3181 			ret = dev->bus->online(dev);
3182 			if (!ret) {
3183 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3184 				dev->offline = false;
3185 			}
3186 		} else {
3187 			ret = 1;
3188 		}
3189 	}
3190 	device_unlock(dev);
3191 
3192 	return ret;
3193 }
3194 
3195 struct root_device {
3196 	struct device dev;
3197 	struct module *owner;
3198 };
3199 
3200 static inline struct root_device *to_root_device(struct device *d)
3201 {
3202 	return container_of(d, struct root_device, dev);
3203 }
3204 
3205 static void root_device_release(struct device *dev)
3206 {
3207 	kfree(to_root_device(dev));
3208 }
3209 
3210 /**
3211  * __root_device_register - allocate and register a root device
3212  * @name: root device name
3213  * @owner: owner module of the root device, usually THIS_MODULE
3214  *
3215  * This function allocates a root device and registers it
3216  * using device_register(). In order to free the returned
3217  * device, use root_device_unregister().
3218  *
3219  * Root devices are dummy devices which allow other devices
3220  * to be grouped under /sys/devices. Use this function to
3221  * allocate a root device and then use it as the parent of
3222  * any device which should appear under /sys/devices/{name}
3223  *
3224  * The /sys/devices/{name} directory will also contain a
3225  * 'module' symlink which points to the @owner directory
3226  * in sysfs.
3227  *
3228  * Returns &struct device pointer on success, or ERR_PTR() on error.
3229  *
3230  * Note: You probably want to use root_device_register().
3231  */
3232 struct device *__root_device_register(const char *name, struct module *owner)
3233 {
3234 	struct root_device *root;
3235 	int err = -ENOMEM;
3236 
3237 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3238 	if (!root)
3239 		return ERR_PTR(err);
3240 
3241 	err = dev_set_name(&root->dev, "%s", name);
3242 	if (err) {
3243 		kfree(root);
3244 		return ERR_PTR(err);
3245 	}
3246 
3247 	root->dev.release = root_device_release;
3248 
3249 	err = device_register(&root->dev);
3250 	if (err) {
3251 		put_device(&root->dev);
3252 		return ERR_PTR(err);
3253 	}
3254 
3255 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
3256 	if (owner) {
3257 		struct module_kobject *mk = &owner->mkobj;
3258 
3259 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3260 		if (err) {
3261 			device_unregister(&root->dev);
3262 			return ERR_PTR(err);
3263 		}
3264 		root->owner = owner;
3265 	}
3266 #endif
3267 
3268 	return &root->dev;
3269 }
3270 EXPORT_SYMBOL_GPL(__root_device_register);
3271 
3272 /**
3273  * root_device_unregister - unregister and free a root device
3274  * @dev: device going away
3275  *
3276  * This function unregisters and cleans up a device that was created by
3277  * root_device_register().
3278  */
3279 void root_device_unregister(struct device *dev)
3280 {
3281 	struct root_device *root = to_root_device(dev);
3282 
3283 	if (root->owner)
3284 		sysfs_remove_link(&root->dev.kobj, "module");
3285 
3286 	device_unregister(dev);
3287 }
3288 EXPORT_SYMBOL_GPL(root_device_unregister);
3289 
3290 
3291 static void device_create_release(struct device *dev)
3292 {
3293 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3294 	kfree(dev);
3295 }
3296 
3297 static __printf(6, 0) struct device *
3298 device_create_groups_vargs(struct class *class, struct device *parent,
3299 			   dev_t devt, void *drvdata,
3300 			   const struct attribute_group **groups,
3301 			   const char *fmt, va_list args)
3302 {
3303 	struct device *dev = NULL;
3304 	int retval = -ENODEV;
3305 
3306 	if (class == NULL || IS_ERR(class))
3307 		goto error;
3308 
3309 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3310 	if (!dev) {
3311 		retval = -ENOMEM;
3312 		goto error;
3313 	}
3314 
3315 	device_initialize(dev);
3316 	dev->devt = devt;
3317 	dev->class = class;
3318 	dev->parent = parent;
3319 	dev->groups = groups;
3320 	dev->release = device_create_release;
3321 	dev_set_drvdata(dev, drvdata);
3322 
3323 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
3324 	if (retval)
3325 		goto error;
3326 
3327 	retval = device_add(dev);
3328 	if (retval)
3329 		goto error;
3330 
3331 	return dev;
3332 
3333 error:
3334 	put_device(dev);
3335 	return ERR_PTR(retval);
3336 }
3337 
3338 /**
3339  * device_create - creates a device and registers it with sysfs
3340  * @class: pointer to the struct class that this device should be registered to
3341  * @parent: pointer to the parent struct device of this new device, if any
3342  * @devt: the dev_t for the char device to be added
3343  * @drvdata: the data to be added to the device for callbacks
3344  * @fmt: string for the device's name
3345  *
3346  * This function can be used by char device classes.  A struct device
3347  * will be created in sysfs, registered to the specified class.
3348  *
3349  * A "dev" file will be created, showing the dev_t for the device, if
3350  * the dev_t is not 0,0.
3351  * If a pointer to a parent struct device is passed in, the newly created
3352  * struct device will be a child of that device in sysfs.
3353  * The pointer to the struct device will be returned from the call.
3354  * Any further sysfs files that might be required can be created using this
3355  * pointer.
3356  *
3357  * Returns &struct device pointer on success, or ERR_PTR() on error.
3358  *
3359  * Note: the struct class passed to this function must have previously
3360  * been created with a call to class_create().
3361  */
3362 struct device *device_create(struct class *class, struct device *parent,
3363 			     dev_t devt, void *drvdata, const char *fmt, ...)
3364 {
3365 	va_list vargs;
3366 	struct device *dev;
3367 
3368 	va_start(vargs, fmt);
3369 	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
3370 					  fmt, vargs);
3371 	va_end(vargs);
3372 	return dev;
3373 }
3374 EXPORT_SYMBOL_GPL(device_create);
3375 
3376 /**
3377  * device_create_with_groups - creates a device and registers it with sysfs
3378  * @class: pointer to the struct class that this device should be registered to
3379  * @parent: pointer to the parent struct device of this new device, if any
3380  * @devt: the dev_t for the char device to be added
3381  * @drvdata: the data to be added to the device for callbacks
3382  * @groups: NULL-terminated list of attribute groups to be created
3383  * @fmt: string for the device's name
3384  *
3385  * This function can be used by char device classes.  A struct device
3386  * will be created in sysfs, registered to the specified class.
3387  * Additional attributes specified in the groups parameter will also
3388  * be created automatically.
3389  *
3390  * A "dev" file will be created, showing the dev_t for the device, if
3391  * the dev_t is not 0,0.
3392  * If a pointer to a parent struct device is passed in, the newly created
3393  * struct device will be a child of that device in sysfs.
3394  * The pointer to the struct device will be returned from the call.
3395  * Any further sysfs files that might be required can be created using this
3396  * pointer.
3397  *
3398  * Returns &struct device pointer on success, or ERR_PTR() on error.
3399  *
3400  * Note: the struct class passed to this function must have previously
3401  * been created with a call to class_create().
3402  */
3403 struct device *device_create_with_groups(struct class *class,
3404 					 struct device *parent, dev_t devt,
3405 					 void *drvdata,
3406 					 const struct attribute_group **groups,
3407 					 const char *fmt, ...)
3408 {
3409 	va_list vargs;
3410 	struct device *dev;
3411 
3412 	va_start(vargs, fmt);
3413 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
3414 					 fmt, vargs);
3415 	va_end(vargs);
3416 	return dev;
3417 }
3418 EXPORT_SYMBOL_GPL(device_create_with_groups);
3419 
3420 /**
3421  * device_destroy - removes a device that was created with device_create()
3422  * @class: pointer to the struct class that this device was registered with
3423  * @devt: the dev_t of the device that was previously registered
3424  *
3425  * This call unregisters and cleans up a device that was created with a
3426  * call to device_create().
3427  */
3428 void device_destroy(struct class *class, dev_t devt)
3429 {
3430 	struct device *dev;
3431 
3432 	dev = class_find_device_by_devt(class, devt);
3433 	if (dev) {
3434 		put_device(dev);
3435 		device_unregister(dev);
3436 	}
3437 }
3438 EXPORT_SYMBOL_GPL(device_destroy);
3439 
3440 /**
3441  * device_rename - renames a device
3442  * @dev: the pointer to the struct device to be renamed
3443  * @new_name: the new name of the device
3444  *
3445  * It is the responsibility of the caller to provide mutual
3446  * exclusion between two different calls of device_rename
3447  * on the same device to ensure that new_name is valid and
3448  * won't conflict with other devices.
3449  *
3450  * Note: Don't call this function.  Currently, the networking layer calls this
3451  * function, but that will change.  The following text from Kay Sievers offers
3452  * some insight:
3453  *
3454  * Renaming devices is racy at many levels, symlinks and other stuff are not
3455  * replaced atomically, and you get a "move" uevent, but it's not easy to
3456  * connect the event to the old and new device. Device nodes are not renamed at
3457  * all, there isn't even support for that in the kernel now.
3458  *
3459  * In the meantime, during renaming, your target name might be taken by another
3460  * driver, creating conflicts. Or the old name is taken directly after you
3461  * renamed it -- then you get events for the same DEVPATH, before you even see
3462  * the "move" event. It's just a mess, and nothing new should ever rely on
3463  * kernel device renaming. Besides that, it's not even implemented now for
3464  * other things than (driver-core wise very simple) network devices.
3465  *
3466  * We are currently about to change network renaming in udev to completely
3467  * disallow renaming of devices in the same namespace as the kernel uses,
3468  * because we can't solve the problems properly, that arise with swapping names
3469  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
3470  * be allowed to some other name than eth[0-9]*, for the aforementioned
3471  * reasons.
3472  *
3473  * Make up a "real" name in the driver before you register anything, or add
3474  * some other attributes for userspace to find the device, or use udev to add
3475  * symlinks -- but never rename kernel devices later, it's a complete mess. We
3476  * don't even want to get into that and try to implement the missing pieces in
3477  * the core. We really have other pieces to fix in the driver core mess. :)
3478  */
3479 int device_rename(struct device *dev, const char *new_name)
3480 {
3481 	struct kobject *kobj = &dev->kobj;
3482 	char *old_device_name = NULL;
3483 	int error;
3484 
3485 	dev = get_device(dev);
3486 	if (!dev)
3487 		return -EINVAL;
3488 
3489 	dev_dbg(dev, "renaming to %s\n", new_name);
3490 
3491 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
3492 	if (!old_device_name) {
3493 		error = -ENOMEM;
3494 		goto out;
3495 	}
3496 
3497 	if (dev->class) {
3498 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
3499 					     kobj, old_device_name,
3500 					     new_name, kobject_namespace(kobj));
3501 		if (error)
3502 			goto out;
3503 	}
3504 
3505 	error = kobject_rename(kobj, new_name);
3506 	if (error)
3507 		goto out;
3508 
3509 out:
3510 	put_device(dev);
3511 
3512 	kfree(old_device_name);
3513 
3514 	return error;
3515 }
3516 EXPORT_SYMBOL_GPL(device_rename);
3517 
3518 static int device_move_class_links(struct device *dev,
3519 				   struct device *old_parent,
3520 				   struct device *new_parent)
3521 {
3522 	int error = 0;
3523 
3524 	if (old_parent)
3525 		sysfs_remove_link(&dev->kobj, "device");
3526 	if (new_parent)
3527 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
3528 					  "device");
3529 	return error;
3530 }
3531 
3532 /**
3533  * device_move - moves a device to a new parent
3534  * @dev: the pointer to the struct device to be moved
3535  * @new_parent: the new parent of the device (can be NULL)
3536  * @dpm_order: how to reorder the dpm_list
3537  */
3538 int device_move(struct device *dev, struct device *new_parent,
3539 		enum dpm_order dpm_order)
3540 {
3541 	int error;
3542 	struct device *old_parent;
3543 	struct kobject *new_parent_kobj;
3544 
3545 	dev = get_device(dev);
3546 	if (!dev)
3547 		return -EINVAL;
3548 
3549 	device_pm_lock();
3550 	new_parent = get_device(new_parent);
3551 	new_parent_kobj = get_device_parent(dev, new_parent);
3552 	if (IS_ERR(new_parent_kobj)) {
3553 		error = PTR_ERR(new_parent_kobj);
3554 		put_device(new_parent);
3555 		goto out;
3556 	}
3557 
3558 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
3559 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
3560 	error = kobject_move(&dev->kobj, new_parent_kobj);
3561 	if (error) {
3562 		cleanup_glue_dir(dev, new_parent_kobj);
3563 		put_device(new_parent);
3564 		goto out;
3565 	}
3566 	old_parent = dev->parent;
3567 	dev->parent = new_parent;
3568 	if (old_parent)
3569 		klist_remove(&dev->p->knode_parent);
3570 	if (new_parent) {
3571 		klist_add_tail(&dev->p->knode_parent,
3572 			       &new_parent->p->klist_children);
3573 		set_dev_node(dev, dev_to_node(new_parent));
3574 	}
3575 
3576 	if (dev->class) {
3577 		error = device_move_class_links(dev, old_parent, new_parent);
3578 		if (error) {
3579 			/* We ignore errors on cleanup since we're hosed anyway... */
3580 			device_move_class_links(dev, new_parent, old_parent);
3581 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
3582 				if (new_parent)
3583 					klist_remove(&dev->p->knode_parent);
3584 				dev->parent = old_parent;
3585 				if (old_parent) {
3586 					klist_add_tail(&dev->p->knode_parent,
3587 						       &old_parent->p->klist_children);
3588 					set_dev_node(dev, dev_to_node(old_parent));
3589 				}
3590 			}
3591 			cleanup_glue_dir(dev, new_parent_kobj);
3592 			put_device(new_parent);
3593 			goto out;
3594 		}
3595 	}
3596 	switch (dpm_order) {
3597 	case DPM_ORDER_NONE:
3598 		break;
3599 	case DPM_ORDER_DEV_AFTER_PARENT:
3600 		device_pm_move_after(dev, new_parent);
3601 		devices_kset_move_after(dev, new_parent);
3602 		break;
3603 	case DPM_ORDER_PARENT_BEFORE_DEV:
3604 		device_pm_move_before(new_parent, dev);
3605 		devices_kset_move_before(new_parent, dev);
3606 		break;
3607 	case DPM_ORDER_DEV_LAST:
3608 		device_pm_move_last(dev);
3609 		devices_kset_move_last(dev);
3610 		break;
3611 	}
3612 
3613 	put_device(old_parent);
3614 out:
3615 	device_pm_unlock();
3616 	put_device(dev);
3617 	return error;
3618 }
3619 EXPORT_SYMBOL_GPL(device_move);
3620 
3621 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
3622 				     kgid_t kgid)
3623 {
3624 	struct kobject *kobj = &dev->kobj;
3625 	struct class *class = dev->class;
3626 	const struct device_type *type = dev->type;
3627 	int error;
3628 
3629 	if (class) {
3630 		/*
3631 		 * Change the device groups of the device class for @dev to
3632 		 * @kuid/@kgid.
3633 		 */
3634 		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
3635 						  kgid);
3636 		if (error)
3637 			return error;
3638 	}
3639 
3640 	if (type) {
3641 		/*
3642 		 * Change the device groups of the device type for @dev to
3643 		 * @kuid/@kgid.
3644 		 */
3645 		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
3646 						  kgid);
3647 		if (error)
3648 			return error;
3649 	}
3650 
3651 	/* Change the device groups of @dev to @kuid/@kgid. */
3652 	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
3653 	if (error)
3654 		return error;
3655 
3656 	if (device_supports_offline(dev) && !dev->offline_disabled) {
3657 		/* Change online device attributes of @dev to @kuid/@kgid. */
3658 		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
3659 						kuid, kgid);
3660 		if (error)
3661 			return error;
3662 	}
3663 
3664 	return 0;
3665 }
3666 
3667 /**
3668  * device_change_owner - change the owner of an existing device.
3669  * @dev: device.
3670  * @kuid: new owner's kuid
3671  * @kgid: new owner's kgid
3672  *
3673  * This changes the owner of @dev and its corresponding sysfs entries to
3674  * @kuid/@kgid. This function closely mirrors how @dev was added via driver
3675  * core.
3676  *
3677  * Returns 0 on success or error code on failure.
3678  */
3679 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
3680 {
3681 	int error;
3682 	struct kobject *kobj = &dev->kobj;
3683 
3684 	dev = get_device(dev);
3685 	if (!dev)
3686 		return -EINVAL;
3687 
3688 	/*
3689 	 * Change the kobject and the default attributes and groups of the
3690 	 * ktype associated with it to @kuid/@kgid.
3691 	 */
3692 	error = sysfs_change_owner(kobj, kuid, kgid);
3693 	if (error)
3694 		goto out;
3695 
3696 	/*
3697 	 * Change the uevent file for @dev to the new owner. The uevent file
3698 	 * was created in a separate step when @dev got added and we mirror
3699 	 * that step here.
3700 	 */
3701 	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
3702 					kgid);
3703 	if (error)
3704 		goto out;
3705 
3706 	/*
3707 	 * Change the device groups, the device groups associated with the
3708 	 * device class, and the groups associated with the device type of @dev
3709 	 * to @kuid/@kgid.
3710 	 */
3711 	error = device_attrs_change_owner(dev, kuid, kgid);
3712 	if (error)
3713 		goto out;
3714 
3715 	error = dpm_sysfs_change_owner(dev, kuid, kgid);
3716 	if (error)
3717 		goto out;
3718 
3719 #ifdef CONFIG_BLOCK
3720 	if (sysfs_deprecated && dev->class == &block_class)
3721 		goto out;
3722 #endif
3723 
3724 	/*
3725 	 * Change the owner of the symlink located in the class directory of
3726 	 * the device class associated with @dev which points to the actual
3727 	 * directory entry for @dev to @kuid/@kgid. This ensures that the
3728 	 * symlink shows the same permissions as its target.
3729 	 */
3730 	error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
3731 					dev_name(dev), kuid, kgid);
3732 	if (error)
3733 		goto out;
3734 
3735 out:
3736 	put_device(dev);
3737 	return error;
3738 }
3739 EXPORT_SYMBOL_GPL(device_change_owner);
3740 
3741 /**
3742  * device_shutdown - call ->shutdown() on each device to shutdown.
3743  */
3744 void device_shutdown(void)
3745 {
3746 	struct device *dev, *parent;
3747 
3748 	wait_for_device_probe();
3749 	device_block_probing();
3750 
3751 	cpufreq_suspend();
3752 
3753 	spin_lock(&devices_kset->list_lock);
3754 	/*
3755 	 * Walk the devices list backward, shutting down each in turn.
3756 	 * Beware that device unplug events may also start pulling
3757 	 * devices offline, even as the system is shutting down.
3758 	 */
3759 	while (!list_empty(&devices_kset->list)) {
3760 		dev = list_entry(devices_kset->list.prev, struct device,
3761 				kobj.entry);
3762 
3763 		/*
3764 		 * hold reference count of device's parent to
3765 		 * prevent it from being freed because parent's
3766 		 * lock is to be held
3767 		 */
3768 		parent = get_device(dev->parent);
3769 		get_device(dev);
3770 		/*
3771 		 * Make sure the device is off the kset list, in the
3772 		 * event that dev->*->shutdown() doesn't remove it.
3773 		 */
3774 		list_del_init(&dev->kobj.entry);
3775 		spin_unlock(&devices_kset->list_lock);
3776 
3777 		/* hold lock to avoid race with probe/release */
3778 		if (parent)
3779 			device_lock(parent);
3780 		device_lock(dev);
3781 
3782 		/* Don't allow any more runtime suspends */
3783 		pm_runtime_get_noresume(dev);
3784 		pm_runtime_barrier(dev);
3785 
3786 		if (dev->class && dev->class->shutdown_pre) {
3787 			if (initcall_debug)
3788 				dev_info(dev, "shutdown_pre\n");
3789 			dev->class->shutdown_pre(dev);
3790 		}
3791 		if (dev->bus && dev->bus->shutdown) {
3792 			if (initcall_debug)
3793 				dev_info(dev, "shutdown\n");
3794 			dev->bus->shutdown(dev);
3795 		} else if (dev->driver && dev->driver->shutdown) {
3796 			if (initcall_debug)
3797 				dev_info(dev, "shutdown\n");
3798 			dev->driver->shutdown(dev);
3799 		}
3800 
3801 		device_unlock(dev);
3802 		if (parent)
3803 			device_unlock(parent);
3804 
3805 		put_device(dev);
3806 		put_device(parent);
3807 
3808 		spin_lock(&devices_kset->list_lock);
3809 	}
3810 	spin_unlock(&devices_kset->list_lock);
3811 }
3812 
3813 /*
3814  * Device logging functions
3815  */
3816 
3817 #ifdef CONFIG_PRINTK
3818 static int
3819 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
3820 {
3821 	const char *subsys;
3822 	size_t pos = 0;
3823 
3824 	if (dev->class)
3825 		subsys = dev->class->name;
3826 	else if (dev->bus)
3827 		subsys = dev->bus->name;
3828 	else
3829 		return 0;
3830 
3831 	pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
3832 	if (pos >= hdrlen)
3833 		goto overflow;
3834 
3835 	/*
3836 	 * Add device identifier DEVICE=:
3837 	 *   b12:8         block dev_t
3838 	 *   c127:3        char dev_t
3839 	 *   n8            netdev ifindex
3840 	 *   +sound:card0  subsystem:devname
3841 	 */
3842 	if (MAJOR(dev->devt)) {
3843 		char c;
3844 
3845 		if (strcmp(subsys, "block") == 0)
3846 			c = 'b';
3847 		else
3848 			c = 'c';
3849 		pos++;
3850 		pos += snprintf(hdr + pos, hdrlen - pos,
3851 				"DEVICE=%c%u:%u",
3852 				c, MAJOR(dev->devt), MINOR(dev->devt));
3853 	} else if (strcmp(subsys, "net") == 0) {
3854 		struct net_device *net = to_net_dev(dev);
3855 
3856 		pos++;
3857 		pos += snprintf(hdr + pos, hdrlen - pos,
3858 				"DEVICE=n%u", net->ifindex);
3859 	} else {
3860 		pos++;
3861 		pos += snprintf(hdr + pos, hdrlen - pos,
3862 				"DEVICE=+%s:%s", subsys, dev_name(dev));
3863 	}
3864 
3865 	if (pos >= hdrlen)
3866 		goto overflow;
3867 
3868 	return pos;
3869 
3870 overflow:
3871 	dev_WARN(dev, "device/subsystem name too long");
3872 	return 0;
3873 }
3874 
3875 int dev_vprintk_emit(int level, const struct device *dev,
3876 		     const char *fmt, va_list args)
3877 {
3878 	char hdr[128];
3879 	size_t hdrlen;
3880 
3881 	hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
3882 
3883 	return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
3884 }
3885 EXPORT_SYMBOL(dev_vprintk_emit);
3886 
3887 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
3888 {
3889 	va_list args;
3890 	int r;
3891 
3892 	va_start(args, fmt);
3893 
3894 	r = dev_vprintk_emit(level, dev, fmt, args);
3895 
3896 	va_end(args);
3897 
3898 	return r;
3899 }
3900 EXPORT_SYMBOL(dev_printk_emit);
3901 
3902 static void __dev_printk(const char *level, const struct device *dev,
3903 			struct va_format *vaf)
3904 {
3905 	if (dev)
3906 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
3907 				dev_driver_string(dev), dev_name(dev), vaf);
3908 	else
3909 		printk("%s(NULL device *): %pV", level, vaf);
3910 }
3911 
3912 void dev_printk(const char *level, const struct device *dev,
3913 		const char *fmt, ...)
3914 {
3915 	struct va_format vaf;
3916 	va_list args;
3917 
3918 	va_start(args, fmt);
3919 
3920 	vaf.fmt = fmt;
3921 	vaf.va = &args;
3922 
3923 	__dev_printk(level, dev, &vaf);
3924 
3925 	va_end(args);
3926 }
3927 EXPORT_SYMBOL(dev_printk);
3928 
3929 #define define_dev_printk_level(func, kern_level)		\
3930 void func(const struct device *dev, const char *fmt, ...)	\
3931 {								\
3932 	struct va_format vaf;					\
3933 	va_list args;						\
3934 								\
3935 	va_start(args, fmt);					\
3936 								\
3937 	vaf.fmt = fmt;						\
3938 	vaf.va = &args;						\
3939 								\
3940 	__dev_printk(kern_level, dev, &vaf);			\
3941 								\
3942 	va_end(args);						\
3943 }								\
3944 EXPORT_SYMBOL(func);
3945 
3946 define_dev_printk_level(_dev_emerg, KERN_EMERG);
3947 define_dev_printk_level(_dev_alert, KERN_ALERT);
3948 define_dev_printk_level(_dev_crit, KERN_CRIT);
3949 define_dev_printk_level(_dev_err, KERN_ERR);
3950 define_dev_printk_level(_dev_warn, KERN_WARNING);
3951 define_dev_printk_level(_dev_notice, KERN_NOTICE);
3952 define_dev_printk_level(_dev_info, KERN_INFO);
3953 
3954 #endif
3955 
3956 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
3957 {
3958 	return fwnode && !IS_ERR(fwnode->secondary);
3959 }
3960 
3961 /**
3962  * set_primary_fwnode - Change the primary firmware node of a given device.
3963  * @dev: Device to handle.
3964  * @fwnode: New primary firmware node of the device.
3965  *
3966  * Set the device's firmware node pointer to @fwnode, but if a secondary
3967  * firmware node of the device is present, preserve it.
3968  */
3969 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3970 {
3971 	if (fwnode) {
3972 		struct fwnode_handle *fn = dev->fwnode;
3973 
3974 		if (fwnode_is_primary(fn))
3975 			fn = fn->secondary;
3976 
3977 		if (fn) {
3978 			WARN_ON(fwnode->secondary);
3979 			fwnode->secondary = fn;
3980 		}
3981 		dev->fwnode = fwnode;
3982 	} else {
3983 		dev->fwnode = fwnode_is_primary(dev->fwnode) ?
3984 			dev->fwnode->secondary : NULL;
3985 	}
3986 }
3987 EXPORT_SYMBOL_GPL(set_primary_fwnode);
3988 
3989 /**
3990  * set_secondary_fwnode - Change the secondary firmware node of a given device.
3991  * @dev: Device to handle.
3992  * @fwnode: New secondary firmware node of the device.
3993  *
3994  * If a primary firmware node of the device is present, set its secondary
3995  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
3996  * @fwnode.
3997  */
3998 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3999 {
4000 	if (fwnode)
4001 		fwnode->secondary = ERR_PTR(-ENODEV);
4002 
4003 	if (fwnode_is_primary(dev->fwnode))
4004 		dev->fwnode->secondary = fwnode;
4005 	else
4006 		dev->fwnode = fwnode;
4007 }
4008 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4009 
4010 /**
4011  * device_set_of_node_from_dev - reuse device-tree node of another device
4012  * @dev: device whose device-tree node is being set
4013  * @dev2: device whose device-tree node is being reused
4014  *
4015  * Takes another reference to the new device-tree node after first dropping
4016  * any reference held to the old node.
4017  */
4018 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4019 {
4020 	of_node_put(dev->of_node);
4021 	dev->of_node = of_node_get(dev2->of_node);
4022 	dev->of_node_reused = true;
4023 }
4024 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4025 
4026 int device_match_name(struct device *dev, const void *name)
4027 {
4028 	return sysfs_streq(dev_name(dev), name);
4029 }
4030 EXPORT_SYMBOL_GPL(device_match_name);
4031 
4032 int device_match_of_node(struct device *dev, const void *np)
4033 {
4034 	return dev->of_node == np;
4035 }
4036 EXPORT_SYMBOL_GPL(device_match_of_node);
4037 
4038 int device_match_fwnode(struct device *dev, const void *fwnode)
4039 {
4040 	return dev_fwnode(dev) == fwnode;
4041 }
4042 EXPORT_SYMBOL_GPL(device_match_fwnode);
4043 
4044 int device_match_devt(struct device *dev, const void *pdevt)
4045 {
4046 	return dev->devt == *(dev_t *)pdevt;
4047 }
4048 EXPORT_SYMBOL_GPL(device_match_devt);
4049 
4050 int device_match_acpi_dev(struct device *dev, const void *adev)
4051 {
4052 	return ACPI_COMPANION(dev) == adev;
4053 }
4054 EXPORT_SYMBOL(device_match_acpi_dev);
4055 
4056 int device_match_any(struct device *dev, const void *unused)
4057 {
4058 	return 1;
4059 }
4060 EXPORT_SYMBOL_GPL(device_match_any);
4061