1 /* 2 * drivers/base/core.c - core driver model code (device registration, etc) 3 * 4 * Copyright (c) 2002-3 Patrick Mochel 5 * Copyright (c) 2002-3 Open Source Development Labs 6 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 7 * Copyright (c) 2006 Novell, Inc. 8 * 9 * This file is released under the GPLv2 10 * 11 */ 12 13 #include <linux/device.h> 14 #include <linux/err.h> 15 #include <linux/fwnode.h> 16 #include <linux/init.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/string.h> 20 #include <linux/kdev_t.h> 21 #include <linux/notifier.h> 22 #include <linux/of.h> 23 #include <linux/of_device.h> 24 #include <linux/genhd.h> 25 #include <linux/kallsyms.h> 26 #include <linux/mutex.h> 27 #include <linux/pm_runtime.h> 28 #include <linux/netdevice.h> 29 #include <linux/sched/signal.h> 30 #include <linux/sysfs.h> 31 32 #include "base.h" 33 #include "power/power.h" 34 35 #ifdef CONFIG_SYSFS_DEPRECATED 36 #ifdef CONFIG_SYSFS_DEPRECATED_V2 37 long sysfs_deprecated = 1; 38 #else 39 long sysfs_deprecated = 0; 40 #endif 41 static int __init sysfs_deprecated_setup(char *arg) 42 { 43 return kstrtol(arg, 10, &sysfs_deprecated); 44 } 45 early_param("sysfs.deprecated", sysfs_deprecated_setup); 46 #endif 47 48 /* Device links support. */ 49 50 #ifdef CONFIG_SRCU 51 static DEFINE_MUTEX(device_links_lock); 52 DEFINE_STATIC_SRCU(device_links_srcu); 53 54 static inline void device_links_write_lock(void) 55 { 56 mutex_lock(&device_links_lock); 57 } 58 59 static inline void device_links_write_unlock(void) 60 { 61 mutex_unlock(&device_links_lock); 62 } 63 64 int device_links_read_lock(void) 65 { 66 return srcu_read_lock(&device_links_srcu); 67 } 68 69 void device_links_read_unlock(int idx) 70 { 71 srcu_read_unlock(&device_links_srcu, idx); 72 } 73 #else /* !CONFIG_SRCU */ 74 static DECLARE_RWSEM(device_links_lock); 75 76 static inline void device_links_write_lock(void) 77 { 78 down_write(&device_links_lock); 79 } 80 81 static inline void device_links_write_unlock(void) 82 { 83 up_write(&device_links_lock); 84 } 85 86 int device_links_read_lock(void) 87 { 88 down_read(&device_links_lock); 89 return 0; 90 } 91 92 void device_links_read_unlock(int not_used) 93 { 94 up_read(&device_links_lock); 95 } 96 #endif /* !CONFIG_SRCU */ 97 98 /** 99 * device_is_dependent - Check if one device depends on another one 100 * @dev: Device to check dependencies for. 101 * @target: Device to check against. 102 * 103 * Check if @target depends on @dev or any device dependent on it (its child or 104 * its consumer etc). Return 1 if that is the case or 0 otherwise. 105 */ 106 static int device_is_dependent(struct device *dev, void *target) 107 { 108 struct device_link *link; 109 int ret; 110 111 if (WARN_ON(dev == target)) 112 return 1; 113 114 ret = device_for_each_child(dev, target, device_is_dependent); 115 if (ret) 116 return ret; 117 118 list_for_each_entry(link, &dev->links.consumers, s_node) { 119 if (WARN_ON(link->consumer == target)) 120 return 1; 121 122 ret = device_is_dependent(link->consumer, target); 123 if (ret) 124 break; 125 } 126 return ret; 127 } 128 129 static int device_reorder_to_tail(struct device *dev, void *not_used) 130 { 131 struct device_link *link; 132 133 /* 134 * Devices that have not been registered yet will be put to the ends 135 * of the lists during the registration, so skip them here. 136 */ 137 if (device_is_registered(dev)) 138 devices_kset_move_last(dev); 139 140 if (device_pm_initialized(dev)) 141 device_pm_move_last(dev); 142 143 device_for_each_child(dev, NULL, device_reorder_to_tail); 144 list_for_each_entry(link, &dev->links.consumers, s_node) 145 device_reorder_to_tail(link->consumer, NULL); 146 147 return 0; 148 } 149 150 /** 151 * device_link_add - Create a link between two devices. 152 * @consumer: Consumer end of the link. 153 * @supplier: Supplier end of the link. 154 * @flags: Link flags. 155 * 156 * The caller is responsible for the proper synchronization of the link creation 157 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 158 * runtime PM framework to take the link into account. Second, if the 159 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 160 * be forced into the active metastate and reference-counted upon the creation 161 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 162 * ignored. 163 * 164 * If the DL_FLAG_AUTOREMOVE is set, the link will be removed automatically 165 * when the consumer device driver unbinds from it. The combination of both 166 * DL_FLAG_AUTOREMOVE and DL_FLAG_STATELESS set is invalid and will cause NULL 167 * to be returned. 168 * 169 * A side effect of the link creation is re-ordering of dpm_list and the 170 * devices_kset list by moving the consumer device and all devices depending 171 * on it to the ends of these lists (that does not happen to devices that have 172 * not been registered when this function is called). 173 * 174 * The supplier device is required to be registered when this function is called 175 * and NULL will be returned if that is not the case. The consumer device need 176 * not be registered, however. 177 */ 178 struct device_link *device_link_add(struct device *consumer, 179 struct device *supplier, u32 flags) 180 { 181 struct device_link *link; 182 183 if (!consumer || !supplier || 184 ((flags & DL_FLAG_STATELESS) && (flags & DL_FLAG_AUTOREMOVE))) 185 return NULL; 186 187 device_links_write_lock(); 188 device_pm_lock(); 189 190 /* 191 * If the supplier has not been fully registered yet or there is a 192 * reverse dependency between the consumer and the supplier already in 193 * the graph, return NULL. 194 */ 195 if (!device_pm_initialized(supplier) 196 || device_is_dependent(consumer, supplier)) { 197 link = NULL; 198 goto out; 199 } 200 201 list_for_each_entry(link, &supplier->links.consumers, s_node) 202 if (link->consumer == consumer) 203 goto out; 204 205 link = kzalloc(sizeof(*link), GFP_KERNEL); 206 if (!link) 207 goto out; 208 209 if (flags & DL_FLAG_PM_RUNTIME) { 210 if (flags & DL_FLAG_RPM_ACTIVE) { 211 if (pm_runtime_get_sync(supplier) < 0) { 212 pm_runtime_put_noidle(supplier); 213 kfree(link); 214 link = NULL; 215 goto out; 216 } 217 link->rpm_active = true; 218 } 219 pm_runtime_new_link(consumer); 220 } 221 get_device(supplier); 222 link->supplier = supplier; 223 INIT_LIST_HEAD(&link->s_node); 224 get_device(consumer); 225 link->consumer = consumer; 226 INIT_LIST_HEAD(&link->c_node); 227 link->flags = flags; 228 229 /* Determine the initial link state. */ 230 if (flags & DL_FLAG_STATELESS) { 231 link->status = DL_STATE_NONE; 232 } else { 233 switch (supplier->links.status) { 234 case DL_DEV_DRIVER_BOUND: 235 switch (consumer->links.status) { 236 case DL_DEV_PROBING: 237 /* 238 * Balance the decrementation of the supplier's 239 * runtime PM usage counter after consumer probe 240 * in driver_probe_device(). 241 */ 242 if (flags & DL_FLAG_PM_RUNTIME) 243 pm_runtime_get_sync(supplier); 244 245 link->status = DL_STATE_CONSUMER_PROBE; 246 break; 247 case DL_DEV_DRIVER_BOUND: 248 link->status = DL_STATE_ACTIVE; 249 break; 250 default: 251 link->status = DL_STATE_AVAILABLE; 252 break; 253 } 254 break; 255 case DL_DEV_UNBINDING: 256 link->status = DL_STATE_SUPPLIER_UNBIND; 257 break; 258 default: 259 link->status = DL_STATE_DORMANT; 260 break; 261 } 262 } 263 264 /* 265 * Move the consumer and all of the devices depending on it to the end 266 * of dpm_list and the devices_kset list. 267 * 268 * It is necessary to hold dpm_list locked throughout all that or else 269 * we may end up suspending with a wrong ordering of it. 270 */ 271 device_reorder_to_tail(consumer, NULL); 272 273 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 274 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 275 276 dev_info(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 277 278 out: 279 device_pm_unlock(); 280 device_links_write_unlock(); 281 return link; 282 } 283 EXPORT_SYMBOL_GPL(device_link_add); 284 285 static void device_link_free(struct device_link *link) 286 { 287 put_device(link->consumer); 288 put_device(link->supplier); 289 kfree(link); 290 } 291 292 #ifdef CONFIG_SRCU 293 static void __device_link_free_srcu(struct rcu_head *rhead) 294 { 295 device_link_free(container_of(rhead, struct device_link, rcu_head)); 296 } 297 298 static void __device_link_del(struct device_link *link) 299 { 300 dev_info(link->consumer, "Dropping the link to %s\n", 301 dev_name(link->supplier)); 302 303 if (link->flags & DL_FLAG_PM_RUNTIME) 304 pm_runtime_drop_link(link->consumer); 305 306 list_del_rcu(&link->s_node); 307 list_del_rcu(&link->c_node); 308 call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu); 309 } 310 #else /* !CONFIG_SRCU */ 311 static void __device_link_del(struct device_link *link) 312 { 313 dev_info(link->consumer, "Dropping the link to %s\n", 314 dev_name(link->supplier)); 315 316 list_del(&link->s_node); 317 list_del(&link->c_node); 318 device_link_free(link); 319 } 320 #endif /* !CONFIG_SRCU */ 321 322 /** 323 * device_link_del - Delete a link between two devices. 324 * @link: Device link to delete. 325 * 326 * The caller must ensure proper synchronization of this function with runtime 327 * PM. 328 */ 329 void device_link_del(struct device_link *link) 330 { 331 device_links_write_lock(); 332 device_pm_lock(); 333 __device_link_del(link); 334 device_pm_unlock(); 335 device_links_write_unlock(); 336 } 337 EXPORT_SYMBOL_GPL(device_link_del); 338 339 static void device_links_missing_supplier(struct device *dev) 340 { 341 struct device_link *link; 342 343 list_for_each_entry(link, &dev->links.suppliers, c_node) 344 if (link->status == DL_STATE_CONSUMER_PROBE) 345 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 346 } 347 348 /** 349 * device_links_check_suppliers - Check presence of supplier drivers. 350 * @dev: Consumer device. 351 * 352 * Check links from this device to any suppliers. Walk the list of the device's 353 * links to suppliers and see if all of them are available. If not, simply 354 * return -EPROBE_DEFER. 355 * 356 * We need to guarantee that the supplier will not go away after the check has 357 * been positive here. It only can go away in __device_release_driver() and 358 * that function checks the device's links to consumers. This means we need to 359 * mark the link as "consumer probe in progress" to make the supplier removal 360 * wait for us to complete (or bad things may happen). 361 * 362 * Links with the DL_FLAG_STATELESS flag set are ignored. 363 */ 364 int device_links_check_suppliers(struct device *dev) 365 { 366 struct device_link *link; 367 int ret = 0; 368 369 device_links_write_lock(); 370 371 list_for_each_entry(link, &dev->links.suppliers, c_node) { 372 if (link->flags & DL_FLAG_STATELESS) 373 continue; 374 375 if (link->status != DL_STATE_AVAILABLE) { 376 device_links_missing_supplier(dev); 377 ret = -EPROBE_DEFER; 378 break; 379 } 380 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 381 } 382 dev->links.status = DL_DEV_PROBING; 383 384 device_links_write_unlock(); 385 return ret; 386 } 387 388 /** 389 * device_links_driver_bound - Update device links after probing its driver. 390 * @dev: Device to update the links for. 391 * 392 * The probe has been successful, so update links from this device to any 393 * consumers by changing their status to "available". 394 * 395 * Also change the status of @dev's links to suppliers to "active". 396 * 397 * Links with the DL_FLAG_STATELESS flag set are ignored. 398 */ 399 void device_links_driver_bound(struct device *dev) 400 { 401 struct device_link *link; 402 403 device_links_write_lock(); 404 405 list_for_each_entry(link, &dev->links.consumers, s_node) { 406 if (link->flags & DL_FLAG_STATELESS) 407 continue; 408 409 WARN_ON(link->status != DL_STATE_DORMANT); 410 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 411 } 412 413 list_for_each_entry(link, &dev->links.suppliers, c_node) { 414 if (link->flags & DL_FLAG_STATELESS) 415 continue; 416 417 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 418 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 419 } 420 421 dev->links.status = DL_DEV_DRIVER_BOUND; 422 423 device_links_write_unlock(); 424 } 425 426 /** 427 * __device_links_no_driver - Update links of a device without a driver. 428 * @dev: Device without a drvier. 429 * 430 * Delete all non-persistent links from this device to any suppliers. 431 * 432 * Persistent links stay around, but their status is changed to "available", 433 * unless they already are in the "supplier unbind in progress" state in which 434 * case they need not be updated. 435 * 436 * Links with the DL_FLAG_STATELESS flag set are ignored. 437 */ 438 static void __device_links_no_driver(struct device *dev) 439 { 440 struct device_link *link, *ln; 441 442 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 443 if (link->flags & DL_FLAG_STATELESS) 444 continue; 445 446 if (link->flags & DL_FLAG_AUTOREMOVE) 447 __device_link_del(link); 448 else if (link->status != DL_STATE_SUPPLIER_UNBIND) 449 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 450 } 451 452 dev->links.status = DL_DEV_NO_DRIVER; 453 } 454 455 void device_links_no_driver(struct device *dev) 456 { 457 device_links_write_lock(); 458 __device_links_no_driver(dev); 459 device_links_write_unlock(); 460 } 461 462 /** 463 * device_links_driver_cleanup - Update links after driver removal. 464 * @dev: Device whose driver has just gone away. 465 * 466 * Update links to consumers for @dev by changing their status to "dormant" and 467 * invoke %__device_links_no_driver() to update links to suppliers for it as 468 * appropriate. 469 * 470 * Links with the DL_FLAG_STATELESS flag set are ignored. 471 */ 472 void device_links_driver_cleanup(struct device *dev) 473 { 474 struct device_link *link; 475 476 device_links_write_lock(); 477 478 list_for_each_entry(link, &dev->links.consumers, s_node) { 479 if (link->flags & DL_FLAG_STATELESS) 480 continue; 481 482 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE); 483 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 484 WRITE_ONCE(link->status, DL_STATE_DORMANT); 485 } 486 487 __device_links_no_driver(dev); 488 489 device_links_write_unlock(); 490 } 491 492 /** 493 * device_links_busy - Check if there are any busy links to consumers. 494 * @dev: Device to check. 495 * 496 * Check each consumer of the device and return 'true' if its link's status 497 * is one of "consumer probe" or "active" (meaning that the given consumer is 498 * probing right now or its driver is present). Otherwise, change the link 499 * state to "supplier unbind" to prevent the consumer from being probed 500 * successfully going forward. 501 * 502 * Return 'false' if there are no probing or active consumers. 503 * 504 * Links with the DL_FLAG_STATELESS flag set are ignored. 505 */ 506 bool device_links_busy(struct device *dev) 507 { 508 struct device_link *link; 509 bool ret = false; 510 511 device_links_write_lock(); 512 513 list_for_each_entry(link, &dev->links.consumers, s_node) { 514 if (link->flags & DL_FLAG_STATELESS) 515 continue; 516 517 if (link->status == DL_STATE_CONSUMER_PROBE 518 || link->status == DL_STATE_ACTIVE) { 519 ret = true; 520 break; 521 } 522 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 523 } 524 525 dev->links.status = DL_DEV_UNBINDING; 526 527 device_links_write_unlock(); 528 return ret; 529 } 530 531 /** 532 * device_links_unbind_consumers - Force unbind consumers of the given device. 533 * @dev: Device to unbind the consumers of. 534 * 535 * Walk the list of links to consumers for @dev and if any of them is in the 536 * "consumer probe" state, wait for all device probes in progress to complete 537 * and start over. 538 * 539 * If that's not the case, change the status of the link to "supplier unbind" 540 * and check if the link was in the "active" state. If so, force the consumer 541 * driver to unbind and start over (the consumer will not re-probe as we have 542 * changed the state of the link already). 543 * 544 * Links with the DL_FLAG_STATELESS flag set are ignored. 545 */ 546 void device_links_unbind_consumers(struct device *dev) 547 { 548 struct device_link *link; 549 550 start: 551 device_links_write_lock(); 552 553 list_for_each_entry(link, &dev->links.consumers, s_node) { 554 enum device_link_state status; 555 556 if (link->flags & DL_FLAG_STATELESS) 557 continue; 558 559 status = link->status; 560 if (status == DL_STATE_CONSUMER_PROBE) { 561 device_links_write_unlock(); 562 563 wait_for_device_probe(); 564 goto start; 565 } 566 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 567 if (status == DL_STATE_ACTIVE) { 568 struct device *consumer = link->consumer; 569 570 get_device(consumer); 571 572 device_links_write_unlock(); 573 574 device_release_driver_internal(consumer, NULL, 575 consumer->parent); 576 put_device(consumer); 577 goto start; 578 } 579 } 580 581 device_links_write_unlock(); 582 } 583 584 /** 585 * device_links_purge - Delete existing links to other devices. 586 * @dev: Target device. 587 */ 588 static void device_links_purge(struct device *dev) 589 { 590 struct device_link *link, *ln; 591 592 /* 593 * Delete all of the remaining links from this device to any other 594 * devices (either consumers or suppliers). 595 */ 596 device_links_write_lock(); 597 598 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 599 WARN_ON(link->status == DL_STATE_ACTIVE); 600 __device_link_del(link); 601 } 602 603 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 604 WARN_ON(link->status != DL_STATE_DORMANT && 605 link->status != DL_STATE_NONE); 606 __device_link_del(link); 607 } 608 609 device_links_write_unlock(); 610 } 611 612 /* Device links support end. */ 613 614 int (*platform_notify)(struct device *dev) = NULL; 615 int (*platform_notify_remove)(struct device *dev) = NULL; 616 static struct kobject *dev_kobj; 617 struct kobject *sysfs_dev_char_kobj; 618 struct kobject *sysfs_dev_block_kobj; 619 620 static DEFINE_MUTEX(device_hotplug_lock); 621 622 void lock_device_hotplug(void) 623 { 624 mutex_lock(&device_hotplug_lock); 625 } 626 627 void unlock_device_hotplug(void) 628 { 629 mutex_unlock(&device_hotplug_lock); 630 } 631 632 int lock_device_hotplug_sysfs(void) 633 { 634 if (mutex_trylock(&device_hotplug_lock)) 635 return 0; 636 637 /* Avoid busy looping (5 ms of sleep should do). */ 638 msleep(5); 639 return restart_syscall(); 640 } 641 642 void assert_held_device_hotplug(void) 643 { 644 lockdep_assert_held(&device_hotplug_lock); 645 } 646 647 #ifdef CONFIG_BLOCK 648 static inline int device_is_not_partition(struct device *dev) 649 { 650 return !(dev->type == &part_type); 651 } 652 #else 653 static inline int device_is_not_partition(struct device *dev) 654 { 655 return 1; 656 } 657 #endif 658 659 /** 660 * dev_driver_string - Return a device's driver name, if at all possible 661 * @dev: struct device to get the name of 662 * 663 * Will return the device's driver's name if it is bound to a device. If 664 * the device is not bound to a driver, it will return the name of the bus 665 * it is attached to. If it is not attached to a bus either, an empty 666 * string will be returned. 667 */ 668 const char *dev_driver_string(const struct device *dev) 669 { 670 struct device_driver *drv; 671 672 /* dev->driver can change to NULL underneath us because of unbinding, 673 * so be careful about accessing it. dev->bus and dev->class should 674 * never change once they are set, so they don't need special care. 675 */ 676 drv = ACCESS_ONCE(dev->driver); 677 return drv ? drv->name : 678 (dev->bus ? dev->bus->name : 679 (dev->class ? dev->class->name : "")); 680 } 681 EXPORT_SYMBOL(dev_driver_string); 682 683 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 684 685 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 686 char *buf) 687 { 688 struct device_attribute *dev_attr = to_dev_attr(attr); 689 struct device *dev = kobj_to_dev(kobj); 690 ssize_t ret = -EIO; 691 692 if (dev_attr->show) 693 ret = dev_attr->show(dev, dev_attr, buf); 694 if (ret >= (ssize_t)PAGE_SIZE) { 695 print_symbol("dev_attr_show: %s returned bad count\n", 696 (unsigned long)dev_attr->show); 697 } 698 return ret; 699 } 700 701 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 702 const char *buf, size_t count) 703 { 704 struct device_attribute *dev_attr = to_dev_attr(attr); 705 struct device *dev = kobj_to_dev(kobj); 706 ssize_t ret = -EIO; 707 708 if (dev_attr->store) 709 ret = dev_attr->store(dev, dev_attr, buf, count); 710 return ret; 711 } 712 713 static const struct sysfs_ops dev_sysfs_ops = { 714 .show = dev_attr_show, 715 .store = dev_attr_store, 716 }; 717 718 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 719 720 ssize_t device_store_ulong(struct device *dev, 721 struct device_attribute *attr, 722 const char *buf, size_t size) 723 { 724 struct dev_ext_attribute *ea = to_ext_attr(attr); 725 char *end; 726 unsigned long new = simple_strtoul(buf, &end, 0); 727 if (end == buf) 728 return -EINVAL; 729 *(unsigned long *)(ea->var) = new; 730 /* Always return full write size even if we didn't consume all */ 731 return size; 732 } 733 EXPORT_SYMBOL_GPL(device_store_ulong); 734 735 ssize_t device_show_ulong(struct device *dev, 736 struct device_attribute *attr, 737 char *buf) 738 { 739 struct dev_ext_attribute *ea = to_ext_attr(attr); 740 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var)); 741 } 742 EXPORT_SYMBOL_GPL(device_show_ulong); 743 744 ssize_t device_store_int(struct device *dev, 745 struct device_attribute *attr, 746 const char *buf, size_t size) 747 { 748 struct dev_ext_attribute *ea = to_ext_attr(attr); 749 char *end; 750 long new = simple_strtol(buf, &end, 0); 751 if (end == buf || new > INT_MAX || new < INT_MIN) 752 return -EINVAL; 753 *(int *)(ea->var) = new; 754 /* Always return full write size even if we didn't consume all */ 755 return size; 756 } 757 EXPORT_SYMBOL_GPL(device_store_int); 758 759 ssize_t device_show_int(struct device *dev, 760 struct device_attribute *attr, 761 char *buf) 762 { 763 struct dev_ext_attribute *ea = to_ext_attr(attr); 764 765 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var)); 766 } 767 EXPORT_SYMBOL_GPL(device_show_int); 768 769 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 770 const char *buf, size_t size) 771 { 772 struct dev_ext_attribute *ea = to_ext_attr(attr); 773 774 if (strtobool(buf, ea->var) < 0) 775 return -EINVAL; 776 777 return size; 778 } 779 EXPORT_SYMBOL_GPL(device_store_bool); 780 781 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 782 char *buf) 783 { 784 struct dev_ext_attribute *ea = to_ext_attr(attr); 785 786 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var)); 787 } 788 EXPORT_SYMBOL_GPL(device_show_bool); 789 790 /** 791 * device_release - free device structure. 792 * @kobj: device's kobject. 793 * 794 * This is called once the reference count for the object 795 * reaches 0. We forward the call to the device's release 796 * method, which should handle actually freeing the structure. 797 */ 798 static void device_release(struct kobject *kobj) 799 { 800 struct device *dev = kobj_to_dev(kobj); 801 struct device_private *p = dev->p; 802 803 /* 804 * Some platform devices are driven without driver attached 805 * and managed resources may have been acquired. Make sure 806 * all resources are released. 807 * 808 * Drivers still can add resources into device after device 809 * is deleted but alive, so release devres here to avoid 810 * possible memory leak. 811 */ 812 devres_release_all(dev); 813 814 if (dev->release) 815 dev->release(dev); 816 else if (dev->type && dev->type->release) 817 dev->type->release(dev); 818 else if (dev->class && dev->class->dev_release) 819 dev->class->dev_release(dev); 820 else 821 WARN(1, KERN_ERR "Device '%s' does not have a release() " 822 "function, it is broken and must be fixed.\n", 823 dev_name(dev)); 824 kfree(p); 825 } 826 827 static const void *device_namespace(struct kobject *kobj) 828 { 829 struct device *dev = kobj_to_dev(kobj); 830 const void *ns = NULL; 831 832 if (dev->class && dev->class->ns_type) 833 ns = dev->class->namespace(dev); 834 835 return ns; 836 } 837 838 static struct kobj_type device_ktype = { 839 .release = device_release, 840 .sysfs_ops = &dev_sysfs_ops, 841 .namespace = device_namespace, 842 }; 843 844 845 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj) 846 { 847 struct kobj_type *ktype = get_ktype(kobj); 848 849 if (ktype == &device_ktype) { 850 struct device *dev = kobj_to_dev(kobj); 851 if (dev->bus) 852 return 1; 853 if (dev->class) 854 return 1; 855 } 856 return 0; 857 } 858 859 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj) 860 { 861 struct device *dev = kobj_to_dev(kobj); 862 863 if (dev->bus) 864 return dev->bus->name; 865 if (dev->class) 866 return dev->class->name; 867 return NULL; 868 } 869 870 static int dev_uevent(struct kset *kset, struct kobject *kobj, 871 struct kobj_uevent_env *env) 872 { 873 struct device *dev = kobj_to_dev(kobj); 874 int retval = 0; 875 876 /* add device node properties if present */ 877 if (MAJOR(dev->devt)) { 878 const char *tmp; 879 const char *name; 880 umode_t mode = 0; 881 kuid_t uid = GLOBAL_ROOT_UID; 882 kgid_t gid = GLOBAL_ROOT_GID; 883 884 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 885 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 886 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 887 if (name) { 888 add_uevent_var(env, "DEVNAME=%s", name); 889 if (mode) 890 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 891 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 892 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 893 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 894 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 895 kfree(tmp); 896 } 897 } 898 899 if (dev->type && dev->type->name) 900 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 901 902 if (dev->driver) 903 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 904 905 /* Add common DT information about the device */ 906 of_device_uevent(dev, env); 907 908 /* have the bus specific function add its stuff */ 909 if (dev->bus && dev->bus->uevent) { 910 retval = dev->bus->uevent(dev, env); 911 if (retval) 912 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 913 dev_name(dev), __func__, retval); 914 } 915 916 /* have the class specific function add its stuff */ 917 if (dev->class && dev->class->dev_uevent) { 918 retval = dev->class->dev_uevent(dev, env); 919 if (retval) 920 pr_debug("device: '%s': %s: class uevent() " 921 "returned %d\n", dev_name(dev), 922 __func__, retval); 923 } 924 925 /* have the device type specific function add its stuff */ 926 if (dev->type && dev->type->uevent) { 927 retval = dev->type->uevent(dev, env); 928 if (retval) 929 pr_debug("device: '%s': %s: dev_type uevent() " 930 "returned %d\n", dev_name(dev), 931 __func__, retval); 932 } 933 934 return retval; 935 } 936 937 static const struct kset_uevent_ops device_uevent_ops = { 938 .filter = dev_uevent_filter, 939 .name = dev_uevent_name, 940 .uevent = dev_uevent, 941 }; 942 943 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 944 char *buf) 945 { 946 struct kobject *top_kobj; 947 struct kset *kset; 948 struct kobj_uevent_env *env = NULL; 949 int i; 950 size_t count = 0; 951 int retval; 952 953 /* search the kset, the device belongs to */ 954 top_kobj = &dev->kobj; 955 while (!top_kobj->kset && top_kobj->parent) 956 top_kobj = top_kobj->parent; 957 if (!top_kobj->kset) 958 goto out; 959 960 kset = top_kobj->kset; 961 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 962 goto out; 963 964 /* respect filter */ 965 if (kset->uevent_ops && kset->uevent_ops->filter) 966 if (!kset->uevent_ops->filter(kset, &dev->kobj)) 967 goto out; 968 969 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 970 if (!env) 971 return -ENOMEM; 972 973 /* let the kset specific function add its keys */ 974 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env); 975 if (retval) 976 goto out; 977 978 /* copy keys to file */ 979 for (i = 0; i < env->envp_idx; i++) 980 count += sprintf(&buf[count], "%s\n", env->envp[i]); 981 out: 982 kfree(env); 983 return count; 984 } 985 986 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 987 const char *buf, size_t count) 988 { 989 enum kobject_action action; 990 991 if (kobject_action_type(buf, count, &action) == 0) 992 kobject_uevent(&dev->kobj, action); 993 else 994 dev_err(dev, "uevent: unknown action-string\n"); 995 return count; 996 } 997 static DEVICE_ATTR_RW(uevent); 998 999 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 1000 char *buf) 1001 { 1002 bool val; 1003 1004 device_lock(dev); 1005 val = !dev->offline; 1006 device_unlock(dev); 1007 return sprintf(buf, "%u\n", val); 1008 } 1009 1010 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 1011 const char *buf, size_t count) 1012 { 1013 bool val; 1014 int ret; 1015 1016 ret = strtobool(buf, &val); 1017 if (ret < 0) 1018 return ret; 1019 1020 ret = lock_device_hotplug_sysfs(); 1021 if (ret) 1022 return ret; 1023 1024 ret = val ? device_online(dev) : device_offline(dev); 1025 unlock_device_hotplug(); 1026 return ret < 0 ? ret : count; 1027 } 1028 static DEVICE_ATTR_RW(online); 1029 1030 int device_add_groups(struct device *dev, const struct attribute_group **groups) 1031 { 1032 return sysfs_create_groups(&dev->kobj, groups); 1033 } 1034 1035 void device_remove_groups(struct device *dev, 1036 const struct attribute_group **groups) 1037 { 1038 sysfs_remove_groups(&dev->kobj, groups); 1039 } 1040 1041 static int device_add_attrs(struct device *dev) 1042 { 1043 struct class *class = dev->class; 1044 const struct device_type *type = dev->type; 1045 int error; 1046 1047 if (class) { 1048 error = device_add_groups(dev, class->dev_groups); 1049 if (error) 1050 return error; 1051 } 1052 1053 if (type) { 1054 error = device_add_groups(dev, type->groups); 1055 if (error) 1056 goto err_remove_class_groups; 1057 } 1058 1059 error = device_add_groups(dev, dev->groups); 1060 if (error) 1061 goto err_remove_type_groups; 1062 1063 if (device_supports_offline(dev) && !dev->offline_disabled) { 1064 error = device_create_file(dev, &dev_attr_online); 1065 if (error) 1066 goto err_remove_dev_groups; 1067 } 1068 1069 return 0; 1070 1071 err_remove_dev_groups: 1072 device_remove_groups(dev, dev->groups); 1073 err_remove_type_groups: 1074 if (type) 1075 device_remove_groups(dev, type->groups); 1076 err_remove_class_groups: 1077 if (class) 1078 device_remove_groups(dev, class->dev_groups); 1079 1080 return error; 1081 } 1082 1083 static void device_remove_attrs(struct device *dev) 1084 { 1085 struct class *class = dev->class; 1086 const struct device_type *type = dev->type; 1087 1088 device_remove_file(dev, &dev_attr_online); 1089 device_remove_groups(dev, dev->groups); 1090 1091 if (type) 1092 device_remove_groups(dev, type->groups); 1093 1094 if (class) 1095 device_remove_groups(dev, class->dev_groups); 1096 } 1097 1098 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 1099 char *buf) 1100 { 1101 return print_dev_t(buf, dev->devt); 1102 } 1103 static DEVICE_ATTR_RO(dev); 1104 1105 /* /sys/devices/ */ 1106 struct kset *devices_kset; 1107 1108 /** 1109 * devices_kset_move_before - Move device in the devices_kset's list. 1110 * @deva: Device to move. 1111 * @devb: Device @deva should come before. 1112 */ 1113 static void devices_kset_move_before(struct device *deva, struct device *devb) 1114 { 1115 if (!devices_kset) 1116 return; 1117 pr_debug("devices_kset: Moving %s before %s\n", 1118 dev_name(deva), dev_name(devb)); 1119 spin_lock(&devices_kset->list_lock); 1120 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 1121 spin_unlock(&devices_kset->list_lock); 1122 } 1123 1124 /** 1125 * devices_kset_move_after - Move device in the devices_kset's list. 1126 * @deva: Device to move 1127 * @devb: Device @deva should come after. 1128 */ 1129 static void devices_kset_move_after(struct device *deva, struct device *devb) 1130 { 1131 if (!devices_kset) 1132 return; 1133 pr_debug("devices_kset: Moving %s after %s\n", 1134 dev_name(deva), dev_name(devb)); 1135 spin_lock(&devices_kset->list_lock); 1136 list_move(&deva->kobj.entry, &devb->kobj.entry); 1137 spin_unlock(&devices_kset->list_lock); 1138 } 1139 1140 /** 1141 * devices_kset_move_last - move the device to the end of devices_kset's list. 1142 * @dev: device to move 1143 */ 1144 void devices_kset_move_last(struct device *dev) 1145 { 1146 if (!devices_kset) 1147 return; 1148 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 1149 spin_lock(&devices_kset->list_lock); 1150 list_move_tail(&dev->kobj.entry, &devices_kset->list); 1151 spin_unlock(&devices_kset->list_lock); 1152 } 1153 1154 /** 1155 * device_create_file - create sysfs attribute file for device. 1156 * @dev: device. 1157 * @attr: device attribute descriptor. 1158 */ 1159 int device_create_file(struct device *dev, 1160 const struct device_attribute *attr) 1161 { 1162 int error = 0; 1163 1164 if (dev) { 1165 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 1166 "Attribute %s: write permission without 'store'\n", 1167 attr->attr.name); 1168 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 1169 "Attribute %s: read permission without 'show'\n", 1170 attr->attr.name); 1171 error = sysfs_create_file(&dev->kobj, &attr->attr); 1172 } 1173 1174 return error; 1175 } 1176 EXPORT_SYMBOL_GPL(device_create_file); 1177 1178 /** 1179 * device_remove_file - remove sysfs attribute file. 1180 * @dev: device. 1181 * @attr: device attribute descriptor. 1182 */ 1183 void device_remove_file(struct device *dev, 1184 const struct device_attribute *attr) 1185 { 1186 if (dev) 1187 sysfs_remove_file(&dev->kobj, &attr->attr); 1188 } 1189 EXPORT_SYMBOL_GPL(device_remove_file); 1190 1191 /** 1192 * device_remove_file_self - remove sysfs attribute file from its own method. 1193 * @dev: device. 1194 * @attr: device attribute descriptor. 1195 * 1196 * See kernfs_remove_self() for details. 1197 */ 1198 bool device_remove_file_self(struct device *dev, 1199 const struct device_attribute *attr) 1200 { 1201 if (dev) 1202 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 1203 else 1204 return false; 1205 } 1206 EXPORT_SYMBOL_GPL(device_remove_file_self); 1207 1208 /** 1209 * device_create_bin_file - create sysfs binary attribute file for device. 1210 * @dev: device. 1211 * @attr: device binary attribute descriptor. 1212 */ 1213 int device_create_bin_file(struct device *dev, 1214 const struct bin_attribute *attr) 1215 { 1216 int error = -EINVAL; 1217 if (dev) 1218 error = sysfs_create_bin_file(&dev->kobj, attr); 1219 return error; 1220 } 1221 EXPORT_SYMBOL_GPL(device_create_bin_file); 1222 1223 /** 1224 * device_remove_bin_file - remove sysfs binary attribute file 1225 * @dev: device. 1226 * @attr: device binary attribute descriptor. 1227 */ 1228 void device_remove_bin_file(struct device *dev, 1229 const struct bin_attribute *attr) 1230 { 1231 if (dev) 1232 sysfs_remove_bin_file(&dev->kobj, attr); 1233 } 1234 EXPORT_SYMBOL_GPL(device_remove_bin_file); 1235 1236 static void klist_children_get(struct klist_node *n) 1237 { 1238 struct device_private *p = to_device_private_parent(n); 1239 struct device *dev = p->device; 1240 1241 get_device(dev); 1242 } 1243 1244 static void klist_children_put(struct klist_node *n) 1245 { 1246 struct device_private *p = to_device_private_parent(n); 1247 struct device *dev = p->device; 1248 1249 put_device(dev); 1250 } 1251 1252 /** 1253 * device_initialize - init device structure. 1254 * @dev: device. 1255 * 1256 * This prepares the device for use by other layers by initializing 1257 * its fields. 1258 * It is the first half of device_register(), if called by 1259 * that function, though it can also be called separately, so one 1260 * may use @dev's fields. In particular, get_device()/put_device() 1261 * may be used for reference counting of @dev after calling this 1262 * function. 1263 * 1264 * All fields in @dev must be initialized by the caller to 0, except 1265 * for those explicitly set to some other value. The simplest 1266 * approach is to use kzalloc() to allocate the structure containing 1267 * @dev. 1268 * 1269 * NOTE: Use put_device() to give up your reference instead of freeing 1270 * @dev directly once you have called this function. 1271 */ 1272 void device_initialize(struct device *dev) 1273 { 1274 dev->kobj.kset = devices_kset; 1275 kobject_init(&dev->kobj, &device_ktype); 1276 INIT_LIST_HEAD(&dev->dma_pools); 1277 mutex_init(&dev->mutex); 1278 lockdep_set_novalidate_class(&dev->mutex); 1279 spin_lock_init(&dev->devres_lock); 1280 INIT_LIST_HEAD(&dev->devres_head); 1281 device_pm_init(dev); 1282 set_dev_node(dev, -1); 1283 #ifdef CONFIG_GENERIC_MSI_IRQ 1284 INIT_LIST_HEAD(&dev->msi_list); 1285 #endif 1286 INIT_LIST_HEAD(&dev->links.consumers); 1287 INIT_LIST_HEAD(&dev->links.suppliers); 1288 dev->links.status = DL_DEV_NO_DRIVER; 1289 } 1290 EXPORT_SYMBOL_GPL(device_initialize); 1291 1292 struct kobject *virtual_device_parent(struct device *dev) 1293 { 1294 static struct kobject *virtual_dir = NULL; 1295 1296 if (!virtual_dir) 1297 virtual_dir = kobject_create_and_add("virtual", 1298 &devices_kset->kobj); 1299 1300 return virtual_dir; 1301 } 1302 1303 struct class_dir { 1304 struct kobject kobj; 1305 struct class *class; 1306 }; 1307 1308 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 1309 1310 static void class_dir_release(struct kobject *kobj) 1311 { 1312 struct class_dir *dir = to_class_dir(kobj); 1313 kfree(dir); 1314 } 1315 1316 static const 1317 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj) 1318 { 1319 struct class_dir *dir = to_class_dir(kobj); 1320 return dir->class->ns_type; 1321 } 1322 1323 static struct kobj_type class_dir_ktype = { 1324 .release = class_dir_release, 1325 .sysfs_ops = &kobj_sysfs_ops, 1326 .child_ns_type = class_dir_child_ns_type 1327 }; 1328 1329 static struct kobject * 1330 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj) 1331 { 1332 struct class_dir *dir; 1333 int retval; 1334 1335 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 1336 if (!dir) 1337 return NULL; 1338 1339 dir->class = class; 1340 kobject_init(&dir->kobj, &class_dir_ktype); 1341 1342 dir->kobj.kset = &class->p->glue_dirs; 1343 1344 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name); 1345 if (retval < 0) { 1346 kobject_put(&dir->kobj); 1347 return NULL; 1348 } 1349 return &dir->kobj; 1350 } 1351 1352 static DEFINE_MUTEX(gdp_mutex); 1353 1354 static struct kobject *get_device_parent(struct device *dev, 1355 struct device *parent) 1356 { 1357 if (dev->class) { 1358 struct kobject *kobj = NULL; 1359 struct kobject *parent_kobj; 1360 struct kobject *k; 1361 1362 #ifdef CONFIG_BLOCK 1363 /* block disks show up in /sys/block */ 1364 if (sysfs_deprecated && dev->class == &block_class) { 1365 if (parent && parent->class == &block_class) 1366 return &parent->kobj; 1367 return &block_class.p->subsys.kobj; 1368 } 1369 #endif 1370 1371 /* 1372 * If we have no parent, we live in "virtual". 1373 * Class-devices with a non class-device as parent, live 1374 * in a "glue" directory to prevent namespace collisions. 1375 */ 1376 if (parent == NULL) 1377 parent_kobj = virtual_device_parent(dev); 1378 else if (parent->class && !dev->class->ns_type) 1379 return &parent->kobj; 1380 else 1381 parent_kobj = &parent->kobj; 1382 1383 mutex_lock(&gdp_mutex); 1384 1385 /* find our class-directory at the parent and reference it */ 1386 spin_lock(&dev->class->p->glue_dirs.list_lock); 1387 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry) 1388 if (k->parent == parent_kobj) { 1389 kobj = kobject_get(k); 1390 break; 1391 } 1392 spin_unlock(&dev->class->p->glue_dirs.list_lock); 1393 if (kobj) { 1394 mutex_unlock(&gdp_mutex); 1395 return kobj; 1396 } 1397 1398 /* or create a new class-directory at the parent device */ 1399 k = class_dir_create_and_add(dev->class, parent_kobj); 1400 /* do not emit an uevent for this simple "glue" directory */ 1401 mutex_unlock(&gdp_mutex); 1402 return k; 1403 } 1404 1405 /* subsystems can specify a default root directory for their devices */ 1406 if (!parent && dev->bus && dev->bus->dev_root) 1407 return &dev->bus->dev_root->kobj; 1408 1409 if (parent) 1410 return &parent->kobj; 1411 return NULL; 1412 } 1413 1414 static inline bool live_in_glue_dir(struct kobject *kobj, 1415 struct device *dev) 1416 { 1417 if (!kobj || !dev->class || 1418 kobj->kset != &dev->class->p->glue_dirs) 1419 return false; 1420 return true; 1421 } 1422 1423 static inline struct kobject *get_glue_dir(struct device *dev) 1424 { 1425 return dev->kobj.parent; 1426 } 1427 1428 /* 1429 * make sure cleaning up dir as the last step, we need to make 1430 * sure .release handler of kobject is run with holding the 1431 * global lock 1432 */ 1433 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 1434 { 1435 /* see if we live in a "glue" directory */ 1436 if (!live_in_glue_dir(glue_dir, dev)) 1437 return; 1438 1439 mutex_lock(&gdp_mutex); 1440 kobject_put(glue_dir); 1441 mutex_unlock(&gdp_mutex); 1442 } 1443 1444 static int device_add_class_symlinks(struct device *dev) 1445 { 1446 struct device_node *of_node = dev_of_node(dev); 1447 int error; 1448 1449 if (of_node) { 1450 error = sysfs_create_link(&dev->kobj, &of_node->kobj,"of_node"); 1451 if (error) 1452 dev_warn(dev, "Error %d creating of_node link\n",error); 1453 /* An error here doesn't warrant bringing down the device */ 1454 } 1455 1456 if (!dev->class) 1457 return 0; 1458 1459 error = sysfs_create_link(&dev->kobj, 1460 &dev->class->p->subsys.kobj, 1461 "subsystem"); 1462 if (error) 1463 goto out_devnode; 1464 1465 if (dev->parent && device_is_not_partition(dev)) { 1466 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 1467 "device"); 1468 if (error) 1469 goto out_subsys; 1470 } 1471 1472 #ifdef CONFIG_BLOCK 1473 /* /sys/block has directories and does not need symlinks */ 1474 if (sysfs_deprecated && dev->class == &block_class) 1475 return 0; 1476 #endif 1477 1478 /* link in the class directory pointing to the device */ 1479 error = sysfs_create_link(&dev->class->p->subsys.kobj, 1480 &dev->kobj, dev_name(dev)); 1481 if (error) 1482 goto out_device; 1483 1484 return 0; 1485 1486 out_device: 1487 sysfs_remove_link(&dev->kobj, "device"); 1488 1489 out_subsys: 1490 sysfs_remove_link(&dev->kobj, "subsystem"); 1491 out_devnode: 1492 sysfs_remove_link(&dev->kobj, "of_node"); 1493 return error; 1494 } 1495 1496 static void device_remove_class_symlinks(struct device *dev) 1497 { 1498 if (dev_of_node(dev)) 1499 sysfs_remove_link(&dev->kobj, "of_node"); 1500 1501 if (!dev->class) 1502 return; 1503 1504 if (dev->parent && device_is_not_partition(dev)) 1505 sysfs_remove_link(&dev->kobj, "device"); 1506 sysfs_remove_link(&dev->kobj, "subsystem"); 1507 #ifdef CONFIG_BLOCK 1508 if (sysfs_deprecated && dev->class == &block_class) 1509 return; 1510 #endif 1511 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev)); 1512 } 1513 1514 /** 1515 * dev_set_name - set a device name 1516 * @dev: device 1517 * @fmt: format string for the device's name 1518 */ 1519 int dev_set_name(struct device *dev, const char *fmt, ...) 1520 { 1521 va_list vargs; 1522 int err; 1523 1524 va_start(vargs, fmt); 1525 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 1526 va_end(vargs); 1527 return err; 1528 } 1529 EXPORT_SYMBOL_GPL(dev_set_name); 1530 1531 /** 1532 * device_to_dev_kobj - select a /sys/dev/ directory for the device 1533 * @dev: device 1534 * 1535 * By default we select char/ for new entries. Setting class->dev_obj 1536 * to NULL prevents an entry from being created. class->dev_kobj must 1537 * be set (or cleared) before any devices are registered to the class 1538 * otherwise device_create_sys_dev_entry() and 1539 * device_remove_sys_dev_entry() will disagree about the presence of 1540 * the link. 1541 */ 1542 static struct kobject *device_to_dev_kobj(struct device *dev) 1543 { 1544 struct kobject *kobj; 1545 1546 if (dev->class) 1547 kobj = dev->class->dev_kobj; 1548 else 1549 kobj = sysfs_dev_char_kobj; 1550 1551 return kobj; 1552 } 1553 1554 static int device_create_sys_dev_entry(struct device *dev) 1555 { 1556 struct kobject *kobj = device_to_dev_kobj(dev); 1557 int error = 0; 1558 char devt_str[15]; 1559 1560 if (kobj) { 1561 format_dev_t(devt_str, dev->devt); 1562 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 1563 } 1564 1565 return error; 1566 } 1567 1568 static void device_remove_sys_dev_entry(struct device *dev) 1569 { 1570 struct kobject *kobj = device_to_dev_kobj(dev); 1571 char devt_str[15]; 1572 1573 if (kobj) { 1574 format_dev_t(devt_str, dev->devt); 1575 sysfs_remove_link(kobj, devt_str); 1576 } 1577 } 1578 1579 int device_private_init(struct device *dev) 1580 { 1581 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 1582 if (!dev->p) 1583 return -ENOMEM; 1584 dev->p->device = dev; 1585 klist_init(&dev->p->klist_children, klist_children_get, 1586 klist_children_put); 1587 INIT_LIST_HEAD(&dev->p->deferred_probe); 1588 return 0; 1589 } 1590 1591 /** 1592 * device_add - add device to device hierarchy. 1593 * @dev: device. 1594 * 1595 * This is part 2 of device_register(), though may be called 1596 * separately _iff_ device_initialize() has been called separately. 1597 * 1598 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 1599 * to the global and sibling lists for the device, then 1600 * adds it to the other relevant subsystems of the driver model. 1601 * 1602 * Do not call this routine or device_register() more than once for 1603 * any device structure. The driver model core is not designed to work 1604 * with devices that get unregistered and then spring back to life. 1605 * (Among other things, it's very hard to guarantee that all references 1606 * to the previous incarnation of @dev have been dropped.) Allocate 1607 * and register a fresh new struct device instead. 1608 * 1609 * NOTE: _Never_ directly free @dev after calling this function, even 1610 * if it returned an error! Always use put_device() to give up your 1611 * reference instead. 1612 */ 1613 int device_add(struct device *dev) 1614 { 1615 struct device *parent = NULL; 1616 struct kobject *kobj; 1617 struct class_interface *class_intf; 1618 int error = -EINVAL; 1619 struct kobject *glue_dir = NULL; 1620 1621 dev = get_device(dev); 1622 if (!dev) 1623 goto done; 1624 1625 if (!dev->p) { 1626 error = device_private_init(dev); 1627 if (error) 1628 goto done; 1629 } 1630 1631 /* 1632 * for statically allocated devices, which should all be converted 1633 * some day, we need to initialize the name. We prevent reading back 1634 * the name, and force the use of dev_name() 1635 */ 1636 if (dev->init_name) { 1637 dev_set_name(dev, "%s", dev->init_name); 1638 dev->init_name = NULL; 1639 } 1640 1641 /* subsystems can specify simple device enumeration */ 1642 if (!dev_name(dev) && dev->bus && dev->bus->dev_name) 1643 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 1644 1645 if (!dev_name(dev)) { 1646 error = -EINVAL; 1647 goto name_error; 1648 } 1649 1650 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 1651 1652 parent = get_device(dev->parent); 1653 kobj = get_device_parent(dev, parent); 1654 if (kobj) 1655 dev->kobj.parent = kobj; 1656 1657 /* use parent numa_node */ 1658 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 1659 set_dev_node(dev, dev_to_node(parent)); 1660 1661 /* first, register with generic layer. */ 1662 /* we require the name to be set before, and pass NULL */ 1663 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 1664 if (error) { 1665 glue_dir = get_glue_dir(dev); 1666 goto Error; 1667 } 1668 1669 /* notify platform of device entry */ 1670 if (platform_notify) 1671 platform_notify(dev); 1672 1673 error = device_create_file(dev, &dev_attr_uevent); 1674 if (error) 1675 goto attrError; 1676 1677 error = device_add_class_symlinks(dev); 1678 if (error) 1679 goto SymlinkError; 1680 error = device_add_attrs(dev); 1681 if (error) 1682 goto AttrsError; 1683 error = bus_add_device(dev); 1684 if (error) 1685 goto BusError; 1686 error = dpm_sysfs_add(dev); 1687 if (error) 1688 goto DPMError; 1689 device_pm_add(dev); 1690 1691 if (MAJOR(dev->devt)) { 1692 error = device_create_file(dev, &dev_attr_dev); 1693 if (error) 1694 goto DevAttrError; 1695 1696 error = device_create_sys_dev_entry(dev); 1697 if (error) 1698 goto SysEntryError; 1699 1700 devtmpfs_create_node(dev); 1701 } 1702 1703 /* Notify clients of device addition. This call must come 1704 * after dpm_sysfs_add() and before kobject_uevent(). 1705 */ 1706 if (dev->bus) 1707 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 1708 BUS_NOTIFY_ADD_DEVICE, dev); 1709 1710 kobject_uevent(&dev->kobj, KOBJ_ADD); 1711 bus_probe_device(dev); 1712 if (parent) 1713 klist_add_tail(&dev->p->knode_parent, 1714 &parent->p->klist_children); 1715 1716 if (dev->class) { 1717 mutex_lock(&dev->class->p->mutex); 1718 /* tie the class to the device */ 1719 klist_add_tail(&dev->knode_class, 1720 &dev->class->p->klist_devices); 1721 1722 /* notify any interfaces that the device is here */ 1723 list_for_each_entry(class_intf, 1724 &dev->class->p->interfaces, node) 1725 if (class_intf->add_dev) 1726 class_intf->add_dev(dev, class_intf); 1727 mutex_unlock(&dev->class->p->mutex); 1728 } 1729 done: 1730 put_device(dev); 1731 return error; 1732 SysEntryError: 1733 if (MAJOR(dev->devt)) 1734 device_remove_file(dev, &dev_attr_dev); 1735 DevAttrError: 1736 device_pm_remove(dev); 1737 dpm_sysfs_remove(dev); 1738 DPMError: 1739 bus_remove_device(dev); 1740 BusError: 1741 device_remove_attrs(dev); 1742 AttrsError: 1743 device_remove_class_symlinks(dev); 1744 SymlinkError: 1745 device_remove_file(dev, &dev_attr_uevent); 1746 attrError: 1747 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 1748 glue_dir = get_glue_dir(dev); 1749 kobject_del(&dev->kobj); 1750 Error: 1751 cleanup_glue_dir(dev, glue_dir); 1752 put_device(parent); 1753 name_error: 1754 kfree(dev->p); 1755 dev->p = NULL; 1756 goto done; 1757 } 1758 EXPORT_SYMBOL_GPL(device_add); 1759 1760 /** 1761 * device_register - register a device with the system. 1762 * @dev: pointer to the device structure 1763 * 1764 * This happens in two clean steps - initialize the device 1765 * and add it to the system. The two steps can be called 1766 * separately, but this is the easiest and most common. 1767 * I.e. you should only call the two helpers separately if 1768 * have a clearly defined need to use and refcount the device 1769 * before it is added to the hierarchy. 1770 * 1771 * For more information, see the kerneldoc for device_initialize() 1772 * and device_add(). 1773 * 1774 * NOTE: _Never_ directly free @dev after calling this function, even 1775 * if it returned an error! Always use put_device() to give up the 1776 * reference initialized in this function instead. 1777 */ 1778 int device_register(struct device *dev) 1779 { 1780 device_initialize(dev); 1781 return device_add(dev); 1782 } 1783 EXPORT_SYMBOL_GPL(device_register); 1784 1785 /** 1786 * get_device - increment reference count for device. 1787 * @dev: device. 1788 * 1789 * This simply forwards the call to kobject_get(), though 1790 * we do take care to provide for the case that we get a NULL 1791 * pointer passed in. 1792 */ 1793 struct device *get_device(struct device *dev) 1794 { 1795 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 1796 } 1797 EXPORT_SYMBOL_GPL(get_device); 1798 1799 /** 1800 * put_device - decrement reference count. 1801 * @dev: device in question. 1802 */ 1803 void put_device(struct device *dev) 1804 { 1805 /* might_sleep(); */ 1806 if (dev) 1807 kobject_put(&dev->kobj); 1808 } 1809 EXPORT_SYMBOL_GPL(put_device); 1810 1811 /** 1812 * device_del - delete device from system. 1813 * @dev: device. 1814 * 1815 * This is the first part of the device unregistration 1816 * sequence. This removes the device from the lists we control 1817 * from here, has it removed from the other driver model 1818 * subsystems it was added to in device_add(), and removes it 1819 * from the kobject hierarchy. 1820 * 1821 * NOTE: this should be called manually _iff_ device_add() was 1822 * also called manually. 1823 */ 1824 void device_del(struct device *dev) 1825 { 1826 struct device *parent = dev->parent; 1827 struct kobject *glue_dir = NULL; 1828 struct class_interface *class_intf; 1829 1830 /* Notify clients of device removal. This call must come 1831 * before dpm_sysfs_remove(). 1832 */ 1833 if (dev->bus) 1834 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 1835 BUS_NOTIFY_DEL_DEVICE, dev); 1836 1837 device_links_purge(dev); 1838 dpm_sysfs_remove(dev); 1839 if (parent) 1840 klist_del(&dev->p->knode_parent); 1841 if (MAJOR(dev->devt)) { 1842 devtmpfs_delete_node(dev); 1843 device_remove_sys_dev_entry(dev); 1844 device_remove_file(dev, &dev_attr_dev); 1845 } 1846 if (dev->class) { 1847 device_remove_class_symlinks(dev); 1848 1849 mutex_lock(&dev->class->p->mutex); 1850 /* notify any interfaces that the device is now gone */ 1851 list_for_each_entry(class_intf, 1852 &dev->class->p->interfaces, node) 1853 if (class_intf->remove_dev) 1854 class_intf->remove_dev(dev, class_intf); 1855 /* remove the device from the class list */ 1856 klist_del(&dev->knode_class); 1857 mutex_unlock(&dev->class->p->mutex); 1858 } 1859 device_remove_file(dev, &dev_attr_uevent); 1860 device_remove_attrs(dev); 1861 bus_remove_device(dev); 1862 device_pm_remove(dev); 1863 driver_deferred_probe_del(dev); 1864 device_remove_properties(dev); 1865 1866 /* Notify the platform of the removal, in case they 1867 * need to do anything... 1868 */ 1869 if (platform_notify_remove) 1870 platform_notify_remove(dev); 1871 if (dev->bus) 1872 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 1873 BUS_NOTIFY_REMOVED_DEVICE, dev); 1874 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 1875 glue_dir = get_glue_dir(dev); 1876 kobject_del(&dev->kobj); 1877 cleanup_glue_dir(dev, glue_dir); 1878 put_device(parent); 1879 } 1880 EXPORT_SYMBOL_GPL(device_del); 1881 1882 /** 1883 * device_unregister - unregister device from system. 1884 * @dev: device going away. 1885 * 1886 * We do this in two parts, like we do device_register(). First, 1887 * we remove it from all the subsystems with device_del(), then 1888 * we decrement the reference count via put_device(). If that 1889 * is the final reference count, the device will be cleaned up 1890 * via device_release() above. Otherwise, the structure will 1891 * stick around until the final reference to the device is dropped. 1892 */ 1893 void device_unregister(struct device *dev) 1894 { 1895 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 1896 device_del(dev); 1897 put_device(dev); 1898 } 1899 EXPORT_SYMBOL_GPL(device_unregister); 1900 1901 static struct device *prev_device(struct klist_iter *i) 1902 { 1903 struct klist_node *n = klist_prev(i); 1904 struct device *dev = NULL; 1905 struct device_private *p; 1906 1907 if (n) { 1908 p = to_device_private_parent(n); 1909 dev = p->device; 1910 } 1911 return dev; 1912 } 1913 1914 static struct device *next_device(struct klist_iter *i) 1915 { 1916 struct klist_node *n = klist_next(i); 1917 struct device *dev = NULL; 1918 struct device_private *p; 1919 1920 if (n) { 1921 p = to_device_private_parent(n); 1922 dev = p->device; 1923 } 1924 return dev; 1925 } 1926 1927 /** 1928 * device_get_devnode - path of device node file 1929 * @dev: device 1930 * @mode: returned file access mode 1931 * @uid: returned file owner 1932 * @gid: returned file group 1933 * @tmp: possibly allocated string 1934 * 1935 * Return the relative path of a possible device node. 1936 * Non-default names may need to allocate a memory to compose 1937 * a name. This memory is returned in tmp and needs to be 1938 * freed by the caller. 1939 */ 1940 const char *device_get_devnode(struct device *dev, 1941 umode_t *mode, kuid_t *uid, kgid_t *gid, 1942 const char **tmp) 1943 { 1944 char *s; 1945 1946 *tmp = NULL; 1947 1948 /* the device type may provide a specific name */ 1949 if (dev->type && dev->type->devnode) 1950 *tmp = dev->type->devnode(dev, mode, uid, gid); 1951 if (*tmp) 1952 return *tmp; 1953 1954 /* the class may provide a specific name */ 1955 if (dev->class && dev->class->devnode) 1956 *tmp = dev->class->devnode(dev, mode); 1957 if (*tmp) 1958 return *tmp; 1959 1960 /* return name without allocation, tmp == NULL */ 1961 if (strchr(dev_name(dev), '!') == NULL) 1962 return dev_name(dev); 1963 1964 /* replace '!' in the name with '/' */ 1965 s = kstrdup(dev_name(dev), GFP_KERNEL); 1966 if (!s) 1967 return NULL; 1968 strreplace(s, '!', '/'); 1969 return *tmp = s; 1970 } 1971 1972 /** 1973 * device_for_each_child - device child iterator. 1974 * @parent: parent struct device. 1975 * @fn: function to be called for each device. 1976 * @data: data for the callback. 1977 * 1978 * Iterate over @parent's child devices, and call @fn for each, 1979 * passing it @data. 1980 * 1981 * We check the return of @fn each time. If it returns anything 1982 * other than 0, we break out and return that value. 1983 */ 1984 int device_for_each_child(struct device *parent, void *data, 1985 int (*fn)(struct device *dev, void *data)) 1986 { 1987 struct klist_iter i; 1988 struct device *child; 1989 int error = 0; 1990 1991 if (!parent->p) 1992 return 0; 1993 1994 klist_iter_init(&parent->p->klist_children, &i); 1995 while ((child = next_device(&i)) && !error) 1996 error = fn(child, data); 1997 klist_iter_exit(&i); 1998 return error; 1999 } 2000 EXPORT_SYMBOL_GPL(device_for_each_child); 2001 2002 /** 2003 * device_for_each_child_reverse - device child iterator in reversed order. 2004 * @parent: parent struct device. 2005 * @fn: function to be called for each device. 2006 * @data: data for the callback. 2007 * 2008 * Iterate over @parent's child devices, and call @fn for each, 2009 * passing it @data. 2010 * 2011 * We check the return of @fn each time. If it returns anything 2012 * other than 0, we break out and return that value. 2013 */ 2014 int device_for_each_child_reverse(struct device *parent, void *data, 2015 int (*fn)(struct device *dev, void *data)) 2016 { 2017 struct klist_iter i; 2018 struct device *child; 2019 int error = 0; 2020 2021 if (!parent->p) 2022 return 0; 2023 2024 klist_iter_init(&parent->p->klist_children, &i); 2025 while ((child = prev_device(&i)) && !error) 2026 error = fn(child, data); 2027 klist_iter_exit(&i); 2028 return error; 2029 } 2030 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 2031 2032 /** 2033 * device_find_child - device iterator for locating a particular device. 2034 * @parent: parent struct device 2035 * @match: Callback function to check device 2036 * @data: Data to pass to match function 2037 * 2038 * This is similar to the device_for_each_child() function above, but it 2039 * returns a reference to a device that is 'found' for later use, as 2040 * determined by the @match callback. 2041 * 2042 * The callback should return 0 if the device doesn't match and non-zero 2043 * if it does. If the callback returns non-zero and a reference to the 2044 * current device can be obtained, this function will return to the caller 2045 * and not iterate over any more devices. 2046 * 2047 * NOTE: you will need to drop the reference with put_device() after use. 2048 */ 2049 struct device *device_find_child(struct device *parent, void *data, 2050 int (*match)(struct device *dev, void *data)) 2051 { 2052 struct klist_iter i; 2053 struct device *child; 2054 2055 if (!parent) 2056 return NULL; 2057 2058 klist_iter_init(&parent->p->klist_children, &i); 2059 while ((child = next_device(&i))) 2060 if (match(child, data) && get_device(child)) 2061 break; 2062 klist_iter_exit(&i); 2063 return child; 2064 } 2065 EXPORT_SYMBOL_GPL(device_find_child); 2066 2067 int __init devices_init(void) 2068 { 2069 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 2070 if (!devices_kset) 2071 return -ENOMEM; 2072 dev_kobj = kobject_create_and_add("dev", NULL); 2073 if (!dev_kobj) 2074 goto dev_kobj_err; 2075 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 2076 if (!sysfs_dev_block_kobj) 2077 goto block_kobj_err; 2078 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 2079 if (!sysfs_dev_char_kobj) 2080 goto char_kobj_err; 2081 2082 return 0; 2083 2084 char_kobj_err: 2085 kobject_put(sysfs_dev_block_kobj); 2086 block_kobj_err: 2087 kobject_put(dev_kobj); 2088 dev_kobj_err: 2089 kset_unregister(devices_kset); 2090 return -ENOMEM; 2091 } 2092 2093 static int device_check_offline(struct device *dev, void *not_used) 2094 { 2095 int ret; 2096 2097 ret = device_for_each_child(dev, NULL, device_check_offline); 2098 if (ret) 2099 return ret; 2100 2101 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 2102 } 2103 2104 /** 2105 * device_offline - Prepare the device for hot-removal. 2106 * @dev: Device to be put offline. 2107 * 2108 * Execute the device bus type's .offline() callback, if present, to prepare 2109 * the device for a subsequent hot-removal. If that succeeds, the device must 2110 * not be used until either it is removed or its bus type's .online() callback 2111 * is executed. 2112 * 2113 * Call under device_hotplug_lock. 2114 */ 2115 int device_offline(struct device *dev) 2116 { 2117 int ret; 2118 2119 if (dev->offline_disabled) 2120 return -EPERM; 2121 2122 ret = device_for_each_child(dev, NULL, device_check_offline); 2123 if (ret) 2124 return ret; 2125 2126 device_lock(dev); 2127 if (device_supports_offline(dev)) { 2128 if (dev->offline) { 2129 ret = 1; 2130 } else { 2131 ret = dev->bus->offline(dev); 2132 if (!ret) { 2133 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 2134 dev->offline = true; 2135 } 2136 } 2137 } 2138 device_unlock(dev); 2139 2140 return ret; 2141 } 2142 2143 /** 2144 * device_online - Put the device back online after successful device_offline(). 2145 * @dev: Device to be put back online. 2146 * 2147 * If device_offline() has been successfully executed for @dev, but the device 2148 * has not been removed subsequently, execute its bus type's .online() callback 2149 * to indicate that the device can be used again. 2150 * 2151 * Call under device_hotplug_lock. 2152 */ 2153 int device_online(struct device *dev) 2154 { 2155 int ret = 0; 2156 2157 device_lock(dev); 2158 if (device_supports_offline(dev)) { 2159 if (dev->offline) { 2160 ret = dev->bus->online(dev); 2161 if (!ret) { 2162 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 2163 dev->offline = false; 2164 } 2165 } else { 2166 ret = 1; 2167 } 2168 } 2169 device_unlock(dev); 2170 2171 return ret; 2172 } 2173 2174 struct root_device { 2175 struct device dev; 2176 struct module *owner; 2177 }; 2178 2179 static inline struct root_device *to_root_device(struct device *d) 2180 { 2181 return container_of(d, struct root_device, dev); 2182 } 2183 2184 static void root_device_release(struct device *dev) 2185 { 2186 kfree(to_root_device(dev)); 2187 } 2188 2189 /** 2190 * __root_device_register - allocate and register a root device 2191 * @name: root device name 2192 * @owner: owner module of the root device, usually THIS_MODULE 2193 * 2194 * This function allocates a root device and registers it 2195 * using device_register(). In order to free the returned 2196 * device, use root_device_unregister(). 2197 * 2198 * Root devices are dummy devices which allow other devices 2199 * to be grouped under /sys/devices. Use this function to 2200 * allocate a root device and then use it as the parent of 2201 * any device which should appear under /sys/devices/{name} 2202 * 2203 * The /sys/devices/{name} directory will also contain a 2204 * 'module' symlink which points to the @owner directory 2205 * in sysfs. 2206 * 2207 * Returns &struct device pointer on success, or ERR_PTR() on error. 2208 * 2209 * Note: You probably want to use root_device_register(). 2210 */ 2211 struct device *__root_device_register(const char *name, struct module *owner) 2212 { 2213 struct root_device *root; 2214 int err = -ENOMEM; 2215 2216 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 2217 if (!root) 2218 return ERR_PTR(err); 2219 2220 err = dev_set_name(&root->dev, "%s", name); 2221 if (err) { 2222 kfree(root); 2223 return ERR_PTR(err); 2224 } 2225 2226 root->dev.release = root_device_release; 2227 2228 err = device_register(&root->dev); 2229 if (err) { 2230 put_device(&root->dev); 2231 return ERR_PTR(err); 2232 } 2233 2234 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 2235 if (owner) { 2236 struct module_kobject *mk = &owner->mkobj; 2237 2238 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 2239 if (err) { 2240 device_unregister(&root->dev); 2241 return ERR_PTR(err); 2242 } 2243 root->owner = owner; 2244 } 2245 #endif 2246 2247 return &root->dev; 2248 } 2249 EXPORT_SYMBOL_GPL(__root_device_register); 2250 2251 /** 2252 * root_device_unregister - unregister and free a root device 2253 * @dev: device going away 2254 * 2255 * This function unregisters and cleans up a device that was created by 2256 * root_device_register(). 2257 */ 2258 void root_device_unregister(struct device *dev) 2259 { 2260 struct root_device *root = to_root_device(dev); 2261 2262 if (root->owner) 2263 sysfs_remove_link(&root->dev.kobj, "module"); 2264 2265 device_unregister(dev); 2266 } 2267 EXPORT_SYMBOL_GPL(root_device_unregister); 2268 2269 2270 static void device_create_release(struct device *dev) 2271 { 2272 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 2273 kfree(dev); 2274 } 2275 2276 static struct device * 2277 device_create_groups_vargs(struct class *class, struct device *parent, 2278 dev_t devt, void *drvdata, 2279 const struct attribute_group **groups, 2280 const char *fmt, va_list args) 2281 { 2282 struct device *dev = NULL; 2283 int retval = -ENODEV; 2284 2285 if (class == NULL || IS_ERR(class)) 2286 goto error; 2287 2288 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2289 if (!dev) { 2290 retval = -ENOMEM; 2291 goto error; 2292 } 2293 2294 device_initialize(dev); 2295 dev->devt = devt; 2296 dev->class = class; 2297 dev->parent = parent; 2298 dev->groups = groups; 2299 dev->release = device_create_release; 2300 dev_set_drvdata(dev, drvdata); 2301 2302 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 2303 if (retval) 2304 goto error; 2305 2306 retval = device_add(dev); 2307 if (retval) 2308 goto error; 2309 2310 return dev; 2311 2312 error: 2313 put_device(dev); 2314 return ERR_PTR(retval); 2315 } 2316 2317 /** 2318 * device_create_vargs - creates a device and registers it with sysfs 2319 * @class: pointer to the struct class that this device should be registered to 2320 * @parent: pointer to the parent struct device of this new device, if any 2321 * @devt: the dev_t for the char device to be added 2322 * @drvdata: the data to be added to the device for callbacks 2323 * @fmt: string for the device's name 2324 * @args: va_list for the device's name 2325 * 2326 * This function can be used by char device classes. A struct device 2327 * will be created in sysfs, registered to the specified class. 2328 * 2329 * A "dev" file will be created, showing the dev_t for the device, if 2330 * the dev_t is not 0,0. 2331 * If a pointer to a parent struct device is passed in, the newly created 2332 * struct device will be a child of that device in sysfs. 2333 * The pointer to the struct device will be returned from the call. 2334 * Any further sysfs files that might be required can be created using this 2335 * pointer. 2336 * 2337 * Returns &struct device pointer on success, or ERR_PTR() on error. 2338 * 2339 * Note: the struct class passed to this function must have previously 2340 * been created with a call to class_create(). 2341 */ 2342 struct device *device_create_vargs(struct class *class, struct device *parent, 2343 dev_t devt, void *drvdata, const char *fmt, 2344 va_list args) 2345 { 2346 return device_create_groups_vargs(class, parent, devt, drvdata, NULL, 2347 fmt, args); 2348 } 2349 EXPORT_SYMBOL_GPL(device_create_vargs); 2350 2351 /** 2352 * device_create - creates a device and registers it with sysfs 2353 * @class: pointer to the struct class that this device should be registered to 2354 * @parent: pointer to the parent struct device of this new device, if any 2355 * @devt: the dev_t for the char device to be added 2356 * @drvdata: the data to be added to the device for callbacks 2357 * @fmt: string for the device's name 2358 * 2359 * This function can be used by char device classes. A struct device 2360 * will be created in sysfs, registered to the specified class. 2361 * 2362 * A "dev" file will be created, showing the dev_t for the device, if 2363 * the dev_t is not 0,0. 2364 * If a pointer to a parent struct device is passed in, the newly created 2365 * struct device will be a child of that device in sysfs. 2366 * The pointer to the struct device will be returned from the call. 2367 * Any further sysfs files that might be required can be created using this 2368 * pointer. 2369 * 2370 * Returns &struct device pointer on success, or ERR_PTR() on error. 2371 * 2372 * Note: the struct class passed to this function must have previously 2373 * been created with a call to class_create(). 2374 */ 2375 struct device *device_create(struct class *class, struct device *parent, 2376 dev_t devt, void *drvdata, const char *fmt, ...) 2377 { 2378 va_list vargs; 2379 struct device *dev; 2380 2381 va_start(vargs, fmt); 2382 dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs); 2383 va_end(vargs); 2384 return dev; 2385 } 2386 EXPORT_SYMBOL_GPL(device_create); 2387 2388 /** 2389 * device_create_with_groups - creates a device and registers it with sysfs 2390 * @class: pointer to the struct class that this device should be registered to 2391 * @parent: pointer to the parent struct device of this new device, if any 2392 * @devt: the dev_t for the char device to be added 2393 * @drvdata: the data to be added to the device for callbacks 2394 * @groups: NULL-terminated list of attribute groups to be created 2395 * @fmt: string for the device's name 2396 * 2397 * This function can be used by char device classes. A struct device 2398 * will be created in sysfs, registered to the specified class. 2399 * Additional attributes specified in the groups parameter will also 2400 * be created automatically. 2401 * 2402 * A "dev" file will be created, showing the dev_t for the device, if 2403 * the dev_t is not 0,0. 2404 * If a pointer to a parent struct device is passed in, the newly created 2405 * struct device will be a child of that device in sysfs. 2406 * The pointer to the struct device will be returned from the call. 2407 * Any further sysfs files that might be required can be created using this 2408 * pointer. 2409 * 2410 * Returns &struct device pointer on success, or ERR_PTR() on error. 2411 * 2412 * Note: the struct class passed to this function must have previously 2413 * been created with a call to class_create(). 2414 */ 2415 struct device *device_create_with_groups(struct class *class, 2416 struct device *parent, dev_t devt, 2417 void *drvdata, 2418 const struct attribute_group **groups, 2419 const char *fmt, ...) 2420 { 2421 va_list vargs; 2422 struct device *dev; 2423 2424 va_start(vargs, fmt); 2425 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 2426 fmt, vargs); 2427 va_end(vargs); 2428 return dev; 2429 } 2430 EXPORT_SYMBOL_GPL(device_create_with_groups); 2431 2432 static int __match_devt(struct device *dev, const void *data) 2433 { 2434 const dev_t *devt = data; 2435 2436 return dev->devt == *devt; 2437 } 2438 2439 /** 2440 * device_destroy - removes a device that was created with device_create() 2441 * @class: pointer to the struct class that this device was registered with 2442 * @devt: the dev_t of the device that was previously registered 2443 * 2444 * This call unregisters and cleans up a device that was created with a 2445 * call to device_create(). 2446 */ 2447 void device_destroy(struct class *class, dev_t devt) 2448 { 2449 struct device *dev; 2450 2451 dev = class_find_device(class, NULL, &devt, __match_devt); 2452 if (dev) { 2453 put_device(dev); 2454 device_unregister(dev); 2455 } 2456 } 2457 EXPORT_SYMBOL_GPL(device_destroy); 2458 2459 /** 2460 * device_rename - renames a device 2461 * @dev: the pointer to the struct device to be renamed 2462 * @new_name: the new name of the device 2463 * 2464 * It is the responsibility of the caller to provide mutual 2465 * exclusion between two different calls of device_rename 2466 * on the same device to ensure that new_name is valid and 2467 * won't conflict with other devices. 2468 * 2469 * Note: Don't call this function. Currently, the networking layer calls this 2470 * function, but that will change. The following text from Kay Sievers offers 2471 * some insight: 2472 * 2473 * Renaming devices is racy at many levels, symlinks and other stuff are not 2474 * replaced atomically, and you get a "move" uevent, but it's not easy to 2475 * connect the event to the old and new device. Device nodes are not renamed at 2476 * all, there isn't even support for that in the kernel now. 2477 * 2478 * In the meantime, during renaming, your target name might be taken by another 2479 * driver, creating conflicts. Or the old name is taken directly after you 2480 * renamed it -- then you get events for the same DEVPATH, before you even see 2481 * the "move" event. It's just a mess, and nothing new should ever rely on 2482 * kernel device renaming. Besides that, it's not even implemented now for 2483 * other things than (driver-core wise very simple) network devices. 2484 * 2485 * We are currently about to change network renaming in udev to completely 2486 * disallow renaming of devices in the same namespace as the kernel uses, 2487 * because we can't solve the problems properly, that arise with swapping names 2488 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only 2489 * be allowed to some other name than eth[0-9]*, for the aforementioned 2490 * reasons. 2491 * 2492 * Make up a "real" name in the driver before you register anything, or add 2493 * some other attributes for userspace to find the device, or use udev to add 2494 * symlinks -- but never rename kernel devices later, it's a complete mess. We 2495 * don't even want to get into that and try to implement the missing pieces in 2496 * the core. We really have other pieces to fix in the driver core mess. :) 2497 */ 2498 int device_rename(struct device *dev, const char *new_name) 2499 { 2500 struct kobject *kobj = &dev->kobj; 2501 char *old_device_name = NULL; 2502 int error; 2503 2504 dev = get_device(dev); 2505 if (!dev) 2506 return -EINVAL; 2507 2508 dev_dbg(dev, "renaming to %s\n", new_name); 2509 2510 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 2511 if (!old_device_name) { 2512 error = -ENOMEM; 2513 goto out; 2514 } 2515 2516 if (dev->class) { 2517 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj, 2518 kobj, old_device_name, 2519 new_name, kobject_namespace(kobj)); 2520 if (error) 2521 goto out; 2522 } 2523 2524 error = kobject_rename(kobj, new_name); 2525 if (error) 2526 goto out; 2527 2528 out: 2529 put_device(dev); 2530 2531 kfree(old_device_name); 2532 2533 return error; 2534 } 2535 EXPORT_SYMBOL_GPL(device_rename); 2536 2537 static int device_move_class_links(struct device *dev, 2538 struct device *old_parent, 2539 struct device *new_parent) 2540 { 2541 int error = 0; 2542 2543 if (old_parent) 2544 sysfs_remove_link(&dev->kobj, "device"); 2545 if (new_parent) 2546 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 2547 "device"); 2548 return error; 2549 } 2550 2551 /** 2552 * device_move - moves a device to a new parent 2553 * @dev: the pointer to the struct device to be moved 2554 * @new_parent: the new parent of the device (can by NULL) 2555 * @dpm_order: how to reorder the dpm_list 2556 */ 2557 int device_move(struct device *dev, struct device *new_parent, 2558 enum dpm_order dpm_order) 2559 { 2560 int error; 2561 struct device *old_parent; 2562 struct kobject *new_parent_kobj; 2563 2564 dev = get_device(dev); 2565 if (!dev) 2566 return -EINVAL; 2567 2568 device_pm_lock(); 2569 new_parent = get_device(new_parent); 2570 new_parent_kobj = get_device_parent(dev, new_parent); 2571 2572 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 2573 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 2574 error = kobject_move(&dev->kobj, new_parent_kobj); 2575 if (error) { 2576 cleanup_glue_dir(dev, new_parent_kobj); 2577 put_device(new_parent); 2578 goto out; 2579 } 2580 old_parent = dev->parent; 2581 dev->parent = new_parent; 2582 if (old_parent) 2583 klist_remove(&dev->p->knode_parent); 2584 if (new_parent) { 2585 klist_add_tail(&dev->p->knode_parent, 2586 &new_parent->p->klist_children); 2587 set_dev_node(dev, dev_to_node(new_parent)); 2588 } 2589 2590 if (dev->class) { 2591 error = device_move_class_links(dev, old_parent, new_parent); 2592 if (error) { 2593 /* We ignore errors on cleanup since we're hosed anyway... */ 2594 device_move_class_links(dev, new_parent, old_parent); 2595 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 2596 if (new_parent) 2597 klist_remove(&dev->p->knode_parent); 2598 dev->parent = old_parent; 2599 if (old_parent) { 2600 klist_add_tail(&dev->p->knode_parent, 2601 &old_parent->p->klist_children); 2602 set_dev_node(dev, dev_to_node(old_parent)); 2603 } 2604 } 2605 cleanup_glue_dir(dev, new_parent_kobj); 2606 put_device(new_parent); 2607 goto out; 2608 } 2609 } 2610 switch (dpm_order) { 2611 case DPM_ORDER_NONE: 2612 break; 2613 case DPM_ORDER_DEV_AFTER_PARENT: 2614 device_pm_move_after(dev, new_parent); 2615 devices_kset_move_after(dev, new_parent); 2616 break; 2617 case DPM_ORDER_PARENT_BEFORE_DEV: 2618 device_pm_move_before(new_parent, dev); 2619 devices_kset_move_before(new_parent, dev); 2620 break; 2621 case DPM_ORDER_DEV_LAST: 2622 device_pm_move_last(dev); 2623 devices_kset_move_last(dev); 2624 break; 2625 } 2626 2627 put_device(old_parent); 2628 out: 2629 device_pm_unlock(); 2630 put_device(dev); 2631 return error; 2632 } 2633 EXPORT_SYMBOL_GPL(device_move); 2634 2635 /** 2636 * device_shutdown - call ->shutdown() on each device to shutdown. 2637 */ 2638 void device_shutdown(void) 2639 { 2640 struct device *dev, *parent; 2641 2642 spin_lock(&devices_kset->list_lock); 2643 /* 2644 * Walk the devices list backward, shutting down each in turn. 2645 * Beware that device unplug events may also start pulling 2646 * devices offline, even as the system is shutting down. 2647 */ 2648 while (!list_empty(&devices_kset->list)) { 2649 dev = list_entry(devices_kset->list.prev, struct device, 2650 kobj.entry); 2651 2652 /* 2653 * hold reference count of device's parent to 2654 * prevent it from being freed because parent's 2655 * lock is to be held 2656 */ 2657 parent = get_device(dev->parent); 2658 get_device(dev); 2659 /* 2660 * Make sure the device is off the kset list, in the 2661 * event that dev->*->shutdown() doesn't remove it. 2662 */ 2663 list_del_init(&dev->kobj.entry); 2664 spin_unlock(&devices_kset->list_lock); 2665 2666 /* hold lock to avoid race with probe/release */ 2667 if (parent) 2668 device_lock(parent); 2669 device_lock(dev); 2670 2671 /* Don't allow any more runtime suspends */ 2672 pm_runtime_get_noresume(dev); 2673 pm_runtime_barrier(dev); 2674 2675 if (dev->bus && dev->bus->shutdown) { 2676 if (initcall_debug) 2677 dev_info(dev, "shutdown\n"); 2678 dev->bus->shutdown(dev); 2679 } else if (dev->driver && dev->driver->shutdown) { 2680 if (initcall_debug) 2681 dev_info(dev, "shutdown\n"); 2682 dev->driver->shutdown(dev); 2683 } 2684 2685 device_unlock(dev); 2686 if (parent) 2687 device_unlock(parent); 2688 2689 put_device(dev); 2690 put_device(parent); 2691 2692 spin_lock(&devices_kset->list_lock); 2693 } 2694 spin_unlock(&devices_kset->list_lock); 2695 } 2696 2697 /* 2698 * Device logging functions 2699 */ 2700 2701 #ifdef CONFIG_PRINTK 2702 static int 2703 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen) 2704 { 2705 const char *subsys; 2706 size_t pos = 0; 2707 2708 if (dev->class) 2709 subsys = dev->class->name; 2710 else if (dev->bus) 2711 subsys = dev->bus->name; 2712 else 2713 return 0; 2714 2715 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys); 2716 if (pos >= hdrlen) 2717 goto overflow; 2718 2719 /* 2720 * Add device identifier DEVICE=: 2721 * b12:8 block dev_t 2722 * c127:3 char dev_t 2723 * n8 netdev ifindex 2724 * +sound:card0 subsystem:devname 2725 */ 2726 if (MAJOR(dev->devt)) { 2727 char c; 2728 2729 if (strcmp(subsys, "block") == 0) 2730 c = 'b'; 2731 else 2732 c = 'c'; 2733 pos++; 2734 pos += snprintf(hdr + pos, hdrlen - pos, 2735 "DEVICE=%c%u:%u", 2736 c, MAJOR(dev->devt), MINOR(dev->devt)); 2737 } else if (strcmp(subsys, "net") == 0) { 2738 struct net_device *net = to_net_dev(dev); 2739 2740 pos++; 2741 pos += snprintf(hdr + pos, hdrlen - pos, 2742 "DEVICE=n%u", net->ifindex); 2743 } else { 2744 pos++; 2745 pos += snprintf(hdr + pos, hdrlen - pos, 2746 "DEVICE=+%s:%s", subsys, dev_name(dev)); 2747 } 2748 2749 if (pos >= hdrlen) 2750 goto overflow; 2751 2752 return pos; 2753 2754 overflow: 2755 dev_WARN(dev, "device/subsystem name too long"); 2756 return 0; 2757 } 2758 2759 int dev_vprintk_emit(int level, const struct device *dev, 2760 const char *fmt, va_list args) 2761 { 2762 char hdr[128]; 2763 size_t hdrlen; 2764 2765 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr)); 2766 2767 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args); 2768 } 2769 EXPORT_SYMBOL(dev_vprintk_emit); 2770 2771 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 2772 { 2773 va_list args; 2774 int r; 2775 2776 va_start(args, fmt); 2777 2778 r = dev_vprintk_emit(level, dev, fmt, args); 2779 2780 va_end(args); 2781 2782 return r; 2783 } 2784 EXPORT_SYMBOL(dev_printk_emit); 2785 2786 static void __dev_printk(const char *level, const struct device *dev, 2787 struct va_format *vaf) 2788 { 2789 if (dev) 2790 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 2791 dev_driver_string(dev), dev_name(dev), vaf); 2792 else 2793 printk("%s(NULL device *): %pV", level, vaf); 2794 } 2795 2796 void dev_printk(const char *level, const struct device *dev, 2797 const char *fmt, ...) 2798 { 2799 struct va_format vaf; 2800 va_list args; 2801 2802 va_start(args, fmt); 2803 2804 vaf.fmt = fmt; 2805 vaf.va = &args; 2806 2807 __dev_printk(level, dev, &vaf); 2808 2809 va_end(args); 2810 } 2811 EXPORT_SYMBOL(dev_printk); 2812 2813 #define define_dev_printk_level(func, kern_level) \ 2814 void func(const struct device *dev, const char *fmt, ...) \ 2815 { \ 2816 struct va_format vaf; \ 2817 va_list args; \ 2818 \ 2819 va_start(args, fmt); \ 2820 \ 2821 vaf.fmt = fmt; \ 2822 vaf.va = &args; \ 2823 \ 2824 __dev_printk(kern_level, dev, &vaf); \ 2825 \ 2826 va_end(args); \ 2827 } \ 2828 EXPORT_SYMBOL(func); 2829 2830 define_dev_printk_level(dev_emerg, KERN_EMERG); 2831 define_dev_printk_level(dev_alert, KERN_ALERT); 2832 define_dev_printk_level(dev_crit, KERN_CRIT); 2833 define_dev_printk_level(dev_err, KERN_ERR); 2834 define_dev_printk_level(dev_warn, KERN_WARNING); 2835 define_dev_printk_level(dev_notice, KERN_NOTICE); 2836 define_dev_printk_level(_dev_info, KERN_INFO); 2837 2838 #endif 2839 2840 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 2841 { 2842 return fwnode && !IS_ERR(fwnode->secondary); 2843 } 2844 2845 /** 2846 * set_primary_fwnode - Change the primary firmware node of a given device. 2847 * @dev: Device to handle. 2848 * @fwnode: New primary firmware node of the device. 2849 * 2850 * Set the device's firmware node pointer to @fwnode, but if a secondary 2851 * firmware node of the device is present, preserve it. 2852 */ 2853 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 2854 { 2855 if (fwnode) { 2856 struct fwnode_handle *fn = dev->fwnode; 2857 2858 if (fwnode_is_primary(fn)) 2859 fn = fn->secondary; 2860 2861 if (fn) { 2862 WARN_ON(fwnode->secondary); 2863 fwnode->secondary = fn; 2864 } 2865 dev->fwnode = fwnode; 2866 } else { 2867 dev->fwnode = fwnode_is_primary(dev->fwnode) ? 2868 dev->fwnode->secondary : NULL; 2869 } 2870 } 2871 EXPORT_SYMBOL_GPL(set_primary_fwnode); 2872 2873 /** 2874 * set_secondary_fwnode - Change the secondary firmware node of a given device. 2875 * @dev: Device to handle. 2876 * @fwnode: New secondary firmware node of the device. 2877 * 2878 * If a primary firmware node of the device is present, set its secondary 2879 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 2880 * @fwnode. 2881 */ 2882 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 2883 { 2884 if (fwnode) 2885 fwnode->secondary = ERR_PTR(-ENODEV); 2886 2887 if (fwnode_is_primary(dev->fwnode)) 2888 dev->fwnode->secondary = fwnode; 2889 else 2890 dev->fwnode = fwnode; 2891 } 2892