xref: /openbmc/linux/drivers/base/core.c (revision aac5987a)
1 /*
2  * drivers/base/core.c - core driver model code (device registration, etc)
3  *
4  * Copyright (c) 2002-3 Patrick Mochel
5  * Copyright (c) 2002-3 Open Source Development Labs
6  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
7  * Copyright (c) 2006 Novell, Inc.
8  *
9  * This file is released under the GPLv2
10  *
11  */
12 
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/kallsyms.h>
26 #include <linux/mutex.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/netdevice.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sysfs.h>
31 
32 #include "base.h"
33 #include "power/power.h"
34 
35 #ifdef CONFIG_SYSFS_DEPRECATED
36 #ifdef CONFIG_SYSFS_DEPRECATED_V2
37 long sysfs_deprecated = 1;
38 #else
39 long sysfs_deprecated = 0;
40 #endif
41 static int __init sysfs_deprecated_setup(char *arg)
42 {
43 	return kstrtol(arg, 10, &sysfs_deprecated);
44 }
45 early_param("sysfs.deprecated", sysfs_deprecated_setup);
46 #endif
47 
48 /* Device links support. */
49 
50 #ifdef CONFIG_SRCU
51 static DEFINE_MUTEX(device_links_lock);
52 DEFINE_STATIC_SRCU(device_links_srcu);
53 
54 static inline void device_links_write_lock(void)
55 {
56 	mutex_lock(&device_links_lock);
57 }
58 
59 static inline void device_links_write_unlock(void)
60 {
61 	mutex_unlock(&device_links_lock);
62 }
63 
64 int device_links_read_lock(void)
65 {
66 	return srcu_read_lock(&device_links_srcu);
67 }
68 
69 void device_links_read_unlock(int idx)
70 {
71 	srcu_read_unlock(&device_links_srcu, idx);
72 }
73 #else /* !CONFIG_SRCU */
74 static DECLARE_RWSEM(device_links_lock);
75 
76 static inline void device_links_write_lock(void)
77 {
78 	down_write(&device_links_lock);
79 }
80 
81 static inline void device_links_write_unlock(void)
82 {
83 	up_write(&device_links_lock);
84 }
85 
86 int device_links_read_lock(void)
87 {
88 	down_read(&device_links_lock);
89 	return 0;
90 }
91 
92 void device_links_read_unlock(int not_used)
93 {
94 	up_read(&device_links_lock);
95 }
96 #endif /* !CONFIG_SRCU */
97 
98 /**
99  * device_is_dependent - Check if one device depends on another one
100  * @dev: Device to check dependencies for.
101  * @target: Device to check against.
102  *
103  * Check if @target depends on @dev or any device dependent on it (its child or
104  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
105  */
106 static int device_is_dependent(struct device *dev, void *target)
107 {
108 	struct device_link *link;
109 	int ret;
110 
111 	if (WARN_ON(dev == target))
112 		return 1;
113 
114 	ret = device_for_each_child(dev, target, device_is_dependent);
115 	if (ret)
116 		return ret;
117 
118 	list_for_each_entry(link, &dev->links.consumers, s_node) {
119 		if (WARN_ON(link->consumer == target))
120 			return 1;
121 
122 		ret = device_is_dependent(link->consumer, target);
123 		if (ret)
124 			break;
125 	}
126 	return ret;
127 }
128 
129 static int device_reorder_to_tail(struct device *dev, void *not_used)
130 {
131 	struct device_link *link;
132 
133 	/*
134 	 * Devices that have not been registered yet will be put to the ends
135 	 * of the lists during the registration, so skip them here.
136 	 */
137 	if (device_is_registered(dev))
138 		devices_kset_move_last(dev);
139 
140 	if (device_pm_initialized(dev))
141 		device_pm_move_last(dev);
142 
143 	device_for_each_child(dev, NULL, device_reorder_to_tail);
144 	list_for_each_entry(link, &dev->links.consumers, s_node)
145 		device_reorder_to_tail(link->consumer, NULL);
146 
147 	return 0;
148 }
149 
150 /**
151  * device_link_add - Create a link between two devices.
152  * @consumer: Consumer end of the link.
153  * @supplier: Supplier end of the link.
154  * @flags: Link flags.
155  *
156  * The caller is responsible for the proper synchronization of the link creation
157  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
158  * runtime PM framework to take the link into account.  Second, if the
159  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
160  * be forced into the active metastate and reference-counted upon the creation
161  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
162  * ignored.
163  *
164  * If the DL_FLAG_AUTOREMOVE is set, the link will be removed automatically
165  * when the consumer device driver unbinds from it.  The combination of both
166  * DL_FLAG_AUTOREMOVE and DL_FLAG_STATELESS set is invalid and will cause NULL
167  * to be returned.
168  *
169  * A side effect of the link creation is re-ordering of dpm_list and the
170  * devices_kset list by moving the consumer device and all devices depending
171  * on it to the ends of these lists (that does not happen to devices that have
172  * not been registered when this function is called).
173  *
174  * The supplier device is required to be registered when this function is called
175  * and NULL will be returned if that is not the case.  The consumer device need
176  * not be registered, however.
177  */
178 struct device_link *device_link_add(struct device *consumer,
179 				    struct device *supplier, u32 flags)
180 {
181 	struct device_link *link;
182 
183 	if (!consumer || !supplier ||
184 	    ((flags & DL_FLAG_STATELESS) && (flags & DL_FLAG_AUTOREMOVE)))
185 		return NULL;
186 
187 	device_links_write_lock();
188 	device_pm_lock();
189 
190 	/*
191 	 * If the supplier has not been fully registered yet or there is a
192 	 * reverse dependency between the consumer and the supplier already in
193 	 * the graph, return NULL.
194 	 */
195 	if (!device_pm_initialized(supplier)
196 	    || device_is_dependent(consumer, supplier)) {
197 		link = NULL;
198 		goto out;
199 	}
200 
201 	list_for_each_entry(link, &supplier->links.consumers, s_node)
202 		if (link->consumer == consumer)
203 			goto out;
204 
205 	link = kzalloc(sizeof(*link), GFP_KERNEL);
206 	if (!link)
207 		goto out;
208 
209 	if (flags & DL_FLAG_PM_RUNTIME) {
210 		if (flags & DL_FLAG_RPM_ACTIVE) {
211 			if (pm_runtime_get_sync(supplier) < 0) {
212 				pm_runtime_put_noidle(supplier);
213 				kfree(link);
214 				link = NULL;
215 				goto out;
216 			}
217 			link->rpm_active = true;
218 		}
219 		pm_runtime_new_link(consumer);
220 	}
221 	get_device(supplier);
222 	link->supplier = supplier;
223 	INIT_LIST_HEAD(&link->s_node);
224 	get_device(consumer);
225 	link->consumer = consumer;
226 	INIT_LIST_HEAD(&link->c_node);
227 	link->flags = flags;
228 
229 	/* Determine the initial link state. */
230 	if (flags & DL_FLAG_STATELESS) {
231 		link->status = DL_STATE_NONE;
232 	} else {
233 		switch (supplier->links.status) {
234 		case DL_DEV_DRIVER_BOUND:
235 			switch (consumer->links.status) {
236 			case DL_DEV_PROBING:
237 				/*
238 				 * Balance the decrementation of the supplier's
239 				 * runtime PM usage counter after consumer probe
240 				 * in driver_probe_device().
241 				 */
242 				if (flags & DL_FLAG_PM_RUNTIME)
243 					pm_runtime_get_sync(supplier);
244 
245 				link->status = DL_STATE_CONSUMER_PROBE;
246 				break;
247 			case DL_DEV_DRIVER_BOUND:
248 				link->status = DL_STATE_ACTIVE;
249 				break;
250 			default:
251 				link->status = DL_STATE_AVAILABLE;
252 				break;
253 			}
254 			break;
255 		case DL_DEV_UNBINDING:
256 			link->status = DL_STATE_SUPPLIER_UNBIND;
257 			break;
258 		default:
259 			link->status = DL_STATE_DORMANT;
260 			break;
261 		}
262 	}
263 
264 	/*
265 	 * Move the consumer and all of the devices depending on it to the end
266 	 * of dpm_list and the devices_kset list.
267 	 *
268 	 * It is necessary to hold dpm_list locked throughout all that or else
269 	 * we may end up suspending with a wrong ordering of it.
270 	 */
271 	device_reorder_to_tail(consumer, NULL);
272 
273 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
274 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
275 
276 	dev_info(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
277 
278  out:
279 	device_pm_unlock();
280 	device_links_write_unlock();
281 	return link;
282 }
283 EXPORT_SYMBOL_GPL(device_link_add);
284 
285 static void device_link_free(struct device_link *link)
286 {
287 	put_device(link->consumer);
288 	put_device(link->supplier);
289 	kfree(link);
290 }
291 
292 #ifdef CONFIG_SRCU
293 static void __device_link_free_srcu(struct rcu_head *rhead)
294 {
295 	device_link_free(container_of(rhead, struct device_link, rcu_head));
296 }
297 
298 static void __device_link_del(struct device_link *link)
299 {
300 	dev_info(link->consumer, "Dropping the link to %s\n",
301 		 dev_name(link->supplier));
302 
303 	if (link->flags & DL_FLAG_PM_RUNTIME)
304 		pm_runtime_drop_link(link->consumer);
305 
306 	list_del_rcu(&link->s_node);
307 	list_del_rcu(&link->c_node);
308 	call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
309 }
310 #else /* !CONFIG_SRCU */
311 static void __device_link_del(struct device_link *link)
312 {
313 	dev_info(link->consumer, "Dropping the link to %s\n",
314 		 dev_name(link->supplier));
315 
316 	list_del(&link->s_node);
317 	list_del(&link->c_node);
318 	device_link_free(link);
319 }
320 #endif /* !CONFIG_SRCU */
321 
322 /**
323  * device_link_del - Delete a link between two devices.
324  * @link: Device link to delete.
325  *
326  * The caller must ensure proper synchronization of this function with runtime
327  * PM.
328  */
329 void device_link_del(struct device_link *link)
330 {
331 	device_links_write_lock();
332 	device_pm_lock();
333 	__device_link_del(link);
334 	device_pm_unlock();
335 	device_links_write_unlock();
336 }
337 EXPORT_SYMBOL_GPL(device_link_del);
338 
339 static void device_links_missing_supplier(struct device *dev)
340 {
341 	struct device_link *link;
342 
343 	list_for_each_entry(link, &dev->links.suppliers, c_node)
344 		if (link->status == DL_STATE_CONSUMER_PROBE)
345 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
346 }
347 
348 /**
349  * device_links_check_suppliers - Check presence of supplier drivers.
350  * @dev: Consumer device.
351  *
352  * Check links from this device to any suppliers.  Walk the list of the device's
353  * links to suppliers and see if all of them are available.  If not, simply
354  * return -EPROBE_DEFER.
355  *
356  * We need to guarantee that the supplier will not go away after the check has
357  * been positive here.  It only can go away in __device_release_driver() and
358  * that function  checks the device's links to consumers.  This means we need to
359  * mark the link as "consumer probe in progress" to make the supplier removal
360  * wait for us to complete (or bad things may happen).
361  *
362  * Links with the DL_FLAG_STATELESS flag set are ignored.
363  */
364 int device_links_check_suppliers(struct device *dev)
365 {
366 	struct device_link *link;
367 	int ret = 0;
368 
369 	device_links_write_lock();
370 
371 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
372 		if (link->flags & DL_FLAG_STATELESS)
373 			continue;
374 
375 		if (link->status != DL_STATE_AVAILABLE) {
376 			device_links_missing_supplier(dev);
377 			ret = -EPROBE_DEFER;
378 			break;
379 		}
380 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
381 	}
382 	dev->links.status = DL_DEV_PROBING;
383 
384 	device_links_write_unlock();
385 	return ret;
386 }
387 
388 /**
389  * device_links_driver_bound - Update device links after probing its driver.
390  * @dev: Device to update the links for.
391  *
392  * The probe has been successful, so update links from this device to any
393  * consumers by changing their status to "available".
394  *
395  * Also change the status of @dev's links to suppliers to "active".
396  *
397  * Links with the DL_FLAG_STATELESS flag set are ignored.
398  */
399 void device_links_driver_bound(struct device *dev)
400 {
401 	struct device_link *link;
402 
403 	device_links_write_lock();
404 
405 	list_for_each_entry(link, &dev->links.consumers, s_node) {
406 		if (link->flags & DL_FLAG_STATELESS)
407 			continue;
408 
409 		WARN_ON(link->status != DL_STATE_DORMANT);
410 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
411 	}
412 
413 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
414 		if (link->flags & DL_FLAG_STATELESS)
415 			continue;
416 
417 		WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
418 		WRITE_ONCE(link->status, DL_STATE_ACTIVE);
419 	}
420 
421 	dev->links.status = DL_DEV_DRIVER_BOUND;
422 
423 	device_links_write_unlock();
424 }
425 
426 /**
427  * __device_links_no_driver - Update links of a device without a driver.
428  * @dev: Device without a drvier.
429  *
430  * Delete all non-persistent links from this device to any suppliers.
431  *
432  * Persistent links stay around, but their status is changed to "available",
433  * unless they already are in the "supplier unbind in progress" state in which
434  * case they need not be updated.
435  *
436  * Links with the DL_FLAG_STATELESS flag set are ignored.
437  */
438 static void __device_links_no_driver(struct device *dev)
439 {
440 	struct device_link *link, *ln;
441 
442 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
443 		if (link->flags & DL_FLAG_STATELESS)
444 			continue;
445 
446 		if (link->flags & DL_FLAG_AUTOREMOVE)
447 			__device_link_del(link);
448 		else if (link->status != DL_STATE_SUPPLIER_UNBIND)
449 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
450 	}
451 
452 	dev->links.status = DL_DEV_NO_DRIVER;
453 }
454 
455 void device_links_no_driver(struct device *dev)
456 {
457 	device_links_write_lock();
458 	__device_links_no_driver(dev);
459 	device_links_write_unlock();
460 }
461 
462 /**
463  * device_links_driver_cleanup - Update links after driver removal.
464  * @dev: Device whose driver has just gone away.
465  *
466  * Update links to consumers for @dev by changing their status to "dormant" and
467  * invoke %__device_links_no_driver() to update links to suppliers for it as
468  * appropriate.
469  *
470  * Links with the DL_FLAG_STATELESS flag set are ignored.
471  */
472 void device_links_driver_cleanup(struct device *dev)
473 {
474 	struct device_link *link;
475 
476 	device_links_write_lock();
477 
478 	list_for_each_entry(link, &dev->links.consumers, s_node) {
479 		if (link->flags & DL_FLAG_STATELESS)
480 			continue;
481 
482 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE);
483 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
484 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
485 	}
486 
487 	__device_links_no_driver(dev);
488 
489 	device_links_write_unlock();
490 }
491 
492 /**
493  * device_links_busy - Check if there are any busy links to consumers.
494  * @dev: Device to check.
495  *
496  * Check each consumer of the device and return 'true' if its link's status
497  * is one of "consumer probe" or "active" (meaning that the given consumer is
498  * probing right now or its driver is present).  Otherwise, change the link
499  * state to "supplier unbind" to prevent the consumer from being probed
500  * successfully going forward.
501  *
502  * Return 'false' if there are no probing or active consumers.
503  *
504  * Links with the DL_FLAG_STATELESS flag set are ignored.
505  */
506 bool device_links_busy(struct device *dev)
507 {
508 	struct device_link *link;
509 	bool ret = false;
510 
511 	device_links_write_lock();
512 
513 	list_for_each_entry(link, &dev->links.consumers, s_node) {
514 		if (link->flags & DL_FLAG_STATELESS)
515 			continue;
516 
517 		if (link->status == DL_STATE_CONSUMER_PROBE
518 		    || link->status == DL_STATE_ACTIVE) {
519 			ret = true;
520 			break;
521 		}
522 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
523 	}
524 
525 	dev->links.status = DL_DEV_UNBINDING;
526 
527 	device_links_write_unlock();
528 	return ret;
529 }
530 
531 /**
532  * device_links_unbind_consumers - Force unbind consumers of the given device.
533  * @dev: Device to unbind the consumers of.
534  *
535  * Walk the list of links to consumers for @dev and if any of them is in the
536  * "consumer probe" state, wait for all device probes in progress to complete
537  * and start over.
538  *
539  * If that's not the case, change the status of the link to "supplier unbind"
540  * and check if the link was in the "active" state.  If so, force the consumer
541  * driver to unbind and start over (the consumer will not re-probe as we have
542  * changed the state of the link already).
543  *
544  * Links with the DL_FLAG_STATELESS flag set are ignored.
545  */
546 void device_links_unbind_consumers(struct device *dev)
547 {
548 	struct device_link *link;
549 
550  start:
551 	device_links_write_lock();
552 
553 	list_for_each_entry(link, &dev->links.consumers, s_node) {
554 		enum device_link_state status;
555 
556 		if (link->flags & DL_FLAG_STATELESS)
557 			continue;
558 
559 		status = link->status;
560 		if (status == DL_STATE_CONSUMER_PROBE) {
561 			device_links_write_unlock();
562 
563 			wait_for_device_probe();
564 			goto start;
565 		}
566 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
567 		if (status == DL_STATE_ACTIVE) {
568 			struct device *consumer = link->consumer;
569 
570 			get_device(consumer);
571 
572 			device_links_write_unlock();
573 
574 			device_release_driver_internal(consumer, NULL,
575 						       consumer->parent);
576 			put_device(consumer);
577 			goto start;
578 		}
579 	}
580 
581 	device_links_write_unlock();
582 }
583 
584 /**
585  * device_links_purge - Delete existing links to other devices.
586  * @dev: Target device.
587  */
588 static void device_links_purge(struct device *dev)
589 {
590 	struct device_link *link, *ln;
591 
592 	/*
593 	 * Delete all of the remaining links from this device to any other
594 	 * devices (either consumers or suppliers).
595 	 */
596 	device_links_write_lock();
597 
598 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
599 		WARN_ON(link->status == DL_STATE_ACTIVE);
600 		__device_link_del(link);
601 	}
602 
603 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
604 		WARN_ON(link->status != DL_STATE_DORMANT &&
605 			link->status != DL_STATE_NONE);
606 		__device_link_del(link);
607 	}
608 
609 	device_links_write_unlock();
610 }
611 
612 /* Device links support end. */
613 
614 int (*platform_notify)(struct device *dev) = NULL;
615 int (*platform_notify_remove)(struct device *dev) = NULL;
616 static struct kobject *dev_kobj;
617 struct kobject *sysfs_dev_char_kobj;
618 struct kobject *sysfs_dev_block_kobj;
619 
620 static DEFINE_MUTEX(device_hotplug_lock);
621 
622 void lock_device_hotplug(void)
623 {
624 	mutex_lock(&device_hotplug_lock);
625 }
626 
627 void unlock_device_hotplug(void)
628 {
629 	mutex_unlock(&device_hotplug_lock);
630 }
631 
632 int lock_device_hotplug_sysfs(void)
633 {
634 	if (mutex_trylock(&device_hotplug_lock))
635 		return 0;
636 
637 	/* Avoid busy looping (5 ms of sleep should do). */
638 	msleep(5);
639 	return restart_syscall();
640 }
641 
642 void assert_held_device_hotplug(void)
643 {
644 	lockdep_assert_held(&device_hotplug_lock);
645 }
646 
647 #ifdef CONFIG_BLOCK
648 static inline int device_is_not_partition(struct device *dev)
649 {
650 	return !(dev->type == &part_type);
651 }
652 #else
653 static inline int device_is_not_partition(struct device *dev)
654 {
655 	return 1;
656 }
657 #endif
658 
659 /**
660  * dev_driver_string - Return a device's driver name, if at all possible
661  * @dev: struct device to get the name of
662  *
663  * Will return the device's driver's name if it is bound to a device.  If
664  * the device is not bound to a driver, it will return the name of the bus
665  * it is attached to.  If it is not attached to a bus either, an empty
666  * string will be returned.
667  */
668 const char *dev_driver_string(const struct device *dev)
669 {
670 	struct device_driver *drv;
671 
672 	/* dev->driver can change to NULL underneath us because of unbinding,
673 	 * so be careful about accessing it.  dev->bus and dev->class should
674 	 * never change once they are set, so they don't need special care.
675 	 */
676 	drv = ACCESS_ONCE(dev->driver);
677 	return drv ? drv->name :
678 			(dev->bus ? dev->bus->name :
679 			(dev->class ? dev->class->name : ""));
680 }
681 EXPORT_SYMBOL(dev_driver_string);
682 
683 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
684 
685 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
686 			     char *buf)
687 {
688 	struct device_attribute *dev_attr = to_dev_attr(attr);
689 	struct device *dev = kobj_to_dev(kobj);
690 	ssize_t ret = -EIO;
691 
692 	if (dev_attr->show)
693 		ret = dev_attr->show(dev, dev_attr, buf);
694 	if (ret >= (ssize_t)PAGE_SIZE) {
695 		print_symbol("dev_attr_show: %s returned bad count\n",
696 				(unsigned long)dev_attr->show);
697 	}
698 	return ret;
699 }
700 
701 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
702 			      const char *buf, size_t count)
703 {
704 	struct device_attribute *dev_attr = to_dev_attr(attr);
705 	struct device *dev = kobj_to_dev(kobj);
706 	ssize_t ret = -EIO;
707 
708 	if (dev_attr->store)
709 		ret = dev_attr->store(dev, dev_attr, buf, count);
710 	return ret;
711 }
712 
713 static const struct sysfs_ops dev_sysfs_ops = {
714 	.show	= dev_attr_show,
715 	.store	= dev_attr_store,
716 };
717 
718 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
719 
720 ssize_t device_store_ulong(struct device *dev,
721 			   struct device_attribute *attr,
722 			   const char *buf, size_t size)
723 {
724 	struct dev_ext_attribute *ea = to_ext_attr(attr);
725 	char *end;
726 	unsigned long new = simple_strtoul(buf, &end, 0);
727 	if (end == buf)
728 		return -EINVAL;
729 	*(unsigned long *)(ea->var) = new;
730 	/* Always return full write size even if we didn't consume all */
731 	return size;
732 }
733 EXPORT_SYMBOL_GPL(device_store_ulong);
734 
735 ssize_t device_show_ulong(struct device *dev,
736 			  struct device_attribute *attr,
737 			  char *buf)
738 {
739 	struct dev_ext_attribute *ea = to_ext_attr(attr);
740 	return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
741 }
742 EXPORT_SYMBOL_GPL(device_show_ulong);
743 
744 ssize_t device_store_int(struct device *dev,
745 			 struct device_attribute *attr,
746 			 const char *buf, size_t size)
747 {
748 	struct dev_ext_attribute *ea = to_ext_attr(attr);
749 	char *end;
750 	long new = simple_strtol(buf, &end, 0);
751 	if (end == buf || new > INT_MAX || new < INT_MIN)
752 		return -EINVAL;
753 	*(int *)(ea->var) = new;
754 	/* Always return full write size even if we didn't consume all */
755 	return size;
756 }
757 EXPORT_SYMBOL_GPL(device_store_int);
758 
759 ssize_t device_show_int(struct device *dev,
760 			struct device_attribute *attr,
761 			char *buf)
762 {
763 	struct dev_ext_attribute *ea = to_ext_attr(attr);
764 
765 	return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
766 }
767 EXPORT_SYMBOL_GPL(device_show_int);
768 
769 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
770 			  const char *buf, size_t size)
771 {
772 	struct dev_ext_attribute *ea = to_ext_attr(attr);
773 
774 	if (strtobool(buf, ea->var) < 0)
775 		return -EINVAL;
776 
777 	return size;
778 }
779 EXPORT_SYMBOL_GPL(device_store_bool);
780 
781 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
782 			 char *buf)
783 {
784 	struct dev_ext_attribute *ea = to_ext_attr(attr);
785 
786 	return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
787 }
788 EXPORT_SYMBOL_GPL(device_show_bool);
789 
790 /**
791  * device_release - free device structure.
792  * @kobj: device's kobject.
793  *
794  * This is called once the reference count for the object
795  * reaches 0. We forward the call to the device's release
796  * method, which should handle actually freeing the structure.
797  */
798 static void device_release(struct kobject *kobj)
799 {
800 	struct device *dev = kobj_to_dev(kobj);
801 	struct device_private *p = dev->p;
802 
803 	/*
804 	 * Some platform devices are driven without driver attached
805 	 * and managed resources may have been acquired.  Make sure
806 	 * all resources are released.
807 	 *
808 	 * Drivers still can add resources into device after device
809 	 * is deleted but alive, so release devres here to avoid
810 	 * possible memory leak.
811 	 */
812 	devres_release_all(dev);
813 
814 	if (dev->release)
815 		dev->release(dev);
816 	else if (dev->type && dev->type->release)
817 		dev->type->release(dev);
818 	else if (dev->class && dev->class->dev_release)
819 		dev->class->dev_release(dev);
820 	else
821 		WARN(1, KERN_ERR "Device '%s' does not have a release() "
822 			"function, it is broken and must be fixed.\n",
823 			dev_name(dev));
824 	kfree(p);
825 }
826 
827 static const void *device_namespace(struct kobject *kobj)
828 {
829 	struct device *dev = kobj_to_dev(kobj);
830 	const void *ns = NULL;
831 
832 	if (dev->class && dev->class->ns_type)
833 		ns = dev->class->namespace(dev);
834 
835 	return ns;
836 }
837 
838 static struct kobj_type device_ktype = {
839 	.release	= device_release,
840 	.sysfs_ops	= &dev_sysfs_ops,
841 	.namespace	= device_namespace,
842 };
843 
844 
845 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
846 {
847 	struct kobj_type *ktype = get_ktype(kobj);
848 
849 	if (ktype == &device_ktype) {
850 		struct device *dev = kobj_to_dev(kobj);
851 		if (dev->bus)
852 			return 1;
853 		if (dev->class)
854 			return 1;
855 	}
856 	return 0;
857 }
858 
859 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
860 {
861 	struct device *dev = kobj_to_dev(kobj);
862 
863 	if (dev->bus)
864 		return dev->bus->name;
865 	if (dev->class)
866 		return dev->class->name;
867 	return NULL;
868 }
869 
870 static int dev_uevent(struct kset *kset, struct kobject *kobj,
871 		      struct kobj_uevent_env *env)
872 {
873 	struct device *dev = kobj_to_dev(kobj);
874 	int retval = 0;
875 
876 	/* add device node properties if present */
877 	if (MAJOR(dev->devt)) {
878 		const char *tmp;
879 		const char *name;
880 		umode_t mode = 0;
881 		kuid_t uid = GLOBAL_ROOT_UID;
882 		kgid_t gid = GLOBAL_ROOT_GID;
883 
884 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
885 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
886 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
887 		if (name) {
888 			add_uevent_var(env, "DEVNAME=%s", name);
889 			if (mode)
890 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
891 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
892 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
893 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
894 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
895 			kfree(tmp);
896 		}
897 	}
898 
899 	if (dev->type && dev->type->name)
900 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
901 
902 	if (dev->driver)
903 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
904 
905 	/* Add common DT information about the device */
906 	of_device_uevent(dev, env);
907 
908 	/* have the bus specific function add its stuff */
909 	if (dev->bus && dev->bus->uevent) {
910 		retval = dev->bus->uevent(dev, env);
911 		if (retval)
912 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
913 				 dev_name(dev), __func__, retval);
914 	}
915 
916 	/* have the class specific function add its stuff */
917 	if (dev->class && dev->class->dev_uevent) {
918 		retval = dev->class->dev_uevent(dev, env);
919 		if (retval)
920 			pr_debug("device: '%s': %s: class uevent() "
921 				 "returned %d\n", dev_name(dev),
922 				 __func__, retval);
923 	}
924 
925 	/* have the device type specific function add its stuff */
926 	if (dev->type && dev->type->uevent) {
927 		retval = dev->type->uevent(dev, env);
928 		if (retval)
929 			pr_debug("device: '%s': %s: dev_type uevent() "
930 				 "returned %d\n", dev_name(dev),
931 				 __func__, retval);
932 	}
933 
934 	return retval;
935 }
936 
937 static const struct kset_uevent_ops device_uevent_ops = {
938 	.filter =	dev_uevent_filter,
939 	.name =		dev_uevent_name,
940 	.uevent =	dev_uevent,
941 };
942 
943 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
944 			   char *buf)
945 {
946 	struct kobject *top_kobj;
947 	struct kset *kset;
948 	struct kobj_uevent_env *env = NULL;
949 	int i;
950 	size_t count = 0;
951 	int retval;
952 
953 	/* search the kset, the device belongs to */
954 	top_kobj = &dev->kobj;
955 	while (!top_kobj->kset && top_kobj->parent)
956 		top_kobj = top_kobj->parent;
957 	if (!top_kobj->kset)
958 		goto out;
959 
960 	kset = top_kobj->kset;
961 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
962 		goto out;
963 
964 	/* respect filter */
965 	if (kset->uevent_ops && kset->uevent_ops->filter)
966 		if (!kset->uevent_ops->filter(kset, &dev->kobj))
967 			goto out;
968 
969 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
970 	if (!env)
971 		return -ENOMEM;
972 
973 	/* let the kset specific function add its keys */
974 	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
975 	if (retval)
976 		goto out;
977 
978 	/* copy keys to file */
979 	for (i = 0; i < env->envp_idx; i++)
980 		count += sprintf(&buf[count], "%s\n", env->envp[i]);
981 out:
982 	kfree(env);
983 	return count;
984 }
985 
986 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
987 			    const char *buf, size_t count)
988 {
989 	enum kobject_action action;
990 
991 	if (kobject_action_type(buf, count, &action) == 0)
992 		kobject_uevent(&dev->kobj, action);
993 	else
994 		dev_err(dev, "uevent: unknown action-string\n");
995 	return count;
996 }
997 static DEVICE_ATTR_RW(uevent);
998 
999 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1000 			   char *buf)
1001 {
1002 	bool val;
1003 
1004 	device_lock(dev);
1005 	val = !dev->offline;
1006 	device_unlock(dev);
1007 	return sprintf(buf, "%u\n", val);
1008 }
1009 
1010 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1011 			    const char *buf, size_t count)
1012 {
1013 	bool val;
1014 	int ret;
1015 
1016 	ret = strtobool(buf, &val);
1017 	if (ret < 0)
1018 		return ret;
1019 
1020 	ret = lock_device_hotplug_sysfs();
1021 	if (ret)
1022 		return ret;
1023 
1024 	ret = val ? device_online(dev) : device_offline(dev);
1025 	unlock_device_hotplug();
1026 	return ret < 0 ? ret : count;
1027 }
1028 static DEVICE_ATTR_RW(online);
1029 
1030 int device_add_groups(struct device *dev, const struct attribute_group **groups)
1031 {
1032 	return sysfs_create_groups(&dev->kobj, groups);
1033 }
1034 
1035 void device_remove_groups(struct device *dev,
1036 			  const struct attribute_group **groups)
1037 {
1038 	sysfs_remove_groups(&dev->kobj, groups);
1039 }
1040 
1041 static int device_add_attrs(struct device *dev)
1042 {
1043 	struct class *class = dev->class;
1044 	const struct device_type *type = dev->type;
1045 	int error;
1046 
1047 	if (class) {
1048 		error = device_add_groups(dev, class->dev_groups);
1049 		if (error)
1050 			return error;
1051 	}
1052 
1053 	if (type) {
1054 		error = device_add_groups(dev, type->groups);
1055 		if (error)
1056 			goto err_remove_class_groups;
1057 	}
1058 
1059 	error = device_add_groups(dev, dev->groups);
1060 	if (error)
1061 		goto err_remove_type_groups;
1062 
1063 	if (device_supports_offline(dev) && !dev->offline_disabled) {
1064 		error = device_create_file(dev, &dev_attr_online);
1065 		if (error)
1066 			goto err_remove_dev_groups;
1067 	}
1068 
1069 	return 0;
1070 
1071  err_remove_dev_groups:
1072 	device_remove_groups(dev, dev->groups);
1073  err_remove_type_groups:
1074 	if (type)
1075 		device_remove_groups(dev, type->groups);
1076  err_remove_class_groups:
1077 	if (class)
1078 		device_remove_groups(dev, class->dev_groups);
1079 
1080 	return error;
1081 }
1082 
1083 static void device_remove_attrs(struct device *dev)
1084 {
1085 	struct class *class = dev->class;
1086 	const struct device_type *type = dev->type;
1087 
1088 	device_remove_file(dev, &dev_attr_online);
1089 	device_remove_groups(dev, dev->groups);
1090 
1091 	if (type)
1092 		device_remove_groups(dev, type->groups);
1093 
1094 	if (class)
1095 		device_remove_groups(dev, class->dev_groups);
1096 }
1097 
1098 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1099 			char *buf)
1100 {
1101 	return print_dev_t(buf, dev->devt);
1102 }
1103 static DEVICE_ATTR_RO(dev);
1104 
1105 /* /sys/devices/ */
1106 struct kset *devices_kset;
1107 
1108 /**
1109  * devices_kset_move_before - Move device in the devices_kset's list.
1110  * @deva: Device to move.
1111  * @devb: Device @deva should come before.
1112  */
1113 static void devices_kset_move_before(struct device *deva, struct device *devb)
1114 {
1115 	if (!devices_kset)
1116 		return;
1117 	pr_debug("devices_kset: Moving %s before %s\n",
1118 		 dev_name(deva), dev_name(devb));
1119 	spin_lock(&devices_kset->list_lock);
1120 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1121 	spin_unlock(&devices_kset->list_lock);
1122 }
1123 
1124 /**
1125  * devices_kset_move_after - Move device in the devices_kset's list.
1126  * @deva: Device to move
1127  * @devb: Device @deva should come after.
1128  */
1129 static void devices_kset_move_after(struct device *deva, struct device *devb)
1130 {
1131 	if (!devices_kset)
1132 		return;
1133 	pr_debug("devices_kset: Moving %s after %s\n",
1134 		 dev_name(deva), dev_name(devb));
1135 	spin_lock(&devices_kset->list_lock);
1136 	list_move(&deva->kobj.entry, &devb->kobj.entry);
1137 	spin_unlock(&devices_kset->list_lock);
1138 }
1139 
1140 /**
1141  * devices_kset_move_last - move the device to the end of devices_kset's list.
1142  * @dev: device to move
1143  */
1144 void devices_kset_move_last(struct device *dev)
1145 {
1146 	if (!devices_kset)
1147 		return;
1148 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1149 	spin_lock(&devices_kset->list_lock);
1150 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
1151 	spin_unlock(&devices_kset->list_lock);
1152 }
1153 
1154 /**
1155  * device_create_file - create sysfs attribute file for device.
1156  * @dev: device.
1157  * @attr: device attribute descriptor.
1158  */
1159 int device_create_file(struct device *dev,
1160 		       const struct device_attribute *attr)
1161 {
1162 	int error = 0;
1163 
1164 	if (dev) {
1165 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1166 			"Attribute %s: write permission without 'store'\n",
1167 			attr->attr.name);
1168 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1169 			"Attribute %s: read permission without 'show'\n",
1170 			attr->attr.name);
1171 		error = sysfs_create_file(&dev->kobj, &attr->attr);
1172 	}
1173 
1174 	return error;
1175 }
1176 EXPORT_SYMBOL_GPL(device_create_file);
1177 
1178 /**
1179  * device_remove_file - remove sysfs attribute file.
1180  * @dev: device.
1181  * @attr: device attribute descriptor.
1182  */
1183 void device_remove_file(struct device *dev,
1184 			const struct device_attribute *attr)
1185 {
1186 	if (dev)
1187 		sysfs_remove_file(&dev->kobj, &attr->attr);
1188 }
1189 EXPORT_SYMBOL_GPL(device_remove_file);
1190 
1191 /**
1192  * device_remove_file_self - remove sysfs attribute file from its own method.
1193  * @dev: device.
1194  * @attr: device attribute descriptor.
1195  *
1196  * See kernfs_remove_self() for details.
1197  */
1198 bool device_remove_file_self(struct device *dev,
1199 			     const struct device_attribute *attr)
1200 {
1201 	if (dev)
1202 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1203 	else
1204 		return false;
1205 }
1206 EXPORT_SYMBOL_GPL(device_remove_file_self);
1207 
1208 /**
1209  * device_create_bin_file - create sysfs binary attribute file for device.
1210  * @dev: device.
1211  * @attr: device binary attribute descriptor.
1212  */
1213 int device_create_bin_file(struct device *dev,
1214 			   const struct bin_attribute *attr)
1215 {
1216 	int error = -EINVAL;
1217 	if (dev)
1218 		error = sysfs_create_bin_file(&dev->kobj, attr);
1219 	return error;
1220 }
1221 EXPORT_SYMBOL_GPL(device_create_bin_file);
1222 
1223 /**
1224  * device_remove_bin_file - remove sysfs binary attribute file
1225  * @dev: device.
1226  * @attr: device binary attribute descriptor.
1227  */
1228 void device_remove_bin_file(struct device *dev,
1229 			    const struct bin_attribute *attr)
1230 {
1231 	if (dev)
1232 		sysfs_remove_bin_file(&dev->kobj, attr);
1233 }
1234 EXPORT_SYMBOL_GPL(device_remove_bin_file);
1235 
1236 static void klist_children_get(struct klist_node *n)
1237 {
1238 	struct device_private *p = to_device_private_parent(n);
1239 	struct device *dev = p->device;
1240 
1241 	get_device(dev);
1242 }
1243 
1244 static void klist_children_put(struct klist_node *n)
1245 {
1246 	struct device_private *p = to_device_private_parent(n);
1247 	struct device *dev = p->device;
1248 
1249 	put_device(dev);
1250 }
1251 
1252 /**
1253  * device_initialize - init device structure.
1254  * @dev: device.
1255  *
1256  * This prepares the device for use by other layers by initializing
1257  * its fields.
1258  * It is the first half of device_register(), if called by
1259  * that function, though it can also be called separately, so one
1260  * may use @dev's fields. In particular, get_device()/put_device()
1261  * may be used for reference counting of @dev after calling this
1262  * function.
1263  *
1264  * All fields in @dev must be initialized by the caller to 0, except
1265  * for those explicitly set to some other value.  The simplest
1266  * approach is to use kzalloc() to allocate the structure containing
1267  * @dev.
1268  *
1269  * NOTE: Use put_device() to give up your reference instead of freeing
1270  * @dev directly once you have called this function.
1271  */
1272 void device_initialize(struct device *dev)
1273 {
1274 	dev->kobj.kset = devices_kset;
1275 	kobject_init(&dev->kobj, &device_ktype);
1276 	INIT_LIST_HEAD(&dev->dma_pools);
1277 	mutex_init(&dev->mutex);
1278 	lockdep_set_novalidate_class(&dev->mutex);
1279 	spin_lock_init(&dev->devres_lock);
1280 	INIT_LIST_HEAD(&dev->devres_head);
1281 	device_pm_init(dev);
1282 	set_dev_node(dev, -1);
1283 #ifdef CONFIG_GENERIC_MSI_IRQ
1284 	INIT_LIST_HEAD(&dev->msi_list);
1285 #endif
1286 	INIT_LIST_HEAD(&dev->links.consumers);
1287 	INIT_LIST_HEAD(&dev->links.suppliers);
1288 	dev->links.status = DL_DEV_NO_DRIVER;
1289 }
1290 EXPORT_SYMBOL_GPL(device_initialize);
1291 
1292 struct kobject *virtual_device_parent(struct device *dev)
1293 {
1294 	static struct kobject *virtual_dir = NULL;
1295 
1296 	if (!virtual_dir)
1297 		virtual_dir = kobject_create_and_add("virtual",
1298 						     &devices_kset->kobj);
1299 
1300 	return virtual_dir;
1301 }
1302 
1303 struct class_dir {
1304 	struct kobject kobj;
1305 	struct class *class;
1306 };
1307 
1308 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
1309 
1310 static void class_dir_release(struct kobject *kobj)
1311 {
1312 	struct class_dir *dir = to_class_dir(kobj);
1313 	kfree(dir);
1314 }
1315 
1316 static const
1317 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
1318 {
1319 	struct class_dir *dir = to_class_dir(kobj);
1320 	return dir->class->ns_type;
1321 }
1322 
1323 static struct kobj_type class_dir_ktype = {
1324 	.release	= class_dir_release,
1325 	.sysfs_ops	= &kobj_sysfs_ops,
1326 	.child_ns_type	= class_dir_child_ns_type
1327 };
1328 
1329 static struct kobject *
1330 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
1331 {
1332 	struct class_dir *dir;
1333 	int retval;
1334 
1335 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
1336 	if (!dir)
1337 		return NULL;
1338 
1339 	dir->class = class;
1340 	kobject_init(&dir->kobj, &class_dir_ktype);
1341 
1342 	dir->kobj.kset = &class->p->glue_dirs;
1343 
1344 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
1345 	if (retval < 0) {
1346 		kobject_put(&dir->kobj);
1347 		return NULL;
1348 	}
1349 	return &dir->kobj;
1350 }
1351 
1352 static DEFINE_MUTEX(gdp_mutex);
1353 
1354 static struct kobject *get_device_parent(struct device *dev,
1355 					 struct device *parent)
1356 {
1357 	if (dev->class) {
1358 		struct kobject *kobj = NULL;
1359 		struct kobject *parent_kobj;
1360 		struct kobject *k;
1361 
1362 #ifdef CONFIG_BLOCK
1363 		/* block disks show up in /sys/block */
1364 		if (sysfs_deprecated && dev->class == &block_class) {
1365 			if (parent && parent->class == &block_class)
1366 				return &parent->kobj;
1367 			return &block_class.p->subsys.kobj;
1368 		}
1369 #endif
1370 
1371 		/*
1372 		 * If we have no parent, we live in "virtual".
1373 		 * Class-devices with a non class-device as parent, live
1374 		 * in a "glue" directory to prevent namespace collisions.
1375 		 */
1376 		if (parent == NULL)
1377 			parent_kobj = virtual_device_parent(dev);
1378 		else if (parent->class && !dev->class->ns_type)
1379 			return &parent->kobj;
1380 		else
1381 			parent_kobj = &parent->kobj;
1382 
1383 		mutex_lock(&gdp_mutex);
1384 
1385 		/* find our class-directory at the parent and reference it */
1386 		spin_lock(&dev->class->p->glue_dirs.list_lock);
1387 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
1388 			if (k->parent == parent_kobj) {
1389 				kobj = kobject_get(k);
1390 				break;
1391 			}
1392 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
1393 		if (kobj) {
1394 			mutex_unlock(&gdp_mutex);
1395 			return kobj;
1396 		}
1397 
1398 		/* or create a new class-directory at the parent device */
1399 		k = class_dir_create_and_add(dev->class, parent_kobj);
1400 		/* do not emit an uevent for this simple "glue" directory */
1401 		mutex_unlock(&gdp_mutex);
1402 		return k;
1403 	}
1404 
1405 	/* subsystems can specify a default root directory for their devices */
1406 	if (!parent && dev->bus && dev->bus->dev_root)
1407 		return &dev->bus->dev_root->kobj;
1408 
1409 	if (parent)
1410 		return &parent->kobj;
1411 	return NULL;
1412 }
1413 
1414 static inline bool live_in_glue_dir(struct kobject *kobj,
1415 				    struct device *dev)
1416 {
1417 	if (!kobj || !dev->class ||
1418 	    kobj->kset != &dev->class->p->glue_dirs)
1419 		return false;
1420 	return true;
1421 }
1422 
1423 static inline struct kobject *get_glue_dir(struct device *dev)
1424 {
1425 	return dev->kobj.parent;
1426 }
1427 
1428 /*
1429  * make sure cleaning up dir as the last step, we need to make
1430  * sure .release handler of kobject is run with holding the
1431  * global lock
1432  */
1433 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
1434 {
1435 	/* see if we live in a "glue" directory */
1436 	if (!live_in_glue_dir(glue_dir, dev))
1437 		return;
1438 
1439 	mutex_lock(&gdp_mutex);
1440 	kobject_put(glue_dir);
1441 	mutex_unlock(&gdp_mutex);
1442 }
1443 
1444 static int device_add_class_symlinks(struct device *dev)
1445 {
1446 	struct device_node *of_node = dev_of_node(dev);
1447 	int error;
1448 
1449 	if (of_node) {
1450 		error = sysfs_create_link(&dev->kobj, &of_node->kobj,"of_node");
1451 		if (error)
1452 			dev_warn(dev, "Error %d creating of_node link\n",error);
1453 		/* An error here doesn't warrant bringing down the device */
1454 	}
1455 
1456 	if (!dev->class)
1457 		return 0;
1458 
1459 	error = sysfs_create_link(&dev->kobj,
1460 				  &dev->class->p->subsys.kobj,
1461 				  "subsystem");
1462 	if (error)
1463 		goto out_devnode;
1464 
1465 	if (dev->parent && device_is_not_partition(dev)) {
1466 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
1467 					  "device");
1468 		if (error)
1469 			goto out_subsys;
1470 	}
1471 
1472 #ifdef CONFIG_BLOCK
1473 	/* /sys/block has directories and does not need symlinks */
1474 	if (sysfs_deprecated && dev->class == &block_class)
1475 		return 0;
1476 #endif
1477 
1478 	/* link in the class directory pointing to the device */
1479 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
1480 				  &dev->kobj, dev_name(dev));
1481 	if (error)
1482 		goto out_device;
1483 
1484 	return 0;
1485 
1486 out_device:
1487 	sysfs_remove_link(&dev->kobj, "device");
1488 
1489 out_subsys:
1490 	sysfs_remove_link(&dev->kobj, "subsystem");
1491 out_devnode:
1492 	sysfs_remove_link(&dev->kobj, "of_node");
1493 	return error;
1494 }
1495 
1496 static void device_remove_class_symlinks(struct device *dev)
1497 {
1498 	if (dev_of_node(dev))
1499 		sysfs_remove_link(&dev->kobj, "of_node");
1500 
1501 	if (!dev->class)
1502 		return;
1503 
1504 	if (dev->parent && device_is_not_partition(dev))
1505 		sysfs_remove_link(&dev->kobj, "device");
1506 	sysfs_remove_link(&dev->kobj, "subsystem");
1507 #ifdef CONFIG_BLOCK
1508 	if (sysfs_deprecated && dev->class == &block_class)
1509 		return;
1510 #endif
1511 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
1512 }
1513 
1514 /**
1515  * dev_set_name - set a device name
1516  * @dev: device
1517  * @fmt: format string for the device's name
1518  */
1519 int dev_set_name(struct device *dev, const char *fmt, ...)
1520 {
1521 	va_list vargs;
1522 	int err;
1523 
1524 	va_start(vargs, fmt);
1525 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
1526 	va_end(vargs);
1527 	return err;
1528 }
1529 EXPORT_SYMBOL_GPL(dev_set_name);
1530 
1531 /**
1532  * device_to_dev_kobj - select a /sys/dev/ directory for the device
1533  * @dev: device
1534  *
1535  * By default we select char/ for new entries.  Setting class->dev_obj
1536  * to NULL prevents an entry from being created.  class->dev_kobj must
1537  * be set (or cleared) before any devices are registered to the class
1538  * otherwise device_create_sys_dev_entry() and
1539  * device_remove_sys_dev_entry() will disagree about the presence of
1540  * the link.
1541  */
1542 static struct kobject *device_to_dev_kobj(struct device *dev)
1543 {
1544 	struct kobject *kobj;
1545 
1546 	if (dev->class)
1547 		kobj = dev->class->dev_kobj;
1548 	else
1549 		kobj = sysfs_dev_char_kobj;
1550 
1551 	return kobj;
1552 }
1553 
1554 static int device_create_sys_dev_entry(struct device *dev)
1555 {
1556 	struct kobject *kobj = device_to_dev_kobj(dev);
1557 	int error = 0;
1558 	char devt_str[15];
1559 
1560 	if (kobj) {
1561 		format_dev_t(devt_str, dev->devt);
1562 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
1563 	}
1564 
1565 	return error;
1566 }
1567 
1568 static void device_remove_sys_dev_entry(struct device *dev)
1569 {
1570 	struct kobject *kobj = device_to_dev_kobj(dev);
1571 	char devt_str[15];
1572 
1573 	if (kobj) {
1574 		format_dev_t(devt_str, dev->devt);
1575 		sysfs_remove_link(kobj, devt_str);
1576 	}
1577 }
1578 
1579 int device_private_init(struct device *dev)
1580 {
1581 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
1582 	if (!dev->p)
1583 		return -ENOMEM;
1584 	dev->p->device = dev;
1585 	klist_init(&dev->p->klist_children, klist_children_get,
1586 		   klist_children_put);
1587 	INIT_LIST_HEAD(&dev->p->deferred_probe);
1588 	return 0;
1589 }
1590 
1591 /**
1592  * device_add - add device to device hierarchy.
1593  * @dev: device.
1594  *
1595  * This is part 2 of device_register(), though may be called
1596  * separately _iff_ device_initialize() has been called separately.
1597  *
1598  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
1599  * to the global and sibling lists for the device, then
1600  * adds it to the other relevant subsystems of the driver model.
1601  *
1602  * Do not call this routine or device_register() more than once for
1603  * any device structure.  The driver model core is not designed to work
1604  * with devices that get unregistered and then spring back to life.
1605  * (Among other things, it's very hard to guarantee that all references
1606  * to the previous incarnation of @dev have been dropped.)  Allocate
1607  * and register a fresh new struct device instead.
1608  *
1609  * NOTE: _Never_ directly free @dev after calling this function, even
1610  * if it returned an error! Always use put_device() to give up your
1611  * reference instead.
1612  */
1613 int device_add(struct device *dev)
1614 {
1615 	struct device *parent = NULL;
1616 	struct kobject *kobj;
1617 	struct class_interface *class_intf;
1618 	int error = -EINVAL;
1619 	struct kobject *glue_dir = NULL;
1620 
1621 	dev = get_device(dev);
1622 	if (!dev)
1623 		goto done;
1624 
1625 	if (!dev->p) {
1626 		error = device_private_init(dev);
1627 		if (error)
1628 			goto done;
1629 	}
1630 
1631 	/*
1632 	 * for statically allocated devices, which should all be converted
1633 	 * some day, we need to initialize the name. We prevent reading back
1634 	 * the name, and force the use of dev_name()
1635 	 */
1636 	if (dev->init_name) {
1637 		dev_set_name(dev, "%s", dev->init_name);
1638 		dev->init_name = NULL;
1639 	}
1640 
1641 	/* subsystems can specify simple device enumeration */
1642 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
1643 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
1644 
1645 	if (!dev_name(dev)) {
1646 		error = -EINVAL;
1647 		goto name_error;
1648 	}
1649 
1650 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1651 
1652 	parent = get_device(dev->parent);
1653 	kobj = get_device_parent(dev, parent);
1654 	if (kobj)
1655 		dev->kobj.parent = kobj;
1656 
1657 	/* use parent numa_node */
1658 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
1659 		set_dev_node(dev, dev_to_node(parent));
1660 
1661 	/* first, register with generic layer. */
1662 	/* we require the name to be set before, and pass NULL */
1663 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
1664 	if (error) {
1665 		glue_dir = get_glue_dir(dev);
1666 		goto Error;
1667 	}
1668 
1669 	/* notify platform of device entry */
1670 	if (platform_notify)
1671 		platform_notify(dev);
1672 
1673 	error = device_create_file(dev, &dev_attr_uevent);
1674 	if (error)
1675 		goto attrError;
1676 
1677 	error = device_add_class_symlinks(dev);
1678 	if (error)
1679 		goto SymlinkError;
1680 	error = device_add_attrs(dev);
1681 	if (error)
1682 		goto AttrsError;
1683 	error = bus_add_device(dev);
1684 	if (error)
1685 		goto BusError;
1686 	error = dpm_sysfs_add(dev);
1687 	if (error)
1688 		goto DPMError;
1689 	device_pm_add(dev);
1690 
1691 	if (MAJOR(dev->devt)) {
1692 		error = device_create_file(dev, &dev_attr_dev);
1693 		if (error)
1694 			goto DevAttrError;
1695 
1696 		error = device_create_sys_dev_entry(dev);
1697 		if (error)
1698 			goto SysEntryError;
1699 
1700 		devtmpfs_create_node(dev);
1701 	}
1702 
1703 	/* Notify clients of device addition.  This call must come
1704 	 * after dpm_sysfs_add() and before kobject_uevent().
1705 	 */
1706 	if (dev->bus)
1707 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1708 					     BUS_NOTIFY_ADD_DEVICE, dev);
1709 
1710 	kobject_uevent(&dev->kobj, KOBJ_ADD);
1711 	bus_probe_device(dev);
1712 	if (parent)
1713 		klist_add_tail(&dev->p->knode_parent,
1714 			       &parent->p->klist_children);
1715 
1716 	if (dev->class) {
1717 		mutex_lock(&dev->class->p->mutex);
1718 		/* tie the class to the device */
1719 		klist_add_tail(&dev->knode_class,
1720 			       &dev->class->p->klist_devices);
1721 
1722 		/* notify any interfaces that the device is here */
1723 		list_for_each_entry(class_intf,
1724 				    &dev->class->p->interfaces, node)
1725 			if (class_intf->add_dev)
1726 				class_intf->add_dev(dev, class_intf);
1727 		mutex_unlock(&dev->class->p->mutex);
1728 	}
1729 done:
1730 	put_device(dev);
1731 	return error;
1732  SysEntryError:
1733 	if (MAJOR(dev->devt))
1734 		device_remove_file(dev, &dev_attr_dev);
1735  DevAttrError:
1736 	device_pm_remove(dev);
1737 	dpm_sysfs_remove(dev);
1738  DPMError:
1739 	bus_remove_device(dev);
1740  BusError:
1741 	device_remove_attrs(dev);
1742  AttrsError:
1743 	device_remove_class_symlinks(dev);
1744  SymlinkError:
1745 	device_remove_file(dev, &dev_attr_uevent);
1746  attrError:
1747 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1748 	glue_dir = get_glue_dir(dev);
1749 	kobject_del(&dev->kobj);
1750  Error:
1751 	cleanup_glue_dir(dev, glue_dir);
1752 	put_device(parent);
1753 name_error:
1754 	kfree(dev->p);
1755 	dev->p = NULL;
1756 	goto done;
1757 }
1758 EXPORT_SYMBOL_GPL(device_add);
1759 
1760 /**
1761  * device_register - register a device with the system.
1762  * @dev: pointer to the device structure
1763  *
1764  * This happens in two clean steps - initialize the device
1765  * and add it to the system. The two steps can be called
1766  * separately, but this is the easiest and most common.
1767  * I.e. you should only call the two helpers separately if
1768  * have a clearly defined need to use and refcount the device
1769  * before it is added to the hierarchy.
1770  *
1771  * For more information, see the kerneldoc for device_initialize()
1772  * and device_add().
1773  *
1774  * NOTE: _Never_ directly free @dev after calling this function, even
1775  * if it returned an error! Always use put_device() to give up the
1776  * reference initialized in this function instead.
1777  */
1778 int device_register(struct device *dev)
1779 {
1780 	device_initialize(dev);
1781 	return device_add(dev);
1782 }
1783 EXPORT_SYMBOL_GPL(device_register);
1784 
1785 /**
1786  * get_device - increment reference count for device.
1787  * @dev: device.
1788  *
1789  * This simply forwards the call to kobject_get(), though
1790  * we do take care to provide for the case that we get a NULL
1791  * pointer passed in.
1792  */
1793 struct device *get_device(struct device *dev)
1794 {
1795 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
1796 }
1797 EXPORT_SYMBOL_GPL(get_device);
1798 
1799 /**
1800  * put_device - decrement reference count.
1801  * @dev: device in question.
1802  */
1803 void put_device(struct device *dev)
1804 {
1805 	/* might_sleep(); */
1806 	if (dev)
1807 		kobject_put(&dev->kobj);
1808 }
1809 EXPORT_SYMBOL_GPL(put_device);
1810 
1811 /**
1812  * device_del - delete device from system.
1813  * @dev: device.
1814  *
1815  * This is the first part of the device unregistration
1816  * sequence. This removes the device from the lists we control
1817  * from here, has it removed from the other driver model
1818  * subsystems it was added to in device_add(), and removes it
1819  * from the kobject hierarchy.
1820  *
1821  * NOTE: this should be called manually _iff_ device_add() was
1822  * also called manually.
1823  */
1824 void device_del(struct device *dev)
1825 {
1826 	struct device *parent = dev->parent;
1827 	struct kobject *glue_dir = NULL;
1828 	struct class_interface *class_intf;
1829 
1830 	/* Notify clients of device removal.  This call must come
1831 	 * before dpm_sysfs_remove().
1832 	 */
1833 	if (dev->bus)
1834 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1835 					     BUS_NOTIFY_DEL_DEVICE, dev);
1836 
1837 	device_links_purge(dev);
1838 	dpm_sysfs_remove(dev);
1839 	if (parent)
1840 		klist_del(&dev->p->knode_parent);
1841 	if (MAJOR(dev->devt)) {
1842 		devtmpfs_delete_node(dev);
1843 		device_remove_sys_dev_entry(dev);
1844 		device_remove_file(dev, &dev_attr_dev);
1845 	}
1846 	if (dev->class) {
1847 		device_remove_class_symlinks(dev);
1848 
1849 		mutex_lock(&dev->class->p->mutex);
1850 		/* notify any interfaces that the device is now gone */
1851 		list_for_each_entry(class_intf,
1852 				    &dev->class->p->interfaces, node)
1853 			if (class_intf->remove_dev)
1854 				class_intf->remove_dev(dev, class_intf);
1855 		/* remove the device from the class list */
1856 		klist_del(&dev->knode_class);
1857 		mutex_unlock(&dev->class->p->mutex);
1858 	}
1859 	device_remove_file(dev, &dev_attr_uevent);
1860 	device_remove_attrs(dev);
1861 	bus_remove_device(dev);
1862 	device_pm_remove(dev);
1863 	driver_deferred_probe_del(dev);
1864 	device_remove_properties(dev);
1865 
1866 	/* Notify the platform of the removal, in case they
1867 	 * need to do anything...
1868 	 */
1869 	if (platform_notify_remove)
1870 		platform_notify_remove(dev);
1871 	if (dev->bus)
1872 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1873 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
1874 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1875 	glue_dir = get_glue_dir(dev);
1876 	kobject_del(&dev->kobj);
1877 	cleanup_glue_dir(dev, glue_dir);
1878 	put_device(parent);
1879 }
1880 EXPORT_SYMBOL_GPL(device_del);
1881 
1882 /**
1883  * device_unregister - unregister device from system.
1884  * @dev: device going away.
1885  *
1886  * We do this in two parts, like we do device_register(). First,
1887  * we remove it from all the subsystems with device_del(), then
1888  * we decrement the reference count via put_device(). If that
1889  * is the final reference count, the device will be cleaned up
1890  * via device_release() above. Otherwise, the structure will
1891  * stick around until the final reference to the device is dropped.
1892  */
1893 void device_unregister(struct device *dev)
1894 {
1895 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1896 	device_del(dev);
1897 	put_device(dev);
1898 }
1899 EXPORT_SYMBOL_GPL(device_unregister);
1900 
1901 static struct device *prev_device(struct klist_iter *i)
1902 {
1903 	struct klist_node *n = klist_prev(i);
1904 	struct device *dev = NULL;
1905 	struct device_private *p;
1906 
1907 	if (n) {
1908 		p = to_device_private_parent(n);
1909 		dev = p->device;
1910 	}
1911 	return dev;
1912 }
1913 
1914 static struct device *next_device(struct klist_iter *i)
1915 {
1916 	struct klist_node *n = klist_next(i);
1917 	struct device *dev = NULL;
1918 	struct device_private *p;
1919 
1920 	if (n) {
1921 		p = to_device_private_parent(n);
1922 		dev = p->device;
1923 	}
1924 	return dev;
1925 }
1926 
1927 /**
1928  * device_get_devnode - path of device node file
1929  * @dev: device
1930  * @mode: returned file access mode
1931  * @uid: returned file owner
1932  * @gid: returned file group
1933  * @tmp: possibly allocated string
1934  *
1935  * Return the relative path of a possible device node.
1936  * Non-default names may need to allocate a memory to compose
1937  * a name. This memory is returned in tmp and needs to be
1938  * freed by the caller.
1939  */
1940 const char *device_get_devnode(struct device *dev,
1941 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
1942 			       const char **tmp)
1943 {
1944 	char *s;
1945 
1946 	*tmp = NULL;
1947 
1948 	/* the device type may provide a specific name */
1949 	if (dev->type && dev->type->devnode)
1950 		*tmp = dev->type->devnode(dev, mode, uid, gid);
1951 	if (*tmp)
1952 		return *tmp;
1953 
1954 	/* the class may provide a specific name */
1955 	if (dev->class && dev->class->devnode)
1956 		*tmp = dev->class->devnode(dev, mode);
1957 	if (*tmp)
1958 		return *tmp;
1959 
1960 	/* return name without allocation, tmp == NULL */
1961 	if (strchr(dev_name(dev), '!') == NULL)
1962 		return dev_name(dev);
1963 
1964 	/* replace '!' in the name with '/' */
1965 	s = kstrdup(dev_name(dev), GFP_KERNEL);
1966 	if (!s)
1967 		return NULL;
1968 	strreplace(s, '!', '/');
1969 	return *tmp = s;
1970 }
1971 
1972 /**
1973  * device_for_each_child - device child iterator.
1974  * @parent: parent struct device.
1975  * @fn: function to be called for each device.
1976  * @data: data for the callback.
1977  *
1978  * Iterate over @parent's child devices, and call @fn for each,
1979  * passing it @data.
1980  *
1981  * We check the return of @fn each time. If it returns anything
1982  * other than 0, we break out and return that value.
1983  */
1984 int device_for_each_child(struct device *parent, void *data,
1985 			  int (*fn)(struct device *dev, void *data))
1986 {
1987 	struct klist_iter i;
1988 	struct device *child;
1989 	int error = 0;
1990 
1991 	if (!parent->p)
1992 		return 0;
1993 
1994 	klist_iter_init(&parent->p->klist_children, &i);
1995 	while ((child = next_device(&i)) && !error)
1996 		error = fn(child, data);
1997 	klist_iter_exit(&i);
1998 	return error;
1999 }
2000 EXPORT_SYMBOL_GPL(device_for_each_child);
2001 
2002 /**
2003  * device_for_each_child_reverse - device child iterator in reversed order.
2004  * @parent: parent struct device.
2005  * @fn: function to be called for each device.
2006  * @data: data for the callback.
2007  *
2008  * Iterate over @parent's child devices, and call @fn for each,
2009  * passing it @data.
2010  *
2011  * We check the return of @fn each time. If it returns anything
2012  * other than 0, we break out and return that value.
2013  */
2014 int device_for_each_child_reverse(struct device *parent, void *data,
2015 				  int (*fn)(struct device *dev, void *data))
2016 {
2017 	struct klist_iter i;
2018 	struct device *child;
2019 	int error = 0;
2020 
2021 	if (!parent->p)
2022 		return 0;
2023 
2024 	klist_iter_init(&parent->p->klist_children, &i);
2025 	while ((child = prev_device(&i)) && !error)
2026 		error = fn(child, data);
2027 	klist_iter_exit(&i);
2028 	return error;
2029 }
2030 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2031 
2032 /**
2033  * device_find_child - device iterator for locating a particular device.
2034  * @parent: parent struct device
2035  * @match: Callback function to check device
2036  * @data: Data to pass to match function
2037  *
2038  * This is similar to the device_for_each_child() function above, but it
2039  * returns a reference to a device that is 'found' for later use, as
2040  * determined by the @match callback.
2041  *
2042  * The callback should return 0 if the device doesn't match and non-zero
2043  * if it does.  If the callback returns non-zero and a reference to the
2044  * current device can be obtained, this function will return to the caller
2045  * and not iterate over any more devices.
2046  *
2047  * NOTE: you will need to drop the reference with put_device() after use.
2048  */
2049 struct device *device_find_child(struct device *parent, void *data,
2050 				 int (*match)(struct device *dev, void *data))
2051 {
2052 	struct klist_iter i;
2053 	struct device *child;
2054 
2055 	if (!parent)
2056 		return NULL;
2057 
2058 	klist_iter_init(&parent->p->klist_children, &i);
2059 	while ((child = next_device(&i)))
2060 		if (match(child, data) && get_device(child))
2061 			break;
2062 	klist_iter_exit(&i);
2063 	return child;
2064 }
2065 EXPORT_SYMBOL_GPL(device_find_child);
2066 
2067 int __init devices_init(void)
2068 {
2069 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2070 	if (!devices_kset)
2071 		return -ENOMEM;
2072 	dev_kobj = kobject_create_and_add("dev", NULL);
2073 	if (!dev_kobj)
2074 		goto dev_kobj_err;
2075 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2076 	if (!sysfs_dev_block_kobj)
2077 		goto block_kobj_err;
2078 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2079 	if (!sysfs_dev_char_kobj)
2080 		goto char_kobj_err;
2081 
2082 	return 0;
2083 
2084  char_kobj_err:
2085 	kobject_put(sysfs_dev_block_kobj);
2086  block_kobj_err:
2087 	kobject_put(dev_kobj);
2088  dev_kobj_err:
2089 	kset_unregister(devices_kset);
2090 	return -ENOMEM;
2091 }
2092 
2093 static int device_check_offline(struct device *dev, void *not_used)
2094 {
2095 	int ret;
2096 
2097 	ret = device_for_each_child(dev, NULL, device_check_offline);
2098 	if (ret)
2099 		return ret;
2100 
2101 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
2102 }
2103 
2104 /**
2105  * device_offline - Prepare the device for hot-removal.
2106  * @dev: Device to be put offline.
2107  *
2108  * Execute the device bus type's .offline() callback, if present, to prepare
2109  * the device for a subsequent hot-removal.  If that succeeds, the device must
2110  * not be used until either it is removed or its bus type's .online() callback
2111  * is executed.
2112  *
2113  * Call under device_hotplug_lock.
2114  */
2115 int device_offline(struct device *dev)
2116 {
2117 	int ret;
2118 
2119 	if (dev->offline_disabled)
2120 		return -EPERM;
2121 
2122 	ret = device_for_each_child(dev, NULL, device_check_offline);
2123 	if (ret)
2124 		return ret;
2125 
2126 	device_lock(dev);
2127 	if (device_supports_offline(dev)) {
2128 		if (dev->offline) {
2129 			ret = 1;
2130 		} else {
2131 			ret = dev->bus->offline(dev);
2132 			if (!ret) {
2133 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2134 				dev->offline = true;
2135 			}
2136 		}
2137 	}
2138 	device_unlock(dev);
2139 
2140 	return ret;
2141 }
2142 
2143 /**
2144  * device_online - Put the device back online after successful device_offline().
2145  * @dev: Device to be put back online.
2146  *
2147  * If device_offline() has been successfully executed for @dev, but the device
2148  * has not been removed subsequently, execute its bus type's .online() callback
2149  * to indicate that the device can be used again.
2150  *
2151  * Call under device_hotplug_lock.
2152  */
2153 int device_online(struct device *dev)
2154 {
2155 	int ret = 0;
2156 
2157 	device_lock(dev);
2158 	if (device_supports_offline(dev)) {
2159 		if (dev->offline) {
2160 			ret = dev->bus->online(dev);
2161 			if (!ret) {
2162 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2163 				dev->offline = false;
2164 			}
2165 		} else {
2166 			ret = 1;
2167 		}
2168 	}
2169 	device_unlock(dev);
2170 
2171 	return ret;
2172 }
2173 
2174 struct root_device {
2175 	struct device dev;
2176 	struct module *owner;
2177 };
2178 
2179 static inline struct root_device *to_root_device(struct device *d)
2180 {
2181 	return container_of(d, struct root_device, dev);
2182 }
2183 
2184 static void root_device_release(struct device *dev)
2185 {
2186 	kfree(to_root_device(dev));
2187 }
2188 
2189 /**
2190  * __root_device_register - allocate and register a root device
2191  * @name: root device name
2192  * @owner: owner module of the root device, usually THIS_MODULE
2193  *
2194  * This function allocates a root device and registers it
2195  * using device_register(). In order to free the returned
2196  * device, use root_device_unregister().
2197  *
2198  * Root devices are dummy devices which allow other devices
2199  * to be grouped under /sys/devices. Use this function to
2200  * allocate a root device and then use it as the parent of
2201  * any device which should appear under /sys/devices/{name}
2202  *
2203  * The /sys/devices/{name} directory will also contain a
2204  * 'module' symlink which points to the @owner directory
2205  * in sysfs.
2206  *
2207  * Returns &struct device pointer on success, or ERR_PTR() on error.
2208  *
2209  * Note: You probably want to use root_device_register().
2210  */
2211 struct device *__root_device_register(const char *name, struct module *owner)
2212 {
2213 	struct root_device *root;
2214 	int err = -ENOMEM;
2215 
2216 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
2217 	if (!root)
2218 		return ERR_PTR(err);
2219 
2220 	err = dev_set_name(&root->dev, "%s", name);
2221 	if (err) {
2222 		kfree(root);
2223 		return ERR_PTR(err);
2224 	}
2225 
2226 	root->dev.release = root_device_release;
2227 
2228 	err = device_register(&root->dev);
2229 	if (err) {
2230 		put_device(&root->dev);
2231 		return ERR_PTR(err);
2232 	}
2233 
2234 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
2235 	if (owner) {
2236 		struct module_kobject *mk = &owner->mkobj;
2237 
2238 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
2239 		if (err) {
2240 			device_unregister(&root->dev);
2241 			return ERR_PTR(err);
2242 		}
2243 		root->owner = owner;
2244 	}
2245 #endif
2246 
2247 	return &root->dev;
2248 }
2249 EXPORT_SYMBOL_GPL(__root_device_register);
2250 
2251 /**
2252  * root_device_unregister - unregister and free a root device
2253  * @dev: device going away
2254  *
2255  * This function unregisters and cleans up a device that was created by
2256  * root_device_register().
2257  */
2258 void root_device_unregister(struct device *dev)
2259 {
2260 	struct root_device *root = to_root_device(dev);
2261 
2262 	if (root->owner)
2263 		sysfs_remove_link(&root->dev.kobj, "module");
2264 
2265 	device_unregister(dev);
2266 }
2267 EXPORT_SYMBOL_GPL(root_device_unregister);
2268 
2269 
2270 static void device_create_release(struct device *dev)
2271 {
2272 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2273 	kfree(dev);
2274 }
2275 
2276 static struct device *
2277 device_create_groups_vargs(struct class *class, struct device *parent,
2278 			   dev_t devt, void *drvdata,
2279 			   const struct attribute_group **groups,
2280 			   const char *fmt, va_list args)
2281 {
2282 	struct device *dev = NULL;
2283 	int retval = -ENODEV;
2284 
2285 	if (class == NULL || IS_ERR(class))
2286 		goto error;
2287 
2288 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2289 	if (!dev) {
2290 		retval = -ENOMEM;
2291 		goto error;
2292 	}
2293 
2294 	device_initialize(dev);
2295 	dev->devt = devt;
2296 	dev->class = class;
2297 	dev->parent = parent;
2298 	dev->groups = groups;
2299 	dev->release = device_create_release;
2300 	dev_set_drvdata(dev, drvdata);
2301 
2302 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
2303 	if (retval)
2304 		goto error;
2305 
2306 	retval = device_add(dev);
2307 	if (retval)
2308 		goto error;
2309 
2310 	return dev;
2311 
2312 error:
2313 	put_device(dev);
2314 	return ERR_PTR(retval);
2315 }
2316 
2317 /**
2318  * device_create_vargs - creates a device and registers it with sysfs
2319  * @class: pointer to the struct class that this device should be registered to
2320  * @parent: pointer to the parent struct device of this new device, if any
2321  * @devt: the dev_t for the char device to be added
2322  * @drvdata: the data to be added to the device for callbacks
2323  * @fmt: string for the device's name
2324  * @args: va_list for the device's name
2325  *
2326  * This function can be used by char device classes.  A struct device
2327  * will be created in sysfs, registered to the specified class.
2328  *
2329  * A "dev" file will be created, showing the dev_t for the device, if
2330  * the dev_t is not 0,0.
2331  * If a pointer to a parent struct device is passed in, the newly created
2332  * struct device will be a child of that device in sysfs.
2333  * The pointer to the struct device will be returned from the call.
2334  * Any further sysfs files that might be required can be created using this
2335  * pointer.
2336  *
2337  * Returns &struct device pointer on success, or ERR_PTR() on error.
2338  *
2339  * Note: the struct class passed to this function must have previously
2340  * been created with a call to class_create().
2341  */
2342 struct device *device_create_vargs(struct class *class, struct device *parent,
2343 				   dev_t devt, void *drvdata, const char *fmt,
2344 				   va_list args)
2345 {
2346 	return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
2347 					  fmt, args);
2348 }
2349 EXPORT_SYMBOL_GPL(device_create_vargs);
2350 
2351 /**
2352  * device_create - creates a device and registers it with sysfs
2353  * @class: pointer to the struct class that this device should be registered to
2354  * @parent: pointer to the parent struct device of this new device, if any
2355  * @devt: the dev_t for the char device to be added
2356  * @drvdata: the data to be added to the device for callbacks
2357  * @fmt: string for the device's name
2358  *
2359  * This function can be used by char device classes.  A struct device
2360  * will be created in sysfs, registered to the specified class.
2361  *
2362  * A "dev" file will be created, showing the dev_t for the device, if
2363  * the dev_t is not 0,0.
2364  * If a pointer to a parent struct device is passed in, the newly created
2365  * struct device will be a child of that device in sysfs.
2366  * The pointer to the struct device will be returned from the call.
2367  * Any further sysfs files that might be required can be created using this
2368  * pointer.
2369  *
2370  * Returns &struct device pointer on success, or ERR_PTR() on error.
2371  *
2372  * Note: the struct class passed to this function must have previously
2373  * been created with a call to class_create().
2374  */
2375 struct device *device_create(struct class *class, struct device *parent,
2376 			     dev_t devt, void *drvdata, const char *fmt, ...)
2377 {
2378 	va_list vargs;
2379 	struct device *dev;
2380 
2381 	va_start(vargs, fmt);
2382 	dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
2383 	va_end(vargs);
2384 	return dev;
2385 }
2386 EXPORT_SYMBOL_GPL(device_create);
2387 
2388 /**
2389  * device_create_with_groups - creates a device and registers it with sysfs
2390  * @class: pointer to the struct class that this device should be registered to
2391  * @parent: pointer to the parent struct device of this new device, if any
2392  * @devt: the dev_t for the char device to be added
2393  * @drvdata: the data to be added to the device for callbacks
2394  * @groups: NULL-terminated list of attribute groups to be created
2395  * @fmt: string for the device's name
2396  *
2397  * This function can be used by char device classes.  A struct device
2398  * will be created in sysfs, registered to the specified class.
2399  * Additional attributes specified in the groups parameter will also
2400  * be created automatically.
2401  *
2402  * A "dev" file will be created, showing the dev_t for the device, if
2403  * the dev_t is not 0,0.
2404  * If a pointer to a parent struct device is passed in, the newly created
2405  * struct device will be a child of that device in sysfs.
2406  * The pointer to the struct device will be returned from the call.
2407  * Any further sysfs files that might be required can be created using this
2408  * pointer.
2409  *
2410  * Returns &struct device pointer on success, or ERR_PTR() on error.
2411  *
2412  * Note: the struct class passed to this function must have previously
2413  * been created with a call to class_create().
2414  */
2415 struct device *device_create_with_groups(struct class *class,
2416 					 struct device *parent, dev_t devt,
2417 					 void *drvdata,
2418 					 const struct attribute_group **groups,
2419 					 const char *fmt, ...)
2420 {
2421 	va_list vargs;
2422 	struct device *dev;
2423 
2424 	va_start(vargs, fmt);
2425 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
2426 					 fmt, vargs);
2427 	va_end(vargs);
2428 	return dev;
2429 }
2430 EXPORT_SYMBOL_GPL(device_create_with_groups);
2431 
2432 static int __match_devt(struct device *dev, const void *data)
2433 {
2434 	const dev_t *devt = data;
2435 
2436 	return dev->devt == *devt;
2437 }
2438 
2439 /**
2440  * device_destroy - removes a device that was created with device_create()
2441  * @class: pointer to the struct class that this device was registered with
2442  * @devt: the dev_t of the device that was previously registered
2443  *
2444  * This call unregisters and cleans up a device that was created with a
2445  * call to device_create().
2446  */
2447 void device_destroy(struct class *class, dev_t devt)
2448 {
2449 	struct device *dev;
2450 
2451 	dev = class_find_device(class, NULL, &devt, __match_devt);
2452 	if (dev) {
2453 		put_device(dev);
2454 		device_unregister(dev);
2455 	}
2456 }
2457 EXPORT_SYMBOL_GPL(device_destroy);
2458 
2459 /**
2460  * device_rename - renames a device
2461  * @dev: the pointer to the struct device to be renamed
2462  * @new_name: the new name of the device
2463  *
2464  * It is the responsibility of the caller to provide mutual
2465  * exclusion between two different calls of device_rename
2466  * on the same device to ensure that new_name is valid and
2467  * won't conflict with other devices.
2468  *
2469  * Note: Don't call this function.  Currently, the networking layer calls this
2470  * function, but that will change.  The following text from Kay Sievers offers
2471  * some insight:
2472  *
2473  * Renaming devices is racy at many levels, symlinks and other stuff are not
2474  * replaced atomically, and you get a "move" uevent, but it's not easy to
2475  * connect the event to the old and new device. Device nodes are not renamed at
2476  * all, there isn't even support for that in the kernel now.
2477  *
2478  * In the meantime, during renaming, your target name might be taken by another
2479  * driver, creating conflicts. Or the old name is taken directly after you
2480  * renamed it -- then you get events for the same DEVPATH, before you even see
2481  * the "move" event. It's just a mess, and nothing new should ever rely on
2482  * kernel device renaming. Besides that, it's not even implemented now for
2483  * other things than (driver-core wise very simple) network devices.
2484  *
2485  * We are currently about to change network renaming in udev to completely
2486  * disallow renaming of devices in the same namespace as the kernel uses,
2487  * because we can't solve the problems properly, that arise with swapping names
2488  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
2489  * be allowed to some other name than eth[0-9]*, for the aforementioned
2490  * reasons.
2491  *
2492  * Make up a "real" name in the driver before you register anything, or add
2493  * some other attributes for userspace to find the device, or use udev to add
2494  * symlinks -- but never rename kernel devices later, it's a complete mess. We
2495  * don't even want to get into that and try to implement the missing pieces in
2496  * the core. We really have other pieces to fix in the driver core mess. :)
2497  */
2498 int device_rename(struct device *dev, const char *new_name)
2499 {
2500 	struct kobject *kobj = &dev->kobj;
2501 	char *old_device_name = NULL;
2502 	int error;
2503 
2504 	dev = get_device(dev);
2505 	if (!dev)
2506 		return -EINVAL;
2507 
2508 	dev_dbg(dev, "renaming to %s\n", new_name);
2509 
2510 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
2511 	if (!old_device_name) {
2512 		error = -ENOMEM;
2513 		goto out;
2514 	}
2515 
2516 	if (dev->class) {
2517 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
2518 					     kobj, old_device_name,
2519 					     new_name, kobject_namespace(kobj));
2520 		if (error)
2521 			goto out;
2522 	}
2523 
2524 	error = kobject_rename(kobj, new_name);
2525 	if (error)
2526 		goto out;
2527 
2528 out:
2529 	put_device(dev);
2530 
2531 	kfree(old_device_name);
2532 
2533 	return error;
2534 }
2535 EXPORT_SYMBOL_GPL(device_rename);
2536 
2537 static int device_move_class_links(struct device *dev,
2538 				   struct device *old_parent,
2539 				   struct device *new_parent)
2540 {
2541 	int error = 0;
2542 
2543 	if (old_parent)
2544 		sysfs_remove_link(&dev->kobj, "device");
2545 	if (new_parent)
2546 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
2547 					  "device");
2548 	return error;
2549 }
2550 
2551 /**
2552  * device_move - moves a device to a new parent
2553  * @dev: the pointer to the struct device to be moved
2554  * @new_parent: the new parent of the device (can by NULL)
2555  * @dpm_order: how to reorder the dpm_list
2556  */
2557 int device_move(struct device *dev, struct device *new_parent,
2558 		enum dpm_order dpm_order)
2559 {
2560 	int error;
2561 	struct device *old_parent;
2562 	struct kobject *new_parent_kobj;
2563 
2564 	dev = get_device(dev);
2565 	if (!dev)
2566 		return -EINVAL;
2567 
2568 	device_pm_lock();
2569 	new_parent = get_device(new_parent);
2570 	new_parent_kobj = get_device_parent(dev, new_parent);
2571 
2572 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
2573 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
2574 	error = kobject_move(&dev->kobj, new_parent_kobj);
2575 	if (error) {
2576 		cleanup_glue_dir(dev, new_parent_kobj);
2577 		put_device(new_parent);
2578 		goto out;
2579 	}
2580 	old_parent = dev->parent;
2581 	dev->parent = new_parent;
2582 	if (old_parent)
2583 		klist_remove(&dev->p->knode_parent);
2584 	if (new_parent) {
2585 		klist_add_tail(&dev->p->knode_parent,
2586 			       &new_parent->p->klist_children);
2587 		set_dev_node(dev, dev_to_node(new_parent));
2588 	}
2589 
2590 	if (dev->class) {
2591 		error = device_move_class_links(dev, old_parent, new_parent);
2592 		if (error) {
2593 			/* We ignore errors on cleanup since we're hosed anyway... */
2594 			device_move_class_links(dev, new_parent, old_parent);
2595 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
2596 				if (new_parent)
2597 					klist_remove(&dev->p->knode_parent);
2598 				dev->parent = old_parent;
2599 				if (old_parent) {
2600 					klist_add_tail(&dev->p->knode_parent,
2601 						       &old_parent->p->klist_children);
2602 					set_dev_node(dev, dev_to_node(old_parent));
2603 				}
2604 			}
2605 			cleanup_glue_dir(dev, new_parent_kobj);
2606 			put_device(new_parent);
2607 			goto out;
2608 		}
2609 	}
2610 	switch (dpm_order) {
2611 	case DPM_ORDER_NONE:
2612 		break;
2613 	case DPM_ORDER_DEV_AFTER_PARENT:
2614 		device_pm_move_after(dev, new_parent);
2615 		devices_kset_move_after(dev, new_parent);
2616 		break;
2617 	case DPM_ORDER_PARENT_BEFORE_DEV:
2618 		device_pm_move_before(new_parent, dev);
2619 		devices_kset_move_before(new_parent, dev);
2620 		break;
2621 	case DPM_ORDER_DEV_LAST:
2622 		device_pm_move_last(dev);
2623 		devices_kset_move_last(dev);
2624 		break;
2625 	}
2626 
2627 	put_device(old_parent);
2628 out:
2629 	device_pm_unlock();
2630 	put_device(dev);
2631 	return error;
2632 }
2633 EXPORT_SYMBOL_GPL(device_move);
2634 
2635 /**
2636  * device_shutdown - call ->shutdown() on each device to shutdown.
2637  */
2638 void device_shutdown(void)
2639 {
2640 	struct device *dev, *parent;
2641 
2642 	spin_lock(&devices_kset->list_lock);
2643 	/*
2644 	 * Walk the devices list backward, shutting down each in turn.
2645 	 * Beware that device unplug events may also start pulling
2646 	 * devices offline, even as the system is shutting down.
2647 	 */
2648 	while (!list_empty(&devices_kset->list)) {
2649 		dev = list_entry(devices_kset->list.prev, struct device,
2650 				kobj.entry);
2651 
2652 		/*
2653 		 * hold reference count of device's parent to
2654 		 * prevent it from being freed because parent's
2655 		 * lock is to be held
2656 		 */
2657 		parent = get_device(dev->parent);
2658 		get_device(dev);
2659 		/*
2660 		 * Make sure the device is off the kset list, in the
2661 		 * event that dev->*->shutdown() doesn't remove it.
2662 		 */
2663 		list_del_init(&dev->kobj.entry);
2664 		spin_unlock(&devices_kset->list_lock);
2665 
2666 		/* hold lock to avoid race with probe/release */
2667 		if (parent)
2668 			device_lock(parent);
2669 		device_lock(dev);
2670 
2671 		/* Don't allow any more runtime suspends */
2672 		pm_runtime_get_noresume(dev);
2673 		pm_runtime_barrier(dev);
2674 
2675 		if (dev->bus && dev->bus->shutdown) {
2676 			if (initcall_debug)
2677 				dev_info(dev, "shutdown\n");
2678 			dev->bus->shutdown(dev);
2679 		} else if (dev->driver && dev->driver->shutdown) {
2680 			if (initcall_debug)
2681 				dev_info(dev, "shutdown\n");
2682 			dev->driver->shutdown(dev);
2683 		}
2684 
2685 		device_unlock(dev);
2686 		if (parent)
2687 			device_unlock(parent);
2688 
2689 		put_device(dev);
2690 		put_device(parent);
2691 
2692 		spin_lock(&devices_kset->list_lock);
2693 	}
2694 	spin_unlock(&devices_kset->list_lock);
2695 }
2696 
2697 /*
2698  * Device logging functions
2699  */
2700 
2701 #ifdef CONFIG_PRINTK
2702 static int
2703 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
2704 {
2705 	const char *subsys;
2706 	size_t pos = 0;
2707 
2708 	if (dev->class)
2709 		subsys = dev->class->name;
2710 	else if (dev->bus)
2711 		subsys = dev->bus->name;
2712 	else
2713 		return 0;
2714 
2715 	pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
2716 	if (pos >= hdrlen)
2717 		goto overflow;
2718 
2719 	/*
2720 	 * Add device identifier DEVICE=:
2721 	 *   b12:8         block dev_t
2722 	 *   c127:3        char dev_t
2723 	 *   n8            netdev ifindex
2724 	 *   +sound:card0  subsystem:devname
2725 	 */
2726 	if (MAJOR(dev->devt)) {
2727 		char c;
2728 
2729 		if (strcmp(subsys, "block") == 0)
2730 			c = 'b';
2731 		else
2732 			c = 'c';
2733 		pos++;
2734 		pos += snprintf(hdr + pos, hdrlen - pos,
2735 				"DEVICE=%c%u:%u",
2736 				c, MAJOR(dev->devt), MINOR(dev->devt));
2737 	} else if (strcmp(subsys, "net") == 0) {
2738 		struct net_device *net = to_net_dev(dev);
2739 
2740 		pos++;
2741 		pos += snprintf(hdr + pos, hdrlen - pos,
2742 				"DEVICE=n%u", net->ifindex);
2743 	} else {
2744 		pos++;
2745 		pos += snprintf(hdr + pos, hdrlen - pos,
2746 				"DEVICE=+%s:%s", subsys, dev_name(dev));
2747 	}
2748 
2749 	if (pos >= hdrlen)
2750 		goto overflow;
2751 
2752 	return pos;
2753 
2754 overflow:
2755 	dev_WARN(dev, "device/subsystem name too long");
2756 	return 0;
2757 }
2758 
2759 int dev_vprintk_emit(int level, const struct device *dev,
2760 		     const char *fmt, va_list args)
2761 {
2762 	char hdr[128];
2763 	size_t hdrlen;
2764 
2765 	hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
2766 
2767 	return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
2768 }
2769 EXPORT_SYMBOL(dev_vprintk_emit);
2770 
2771 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
2772 {
2773 	va_list args;
2774 	int r;
2775 
2776 	va_start(args, fmt);
2777 
2778 	r = dev_vprintk_emit(level, dev, fmt, args);
2779 
2780 	va_end(args);
2781 
2782 	return r;
2783 }
2784 EXPORT_SYMBOL(dev_printk_emit);
2785 
2786 static void __dev_printk(const char *level, const struct device *dev,
2787 			struct va_format *vaf)
2788 {
2789 	if (dev)
2790 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
2791 				dev_driver_string(dev), dev_name(dev), vaf);
2792 	else
2793 		printk("%s(NULL device *): %pV", level, vaf);
2794 }
2795 
2796 void dev_printk(const char *level, const struct device *dev,
2797 		const char *fmt, ...)
2798 {
2799 	struct va_format vaf;
2800 	va_list args;
2801 
2802 	va_start(args, fmt);
2803 
2804 	vaf.fmt = fmt;
2805 	vaf.va = &args;
2806 
2807 	__dev_printk(level, dev, &vaf);
2808 
2809 	va_end(args);
2810 }
2811 EXPORT_SYMBOL(dev_printk);
2812 
2813 #define define_dev_printk_level(func, kern_level)		\
2814 void func(const struct device *dev, const char *fmt, ...)	\
2815 {								\
2816 	struct va_format vaf;					\
2817 	va_list args;						\
2818 								\
2819 	va_start(args, fmt);					\
2820 								\
2821 	vaf.fmt = fmt;						\
2822 	vaf.va = &args;						\
2823 								\
2824 	__dev_printk(kern_level, dev, &vaf);			\
2825 								\
2826 	va_end(args);						\
2827 }								\
2828 EXPORT_SYMBOL(func);
2829 
2830 define_dev_printk_level(dev_emerg, KERN_EMERG);
2831 define_dev_printk_level(dev_alert, KERN_ALERT);
2832 define_dev_printk_level(dev_crit, KERN_CRIT);
2833 define_dev_printk_level(dev_err, KERN_ERR);
2834 define_dev_printk_level(dev_warn, KERN_WARNING);
2835 define_dev_printk_level(dev_notice, KERN_NOTICE);
2836 define_dev_printk_level(_dev_info, KERN_INFO);
2837 
2838 #endif
2839 
2840 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
2841 {
2842 	return fwnode && !IS_ERR(fwnode->secondary);
2843 }
2844 
2845 /**
2846  * set_primary_fwnode - Change the primary firmware node of a given device.
2847  * @dev: Device to handle.
2848  * @fwnode: New primary firmware node of the device.
2849  *
2850  * Set the device's firmware node pointer to @fwnode, but if a secondary
2851  * firmware node of the device is present, preserve it.
2852  */
2853 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
2854 {
2855 	if (fwnode) {
2856 		struct fwnode_handle *fn = dev->fwnode;
2857 
2858 		if (fwnode_is_primary(fn))
2859 			fn = fn->secondary;
2860 
2861 		if (fn) {
2862 			WARN_ON(fwnode->secondary);
2863 			fwnode->secondary = fn;
2864 		}
2865 		dev->fwnode = fwnode;
2866 	} else {
2867 		dev->fwnode = fwnode_is_primary(dev->fwnode) ?
2868 			dev->fwnode->secondary : NULL;
2869 	}
2870 }
2871 EXPORT_SYMBOL_GPL(set_primary_fwnode);
2872 
2873 /**
2874  * set_secondary_fwnode - Change the secondary firmware node of a given device.
2875  * @dev: Device to handle.
2876  * @fwnode: New secondary firmware node of the device.
2877  *
2878  * If a primary firmware node of the device is present, set its secondary
2879  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
2880  * @fwnode.
2881  */
2882 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
2883 {
2884 	if (fwnode)
2885 		fwnode->secondary = ERR_PTR(-ENODEV);
2886 
2887 	if (fwnode_is_primary(dev->fwnode))
2888 		dev->fwnode->secondary = fwnode;
2889 	else
2890 		dev->fwnode = fwnode;
2891 }
2892