1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/cpufreq.h> 13 #include <linux/device.h> 14 #include <linux/err.h> 15 #include <linux/fwnode.h> 16 #include <linux/init.h> 17 #include <linux/kstrtox.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/kdev_t.h> 21 #include <linux/notifier.h> 22 #include <linux/of.h> 23 #include <linux/of_device.h> 24 #include <linux/blkdev.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/netdevice.h> 28 #include <linux/sched/signal.h> 29 #include <linux/sched/mm.h> 30 #include <linux/string_helpers.h> 31 #include <linux/swiotlb.h> 32 #include <linux/sysfs.h> 33 #include <linux/dma-map-ops.h> /* for dma_default_coherent */ 34 35 #include "base.h" 36 #include "physical_location.h" 37 #include "power/power.h" 38 39 /* Device links support. */ 40 static LIST_HEAD(deferred_sync); 41 static unsigned int defer_sync_state_count = 1; 42 static DEFINE_MUTEX(fwnode_link_lock); 43 static bool fw_devlink_is_permissive(void); 44 static void __fw_devlink_link_to_consumers(struct device *dev); 45 static bool fw_devlink_drv_reg_done; 46 static bool fw_devlink_best_effort; 47 48 /** 49 * __fwnode_link_add - Create a link between two fwnode_handles. 50 * @con: Consumer end of the link. 51 * @sup: Supplier end of the link. 52 * 53 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link 54 * represents the detail that the firmware lists @sup fwnode as supplying a 55 * resource to @con. 56 * 57 * The driver core will use the fwnode link to create a device link between the 58 * two device objects corresponding to @con and @sup when they are created. The 59 * driver core will automatically delete the fwnode link between @con and @sup 60 * after doing that. 61 * 62 * Attempts to create duplicate links between the same pair of fwnode handles 63 * are ignored and there is no reference counting. 64 */ 65 static int __fwnode_link_add(struct fwnode_handle *con, 66 struct fwnode_handle *sup, u8 flags) 67 { 68 struct fwnode_link *link; 69 70 list_for_each_entry(link, &sup->consumers, s_hook) 71 if (link->consumer == con) { 72 link->flags |= flags; 73 return 0; 74 } 75 76 link = kzalloc(sizeof(*link), GFP_KERNEL); 77 if (!link) 78 return -ENOMEM; 79 80 link->supplier = sup; 81 INIT_LIST_HEAD(&link->s_hook); 82 link->consumer = con; 83 INIT_LIST_HEAD(&link->c_hook); 84 link->flags = flags; 85 86 list_add(&link->s_hook, &sup->consumers); 87 list_add(&link->c_hook, &con->suppliers); 88 pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n", 89 con, sup); 90 91 return 0; 92 } 93 94 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup) 95 { 96 int ret; 97 98 mutex_lock(&fwnode_link_lock); 99 ret = __fwnode_link_add(con, sup, 0); 100 mutex_unlock(&fwnode_link_lock); 101 return ret; 102 } 103 104 /** 105 * __fwnode_link_del - Delete a link between two fwnode_handles. 106 * @link: the fwnode_link to be deleted 107 * 108 * The fwnode_link_lock needs to be held when this function is called. 109 */ 110 static void __fwnode_link_del(struct fwnode_link *link) 111 { 112 pr_debug("%pfwf Dropping the fwnode link to %pfwf\n", 113 link->consumer, link->supplier); 114 list_del(&link->s_hook); 115 list_del(&link->c_hook); 116 kfree(link); 117 } 118 119 /** 120 * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle. 121 * @link: the fwnode_link to be marked 122 * 123 * The fwnode_link_lock needs to be held when this function is called. 124 */ 125 static void __fwnode_link_cycle(struct fwnode_link *link) 126 { 127 pr_debug("%pfwf: Relaxing link with %pfwf\n", 128 link->consumer, link->supplier); 129 link->flags |= FWLINK_FLAG_CYCLE; 130 } 131 132 /** 133 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle. 134 * @fwnode: fwnode whose supplier links need to be deleted 135 * 136 * Deletes all supplier links connecting directly to @fwnode. 137 */ 138 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode) 139 { 140 struct fwnode_link *link, *tmp; 141 142 mutex_lock(&fwnode_link_lock); 143 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) 144 __fwnode_link_del(link); 145 mutex_unlock(&fwnode_link_lock); 146 } 147 148 /** 149 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle. 150 * @fwnode: fwnode whose consumer links need to be deleted 151 * 152 * Deletes all consumer links connecting directly to @fwnode. 153 */ 154 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode) 155 { 156 struct fwnode_link *link, *tmp; 157 158 mutex_lock(&fwnode_link_lock); 159 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) 160 __fwnode_link_del(link); 161 mutex_unlock(&fwnode_link_lock); 162 } 163 164 /** 165 * fwnode_links_purge - Delete all links connected to a fwnode_handle. 166 * @fwnode: fwnode whose links needs to be deleted 167 * 168 * Deletes all links connecting directly to a fwnode. 169 */ 170 void fwnode_links_purge(struct fwnode_handle *fwnode) 171 { 172 fwnode_links_purge_suppliers(fwnode); 173 fwnode_links_purge_consumers(fwnode); 174 } 175 176 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode) 177 { 178 struct fwnode_handle *child; 179 180 /* Don't purge consumer links of an added child */ 181 if (fwnode->dev) 182 return; 183 184 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 185 fwnode_links_purge_consumers(fwnode); 186 187 fwnode_for_each_available_child_node(fwnode, child) 188 fw_devlink_purge_absent_suppliers(child); 189 } 190 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers); 191 192 /** 193 * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle 194 * @from: move consumers away from this fwnode 195 * @to: move consumers to this fwnode 196 * 197 * Move all consumer links from @from fwnode to @to fwnode. 198 */ 199 static void __fwnode_links_move_consumers(struct fwnode_handle *from, 200 struct fwnode_handle *to) 201 { 202 struct fwnode_link *link, *tmp; 203 204 list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) { 205 __fwnode_link_add(link->consumer, to, link->flags); 206 __fwnode_link_del(link); 207 } 208 } 209 210 /** 211 * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers 212 * @fwnode: fwnode from which to pick up dangling consumers 213 * @new_sup: fwnode of new supplier 214 * 215 * If the @fwnode has a corresponding struct device and the device supports 216 * probing (that is, added to a bus), then we want to let fw_devlink create 217 * MANAGED device links to this device, so leave @fwnode and its descendant's 218 * fwnode links alone. 219 * 220 * Otherwise, move its consumers to the new supplier @new_sup. 221 */ 222 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode, 223 struct fwnode_handle *new_sup) 224 { 225 struct fwnode_handle *child; 226 227 if (fwnode->dev && fwnode->dev->bus) 228 return; 229 230 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 231 __fwnode_links_move_consumers(fwnode, new_sup); 232 233 fwnode_for_each_available_child_node(fwnode, child) 234 __fw_devlink_pickup_dangling_consumers(child, new_sup); 235 } 236 237 static DEFINE_MUTEX(device_links_lock); 238 DEFINE_STATIC_SRCU(device_links_srcu); 239 240 static inline void device_links_write_lock(void) 241 { 242 mutex_lock(&device_links_lock); 243 } 244 245 static inline void device_links_write_unlock(void) 246 { 247 mutex_unlock(&device_links_lock); 248 } 249 250 int device_links_read_lock(void) __acquires(&device_links_srcu) 251 { 252 return srcu_read_lock(&device_links_srcu); 253 } 254 255 void device_links_read_unlock(int idx) __releases(&device_links_srcu) 256 { 257 srcu_read_unlock(&device_links_srcu, idx); 258 } 259 260 int device_links_read_lock_held(void) 261 { 262 return srcu_read_lock_held(&device_links_srcu); 263 } 264 265 static void device_link_synchronize_removal(void) 266 { 267 synchronize_srcu(&device_links_srcu); 268 } 269 270 static void device_link_remove_from_lists(struct device_link *link) 271 { 272 list_del_rcu(&link->s_node); 273 list_del_rcu(&link->c_node); 274 } 275 276 static bool device_is_ancestor(struct device *dev, struct device *target) 277 { 278 while (target->parent) { 279 target = target->parent; 280 if (dev == target) 281 return true; 282 } 283 return false; 284 } 285 286 #define DL_MARKER_FLAGS (DL_FLAG_INFERRED | \ 287 DL_FLAG_CYCLE | \ 288 DL_FLAG_MANAGED) 289 static inline bool device_link_flag_is_sync_state_only(u32 flags) 290 { 291 return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY; 292 } 293 294 /** 295 * device_is_dependent - Check if one device depends on another one 296 * @dev: Device to check dependencies for. 297 * @target: Device to check against. 298 * 299 * Check if @target depends on @dev or any device dependent on it (its child or 300 * its consumer etc). Return 1 if that is the case or 0 otherwise. 301 */ 302 int device_is_dependent(struct device *dev, void *target) 303 { 304 struct device_link *link; 305 int ret; 306 307 /* 308 * The "ancestors" check is needed to catch the case when the target 309 * device has not been completely initialized yet and it is still 310 * missing from the list of children of its parent device. 311 */ 312 if (dev == target || device_is_ancestor(dev, target)) 313 return 1; 314 315 ret = device_for_each_child(dev, target, device_is_dependent); 316 if (ret) 317 return ret; 318 319 list_for_each_entry(link, &dev->links.consumers, s_node) { 320 if (device_link_flag_is_sync_state_only(link->flags)) 321 continue; 322 323 if (link->consumer == target) 324 return 1; 325 326 ret = device_is_dependent(link->consumer, target); 327 if (ret) 328 break; 329 } 330 return ret; 331 } 332 333 static void device_link_init_status(struct device_link *link, 334 struct device *consumer, 335 struct device *supplier) 336 { 337 switch (supplier->links.status) { 338 case DL_DEV_PROBING: 339 switch (consumer->links.status) { 340 case DL_DEV_PROBING: 341 /* 342 * A consumer driver can create a link to a supplier 343 * that has not completed its probing yet as long as it 344 * knows that the supplier is already functional (for 345 * example, it has just acquired some resources from the 346 * supplier). 347 */ 348 link->status = DL_STATE_CONSUMER_PROBE; 349 break; 350 default: 351 link->status = DL_STATE_DORMANT; 352 break; 353 } 354 break; 355 case DL_DEV_DRIVER_BOUND: 356 switch (consumer->links.status) { 357 case DL_DEV_PROBING: 358 link->status = DL_STATE_CONSUMER_PROBE; 359 break; 360 case DL_DEV_DRIVER_BOUND: 361 link->status = DL_STATE_ACTIVE; 362 break; 363 default: 364 link->status = DL_STATE_AVAILABLE; 365 break; 366 } 367 break; 368 case DL_DEV_UNBINDING: 369 link->status = DL_STATE_SUPPLIER_UNBIND; 370 break; 371 default: 372 link->status = DL_STATE_DORMANT; 373 break; 374 } 375 } 376 377 static int device_reorder_to_tail(struct device *dev, void *not_used) 378 { 379 struct device_link *link; 380 381 /* 382 * Devices that have not been registered yet will be put to the ends 383 * of the lists during the registration, so skip them here. 384 */ 385 if (device_is_registered(dev)) 386 devices_kset_move_last(dev); 387 388 if (device_pm_initialized(dev)) 389 device_pm_move_last(dev); 390 391 device_for_each_child(dev, NULL, device_reorder_to_tail); 392 list_for_each_entry(link, &dev->links.consumers, s_node) { 393 if (device_link_flag_is_sync_state_only(link->flags)) 394 continue; 395 device_reorder_to_tail(link->consumer, NULL); 396 } 397 398 return 0; 399 } 400 401 /** 402 * device_pm_move_to_tail - Move set of devices to the end of device lists 403 * @dev: Device to move 404 * 405 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 406 * 407 * It moves the @dev along with all of its children and all of its consumers 408 * to the ends of the device_kset and dpm_list, recursively. 409 */ 410 void device_pm_move_to_tail(struct device *dev) 411 { 412 int idx; 413 414 idx = device_links_read_lock(); 415 device_pm_lock(); 416 device_reorder_to_tail(dev, NULL); 417 device_pm_unlock(); 418 device_links_read_unlock(idx); 419 } 420 421 #define to_devlink(dev) container_of((dev), struct device_link, link_dev) 422 423 static ssize_t status_show(struct device *dev, 424 struct device_attribute *attr, char *buf) 425 { 426 const char *output; 427 428 switch (to_devlink(dev)->status) { 429 case DL_STATE_NONE: 430 output = "not tracked"; 431 break; 432 case DL_STATE_DORMANT: 433 output = "dormant"; 434 break; 435 case DL_STATE_AVAILABLE: 436 output = "available"; 437 break; 438 case DL_STATE_CONSUMER_PROBE: 439 output = "consumer probing"; 440 break; 441 case DL_STATE_ACTIVE: 442 output = "active"; 443 break; 444 case DL_STATE_SUPPLIER_UNBIND: 445 output = "supplier unbinding"; 446 break; 447 default: 448 output = "unknown"; 449 break; 450 } 451 452 return sysfs_emit(buf, "%s\n", output); 453 } 454 static DEVICE_ATTR_RO(status); 455 456 static ssize_t auto_remove_on_show(struct device *dev, 457 struct device_attribute *attr, char *buf) 458 { 459 struct device_link *link = to_devlink(dev); 460 const char *output; 461 462 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 463 output = "supplier unbind"; 464 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) 465 output = "consumer unbind"; 466 else 467 output = "never"; 468 469 return sysfs_emit(buf, "%s\n", output); 470 } 471 static DEVICE_ATTR_RO(auto_remove_on); 472 473 static ssize_t runtime_pm_show(struct device *dev, 474 struct device_attribute *attr, char *buf) 475 { 476 struct device_link *link = to_devlink(dev); 477 478 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME)); 479 } 480 static DEVICE_ATTR_RO(runtime_pm); 481 482 static ssize_t sync_state_only_show(struct device *dev, 483 struct device_attribute *attr, char *buf) 484 { 485 struct device_link *link = to_devlink(dev); 486 487 return sysfs_emit(buf, "%d\n", 488 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 489 } 490 static DEVICE_ATTR_RO(sync_state_only); 491 492 static struct attribute *devlink_attrs[] = { 493 &dev_attr_status.attr, 494 &dev_attr_auto_remove_on.attr, 495 &dev_attr_runtime_pm.attr, 496 &dev_attr_sync_state_only.attr, 497 NULL, 498 }; 499 ATTRIBUTE_GROUPS(devlink); 500 501 static void device_link_release_fn(struct work_struct *work) 502 { 503 struct device_link *link = container_of(work, struct device_link, rm_work); 504 505 /* Ensure that all references to the link object have been dropped. */ 506 device_link_synchronize_removal(); 507 508 pm_runtime_release_supplier(link); 509 /* 510 * If supplier_preactivated is set, the link has been dropped between 511 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls 512 * in __driver_probe_device(). In that case, drop the supplier's 513 * PM-runtime usage counter to remove the reference taken by 514 * pm_runtime_get_suppliers(). 515 */ 516 if (link->supplier_preactivated) 517 pm_runtime_put_noidle(link->supplier); 518 519 pm_request_idle(link->supplier); 520 521 put_device(link->consumer); 522 put_device(link->supplier); 523 kfree(link); 524 } 525 526 static void devlink_dev_release(struct device *dev) 527 { 528 struct device_link *link = to_devlink(dev); 529 530 INIT_WORK(&link->rm_work, device_link_release_fn); 531 /* 532 * It may take a while to complete this work because of the SRCU 533 * synchronization in device_link_release_fn() and if the consumer or 534 * supplier devices get deleted when it runs, so put it into the "long" 535 * workqueue. 536 */ 537 queue_work(system_long_wq, &link->rm_work); 538 } 539 540 static struct class devlink_class = { 541 .name = "devlink", 542 .dev_groups = devlink_groups, 543 .dev_release = devlink_dev_release, 544 }; 545 546 static int devlink_add_symlinks(struct device *dev) 547 { 548 int ret; 549 size_t len; 550 struct device_link *link = to_devlink(dev); 551 struct device *sup = link->supplier; 552 struct device *con = link->consumer; 553 char *buf; 554 555 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 556 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 557 len += strlen(":"); 558 len += strlen("supplier:") + 1; 559 buf = kzalloc(len, GFP_KERNEL); 560 if (!buf) 561 return -ENOMEM; 562 563 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier"); 564 if (ret) 565 goto out; 566 567 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer"); 568 if (ret) 569 goto err_con; 570 571 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 572 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf); 573 if (ret) 574 goto err_con_dev; 575 576 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 577 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf); 578 if (ret) 579 goto err_sup_dev; 580 581 goto out; 582 583 err_sup_dev: 584 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 585 sysfs_remove_link(&sup->kobj, buf); 586 err_con_dev: 587 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 588 err_con: 589 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 590 out: 591 kfree(buf); 592 return ret; 593 } 594 595 static void devlink_remove_symlinks(struct device *dev) 596 { 597 struct device_link *link = to_devlink(dev); 598 size_t len; 599 struct device *sup = link->supplier; 600 struct device *con = link->consumer; 601 char *buf; 602 603 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 604 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 605 606 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 607 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 608 len += strlen(":"); 609 len += strlen("supplier:") + 1; 610 buf = kzalloc(len, GFP_KERNEL); 611 if (!buf) { 612 WARN(1, "Unable to properly free device link symlinks!\n"); 613 return; 614 } 615 616 if (device_is_registered(con)) { 617 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 618 sysfs_remove_link(&con->kobj, buf); 619 } 620 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 621 sysfs_remove_link(&sup->kobj, buf); 622 kfree(buf); 623 } 624 625 static struct class_interface devlink_class_intf = { 626 .class = &devlink_class, 627 .add_dev = devlink_add_symlinks, 628 .remove_dev = devlink_remove_symlinks, 629 }; 630 631 static int __init devlink_class_init(void) 632 { 633 int ret; 634 635 ret = class_register(&devlink_class); 636 if (ret) 637 return ret; 638 639 ret = class_interface_register(&devlink_class_intf); 640 if (ret) 641 class_unregister(&devlink_class); 642 643 return ret; 644 } 645 postcore_initcall(devlink_class_init); 646 647 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \ 648 DL_FLAG_AUTOREMOVE_SUPPLIER | \ 649 DL_FLAG_AUTOPROBE_CONSUMER | \ 650 DL_FLAG_SYNC_STATE_ONLY | \ 651 DL_FLAG_INFERRED | \ 652 DL_FLAG_CYCLE) 653 654 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \ 655 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE) 656 657 /** 658 * device_link_add - Create a link between two devices. 659 * @consumer: Consumer end of the link. 660 * @supplier: Supplier end of the link. 661 * @flags: Link flags. 662 * 663 * The caller is responsible for the proper synchronization of the link creation 664 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 665 * runtime PM framework to take the link into account. Second, if the 666 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 667 * be forced into the active meta state and reference-counted upon the creation 668 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 669 * ignored. 670 * 671 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is 672 * expected to release the link returned by it directly with the help of either 673 * device_link_del() or device_link_remove(). 674 * 675 * If that flag is not set, however, the caller of this function is handing the 676 * management of the link over to the driver core entirely and its return value 677 * can only be used to check whether or not the link is present. In that case, 678 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link 679 * flags can be used to indicate to the driver core when the link can be safely 680 * deleted. Namely, setting one of them in @flags indicates to the driver core 681 * that the link is not going to be used (by the given caller of this function) 682 * after unbinding the consumer or supplier driver, respectively, from its 683 * device, so the link can be deleted at that point. If none of them is set, 684 * the link will be maintained until one of the devices pointed to by it (either 685 * the consumer or the supplier) is unregistered. 686 * 687 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and 688 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent 689 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can 690 * be used to request the driver core to automatically probe for a consumer 691 * driver after successfully binding a driver to the supplier device. 692 * 693 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER, 694 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at 695 * the same time is invalid and will cause NULL to be returned upfront. 696 * However, if a device link between the given @consumer and @supplier pair 697 * exists already when this function is called for them, the existing link will 698 * be returned regardless of its current type and status (the link's flags may 699 * be modified then). The caller of this function is then expected to treat 700 * the link as though it has just been created, so (in particular) if 701 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released 702 * explicitly when not needed any more (as stated above). 703 * 704 * A side effect of the link creation is re-ordering of dpm_list and the 705 * devices_kset list by moving the consumer device and all devices depending 706 * on it to the ends of these lists (that does not happen to devices that have 707 * not been registered when this function is called). 708 * 709 * The supplier device is required to be registered when this function is called 710 * and NULL will be returned if that is not the case. The consumer device need 711 * not be registered, however. 712 */ 713 struct device_link *device_link_add(struct device *consumer, 714 struct device *supplier, u32 flags) 715 { 716 struct device_link *link; 717 718 if (!consumer || !supplier || consumer == supplier || 719 flags & ~DL_ADD_VALID_FLAGS || 720 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) || 721 (flags & DL_FLAG_AUTOPROBE_CONSUMER && 722 flags & (DL_FLAG_AUTOREMOVE_CONSUMER | 723 DL_FLAG_AUTOREMOVE_SUPPLIER))) 724 return NULL; 725 726 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) { 727 if (pm_runtime_get_sync(supplier) < 0) { 728 pm_runtime_put_noidle(supplier); 729 return NULL; 730 } 731 } 732 733 if (!(flags & DL_FLAG_STATELESS)) 734 flags |= DL_FLAG_MANAGED; 735 736 if (flags & DL_FLAG_SYNC_STATE_ONLY && 737 !device_link_flag_is_sync_state_only(flags)) 738 return NULL; 739 740 device_links_write_lock(); 741 device_pm_lock(); 742 743 /* 744 * If the supplier has not been fully registered yet or there is a 745 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and 746 * the supplier already in the graph, return NULL. If the link is a 747 * SYNC_STATE_ONLY link, we don't check for reverse dependencies 748 * because it only affects sync_state() callbacks. 749 */ 750 if (!device_pm_initialized(supplier) 751 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) && 752 device_is_dependent(consumer, supplier))) { 753 link = NULL; 754 goto out; 755 } 756 757 /* 758 * SYNC_STATE_ONLY links are useless once a consumer device has probed. 759 * So, only create it if the consumer hasn't probed yet. 760 */ 761 if (flags & DL_FLAG_SYNC_STATE_ONLY && 762 consumer->links.status != DL_DEV_NO_DRIVER && 763 consumer->links.status != DL_DEV_PROBING) { 764 link = NULL; 765 goto out; 766 } 767 768 /* 769 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed 770 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both 771 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER. 772 */ 773 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 774 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 775 776 list_for_each_entry(link, &supplier->links.consumers, s_node) { 777 if (link->consumer != consumer) 778 continue; 779 780 if (link->flags & DL_FLAG_INFERRED && 781 !(flags & DL_FLAG_INFERRED)) 782 link->flags &= ~DL_FLAG_INFERRED; 783 784 if (flags & DL_FLAG_PM_RUNTIME) { 785 if (!(link->flags & DL_FLAG_PM_RUNTIME)) { 786 pm_runtime_new_link(consumer); 787 link->flags |= DL_FLAG_PM_RUNTIME; 788 } 789 if (flags & DL_FLAG_RPM_ACTIVE) 790 refcount_inc(&link->rpm_active); 791 } 792 793 if (flags & DL_FLAG_STATELESS) { 794 kref_get(&link->kref); 795 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 796 !(link->flags & DL_FLAG_STATELESS)) { 797 link->flags |= DL_FLAG_STATELESS; 798 goto reorder; 799 } else { 800 link->flags |= DL_FLAG_STATELESS; 801 goto out; 802 } 803 } 804 805 /* 806 * If the life time of the link following from the new flags is 807 * longer than indicated by the flags of the existing link, 808 * update the existing link to stay around longer. 809 */ 810 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) { 811 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 812 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 813 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER; 814 } 815 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) { 816 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER | 817 DL_FLAG_AUTOREMOVE_SUPPLIER); 818 } 819 if (!(link->flags & DL_FLAG_MANAGED)) { 820 kref_get(&link->kref); 821 link->flags |= DL_FLAG_MANAGED; 822 device_link_init_status(link, consumer, supplier); 823 } 824 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 825 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 826 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY; 827 goto reorder; 828 } 829 830 goto out; 831 } 832 833 link = kzalloc(sizeof(*link), GFP_KERNEL); 834 if (!link) 835 goto out; 836 837 refcount_set(&link->rpm_active, 1); 838 839 get_device(supplier); 840 link->supplier = supplier; 841 INIT_LIST_HEAD(&link->s_node); 842 get_device(consumer); 843 link->consumer = consumer; 844 INIT_LIST_HEAD(&link->c_node); 845 link->flags = flags; 846 kref_init(&link->kref); 847 848 link->link_dev.class = &devlink_class; 849 device_set_pm_not_required(&link->link_dev); 850 dev_set_name(&link->link_dev, "%s:%s--%s:%s", 851 dev_bus_name(supplier), dev_name(supplier), 852 dev_bus_name(consumer), dev_name(consumer)); 853 if (device_register(&link->link_dev)) { 854 put_device(&link->link_dev); 855 link = NULL; 856 goto out; 857 } 858 859 if (flags & DL_FLAG_PM_RUNTIME) { 860 if (flags & DL_FLAG_RPM_ACTIVE) 861 refcount_inc(&link->rpm_active); 862 863 pm_runtime_new_link(consumer); 864 } 865 866 /* Determine the initial link state. */ 867 if (flags & DL_FLAG_STATELESS) 868 link->status = DL_STATE_NONE; 869 else 870 device_link_init_status(link, consumer, supplier); 871 872 /* 873 * Some callers expect the link creation during consumer driver probe to 874 * resume the supplier even without DL_FLAG_RPM_ACTIVE. 875 */ 876 if (link->status == DL_STATE_CONSUMER_PROBE && 877 flags & DL_FLAG_PM_RUNTIME) 878 pm_runtime_resume(supplier); 879 880 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 881 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 882 883 if (flags & DL_FLAG_SYNC_STATE_ONLY) { 884 dev_dbg(consumer, 885 "Linked as a sync state only consumer to %s\n", 886 dev_name(supplier)); 887 goto out; 888 } 889 890 reorder: 891 /* 892 * Move the consumer and all of the devices depending on it to the end 893 * of dpm_list and the devices_kset list. 894 * 895 * It is necessary to hold dpm_list locked throughout all that or else 896 * we may end up suspending with a wrong ordering of it. 897 */ 898 device_reorder_to_tail(consumer, NULL); 899 900 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 901 902 out: 903 device_pm_unlock(); 904 device_links_write_unlock(); 905 906 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link) 907 pm_runtime_put(supplier); 908 909 return link; 910 } 911 EXPORT_SYMBOL_GPL(device_link_add); 912 913 static void __device_link_del(struct kref *kref) 914 { 915 struct device_link *link = container_of(kref, struct device_link, kref); 916 917 dev_dbg(link->consumer, "Dropping the link to %s\n", 918 dev_name(link->supplier)); 919 920 pm_runtime_drop_link(link); 921 922 device_link_remove_from_lists(link); 923 device_unregister(&link->link_dev); 924 } 925 926 static void device_link_put_kref(struct device_link *link) 927 { 928 if (link->flags & DL_FLAG_STATELESS) 929 kref_put(&link->kref, __device_link_del); 930 else if (!device_is_registered(link->consumer)) 931 __device_link_del(&link->kref); 932 else 933 WARN(1, "Unable to drop a managed device link reference\n"); 934 } 935 936 /** 937 * device_link_del - Delete a stateless link between two devices. 938 * @link: Device link to delete. 939 * 940 * The caller must ensure proper synchronization of this function with runtime 941 * PM. If the link was added multiple times, it needs to be deleted as often. 942 * Care is required for hotplugged devices: Their links are purged on removal 943 * and calling device_link_del() is then no longer allowed. 944 */ 945 void device_link_del(struct device_link *link) 946 { 947 device_links_write_lock(); 948 device_link_put_kref(link); 949 device_links_write_unlock(); 950 } 951 EXPORT_SYMBOL_GPL(device_link_del); 952 953 /** 954 * device_link_remove - Delete a stateless link between two devices. 955 * @consumer: Consumer end of the link. 956 * @supplier: Supplier end of the link. 957 * 958 * The caller must ensure proper synchronization of this function with runtime 959 * PM. 960 */ 961 void device_link_remove(void *consumer, struct device *supplier) 962 { 963 struct device_link *link; 964 965 if (WARN_ON(consumer == supplier)) 966 return; 967 968 device_links_write_lock(); 969 970 list_for_each_entry(link, &supplier->links.consumers, s_node) { 971 if (link->consumer == consumer) { 972 device_link_put_kref(link); 973 break; 974 } 975 } 976 977 device_links_write_unlock(); 978 } 979 EXPORT_SYMBOL_GPL(device_link_remove); 980 981 static void device_links_missing_supplier(struct device *dev) 982 { 983 struct device_link *link; 984 985 list_for_each_entry(link, &dev->links.suppliers, c_node) { 986 if (link->status != DL_STATE_CONSUMER_PROBE) 987 continue; 988 989 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 990 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 991 } else { 992 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 993 WRITE_ONCE(link->status, DL_STATE_DORMANT); 994 } 995 } 996 } 997 998 static bool dev_is_best_effort(struct device *dev) 999 { 1000 return (fw_devlink_best_effort && dev->can_match) || 1001 (dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT)); 1002 } 1003 1004 static struct fwnode_handle *fwnode_links_check_suppliers( 1005 struct fwnode_handle *fwnode) 1006 { 1007 struct fwnode_link *link; 1008 1009 if (!fwnode || fw_devlink_is_permissive()) 1010 return NULL; 1011 1012 list_for_each_entry(link, &fwnode->suppliers, c_hook) 1013 if (!(link->flags & FWLINK_FLAG_CYCLE)) 1014 return link->supplier; 1015 1016 return NULL; 1017 } 1018 1019 /** 1020 * device_links_check_suppliers - Check presence of supplier drivers. 1021 * @dev: Consumer device. 1022 * 1023 * Check links from this device to any suppliers. Walk the list of the device's 1024 * links to suppliers and see if all of them are available. If not, simply 1025 * return -EPROBE_DEFER. 1026 * 1027 * We need to guarantee that the supplier will not go away after the check has 1028 * been positive here. It only can go away in __device_release_driver() and 1029 * that function checks the device's links to consumers. This means we need to 1030 * mark the link as "consumer probe in progress" to make the supplier removal 1031 * wait for us to complete (or bad things may happen). 1032 * 1033 * Links without the DL_FLAG_MANAGED flag set are ignored. 1034 */ 1035 int device_links_check_suppliers(struct device *dev) 1036 { 1037 struct device_link *link; 1038 int ret = 0, fwnode_ret = 0; 1039 struct fwnode_handle *sup_fw; 1040 1041 /* 1042 * Device waiting for supplier to become available is not allowed to 1043 * probe. 1044 */ 1045 mutex_lock(&fwnode_link_lock); 1046 sup_fw = fwnode_links_check_suppliers(dev->fwnode); 1047 if (sup_fw) { 1048 if (!dev_is_best_effort(dev)) { 1049 fwnode_ret = -EPROBE_DEFER; 1050 dev_err_probe(dev, -EPROBE_DEFER, 1051 "wait for supplier %pfwf\n", sup_fw); 1052 } else { 1053 fwnode_ret = -EAGAIN; 1054 } 1055 } 1056 mutex_unlock(&fwnode_link_lock); 1057 if (fwnode_ret == -EPROBE_DEFER) 1058 return fwnode_ret; 1059 1060 device_links_write_lock(); 1061 1062 list_for_each_entry(link, &dev->links.suppliers, c_node) { 1063 if (!(link->flags & DL_FLAG_MANAGED)) 1064 continue; 1065 1066 if (link->status != DL_STATE_AVAILABLE && 1067 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) { 1068 1069 if (dev_is_best_effort(dev) && 1070 link->flags & DL_FLAG_INFERRED && 1071 !link->supplier->can_match) { 1072 ret = -EAGAIN; 1073 continue; 1074 } 1075 1076 device_links_missing_supplier(dev); 1077 dev_err_probe(dev, -EPROBE_DEFER, 1078 "supplier %s not ready\n", 1079 dev_name(link->supplier)); 1080 ret = -EPROBE_DEFER; 1081 break; 1082 } 1083 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1084 } 1085 dev->links.status = DL_DEV_PROBING; 1086 1087 device_links_write_unlock(); 1088 1089 return ret ? ret : fwnode_ret; 1090 } 1091 1092 /** 1093 * __device_links_queue_sync_state - Queue a device for sync_state() callback 1094 * @dev: Device to call sync_state() on 1095 * @list: List head to queue the @dev on 1096 * 1097 * Queues a device for a sync_state() callback when the device links write lock 1098 * isn't held. This allows the sync_state() execution flow to use device links 1099 * APIs. The caller must ensure this function is called with 1100 * device_links_write_lock() held. 1101 * 1102 * This function does a get_device() to make sure the device is not freed while 1103 * on this list. 1104 * 1105 * So the caller must also ensure that device_links_flush_sync_list() is called 1106 * as soon as the caller releases device_links_write_lock(). This is necessary 1107 * to make sure the sync_state() is called in a timely fashion and the 1108 * put_device() is called on this device. 1109 */ 1110 static void __device_links_queue_sync_state(struct device *dev, 1111 struct list_head *list) 1112 { 1113 struct device_link *link; 1114 1115 if (!dev_has_sync_state(dev)) 1116 return; 1117 if (dev->state_synced) 1118 return; 1119 1120 list_for_each_entry(link, &dev->links.consumers, s_node) { 1121 if (!(link->flags & DL_FLAG_MANAGED)) 1122 continue; 1123 if (link->status != DL_STATE_ACTIVE) 1124 return; 1125 } 1126 1127 /* 1128 * Set the flag here to avoid adding the same device to a list more 1129 * than once. This can happen if new consumers get added to the device 1130 * and probed before the list is flushed. 1131 */ 1132 dev->state_synced = true; 1133 1134 if (WARN_ON(!list_empty(&dev->links.defer_sync))) 1135 return; 1136 1137 get_device(dev); 1138 list_add_tail(&dev->links.defer_sync, list); 1139 } 1140 1141 /** 1142 * device_links_flush_sync_list - Call sync_state() on a list of devices 1143 * @list: List of devices to call sync_state() on 1144 * @dont_lock_dev: Device for which lock is already held by the caller 1145 * 1146 * Calls sync_state() on all the devices that have been queued for it. This 1147 * function is used in conjunction with __device_links_queue_sync_state(). The 1148 * @dont_lock_dev parameter is useful when this function is called from a 1149 * context where a device lock is already held. 1150 */ 1151 static void device_links_flush_sync_list(struct list_head *list, 1152 struct device *dont_lock_dev) 1153 { 1154 struct device *dev, *tmp; 1155 1156 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) { 1157 list_del_init(&dev->links.defer_sync); 1158 1159 if (dev != dont_lock_dev) 1160 device_lock(dev); 1161 1162 dev_sync_state(dev); 1163 1164 if (dev != dont_lock_dev) 1165 device_unlock(dev); 1166 1167 put_device(dev); 1168 } 1169 } 1170 1171 void device_links_supplier_sync_state_pause(void) 1172 { 1173 device_links_write_lock(); 1174 defer_sync_state_count++; 1175 device_links_write_unlock(); 1176 } 1177 1178 void device_links_supplier_sync_state_resume(void) 1179 { 1180 struct device *dev, *tmp; 1181 LIST_HEAD(sync_list); 1182 1183 device_links_write_lock(); 1184 if (!defer_sync_state_count) { 1185 WARN(true, "Unmatched sync_state pause/resume!"); 1186 goto out; 1187 } 1188 defer_sync_state_count--; 1189 if (defer_sync_state_count) 1190 goto out; 1191 1192 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) { 1193 /* 1194 * Delete from deferred_sync list before queuing it to 1195 * sync_list because defer_sync is used for both lists. 1196 */ 1197 list_del_init(&dev->links.defer_sync); 1198 __device_links_queue_sync_state(dev, &sync_list); 1199 } 1200 out: 1201 device_links_write_unlock(); 1202 1203 device_links_flush_sync_list(&sync_list, NULL); 1204 } 1205 1206 static int sync_state_resume_initcall(void) 1207 { 1208 device_links_supplier_sync_state_resume(); 1209 return 0; 1210 } 1211 late_initcall(sync_state_resume_initcall); 1212 1213 static void __device_links_supplier_defer_sync(struct device *sup) 1214 { 1215 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup)) 1216 list_add_tail(&sup->links.defer_sync, &deferred_sync); 1217 } 1218 1219 static void device_link_drop_managed(struct device_link *link) 1220 { 1221 link->flags &= ~DL_FLAG_MANAGED; 1222 WRITE_ONCE(link->status, DL_STATE_NONE); 1223 kref_put(&link->kref, __device_link_del); 1224 } 1225 1226 static ssize_t waiting_for_supplier_show(struct device *dev, 1227 struct device_attribute *attr, 1228 char *buf) 1229 { 1230 bool val; 1231 1232 device_lock(dev); 1233 mutex_lock(&fwnode_link_lock); 1234 val = !!fwnode_links_check_suppliers(dev->fwnode); 1235 mutex_unlock(&fwnode_link_lock); 1236 device_unlock(dev); 1237 return sysfs_emit(buf, "%u\n", val); 1238 } 1239 static DEVICE_ATTR_RO(waiting_for_supplier); 1240 1241 /** 1242 * device_links_force_bind - Prepares device to be force bound 1243 * @dev: Consumer device. 1244 * 1245 * device_bind_driver() force binds a device to a driver without calling any 1246 * driver probe functions. So the consumer really isn't going to wait for any 1247 * supplier before it's bound to the driver. We still want the device link 1248 * states to be sensible when this happens. 1249 * 1250 * In preparation for device_bind_driver(), this function goes through each 1251 * supplier device links and checks if the supplier is bound. If it is, then 1252 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link 1253 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored. 1254 */ 1255 void device_links_force_bind(struct device *dev) 1256 { 1257 struct device_link *link, *ln; 1258 1259 device_links_write_lock(); 1260 1261 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1262 if (!(link->flags & DL_FLAG_MANAGED)) 1263 continue; 1264 1265 if (link->status != DL_STATE_AVAILABLE) { 1266 device_link_drop_managed(link); 1267 continue; 1268 } 1269 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1270 } 1271 dev->links.status = DL_DEV_PROBING; 1272 1273 device_links_write_unlock(); 1274 } 1275 1276 /** 1277 * device_links_driver_bound - Update device links after probing its driver. 1278 * @dev: Device to update the links for. 1279 * 1280 * The probe has been successful, so update links from this device to any 1281 * consumers by changing their status to "available". 1282 * 1283 * Also change the status of @dev's links to suppliers to "active". 1284 * 1285 * Links without the DL_FLAG_MANAGED flag set are ignored. 1286 */ 1287 void device_links_driver_bound(struct device *dev) 1288 { 1289 struct device_link *link, *ln; 1290 LIST_HEAD(sync_list); 1291 1292 /* 1293 * If a device binds successfully, it's expected to have created all 1294 * the device links it needs to or make new device links as it needs 1295 * them. So, fw_devlink no longer needs to create device links to any 1296 * of the device's suppliers. 1297 * 1298 * Also, if a child firmware node of this bound device is not added as a 1299 * device by now, assume it is never going to be added. Make this bound 1300 * device the fallback supplier to the dangling consumers of the child 1301 * firmware node because this bound device is probably implementing the 1302 * child firmware node functionality and we don't want the dangling 1303 * consumers to defer probe indefinitely waiting for a device for the 1304 * child firmware node. 1305 */ 1306 if (dev->fwnode && dev->fwnode->dev == dev) { 1307 struct fwnode_handle *child; 1308 fwnode_links_purge_suppliers(dev->fwnode); 1309 mutex_lock(&fwnode_link_lock); 1310 fwnode_for_each_available_child_node(dev->fwnode, child) 1311 __fw_devlink_pickup_dangling_consumers(child, 1312 dev->fwnode); 1313 __fw_devlink_link_to_consumers(dev); 1314 mutex_unlock(&fwnode_link_lock); 1315 } 1316 device_remove_file(dev, &dev_attr_waiting_for_supplier); 1317 1318 device_links_write_lock(); 1319 1320 list_for_each_entry(link, &dev->links.consumers, s_node) { 1321 if (!(link->flags & DL_FLAG_MANAGED)) 1322 continue; 1323 1324 /* 1325 * Links created during consumer probe may be in the "consumer 1326 * probe" state to start with if the supplier is still probing 1327 * when they are created and they may become "active" if the 1328 * consumer probe returns first. Skip them here. 1329 */ 1330 if (link->status == DL_STATE_CONSUMER_PROBE || 1331 link->status == DL_STATE_ACTIVE) 1332 continue; 1333 1334 WARN_ON(link->status != DL_STATE_DORMANT); 1335 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1336 1337 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER) 1338 driver_deferred_probe_add(link->consumer); 1339 } 1340 1341 if (defer_sync_state_count) 1342 __device_links_supplier_defer_sync(dev); 1343 else 1344 __device_links_queue_sync_state(dev, &sync_list); 1345 1346 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1347 struct device *supplier; 1348 1349 if (!(link->flags & DL_FLAG_MANAGED)) 1350 continue; 1351 1352 supplier = link->supplier; 1353 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) { 1354 /* 1355 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no 1356 * other DL_MANAGED_LINK_FLAGS have been set. So, it's 1357 * save to drop the managed link completely. 1358 */ 1359 device_link_drop_managed(link); 1360 } else if (dev_is_best_effort(dev) && 1361 link->flags & DL_FLAG_INFERRED && 1362 link->status != DL_STATE_CONSUMER_PROBE && 1363 !link->supplier->can_match) { 1364 /* 1365 * When dev_is_best_effort() is true, we ignore device 1366 * links to suppliers that don't have a driver. If the 1367 * consumer device still managed to probe, there's no 1368 * point in maintaining a device link in a weird state 1369 * (consumer probed before supplier). So delete it. 1370 */ 1371 device_link_drop_managed(link); 1372 } else { 1373 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 1374 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 1375 } 1376 1377 /* 1378 * This needs to be done even for the deleted 1379 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last 1380 * device link that was preventing the supplier from getting a 1381 * sync_state() call. 1382 */ 1383 if (defer_sync_state_count) 1384 __device_links_supplier_defer_sync(supplier); 1385 else 1386 __device_links_queue_sync_state(supplier, &sync_list); 1387 } 1388 1389 dev->links.status = DL_DEV_DRIVER_BOUND; 1390 1391 device_links_write_unlock(); 1392 1393 device_links_flush_sync_list(&sync_list, dev); 1394 } 1395 1396 /** 1397 * __device_links_no_driver - Update links of a device without a driver. 1398 * @dev: Device without a drvier. 1399 * 1400 * Delete all non-persistent links from this device to any suppliers. 1401 * 1402 * Persistent links stay around, but their status is changed to "available", 1403 * unless they already are in the "supplier unbind in progress" state in which 1404 * case they need not be updated. 1405 * 1406 * Links without the DL_FLAG_MANAGED flag set are ignored. 1407 */ 1408 static void __device_links_no_driver(struct device *dev) 1409 { 1410 struct device_link *link, *ln; 1411 1412 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1413 if (!(link->flags & DL_FLAG_MANAGED)) 1414 continue; 1415 1416 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 1417 device_link_drop_managed(link); 1418 continue; 1419 } 1420 1421 if (link->status != DL_STATE_CONSUMER_PROBE && 1422 link->status != DL_STATE_ACTIVE) 1423 continue; 1424 1425 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1426 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1427 } else { 1428 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1429 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1430 } 1431 } 1432 1433 dev->links.status = DL_DEV_NO_DRIVER; 1434 } 1435 1436 /** 1437 * device_links_no_driver - Update links after failing driver probe. 1438 * @dev: Device whose driver has just failed to probe. 1439 * 1440 * Clean up leftover links to consumers for @dev and invoke 1441 * %__device_links_no_driver() to update links to suppliers for it as 1442 * appropriate. 1443 * 1444 * Links without the DL_FLAG_MANAGED flag set are ignored. 1445 */ 1446 void device_links_no_driver(struct device *dev) 1447 { 1448 struct device_link *link; 1449 1450 device_links_write_lock(); 1451 1452 list_for_each_entry(link, &dev->links.consumers, s_node) { 1453 if (!(link->flags & DL_FLAG_MANAGED)) 1454 continue; 1455 1456 /* 1457 * The probe has failed, so if the status of the link is 1458 * "consumer probe" or "active", it must have been added by 1459 * a probing consumer while this device was still probing. 1460 * Change its state to "dormant", as it represents a valid 1461 * relationship, but it is not functionally meaningful. 1462 */ 1463 if (link->status == DL_STATE_CONSUMER_PROBE || 1464 link->status == DL_STATE_ACTIVE) 1465 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1466 } 1467 1468 __device_links_no_driver(dev); 1469 1470 device_links_write_unlock(); 1471 } 1472 1473 /** 1474 * device_links_driver_cleanup - Update links after driver removal. 1475 * @dev: Device whose driver has just gone away. 1476 * 1477 * Update links to consumers for @dev by changing their status to "dormant" and 1478 * invoke %__device_links_no_driver() to update links to suppliers for it as 1479 * appropriate. 1480 * 1481 * Links without the DL_FLAG_MANAGED flag set are ignored. 1482 */ 1483 void device_links_driver_cleanup(struct device *dev) 1484 { 1485 struct device_link *link, *ln; 1486 1487 device_links_write_lock(); 1488 1489 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) { 1490 if (!(link->flags & DL_FLAG_MANAGED)) 1491 continue; 1492 1493 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER); 1494 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 1495 1496 /* 1497 * autoremove the links between this @dev and its consumer 1498 * devices that are not active, i.e. where the link state 1499 * has moved to DL_STATE_SUPPLIER_UNBIND. 1500 */ 1501 if (link->status == DL_STATE_SUPPLIER_UNBIND && 1502 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 1503 device_link_drop_managed(link); 1504 1505 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1506 } 1507 1508 list_del_init(&dev->links.defer_sync); 1509 __device_links_no_driver(dev); 1510 1511 device_links_write_unlock(); 1512 } 1513 1514 /** 1515 * device_links_busy - Check if there are any busy links to consumers. 1516 * @dev: Device to check. 1517 * 1518 * Check each consumer of the device and return 'true' if its link's status 1519 * is one of "consumer probe" or "active" (meaning that the given consumer is 1520 * probing right now or its driver is present). Otherwise, change the link 1521 * state to "supplier unbind" to prevent the consumer from being probed 1522 * successfully going forward. 1523 * 1524 * Return 'false' if there are no probing or active consumers. 1525 * 1526 * Links without the DL_FLAG_MANAGED flag set are ignored. 1527 */ 1528 bool device_links_busy(struct device *dev) 1529 { 1530 struct device_link *link; 1531 bool ret = false; 1532 1533 device_links_write_lock(); 1534 1535 list_for_each_entry(link, &dev->links.consumers, s_node) { 1536 if (!(link->flags & DL_FLAG_MANAGED)) 1537 continue; 1538 1539 if (link->status == DL_STATE_CONSUMER_PROBE 1540 || link->status == DL_STATE_ACTIVE) { 1541 ret = true; 1542 break; 1543 } 1544 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1545 } 1546 1547 dev->links.status = DL_DEV_UNBINDING; 1548 1549 device_links_write_unlock(); 1550 return ret; 1551 } 1552 1553 /** 1554 * device_links_unbind_consumers - Force unbind consumers of the given device. 1555 * @dev: Device to unbind the consumers of. 1556 * 1557 * Walk the list of links to consumers for @dev and if any of them is in the 1558 * "consumer probe" state, wait for all device probes in progress to complete 1559 * and start over. 1560 * 1561 * If that's not the case, change the status of the link to "supplier unbind" 1562 * and check if the link was in the "active" state. If so, force the consumer 1563 * driver to unbind and start over (the consumer will not re-probe as we have 1564 * changed the state of the link already). 1565 * 1566 * Links without the DL_FLAG_MANAGED flag set are ignored. 1567 */ 1568 void device_links_unbind_consumers(struct device *dev) 1569 { 1570 struct device_link *link; 1571 1572 start: 1573 device_links_write_lock(); 1574 1575 list_for_each_entry(link, &dev->links.consumers, s_node) { 1576 enum device_link_state status; 1577 1578 if (!(link->flags & DL_FLAG_MANAGED) || 1579 link->flags & DL_FLAG_SYNC_STATE_ONLY) 1580 continue; 1581 1582 status = link->status; 1583 if (status == DL_STATE_CONSUMER_PROBE) { 1584 device_links_write_unlock(); 1585 1586 wait_for_device_probe(); 1587 goto start; 1588 } 1589 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1590 if (status == DL_STATE_ACTIVE) { 1591 struct device *consumer = link->consumer; 1592 1593 get_device(consumer); 1594 1595 device_links_write_unlock(); 1596 1597 device_release_driver_internal(consumer, NULL, 1598 consumer->parent); 1599 put_device(consumer); 1600 goto start; 1601 } 1602 } 1603 1604 device_links_write_unlock(); 1605 } 1606 1607 /** 1608 * device_links_purge - Delete existing links to other devices. 1609 * @dev: Target device. 1610 */ 1611 static void device_links_purge(struct device *dev) 1612 { 1613 struct device_link *link, *ln; 1614 1615 if (dev->class == &devlink_class) 1616 return; 1617 1618 /* 1619 * Delete all of the remaining links from this device to any other 1620 * devices (either consumers or suppliers). 1621 */ 1622 device_links_write_lock(); 1623 1624 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1625 WARN_ON(link->status == DL_STATE_ACTIVE); 1626 __device_link_del(&link->kref); 1627 } 1628 1629 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 1630 WARN_ON(link->status != DL_STATE_DORMANT && 1631 link->status != DL_STATE_NONE); 1632 __device_link_del(&link->kref); 1633 } 1634 1635 device_links_write_unlock(); 1636 } 1637 1638 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \ 1639 DL_FLAG_SYNC_STATE_ONLY) 1640 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \ 1641 DL_FLAG_AUTOPROBE_CONSUMER) 1642 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \ 1643 DL_FLAG_PM_RUNTIME) 1644 1645 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1646 static int __init fw_devlink_setup(char *arg) 1647 { 1648 if (!arg) 1649 return -EINVAL; 1650 1651 if (strcmp(arg, "off") == 0) { 1652 fw_devlink_flags = 0; 1653 } else if (strcmp(arg, "permissive") == 0) { 1654 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1655 } else if (strcmp(arg, "on") == 0) { 1656 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1657 } else if (strcmp(arg, "rpm") == 0) { 1658 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM; 1659 } 1660 return 0; 1661 } 1662 early_param("fw_devlink", fw_devlink_setup); 1663 1664 static bool fw_devlink_strict; 1665 static int __init fw_devlink_strict_setup(char *arg) 1666 { 1667 return kstrtobool(arg, &fw_devlink_strict); 1668 } 1669 early_param("fw_devlink.strict", fw_devlink_strict_setup); 1670 1671 #define FW_DEVLINK_SYNC_STATE_STRICT 0 1672 #define FW_DEVLINK_SYNC_STATE_TIMEOUT 1 1673 1674 #ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT 1675 static int fw_devlink_sync_state; 1676 #else 1677 static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT; 1678 #endif 1679 1680 static int __init fw_devlink_sync_state_setup(char *arg) 1681 { 1682 if (!arg) 1683 return -EINVAL; 1684 1685 if (strcmp(arg, "strict") == 0) { 1686 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT; 1687 return 0; 1688 } else if (strcmp(arg, "timeout") == 0) { 1689 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT; 1690 return 0; 1691 } 1692 return -EINVAL; 1693 } 1694 early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup); 1695 1696 static inline u32 fw_devlink_get_flags(u8 fwlink_flags) 1697 { 1698 if (fwlink_flags & FWLINK_FLAG_CYCLE) 1699 return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE; 1700 1701 return fw_devlink_flags; 1702 } 1703 1704 static bool fw_devlink_is_permissive(void) 1705 { 1706 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE; 1707 } 1708 1709 bool fw_devlink_is_strict(void) 1710 { 1711 return fw_devlink_strict && !fw_devlink_is_permissive(); 1712 } 1713 1714 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode) 1715 { 1716 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED) 1717 return; 1718 1719 fwnode_call_int_op(fwnode, add_links); 1720 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED; 1721 } 1722 1723 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode) 1724 { 1725 struct fwnode_handle *child = NULL; 1726 1727 fw_devlink_parse_fwnode(fwnode); 1728 1729 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 1730 fw_devlink_parse_fwtree(child); 1731 } 1732 1733 static void fw_devlink_relax_link(struct device_link *link) 1734 { 1735 if (!(link->flags & DL_FLAG_INFERRED)) 1736 return; 1737 1738 if (device_link_flag_is_sync_state_only(link->flags)) 1739 return; 1740 1741 pm_runtime_drop_link(link); 1742 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE; 1743 dev_dbg(link->consumer, "Relaxing link with %s\n", 1744 dev_name(link->supplier)); 1745 } 1746 1747 static int fw_devlink_no_driver(struct device *dev, void *data) 1748 { 1749 struct device_link *link = to_devlink(dev); 1750 1751 if (!link->supplier->can_match) 1752 fw_devlink_relax_link(link); 1753 1754 return 0; 1755 } 1756 1757 void fw_devlink_drivers_done(void) 1758 { 1759 fw_devlink_drv_reg_done = true; 1760 device_links_write_lock(); 1761 class_for_each_device(&devlink_class, NULL, NULL, 1762 fw_devlink_no_driver); 1763 device_links_write_unlock(); 1764 } 1765 1766 static int fw_devlink_dev_sync_state(struct device *dev, void *data) 1767 { 1768 struct device_link *link = to_devlink(dev); 1769 struct device *sup = link->supplier; 1770 1771 if (!(link->flags & DL_FLAG_MANAGED) || 1772 link->status == DL_STATE_ACTIVE || sup->state_synced || 1773 !dev_has_sync_state(sup)) 1774 return 0; 1775 1776 if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) { 1777 dev_warn(sup, "sync_state() pending due to %s\n", 1778 dev_name(link->consumer)); 1779 return 0; 1780 } 1781 1782 if (!list_empty(&sup->links.defer_sync)) 1783 return 0; 1784 1785 dev_warn(sup, "Timed out. Forcing sync_state()\n"); 1786 sup->state_synced = true; 1787 get_device(sup); 1788 list_add_tail(&sup->links.defer_sync, data); 1789 1790 return 0; 1791 } 1792 1793 void fw_devlink_probing_done(void) 1794 { 1795 LIST_HEAD(sync_list); 1796 1797 device_links_write_lock(); 1798 class_for_each_device(&devlink_class, NULL, &sync_list, 1799 fw_devlink_dev_sync_state); 1800 device_links_write_unlock(); 1801 device_links_flush_sync_list(&sync_list, NULL); 1802 } 1803 1804 /** 1805 * wait_for_init_devices_probe - Try to probe any device needed for init 1806 * 1807 * Some devices might need to be probed and bound successfully before the kernel 1808 * boot sequence can finish and move on to init/userspace. For example, a 1809 * network interface might need to be bound to be able to mount a NFS rootfs. 1810 * 1811 * With fw_devlink=on by default, some of these devices might be blocked from 1812 * probing because they are waiting on a optional supplier that doesn't have a 1813 * driver. While fw_devlink will eventually identify such devices and unblock 1814 * the probing automatically, it might be too late by the time it unblocks the 1815 * probing of devices. For example, the IP4 autoconfig might timeout before 1816 * fw_devlink unblocks probing of the network interface. 1817 * 1818 * This function is available to temporarily try and probe all devices that have 1819 * a driver even if some of their suppliers haven't been added or don't have 1820 * drivers. 1821 * 1822 * The drivers can then decide which of the suppliers are optional vs mandatory 1823 * and probe the device if possible. By the time this function returns, all such 1824 * "best effort" probes are guaranteed to be completed. If a device successfully 1825 * probes in this mode, we delete all fw_devlink discovered dependencies of that 1826 * device where the supplier hasn't yet probed successfully because they have to 1827 * be optional dependencies. 1828 * 1829 * Any devices that didn't successfully probe go back to being treated as if 1830 * this function was never called. 1831 * 1832 * This also means that some devices that aren't needed for init and could have 1833 * waited for their optional supplier to probe (when the supplier's module is 1834 * loaded later on) would end up probing prematurely with limited functionality. 1835 * So call this function only when boot would fail without it. 1836 */ 1837 void __init wait_for_init_devices_probe(void) 1838 { 1839 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1840 return; 1841 1842 /* 1843 * Wait for all ongoing probes to finish so that the "best effort" is 1844 * only applied to devices that can't probe otherwise. 1845 */ 1846 wait_for_device_probe(); 1847 1848 pr_info("Trying to probe devices needed for running init ...\n"); 1849 fw_devlink_best_effort = true; 1850 driver_deferred_probe_trigger(); 1851 1852 /* 1853 * Wait for all "best effort" probes to finish before going back to 1854 * normal enforcement. 1855 */ 1856 wait_for_device_probe(); 1857 fw_devlink_best_effort = false; 1858 } 1859 1860 static void fw_devlink_unblock_consumers(struct device *dev) 1861 { 1862 struct device_link *link; 1863 1864 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1865 return; 1866 1867 device_links_write_lock(); 1868 list_for_each_entry(link, &dev->links.consumers, s_node) 1869 fw_devlink_relax_link(link); 1870 device_links_write_unlock(); 1871 } 1872 1873 1874 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode) 1875 { 1876 struct device *dev; 1877 bool ret; 1878 1879 if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED)) 1880 return false; 1881 1882 dev = get_dev_from_fwnode(fwnode); 1883 ret = !dev || dev->links.status == DL_DEV_NO_DRIVER; 1884 put_device(dev); 1885 1886 return ret; 1887 } 1888 1889 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode) 1890 { 1891 struct fwnode_handle *parent; 1892 1893 fwnode_for_each_parent_node(fwnode, parent) { 1894 if (fwnode_init_without_drv(parent)) { 1895 fwnode_handle_put(parent); 1896 return true; 1897 } 1898 } 1899 1900 return false; 1901 } 1902 1903 /** 1904 * __fw_devlink_relax_cycles - Relax and mark dependency cycles. 1905 * @con: Potential consumer device. 1906 * @sup_handle: Potential supplier's fwnode. 1907 * 1908 * Needs to be called with fwnode_lock and device link lock held. 1909 * 1910 * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly 1911 * depend on @con. This function can detect multiple cyles between @sup_handle 1912 * and @con. When such dependency cycles are found, convert all device links 1913 * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark 1914 * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are 1915 * converted into a device link in the future, they are created as 1916 * SYNC_STATE_ONLY device links. This is the equivalent of doing 1917 * fw_devlink=permissive just between the devices in the cycle. We need to do 1918 * this because, at this point, fw_devlink can't tell which of these 1919 * dependencies is not a real dependency. 1920 * 1921 * Return true if one or more cycles were found. Otherwise, return false. 1922 */ 1923 static bool __fw_devlink_relax_cycles(struct device *con, 1924 struct fwnode_handle *sup_handle) 1925 { 1926 struct device *sup_dev = NULL, *par_dev = NULL; 1927 struct fwnode_link *link; 1928 struct device_link *dev_link; 1929 bool ret = false; 1930 1931 if (!sup_handle) 1932 return false; 1933 1934 /* 1935 * We aren't trying to find all cycles. Just a cycle between con and 1936 * sup_handle. 1937 */ 1938 if (sup_handle->flags & FWNODE_FLAG_VISITED) 1939 return false; 1940 1941 sup_handle->flags |= FWNODE_FLAG_VISITED; 1942 1943 sup_dev = get_dev_from_fwnode(sup_handle); 1944 1945 /* Termination condition. */ 1946 if (sup_dev == con) { 1947 ret = true; 1948 goto out; 1949 } 1950 1951 /* 1952 * If sup_dev is bound to a driver and @con hasn't started binding to a 1953 * driver, sup_dev can't be a consumer of @con. So, no need to check 1954 * further. 1955 */ 1956 if (sup_dev && sup_dev->links.status == DL_DEV_DRIVER_BOUND && 1957 con->links.status == DL_DEV_NO_DRIVER) { 1958 ret = false; 1959 goto out; 1960 } 1961 1962 list_for_each_entry(link, &sup_handle->suppliers, c_hook) { 1963 if (__fw_devlink_relax_cycles(con, link->supplier)) { 1964 __fwnode_link_cycle(link); 1965 ret = true; 1966 } 1967 } 1968 1969 /* 1970 * Give priority to device parent over fwnode parent to account for any 1971 * quirks in how fwnodes are converted to devices. 1972 */ 1973 if (sup_dev) 1974 par_dev = get_device(sup_dev->parent); 1975 else 1976 par_dev = fwnode_get_next_parent_dev(sup_handle); 1977 1978 if (par_dev && __fw_devlink_relax_cycles(con, par_dev->fwnode)) 1979 ret = true; 1980 1981 if (!sup_dev) 1982 goto out; 1983 1984 list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) { 1985 /* 1986 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as 1987 * such due to a cycle. 1988 */ 1989 if (device_link_flag_is_sync_state_only(dev_link->flags) && 1990 !(dev_link->flags & DL_FLAG_CYCLE)) 1991 continue; 1992 1993 if (__fw_devlink_relax_cycles(con, 1994 dev_link->supplier->fwnode)) { 1995 fw_devlink_relax_link(dev_link); 1996 dev_link->flags |= DL_FLAG_CYCLE; 1997 ret = true; 1998 } 1999 } 2000 2001 out: 2002 sup_handle->flags &= ~FWNODE_FLAG_VISITED; 2003 put_device(sup_dev); 2004 put_device(par_dev); 2005 return ret; 2006 } 2007 2008 /** 2009 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode 2010 * @con: consumer device for the device link 2011 * @sup_handle: fwnode handle of supplier 2012 * @link: fwnode link that's being converted to a device link 2013 * 2014 * This function will try to create a device link between the consumer device 2015 * @con and the supplier device represented by @sup_handle. 2016 * 2017 * The supplier has to be provided as a fwnode because incorrect cycles in 2018 * fwnode links can sometimes cause the supplier device to never be created. 2019 * This function detects such cases and returns an error if it cannot create a 2020 * device link from the consumer to a missing supplier. 2021 * 2022 * Returns, 2023 * 0 on successfully creating a device link 2024 * -EINVAL if the device link cannot be created as expected 2025 * -EAGAIN if the device link cannot be created right now, but it may be 2026 * possible to do that in the future 2027 */ 2028 static int fw_devlink_create_devlink(struct device *con, 2029 struct fwnode_handle *sup_handle, 2030 struct fwnode_link *link) 2031 { 2032 struct device *sup_dev; 2033 int ret = 0; 2034 u32 flags; 2035 2036 if (con->fwnode == link->consumer) 2037 flags = fw_devlink_get_flags(link->flags); 2038 else 2039 flags = FW_DEVLINK_FLAGS_PERMISSIVE; 2040 2041 /* 2042 * In some cases, a device P might also be a supplier to its child node 2043 * C. However, this would defer the probe of C until the probe of P 2044 * completes successfully. This is perfectly fine in the device driver 2045 * model. device_add() doesn't guarantee probe completion of the device 2046 * by the time it returns. 2047 * 2048 * However, there are a few drivers that assume C will finish probing 2049 * as soon as it's added and before P finishes probing. So, we provide 2050 * a flag to let fw_devlink know not to delay the probe of C until the 2051 * probe of P completes successfully. 2052 * 2053 * When such a flag is set, we can't create device links where P is the 2054 * supplier of C as that would delay the probe of C. 2055 */ 2056 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD && 2057 fwnode_is_ancestor_of(sup_handle, con->fwnode)) 2058 return -EINVAL; 2059 2060 /* 2061 * SYNC_STATE_ONLY device links don't block probing and supports cycles. 2062 * So, one might expect that cycle detection isn't necessary for them. 2063 * However, if the device link was marked as SYNC_STATE_ONLY because 2064 * it's part of a cycle, then we still need to do cycle detection. This 2065 * is because the consumer and supplier might be part of multiple cycles 2066 * and we need to detect all those cycles. 2067 */ 2068 if (!device_link_flag_is_sync_state_only(flags) || 2069 flags & DL_FLAG_CYCLE) { 2070 device_links_write_lock(); 2071 if (__fw_devlink_relax_cycles(con, sup_handle)) { 2072 __fwnode_link_cycle(link); 2073 flags = fw_devlink_get_flags(link->flags); 2074 dev_info(con, "Fixed dependency cycle(s) with %pfwf\n", 2075 sup_handle); 2076 } 2077 device_links_write_unlock(); 2078 } 2079 2080 if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE) 2081 sup_dev = fwnode_get_next_parent_dev(sup_handle); 2082 else 2083 sup_dev = get_dev_from_fwnode(sup_handle); 2084 2085 if (sup_dev) { 2086 /* 2087 * If it's one of those drivers that don't actually bind to 2088 * their device using driver core, then don't wait on this 2089 * supplier device indefinitely. 2090 */ 2091 if (sup_dev->links.status == DL_DEV_NO_DRIVER && 2092 sup_handle->flags & FWNODE_FLAG_INITIALIZED) { 2093 dev_dbg(con, 2094 "Not linking %pfwf - dev might never probe\n", 2095 sup_handle); 2096 ret = -EINVAL; 2097 goto out; 2098 } 2099 2100 if (con != sup_dev && !device_link_add(con, sup_dev, flags)) { 2101 dev_err(con, "Failed to create device link (0x%x) with %s\n", 2102 flags, dev_name(sup_dev)); 2103 ret = -EINVAL; 2104 } 2105 2106 goto out; 2107 } 2108 2109 /* 2110 * Supplier or supplier's ancestor already initialized without a struct 2111 * device or being probed by a driver. 2112 */ 2113 if (fwnode_init_without_drv(sup_handle) || 2114 fwnode_ancestor_init_without_drv(sup_handle)) { 2115 dev_dbg(con, "Not linking %pfwf - might never become dev\n", 2116 sup_handle); 2117 return -EINVAL; 2118 } 2119 2120 ret = -EAGAIN; 2121 out: 2122 put_device(sup_dev); 2123 return ret; 2124 } 2125 2126 /** 2127 * __fw_devlink_link_to_consumers - Create device links to consumers of a device 2128 * @dev: Device that needs to be linked to its consumers 2129 * 2130 * This function looks at all the consumer fwnodes of @dev and creates device 2131 * links between the consumer device and @dev (supplier). 2132 * 2133 * If the consumer device has not been added yet, then this function creates a 2134 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device 2135 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a 2136 * sync_state() callback before the real consumer device gets to be added and 2137 * then probed. 2138 * 2139 * Once device links are created from the real consumer to @dev (supplier), the 2140 * fwnode links are deleted. 2141 */ 2142 static void __fw_devlink_link_to_consumers(struct device *dev) 2143 { 2144 struct fwnode_handle *fwnode = dev->fwnode; 2145 struct fwnode_link *link, *tmp; 2146 2147 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) { 2148 struct device *con_dev; 2149 bool own_link = true; 2150 int ret; 2151 2152 con_dev = get_dev_from_fwnode(link->consumer); 2153 /* 2154 * If consumer device is not available yet, make a "proxy" 2155 * SYNC_STATE_ONLY link from the consumer's parent device to 2156 * the supplier device. This is necessary to make sure the 2157 * supplier doesn't get a sync_state() callback before the real 2158 * consumer can create a device link to the supplier. 2159 * 2160 * This proxy link step is needed to handle the case where the 2161 * consumer's parent device is added before the supplier. 2162 */ 2163 if (!con_dev) { 2164 con_dev = fwnode_get_next_parent_dev(link->consumer); 2165 /* 2166 * However, if the consumer's parent device is also the 2167 * parent of the supplier, don't create a 2168 * consumer-supplier link from the parent to its child 2169 * device. Such a dependency is impossible. 2170 */ 2171 if (con_dev && 2172 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) { 2173 put_device(con_dev); 2174 con_dev = NULL; 2175 } else { 2176 own_link = false; 2177 } 2178 } 2179 2180 if (!con_dev) 2181 continue; 2182 2183 ret = fw_devlink_create_devlink(con_dev, fwnode, link); 2184 put_device(con_dev); 2185 if (!own_link || ret == -EAGAIN) 2186 continue; 2187 2188 __fwnode_link_del(link); 2189 } 2190 } 2191 2192 /** 2193 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device 2194 * @dev: The consumer device that needs to be linked to its suppliers 2195 * @fwnode: Root of the fwnode tree that is used to create device links 2196 * 2197 * This function looks at all the supplier fwnodes of fwnode tree rooted at 2198 * @fwnode and creates device links between @dev (consumer) and all the 2199 * supplier devices of the entire fwnode tree at @fwnode. 2200 * 2201 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev 2202 * and the real suppliers of @dev. Once these device links are created, the 2203 * fwnode links are deleted. 2204 * 2205 * In addition, it also looks at all the suppliers of the entire fwnode tree 2206 * because some of the child devices of @dev that have not been added yet 2207 * (because @dev hasn't probed) might already have their suppliers added to 2208 * driver core. So, this function creates SYNC_STATE_ONLY device links between 2209 * @dev (consumer) and these suppliers to make sure they don't execute their 2210 * sync_state() callbacks before these child devices have a chance to create 2211 * their device links. The fwnode links that correspond to the child devices 2212 * aren't delete because they are needed later to create the device links 2213 * between the real consumer and supplier devices. 2214 */ 2215 static void __fw_devlink_link_to_suppliers(struct device *dev, 2216 struct fwnode_handle *fwnode) 2217 { 2218 bool own_link = (dev->fwnode == fwnode); 2219 struct fwnode_link *link, *tmp; 2220 struct fwnode_handle *child = NULL; 2221 2222 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) { 2223 int ret; 2224 struct fwnode_handle *sup = link->supplier; 2225 2226 ret = fw_devlink_create_devlink(dev, sup, link); 2227 if (!own_link || ret == -EAGAIN) 2228 continue; 2229 2230 __fwnode_link_del(link); 2231 } 2232 2233 /* 2234 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of 2235 * all the descendants. This proxy link step is needed to handle the 2236 * case where the supplier is added before the consumer's parent device 2237 * (@dev). 2238 */ 2239 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 2240 __fw_devlink_link_to_suppliers(dev, child); 2241 } 2242 2243 static void fw_devlink_link_device(struct device *dev) 2244 { 2245 struct fwnode_handle *fwnode = dev->fwnode; 2246 2247 if (!fw_devlink_flags) 2248 return; 2249 2250 fw_devlink_parse_fwtree(fwnode); 2251 2252 mutex_lock(&fwnode_link_lock); 2253 __fw_devlink_link_to_consumers(dev); 2254 __fw_devlink_link_to_suppliers(dev, fwnode); 2255 mutex_unlock(&fwnode_link_lock); 2256 } 2257 2258 /* Device links support end. */ 2259 2260 int (*platform_notify)(struct device *dev) = NULL; 2261 int (*platform_notify_remove)(struct device *dev) = NULL; 2262 static struct kobject *dev_kobj; 2263 2264 /* /sys/dev/char */ 2265 static struct kobject *sysfs_dev_char_kobj; 2266 2267 /* /sys/dev/block */ 2268 static struct kobject *sysfs_dev_block_kobj; 2269 2270 static DEFINE_MUTEX(device_hotplug_lock); 2271 2272 void lock_device_hotplug(void) 2273 { 2274 mutex_lock(&device_hotplug_lock); 2275 } 2276 2277 void unlock_device_hotplug(void) 2278 { 2279 mutex_unlock(&device_hotplug_lock); 2280 } 2281 2282 int lock_device_hotplug_sysfs(void) 2283 { 2284 if (mutex_trylock(&device_hotplug_lock)) 2285 return 0; 2286 2287 /* Avoid busy looping (5 ms of sleep should do). */ 2288 msleep(5); 2289 return restart_syscall(); 2290 } 2291 2292 #ifdef CONFIG_BLOCK 2293 static inline int device_is_not_partition(struct device *dev) 2294 { 2295 return !(dev->type == &part_type); 2296 } 2297 #else 2298 static inline int device_is_not_partition(struct device *dev) 2299 { 2300 return 1; 2301 } 2302 #endif 2303 2304 static void device_platform_notify(struct device *dev) 2305 { 2306 acpi_device_notify(dev); 2307 2308 software_node_notify(dev); 2309 2310 if (platform_notify) 2311 platform_notify(dev); 2312 } 2313 2314 static void device_platform_notify_remove(struct device *dev) 2315 { 2316 if (platform_notify_remove) 2317 platform_notify_remove(dev); 2318 2319 software_node_notify_remove(dev); 2320 2321 acpi_device_notify_remove(dev); 2322 } 2323 2324 /** 2325 * dev_driver_string - Return a device's driver name, if at all possible 2326 * @dev: struct device to get the name of 2327 * 2328 * Will return the device's driver's name if it is bound to a device. If 2329 * the device is not bound to a driver, it will return the name of the bus 2330 * it is attached to. If it is not attached to a bus either, an empty 2331 * string will be returned. 2332 */ 2333 const char *dev_driver_string(const struct device *dev) 2334 { 2335 struct device_driver *drv; 2336 2337 /* dev->driver can change to NULL underneath us because of unbinding, 2338 * so be careful about accessing it. dev->bus and dev->class should 2339 * never change once they are set, so they don't need special care. 2340 */ 2341 drv = READ_ONCE(dev->driver); 2342 return drv ? drv->name : dev_bus_name(dev); 2343 } 2344 EXPORT_SYMBOL(dev_driver_string); 2345 2346 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 2347 2348 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 2349 char *buf) 2350 { 2351 struct device_attribute *dev_attr = to_dev_attr(attr); 2352 struct device *dev = kobj_to_dev(kobj); 2353 ssize_t ret = -EIO; 2354 2355 if (dev_attr->show) 2356 ret = dev_attr->show(dev, dev_attr, buf); 2357 if (ret >= (ssize_t)PAGE_SIZE) { 2358 printk("dev_attr_show: %pS returned bad count\n", 2359 dev_attr->show); 2360 } 2361 return ret; 2362 } 2363 2364 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 2365 const char *buf, size_t count) 2366 { 2367 struct device_attribute *dev_attr = to_dev_attr(attr); 2368 struct device *dev = kobj_to_dev(kobj); 2369 ssize_t ret = -EIO; 2370 2371 if (dev_attr->store) 2372 ret = dev_attr->store(dev, dev_attr, buf, count); 2373 return ret; 2374 } 2375 2376 static const struct sysfs_ops dev_sysfs_ops = { 2377 .show = dev_attr_show, 2378 .store = dev_attr_store, 2379 }; 2380 2381 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 2382 2383 ssize_t device_store_ulong(struct device *dev, 2384 struct device_attribute *attr, 2385 const char *buf, size_t size) 2386 { 2387 struct dev_ext_attribute *ea = to_ext_attr(attr); 2388 int ret; 2389 unsigned long new; 2390 2391 ret = kstrtoul(buf, 0, &new); 2392 if (ret) 2393 return ret; 2394 *(unsigned long *)(ea->var) = new; 2395 /* Always return full write size even if we didn't consume all */ 2396 return size; 2397 } 2398 EXPORT_SYMBOL_GPL(device_store_ulong); 2399 2400 ssize_t device_show_ulong(struct device *dev, 2401 struct device_attribute *attr, 2402 char *buf) 2403 { 2404 struct dev_ext_attribute *ea = to_ext_attr(attr); 2405 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var)); 2406 } 2407 EXPORT_SYMBOL_GPL(device_show_ulong); 2408 2409 ssize_t device_store_int(struct device *dev, 2410 struct device_attribute *attr, 2411 const char *buf, size_t size) 2412 { 2413 struct dev_ext_attribute *ea = to_ext_attr(attr); 2414 int ret; 2415 long new; 2416 2417 ret = kstrtol(buf, 0, &new); 2418 if (ret) 2419 return ret; 2420 2421 if (new > INT_MAX || new < INT_MIN) 2422 return -EINVAL; 2423 *(int *)(ea->var) = new; 2424 /* Always return full write size even if we didn't consume all */ 2425 return size; 2426 } 2427 EXPORT_SYMBOL_GPL(device_store_int); 2428 2429 ssize_t device_show_int(struct device *dev, 2430 struct device_attribute *attr, 2431 char *buf) 2432 { 2433 struct dev_ext_attribute *ea = to_ext_attr(attr); 2434 2435 return sysfs_emit(buf, "%d\n", *(int *)(ea->var)); 2436 } 2437 EXPORT_SYMBOL_GPL(device_show_int); 2438 2439 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 2440 const char *buf, size_t size) 2441 { 2442 struct dev_ext_attribute *ea = to_ext_attr(attr); 2443 2444 if (kstrtobool(buf, ea->var) < 0) 2445 return -EINVAL; 2446 2447 return size; 2448 } 2449 EXPORT_SYMBOL_GPL(device_store_bool); 2450 2451 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 2452 char *buf) 2453 { 2454 struct dev_ext_attribute *ea = to_ext_attr(attr); 2455 2456 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var)); 2457 } 2458 EXPORT_SYMBOL_GPL(device_show_bool); 2459 2460 /** 2461 * device_release - free device structure. 2462 * @kobj: device's kobject. 2463 * 2464 * This is called once the reference count for the object 2465 * reaches 0. We forward the call to the device's release 2466 * method, which should handle actually freeing the structure. 2467 */ 2468 static void device_release(struct kobject *kobj) 2469 { 2470 struct device *dev = kobj_to_dev(kobj); 2471 struct device_private *p = dev->p; 2472 2473 /* 2474 * Some platform devices are driven without driver attached 2475 * and managed resources may have been acquired. Make sure 2476 * all resources are released. 2477 * 2478 * Drivers still can add resources into device after device 2479 * is deleted but alive, so release devres here to avoid 2480 * possible memory leak. 2481 */ 2482 devres_release_all(dev); 2483 2484 kfree(dev->dma_range_map); 2485 2486 if (dev->release) 2487 dev->release(dev); 2488 else if (dev->type && dev->type->release) 2489 dev->type->release(dev); 2490 else if (dev->class && dev->class->dev_release) 2491 dev->class->dev_release(dev); 2492 else 2493 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n", 2494 dev_name(dev)); 2495 kfree(p); 2496 } 2497 2498 static const void *device_namespace(const struct kobject *kobj) 2499 { 2500 const struct device *dev = kobj_to_dev(kobj); 2501 const void *ns = NULL; 2502 2503 if (dev->class && dev->class->ns_type) 2504 ns = dev->class->namespace(dev); 2505 2506 return ns; 2507 } 2508 2509 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid) 2510 { 2511 const struct device *dev = kobj_to_dev(kobj); 2512 2513 if (dev->class && dev->class->get_ownership) 2514 dev->class->get_ownership(dev, uid, gid); 2515 } 2516 2517 static const struct kobj_type device_ktype = { 2518 .release = device_release, 2519 .sysfs_ops = &dev_sysfs_ops, 2520 .namespace = device_namespace, 2521 .get_ownership = device_get_ownership, 2522 }; 2523 2524 2525 static int dev_uevent_filter(const struct kobject *kobj) 2526 { 2527 const struct kobj_type *ktype = get_ktype(kobj); 2528 2529 if (ktype == &device_ktype) { 2530 const struct device *dev = kobj_to_dev(kobj); 2531 if (dev->bus) 2532 return 1; 2533 if (dev->class) 2534 return 1; 2535 } 2536 return 0; 2537 } 2538 2539 static const char *dev_uevent_name(const struct kobject *kobj) 2540 { 2541 const struct device *dev = kobj_to_dev(kobj); 2542 2543 if (dev->bus) 2544 return dev->bus->name; 2545 if (dev->class) 2546 return dev->class->name; 2547 return NULL; 2548 } 2549 2550 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 2551 { 2552 const struct device *dev = kobj_to_dev(kobj); 2553 int retval = 0; 2554 2555 /* add device node properties if present */ 2556 if (MAJOR(dev->devt)) { 2557 const char *tmp; 2558 const char *name; 2559 umode_t mode = 0; 2560 kuid_t uid = GLOBAL_ROOT_UID; 2561 kgid_t gid = GLOBAL_ROOT_GID; 2562 2563 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 2564 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 2565 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 2566 if (name) { 2567 add_uevent_var(env, "DEVNAME=%s", name); 2568 if (mode) 2569 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 2570 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 2571 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 2572 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 2573 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 2574 kfree(tmp); 2575 } 2576 } 2577 2578 if (dev->type && dev->type->name) 2579 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 2580 2581 if (dev->driver) 2582 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 2583 2584 /* Add common DT information about the device */ 2585 of_device_uevent(dev, env); 2586 2587 /* have the bus specific function add its stuff */ 2588 if (dev->bus && dev->bus->uevent) { 2589 retval = dev->bus->uevent(dev, env); 2590 if (retval) 2591 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 2592 dev_name(dev), __func__, retval); 2593 } 2594 2595 /* have the class specific function add its stuff */ 2596 if (dev->class && dev->class->dev_uevent) { 2597 retval = dev->class->dev_uevent(dev, env); 2598 if (retval) 2599 pr_debug("device: '%s': %s: class uevent() " 2600 "returned %d\n", dev_name(dev), 2601 __func__, retval); 2602 } 2603 2604 /* have the device type specific function add its stuff */ 2605 if (dev->type && dev->type->uevent) { 2606 retval = dev->type->uevent(dev, env); 2607 if (retval) 2608 pr_debug("device: '%s': %s: dev_type uevent() " 2609 "returned %d\n", dev_name(dev), 2610 __func__, retval); 2611 } 2612 2613 return retval; 2614 } 2615 2616 static const struct kset_uevent_ops device_uevent_ops = { 2617 .filter = dev_uevent_filter, 2618 .name = dev_uevent_name, 2619 .uevent = dev_uevent, 2620 }; 2621 2622 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 2623 char *buf) 2624 { 2625 struct kobject *top_kobj; 2626 struct kset *kset; 2627 struct kobj_uevent_env *env = NULL; 2628 int i; 2629 int len = 0; 2630 int retval; 2631 2632 /* search the kset, the device belongs to */ 2633 top_kobj = &dev->kobj; 2634 while (!top_kobj->kset && top_kobj->parent) 2635 top_kobj = top_kobj->parent; 2636 if (!top_kobj->kset) 2637 goto out; 2638 2639 kset = top_kobj->kset; 2640 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 2641 goto out; 2642 2643 /* respect filter */ 2644 if (kset->uevent_ops && kset->uevent_ops->filter) 2645 if (!kset->uevent_ops->filter(&dev->kobj)) 2646 goto out; 2647 2648 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 2649 if (!env) 2650 return -ENOMEM; 2651 2652 /* let the kset specific function add its keys */ 2653 retval = kset->uevent_ops->uevent(&dev->kobj, env); 2654 if (retval) 2655 goto out; 2656 2657 /* copy keys to file */ 2658 for (i = 0; i < env->envp_idx; i++) 2659 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]); 2660 out: 2661 kfree(env); 2662 return len; 2663 } 2664 2665 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 2666 const char *buf, size_t count) 2667 { 2668 int rc; 2669 2670 rc = kobject_synth_uevent(&dev->kobj, buf, count); 2671 2672 if (rc) { 2673 dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc); 2674 return rc; 2675 } 2676 2677 return count; 2678 } 2679 static DEVICE_ATTR_RW(uevent); 2680 2681 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 2682 char *buf) 2683 { 2684 bool val; 2685 2686 device_lock(dev); 2687 val = !dev->offline; 2688 device_unlock(dev); 2689 return sysfs_emit(buf, "%u\n", val); 2690 } 2691 2692 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 2693 const char *buf, size_t count) 2694 { 2695 bool val; 2696 int ret; 2697 2698 ret = kstrtobool(buf, &val); 2699 if (ret < 0) 2700 return ret; 2701 2702 ret = lock_device_hotplug_sysfs(); 2703 if (ret) 2704 return ret; 2705 2706 ret = val ? device_online(dev) : device_offline(dev); 2707 unlock_device_hotplug(); 2708 return ret < 0 ? ret : count; 2709 } 2710 static DEVICE_ATTR_RW(online); 2711 2712 static ssize_t removable_show(struct device *dev, struct device_attribute *attr, 2713 char *buf) 2714 { 2715 const char *loc; 2716 2717 switch (dev->removable) { 2718 case DEVICE_REMOVABLE: 2719 loc = "removable"; 2720 break; 2721 case DEVICE_FIXED: 2722 loc = "fixed"; 2723 break; 2724 default: 2725 loc = "unknown"; 2726 } 2727 return sysfs_emit(buf, "%s\n", loc); 2728 } 2729 static DEVICE_ATTR_RO(removable); 2730 2731 int device_add_groups(struct device *dev, const struct attribute_group **groups) 2732 { 2733 return sysfs_create_groups(&dev->kobj, groups); 2734 } 2735 EXPORT_SYMBOL_GPL(device_add_groups); 2736 2737 void device_remove_groups(struct device *dev, 2738 const struct attribute_group **groups) 2739 { 2740 sysfs_remove_groups(&dev->kobj, groups); 2741 } 2742 EXPORT_SYMBOL_GPL(device_remove_groups); 2743 2744 union device_attr_group_devres { 2745 const struct attribute_group *group; 2746 const struct attribute_group **groups; 2747 }; 2748 2749 static void devm_attr_group_remove(struct device *dev, void *res) 2750 { 2751 union device_attr_group_devres *devres = res; 2752 const struct attribute_group *group = devres->group; 2753 2754 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 2755 sysfs_remove_group(&dev->kobj, group); 2756 } 2757 2758 static void devm_attr_groups_remove(struct device *dev, void *res) 2759 { 2760 union device_attr_group_devres *devres = res; 2761 const struct attribute_group **groups = devres->groups; 2762 2763 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups); 2764 sysfs_remove_groups(&dev->kobj, groups); 2765 } 2766 2767 /** 2768 * devm_device_add_group - given a device, create a managed attribute group 2769 * @dev: The device to create the group for 2770 * @grp: The attribute group to create 2771 * 2772 * This function creates a group for the first time. It will explicitly 2773 * warn and error if any of the attribute files being created already exist. 2774 * 2775 * Returns 0 on success or error code on failure. 2776 */ 2777 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 2778 { 2779 union device_attr_group_devres *devres; 2780 int error; 2781 2782 devres = devres_alloc(devm_attr_group_remove, 2783 sizeof(*devres), GFP_KERNEL); 2784 if (!devres) 2785 return -ENOMEM; 2786 2787 error = sysfs_create_group(&dev->kobj, grp); 2788 if (error) { 2789 devres_free(devres); 2790 return error; 2791 } 2792 2793 devres->group = grp; 2794 devres_add(dev, devres); 2795 return 0; 2796 } 2797 EXPORT_SYMBOL_GPL(devm_device_add_group); 2798 2799 /** 2800 * devm_device_add_groups - create a bunch of managed attribute groups 2801 * @dev: The device to create the group for 2802 * @groups: The attribute groups to create, NULL terminated 2803 * 2804 * This function creates a bunch of managed attribute groups. If an error 2805 * occurs when creating a group, all previously created groups will be 2806 * removed, unwinding everything back to the original state when this 2807 * function was called. It will explicitly warn and error if any of the 2808 * attribute files being created already exist. 2809 * 2810 * Returns 0 on success or error code from sysfs_create_group on failure. 2811 */ 2812 int devm_device_add_groups(struct device *dev, 2813 const struct attribute_group **groups) 2814 { 2815 union device_attr_group_devres *devres; 2816 int error; 2817 2818 devres = devres_alloc(devm_attr_groups_remove, 2819 sizeof(*devres), GFP_KERNEL); 2820 if (!devres) 2821 return -ENOMEM; 2822 2823 error = sysfs_create_groups(&dev->kobj, groups); 2824 if (error) { 2825 devres_free(devres); 2826 return error; 2827 } 2828 2829 devres->groups = groups; 2830 devres_add(dev, devres); 2831 return 0; 2832 } 2833 EXPORT_SYMBOL_GPL(devm_device_add_groups); 2834 2835 static int device_add_attrs(struct device *dev) 2836 { 2837 const struct class *class = dev->class; 2838 const struct device_type *type = dev->type; 2839 int error; 2840 2841 if (class) { 2842 error = device_add_groups(dev, class->dev_groups); 2843 if (error) 2844 return error; 2845 } 2846 2847 if (type) { 2848 error = device_add_groups(dev, type->groups); 2849 if (error) 2850 goto err_remove_class_groups; 2851 } 2852 2853 error = device_add_groups(dev, dev->groups); 2854 if (error) 2855 goto err_remove_type_groups; 2856 2857 if (device_supports_offline(dev) && !dev->offline_disabled) { 2858 error = device_create_file(dev, &dev_attr_online); 2859 if (error) 2860 goto err_remove_dev_groups; 2861 } 2862 2863 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) { 2864 error = device_create_file(dev, &dev_attr_waiting_for_supplier); 2865 if (error) 2866 goto err_remove_dev_online; 2867 } 2868 2869 if (dev_removable_is_valid(dev)) { 2870 error = device_create_file(dev, &dev_attr_removable); 2871 if (error) 2872 goto err_remove_dev_waiting_for_supplier; 2873 } 2874 2875 if (dev_add_physical_location(dev)) { 2876 error = device_add_group(dev, 2877 &dev_attr_physical_location_group); 2878 if (error) 2879 goto err_remove_dev_removable; 2880 } 2881 2882 return 0; 2883 2884 err_remove_dev_removable: 2885 device_remove_file(dev, &dev_attr_removable); 2886 err_remove_dev_waiting_for_supplier: 2887 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2888 err_remove_dev_online: 2889 device_remove_file(dev, &dev_attr_online); 2890 err_remove_dev_groups: 2891 device_remove_groups(dev, dev->groups); 2892 err_remove_type_groups: 2893 if (type) 2894 device_remove_groups(dev, type->groups); 2895 err_remove_class_groups: 2896 if (class) 2897 device_remove_groups(dev, class->dev_groups); 2898 2899 return error; 2900 } 2901 2902 static void device_remove_attrs(struct device *dev) 2903 { 2904 const struct class *class = dev->class; 2905 const struct device_type *type = dev->type; 2906 2907 if (dev->physical_location) { 2908 device_remove_group(dev, &dev_attr_physical_location_group); 2909 kfree(dev->physical_location); 2910 } 2911 2912 device_remove_file(dev, &dev_attr_removable); 2913 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2914 device_remove_file(dev, &dev_attr_online); 2915 device_remove_groups(dev, dev->groups); 2916 2917 if (type) 2918 device_remove_groups(dev, type->groups); 2919 2920 if (class) 2921 device_remove_groups(dev, class->dev_groups); 2922 } 2923 2924 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 2925 char *buf) 2926 { 2927 return print_dev_t(buf, dev->devt); 2928 } 2929 static DEVICE_ATTR_RO(dev); 2930 2931 /* /sys/devices/ */ 2932 struct kset *devices_kset; 2933 2934 /** 2935 * devices_kset_move_before - Move device in the devices_kset's list. 2936 * @deva: Device to move. 2937 * @devb: Device @deva should come before. 2938 */ 2939 static void devices_kset_move_before(struct device *deva, struct device *devb) 2940 { 2941 if (!devices_kset) 2942 return; 2943 pr_debug("devices_kset: Moving %s before %s\n", 2944 dev_name(deva), dev_name(devb)); 2945 spin_lock(&devices_kset->list_lock); 2946 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 2947 spin_unlock(&devices_kset->list_lock); 2948 } 2949 2950 /** 2951 * devices_kset_move_after - Move device in the devices_kset's list. 2952 * @deva: Device to move 2953 * @devb: Device @deva should come after. 2954 */ 2955 static void devices_kset_move_after(struct device *deva, struct device *devb) 2956 { 2957 if (!devices_kset) 2958 return; 2959 pr_debug("devices_kset: Moving %s after %s\n", 2960 dev_name(deva), dev_name(devb)); 2961 spin_lock(&devices_kset->list_lock); 2962 list_move(&deva->kobj.entry, &devb->kobj.entry); 2963 spin_unlock(&devices_kset->list_lock); 2964 } 2965 2966 /** 2967 * devices_kset_move_last - move the device to the end of devices_kset's list. 2968 * @dev: device to move 2969 */ 2970 void devices_kset_move_last(struct device *dev) 2971 { 2972 if (!devices_kset) 2973 return; 2974 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 2975 spin_lock(&devices_kset->list_lock); 2976 list_move_tail(&dev->kobj.entry, &devices_kset->list); 2977 spin_unlock(&devices_kset->list_lock); 2978 } 2979 2980 /** 2981 * device_create_file - create sysfs attribute file for device. 2982 * @dev: device. 2983 * @attr: device attribute descriptor. 2984 */ 2985 int device_create_file(struct device *dev, 2986 const struct device_attribute *attr) 2987 { 2988 int error = 0; 2989 2990 if (dev) { 2991 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 2992 "Attribute %s: write permission without 'store'\n", 2993 attr->attr.name); 2994 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 2995 "Attribute %s: read permission without 'show'\n", 2996 attr->attr.name); 2997 error = sysfs_create_file(&dev->kobj, &attr->attr); 2998 } 2999 3000 return error; 3001 } 3002 EXPORT_SYMBOL_GPL(device_create_file); 3003 3004 /** 3005 * device_remove_file - remove sysfs attribute file. 3006 * @dev: device. 3007 * @attr: device attribute descriptor. 3008 */ 3009 void device_remove_file(struct device *dev, 3010 const struct device_attribute *attr) 3011 { 3012 if (dev) 3013 sysfs_remove_file(&dev->kobj, &attr->attr); 3014 } 3015 EXPORT_SYMBOL_GPL(device_remove_file); 3016 3017 /** 3018 * device_remove_file_self - remove sysfs attribute file from its own method. 3019 * @dev: device. 3020 * @attr: device attribute descriptor. 3021 * 3022 * See kernfs_remove_self() for details. 3023 */ 3024 bool device_remove_file_self(struct device *dev, 3025 const struct device_attribute *attr) 3026 { 3027 if (dev) 3028 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 3029 else 3030 return false; 3031 } 3032 EXPORT_SYMBOL_GPL(device_remove_file_self); 3033 3034 /** 3035 * device_create_bin_file - create sysfs binary attribute file for device. 3036 * @dev: device. 3037 * @attr: device binary attribute descriptor. 3038 */ 3039 int device_create_bin_file(struct device *dev, 3040 const struct bin_attribute *attr) 3041 { 3042 int error = -EINVAL; 3043 if (dev) 3044 error = sysfs_create_bin_file(&dev->kobj, attr); 3045 return error; 3046 } 3047 EXPORT_SYMBOL_GPL(device_create_bin_file); 3048 3049 /** 3050 * device_remove_bin_file - remove sysfs binary attribute file 3051 * @dev: device. 3052 * @attr: device binary attribute descriptor. 3053 */ 3054 void device_remove_bin_file(struct device *dev, 3055 const struct bin_attribute *attr) 3056 { 3057 if (dev) 3058 sysfs_remove_bin_file(&dev->kobj, attr); 3059 } 3060 EXPORT_SYMBOL_GPL(device_remove_bin_file); 3061 3062 static void klist_children_get(struct klist_node *n) 3063 { 3064 struct device_private *p = to_device_private_parent(n); 3065 struct device *dev = p->device; 3066 3067 get_device(dev); 3068 } 3069 3070 static void klist_children_put(struct klist_node *n) 3071 { 3072 struct device_private *p = to_device_private_parent(n); 3073 struct device *dev = p->device; 3074 3075 put_device(dev); 3076 } 3077 3078 /** 3079 * device_initialize - init device structure. 3080 * @dev: device. 3081 * 3082 * This prepares the device for use by other layers by initializing 3083 * its fields. 3084 * It is the first half of device_register(), if called by 3085 * that function, though it can also be called separately, so one 3086 * may use @dev's fields. In particular, get_device()/put_device() 3087 * may be used for reference counting of @dev after calling this 3088 * function. 3089 * 3090 * All fields in @dev must be initialized by the caller to 0, except 3091 * for those explicitly set to some other value. The simplest 3092 * approach is to use kzalloc() to allocate the structure containing 3093 * @dev. 3094 * 3095 * NOTE: Use put_device() to give up your reference instead of freeing 3096 * @dev directly once you have called this function. 3097 */ 3098 void device_initialize(struct device *dev) 3099 { 3100 dev->kobj.kset = devices_kset; 3101 kobject_init(&dev->kobj, &device_ktype); 3102 INIT_LIST_HEAD(&dev->dma_pools); 3103 mutex_init(&dev->mutex); 3104 lockdep_set_novalidate_class(&dev->mutex); 3105 spin_lock_init(&dev->devres_lock); 3106 INIT_LIST_HEAD(&dev->devres_head); 3107 device_pm_init(dev); 3108 set_dev_node(dev, NUMA_NO_NODE); 3109 INIT_LIST_HEAD(&dev->links.consumers); 3110 INIT_LIST_HEAD(&dev->links.suppliers); 3111 INIT_LIST_HEAD(&dev->links.defer_sync); 3112 dev->links.status = DL_DEV_NO_DRIVER; 3113 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ 3114 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ 3115 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) 3116 dev->dma_coherent = dma_default_coherent; 3117 #endif 3118 swiotlb_dev_init(dev); 3119 } 3120 EXPORT_SYMBOL_GPL(device_initialize); 3121 3122 struct kobject *virtual_device_parent(struct device *dev) 3123 { 3124 static struct kobject *virtual_dir = NULL; 3125 3126 if (!virtual_dir) 3127 virtual_dir = kobject_create_and_add("virtual", 3128 &devices_kset->kobj); 3129 3130 return virtual_dir; 3131 } 3132 3133 struct class_dir { 3134 struct kobject kobj; 3135 const struct class *class; 3136 }; 3137 3138 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 3139 3140 static void class_dir_release(struct kobject *kobj) 3141 { 3142 struct class_dir *dir = to_class_dir(kobj); 3143 kfree(dir); 3144 } 3145 3146 static const 3147 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj) 3148 { 3149 const struct class_dir *dir = to_class_dir(kobj); 3150 return dir->class->ns_type; 3151 } 3152 3153 static const struct kobj_type class_dir_ktype = { 3154 .release = class_dir_release, 3155 .sysfs_ops = &kobj_sysfs_ops, 3156 .child_ns_type = class_dir_child_ns_type 3157 }; 3158 3159 static struct kobject *class_dir_create_and_add(struct subsys_private *sp, 3160 struct kobject *parent_kobj) 3161 { 3162 struct class_dir *dir; 3163 int retval; 3164 3165 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 3166 if (!dir) 3167 return ERR_PTR(-ENOMEM); 3168 3169 dir->class = sp->class; 3170 kobject_init(&dir->kobj, &class_dir_ktype); 3171 3172 dir->kobj.kset = &sp->glue_dirs; 3173 3174 retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name); 3175 if (retval < 0) { 3176 kobject_put(&dir->kobj); 3177 return ERR_PTR(retval); 3178 } 3179 return &dir->kobj; 3180 } 3181 3182 static DEFINE_MUTEX(gdp_mutex); 3183 3184 static struct kobject *get_device_parent(struct device *dev, 3185 struct device *parent) 3186 { 3187 struct subsys_private *sp = class_to_subsys(dev->class); 3188 struct kobject *kobj = NULL; 3189 3190 if (sp) { 3191 struct kobject *parent_kobj; 3192 struct kobject *k; 3193 3194 /* 3195 * If we have no parent, we live in "virtual". 3196 * Class-devices with a non class-device as parent, live 3197 * in a "glue" directory to prevent namespace collisions. 3198 */ 3199 if (parent == NULL) 3200 parent_kobj = virtual_device_parent(dev); 3201 else if (parent->class && !dev->class->ns_type) { 3202 subsys_put(sp); 3203 return &parent->kobj; 3204 } else { 3205 parent_kobj = &parent->kobj; 3206 } 3207 3208 mutex_lock(&gdp_mutex); 3209 3210 /* find our class-directory at the parent and reference it */ 3211 spin_lock(&sp->glue_dirs.list_lock); 3212 list_for_each_entry(k, &sp->glue_dirs.list, entry) 3213 if (k->parent == parent_kobj) { 3214 kobj = kobject_get(k); 3215 break; 3216 } 3217 spin_unlock(&sp->glue_dirs.list_lock); 3218 if (kobj) { 3219 mutex_unlock(&gdp_mutex); 3220 subsys_put(sp); 3221 return kobj; 3222 } 3223 3224 /* or create a new class-directory at the parent device */ 3225 k = class_dir_create_and_add(sp, parent_kobj); 3226 /* do not emit an uevent for this simple "glue" directory */ 3227 mutex_unlock(&gdp_mutex); 3228 subsys_put(sp); 3229 return k; 3230 } 3231 3232 /* subsystems can specify a default root directory for their devices */ 3233 if (!parent && dev->bus) { 3234 struct device *dev_root = bus_get_dev_root(dev->bus); 3235 3236 if (dev_root) { 3237 kobj = &dev_root->kobj; 3238 put_device(dev_root); 3239 return kobj; 3240 } 3241 } 3242 3243 if (parent) 3244 return &parent->kobj; 3245 return NULL; 3246 } 3247 3248 static inline bool live_in_glue_dir(struct kobject *kobj, 3249 struct device *dev) 3250 { 3251 struct subsys_private *sp; 3252 bool retval; 3253 3254 if (!kobj || !dev->class) 3255 return false; 3256 3257 sp = class_to_subsys(dev->class); 3258 if (!sp) 3259 return false; 3260 3261 if (kobj->kset == &sp->glue_dirs) 3262 retval = true; 3263 else 3264 retval = false; 3265 3266 subsys_put(sp); 3267 return retval; 3268 } 3269 3270 static inline struct kobject *get_glue_dir(struct device *dev) 3271 { 3272 return dev->kobj.parent; 3273 } 3274 3275 /** 3276 * kobject_has_children - Returns whether a kobject has children. 3277 * @kobj: the object to test 3278 * 3279 * This will return whether a kobject has other kobjects as children. 3280 * 3281 * It does NOT account for the presence of attribute files, only sub 3282 * directories. It also assumes there is no concurrent addition or 3283 * removal of such children, and thus relies on external locking. 3284 */ 3285 static inline bool kobject_has_children(struct kobject *kobj) 3286 { 3287 WARN_ON_ONCE(kref_read(&kobj->kref) == 0); 3288 3289 return kobj->sd && kobj->sd->dir.subdirs; 3290 } 3291 3292 /* 3293 * make sure cleaning up dir as the last step, we need to make 3294 * sure .release handler of kobject is run with holding the 3295 * global lock 3296 */ 3297 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 3298 { 3299 unsigned int ref; 3300 3301 /* see if we live in a "glue" directory */ 3302 if (!live_in_glue_dir(glue_dir, dev)) 3303 return; 3304 3305 mutex_lock(&gdp_mutex); 3306 /** 3307 * There is a race condition between removing glue directory 3308 * and adding a new device under the glue directory. 3309 * 3310 * CPU1: CPU2: 3311 * 3312 * device_add() 3313 * get_device_parent() 3314 * class_dir_create_and_add() 3315 * kobject_add_internal() 3316 * create_dir() // create glue_dir 3317 * 3318 * device_add() 3319 * get_device_parent() 3320 * kobject_get() // get glue_dir 3321 * 3322 * device_del() 3323 * cleanup_glue_dir() 3324 * kobject_del(glue_dir) 3325 * 3326 * kobject_add() 3327 * kobject_add_internal() 3328 * create_dir() // in glue_dir 3329 * sysfs_create_dir_ns() 3330 * kernfs_create_dir_ns(sd) 3331 * 3332 * sysfs_remove_dir() // glue_dir->sd=NULL 3333 * sysfs_put() // free glue_dir->sd 3334 * 3335 * // sd is freed 3336 * kernfs_new_node(sd) 3337 * kernfs_get(glue_dir) 3338 * kernfs_add_one() 3339 * kernfs_put() 3340 * 3341 * Before CPU1 remove last child device under glue dir, if CPU2 add 3342 * a new device under glue dir, the glue_dir kobject reference count 3343 * will be increase to 2 in kobject_get(k). And CPU2 has been called 3344 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir() 3345 * and sysfs_put(). This result in glue_dir->sd is freed. 3346 * 3347 * Then the CPU2 will see a stale "empty" but still potentially used 3348 * glue dir around in kernfs_new_node(). 3349 * 3350 * In order to avoid this happening, we also should make sure that 3351 * kernfs_node for glue_dir is released in CPU1 only when refcount 3352 * for glue_dir kobj is 1. 3353 */ 3354 ref = kref_read(&glue_dir->kref); 3355 if (!kobject_has_children(glue_dir) && !--ref) 3356 kobject_del(glue_dir); 3357 kobject_put(glue_dir); 3358 mutex_unlock(&gdp_mutex); 3359 } 3360 3361 static int device_add_class_symlinks(struct device *dev) 3362 { 3363 struct device_node *of_node = dev_of_node(dev); 3364 struct subsys_private *sp; 3365 int error; 3366 3367 if (of_node) { 3368 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 3369 if (error) 3370 dev_warn(dev, "Error %d creating of_node link\n",error); 3371 /* An error here doesn't warrant bringing down the device */ 3372 } 3373 3374 sp = class_to_subsys(dev->class); 3375 if (!sp) 3376 return 0; 3377 3378 error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem"); 3379 if (error) 3380 goto out_devnode; 3381 3382 if (dev->parent && device_is_not_partition(dev)) { 3383 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 3384 "device"); 3385 if (error) 3386 goto out_subsys; 3387 } 3388 3389 /* link in the class directory pointing to the device */ 3390 error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev)); 3391 if (error) 3392 goto out_device; 3393 goto exit; 3394 3395 out_device: 3396 sysfs_remove_link(&dev->kobj, "device"); 3397 out_subsys: 3398 sysfs_remove_link(&dev->kobj, "subsystem"); 3399 out_devnode: 3400 sysfs_remove_link(&dev->kobj, "of_node"); 3401 exit: 3402 subsys_put(sp); 3403 return error; 3404 } 3405 3406 static void device_remove_class_symlinks(struct device *dev) 3407 { 3408 struct subsys_private *sp = class_to_subsys(dev->class); 3409 3410 if (dev_of_node(dev)) 3411 sysfs_remove_link(&dev->kobj, "of_node"); 3412 3413 if (!sp) 3414 return; 3415 3416 if (dev->parent && device_is_not_partition(dev)) 3417 sysfs_remove_link(&dev->kobj, "device"); 3418 sysfs_remove_link(&dev->kobj, "subsystem"); 3419 sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev)); 3420 subsys_put(sp); 3421 } 3422 3423 /** 3424 * dev_set_name - set a device name 3425 * @dev: device 3426 * @fmt: format string for the device's name 3427 */ 3428 int dev_set_name(struct device *dev, const char *fmt, ...) 3429 { 3430 va_list vargs; 3431 int err; 3432 3433 va_start(vargs, fmt); 3434 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 3435 va_end(vargs); 3436 return err; 3437 } 3438 EXPORT_SYMBOL_GPL(dev_set_name); 3439 3440 /* select a /sys/dev/ directory for the device */ 3441 static struct kobject *device_to_dev_kobj(struct device *dev) 3442 { 3443 if (is_blockdev(dev)) 3444 return sysfs_dev_block_kobj; 3445 else 3446 return sysfs_dev_char_kobj; 3447 } 3448 3449 static int device_create_sys_dev_entry(struct device *dev) 3450 { 3451 struct kobject *kobj = device_to_dev_kobj(dev); 3452 int error = 0; 3453 char devt_str[15]; 3454 3455 if (kobj) { 3456 format_dev_t(devt_str, dev->devt); 3457 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 3458 } 3459 3460 return error; 3461 } 3462 3463 static void device_remove_sys_dev_entry(struct device *dev) 3464 { 3465 struct kobject *kobj = device_to_dev_kobj(dev); 3466 char devt_str[15]; 3467 3468 if (kobj) { 3469 format_dev_t(devt_str, dev->devt); 3470 sysfs_remove_link(kobj, devt_str); 3471 } 3472 } 3473 3474 static int device_private_init(struct device *dev) 3475 { 3476 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 3477 if (!dev->p) 3478 return -ENOMEM; 3479 dev->p->device = dev; 3480 klist_init(&dev->p->klist_children, klist_children_get, 3481 klist_children_put); 3482 INIT_LIST_HEAD(&dev->p->deferred_probe); 3483 return 0; 3484 } 3485 3486 /** 3487 * device_add - add device to device hierarchy. 3488 * @dev: device. 3489 * 3490 * This is part 2 of device_register(), though may be called 3491 * separately _iff_ device_initialize() has been called separately. 3492 * 3493 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 3494 * to the global and sibling lists for the device, then 3495 * adds it to the other relevant subsystems of the driver model. 3496 * 3497 * Do not call this routine or device_register() more than once for 3498 * any device structure. The driver model core is not designed to work 3499 * with devices that get unregistered and then spring back to life. 3500 * (Among other things, it's very hard to guarantee that all references 3501 * to the previous incarnation of @dev have been dropped.) Allocate 3502 * and register a fresh new struct device instead. 3503 * 3504 * NOTE: _Never_ directly free @dev after calling this function, even 3505 * if it returned an error! Always use put_device() to give up your 3506 * reference instead. 3507 * 3508 * Rule of thumb is: if device_add() succeeds, you should call 3509 * device_del() when you want to get rid of it. If device_add() has 3510 * *not* succeeded, use *only* put_device() to drop the reference 3511 * count. 3512 */ 3513 int device_add(struct device *dev) 3514 { 3515 struct subsys_private *sp; 3516 struct device *parent; 3517 struct kobject *kobj; 3518 struct class_interface *class_intf; 3519 int error = -EINVAL; 3520 struct kobject *glue_dir = NULL; 3521 3522 dev = get_device(dev); 3523 if (!dev) 3524 goto done; 3525 3526 if (!dev->p) { 3527 error = device_private_init(dev); 3528 if (error) 3529 goto done; 3530 } 3531 3532 /* 3533 * for statically allocated devices, which should all be converted 3534 * some day, we need to initialize the name. We prevent reading back 3535 * the name, and force the use of dev_name() 3536 */ 3537 if (dev->init_name) { 3538 error = dev_set_name(dev, "%s", dev->init_name); 3539 dev->init_name = NULL; 3540 } 3541 3542 if (dev_name(dev)) 3543 error = 0; 3544 /* subsystems can specify simple device enumeration */ 3545 else if (dev->bus && dev->bus->dev_name) 3546 error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 3547 else 3548 error = -EINVAL; 3549 if (error) 3550 goto name_error; 3551 3552 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3553 3554 parent = get_device(dev->parent); 3555 kobj = get_device_parent(dev, parent); 3556 if (IS_ERR(kobj)) { 3557 error = PTR_ERR(kobj); 3558 goto parent_error; 3559 } 3560 if (kobj) 3561 dev->kobj.parent = kobj; 3562 3563 /* use parent numa_node */ 3564 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 3565 set_dev_node(dev, dev_to_node(parent)); 3566 3567 /* first, register with generic layer. */ 3568 /* we require the name to be set before, and pass NULL */ 3569 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 3570 if (error) { 3571 glue_dir = kobj; 3572 goto Error; 3573 } 3574 3575 /* notify platform of device entry */ 3576 device_platform_notify(dev); 3577 3578 error = device_create_file(dev, &dev_attr_uevent); 3579 if (error) 3580 goto attrError; 3581 3582 error = device_add_class_symlinks(dev); 3583 if (error) 3584 goto SymlinkError; 3585 error = device_add_attrs(dev); 3586 if (error) 3587 goto AttrsError; 3588 error = bus_add_device(dev); 3589 if (error) 3590 goto BusError; 3591 error = dpm_sysfs_add(dev); 3592 if (error) 3593 goto DPMError; 3594 device_pm_add(dev); 3595 3596 if (MAJOR(dev->devt)) { 3597 error = device_create_file(dev, &dev_attr_dev); 3598 if (error) 3599 goto DevAttrError; 3600 3601 error = device_create_sys_dev_entry(dev); 3602 if (error) 3603 goto SysEntryError; 3604 3605 devtmpfs_create_node(dev); 3606 } 3607 3608 /* Notify clients of device addition. This call must come 3609 * after dpm_sysfs_add() and before kobject_uevent(). 3610 */ 3611 bus_notify(dev, BUS_NOTIFY_ADD_DEVICE); 3612 kobject_uevent(&dev->kobj, KOBJ_ADD); 3613 3614 /* 3615 * Check if any of the other devices (consumers) have been waiting for 3616 * this device (supplier) to be added so that they can create a device 3617 * link to it. 3618 * 3619 * This needs to happen after device_pm_add() because device_link_add() 3620 * requires the supplier be registered before it's called. 3621 * 3622 * But this also needs to happen before bus_probe_device() to make sure 3623 * waiting consumers can link to it before the driver is bound to the 3624 * device and the driver sync_state callback is called for this device. 3625 */ 3626 if (dev->fwnode && !dev->fwnode->dev) { 3627 dev->fwnode->dev = dev; 3628 fw_devlink_link_device(dev); 3629 } 3630 3631 bus_probe_device(dev); 3632 3633 /* 3634 * If all driver registration is done and a newly added device doesn't 3635 * match with any driver, don't block its consumers from probing in 3636 * case the consumer device is able to operate without this supplier. 3637 */ 3638 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match) 3639 fw_devlink_unblock_consumers(dev); 3640 3641 if (parent) 3642 klist_add_tail(&dev->p->knode_parent, 3643 &parent->p->klist_children); 3644 3645 sp = class_to_subsys(dev->class); 3646 if (sp) { 3647 mutex_lock(&sp->mutex); 3648 /* tie the class to the device */ 3649 klist_add_tail(&dev->p->knode_class, &sp->klist_devices); 3650 3651 /* notify any interfaces that the device is here */ 3652 list_for_each_entry(class_intf, &sp->interfaces, node) 3653 if (class_intf->add_dev) 3654 class_intf->add_dev(dev); 3655 mutex_unlock(&sp->mutex); 3656 subsys_put(sp); 3657 } 3658 done: 3659 put_device(dev); 3660 return error; 3661 SysEntryError: 3662 if (MAJOR(dev->devt)) 3663 device_remove_file(dev, &dev_attr_dev); 3664 DevAttrError: 3665 device_pm_remove(dev); 3666 dpm_sysfs_remove(dev); 3667 DPMError: 3668 dev->driver = NULL; 3669 bus_remove_device(dev); 3670 BusError: 3671 device_remove_attrs(dev); 3672 AttrsError: 3673 device_remove_class_symlinks(dev); 3674 SymlinkError: 3675 device_remove_file(dev, &dev_attr_uevent); 3676 attrError: 3677 device_platform_notify_remove(dev); 3678 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3679 glue_dir = get_glue_dir(dev); 3680 kobject_del(&dev->kobj); 3681 Error: 3682 cleanup_glue_dir(dev, glue_dir); 3683 parent_error: 3684 put_device(parent); 3685 name_error: 3686 kfree(dev->p); 3687 dev->p = NULL; 3688 goto done; 3689 } 3690 EXPORT_SYMBOL_GPL(device_add); 3691 3692 /** 3693 * device_register - register a device with the system. 3694 * @dev: pointer to the device structure 3695 * 3696 * This happens in two clean steps - initialize the device 3697 * and add it to the system. The two steps can be called 3698 * separately, but this is the easiest and most common. 3699 * I.e. you should only call the two helpers separately if 3700 * have a clearly defined need to use and refcount the device 3701 * before it is added to the hierarchy. 3702 * 3703 * For more information, see the kerneldoc for device_initialize() 3704 * and device_add(). 3705 * 3706 * NOTE: _Never_ directly free @dev after calling this function, even 3707 * if it returned an error! Always use put_device() to give up the 3708 * reference initialized in this function instead. 3709 */ 3710 int device_register(struct device *dev) 3711 { 3712 device_initialize(dev); 3713 return device_add(dev); 3714 } 3715 EXPORT_SYMBOL_GPL(device_register); 3716 3717 /** 3718 * get_device - increment reference count for device. 3719 * @dev: device. 3720 * 3721 * This simply forwards the call to kobject_get(), though 3722 * we do take care to provide for the case that we get a NULL 3723 * pointer passed in. 3724 */ 3725 struct device *get_device(struct device *dev) 3726 { 3727 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 3728 } 3729 EXPORT_SYMBOL_GPL(get_device); 3730 3731 /** 3732 * put_device - decrement reference count. 3733 * @dev: device in question. 3734 */ 3735 void put_device(struct device *dev) 3736 { 3737 /* might_sleep(); */ 3738 if (dev) 3739 kobject_put(&dev->kobj); 3740 } 3741 EXPORT_SYMBOL_GPL(put_device); 3742 3743 bool kill_device(struct device *dev) 3744 { 3745 /* 3746 * Require the device lock and set the "dead" flag to guarantee that 3747 * the update behavior is consistent with the other bitfields near 3748 * it and that we cannot have an asynchronous probe routine trying 3749 * to run while we are tearing out the bus/class/sysfs from 3750 * underneath the device. 3751 */ 3752 device_lock_assert(dev); 3753 3754 if (dev->p->dead) 3755 return false; 3756 dev->p->dead = true; 3757 return true; 3758 } 3759 EXPORT_SYMBOL_GPL(kill_device); 3760 3761 /** 3762 * device_del - delete device from system. 3763 * @dev: device. 3764 * 3765 * This is the first part of the device unregistration 3766 * sequence. This removes the device from the lists we control 3767 * from here, has it removed from the other driver model 3768 * subsystems it was added to in device_add(), and removes it 3769 * from the kobject hierarchy. 3770 * 3771 * NOTE: this should be called manually _iff_ device_add() was 3772 * also called manually. 3773 */ 3774 void device_del(struct device *dev) 3775 { 3776 struct subsys_private *sp; 3777 struct device *parent = dev->parent; 3778 struct kobject *glue_dir = NULL; 3779 struct class_interface *class_intf; 3780 unsigned int noio_flag; 3781 3782 device_lock(dev); 3783 kill_device(dev); 3784 device_unlock(dev); 3785 3786 if (dev->fwnode && dev->fwnode->dev == dev) 3787 dev->fwnode->dev = NULL; 3788 3789 /* Notify clients of device removal. This call must come 3790 * before dpm_sysfs_remove(). 3791 */ 3792 noio_flag = memalloc_noio_save(); 3793 bus_notify(dev, BUS_NOTIFY_DEL_DEVICE); 3794 3795 dpm_sysfs_remove(dev); 3796 if (parent) 3797 klist_del(&dev->p->knode_parent); 3798 if (MAJOR(dev->devt)) { 3799 devtmpfs_delete_node(dev); 3800 device_remove_sys_dev_entry(dev); 3801 device_remove_file(dev, &dev_attr_dev); 3802 } 3803 3804 sp = class_to_subsys(dev->class); 3805 if (sp) { 3806 device_remove_class_symlinks(dev); 3807 3808 mutex_lock(&sp->mutex); 3809 /* notify any interfaces that the device is now gone */ 3810 list_for_each_entry(class_intf, &sp->interfaces, node) 3811 if (class_intf->remove_dev) 3812 class_intf->remove_dev(dev); 3813 /* remove the device from the class list */ 3814 klist_del(&dev->p->knode_class); 3815 mutex_unlock(&sp->mutex); 3816 subsys_put(sp); 3817 } 3818 device_remove_file(dev, &dev_attr_uevent); 3819 device_remove_attrs(dev); 3820 bus_remove_device(dev); 3821 device_pm_remove(dev); 3822 driver_deferred_probe_del(dev); 3823 device_platform_notify_remove(dev); 3824 device_links_purge(dev); 3825 3826 /* 3827 * If a device does not have a driver attached, we need to clean 3828 * up any managed resources. We do this in device_release(), but 3829 * it's never called (and we leak the device) if a managed 3830 * resource holds a reference to the device. So release all 3831 * managed resources here, like we do in driver_detach(). We 3832 * still need to do so again in device_release() in case someone 3833 * adds a new resource after this point, though. 3834 */ 3835 devres_release_all(dev); 3836 3837 bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE); 3838 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3839 glue_dir = get_glue_dir(dev); 3840 kobject_del(&dev->kobj); 3841 cleanup_glue_dir(dev, glue_dir); 3842 memalloc_noio_restore(noio_flag); 3843 put_device(parent); 3844 } 3845 EXPORT_SYMBOL_GPL(device_del); 3846 3847 /** 3848 * device_unregister - unregister device from system. 3849 * @dev: device going away. 3850 * 3851 * We do this in two parts, like we do device_register(). First, 3852 * we remove it from all the subsystems with device_del(), then 3853 * we decrement the reference count via put_device(). If that 3854 * is the final reference count, the device will be cleaned up 3855 * via device_release() above. Otherwise, the structure will 3856 * stick around until the final reference to the device is dropped. 3857 */ 3858 void device_unregister(struct device *dev) 3859 { 3860 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3861 device_del(dev); 3862 put_device(dev); 3863 } 3864 EXPORT_SYMBOL_GPL(device_unregister); 3865 3866 static struct device *prev_device(struct klist_iter *i) 3867 { 3868 struct klist_node *n = klist_prev(i); 3869 struct device *dev = NULL; 3870 struct device_private *p; 3871 3872 if (n) { 3873 p = to_device_private_parent(n); 3874 dev = p->device; 3875 } 3876 return dev; 3877 } 3878 3879 static struct device *next_device(struct klist_iter *i) 3880 { 3881 struct klist_node *n = klist_next(i); 3882 struct device *dev = NULL; 3883 struct device_private *p; 3884 3885 if (n) { 3886 p = to_device_private_parent(n); 3887 dev = p->device; 3888 } 3889 return dev; 3890 } 3891 3892 /** 3893 * device_get_devnode - path of device node file 3894 * @dev: device 3895 * @mode: returned file access mode 3896 * @uid: returned file owner 3897 * @gid: returned file group 3898 * @tmp: possibly allocated string 3899 * 3900 * Return the relative path of a possible device node. 3901 * Non-default names may need to allocate a memory to compose 3902 * a name. This memory is returned in tmp and needs to be 3903 * freed by the caller. 3904 */ 3905 const char *device_get_devnode(const struct device *dev, 3906 umode_t *mode, kuid_t *uid, kgid_t *gid, 3907 const char **tmp) 3908 { 3909 char *s; 3910 3911 *tmp = NULL; 3912 3913 /* the device type may provide a specific name */ 3914 if (dev->type && dev->type->devnode) 3915 *tmp = dev->type->devnode(dev, mode, uid, gid); 3916 if (*tmp) 3917 return *tmp; 3918 3919 /* the class may provide a specific name */ 3920 if (dev->class && dev->class->devnode) 3921 *tmp = dev->class->devnode(dev, mode); 3922 if (*tmp) 3923 return *tmp; 3924 3925 /* return name without allocation, tmp == NULL */ 3926 if (strchr(dev_name(dev), '!') == NULL) 3927 return dev_name(dev); 3928 3929 /* replace '!' in the name with '/' */ 3930 s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL); 3931 if (!s) 3932 return NULL; 3933 return *tmp = s; 3934 } 3935 3936 /** 3937 * device_for_each_child - device child iterator. 3938 * @parent: parent struct device. 3939 * @fn: function to be called for each device. 3940 * @data: data for the callback. 3941 * 3942 * Iterate over @parent's child devices, and call @fn for each, 3943 * passing it @data. 3944 * 3945 * We check the return of @fn each time. If it returns anything 3946 * other than 0, we break out and return that value. 3947 */ 3948 int device_for_each_child(struct device *parent, void *data, 3949 int (*fn)(struct device *dev, void *data)) 3950 { 3951 struct klist_iter i; 3952 struct device *child; 3953 int error = 0; 3954 3955 if (!parent->p) 3956 return 0; 3957 3958 klist_iter_init(&parent->p->klist_children, &i); 3959 while (!error && (child = next_device(&i))) 3960 error = fn(child, data); 3961 klist_iter_exit(&i); 3962 return error; 3963 } 3964 EXPORT_SYMBOL_GPL(device_for_each_child); 3965 3966 /** 3967 * device_for_each_child_reverse - device child iterator in reversed order. 3968 * @parent: parent struct device. 3969 * @fn: function to be called for each device. 3970 * @data: data for the callback. 3971 * 3972 * Iterate over @parent's child devices, and call @fn for each, 3973 * passing it @data. 3974 * 3975 * We check the return of @fn each time. If it returns anything 3976 * other than 0, we break out and return that value. 3977 */ 3978 int device_for_each_child_reverse(struct device *parent, void *data, 3979 int (*fn)(struct device *dev, void *data)) 3980 { 3981 struct klist_iter i; 3982 struct device *child; 3983 int error = 0; 3984 3985 if (!parent->p) 3986 return 0; 3987 3988 klist_iter_init(&parent->p->klist_children, &i); 3989 while ((child = prev_device(&i)) && !error) 3990 error = fn(child, data); 3991 klist_iter_exit(&i); 3992 return error; 3993 } 3994 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 3995 3996 /** 3997 * device_find_child - device iterator for locating a particular device. 3998 * @parent: parent struct device 3999 * @match: Callback function to check device 4000 * @data: Data to pass to match function 4001 * 4002 * This is similar to the device_for_each_child() function above, but it 4003 * returns a reference to a device that is 'found' for later use, as 4004 * determined by the @match callback. 4005 * 4006 * The callback should return 0 if the device doesn't match and non-zero 4007 * if it does. If the callback returns non-zero and a reference to the 4008 * current device can be obtained, this function will return to the caller 4009 * and not iterate over any more devices. 4010 * 4011 * NOTE: you will need to drop the reference with put_device() after use. 4012 */ 4013 struct device *device_find_child(struct device *parent, void *data, 4014 int (*match)(struct device *dev, void *data)) 4015 { 4016 struct klist_iter i; 4017 struct device *child; 4018 4019 if (!parent) 4020 return NULL; 4021 4022 klist_iter_init(&parent->p->klist_children, &i); 4023 while ((child = next_device(&i))) 4024 if (match(child, data) && get_device(child)) 4025 break; 4026 klist_iter_exit(&i); 4027 return child; 4028 } 4029 EXPORT_SYMBOL_GPL(device_find_child); 4030 4031 /** 4032 * device_find_child_by_name - device iterator for locating a child device. 4033 * @parent: parent struct device 4034 * @name: name of the child device 4035 * 4036 * This is similar to the device_find_child() function above, but it 4037 * returns a reference to a device that has the name @name. 4038 * 4039 * NOTE: you will need to drop the reference with put_device() after use. 4040 */ 4041 struct device *device_find_child_by_name(struct device *parent, 4042 const char *name) 4043 { 4044 struct klist_iter i; 4045 struct device *child; 4046 4047 if (!parent) 4048 return NULL; 4049 4050 klist_iter_init(&parent->p->klist_children, &i); 4051 while ((child = next_device(&i))) 4052 if (sysfs_streq(dev_name(child), name) && get_device(child)) 4053 break; 4054 klist_iter_exit(&i); 4055 return child; 4056 } 4057 EXPORT_SYMBOL_GPL(device_find_child_by_name); 4058 4059 static int match_any(struct device *dev, void *unused) 4060 { 4061 return 1; 4062 } 4063 4064 /** 4065 * device_find_any_child - device iterator for locating a child device, if any. 4066 * @parent: parent struct device 4067 * 4068 * This is similar to the device_find_child() function above, but it 4069 * returns a reference to a child device, if any. 4070 * 4071 * NOTE: you will need to drop the reference with put_device() after use. 4072 */ 4073 struct device *device_find_any_child(struct device *parent) 4074 { 4075 return device_find_child(parent, NULL, match_any); 4076 } 4077 EXPORT_SYMBOL_GPL(device_find_any_child); 4078 4079 int __init devices_init(void) 4080 { 4081 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 4082 if (!devices_kset) 4083 return -ENOMEM; 4084 dev_kobj = kobject_create_and_add("dev", NULL); 4085 if (!dev_kobj) 4086 goto dev_kobj_err; 4087 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 4088 if (!sysfs_dev_block_kobj) 4089 goto block_kobj_err; 4090 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 4091 if (!sysfs_dev_char_kobj) 4092 goto char_kobj_err; 4093 4094 return 0; 4095 4096 char_kobj_err: 4097 kobject_put(sysfs_dev_block_kobj); 4098 block_kobj_err: 4099 kobject_put(dev_kobj); 4100 dev_kobj_err: 4101 kset_unregister(devices_kset); 4102 return -ENOMEM; 4103 } 4104 4105 static int device_check_offline(struct device *dev, void *not_used) 4106 { 4107 int ret; 4108 4109 ret = device_for_each_child(dev, NULL, device_check_offline); 4110 if (ret) 4111 return ret; 4112 4113 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 4114 } 4115 4116 /** 4117 * device_offline - Prepare the device for hot-removal. 4118 * @dev: Device to be put offline. 4119 * 4120 * Execute the device bus type's .offline() callback, if present, to prepare 4121 * the device for a subsequent hot-removal. If that succeeds, the device must 4122 * not be used until either it is removed or its bus type's .online() callback 4123 * is executed. 4124 * 4125 * Call under device_hotplug_lock. 4126 */ 4127 int device_offline(struct device *dev) 4128 { 4129 int ret; 4130 4131 if (dev->offline_disabled) 4132 return -EPERM; 4133 4134 ret = device_for_each_child(dev, NULL, device_check_offline); 4135 if (ret) 4136 return ret; 4137 4138 device_lock(dev); 4139 if (device_supports_offline(dev)) { 4140 if (dev->offline) { 4141 ret = 1; 4142 } else { 4143 ret = dev->bus->offline(dev); 4144 if (!ret) { 4145 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 4146 dev->offline = true; 4147 } 4148 } 4149 } 4150 device_unlock(dev); 4151 4152 return ret; 4153 } 4154 4155 /** 4156 * device_online - Put the device back online after successful device_offline(). 4157 * @dev: Device to be put back online. 4158 * 4159 * If device_offline() has been successfully executed for @dev, but the device 4160 * has not been removed subsequently, execute its bus type's .online() callback 4161 * to indicate that the device can be used again. 4162 * 4163 * Call under device_hotplug_lock. 4164 */ 4165 int device_online(struct device *dev) 4166 { 4167 int ret = 0; 4168 4169 device_lock(dev); 4170 if (device_supports_offline(dev)) { 4171 if (dev->offline) { 4172 ret = dev->bus->online(dev); 4173 if (!ret) { 4174 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 4175 dev->offline = false; 4176 } 4177 } else { 4178 ret = 1; 4179 } 4180 } 4181 device_unlock(dev); 4182 4183 return ret; 4184 } 4185 4186 struct root_device { 4187 struct device dev; 4188 struct module *owner; 4189 }; 4190 4191 static inline struct root_device *to_root_device(struct device *d) 4192 { 4193 return container_of(d, struct root_device, dev); 4194 } 4195 4196 static void root_device_release(struct device *dev) 4197 { 4198 kfree(to_root_device(dev)); 4199 } 4200 4201 /** 4202 * __root_device_register - allocate and register a root device 4203 * @name: root device name 4204 * @owner: owner module of the root device, usually THIS_MODULE 4205 * 4206 * This function allocates a root device and registers it 4207 * using device_register(). In order to free the returned 4208 * device, use root_device_unregister(). 4209 * 4210 * Root devices are dummy devices which allow other devices 4211 * to be grouped under /sys/devices. Use this function to 4212 * allocate a root device and then use it as the parent of 4213 * any device which should appear under /sys/devices/{name} 4214 * 4215 * The /sys/devices/{name} directory will also contain a 4216 * 'module' symlink which points to the @owner directory 4217 * in sysfs. 4218 * 4219 * Returns &struct device pointer on success, or ERR_PTR() on error. 4220 * 4221 * Note: You probably want to use root_device_register(). 4222 */ 4223 struct device *__root_device_register(const char *name, struct module *owner) 4224 { 4225 struct root_device *root; 4226 int err = -ENOMEM; 4227 4228 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 4229 if (!root) 4230 return ERR_PTR(err); 4231 4232 err = dev_set_name(&root->dev, "%s", name); 4233 if (err) { 4234 kfree(root); 4235 return ERR_PTR(err); 4236 } 4237 4238 root->dev.release = root_device_release; 4239 4240 err = device_register(&root->dev); 4241 if (err) { 4242 put_device(&root->dev); 4243 return ERR_PTR(err); 4244 } 4245 4246 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 4247 if (owner) { 4248 struct module_kobject *mk = &owner->mkobj; 4249 4250 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 4251 if (err) { 4252 device_unregister(&root->dev); 4253 return ERR_PTR(err); 4254 } 4255 root->owner = owner; 4256 } 4257 #endif 4258 4259 return &root->dev; 4260 } 4261 EXPORT_SYMBOL_GPL(__root_device_register); 4262 4263 /** 4264 * root_device_unregister - unregister and free a root device 4265 * @dev: device going away 4266 * 4267 * This function unregisters and cleans up a device that was created by 4268 * root_device_register(). 4269 */ 4270 void root_device_unregister(struct device *dev) 4271 { 4272 struct root_device *root = to_root_device(dev); 4273 4274 if (root->owner) 4275 sysfs_remove_link(&root->dev.kobj, "module"); 4276 4277 device_unregister(dev); 4278 } 4279 EXPORT_SYMBOL_GPL(root_device_unregister); 4280 4281 4282 static void device_create_release(struct device *dev) 4283 { 4284 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 4285 kfree(dev); 4286 } 4287 4288 static __printf(6, 0) struct device * 4289 device_create_groups_vargs(const struct class *class, struct device *parent, 4290 dev_t devt, void *drvdata, 4291 const struct attribute_group **groups, 4292 const char *fmt, va_list args) 4293 { 4294 struct device *dev = NULL; 4295 int retval = -ENODEV; 4296 4297 if (IS_ERR_OR_NULL(class)) 4298 goto error; 4299 4300 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 4301 if (!dev) { 4302 retval = -ENOMEM; 4303 goto error; 4304 } 4305 4306 device_initialize(dev); 4307 dev->devt = devt; 4308 dev->class = class; 4309 dev->parent = parent; 4310 dev->groups = groups; 4311 dev->release = device_create_release; 4312 dev_set_drvdata(dev, drvdata); 4313 4314 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 4315 if (retval) 4316 goto error; 4317 4318 retval = device_add(dev); 4319 if (retval) 4320 goto error; 4321 4322 return dev; 4323 4324 error: 4325 put_device(dev); 4326 return ERR_PTR(retval); 4327 } 4328 4329 /** 4330 * device_create - creates a device and registers it with sysfs 4331 * @class: pointer to the struct class that this device should be registered to 4332 * @parent: pointer to the parent struct device of this new device, if any 4333 * @devt: the dev_t for the char device to be added 4334 * @drvdata: the data to be added to the device for callbacks 4335 * @fmt: string for the device's name 4336 * 4337 * This function can be used by char device classes. A struct device 4338 * will be created in sysfs, registered to the specified class. 4339 * 4340 * A "dev" file will be created, showing the dev_t for the device, if 4341 * the dev_t is not 0,0. 4342 * If a pointer to a parent struct device is passed in, the newly created 4343 * struct device will be a child of that device in sysfs. 4344 * The pointer to the struct device will be returned from the call. 4345 * Any further sysfs files that might be required can be created using this 4346 * pointer. 4347 * 4348 * Returns &struct device pointer on success, or ERR_PTR() on error. 4349 */ 4350 struct device *device_create(const struct class *class, struct device *parent, 4351 dev_t devt, void *drvdata, const char *fmt, ...) 4352 { 4353 va_list vargs; 4354 struct device *dev; 4355 4356 va_start(vargs, fmt); 4357 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL, 4358 fmt, vargs); 4359 va_end(vargs); 4360 return dev; 4361 } 4362 EXPORT_SYMBOL_GPL(device_create); 4363 4364 /** 4365 * device_create_with_groups - creates a device and registers it with sysfs 4366 * @class: pointer to the struct class that this device should be registered to 4367 * @parent: pointer to the parent struct device of this new device, if any 4368 * @devt: the dev_t for the char device to be added 4369 * @drvdata: the data to be added to the device for callbacks 4370 * @groups: NULL-terminated list of attribute groups to be created 4371 * @fmt: string for the device's name 4372 * 4373 * This function can be used by char device classes. A struct device 4374 * will be created in sysfs, registered to the specified class. 4375 * Additional attributes specified in the groups parameter will also 4376 * be created automatically. 4377 * 4378 * A "dev" file will be created, showing the dev_t for the device, if 4379 * the dev_t is not 0,0. 4380 * If a pointer to a parent struct device is passed in, the newly created 4381 * struct device will be a child of that device in sysfs. 4382 * The pointer to the struct device will be returned from the call. 4383 * Any further sysfs files that might be required can be created using this 4384 * pointer. 4385 * 4386 * Returns &struct device pointer on success, or ERR_PTR() on error. 4387 */ 4388 struct device *device_create_with_groups(const struct class *class, 4389 struct device *parent, dev_t devt, 4390 void *drvdata, 4391 const struct attribute_group **groups, 4392 const char *fmt, ...) 4393 { 4394 va_list vargs; 4395 struct device *dev; 4396 4397 va_start(vargs, fmt); 4398 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 4399 fmt, vargs); 4400 va_end(vargs); 4401 return dev; 4402 } 4403 EXPORT_SYMBOL_GPL(device_create_with_groups); 4404 4405 /** 4406 * device_destroy - removes a device that was created with device_create() 4407 * @class: pointer to the struct class that this device was registered with 4408 * @devt: the dev_t of the device that was previously registered 4409 * 4410 * This call unregisters and cleans up a device that was created with a 4411 * call to device_create(). 4412 */ 4413 void device_destroy(const struct class *class, dev_t devt) 4414 { 4415 struct device *dev; 4416 4417 dev = class_find_device_by_devt(class, devt); 4418 if (dev) { 4419 put_device(dev); 4420 device_unregister(dev); 4421 } 4422 } 4423 EXPORT_SYMBOL_GPL(device_destroy); 4424 4425 /** 4426 * device_rename - renames a device 4427 * @dev: the pointer to the struct device to be renamed 4428 * @new_name: the new name of the device 4429 * 4430 * It is the responsibility of the caller to provide mutual 4431 * exclusion between two different calls of device_rename 4432 * on the same device to ensure that new_name is valid and 4433 * won't conflict with other devices. 4434 * 4435 * Note: given that some subsystems (networking and infiniband) use this 4436 * function, with no immediate plans for this to change, we cannot assume or 4437 * require that this function not be called at all. 4438 * 4439 * However, if you're writing new code, do not call this function. The following 4440 * text from Kay Sievers offers some insight: 4441 * 4442 * Renaming devices is racy at many levels, symlinks and other stuff are not 4443 * replaced atomically, and you get a "move" uevent, but it's not easy to 4444 * connect the event to the old and new device. Device nodes are not renamed at 4445 * all, there isn't even support for that in the kernel now. 4446 * 4447 * In the meantime, during renaming, your target name might be taken by another 4448 * driver, creating conflicts. Or the old name is taken directly after you 4449 * renamed it -- then you get events for the same DEVPATH, before you even see 4450 * the "move" event. It's just a mess, and nothing new should ever rely on 4451 * kernel device renaming. Besides that, it's not even implemented now for 4452 * other things than (driver-core wise very simple) network devices. 4453 * 4454 * Make up a "real" name in the driver before you register anything, or add 4455 * some other attributes for userspace to find the device, or use udev to add 4456 * symlinks -- but never rename kernel devices later, it's a complete mess. We 4457 * don't even want to get into that and try to implement the missing pieces in 4458 * the core. We really have other pieces to fix in the driver core mess. :) 4459 */ 4460 int device_rename(struct device *dev, const char *new_name) 4461 { 4462 struct kobject *kobj = &dev->kobj; 4463 char *old_device_name = NULL; 4464 int error; 4465 4466 dev = get_device(dev); 4467 if (!dev) 4468 return -EINVAL; 4469 4470 dev_dbg(dev, "renaming to %s\n", new_name); 4471 4472 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 4473 if (!old_device_name) { 4474 error = -ENOMEM; 4475 goto out; 4476 } 4477 4478 if (dev->class) { 4479 struct subsys_private *sp = class_to_subsys(dev->class); 4480 4481 if (!sp) { 4482 error = -EINVAL; 4483 goto out; 4484 } 4485 4486 error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name, 4487 new_name, kobject_namespace(kobj)); 4488 subsys_put(sp); 4489 if (error) 4490 goto out; 4491 } 4492 4493 error = kobject_rename(kobj, new_name); 4494 if (error) 4495 goto out; 4496 4497 out: 4498 put_device(dev); 4499 4500 kfree(old_device_name); 4501 4502 return error; 4503 } 4504 EXPORT_SYMBOL_GPL(device_rename); 4505 4506 static int device_move_class_links(struct device *dev, 4507 struct device *old_parent, 4508 struct device *new_parent) 4509 { 4510 int error = 0; 4511 4512 if (old_parent) 4513 sysfs_remove_link(&dev->kobj, "device"); 4514 if (new_parent) 4515 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 4516 "device"); 4517 return error; 4518 } 4519 4520 /** 4521 * device_move - moves a device to a new parent 4522 * @dev: the pointer to the struct device to be moved 4523 * @new_parent: the new parent of the device (can be NULL) 4524 * @dpm_order: how to reorder the dpm_list 4525 */ 4526 int device_move(struct device *dev, struct device *new_parent, 4527 enum dpm_order dpm_order) 4528 { 4529 int error; 4530 struct device *old_parent; 4531 struct kobject *new_parent_kobj; 4532 4533 dev = get_device(dev); 4534 if (!dev) 4535 return -EINVAL; 4536 4537 device_pm_lock(); 4538 new_parent = get_device(new_parent); 4539 new_parent_kobj = get_device_parent(dev, new_parent); 4540 if (IS_ERR(new_parent_kobj)) { 4541 error = PTR_ERR(new_parent_kobj); 4542 put_device(new_parent); 4543 goto out; 4544 } 4545 4546 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 4547 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 4548 error = kobject_move(&dev->kobj, new_parent_kobj); 4549 if (error) { 4550 cleanup_glue_dir(dev, new_parent_kobj); 4551 put_device(new_parent); 4552 goto out; 4553 } 4554 old_parent = dev->parent; 4555 dev->parent = new_parent; 4556 if (old_parent) 4557 klist_remove(&dev->p->knode_parent); 4558 if (new_parent) { 4559 klist_add_tail(&dev->p->knode_parent, 4560 &new_parent->p->klist_children); 4561 set_dev_node(dev, dev_to_node(new_parent)); 4562 } 4563 4564 if (dev->class) { 4565 error = device_move_class_links(dev, old_parent, new_parent); 4566 if (error) { 4567 /* We ignore errors on cleanup since we're hosed anyway... */ 4568 device_move_class_links(dev, new_parent, old_parent); 4569 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 4570 if (new_parent) 4571 klist_remove(&dev->p->knode_parent); 4572 dev->parent = old_parent; 4573 if (old_parent) { 4574 klist_add_tail(&dev->p->knode_parent, 4575 &old_parent->p->klist_children); 4576 set_dev_node(dev, dev_to_node(old_parent)); 4577 } 4578 } 4579 cleanup_glue_dir(dev, new_parent_kobj); 4580 put_device(new_parent); 4581 goto out; 4582 } 4583 } 4584 switch (dpm_order) { 4585 case DPM_ORDER_NONE: 4586 break; 4587 case DPM_ORDER_DEV_AFTER_PARENT: 4588 device_pm_move_after(dev, new_parent); 4589 devices_kset_move_after(dev, new_parent); 4590 break; 4591 case DPM_ORDER_PARENT_BEFORE_DEV: 4592 device_pm_move_before(new_parent, dev); 4593 devices_kset_move_before(new_parent, dev); 4594 break; 4595 case DPM_ORDER_DEV_LAST: 4596 device_pm_move_last(dev); 4597 devices_kset_move_last(dev); 4598 break; 4599 } 4600 4601 put_device(old_parent); 4602 out: 4603 device_pm_unlock(); 4604 put_device(dev); 4605 return error; 4606 } 4607 EXPORT_SYMBOL_GPL(device_move); 4608 4609 static int device_attrs_change_owner(struct device *dev, kuid_t kuid, 4610 kgid_t kgid) 4611 { 4612 struct kobject *kobj = &dev->kobj; 4613 const struct class *class = dev->class; 4614 const struct device_type *type = dev->type; 4615 int error; 4616 4617 if (class) { 4618 /* 4619 * Change the device groups of the device class for @dev to 4620 * @kuid/@kgid. 4621 */ 4622 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid, 4623 kgid); 4624 if (error) 4625 return error; 4626 } 4627 4628 if (type) { 4629 /* 4630 * Change the device groups of the device type for @dev to 4631 * @kuid/@kgid. 4632 */ 4633 error = sysfs_groups_change_owner(kobj, type->groups, kuid, 4634 kgid); 4635 if (error) 4636 return error; 4637 } 4638 4639 /* Change the device groups of @dev to @kuid/@kgid. */ 4640 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid); 4641 if (error) 4642 return error; 4643 4644 if (device_supports_offline(dev) && !dev->offline_disabled) { 4645 /* Change online device attributes of @dev to @kuid/@kgid. */ 4646 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name, 4647 kuid, kgid); 4648 if (error) 4649 return error; 4650 } 4651 4652 return 0; 4653 } 4654 4655 /** 4656 * device_change_owner - change the owner of an existing device. 4657 * @dev: device. 4658 * @kuid: new owner's kuid 4659 * @kgid: new owner's kgid 4660 * 4661 * This changes the owner of @dev and its corresponding sysfs entries to 4662 * @kuid/@kgid. This function closely mirrors how @dev was added via driver 4663 * core. 4664 * 4665 * Returns 0 on success or error code on failure. 4666 */ 4667 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid) 4668 { 4669 int error; 4670 struct kobject *kobj = &dev->kobj; 4671 struct subsys_private *sp; 4672 4673 dev = get_device(dev); 4674 if (!dev) 4675 return -EINVAL; 4676 4677 /* 4678 * Change the kobject and the default attributes and groups of the 4679 * ktype associated with it to @kuid/@kgid. 4680 */ 4681 error = sysfs_change_owner(kobj, kuid, kgid); 4682 if (error) 4683 goto out; 4684 4685 /* 4686 * Change the uevent file for @dev to the new owner. The uevent file 4687 * was created in a separate step when @dev got added and we mirror 4688 * that step here. 4689 */ 4690 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid, 4691 kgid); 4692 if (error) 4693 goto out; 4694 4695 /* 4696 * Change the device groups, the device groups associated with the 4697 * device class, and the groups associated with the device type of @dev 4698 * to @kuid/@kgid. 4699 */ 4700 error = device_attrs_change_owner(dev, kuid, kgid); 4701 if (error) 4702 goto out; 4703 4704 error = dpm_sysfs_change_owner(dev, kuid, kgid); 4705 if (error) 4706 goto out; 4707 4708 /* 4709 * Change the owner of the symlink located in the class directory of 4710 * the device class associated with @dev which points to the actual 4711 * directory entry for @dev to @kuid/@kgid. This ensures that the 4712 * symlink shows the same permissions as its target. 4713 */ 4714 sp = class_to_subsys(dev->class); 4715 if (!sp) { 4716 error = -EINVAL; 4717 goto out; 4718 } 4719 error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid); 4720 subsys_put(sp); 4721 4722 out: 4723 put_device(dev); 4724 return error; 4725 } 4726 EXPORT_SYMBOL_GPL(device_change_owner); 4727 4728 /** 4729 * device_shutdown - call ->shutdown() on each device to shutdown. 4730 */ 4731 void device_shutdown(void) 4732 { 4733 struct device *dev, *parent; 4734 4735 wait_for_device_probe(); 4736 device_block_probing(); 4737 4738 cpufreq_suspend(); 4739 4740 spin_lock(&devices_kset->list_lock); 4741 /* 4742 * Walk the devices list backward, shutting down each in turn. 4743 * Beware that device unplug events may also start pulling 4744 * devices offline, even as the system is shutting down. 4745 */ 4746 while (!list_empty(&devices_kset->list)) { 4747 dev = list_entry(devices_kset->list.prev, struct device, 4748 kobj.entry); 4749 4750 /* 4751 * hold reference count of device's parent to 4752 * prevent it from being freed because parent's 4753 * lock is to be held 4754 */ 4755 parent = get_device(dev->parent); 4756 get_device(dev); 4757 /* 4758 * Make sure the device is off the kset list, in the 4759 * event that dev->*->shutdown() doesn't remove it. 4760 */ 4761 list_del_init(&dev->kobj.entry); 4762 spin_unlock(&devices_kset->list_lock); 4763 4764 /* hold lock to avoid race with probe/release */ 4765 if (parent) 4766 device_lock(parent); 4767 device_lock(dev); 4768 4769 /* Don't allow any more runtime suspends */ 4770 pm_runtime_get_noresume(dev); 4771 pm_runtime_barrier(dev); 4772 4773 if (dev->class && dev->class->shutdown_pre) { 4774 if (initcall_debug) 4775 dev_info(dev, "shutdown_pre\n"); 4776 dev->class->shutdown_pre(dev); 4777 } 4778 if (dev->bus && dev->bus->shutdown) { 4779 if (initcall_debug) 4780 dev_info(dev, "shutdown\n"); 4781 dev->bus->shutdown(dev); 4782 } else if (dev->driver && dev->driver->shutdown) { 4783 if (initcall_debug) 4784 dev_info(dev, "shutdown\n"); 4785 dev->driver->shutdown(dev); 4786 } 4787 4788 device_unlock(dev); 4789 if (parent) 4790 device_unlock(parent); 4791 4792 put_device(dev); 4793 put_device(parent); 4794 4795 spin_lock(&devices_kset->list_lock); 4796 } 4797 spin_unlock(&devices_kset->list_lock); 4798 } 4799 4800 /* 4801 * Device logging functions 4802 */ 4803 4804 #ifdef CONFIG_PRINTK 4805 static void 4806 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info) 4807 { 4808 const char *subsys; 4809 4810 memset(dev_info, 0, sizeof(*dev_info)); 4811 4812 if (dev->class) 4813 subsys = dev->class->name; 4814 else if (dev->bus) 4815 subsys = dev->bus->name; 4816 else 4817 return; 4818 4819 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem)); 4820 4821 /* 4822 * Add device identifier DEVICE=: 4823 * b12:8 block dev_t 4824 * c127:3 char dev_t 4825 * n8 netdev ifindex 4826 * +sound:card0 subsystem:devname 4827 */ 4828 if (MAJOR(dev->devt)) { 4829 char c; 4830 4831 if (strcmp(subsys, "block") == 0) 4832 c = 'b'; 4833 else 4834 c = 'c'; 4835 4836 snprintf(dev_info->device, sizeof(dev_info->device), 4837 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt)); 4838 } else if (strcmp(subsys, "net") == 0) { 4839 struct net_device *net = to_net_dev(dev); 4840 4841 snprintf(dev_info->device, sizeof(dev_info->device), 4842 "n%u", net->ifindex); 4843 } else { 4844 snprintf(dev_info->device, sizeof(dev_info->device), 4845 "+%s:%s", subsys, dev_name(dev)); 4846 } 4847 } 4848 4849 int dev_vprintk_emit(int level, const struct device *dev, 4850 const char *fmt, va_list args) 4851 { 4852 struct dev_printk_info dev_info; 4853 4854 set_dev_info(dev, &dev_info); 4855 4856 return vprintk_emit(0, level, &dev_info, fmt, args); 4857 } 4858 EXPORT_SYMBOL(dev_vprintk_emit); 4859 4860 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 4861 { 4862 va_list args; 4863 int r; 4864 4865 va_start(args, fmt); 4866 4867 r = dev_vprintk_emit(level, dev, fmt, args); 4868 4869 va_end(args); 4870 4871 return r; 4872 } 4873 EXPORT_SYMBOL(dev_printk_emit); 4874 4875 static void __dev_printk(const char *level, const struct device *dev, 4876 struct va_format *vaf) 4877 { 4878 if (dev) 4879 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 4880 dev_driver_string(dev), dev_name(dev), vaf); 4881 else 4882 printk("%s(NULL device *): %pV", level, vaf); 4883 } 4884 4885 void _dev_printk(const char *level, const struct device *dev, 4886 const char *fmt, ...) 4887 { 4888 struct va_format vaf; 4889 va_list args; 4890 4891 va_start(args, fmt); 4892 4893 vaf.fmt = fmt; 4894 vaf.va = &args; 4895 4896 __dev_printk(level, dev, &vaf); 4897 4898 va_end(args); 4899 } 4900 EXPORT_SYMBOL(_dev_printk); 4901 4902 #define define_dev_printk_level(func, kern_level) \ 4903 void func(const struct device *dev, const char *fmt, ...) \ 4904 { \ 4905 struct va_format vaf; \ 4906 va_list args; \ 4907 \ 4908 va_start(args, fmt); \ 4909 \ 4910 vaf.fmt = fmt; \ 4911 vaf.va = &args; \ 4912 \ 4913 __dev_printk(kern_level, dev, &vaf); \ 4914 \ 4915 va_end(args); \ 4916 } \ 4917 EXPORT_SYMBOL(func); 4918 4919 define_dev_printk_level(_dev_emerg, KERN_EMERG); 4920 define_dev_printk_level(_dev_alert, KERN_ALERT); 4921 define_dev_printk_level(_dev_crit, KERN_CRIT); 4922 define_dev_printk_level(_dev_err, KERN_ERR); 4923 define_dev_printk_level(_dev_warn, KERN_WARNING); 4924 define_dev_printk_level(_dev_notice, KERN_NOTICE); 4925 define_dev_printk_level(_dev_info, KERN_INFO); 4926 4927 #endif 4928 4929 /** 4930 * dev_err_probe - probe error check and log helper 4931 * @dev: the pointer to the struct device 4932 * @err: error value to test 4933 * @fmt: printf-style format string 4934 * @...: arguments as specified in the format string 4935 * 4936 * This helper implements common pattern present in probe functions for error 4937 * checking: print debug or error message depending if the error value is 4938 * -EPROBE_DEFER and propagate error upwards. 4939 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be 4940 * checked later by reading devices_deferred debugfs attribute. 4941 * It replaces code sequence:: 4942 * 4943 * if (err != -EPROBE_DEFER) 4944 * dev_err(dev, ...); 4945 * else 4946 * dev_dbg(dev, ...); 4947 * return err; 4948 * 4949 * with:: 4950 * 4951 * return dev_err_probe(dev, err, ...); 4952 * 4953 * Note that it is deemed acceptable to use this function for error 4954 * prints during probe even if the @err is known to never be -EPROBE_DEFER. 4955 * The benefit compared to a normal dev_err() is the standardized format 4956 * of the error code and the fact that the error code is returned. 4957 * 4958 * Returns @err. 4959 * 4960 */ 4961 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...) 4962 { 4963 struct va_format vaf; 4964 va_list args; 4965 4966 va_start(args, fmt); 4967 vaf.fmt = fmt; 4968 vaf.va = &args; 4969 4970 if (err != -EPROBE_DEFER) { 4971 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 4972 } else { 4973 device_set_deferred_probe_reason(dev, &vaf); 4974 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 4975 } 4976 4977 va_end(args); 4978 4979 return err; 4980 } 4981 EXPORT_SYMBOL_GPL(dev_err_probe); 4982 4983 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 4984 { 4985 return fwnode && !IS_ERR(fwnode->secondary); 4986 } 4987 4988 /** 4989 * set_primary_fwnode - Change the primary firmware node of a given device. 4990 * @dev: Device to handle. 4991 * @fwnode: New primary firmware node of the device. 4992 * 4993 * Set the device's firmware node pointer to @fwnode, but if a secondary 4994 * firmware node of the device is present, preserve it. 4995 * 4996 * Valid fwnode cases are: 4997 * - primary --> secondary --> -ENODEV 4998 * - primary --> NULL 4999 * - secondary --> -ENODEV 5000 * - NULL 5001 */ 5002 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 5003 { 5004 struct device *parent = dev->parent; 5005 struct fwnode_handle *fn = dev->fwnode; 5006 5007 if (fwnode) { 5008 if (fwnode_is_primary(fn)) 5009 fn = fn->secondary; 5010 5011 if (fn) { 5012 WARN_ON(fwnode->secondary); 5013 fwnode->secondary = fn; 5014 } 5015 dev->fwnode = fwnode; 5016 } else { 5017 if (fwnode_is_primary(fn)) { 5018 dev->fwnode = fn->secondary; 5019 5020 /* Skip nullifying fn->secondary if the primary is shared */ 5021 if (parent && fn == parent->fwnode) 5022 return; 5023 5024 /* Set fn->secondary = NULL, so fn remains the primary fwnode */ 5025 fn->secondary = NULL; 5026 } else { 5027 dev->fwnode = NULL; 5028 } 5029 } 5030 } 5031 EXPORT_SYMBOL_GPL(set_primary_fwnode); 5032 5033 /** 5034 * set_secondary_fwnode - Change the secondary firmware node of a given device. 5035 * @dev: Device to handle. 5036 * @fwnode: New secondary firmware node of the device. 5037 * 5038 * If a primary firmware node of the device is present, set its secondary 5039 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 5040 * @fwnode. 5041 */ 5042 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 5043 { 5044 if (fwnode) 5045 fwnode->secondary = ERR_PTR(-ENODEV); 5046 5047 if (fwnode_is_primary(dev->fwnode)) 5048 dev->fwnode->secondary = fwnode; 5049 else 5050 dev->fwnode = fwnode; 5051 } 5052 EXPORT_SYMBOL_GPL(set_secondary_fwnode); 5053 5054 /** 5055 * device_set_of_node_from_dev - reuse device-tree node of another device 5056 * @dev: device whose device-tree node is being set 5057 * @dev2: device whose device-tree node is being reused 5058 * 5059 * Takes another reference to the new device-tree node after first dropping 5060 * any reference held to the old node. 5061 */ 5062 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 5063 { 5064 of_node_put(dev->of_node); 5065 dev->of_node = of_node_get(dev2->of_node); 5066 dev->of_node_reused = true; 5067 } 5068 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 5069 5070 void device_set_node(struct device *dev, struct fwnode_handle *fwnode) 5071 { 5072 dev->fwnode = fwnode; 5073 dev->of_node = to_of_node(fwnode); 5074 } 5075 EXPORT_SYMBOL_GPL(device_set_node); 5076 5077 int device_match_name(struct device *dev, const void *name) 5078 { 5079 return sysfs_streq(dev_name(dev), name); 5080 } 5081 EXPORT_SYMBOL_GPL(device_match_name); 5082 5083 int device_match_of_node(struct device *dev, const void *np) 5084 { 5085 return dev->of_node == np; 5086 } 5087 EXPORT_SYMBOL_GPL(device_match_of_node); 5088 5089 int device_match_fwnode(struct device *dev, const void *fwnode) 5090 { 5091 return dev_fwnode(dev) == fwnode; 5092 } 5093 EXPORT_SYMBOL_GPL(device_match_fwnode); 5094 5095 int device_match_devt(struct device *dev, const void *pdevt) 5096 { 5097 return dev->devt == *(dev_t *)pdevt; 5098 } 5099 EXPORT_SYMBOL_GPL(device_match_devt); 5100 5101 int device_match_acpi_dev(struct device *dev, const void *adev) 5102 { 5103 return ACPI_COMPANION(dev) == adev; 5104 } 5105 EXPORT_SYMBOL(device_match_acpi_dev); 5106 5107 int device_match_acpi_handle(struct device *dev, const void *handle) 5108 { 5109 return ACPI_HANDLE(dev) == handle; 5110 } 5111 EXPORT_SYMBOL(device_match_acpi_handle); 5112 5113 int device_match_any(struct device *dev, const void *unused) 5114 { 5115 return 1; 5116 } 5117 EXPORT_SYMBOL_GPL(device_match_any); 5118