xref: /openbmc/linux/drivers/base/core.c (revision a701d28e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sched/mm.h>
30 #include <linux/sysfs.h>
31 
32 #include "base.h"
33 #include "power/power.h"
34 
35 #ifdef CONFIG_SYSFS_DEPRECATED
36 #ifdef CONFIG_SYSFS_DEPRECATED_V2
37 long sysfs_deprecated = 1;
38 #else
39 long sysfs_deprecated = 0;
40 #endif
41 static int __init sysfs_deprecated_setup(char *arg)
42 {
43 	return kstrtol(arg, 10, &sysfs_deprecated);
44 }
45 early_param("sysfs.deprecated", sysfs_deprecated_setup);
46 #endif
47 
48 /* Device links support. */
49 static LIST_HEAD(wait_for_suppliers);
50 static DEFINE_MUTEX(wfs_lock);
51 static LIST_HEAD(deferred_sync);
52 static unsigned int defer_sync_state_count = 1;
53 static unsigned int defer_fw_devlink_count;
54 static LIST_HEAD(deferred_fw_devlink);
55 static DEFINE_MUTEX(defer_fw_devlink_lock);
56 static bool fw_devlink_is_permissive(void);
57 
58 #ifdef CONFIG_SRCU
59 static DEFINE_MUTEX(device_links_lock);
60 DEFINE_STATIC_SRCU(device_links_srcu);
61 
62 static inline void device_links_write_lock(void)
63 {
64 	mutex_lock(&device_links_lock);
65 }
66 
67 static inline void device_links_write_unlock(void)
68 {
69 	mutex_unlock(&device_links_lock);
70 }
71 
72 int device_links_read_lock(void) __acquires(&device_links_srcu)
73 {
74 	return srcu_read_lock(&device_links_srcu);
75 }
76 
77 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
78 {
79 	srcu_read_unlock(&device_links_srcu, idx);
80 }
81 
82 int device_links_read_lock_held(void)
83 {
84 	return srcu_read_lock_held(&device_links_srcu);
85 }
86 #else /* !CONFIG_SRCU */
87 static DECLARE_RWSEM(device_links_lock);
88 
89 static inline void device_links_write_lock(void)
90 {
91 	down_write(&device_links_lock);
92 }
93 
94 static inline void device_links_write_unlock(void)
95 {
96 	up_write(&device_links_lock);
97 }
98 
99 int device_links_read_lock(void)
100 {
101 	down_read(&device_links_lock);
102 	return 0;
103 }
104 
105 void device_links_read_unlock(int not_used)
106 {
107 	up_read(&device_links_lock);
108 }
109 
110 #ifdef CONFIG_DEBUG_LOCK_ALLOC
111 int device_links_read_lock_held(void)
112 {
113 	return lockdep_is_held(&device_links_lock);
114 }
115 #endif
116 #endif /* !CONFIG_SRCU */
117 
118 /**
119  * device_is_dependent - Check if one device depends on another one
120  * @dev: Device to check dependencies for.
121  * @target: Device to check against.
122  *
123  * Check if @target depends on @dev or any device dependent on it (its child or
124  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
125  */
126 int device_is_dependent(struct device *dev, void *target)
127 {
128 	struct device_link *link;
129 	int ret;
130 
131 	if (dev == target)
132 		return 1;
133 
134 	ret = device_for_each_child(dev, target, device_is_dependent);
135 	if (ret)
136 		return ret;
137 
138 	list_for_each_entry(link, &dev->links.consumers, s_node) {
139 		if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
140 			continue;
141 
142 		if (link->consumer == target)
143 			return 1;
144 
145 		ret = device_is_dependent(link->consumer, target);
146 		if (ret)
147 			break;
148 	}
149 	return ret;
150 }
151 
152 static void device_link_init_status(struct device_link *link,
153 				    struct device *consumer,
154 				    struct device *supplier)
155 {
156 	switch (supplier->links.status) {
157 	case DL_DEV_PROBING:
158 		switch (consumer->links.status) {
159 		case DL_DEV_PROBING:
160 			/*
161 			 * A consumer driver can create a link to a supplier
162 			 * that has not completed its probing yet as long as it
163 			 * knows that the supplier is already functional (for
164 			 * example, it has just acquired some resources from the
165 			 * supplier).
166 			 */
167 			link->status = DL_STATE_CONSUMER_PROBE;
168 			break;
169 		default:
170 			link->status = DL_STATE_DORMANT;
171 			break;
172 		}
173 		break;
174 	case DL_DEV_DRIVER_BOUND:
175 		switch (consumer->links.status) {
176 		case DL_DEV_PROBING:
177 			link->status = DL_STATE_CONSUMER_PROBE;
178 			break;
179 		case DL_DEV_DRIVER_BOUND:
180 			link->status = DL_STATE_ACTIVE;
181 			break;
182 		default:
183 			link->status = DL_STATE_AVAILABLE;
184 			break;
185 		}
186 		break;
187 	case DL_DEV_UNBINDING:
188 		link->status = DL_STATE_SUPPLIER_UNBIND;
189 		break;
190 	default:
191 		link->status = DL_STATE_DORMANT;
192 		break;
193 	}
194 }
195 
196 static int device_reorder_to_tail(struct device *dev, void *not_used)
197 {
198 	struct device_link *link;
199 
200 	/*
201 	 * Devices that have not been registered yet will be put to the ends
202 	 * of the lists during the registration, so skip them here.
203 	 */
204 	if (device_is_registered(dev))
205 		devices_kset_move_last(dev);
206 
207 	if (device_pm_initialized(dev))
208 		device_pm_move_last(dev);
209 
210 	device_for_each_child(dev, NULL, device_reorder_to_tail);
211 	list_for_each_entry(link, &dev->links.consumers, s_node) {
212 		if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
213 			continue;
214 		device_reorder_to_tail(link->consumer, NULL);
215 	}
216 
217 	return 0;
218 }
219 
220 /**
221  * device_pm_move_to_tail - Move set of devices to the end of device lists
222  * @dev: Device to move
223  *
224  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
225  *
226  * It moves the @dev along with all of its children and all of its consumers
227  * to the ends of the device_kset and dpm_list, recursively.
228  */
229 void device_pm_move_to_tail(struct device *dev)
230 {
231 	int idx;
232 
233 	idx = device_links_read_lock();
234 	device_pm_lock();
235 	device_reorder_to_tail(dev, NULL);
236 	device_pm_unlock();
237 	device_links_read_unlock(idx);
238 }
239 
240 #define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
241 
242 static ssize_t status_show(struct device *dev,
243 			   struct device_attribute *attr, char *buf)
244 {
245 	const char *output;
246 
247 	switch (to_devlink(dev)->status) {
248 	case DL_STATE_NONE:
249 		output = "not tracked";
250 		break;
251 	case DL_STATE_DORMANT:
252 		output = "dormant";
253 		break;
254 	case DL_STATE_AVAILABLE:
255 		output = "available";
256 		break;
257 	case DL_STATE_CONSUMER_PROBE:
258 		output = "consumer probing";
259 		break;
260 	case DL_STATE_ACTIVE:
261 		output = "active";
262 		break;
263 	case DL_STATE_SUPPLIER_UNBIND:
264 		output = "supplier unbinding";
265 		break;
266 	default:
267 		output = "unknown";
268 		break;
269 	}
270 
271 	return sysfs_emit(buf, "%s\n", output);
272 }
273 static DEVICE_ATTR_RO(status);
274 
275 static ssize_t auto_remove_on_show(struct device *dev,
276 				   struct device_attribute *attr, char *buf)
277 {
278 	struct device_link *link = to_devlink(dev);
279 	const char *output;
280 
281 	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
282 		output = "supplier unbind";
283 	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
284 		output = "consumer unbind";
285 	else
286 		output = "never";
287 
288 	return sysfs_emit(buf, "%s\n", output);
289 }
290 static DEVICE_ATTR_RO(auto_remove_on);
291 
292 static ssize_t runtime_pm_show(struct device *dev,
293 			       struct device_attribute *attr, char *buf)
294 {
295 	struct device_link *link = to_devlink(dev);
296 
297 	return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
298 }
299 static DEVICE_ATTR_RO(runtime_pm);
300 
301 static ssize_t sync_state_only_show(struct device *dev,
302 				    struct device_attribute *attr, char *buf)
303 {
304 	struct device_link *link = to_devlink(dev);
305 
306 	return sysfs_emit(buf, "%d\n",
307 			  !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
308 }
309 static DEVICE_ATTR_RO(sync_state_only);
310 
311 static struct attribute *devlink_attrs[] = {
312 	&dev_attr_status.attr,
313 	&dev_attr_auto_remove_on.attr,
314 	&dev_attr_runtime_pm.attr,
315 	&dev_attr_sync_state_only.attr,
316 	NULL,
317 };
318 ATTRIBUTE_GROUPS(devlink);
319 
320 static void device_link_free(struct device_link *link)
321 {
322 	while (refcount_dec_not_one(&link->rpm_active))
323 		pm_runtime_put(link->supplier);
324 
325 	put_device(link->consumer);
326 	put_device(link->supplier);
327 	kfree(link);
328 }
329 
330 #ifdef CONFIG_SRCU
331 static void __device_link_free_srcu(struct rcu_head *rhead)
332 {
333 	device_link_free(container_of(rhead, struct device_link, rcu_head));
334 }
335 
336 static void devlink_dev_release(struct device *dev)
337 {
338 	struct device_link *link = to_devlink(dev);
339 
340 	call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
341 }
342 #else
343 static void devlink_dev_release(struct device *dev)
344 {
345 	device_link_free(to_devlink(dev));
346 }
347 #endif
348 
349 static struct class devlink_class = {
350 	.name = "devlink",
351 	.owner = THIS_MODULE,
352 	.dev_groups = devlink_groups,
353 	.dev_release = devlink_dev_release,
354 };
355 
356 static int devlink_add_symlinks(struct device *dev,
357 				struct class_interface *class_intf)
358 {
359 	int ret;
360 	size_t len;
361 	struct device_link *link = to_devlink(dev);
362 	struct device *sup = link->supplier;
363 	struct device *con = link->consumer;
364 	char *buf;
365 
366 	len = max(strlen(dev_name(sup)), strlen(dev_name(con)));
367 	len += strlen("supplier:") + 1;
368 	buf = kzalloc(len, GFP_KERNEL);
369 	if (!buf)
370 		return -ENOMEM;
371 
372 	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
373 	if (ret)
374 		goto out;
375 
376 	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
377 	if (ret)
378 		goto err_con;
379 
380 	snprintf(buf, len, "consumer:%s", dev_name(con));
381 	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
382 	if (ret)
383 		goto err_con_dev;
384 
385 	snprintf(buf, len, "supplier:%s", dev_name(sup));
386 	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
387 	if (ret)
388 		goto err_sup_dev;
389 
390 	goto out;
391 
392 err_sup_dev:
393 	snprintf(buf, len, "consumer:%s", dev_name(con));
394 	sysfs_remove_link(&sup->kobj, buf);
395 err_con_dev:
396 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
397 err_con:
398 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
399 out:
400 	kfree(buf);
401 	return ret;
402 }
403 
404 static void devlink_remove_symlinks(struct device *dev,
405 				   struct class_interface *class_intf)
406 {
407 	struct device_link *link = to_devlink(dev);
408 	size_t len;
409 	struct device *sup = link->supplier;
410 	struct device *con = link->consumer;
411 	char *buf;
412 
413 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
414 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
415 
416 	len = max(strlen(dev_name(sup)), strlen(dev_name(con)));
417 	len += strlen("supplier:") + 1;
418 	buf = kzalloc(len, GFP_KERNEL);
419 	if (!buf) {
420 		WARN(1, "Unable to properly free device link symlinks!\n");
421 		return;
422 	}
423 
424 	snprintf(buf, len, "supplier:%s", dev_name(sup));
425 	sysfs_remove_link(&con->kobj, buf);
426 	snprintf(buf, len, "consumer:%s", dev_name(con));
427 	sysfs_remove_link(&sup->kobj, buf);
428 	kfree(buf);
429 }
430 
431 static struct class_interface devlink_class_intf = {
432 	.class = &devlink_class,
433 	.add_dev = devlink_add_symlinks,
434 	.remove_dev = devlink_remove_symlinks,
435 };
436 
437 static int __init devlink_class_init(void)
438 {
439 	int ret;
440 
441 	ret = class_register(&devlink_class);
442 	if (ret)
443 		return ret;
444 
445 	ret = class_interface_register(&devlink_class_intf);
446 	if (ret)
447 		class_unregister(&devlink_class);
448 
449 	return ret;
450 }
451 postcore_initcall(devlink_class_init);
452 
453 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
454 			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
455 			       DL_FLAG_AUTOPROBE_CONSUMER  | \
456 			       DL_FLAG_SYNC_STATE_ONLY)
457 
458 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
459 			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
460 
461 /**
462  * device_link_add - Create a link between two devices.
463  * @consumer: Consumer end of the link.
464  * @supplier: Supplier end of the link.
465  * @flags: Link flags.
466  *
467  * The caller is responsible for the proper synchronization of the link creation
468  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
469  * runtime PM framework to take the link into account.  Second, if the
470  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
471  * be forced into the active metastate and reference-counted upon the creation
472  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
473  * ignored.
474  *
475  * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
476  * expected to release the link returned by it directly with the help of either
477  * device_link_del() or device_link_remove().
478  *
479  * If that flag is not set, however, the caller of this function is handing the
480  * management of the link over to the driver core entirely and its return value
481  * can only be used to check whether or not the link is present.  In that case,
482  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
483  * flags can be used to indicate to the driver core when the link can be safely
484  * deleted.  Namely, setting one of them in @flags indicates to the driver core
485  * that the link is not going to be used (by the given caller of this function)
486  * after unbinding the consumer or supplier driver, respectively, from its
487  * device, so the link can be deleted at that point.  If none of them is set,
488  * the link will be maintained until one of the devices pointed to by it (either
489  * the consumer or the supplier) is unregistered.
490  *
491  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
492  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
493  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
494  * be used to request the driver core to automaticall probe for a consmer
495  * driver after successfully binding a driver to the supplier device.
496  *
497  * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
498  * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
499  * the same time is invalid and will cause NULL to be returned upfront.
500  * However, if a device link between the given @consumer and @supplier pair
501  * exists already when this function is called for them, the existing link will
502  * be returned regardless of its current type and status (the link's flags may
503  * be modified then).  The caller of this function is then expected to treat
504  * the link as though it has just been created, so (in particular) if
505  * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
506  * explicitly when not needed any more (as stated above).
507  *
508  * A side effect of the link creation is re-ordering of dpm_list and the
509  * devices_kset list by moving the consumer device and all devices depending
510  * on it to the ends of these lists (that does not happen to devices that have
511  * not been registered when this function is called).
512  *
513  * The supplier device is required to be registered when this function is called
514  * and NULL will be returned if that is not the case.  The consumer device need
515  * not be registered, however.
516  */
517 struct device_link *device_link_add(struct device *consumer,
518 				    struct device *supplier, u32 flags)
519 {
520 	struct device_link *link;
521 
522 	if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
523 	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
524 	    (flags & DL_FLAG_SYNC_STATE_ONLY &&
525 	     flags != DL_FLAG_SYNC_STATE_ONLY) ||
526 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
527 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
528 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
529 		return NULL;
530 
531 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
532 		if (pm_runtime_get_sync(supplier) < 0) {
533 			pm_runtime_put_noidle(supplier);
534 			return NULL;
535 		}
536 	}
537 
538 	if (!(flags & DL_FLAG_STATELESS))
539 		flags |= DL_FLAG_MANAGED;
540 
541 	device_links_write_lock();
542 	device_pm_lock();
543 
544 	/*
545 	 * If the supplier has not been fully registered yet or there is a
546 	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
547 	 * the supplier already in the graph, return NULL. If the link is a
548 	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
549 	 * because it only affects sync_state() callbacks.
550 	 */
551 	if (!device_pm_initialized(supplier)
552 	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
553 		  device_is_dependent(consumer, supplier))) {
554 		link = NULL;
555 		goto out;
556 	}
557 
558 	/*
559 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
560 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
561 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
562 	 */
563 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
564 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
565 
566 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
567 		if (link->consumer != consumer)
568 			continue;
569 
570 		if (flags & DL_FLAG_PM_RUNTIME) {
571 			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
572 				pm_runtime_new_link(consumer);
573 				link->flags |= DL_FLAG_PM_RUNTIME;
574 			}
575 			if (flags & DL_FLAG_RPM_ACTIVE)
576 				refcount_inc(&link->rpm_active);
577 		}
578 
579 		if (flags & DL_FLAG_STATELESS) {
580 			kref_get(&link->kref);
581 			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
582 			    !(link->flags & DL_FLAG_STATELESS)) {
583 				link->flags |= DL_FLAG_STATELESS;
584 				goto reorder;
585 			} else {
586 				link->flags |= DL_FLAG_STATELESS;
587 				goto out;
588 			}
589 		}
590 
591 		/*
592 		 * If the life time of the link following from the new flags is
593 		 * longer than indicated by the flags of the existing link,
594 		 * update the existing link to stay around longer.
595 		 */
596 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
597 			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
598 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
599 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
600 			}
601 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
602 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
603 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
604 		}
605 		if (!(link->flags & DL_FLAG_MANAGED)) {
606 			kref_get(&link->kref);
607 			link->flags |= DL_FLAG_MANAGED;
608 			device_link_init_status(link, consumer, supplier);
609 		}
610 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
611 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
612 			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
613 			goto reorder;
614 		}
615 
616 		goto out;
617 	}
618 
619 	link = kzalloc(sizeof(*link), GFP_KERNEL);
620 	if (!link)
621 		goto out;
622 
623 	refcount_set(&link->rpm_active, 1);
624 
625 	get_device(supplier);
626 	link->supplier = supplier;
627 	INIT_LIST_HEAD(&link->s_node);
628 	get_device(consumer);
629 	link->consumer = consumer;
630 	INIT_LIST_HEAD(&link->c_node);
631 	link->flags = flags;
632 	kref_init(&link->kref);
633 
634 	link->link_dev.class = &devlink_class;
635 	device_set_pm_not_required(&link->link_dev);
636 	dev_set_name(&link->link_dev, "%s--%s",
637 		     dev_name(supplier), dev_name(consumer));
638 	if (device_register(&link->link_dev)) {
639 		put_device(consumer);
640 		put_device(supplier);
641 		kfree(link);
642 		link = NULL;
643 		goto out;
644 	}
645 
646 	if (flags & DL_FLAG_PM_RUNTIME) {
647 		if (flags & DL_FLAG_RPM_ACTIVE)
648 			refcount_inc(&link->rpm_active);
649 
650 		pm_runtime_new_link(consumer);
651 	}
652 
653 	/* Determine the initial link state. */
654 	if (flags & DL_FLAG_STATELESS)
655 		link->status = DL_STATE_NONE;
656 	else
657 		device_link_init_status(link, consumer, supplier);
658 
659 	/*
660 	 * Some callers expect the link creation during consumer driver probe to
661 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
662 	 */
663 	if (link->status == DL_STATE_CONSUMER_PROBE &&
664 	    flags & DL_FLAG_PM_RUNTIME)
665 		pm_runtime_resume(supplier);
666 
667 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
668 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
669 
670 	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
671 		dev_dbg(consumer,
672 			"Linked as a sync state only consumer to %s\n",
673 			dev_name(supplier));
674 		goto out;
675 	}
676 
677 reorder:
678 	/*
679 	 * Move the consumer and all of the devices depending on it to the end
680 	 * of dpm_list and the devices_kset list.
681 	 *
682 	 * It is necessary to hold dpm_list locked throughout all that or else
683 	 * we may end up suspending with a wrong ordering of it.
684 	 */
685 	device_reorder_to_tail(consumer, NULL);
686 
687 	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
688 
689 out:
690 	device_pm_unlock();
691 	device_links_write_unlock();
692 
693 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
694 		pm_runtime_put(supplier);
695 
696 	return link;
697 }
698 EXPORT_SYMBOL_GPL(device_link_add);
699 
700 /**
701  * device_link_wait_for_supplier - Add device to wait_for_suppliers list
702  * @consumer: Consumer device
703  *
704  * Marks the @consumer device as waiting for suppliers to become available by
705  * adding it to the wait_for_suppliers list. The consumer device will never be
706  * probed until it's removed from the wait_for_suppliers list.
707  *
708  * The caller is responsible for adding the links to the supplier devices once
709  * they are available and removing the @consumer device from the
710  * wait_for_suppliers list once links to all the suppliers have been created.
711  *
712  * This function is NOT meant to be called from the probe function of the
713  * consumer but rather from code that creates/adds the consumer device.
714  */
715 static void device_link_wait_for_supplier(struct device *consumer,
716 					  bool need_for_probe)
717 {
718 	mutex_lock(&wfs_lock);
719 	list_add_tail(&consumer->links.needs_suppliers, &wait_for_suppliers);
720 	consumer->links.need_for_probe = need_for_probe;
721 	mutex_unlock(&wfs_lock);
722 }
723 
724 static void device_link_wait_for_mandatory_supplier(struct device *consumer)
725 {
726 	device_link_wait_for_supplier(consumer, true);
727 }
728 
729 static void device_link_wait_for_optional_supplier(struct device *consumer)
730 {
731 	device_link_wait_for_supplier(consumer, false);
732 }
733 
734 /**
735  * device_link_add_missing_supplier_links - Add links from consumer devices to
736  *					    supplier devices, leaving any
737  *					    consumer with inactive suppliers on
738  *					    the wait_for_suppliers list
739  *
740  * Loops through all consumers waiting on suppliers and tries to add all their
741  * supplier links. If that succeeds, the consumer device is removed from
742  * wait_for_suppliers list. Otherwise, they are left in the wait_for_suppliers
743  * list.  Devices left on the wait_for_suppliers list will not be probed.
744  *
745  * The fwnode add_links callback is expected to return 0 if it has found and
746  * added all the supplier links for the consumer device. It should return an
747  * error if it isn't able to do so.
748  *
749  * The caller of device_link_wait_for_supplier() is expected to call this once
750  * it's aware of potential suppliers becoming available.
751  */
752 static void device_link_add_missing_supplier_links(void)
753 {
754 	struct device *dev, *tmp;
755 
756 	mutex_lock(&wfs_lock);
757 	list_for_each_entry_safe(dev, tmp, &wait_for_suppliers,
758 				 links.needs_suppliers) {
759 		int ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
760 		if (!ret)
761 			list_del_init(&dev->links.needs_suppliers);
762 		else if (ret != -ENODEV || fw_devlink_is_permissive())
763 			dev->links.need_for_probe = false;
764 	}
765 	mutex_unlock(&wfs_lock);
766 }
767 
768 #ifdef CONFIG_SRCU
769 static void __device_link_del(struct kref *kref)
770 {
771 	struct device_link *link = container_of(kref, struct device_link, kref);
772 
773 	dev_dbg(link->consumer, "Dropping the link to %s\n",
774 		dev_name(link->supplier));
775 
776 	if (link->flags & DL_FLAG_PM_RUNTIME)
777 		pm_runtime_drop_link(link->consumer);
778 
779 	list_del_rcu(&link->s_node);
780 	list_del_rcu(&link->c_node);
781 	device_unregister(&link->link_dev);
782 }
783 #else /* !CONFIG_SRCU */
784 static void __device_link_del(struct kref *kref)
785 {
786 	struct device_link *link = container_of(kref, struct device_link, kref);
787 
788 	dev_info(link->consumer, "Dropping the link to %s\n",
789 		 dev_name(link->supplier));
790 
791 	if (link->flags & DL_FLAG_PM_RUNTIME)
792 		pm_runtime_drop_link(link->consumer);
793 
794 	list_del(&link->s_node);
795 	list_del(&link->c_node);
796 	device_unregister(&link->link_dev);
797 }
798 #endif /* !CONFIG_SRCU */
799 
800 static void device_link_put_kref(struct device_link *link)
801 {
802 	if (link->flags & DL_FLAG_STATELESS)
803 		kref_put(&link->kref, __device_link_del);
804 	else
805 		WARN(1, "Unable to drop a managed device link reference\n");
806 }
807 
808 /**
809  * device_link_del - Delete a stateless link between two devices.
810  * @link: Device link to delete.
811  *
812  * The caller must ensure proper synchronization of this function with runtime
813  * PM.  If the link was added multiple times, it needs to be deleted as often.
814  * Care is required for hotplugged devices:  Their links are purged on removal
815  * and calling device_link_del() is then no longer allowed.
816  */
817 void device_link_del(struct device_link *link)
818 {
819 	device_links_write_lock();
820 	device_link_put_kref(link);
821 	device_links_write_unlock();
822 }
823 EXPORT_SYMBOL_GPL(device_link_del);
824 
825 /**
826  * device_link_remove - Delete a stateless link between two devices.
827  * @consumer: Consumer end of the link.
828  * @supplier: Supplier end of the link.
829  *
830  * The caller must ensure proper synchronization of this function with runtime
831  * PM.
832  */
833 void device_link_remove(void *consumer, struct device *supplier)
834 {
835 	struct device_link *link;
836 
837 	if (WARN_ON(consumer == supplier))
838 		return;
839 
840 	device_links_write_lock();
841 
842 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
843 		if (link->consumer == consumer) {
844 			device_link_put_kref(link);
845 			break;
846 		}
847 	}
848 
849 	device_links_write_unlock();
850 }
851 EXPORT_SYMBOL_GPL(device_link_remove);
852 
853 static void device_links_missing_supplier(struct device *dev)
854 {
855 	struct device_link *link;
856 
857 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
858 		if (link->status != DL_STATE_CONSUMER_PROBE)
859 			continue;
860 
861 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
862 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
863 		} else {
864 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
865 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
866 		}
867 	}
868 }
869 
870 /**
871  * device_links_check_suppliers - Check presence of supplier drivers.
872  * @dev: Consumer device.
873  *
874  * Check links from this device to any suppliers.  Walk the list of the device's
875  * links to suppliers and see if all of them are available.  If not, simply
876  * return -EPROBE_DEFER.
877  *
878  * We need to guarantee that the supplier will not go away after the check has
879  * been positive here.  It only can go away in __device_release_driver() and
880  * that function  checks the device's links to consumers.  This means we need to
881  * mark the link as "consumer probe in progress" to make the supplier removal
882  * wait for us to complete (or bad things may happen).
883  *
884  * Links without the DL_FLAG_MANAGED flag set are ignored.
885  */
886 int device_links_check_suppliers(struct device *dev)
887 {
888 	struct device_link *link;
889 	int ret = 0;
890 
891 	/*
892 	 * Device waiting for supplier to become available is not allowed to
893 	 * probe.
894 	 */
895 	mutex_lock(&wfs_lock);
896 	if (!list_empty(&dev->links.needs_suppliers) &&
897 	    dev->links.need_for_probe) {
898 		mutex_unlock(&wfs_lock);
899 		return -EPROBE_DEFER;
900 	}
901 	mutex_unlock(&wfs_lock);
902 
903 	device_links_write_lock();
904 
905 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
906 		if (!(link->flags & DL_FLAG_MANAGED))
907 			continue;
908 
909 		if (link->status != DL_STATE_AVAILABLE &&
910 		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
911 			device_links_missing_supplier(dev);
912 			ret = -EPROBE_DEFER;
913 			break;
914 		}
915 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
916 	}
917 	dev->links.status = DL_DEV_PROBING;
918 
919 	device_links_write_unlock();
920 	return ret;
921 }
922 
923 /**
924  * __device_links_queue_sync_state - Queue a device for sync_state() callback
925  * @dev: Device to call sync_state() on
926  * @list: List head to queue the @dev on
927  *
928  * Queues a device for a sync_state() callback when the device links write lock
929  * isn't held. This allows the sync_state() execution flow to use device links
930  * APIs.  The caller must ensure this function is called with
931  * device_links_write_lock() held.
932  *
933  * This function does a get_device() to make sure the device is not freed while
934  * on this list.
935  *
936  * So the caller must also ensure that device_links_flush_sync_list() is called
937  * as soon as the caller releases device_links_write_lock().  This is necessary
938  * to make sure the sync_state() is called in a timely fashion and the
939  * put_device() is called on this device.
940  */
941 static void __device_links_queue_sync_state(struct device *dev,
942 					    struct list_head *list)
943 {
944 	struct device_link *link;
945 
946 	if (!dev_has_sync_state(dev))
947 		return;
948 	if (dev->state_synced)
949 		return;
950 
951 	list_for_each_entry(link, &dev->links.consumers, s_node) {
952 		if (!(link->flags & DL_FLAG_MANAGED))
953 			continue;
954 		if (link->status != DL_STATE_ACTIVE)
955 			return;
956 	}
957 
958 	/*
959 	 * Set the flag here to avoid adding the same device to a list more
960 	 * than once. This can happen if new consumers get added to the device
961 	 * and probed before the list is flushed.
962 	 */
963 	dev->state_synced = true;
964 
965 	if (WARN_ON(!list_empty(&dev->links.defer_hook)))
966 		return;
967 
968 	get_device(dev);
969 	list_add_tail(&dev->links.defer_hook, list);
970 }
971 
972 /**
973  * device_links_flush_sync_list - Call sync_state() on a list of devices
974  * @list: List of devices to call sync_state() on
975  * @dont_lock_dev: Device for which lock is already held by the caller
976  *
977  * Calls sync_state() on all the devices that have been queued for it. This
978  * function is used in conjunction with __device_links_queue_sync_state(). The
979  * @dont_lock_dev parameter is useful when this function is called from a
980  * context where a device lock is already held.
981  */
982 static void device_links_flush_sync_list(struct list_head *list,
983 					 struct device *dont_lock_dev)
984 {
985 	struct device *dev, *tmp;
986 
987 	list_for_each_entry_safe(dev, tmp, list, links.defer_hook) {
988 		list_del_init(&dev->links.defer_hook);
989 
990 		if (dev != dont_lock_dev)
991 			device_lock(dev);
992 
993 		if (dev->bus->sync_state)
994 			dev->bus->sync_state(dev);
995 		else if (dev->driver && dev->driver->sync_state)
996 			dev->driver->sync_state(dev);
997 
998 		if (dev != dont_lock_dev)
999 			device_unlock(dev);
1000 
1001 		put_device(dev);
1002 	}
1003 }
1004 
1005 void device_links_supplier_sync_state_pause(void)
1006 {
1007 	device_links_write_lock();
1008 	defer_sync_state_count++;
1009 	device_links_write_unlock();
1010 }
1011 
1012 void device_links_supplier_sync_state_resume(void)
1013 {
1014 	struct device *dev, *tmp;
1015 	LIST_HEAD(sync_list);
1016 
1017 	device_links_write_lock();
1018 	if (!defer_sync_state_count) {
1019 		WARN(true, "Unmatched sync_state pause/resume!");
1020 		goto out;
1021 	}
1022 	defer_sync_state_count--;
1023 	if (defer_sync_state_count)
1024 		goto out;
1025 
1026 	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_hook) {
1027 		/*
1028 		 * Delete from deferred_sync list before queuing it to
1029 		 * sync_list because defer_hook is used for both lists.
1030 		 */
1031 		list_del_init(&dev->links.defer_hook);
1032 		__device_links_queue_sync_state(dev, &sync_list);
1033 	}
1034 out:
1035 	device_links_write_unlock();
1036 
1037 	device_links_flush_sync_list(&sync_list, NULL);
1038 }
1039 
1040 static int sync_state_resume_initcall(void)
1041 {
1042 	device_links_supplier_sync_state_resume();
1043 	return 0;
1044 }
1045 late_initcall(sync_state_resume_initcall);
1046 
1047 static void __device_links_supplier_defer_sync(struct device *sup)
1048 {
1049 	if (list_empty(&sup->links.defer_hook) && dev_has_sync_state(sup))
1050 		list_add_tail(&sup->links.defer_hook, &deferred_sync);
1051 }
1052 
1053 static void device_link_drop_managed(struct device_link *link)
1054 {
1055 	link->flags &= ~DL_FLAG_MANAGED;
1056 	WRITE_ONCE(link->status, DL_STATE_NONE);
1057 	kref_put(&link->kref, __device_link_del);
1058 }
1059 
1060 static ssize_t waiting_for_supplier_show(struct device *dev,
1061 					 struct device_attribute *attr,
1062 					 char *buf)
1063 {
1064 	bool val;
1065 
1066 	device_lock(dev);
1067 	mutex_lock(&wfs_lock);
1068 	val = !list_empty(&dev->links.needs_suppliers)
1069 	      && dev->links.need_for_probe;
1070 	mutex_unlock(&wfs_lock);
1071 	device_unlock(dev);
1072 	return sysfs_emit(buf, "%u\n", val);
1073 }
1074 static DEVICE_ATTR_RO(waiting_for_supplier);
1075 
1076 /**
1077  * device_links_driver_bound - Update device links after probing its driver.
1078  * @dev: Device to update the links for.
1079  *
1080  * The probe has been successful, so update links from this device to any
1081  * consumers by changing their status to "available".
1082  *
1083  * Also change the status of @dev's links to suppliers to "active".
1084  *
1085  * Links without the DL_FLAG_MANAGED flag set are ignored.
1086  */
1087 void device_links_driver_bound(struct device *dev)
1088 {
1089 	struct device_link *link, *ln;
1090 	LIST_HEAD(sync_list);
1091 
1092 	/*
1093 	 * If a device probes successfully, it's expected to have created all
1094 	 * the device links it needs to or make new device links as it needs
1095 	 * them. So, it no longer needs to wait on any suppliers.
1096 	 */
1097 	mutex_lock(&wfs_lock);
1098 	list_del_init(&dev->links.needs_suppliers);
1099 	mutex_unlock(&wfs_lock);
1100 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1101 
1102 	device_links_write_lock();
1103 
1104 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1105 		if (!(link->flags & DL_FLAG_MANAGED))
1106 			continue;
1107 
1108 		/*
1109 		 * Links created during consumer probe may be in the "consumer
1110 		 * probe" state to start with if the supplier is still probing
1111 		 * when they are created and they may become "active" if the
1112 		 * consumer probe returns first.  Skip them here.
1113 		 */
1114 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1115 		    link->status == DL_STATE_ACTIVE)
1116 			continue;
1117 
1118 		WARN_ON(link->status != DL_STATE_DORMANT);
1119 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1120 
1121 		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1122 			driver_deferred_probe_add(link->consumer);
1123 	}
1124 
1125 	if (defer_sync_state_count)
1126 		__device_links_supplier_defer_sync(dev);
1127 	else
1128 		__device_links_queue_sync_state(dev, &sync_list);
1129 
1130 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1131 		struct device *supplier;
1132 
1133 		if (!(link->flags & DL_FLAG_MANAGED))
1134 			continue;
1135 
1136 		supplier = link->supplier;
1137 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1138 			/*
1139 			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1140 			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1141 			 * save to drop the managed link completely.
1142 			 */
1143 			device_link_drop_managed(link);
1144 		} else {
1145 			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1146 			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1147 		}
1148 
1149 		/*
1150 		 * This needs to be done even for the deleted
1151 		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1152 		 * device link that was preventing the supplier from getting a
1153 		 * sync_state() call.
1154 		 */
1155 		if (defer_sync_state_count)
1156 			__device_links_supplier_defer_sync(supplier);
1157 		else
1158 			__device_links_queue_sync_state(supplier, &sync_list);
1159 	}
1160 
1161 	dev->links.status = DL_DEV_DRIVER_BOUND;
1162 
1163 	device_links_write_unlock();
1164 
1165 	device_links_flush_sync_list(&sync_list, dev);
1166 }
1167 
1168 /**
1169  * __device_links_no_driver - Update links of a device without a driver.
1170  * @dev: Device without a drvier.
1171  *
1172  * Delete all non-persistent links from this device to any suppliers.
1173  *
1174  * Persistent links stay around, but their status is changed to "available",
1175  * unless they already are in the "supplier unbind in progress" state in which
1176  * case they need not be updated.
1177  *
1178  * Links without the DL_FLAG_MANAGED flag set are ignored.
1179  */
1180 static void __device_links_no_driver(struct device *dev)
1181 {
1182 	struct device_link *link, *ln;
1183 
1184 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1185 		if (!(link->flags & DL_FLAG_MANAGED))
1186 			continue;
1187 
1188 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1189 			device_link_drop_managed(link);
1190 			continue;
1191 		}
1192 
1193 		if (link->status != DL_STATE_CONSUMER_PROBE &&
1194 		    link->status != DL_STATE_ACTIVE)
1195 			continue;
1196 
1197 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1198 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1199 		} else {
1200 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1201 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1202 		}
1203 	}
1204 
1205 	dev->links.status = DL_DEV_NO_DRIVER;
1206 }
1207 
1208 /**
1209  * device_links_no_driver - Update links after failing driver probe.
1210  * @dev: Device whose driver has just failed to probe.
1211  *
1212  * Clean up leftover links to consumers for @dev and invoke
1213  * %__device_links_no_driver() to update links to suppliers for it as
1214  * appropriate.
1215  *
1216  * Links without the DL_FLAG_MANAGED flag set are ignored.
1217  */
1218 void device_links_no_driver(struct device *dev)
1219 {
1220 	struct device_link *link;
1221 
1222 	device_links_write_lock();
1223 
1224 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1225 		if (!(link->flags & DL_FLAG_MANAGED))
1226 			continue;
1227 
1228 		/*
1229 		 * The probe has failed, so if the status of the link is
1230 		 * "consumer probe" or "active", it must have been added by
1231 		 * a probing consumer while this device was still probing.
1232 		 * Change its state to "dormant", as it represents a valid
1233 		 * relationship, but it is not functionally meaningful.
1234 		 */
1235 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1236 		    link->status == DL_STATE_ACTIVE)
1237 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1238 	}
1239 
1240 	__device_links_no_driver(dev);
1241 
1242 	device_links_write_unlock();
1243 }
1244 
1245 /**
1246  * device_links_driver_cleanup - Update links after driver removal.
1247  * @dev: Device whose driver has just gone away.
1248  *
1249  * Update links to consumers for @dev by changing their status to "dormant" and
1250  * invoke %__device_links_no_driver() to update links to suppliers for it as
1251  * appropriate.
1252  *
1253  * Links without the DL_FLAG_MANAGED flag set are ignored.
1254  */
1255 void device_links_driver_cleanup(struct device *dev)
1256 {
1257 	struct device_link *link, *ln;
1258 
1259 	device_links_write_lock();
1260 
1261 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1262 		if (!(link->flags & DL_FLAG_MANAGED))
1263 			continue;
1264 
1265 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1266 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1267 
1268 		/*
1269 		 * autoremove the links between this @dev and its consumer
1270 		 * devices that are not active, i.e. where the link state
1271 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1272 		 */
1273 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1274 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1275 			device_link_drop_managed(link);
1276 
1277 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1278 	}
1279 
1280 	list_del_init(&dev->links.defer_hook);
1281 	__device_links_no_driver(dev);
1282 
1283 	device_links_write_unlock();
1284 }
1285 
1286 /**
1287  * device_links_busy - Check if there are any busy links to consumers.
1288  * @dev: Device to check.
1289  *
1290  * Check each consumer of the device and return 'true' if its link's status
1291  * is one of "consumer probe" or "active" (meaning that the given consumer is
1292  * probing right now or its driver is present).  Otherwise, change the link
1293  * state to "supplier unbind" to prevent the consumer from being probed
1294  * successfully going forward.
1295  *
1296  * Return 'false' if there are no probing or active consumers.
1297  *
1298  * Links without the DL_FLAG_MANAGED flag set are ignored.
1299  */
1300 bool device_links_busy(struct device *dev)
1301 {
1302 	struct device_link *link;
1303 	bool ret = false;
1304 
1305 	device_links_write_lock();
1306 
1307 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1308 		if (!(link->flags & DL_FLAG_MANAGED))
1309 			continue;
1310 
1311 		if (link->status == DL_STATE_CONSUMER_PROBE
1312 		    || link->status == DL_STATE_ACTIVE) {
1313 			ret = true;
1314 			break;
1315 		}
1316 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1317 	}
1318 
1319 	dev->links.status = DL_DEV_UNBINDING;
1320 
1321 	device_links_write_unlock();
1322 	return ret;
1323 }
1324 
1325 /**
1326  * device_links_unbind_consumers - Force unbind consumers of the given device.
1327  * @dev: Device to unbind the consumers of.
1328  *
1329  * Walk the list of links to consumers for @dev and if any of them is in the
1330  * "consumer probe" state, wait for all device probes in progress to complete
1331  * and start over.
1332  *
1333  * If that's not the case, change the status of the link to "supplier unbind"
1334  * and check if the link was in the "active" state.  If so, force the consumer
1335  * driver to unbind and start over (the consumer will not re-probe as we have
1336  * changed the state of the link already).
1337  *
1338  * Links without the DL_FLAG_MANAGED flag set are ignored.
1339  */
1340 void device_links_unbind_consumers(struct device *dev)
1341 {
1342 	struct device_link *link;
1343 
1344  start:
1345 	device_links_write_lock();
1346 
1347 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1348 		enum device_link_state status;
1349 
1350 		if (!(link->flags & DL_FLAG_MANAGED) ||
1351 		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1352 			continue;
1353 
1354 		status = link->status;
1355 		if (status == DL_STATE_CONSUMER_PROBE) {
1356 			device_links_write_unlock();
1357 
1358 			wait_for_device_probe();
1359 			goto start;
1360 		}
1361 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1362 		if (status == DL_STATE_ACTIVE) {
1363 			struct device *consumer = link->consumer;
1364 
1365 			get_device(consumer);
1366 
1367 			device_links_write_unlock();
1368 
1369 			device_release_driver_internal(consumer, NULL,
1370 						       consumer->parent);
1371 			put_device(consumer);
1372 			goto start;
1373 		}
1374 	}
1375 
1376 	device_links_write_unlock();
1377 }
1378 
1379 /**
1380  * device_links_purge - Delete existing links to other devices.
1381  * @dev: Target device.
1382  */
1383 static void device_links_purge(struct device *dev)
1384 {
1385 	struct device_link *link, *ln;
1386 
1387 	if (dev->class == &devlink_class)
1388 		return;
1389 
1390 	mutex_lock(&wfs_lock);
1391 	list_del(&dev->links.needs_suppliers);
1392 	mutex_unlock(&wfs_lock);
1393 
1394 	/*
1395 	 * Delete all of the remaining links from this device to any other
1396 	 * devices (either consumers or suppliers).
1397 	 */
1398 	device_links_write_lock();
1399 
1400 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1401 		WARN_ON(link->status == DL_STATE_ACTIVE);
1402 		__device_link_del(&link->kref);
1403 	}
1404 
1405 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1406 		WARN_ON(link->status != DL_STATE_DORMANT &&
1407 			link->status != DL_STATE_NONE);
1408 		__device_link_del(&link->kref);
1409 	}
1410 
1411 	device_links_write_unlock();
1412 }
1413 
1414 static u32 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
1415 static int __init fw_devlink_setup(char *arg)
1416 {
1417 	if (!arg)
1418 		return -EINVAL;
1419 
1420 	if (strcmp(arg, "off") == 0) {
1421 		fw_devlink_flags = 0;
1422 	} else if (strcmp(arg, "permissive") == 0) {
1423 		fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
1424 	} else if (strcmp(arg, "on") == 0) {
1425 		fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER;
1426 	} else if (strcmp(arg, "rpm") == 0) {
1427 		fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER |
1428 				   DL_FLAG_PM_RUNTIME;
1429 	}
1430 	return 0;
1431 }
1432 early_param("fw_devlink", fw_devlink_setup);
1433 
1434 u32 fw_devlink_get_flags(void)
1435 {
1436 	return fw_devlink_flags;
1437 }
1438 
1439 static bool fw_devlink_is_permissive(void)
1440 {
1441 	return fw_devlink_flags == DL_FLAG_SYNC_STATE_ONLY;
1442 }
1443 
1444 static void fw_devlink_link_device(struct device *dev)
1445 {
1446 	int fw_ret;
1447 
1448 	if (!fw_devlink_flags)
1449 		return;
1450 
1451 	mutex_lock(&defer_fw_devlink_lock);
1452 	if (!defer_fw_devlink_count)
1453 		device_link_add_missing_supplier_links();
1454 
1455 	/*
1456 	 * The device's fwnode not having add_links() doesn't affect if other
1457 	 * consumers can find this device as a supplier.  So, this check is
1458 	 * intentionally placed after device_link_add_missing_supplier_links().
1459 	 */
1460 	if (!fwnode_has_op(dev->fwnode, add_links))
1461 		goto out;
1462 
1463 	/*
1464 	 * If fw_devlink is being deferred, assume all devices have mandatory
1465 	 * suppliers they need to link to later. Then, when the fw_devlink is
1466 	 * resumed, all these devices will get a chance to try and link to any
1467 	 * suppliers they have.
1468 	 */
1469 	if (!defer_fw_devlink_count) {
1470 		fw_ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
1471 		if (fw_ret == -ENODEV && fw_devlink_is_permissive())
1472 			fw_ret = -EAGAIN;
1473 	} else {
1474 		fw_ret = -ENODEV;
1475 		/*
1476 		 * defer_hook is not used to add device to deferred_sync list
1477 		 * until device is bound. Since deferred fw devlink also blocks
1478 		 * probing, same list hook can be used for deferred_fw_devlink.
1479 		 */
1480 		list_add_tail(&dev->links.defer_hook, &deferred_fw_devlink);
1481 	}
1482 
1483 	if (fw_ret == -ENODEV)
1484 		device_link_wait_for_mandatory_supplier(dev);
1485 	else if (fw_ret)
1486 		device_link_wait_for_optional_supplier(dev);
1487 
1488 out:
1489 	mutex_unlock(&defer_fw_devlink_lock);
1490 }
1491 
1492 /**
1493  * fw_devlink_pause - Pause parsing of fwnode to create device links
1494  *
1495  * Calling this function defers any fwnode parsing to create device links until
1496  * fw_devlink_resume() is called. Both these functions are ref counted and the
1497  * caller needs to match the calls.
1498  *
1499  * While fw_devlink is paused:
1500  * - Any device that is added won't have its fwnode parsed to create device
1501  *   links.
1502  * - The probe of the device will also be deferred during this period.
1503  * - Any devices that were already added, but waiting for suppliers won't be
1504  *   able to link to newly added devices.
1505  *
1506  * Once fw_devlink_resume():
1507  * - All the fwnodes that was not parsed will be parsed.
1508  * - All the devices that were deferred probing will be reattempted if they
1509  *   aren't waiting for any more suppliers.
1510  *
1511  * This pair of functions, is mainly meant to optimize the parsing of fwnodes
1512  * when a lot of devices that need to link to each other are added in a short
1513  * interval of time. For example, adding all the top level devices in a system.
1514  *
1515  * For example, if N devices are added and:
1516  * - All the consumers are added before their suppliers
1517  * - All the suppliers of the N devices are part of the N devices
1518  *
1519  * Then:
1520  *
1521  * - With the use of fw_devlink_pause() and fw_devlink_resume(), each device
1522  *   will only need one parsing of its fwnode because it is guaranteed to find
1523  *   all the supplier devices already registered and ready to link to. It won't
1524  *   have to do another pass later to find one or more suppliers it couldn't
1525  *   find in the first parse of the fwnode. So, we'll only need O(N) fwnode
1526  *   parses.
1527  *
1528  * - Without the use of fw_devlink_pause() and fw_devlink_resume(), we would
1529  *   end up doing O(N^2) parses of fwnodes because every device that's added is
1530  *   guaranteed to trigger a parse of the fwnode of every device added before
1531  *   it. This O(N^2) parse is made worse by the fact that when a fwnode of a
1532  *   device is parsed, all it descendant devices might need to have their
1533  *   fwnodes parsed too (even if the devices themselves aren't added).
1534  */
1535 void fw_devlink_pause(void)
1536 {
1537 	mutex_lock(&defer_fw_devlink_lock);
1538 	defer_fw_devlink_count++;
1539 	mutex_unlock(&defer_fw_devlink_lock);
1540 }
1541 
1542 /** fw_devlink_resume - Resume parsing of fwnode to create device links
1543  *
1544  * This function is used in conjunction with fw_devlink_pause() and is ref
1545  * counted. See documentation for fw_devlink_pause() for more details.
1546  */
1547 void fw_devlink_resume(void)
1548 {
1549 	struct device *dev, *tmp;
1550 	LIST_HEAD(probe_list);
1551 
1552 	mutex_lock(&defer_fw_devlink_lock);
1553 	if (!defer_fw_devlink_count) {
1554 		WARN(true, "Unmatched fw_devlink pause/resume!");
1555 		goto out;
1556 	}
1557 
1558 	defer_fw_devlink_count--;
1559 	if (defer_fw_devlink_count)
1560 		goto out;
1561 
1562 	device_link_add_missing_supplier_links();
1563 	list_splice_tail_init(&deferred_fw_devlink, &probe_list);
1564 out:
1565 	mutex_unlock(&defer_fw_devlink_lock);
1566 
1567 	/*
1568 	 * bus_probe_device() can cause new devices to get added and they'll
1569 	 * try to grab defer_fw_devlink_lock. So, this needs to be done outside
1570 	 * the defer_fw_devlink_lock.
1571 	 */
1572 	list_for_each_entry_safe(dev, tmp, &probe_list, links.defer_hook) {
1573 		list_del_init(&dev->links.defer_hook);
1574 		bus_probe_device(dev);
1575 	}
1576 }
1577 /* Device links support end. */
1578 
1579 int (*platform_notify)(struct device *dev) = NULL;
1580 int (*platform_notify_remove)(struct device *dev) = NULL;
1581 static struct kobject *dev_kobj;
1582 struct kobject *sysfs_dev_char_kobj;
1583 struct kobject *sysfs_dev_block_kobj;
1584 
1585 static DEFINE_MUTEX(device_hotplug_lock);
1586 
1587 void lock_device_hotplug(void)
1588 {
1589 	mutex_lock(&device_hotplug_lock);
1590 }
1591 
1592 void unlock_device_hotplug(void)
1593 {
1594 	mutex_unlock(&device_hotplug_lock);
1595 }
1596 
1597 int lock_device_hotplug_sysfs(void)
1598 {
1599 	if (mutex_trylock(&device_hotplug_lock))
1600 		return 0;
1601 
1602 	/* Avoid busy looping (5 ms of sleep should do). */
1603 	msleep(5);
1604 	return restart_syscall();
1605 }
1606 
1607 #ifdef CONFIG_BLOCK
1608 static inline int device_is_not_partition(struct device *dev)
1609 {
1610 	return !(dev->type == &part_type);
1611 }
1612 #else
1613 static inline int device_is_not_partition(struct device *dev)
1614 {
1615 	return 1;
1616 }
1617 #endif
1618 
1619 static int
1620 device_platform_notify(struct device *dev, enum kobject_action action)
1621 {
1622 	int ret;
1623 
1624 	ret = acpi_platform_notify(dev, action);
1625 	if (ret)
1626 		return ret;
1627 
1628 	ret = software_node_notify(dev, action);
1629 	if (ret)
1630 		return ret;
1631 
1632 	if (platform_notify && action == KOBJ_ADD)
1633 		platform_notify(dev);
1634 	else if (platform_notify_remove && action == KOBJ_REMOVE)
1635 		platform_notify_remove(dev);
1636 	return 0;
1637 }
1638 
1639 /**
1640  * dev_driver_string - Return a device's driver name, if at all possible
1641  * @dev: struct device to get the name of
1642  *
1643  * Will return the device's driver's name if it is bound to a device.  If
1644  * the device is not bound to a driver, it will return the name of the bus
1645  * it is attached to.  If it is not attached to a bus either, an empty
1646  * string will be returned.
1647  */
1648 const char *dev_driver_string(const struct device *dev)
1649 {
1650 	struct device_driver *drv;
1651 
1652 	/* dev->driver can change to NULL underneath us because of unbinding,
1653 	 * so be careful about accessing it.  dev->bus and dev->class should
1654 	 * never change once they are set, so they don't need special care.
1655 	 */
1656 	drv = READ_ONCE(dev->driver);
1657 	return drv ? drv->name :
1658 			(dev->bus ? dev->bus->name :
1659 			(dev->class ? dev->class->name : ""));
1660 }
1661 EXPORT_SYMBOL(dev_driver_string);
1662 
1663 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
1664 
1665 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
1666 			     char *buf)
1667 {
1668 	struct device_attribute *dev_attr = to_dev_attr(attr);
1669 	struct device *dev = kobj_to_dev(kobj);
1670 	ssize_t ret = -EIO;
1671 
1672 	if (dev_attr->show)
1673 		ret = dev_attr->show(dev, dev_attr, buf);
1674 	if (ret >= (ssize_t)PAGE_SIZE) {
1675 		printk("dev_attr_show: %pS returned bad count\n",
1676 				dev_attr->show);
1677 	}
1678 	return ret;
1679 }
1680 
1681 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
1682 			      const char *buf, size_t count)
1683 {
1684 	struct device_attribute *dev_attr = to_dev_attr(attr);
1685 	struct device *dev = kobj_to_dev(kobj);
1686 	ssize_t ret = -EIO;
1687 
1688 	if (dev_attr->store)
1689 		ret = dev_attr->store(dev, dev_attr, buf, count);
1690 	return ret;
1691 }
1692 
1693 static const struct sysfs_ops dev_sysfs_ops = {
1694 	.show	= dev_attr_show,
1695 	.store	= dev_attr_store,
1696 };
1697 
1698 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
1699 
1700 ssize_t device_store_ulong(struct device *dev,
1701 			   struct device_attribute *attr,
1702 			   const char *buf, size_t size)
1703 {
1704 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1705 	int ret;
1706 	unsigned long new;
1707 
1708 	ret = kstrtoul(buf, 0, &new);
1709 	if (ret)
1710 		return ret;
1711 	*(unsigned long *)(ea->var) = new;
1712 	/* Always return full write size even if we didn't consume all */
1713 	return size;
1714 }
1715 EXPORT_SYMBOL_GPL(device_store_ulong);
1716 
1717 ssize_t device_show_ulong(struct device *dev,
1718 			  struct device_attribute *attr,
1719 			  char *buf)
1720 {
1721 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1722 	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
1723 }
1724 EXPORT_SYMBOL_GPL(device_show_ulong);
1725 
1726 ssize_t device_store_int(struct device *dev,
1727 			 struct device_attribute *attr,
1728 			 const char *buf, size_t size)
1729 {
1730 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1731 	int ret;
1732 	long new;
1733 
1734 	ret = kstrtol(buf, 0, &new);
1735 	if (ret)
1736 		return ret;
1737 
1738 	if (new > INT_MAX || new < INT_MIN)
1739 		return -EINVAL;
1740 	*(int *)(ea->var) = new;
1741 	/* Always return full write size even if we didn't consume all */
1742 	return size;
1743 }
1744 EXPORT_SYMBOL_GPL(device_store_int);
1745 
1746 ssize_t device_show_int(struct device *dev,
1747 			struct device_attribute *attr,
1748 			char *buf)
1749 {
1750 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1751 
1752 	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
1753 }
1754 EXPORT_SYMBOL_GPL(device_show_int);
1755 
1756 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
1757 			  const char *buf, size_t size)
1758 {
1759 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1760 
1761 	if (strtobool(buf, ea->var) < 0)
1762 		return -EINVAL;
1763 
1764 	return size;
1765 }
1766 EXPORT_SYMBOL_GPL(device_store_bool);
1767 
1768 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
1769 			 char *buf)
1770 {
1771 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1772 
1773 	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
1774 }
1775 EXPORT_SYMBOL_GPL(device_show_bool);
1776 
1777 /**
1778  * device_release - free device structure.
1779  * @kobj: device's kobject.
1780  *
1781  * This is called once the reference count for the object
1782  * reaches 0. We forward the call to the device's release
1783  * method, which should handle actually freeing the structure.
1784  */
1785 static void device_release(struct kobject *kobj)
1786 {
1787 	struct device *dev = kobj_to_dev(kobj);
1788 	struct device_private *p = dev->p;
1789 
1790 	/*
1791 	 * Some platform devices are driven without driver attached
1792 	 * and managed resources may have been acquired.  Make sure
1793 	 * all resources are released.
1794 	 *
1795 	 * Drivers still can add resources into device after device
1796 	 * is deleted but alive, so release devres here to avoid
1797 	 * possible memory leak.
1798 	 */
1799 	devres_release_all(dev);
1800 
1801 	kfree(dev->dma_range_map);
1802 
1803 	if (dev->release)
1804 		dev->release(dev);
1805 	else if (dev->type && dev->type->release)
1806 		dev->type->release(dev);
1807 	else if (dev->class && dev->class->dev_release)
1808 		dev->class->dev_release(dev);
1809 	else
1810 		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
1811 			dev_name(dev));
1812 	kfree(p);
1813 }
1814 
1815 static const void *device_namespace(struct kobject *kobj)
1816 {
1817 	struct device *dev = kobj_to_dev(kobj);
1818 	const void *ns = NULL;
1819 
1820 	if (dev->class && dev->class->ns_type)
1821 		ns = dev->class->namespace(dev);
1822 
1823 	return ns;
1824 }
1825 
1826 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
1827 {
1828 	struct device *dev = kobj_to_dev(kobj);
1829 
1830 	if (dev->class && dev->class->get_ownership)
1831 		dev->class->get_ownership(dev, uid, gid);
1832 }
1833 
1834 static struct kobj_type device_ktype = {
1835 	.release	= device_release,
1836 	.sysfs_ops	= &dev_sysfs_ops,
1837 	.namespace	= device_namespace,
1838 	.get_ownership	= device_get_ownership,
1839 };
1840 
1841 
1842 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
1843 {
1844 	struct kobj_type *ktype = get_ktype(kobj);
1845 
1846 	if (ktype == &device_ktype) {
1847 		struct device *dev = kobj_to_dev(kobj);
1848 		if (dev->bus)
1849 			return 1;
1850 		if (dev->class)
1851 			return 1;
1852 	}
1853 	return 0;
1854 }
1855 
1856 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
1857 {
1858 	struct device *dev = kobj_to_dev(kobj);
1859 
1860 	if (dev->bus)
1861 		return dev->bus->name;
1862 	if (dev->class)
1863 		return dev->class->name;
1864 	return NULL;
1865 }
1866 
1867 static int dev_uevent(struct kset *kset, struct kobject *kobj,
1868 		      struct kobj_uevent_env *env)
1869 {
1870 	struct device *dev = kobj_to_dev(kobj);
1871 	int retval = 0;
1872 
1873 	/* add device node properties if present */
1874 	if (MAJOR(dev->devt)) {
1875 		const char *tmp;
1876 		const char *name;
1877 		umode_t mode = 0;
1878 		kuid_t uid = GLOBAL_ROOT_UID;
1879 		kgid_t gid = GLOBAL_ROOT_GID;
1880 
1881 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
1882 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
1883 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
1884 		if (name) {
1885 			add_uevent_var(env, "DEVNAME=%s", name);
1886 			if (mode)
1887 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
1888 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
1889 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
1890 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
1891 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
1892 			kfree(tmp);
1893 		}
1894 	}
1895 
1896 	if (dev->type && dev->type->name)
1897 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
1898 
1899 	if (dev->driver)
1900 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
1901 
1902 	/* Add common DT information about the device */
1903 	of_device_uevent(dev, env);
1904 
1905 	/* have the bus specific function add its stuff */
1906 	if (dev->bus && dev->bus->uevent) {
1907 		retval = dev->bus->uevent(dev, env);
1908 		if (retval)
1909 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
1910 				 dev_name(dev), __func__, retval);
1911 	}
1912 
1913 	/* have the class specific function add its stuff */
1914 	if (dev->class && dev->class->dev_uevent) {
1915 		retval = dev->class->dev_uevent(dev, env);
1916 		if (retval)
1917 			pr_debug("device: '%s': %s: class uevent() "
1918 				 "returned %d\n", dev_name(dev),
1919 				 __func__, retval);
1920 	}
1921 
1922 	/* have the device type specific function add its stuff */
1923 	if (dev->type && dev->type->uevent) {
1924 		retval = dev->type->uevent(dev, env);
1925 		if (retval)
1926 			pr_debug("device: '%s': %s: dev_type uevent() "
1927 				 "returned %d\n", dev_name(dev),
1928 				 __func__, retval);
1929 	}
1930 
1931 	return retval;
1932 }
1933 
1934 static const struct kset_uevent_ops device_uevent_ops = {
1935 	.filter =	dev_uevent_filter,
1936 	.name =		dev_uevent_name,
1937 	.uevent =	dev_uevent,
1938 };
1939 
1940 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
1941 			   char *buf)
1942 {
1943 	struct kobject *top_kobj;
1944 	struct kset *kset;
1945 	struct kobj_uevent_env *env = NULL;
1946 	int i;
1947 	int len = 0;
1948 	int retval;
1949 
1950 	/* search the kset, the device belongs to */
1951 	top_kobj = &dev->kobj;
1952 	while (!top_kobj->kset && top_kobj->parent)
1953 		top_kobj = top_kobj->parent;
1954 	if (!top_kobj->kset)
1955 		goto out;
1956 
1957 	kset = top_kobj->kset;
1958 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
1959 		goto out;
1960 
1961 	/* respect filter */
1962 	if (kset->uevent_ops && kset->uevent_ops->filter)
1963 		if (!kset->uevent_ops->filter(kset, &dev->kobj))
1964 			goto out;
1965 
1966 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1967 	if (!env)
1968 		return -ENOMEM;
1969 
1970 	/* let the kset specific function add its keys */
1971 	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
1972 	if (retval)
1973 		goto out;
1974 
1975 	/* copy keys to file */
1976 	for (i = 0; i < env->envp_idx; i++)
1977 		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
1978 out:
1979 	kfree(env);
1980 	return len;
1981 }
1982 
1983 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
1984 			    const char *buf, size_t count)
1985 {
1986 	int rc;
1987 
1988 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
1989 
1990 	if (rc) {
1991 		dev_err(dev, "uevent: failed to send synthetic uevent\n");
1992 		return rc;
1993 	}
1994 
1995 	return count;
1996 }
1997 static DEVICE_ATTR_RW(uevent);
1998 
1999 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2000 			   char *buf)
2001 {
2002 	bool val;
2003 
2004 	device_lock(dev);
2005 	val = !dev->offline;
2006 	device_unlock(dev);
2007 	return sysfs_emit(buf, "%u\n", val);
2008 }
2009 
2010 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2011 			    const char *buf, size_t count)
2012 {
2013 	bool val;
2014 	int ret;
2015 
2016 	ret = strtobool(buf, &val);
2017 	if (ret < 0)
2018 		return ret;
2019 
2020 	ret = lock_device_hotplug_sysfs();
2021 	if (ret)
2022 		return ret;
2023 
2024 	ret = val ? device_online(dev) : device_offline(dev);
2025 	unlock_device_hotplug();
2026 	return ret < 0 ? ret : count;
2027 }
2028 static DEVICE_ATTR_RW(online);
2029 
2030 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2031 {
2032 	return sysfs_create_groups(&dev->kobj, groups);
2033 }
2034 EXPORT_SYMBOL_GPL(device_add_groups);
2035 
2036 void device_remove_groups(struct device *dev,
2037 			  const struct attribute_group **groups)
2038 {
2039 	sysfs_remove_groups(&dev->kobj, groups);
2040 }
2041 EXPORT_SYMBOL_GPL(device_remove_groups);
2042 
2043 union device_attr_group_devres {
2044 	const struct attribute_group *group;
2045 	const struct attribute_group **groups;
2046 };
2047 
2048 static int devm_attr_group_match(struct device *dev, void *res, void *data)
2049 {
2050 	return ((union device_attr_group_devres *)res)->group == data;
2051 }
2052 
2053 static void devm_attr_group_remove(struct device *dev, void *res)
2054 {
2055 	union device_attr_group_devres *devres = res;
2056 	const struct attribute_group *group = devres->group;
2057 
2058 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2059 	sysfs_remove_group(&dev->kobj, group);
2060 }
2061 
2062 static void devm_attr_groups_remove(struct device *dev, void *res)
2063 {
2064 	union device_attr_group_devres *devres = res;
2065 	const struct attribute_group **groups = devres->groups;
2066 
2067 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2068 	sysfs_remove_groups(&dev->kobj, groups);
2069 }
2070 
2071 /**
2072  * devm_device_add_group - given a device, create a managed attribute group
2073  * @dev:	The device to create the group for
2074  * @grp:	The attribute group to create
2075  *
2076  * This function creates a group for the first time.  It will explicitly
2077  * warn and error if any of the attribute files being created already exist.
2078  *
2079  * Returns 0 on success or error code on failure.
2080  */
2081 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2082 {
2083 	union device_attr_group_devres *devres;
2084 	int error;
2085 
2086 	devres = devres_alloc(devm_attr_group_remove,
2087 			      sizeof(*devres), GFP_KERNEL);
2088 	if (!devres)
2089 		return -ENOMEM;
2090 
2091 	error = sysfs_create_group(&dev->kobj, grp);
2092 	if (error) {
2093 		devres_free(devres);
2094 		return error;
2095 	}
2096 
2097 	devres->group = grp;
2098 	devres_add(dev, devres);
2099 	return 0;
2100 }
2101 EXPORT_SYMBOL_GPL(devm_device_add_group);
2102 
2103 /**
2104  * devm_device_remove_group: remove a managed group from a device
2105  * @dev:	device to remove the group from
2106  * @grp:	group to remove
2107  *
2108  * This function removes a group of attributes from a device. The attributes
2109  * previously have to have been created for this group, otherwise it will fail.
2110  */
2111 void devm_device_remove_group(struct device *dev,
2112 			      const struct attribute_group *grp)
2113 {
2114 	WARN_ON(devres_release(dev, devm_attr_group_remove,
2115 			       devm_attr_group_match,
2116 			       /* cast away const */ (void *)grp));
2117 }
2118 EXPORT_SYMBOL_GPL(devm_device_remove_group);
2119 
2120 /**
2121  * devm_device_add_groups - create a bunch of managed attribute groups
2122  * @dev:	The device to create the group for
2123  * @groups:	The attribute groups to create, NULL terminated
2124  *
2125  * This function creates a bunch of managed attribute groups.  If an error
2126  * occurs when creating a group, all previously created groups will be
2127  * removed, unwinding everything back to the original state when this
2128  * function was called.  It will explicitly warn and error if any of the
2129  * attribute files being created already exist.
2130  *
2131  * Returns 0 on success or error code from sysfs_create_group on failure.
2132  */
2133 int devm_device_add_groups(struct device *dev,
2134 			   const struct attribute_group **groups)
2135 {
2136 	union device_attr_group_devres *devres;
2137 	int error;
2138 
2139 	devres = devres_alloc(devm_attr_groups_remove,
2140 			      sizeof(*devres), GFP_KERNEL);
2141 	if (!devres)
2142 		return -ENOMEM;
2143 
2144 	error = sysfs_create_groups(&dev->kobj, groups);
2145 	if (error) {
2146 		devres_free(devres);
2147 		return error;
2148 	}
2149 
2150 	devres->groups = groups;
2151 	devres_add(dev, devres);
2152 	return 0;
2153 }
2154 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2155 
2156 /**
2157  * devm_device_remove_groups - remove a list of managed groups
2158  *
2159  * @dev:	The device for the groups to be removed from
2160  * @groups:	NULL terminated list of groups to be removed
2161  *
2162  * If groups is not NULL, remove the specified groups from the device.
2163  */
2164 void devm_device_remove_groups(struct device *dev,
2165 			       const struct attribute_group **groups)
2166 {
2167 	WARN_ON(devres_release(dev, devm_attr_groups_remove,
2168 			       devm_attr_group_match,
2169 			       /* cast away const */ (void *)groups));
2170 }
2171 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2172 
2173 static int device_add_attrs(struct device *dev)
2174 {
2175 	struct class *class = dev->class;
2176 	const struct device_type *type = dev->type;
2177 	int error;
2178 
2179 	if (class) {
2180 		error = device_add_groups(dev, class->dev_groups);
2181 		if (error)
2182 			return error;
2183 	}
2184 
2185 	if (type) {
2186 		error = device_add_groups(dev, type->groups);
2187 		if (error)
2188 			goto err_remove_class_groups;
2189 	}
2190 
2191 	error = device_add_groups(dev, dev->groups);
2192 	if (error)
2193 		goto err_remove_type_groups;
2194 
2195 	if (device_supports_offline(dev) && !dev->offline_disabled) {
2196 		error = device_create_file(dev, &dev_attr_online);
2197 		if (error)
2198 			goto err_remove_dev_groups;
2199 	}
2200 
2201 	if (fw_devlink_flags && !fw_devlink_is_permissive()) {
2202 		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2203 		if (error)
2204 			goto err_remove_dev_online;
2205 	}
2206 
2207 	return 0;
2208 
2209  err_remove_dev_online:
2210 	device_remove_file(dev, &dev_attr_online);
2211  err_remove_dev_groups:
2212 	device_remove_groups(dev, dev->groups);
2213  err_remove_type_groups:
2214 	if (type)
2215 		device_remove_groups(dev, type->groups);
2216  err_remove_class_groups:
2217 	if (class)
2218 		device_remove_groups(dev, class->dev_groups);
2219 
2220 	return error;
2221 }
2222 
2223 static void device_remove_attrs(struct device *dev)
2224 {
2225 	struct class *class = dev->class;
2226 	const struct device_type *type = dev->type;
2227 
2228 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2229 	device_remove_file(dev, &dev_attr_online);
2230 	device_remove_groups(dev, dev->groups);
2231 
2232 	if (type)
2233 		device_remove_groups(dev, type->groups);
2234 
2235 	if (class)
2236 		device_remove_groups(dev, class->dev_groups);
2237 }
2238 
2239 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2240 			char *buf)
2241 {
2242 	return print_dev_t(buf, dev->devt);
2243 }
2244 static DEVICE_ATTR_RO(dev);
2245 
2246 /* /sys/devices/ */
2247 struct kset *devices_kset;
2248 
2249 /**
2250  * devices_kset_move_before - Move device in the devices_kset's list.
2251  * @deva: Device to move.
2252  * @devb: Device @deva should come before.
2253  */
2254 static void devices_kset_move_before(struct device *deva, struct device *devb)
2255 {
2256 	if (!devices_kset)
2257 		return;
2258 	pr_debug("devices_kset: Moving %s before %s\n",
2259 		 dev_name(deva), dev_name(devb));
2260 	spin_lock(&devices_kset->list_lock);
2261 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2262 	spin_unlock(&devices_kset->list_lock);
2263 }
2264 
2265 /**
2266  * devices_kset_move_after - Move device in the devices_kset's list.
2267  * @deva: Device to move
2268  * @devb: Device @deva should come after.
2269  */
2270 static void devices_kset_move_after(struct device *deva, struct device *devb)
2271 {
2272 	if (!devices_kset)
2273 		return;
2274 	pr_debug("devices_kset: Moving %s after %s\n",
2275 		 dev_name(deva), dev_name(devb));
2276 	spin_lock(&devices_kset->list_lock);
2277 	list_move(&deva->kobj.entry, &devb->kobj.entry);
2278 	spin_unlock(&devices_kset->list_lock);
2279 }
2280 
2281 /**
2282  * devices_kset_move_last - move the device to the end of devices_kset's list.
2283  * @dev: device to move
2284  */
2285 void devices_kset_move_last(struct device *dev)
2286 {
2287 	if (!devices_kset)
2288 		return;
2289 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2290 	spin_lock(&devices_kset->list_lock);
2291 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
2292 	spin_unlock(&devices_kset->list_lock);
2293 }
2294 
2295 /**
2296  * device_create_file - create sysfs attribute file for device.
2297  * @dev: device.
2298  * @attr: device attribute descriptor.
2299  */
2300 int device_create_file(struct device *dev,
2301 		       const struct device_attribute *attr)
2302 {
2303 	int error = 0;
2304 
2305 	if (dev) {
2306 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2307 			"Attribute %s: write permission without 'store'\n",
2308 			attr->attr.name);
2309 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2310 			"Attribute %s: read permission without 'show'\n",
2311 			attr->attr.name);
2312 		error = sysfs_create_file(&dev->kobj, &attr->attr);
2313 	}
2314 
2315 	return error;
2316 }
2317 EXPORT_SYMBOL_GPL(device_create_file);
2318 
2319 /**
2320  * device_remove_file - remove sysfs attribute file.
2321  * @dev: device.
2322  * @attr: device attribute descriptor.
2323  */
2324 void device_remove_file(struct device *dev,
2325 			const struct device_attribute *attr)
2326 {
2327 	if (dev)
2328 		sysfs_remove_file(&dev->kobj, &attr->attr);
2329 }
2330 EXPORT_SYMBOL_GPL(device_remove_file);
2331 
2332 /**
2333  * device_remove_file_self - remove sysfs attribute file from its own method.
2334  * @dev: device.
2335  * @attr: device attribute descriptor.
2336  *
2337  * See kernfs_remove_self() for details.
2338  */
2339 bool device_remove_file_self(struct device *dev,
2340 			     const struct device_attribute *attr)
2341 {
2342 	if (dev)
2343 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2344 	else
2345 		return false;
2346 }
2347 EXPORT_SYMBOL_GPL(device_remove_file_self);
2348 
2349 /**
2350  * device_create_bin_file - create sysfs binary attribute file for device.
2351  * @dev: device.
2352  * @attr: device binary attribute descriptor.
2353  */
2354 int device_create_bin_file(struct device *dev,
2355 			   const struct bin_attribute *attr)
2356 {
2357 	int error = -EINVAL;
2358 	if (dev)
2359 		error = sysfs_create_bin_file(&dev->kobj, attr);
2360 	return error;
2361 }
2362 EXPORT_SYMBOL_GPL(device_create_bin_file);
2363 
2364 /**
2365  * device_remove_bin_file - remove sysfs binary attribute file
2366  * @dev: device.
2367  * @attr: device binary attribute descriptor.
2368  */
2369 void device_remove_bin_file(struct device *dev,
2370 			    const struct bin_attribute *attr)
2371 {
2372 	if (dev)
2373 		sysfs_remove_bin_file(&dev->kobj, attr);
2374 }
2375 EXPORT_SYMBOL_GPL(device_remove_bin_file);
2376 
2377 static void klist_children_get(struct klist_node *n)
2378 {
2379 	struct device_private *p = to_device_private_parent(n);
2380 	struct device *dev = p->device;
2381 
2382 	get_device(dev);
2383 }
2384 
2385 static void klist_children_put(struct klist_node *n)
2386 {
2387 	struct device_private *p = to_device_private_parent(n);
2388 	struct device *dev = p->device;
2389 
2390 	put_device(dev);
2391 }
2392 
2393 /**
2394  * device_initialize - init device structure.
2395  * @dev: device.
2396  *
2397  * This prepares the device for use by other layers by initializing
2398  * its fields.
2399  * It is the first half of device_register(), if called by
2400  * that function, though it can also be called separately, so one
2401  * may use @dev's fields. In particular, get_device()/put_device()
2402  * may be used for reference counting of @dev after calling this
2403  * function.
2404  *
2405  * All fields in @dev must be initialized by the caller to 0, except
2406  * for those explicitly set to some other value.  The simplest
2407  * approach is to use kzalloc() to allocate the structure containing
2408  * @dev.
2409  *
2410  * NOTE: Use put_device() to give up your reference instead of freeing
2411  * @dev directly once you have called this function.
2412  */
2413 void device_initialize(struct device *dev)
2414 {
2415 	dev->kobj.kset = devices_kset;
2416 	kobject_init(&dev->kobj, &device_ktype);
2417 	INIT_LIST_HEAD(&dev->dma_pools);
2418 	mutex_init(&dev->mutex);
2419 #ifdef CONFIG_PROVE_LOCKING
2420 	mutex_init(&dev->lockdep_mutex);
2421 #endif
2422 	lockdep_set_novalidate_class(&dev->mutex);
2423 	spin_lock_init(&dev->devres_lock);
2424 	INIT_LIST_HEAD(&dev->devres_head);
2425 	device_pm_init(dev);
2426 	set_dev_node(dev, -1);
2427 #ifdef CONFIG_GENERIC_MSI_IRQ
2428 	INIT_LIST_HEAD(&dev->msi_list);
2429 #endif
2430 	INIT_LIST_HEAD(&dev->links.consumers);
2431 	INIT_LIST_HEAD(&dev->links.suppliers);
2432 	INIT_LIST_HEAD(&dev->links.needs_suppliers);
2433 	INIT_LIST_HEAD(&dev->links.defer_hook);
2434 	dev->links.status = DL_DEV_NO_DRIVER;
2435 }
2436 EXPORT_SYMBOL_GPL(device_initialize);
2437 
2438 struct kobject *virtual_device_parent(struct device *dev)
2439 {
2440 	static struct kobject *virtual_dir = NULL;
2441 
2442 	if (!virtual_dir)
2443 		virtual_dir = kobject_create_and_add("virtual",
2444 						     &devices_kset->kobj);
2445 
2446 	return virtual_dir;
2447 }
2448 
2449 struct class_dir {
2450 	struct kobject kobj;
2451 	struct class *class;
2452 };
2453 
2454 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2455 
2456 static void class_dir_release(struct kobject *kobj)
2457 {
2458 	struct class_dir *dir = to_class_dir(kobj);
2459 	kfree(dir);
2460 }
2461 
2462 static const
2463 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2464 {
2465 	struct class_dir *dir = to_class_dir(kobj);
2466 	return dir->class->ns_type;
2467 }
2468 
2469 static struct kobj_type class_dir_ktype = {
2470 	.release	= class_dir_release,
2471 	.sysfs_ops	= &kobj_sysfs_ops,
2472 	.child_ns_type	= class_dir_child_ns_type
2473 };
2474 
2475 static struct kobject *
2476 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2477 {
2478 	struct class_dir *dir;
2479 	int retval;
2480 
2481 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2482 	if (!dir)
2483 		return ERR_PTR(-ENOMEM);
2484 
2485 	dir->class = class;
2486 	kobject_init(&dir->kobj, &class_dir_ktype);
2487 
2488 	dir->kobj.kset = &class->p->glue_dirs;
2489 
2490 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2491 	if (retval < 0) {
2492 		kobject_put(&dir->kobj);
2493 		return ERR_PTR(retval);
2494 	}
2495 	return &dir->kobj;
2496 }
2497 
2498 static DEFINE_MUTEX(gdp_mutex);
2499 
2500 static struct kobject *get_device_parent(struct device *dev,
2501 					 struct device *parent)
2502 {
2503 	if (dev->class) {
2504 		struct kobject *kobj = NULL;
2505 		struct kobject *parent_kobj;
2506 		struct kobject *k;
2507 
2508 #ifdef CONFIG_BLOCK
2509 		/* block disks show up in /sys/block */
2510 		if (sysfs_deprecated && dev->class == &block_class) {
2511 			if (parent && parent->class == &block_class)
2512 				return &parent->kobj;
2513 			return &block_class.p->subsys.kobj;
2514 		}
2515 #endif
2516 
2517 		/*
2518 		 * If we have no parent, we live in "virtual".
2519 		 * Class-devices with a non class-device as parent, live
2520 		 * in a "glue" directory to prevent namespace collisions.
2521 		 */
2522 		if (parent == NULL)
2523 			parent_kobj = virtual_device_parent(dev);
2524 		else if (parent->class && !dev->class->ns_type)
2525 			return &parent->kobj;
2526 		else
2527 			parent_kobj = &parent->kobj;
2528 
2529 		mutex_lock(&gdp_mutex);
2530 
2531 		/* find our class-directory at the parent and reference it */
2532 		spin_lock(&dev->class->p->glue_dirs.list_lock);
2533 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2534 			if (k->parent == parent_kobj) {
2535 				kobj = kobject_get(k);
2536 				break;
2537 			}
2538 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
2539 		if (kobj) {
2540 			mutex_unlock(&gdp_mutex);
2541 			return kobj;
2542 		}
2543 
2544 		/* or create a new class-directory at the parent device */
2545 		k = class_dir_create_and_add(dev->class, parent_kobj);
2546 		/* do not emit an uevent for this simple "glue" directory */
2547 		mutex_unlock(&gdp_mutex);
2548 		return k;
2549 	}
2550 
2551 	/* subsystems can specify a default root directory for their devices */
2552 	if (!parent && dev->bus && dev->bus->dev_root)
2553 		return &dev->bus->dev_root->kobj;
2554 
2555 	if (parent)
2556 		return &parent->kobj;
2557 	return NULL;
2558 }
2559 
2560 static inline bool live_in_glue_dir(struct kobject *kobj,
2561 				    struct device *dev)
2562 {
2563 	if (!kobj || !dev->class ||
2564 	    kobj->kset != &dev->class->p->glue_dirs)
2565 		return false;
2566 	return true;
2567 }
2568 
2569 static inline struct kobject *get_glue_dir(struct device *dev)
2570 {
2571 	return dev->kobj.parent;
2572 }
2573 
2574 /*
2575  * make sure cleaning up dir as the last step, we need to make
2576  * sure .release handler of kobject is run with holding the
2577  * global lock
2578  */
2579 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
2580 {
2581 	unsigned int ref;
2582 
2583 	/* see if we live in a "glue" directory */
2584 	if (!live_in_glue_dir(glue_dir, dev))
2585 		return;
2586 
2587 	mutex_lock(&gdp_mutex);
2588 	/**
2589 	 * There is a race condition between removing glue directory
2590 	 * and adding a new device under the glue directory.
2591 	 *
2592 	 * CPU1:                                         CPU2:
2593 	 *
2594 	 * device_add()
2595 	 *   get_device_parent()
2596 	 *     class_dir_create_and_add()
2597 	 *       kobject_add_internal()
2598 	 *         create_dir()    // create glue_dir
2599 	 *
2600 	 *                                               device_add()
2601 	 *                                                 get_device_parent()
2602 	 *                                                   kobject_get() // get glue_dir
2603 	 *
2604 	 * device_del()
2605 	 *   cleanup_glue_dir()
2606 	 *     kobject_del(glue_dir)
2607 	 *
2608 	 *                                               kobject_add()
2609 	 *                                                 kobject_add_internal()
2610 	 *                                                   create_dir() // in glue_dir
2611 	 *                                                     sysfs_create_dir_ns()
2612 	 *                                                       kernfs_create_dir_ns(sd)
2613 	 *
2614 	 *       sysfs_remove_dir() // glue_dir->sd=NULL
2615 	 *       sysfs_put()        // free glue_dir->sd
2616 	 *
2617 	 *                                                         // sd is freed
2618 	 *                                                         kernfs_new_node(sd)
2619 	 *                                                           kernfs_get(glue_dir)
2620 	 *                                                           kernfs_add_one()
2621 	 *                                                           kernfs_put()
2622 	 *
2623 	 * Before CPU1 remove last child device under glue dir, if CPU2 add
2624 	 * a new device under glue dir, the glue_dir kobject reference count
2625 	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
2626 	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
2627 	 * and sysfs_put(). This result in glue_dir->sd is freed.
2628 	 *
2629 	 * Then the CPU2 will see a stale "empty" but still potentially used
2630 	 * glue dir around in kernfs_new_node().
2631 	 *
2632 	 * In order to avoid this happening, we also should make sure that
2633 	 * kernfs_node for glue_dir is released in CPU1 only when refcount
2634 	 * for glue_dir kobj is 1.
2635 	 */
2636 	ref = kref_read(&glue_dir->kref);
2637 	if (!kobject_has_children(glue_dir) && !--ref)
2638 		kobject_del(glue_dir);
2639 	kobject_put(glue_dir);
2640 	mutex_unlock(&gdp_mutex);
2641 }
2642 
2643 static int device_add_class_symlinks(struct device *dev)
2644 {
2645 	struct device_node *of_node = dev_of_node(dev);
2646 	int error;
2647 
2648 	if (of_node) {
2649 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
2650 		if (error)
2651 			dev_warn(dev, "Error %d creating of_node link\n",error);
2652 		/* An error here doesn't warrant bringing down the device */
2653 	}
2654 
2655 	if (!dev->class)
2656 		return 0;
2657 
2658 	error = sysfs_create_link(&dev->kobj,
2659 				  &dev->class->p->subsys.kobj,
2660 				  "subsystem");
2661 	if (error)
2662 		goto out_devnode;
2663 
2664 	if (dev->parent && device_is_not_partition(dev)) {
2665 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
2666 					  "device");
2667 		if (error)
2668 			goto out_subsys;
2669 	}
2670 
2671 #ifdef CONFIG_BLOCK
2672 	/* /sys/block has directories and does not need symlinks */
2673 	if (sysfs_deprecated && dev->class == &block_class)
2674 		return 0;
2675 #endif
2676 
2677 	/* link in the class directory pointing to the device */
2678 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
2679 				  &dev->kobj, dev_name(dev));
2680 	if (error)
2681 		goto out_device;
2682 
2683 	return 0;
2684 
2685 out_device:
2686 	sysfs_remove_link(&dev->kobj, "device");
2687 
2688 out_subsys:
2689 	sysfs_remove_link(&dev->kobj, "subsystem");
2690 out_devnode:
2691 	sysfs_remove_link(&dev->kobj, "of_node");
2692 	return error;
2693 }
2694 
2695 static void device_remove_class_symlinks(struct device *dev)
2696 {
2697 	if (dev_of_node(dev))
2698 		sysfs_remove_link(&dev->kobj, "of_node");
2699 
2700 	if (!dev->class)
2701 		return;
2702 
2703 	if (dev->parent && device_is_not_partition(dev))
2704 		sysfs_remove_link(&dev->kobj, "device");
2705 	sysfs_remove_link(&dev->kobj, "subsystem");
2706 #ifdef CONFIG_BLOCK
2707 	if (sysfs_deprecated && dev->class == &block_class)
2708 		return;
2709 #endif
2710 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
2711 }
2712 
2713 /**
2714  * dev_set_name - set a device name
2715  * @dev: device
2716  * @fmt: format string for the device's name
2717  */
2718 int dev_set_name(struct device *dev, const char *fmt, ...)
2719 {
2720 	va_list vargs;
2721 	int err;
2722 
2723 	va_start(vargs, fmt);
2724 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
2725 	va_end(vargs);
2726 	return err;
2727 }
2728 EXPORT_SYMBOL_GPL(dev_set_name);
2729 
2730 /**
2731  * device_to_dev_kobj - select a /sys/dev/ directory for the device
2732  * @dev: device
2733  *
2734  * By default we select char/ for new entries.  Setting class->dev_obj
2735  * to NULL prevents an entry from being created.  class->dev_kobj must
2736  * be set (or cleared) before any devices are registered to the class
2737  * otherwise device_create_sys_dev_entry() and
2738  * device_remove_sys_dev_entry() will disagree about the presence of
2739  * the link.
2740  */
2741 static struct kobject *device_to_dev_kobj(struct device *dev)
2742 {
2743 	struct kobject *kobj;
2744 
2745 	if (dev->class)
2746 		kobj = dev->class->dev_kobj;
2747 	else
2748 		kobj = sysfs_dev_char_kobj;
2749 
2750 	return kobj;
2751 }
2752 
2753 static int device_create_sys_dev_entry(struct device *dev)
2754 {
2755 	struct kobject *kobj = device_to_dev_kobj(dev);
2756 	int error = 0;
2757 	char devt_str[15];
2758 
2759 	if (kobj) {
2760 		format_dev_t(devt_str, dev->devt);
2761 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
2762 	}
2763 
2764 	return error;
2765 }
2766 
2767 static void device_remove_sys_dev_entry(struct device *dev)
2768 {
2769 	struct kobject *kobj = device_to_dev_kobj(dev);
2770 	char devt_str[15];
2771 
2772 	if (kobj) {
2773 		format_dev_t(devt_str, dev->devt);
2774 		sysfs_remove_link(kobj, devt_str);
2775 	}
2776 }
2777 
2778 static int device_private_init(struct device *dev)
2779 {
2780 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
2781 	if (!dev->p)
2782 		return -ENOMEM;
2783 	dev->p->device = dev;
2784 	klist_init(&dev->p->klist_children, klist_children_get,
2785 		   klist_children_put);
2786 	INIT_LIST_HEAD(&dev->p->deferred_probe);
2787 	return 0;
2788 }
2789 
2790 /**
2791  * device_add - add device to device hierarchy.
2792  * @dev: device.
2793  *
2794  * This is part 2 of device_register(), though may be called
2795  * separately _iff_ device_initialize() has been called separately.
2796  *
2797  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
2798  * to the global and sibling lists for the device, then
2799  * adds it to the other relevant subsystems of the driver model.
2800  *
2801  * Do not call this routine or device_register() more than once for
2802  * any device structure.  The driver model core is not designed to work
2803  * with devices that get unregistered and then spring back to life.
2804  * (Among other things, it's very hard to guarantee that all references
2805  * to the previous incarnation of @dev have been dropped.)  Allocate
2806  * and register a fresh new struct device instead.
2807  *
2808  * NOTE: _Never_ directly free @dev after calling this function, even
2809  * if it returned an error! Always use put_device() to give up your
2810  * reference instead.
2811  *
2812  * Rule of thumb is: if device_add() succeeds, you should call
2813  * device_del() when you want to get rid of it. If device_add() has
2814  * *not* succeeded, use *only* put_device() to drop the reference
2815  * count.
2816  */
2817 int device_add(struct device *dev)
2818 {
2819 	struct device *parent;
2820 	struct kobject *kobj;
2821 	struct class_interface *class_intf;
2822 	int error = -EINVAL;
2823 	struct kobject *glue_dir = NULL;
2824 
2825 	dev = get_device(dev);
2826 	if (!dev)
2827 		goto done;
2828 
2829 	if (!dev->p) {
2830 		error = device_private_init(dev);
2831 		if (error)
2832 			goto done;
2833 	}
2834 
2835 	/*
2836 	 * for statically allocated devices, which should all be converted
2837 	 * some day, we need to initialize the name. We prevent reading back
2838 	 * the name, and force the use of dev_name()
2839 	 */
2840 	if (dev->init_name) {
2841 		dev_set_name(dev, "%s", dev->init_name);
2842 		dev->init_name = NULL;
2843 	}
2844 
2845 	/* subsystems can specify simple device enumeration */
2846 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
2847 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
2848 
2849 	if (!dev_name(dev)) {
2850 		error = -EINVAL;
2851 		goto name_error;
2852 	}
2853 
2854 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2855 
2856 	parent = get_device(dev->parent);
2857 	kobj = get_device_parent(dev, parent);
2858 	if (IS_ERR(kobj)) {
2859 		error = PTR_ERR(kobj);
2860 		goto parent_error;
2861 	}
2862 	if (kobj)
2863 		dev->kobj.parent = kobj;
2864 
2865 	/* use parent numa_node */
2866 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
2867 		set_dev_node(dev, dev_to_node(parent));
2868 
2869 	/* first, register with generic layer. */
2870 	/* we require the name to be set before, and pass NULL */
2871 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
2872 	if (error) {
2873 		glue_dir = get_glue_dir(dev);
2874 		goto Error;
2875 	}
2876 
2877 	/* notify platform of device entry */
2878 	error = device_platform_notify(dev, KOBJ_ADD);
2879 	if (error)
2880 		goto platform_error;
2881 
2882 	error = device_create_file(dev, &dev_attr_uevent);
2883 	if (error)
2884 		goto attrError;
2885 
2886 	error = device_add_class_symlinks(dev);
2887 	if (error)
2888 		goto SymlinkError;
2889 	error = device_add_attrs(dev);
2890 	if (error)
2891 		goto AttrsError;
2892 	error = bus_add_device(dev);
2893 	if (error)
2894 		goto BusError;
2895 	error = dpm_sysfs_add(dev);
2896 	if (error)
2897 		goto DPMError;
2898 	device_pm_add(dev);
2899 
2900 	if (MAJOR(dev->devt)) {
2901 		error = device_create_file(dev, &dev_attr_dev);
2902 		if (error)
2903 			goto DevAttrError;
2904 
2905 		error = device_create_sys_dev_entry(dev);
2906 		if (error)
2907 			goto SysEntryError;
2908 
2909 		devtmpfs_create_node(dev);
2910 	}
2911 
2912 	/* Notify clients of device addition.  This call must come
2913 	 * after dpm_sysfs_add() and before kobject_uevent().
2914 	 */
2915 	if (dev->bus)
2916 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2917 					     BUS_NOTIFY_ADD_DEVICE, dev);
2918 
2919 	kobject_uevent(&dev->kobj, KOBJ_ADD);
2920 
2921 	/*
2922 	 * Check if any of the other devices (consumers) have been waiting for
2923 	 * this device (supplier) to be added so that they can create a device
2924 	 * link to it.
2925 	 *
2926 	 * This needs to happen after device_pm_add() because device_link_add()
2927 	 * requires the supplier be registered before it's called.
2928 	 *
2929 	 * But this also needs to happen before bus_probe_device() to make sure
2930 	 * waiting consumers can link to it before the driver is bound to the
2931 	 * device and the driver sync_state callback is called for this device.
2932 	 */
2933 	if (dev->fwnode && !dev->fwnode->dev) {
2934 		dev->fwnode->dev = dev;
2935 		fw_devlink_link_device(dev);
2936 	}
2937 
2938 	bus_probe_device(dev);
2939 	if (parent)
2940 		klist_add_tail(&dev->p->knode_parent,
2941 			       &parent->p->klist_children);
2942 
2943 	if (dev->class) {
2944 		mutex_lock(&dev->class->p->mutex);
2945 		/* tie the class to the device */
2946 		klist_add_tail(&dev->p->knode_class,
2947 			       &dev->class->p->klist_devices);
2948 
2949 		/* notify any interfaces that the device is here */
2950 		list_for_each_entry(class_intf,
2951 				    &dev->class->p->interfaces, node)
2952 			if (class_intf->add_dev)
2953 				class_intf->add_dev(dev, class_intf);
2954 		mutex_unlock(&dev->class->p->mutex);
2955 	}
2956 done:
2957 	put_device(dev);
2958 	return error;
2959  SysEntryError:
2960 	if (MAJOR(dev->devt))
2961 		device_remove_file(dev, &dev_attr_dev);
2962  DevAttrError:
2963 	device_pm_remove(dev);
2964 	dpm_sysfs_remove(dev);
2965  DPMError:
2966 	bus_remove_device(dev);
2967  BusError:
2968 	device_remove_attrs(dev);
2969  AttrsError:
2970 	device_remove_class_symlinks(dev);
2971  SymlinkError:
2972 	device_remove_file(dev, &dev_attr_uevent);
2973  attrError:
2974 	device_platform_notify(dev, KOBJ_REMOVE);
2975 platform_error:
2976 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2977 	glue_dir = get_glue_dir(dev);
2978 	kobject_del(&dev->kobj);
2979  Error:
2980 	cleanup_glue_dir(dev, glue_dir);
2981 parent_error:
2982 	put_device(parent);
2983 name_error:
2984 	kfree(dev->p);
2985 	dev->p = NULL;
2986 	goto done;
2987 }
2988 EXPORT_SYMBOL_GPL(device_add);
2989 
2990 /**
2991  * device_register - register a device with the system.
2992  * @dev: pointer to the device structure
2993  *
2994  * This happens in two clean steps - initialize the device
2995  * and add it to the system. The two steps can be called
2996  * separately, but this is the easiest and most common.
2997  * I.e. you should only call the two helpers separately if
2998  * have a clearly defined need to use and refcount the device
2999  * before it is added to the hierarchy.
3000  *
3001  * For more information, see the kerneldoc for device_initialize()
3002  * and device_add().
3003  *
3004  * NOTE: _Never_ directly free @dev after calling this function, even
3005  * if it returned an error! Always use put_device() to give up the
3006  * reference initialized in this function instead.
3007  */
3008 int device_register(struct device *dev)
3009 {
3010 	device_initialize(dev);
3011 	return device_add(dev);
3012 }
3013 EXPORT_SYMBOL_GPL(device_register);
3014 
3015 /**
3016  * get_device - increment reference count for device.
3017  * @dev: device.
3018  *
3019  * This simply forwards the call to kobject_get(), though
3020  * we do take care to provide for the case that we get a NULL
3021  * pointer passed in.
3022  */
3023 struct device *get_device(struct device *dev)
3024 {
3025 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3026 }
3027 EXPORT_SYMBOL_GPL(get_device);
3028 
3029 /**
3030  * put_device - decrement reference count.
3031  * @dev: device in question.
3032  */
3033 void put_device(struct device *dev)
3034 {
3035 	/* might_sleep(); */
3036 	if (dev)
3037 		kobject_put(&dev->kobj);
3038 }
3039 EXPORT_SYMBOL_GPL(put_device);
3040 
3041 bool kill_device(struct device *dev)
3042 {
3043 	/*
3044 	 * Require the device lock and set the "dead" flag to guarantee that
3045 	 * the update behavior is consistent with the other bitfields near
3046 	 * it and that we cannot have an asynchronous probe routine trying
3047 	 * to run while we are tearing out the bus/class/sysfs from
3048 	 * underneath the device.
3049 	 */
3050 	lockdep_assert_held(&dev->mutex);
3051 
3052 	if (dev->p->dead)
3053 		return false;
3054 	dev->p->dead = true;
3055 	return true;
3056 }
3057 EXPORT_SYMBOL_GPL(kill_device);
3058 
3059 /**
3060  * device_del - delete device from system.
3061  * @dev: device.
3062  *
3063  * This is the first part of the device unregistration
3064  * sequence. This removes the device from the lists we control
3065  * from here, has it removed from the other driver model
3066  * subsystems it was added to in device_add(), and removes it
3067  * from the kobject hierarchy.
3068  *
3069  * NOTE: this should be called manually _iff_ device_add() was
3070  * also called manually.
3071  */
3072 void device_del(struct device *dev)
3073 {
3074 	struct device *parent = dev->parent;
3075 	struct kobject *glue_dir = NULL;
3076 	struct class_interface *class_intf;
3077 	unsigned int noio_flag;
3078 
3079 	device_lock(dev);
3080 	kill_device(dev);
3081 	device_unlock(dev);
3082 
3083 	if (dev->fwnode && dev->fwnode->dev == dev)
3084 		dev->fwnode->dev = NULL;
3085 
3086 	/* Notify clients of device removal.  This call must come
3087 	 * before dpm_sysfs_remove().
3088 	 */
3089 	noio_flag = memalloc_noio_save();
3090 	if (dev->bus)
3091 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3092 					     BUS_NOTIFY_DEL_DEVICE, dev);
3093 
3094 	dpm_sysfs_remove(dev);
3095 	if (parent)
3096 		klist_del(&dev->p->knode_parent);
3097 	if (MAJOR(dev->devt)) {
3098 		devtmpfs_delete_node(dev);
3099 		device_remove_sys_dev_entry(dev);
3100 		device_remove_file(dev, &dev_attr_dev);
3101 	}
3102 	if (dev->class) {
3103 		device_remove_class_symlinks(dev);
3104 
3105 		mutex_lock(&dev->class->p->mutex);
3106 		/* notify any interfaces that the device is now gone */
3107 		list_for_each_entry(class_intf,
3108 				    &dev->class->p->interfaces, node)
3109 			if (class_intf->remove_dev)
3110 				class_intf->remove_dev(dev, class_intf);
3111 		/* remove the device from the class list */
3112 		klist_del(&dev->p->knode_class);
3113 		mutex_unlock(&dev->class->p->mutex);
3114 	}
3115 	device_remove_file(dev, &dev_attr_uevent);
3116 	device_remove_attrs(dev);
3117 	bus_remove_device(dev);
3118 	device_pm_remove(dev);
3119 	driver_deferred_probe_del(dev);
3120 	device_platform_notify(dev, KOBJ_REMOVE);
3121 	device_remove_properties(dev);
3122 	device_links_purge(dev);
3123 
3124 	if (dev->bus)
3125 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3126 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
3127 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3128 	glue_dir = get_glue_dir(dev);
3129 	kobject_del(&dev->kobj);
3130 	cleanup_glue_dir(dev, glue_dir);
3131 	memalloc_noio_restore(noio_flag);
3132 	put_device(parent);
3133 }
3134 EXPORT_SYMBOL_GPL(device_del);
3135 
3136 /**
3137  * device_unregister - unregister device from system.
3138  * @dev: device going away.
3139  *
3140  * We do this in two parts, like we do device_register(). First,
3141  * we remove it from all the subsystems with device_del(), then
3142  * we decrement the reference count via put_device(). If that
3143  * is the final reference count, the device will be cleaned up
3144  * via device_release() above. Otherwise, the structure will
3145  * stick around until the final reference to the device is dropped.
3146  */
3147 void device_unregister(struct device *dev)
3148 {
3149 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3150 	device_del(dev);
3151 	put_device(dev);
3152 }
3153 EXPORT_SYMBOL_GPL(device_unregister);
3154 
3155 static struct device *prev_device(struct klist_iter *i)
3156 {
3157 	struct klist_node *n = klist_prev(i);
3158 	struct device *dev = NULL;
3159 	struct device_private *p;
3160 
3161 	if (n) {
3162 		p = to_device_private_parent(n);
3163 		dev = p->device;
3164 	}
3165 	return dev;
3166 }
3167 
3168 static struct device *next_device(struct klist_iter *i)
3169 {
3170 	struct klist_node *n = klist_next(i);
3171 	struct device *dev = NULL;
3172 	struct device_private *p;
3173 
3174 	if (n) {
3175 		p = to_device_private_parent(n);
3176 		dev = p->device;
3177 	}
3178 	return dev;
3179 }
3180 
3181 /**
3182  * device_get_devnode - path of device node file
3183  * @dev: device
3184  * @mode: returned file access mode
3185  * @uid: returned file owner
3186  * @gid: returned file group
3187  * @tmp: possibly allocated string
3188  *
3189  * Return the relative path of a possible device node.
3190  * Non-default names may need to allocate a memory to compose
3191  * a name. This memory is returned in tmp and needs to be
3192  * freed by the caller.
3193  */
3194 const char *device_get_devnode(struct device *dev,
3195 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3196 			       const char **tmp)
3197 {
3198 	char *s;
3199 
3200 	*tmp = NULL;
3201 
3202 	/* the device type may provide a specific name */
3203 	if (dev->type && dev->type->devnode)
3204 		*tmp = dev->type->devnode(dev, mode, uid, gid);
3205 	if (*tmp)
3206 		return *tmp;
3207 
3208 	/* the class may provide a specific name */
3209 	if (dev->class && dev->class->devnode)
3210 		*tmp = dev->class->devnode(dev, mode);
3211 	if (*tmp)
3212 		return *tmp;
3213 
3214 	/* return name without allocation, tmp == NULL */
3215 	if (strchr(dev_name(dev), '!') == NULL)
3216 		return dev_name(dev);
3217 
3218 	/* replace '!' in the name with '/' */
3219 	s = kstrdup(dev_name(dev), GFP_KERNEL);
3220 	if (!s)
3221 		return NULL;
3222 	strreplace(s, '!', '/');
3223 	return *tmp = s;
3224 }
3225 
3226 /**
3227  * device_for_each_child - device child iterator.
3228  * @parent: parent struct device.
3229  * @fn: function to be called for each device.
3230  * @data: data for the callback.
3231  *
3232  * Iterate over @parent's child devices, and call @fn for each,
3233  * passing it @data.
3234  *
3235  * We check the return of @fn each time. If it returns anything
3236  * other than 0, we break out and return that value.
3237  */
3238 int device_for_each_child(struct device *parent, void *data,
3239 			  int (*fn)(struct device *dev, void *data))
3240 {
3241 	struct klist_iter i;
3242 	struct device *child;
3243 	int error = 0;
3244 
3245 	if (!parent->p)
3246 		return 0;
3247 
3248 	klist_iter_init(&parent->p->klist_children, &i);
3249 	while (!error && (child = next_device(&i)))
3250 		error = fn(child, data);
3251 	klist_iter_exit(&i);
3252 	return error;
3253 }
3254 EXPORT_SYMBOL_GPL(device_for_each_child);
3255 
3256 /**
3257  * device_for_each_child_reverse - device child iterator in reversed order.
3258  * @parent: parent struct device.
3259  * @fn: function to be called for each device.
3260  * @data: data for the callback.
3261  *
3262  * Iterate over @parent's child devices, and call @fn for each,
3263  * passing it @data.
3264  *
3265  * We check the return of @fn each time. If it returns anything
3266  * other than 0, we break out and return that value.
3267  */
3268 int device_for_each_child_reverse(struct device *parent, void *data,
3269 				  int (*fn)(struct device *dev, void *data))
3270 {
3271 	struct klist_iter i;
3272 	struct device *child;
3273 	int error = 0;
3274 
3275 	if (!parent->p)
3276 		return 0;
3277 
3278 	klist_iter_init(&parent->p->klist_children, &i);
3279 	while ((child = prev_device(&i)) && !error)
3280 		error = fn(child, data);
3281 	klist_iter_exit(&i);
3282 	return error;
3283 }
3284 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3285 
3286 /**
3287  * device_find_child - device iterator for locating a particular device.
3288  * @parent: parent struct device
3289  * @match: Callback function to check device
3290  * @data: Data to pass to match function
3291  *
3292  * This is similar to the device_for_each_child() function above, but it
3293  * returns a reference to a device that is 'found' for later use, as
3294  * determined by the @match callback.
3295  *
3296  * The callback should return 0 if the device doesn't match and non-zero
3297  * if it does.  If the callback returns non-zero and a reference to the
3298  * current device can be obtained, this function will return to the caller
3299  * and not iterate over any more devices.
3300  *
3301  * NOTE: you will need to drop the reference with put_device() after use.
3302  */
3303 struct device *device_find_child(struct device *parent, void *data,
3304 				 int (*match)(struct device *dev, void *data))
3305 {
3306 	struct klist_iter i;
3307 	struct device *child;
3308 
3309 	if (!parent)
3310 		return NULL;
3311 
3312 	klist_iter_init(&parent->p->klist_children, &i);
3313 	while ((child = next_device(&i)))
3314 		if (match(child, data) && get_device(child))
3315 			break;
3316 	klist_iter_exit(&i);
3317 	return child;
3318 }
3319 EXPORT_SYMBOL_GPL(device_find_child);
3320 
3321 /**
3322  * device_find_child_by_name - device iterator for locating a child device.
3323  * @parent: parent struct device
3324  * @name: name of the child device
3325  *
3326  * This is similar to the device_find_child() function above, but it
3327  * returns a reference to a device that has the name @name.
3328  *
3329  * NOTE: you will need to drop the reference with put_device() after use.
3330  */
3331 struct device *device_find_child_by_name(struct device *parent,
3332 					 const char *name)
3333 {
3334 	struct klist_iter i;
3335 	struct device *child;
3336 
3337 	if (!parent)
3338 		return NULL;
3339 
3340 	klist_iter_init(&parent->p->klist_children, &i);
3341 	while ((child = next_device(&i)))
3342 		if (sysfs_streq(dev_name(child), name) && get_device(child))
3343 			break;
3344 	klist_iter_exit(&i);
3345 	return child;
3346 }
3347 EXPORT_SYMBOL_GPL(device_find_child_by_name);
3348 
3349 int __init devices_init(void)
3350 {
3351 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3352 	if (!devices_kset)
3353 		return -ENOMEM;
3354 	dev_kobj = kobject_create_and_add("dev", NULL);
3355 	if (!dev_kobj)
3356 		goto dev_kobj_err;
3357 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3358 	if (!sysfs_dev_block_kobj)
3359 		goto block_kobj_err;
3360 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3361 	if (!sysfs_dev_char_kobj)
3362 		goto char_kobj_err;
3363 
3364 	return 0;
3365 
3366  char_kobj_err:
3367 	kobject_put(sysfs_dev_block_kobj);
3368  block_kobj_err:
3369 	kobject_put(dev_kobj);
3370  dev_kobj_err:
3371 	kset_unregister(devices_kset);
3372 	return -ENOMEM;
3373 }
3374 
3375 static int device_check_offline(struct device *dev, void *not_used)
3376 {
3377 	int ret;
3378 
3379 	ret = device_for_each_child(dev, NULL, device_check_offline);
3380 	if (ret)
3381 		return ret;
3382 
3383 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3384 }
3385 
3386 /**
3387  * device_offline - Prepare the device for hot-removal.
3388  * @dev: Device to be put offline.
3389  *
3390  * Execute the device bus type's .offline() callback, if present, to prepare
3391  * the device for a subsequent hot-removal.  If that succeeds, the device must
3392  * not be used until either it is removed or its bus type's .online() callback
3393  * is executed.
3394  *
3395  * Call under device_hotplug_lock.
3396  */
3397 int device_offline(struct device *dev)
3398 {
3399 	int ret;
3400 
3401 	if (dev->offline_disabled)
3402 		return -EPERM;
3403 
3404 	ret = device_for_each_child(dev, NULL, device_check_offline);
3405 	if (ret)
3406 		return ret;
3407 
3408 	device_lock(dev);
3409 	if (device_supports_offline(dev)) {
3410 		if (dev->offline) {
3411 			ret = 1;
3412 		} else {
3413 			ret = dev->bus->offline(dev);
3414 			if (!ret) {
3415 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3416 				dev->offline = true;
3417 			}
3418 		}
3419 	}
3420 	device_unlock(dev);
3421 
3422 	return ret;
3423 }
3424 
3425 /**
3426  * device_online - Put the device back online after successful device_offline().
3427  * @dev: Device to be put back online.
3428  *
3429  * If device_offline() has been successfully executed for @dev, but the device
3430  * has not been removed subsequently, execute its bus type's .online() callback
3431  * to indicate that the device can be used again.
3432  *
3433  * Call under device_hotplug_lock.
3434  */
3435 int device_online(struct device *dev)
3436 {
3437 	int ret = 0;
3438 
3439 	device_lock(dev);
3440 	if (device_supports_offline(dev)) {
3441 		if (dev->offline) {
3442 			ret = dev->bus->online(dev);
3443 			if (!ret) {
3444 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3445 				dev->offline = false;
3446 			}
3447 		} else {
3448 			ret = 1;
3449 		}
3450 	}
3451 	device_unlock(dev);
3452 
3453 	return ret;
3454 }
3455 
3456 struct root_device {
3457 	struct device dev;
3458 	struct module *owner;
3459 };
3460 
3461 static inline struct root_device *to_root_device(struct device *d)
3462 {
3463 	return container_of(d, struct root_device, dev);
3464 }
3465 
3466 static void root_device_release(struct device *dev)
3467 {
3468 	kfree(to_root_device(dev));
3469 }
3470 
3471 /**
3472  * __root_device_register - allocate and register a root device
3473  * @name: root device name
3474  * @owner: owner module of the root device, usually THIS_MODULE
3475  *
3476  * This function allocates a root device and registers it
3477  * using device_register(). In order to free the returned
3478  * device, use root_device_unregister().
3479  *
3480  * Root devices are dummy devices which allow other devices
3481  * to be grouped under /sys/devices. Use this function to
3482  * allocate a root device and then use it as the parent of
3483  * any device which should appear under /sys/devices/{name}
3484  *
3485  * The /sys/devices/{name} directory will also contain a
3486  * 'module' symlink which points to the @owner directory
3487  * in sysfs.
3488  *
3489  * Returns &struct device pointer on success, or ERR_PTR() on error.
3490  *
3491  * Note: You probably want to use root_device_register().
3492  */
3493 struct device *__root_device_register(const char *name, struct module *owner)
3494 {
3495 	struct root_device *root;
3496 	int err = -ENOMEM;
3497 
3498 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3499 	if (!root)
3500 		return ERR_PTR(err);
3501 
3502 	err = dev_set_name(&root->dev, "%s", name);
3503 	if (err) {
3504 		kfree(root);
3505 		return ERR_PTR(err);
3506 	}
3507 
3508 	root->dev.release = root_device_release;
3509 
3510 	err = device_register(&root->dev);
3511 	if (err) {
3512 		put_device(&root->dev);
3513 		return ERR_PTR(err);
3514 	}
3515 
3516 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
3517 	if (owner) {
3518 		struct module_kobject *mk = &owner->mkobj;
3519 
3520 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3521 		if (err) {
3522 			device_unregister(&root->dev);
3523 			return ERR_PTR(err);
3524 		}
3525 		root->owner = owner;
3526 	}
3527 #endif
3528 
3529 	return &root->dev;
3530 }
3531 EXPORT_SYMBOL_GPL(__root_device_register);
3532 
3533 /**
3534  * root_device_unregister - unregister and free a root device
3535  * @dev: device going away
3536  *
3537  * This function unregisters and cleans up a device that was created by
3538  * root_device_register().
3539  */
3540 void root_device_unregister(struct device *dev)
3541 {
3542 	struct root_device *root = to_root_device(dev);
3543 
3544 	if (root->owner)
3545 		sysfs_remove_link(&root->dev.kobj, "module");
3546 
3547 	device_unregister(dev);
3548 }
3549 EXPORT_SYMBOL_GPL(root_device_unregister);
3550 
3551 
3552 static void device_create_release(struct device *dev)
3553 {
3554 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3555 	kfree(dev);
3556 }
3557 
3558 static __printf(6, 0) struct device *
3559 device_create_groups_vargs(struct class *class, struct device *parent,
3560 			   dev_t devt, void *drvdata,
3561 			   const struct attribute_group **groups,
3562 			   const char *fmt, va_list args)
3563 {
3564 	struct device *dev = NULL;
3565 	int retval = -ENODEV;
3566 
3567 	if (class == NULL || IS_ERR(class))
3568 		goto error;
3569 
3570 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3571 	if (!dev) {
3572 		retval = -ENOMEM;
3573 		goto error;
3574 	}
3575 
3576 	device_initialize(dev);
3577 	dev->devt = devt;
3578 	dev->class = class;
3579 	dev->parent = parent;
3580 	dev->groups = groups;
3581 	dev->release = device_create_release;
3582 	dev_set_drvdata(dev, drvdata);
3583 
3584 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
3585 	if (retval)
3586 		goto error;
3587 
3588 	retval = device_add(dev);
3589 	if (retval)
3590 		goto error;
3591 
3592 	return dev;
3593 
3594 error:
3595 	put_device(dev);
3596 	return ERR_PTR(retval);
3597 }
3598 
3599 /**
3600  * device_create - creates a device and registers it with sysfs
3601  * @class: pointer to the struct class that this device should be registered to
3602  * @parent: pointer to the parent struct device of this new device, if any
3603  * @devt: the dev_t for the char device to be added
3604  * @drvdata: the data to be added to the device for callbacks
3605  * @fmt: string for the device's name
3606  *
3607  * This function can be used by char device classes.  A struct device
3608  * will be created in sysfs, registered to the specified class.
3609  *
3610  * A "dev" file will be created, showing the dev_t for the device, if
3611  * the dev_t is not 0,0.
3612  * If a pointer to a parent struct device is passed in, the newly created
3613  * struct device will be a child of that device in sysfs.
3614  * The pointer to the struct device will be returned from the call.
3615  * Any further sysfs files that might be required can be created using this
3616  * pointer.
3617  *
3618  * Returns &struct device pointer on success, or ERR_PTR() on error.
3619  *
3620  * Note: the struct class passed to this function must have previously
3621  * been created with a call to class_create().
3622  */
3623 struct device *device_create(struct class *class, struct device *parent,
3624 			     dev_t devt, void *drvdata, const char *fmt, ...)
3625 {
3626 	va_list vargs;
3627 	struct device *dev;
3628 
3629 	va_start(vargs, fmt);
3630 	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
3631 					  fmt, vargs);
3632 	va_end(vargs);
3633 	return dev;
3634 }
3635 EXPORT_SYMBOL_GPL(device_create);
3636 
3637 /**
3638  * device_create_with_groups - creates a device and registers it with sysfs
3639  * @class: pointer to the struct class that this device should be registered to
3640  * @parent: pointer to the parent struct device of this new device, if any
3641  * @devt: the dev_t for the char device to be added
3642  * @drvdata: the data to be added to the device for callbacks
3643  * @groups: NULL-terminated list of attribute groups to be created
3644  * @fmt: string for the device's name
3645  *
3646  * This function can be used by char device classes.  A struct device
3647  * will be created in sysfs, registered to the specified class.
3648  * Additional attributes specified in the groups parameter will also
3649  * be created automatically.
3650  *
3651  * A "dev" file will be created, showing the dev_t for the device, if
3652  * the dev_t is not 0,0.
3653  * If a pointer to a parent struct device is passed in, the newly created
3654  * struct device will be a child of that device in sysfs.
3655  * The pointer to the struct device will be returned from the call.
3656  * Any further sysfs files that might be required can be created using this
3657  * pointer.
3658  *
3659  * Returns &struct device pointer on success, or ERR_PTR() on error.
3660  *
3661  * Note: the struct class passed to this function must have previously
3662  * been created with a call to class_create().
3663  */
3664 struct device *device_create_with_groups(struct class *class,
3665 					 struct device *parent, dev_t devt,
3666 					 void *drvdata,
3667 					 const struct attribute_group **groups,
3668 					 const char *fmt, ...)
3669 {
3670 	va_list vargs;
3671 	struct device *dev;
3672 
3673 	va_start(vargs, fmt);
3674 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
3675 					 fmt, vargs);
3676 	va_end(vargs);
3677 	return dev;
3678 }
3679 EXPORT_SYMBOL_GPL(device_create_with_groups);
3680 
3681 /**
3682  * device_destroy - removes a device that was created with device_create()
3683  * @class: pointer to the struct class that this device was registered with
3684  * @devt: the dev_t of the device that was previously registered
3685  *
3686  * This call unregisters and cleans up a device that was created with a
3687  * call to device_create().
3688  */
3689 void device_destroy(struct class *class, dev_t devt)
3690 {
3691 	struct device *dev;
3692 
3693 	dev = class_find_device_by_devt(class, devt);
3694 	if (dev) {
3695 		put_device(dev);
3696 		device_unregister(dev);
3697 	}
3698 }
3699 EXPORT_SYMBOL_GPL(device_destroy);
3700 
3701 /**
3702  * device_rename - renames a device
3703  * @dev: the pointer to the struct device to be renamed
3704  * @new_name: the new name of the device
3705  *
3706  * It is the responsibility of the caller to provide mutual
3707  * exclusion between two different calls of device_rename
3708  * on the same device to ensure that new_name is valid and
3709  * won't conflict with other devices.
3710  *
3711  * Note: Don't call this function.  Currently, the networking layer calls this
3712  * function, but that will change.  The following text from Kay Sievers offers
3713  * some insight:
3714  *
3715  * Renaming devices is racy at many levels, symlinks and other stuff are not
3716  * replaced atomically, and you get a "move" uevent, but it's not easy to
3717  * connect the event to the old and new device. Device nodes are not renamed at
3718  * all, there isn't even support for that in the kernel now.
3719  *
3720  * In the meantime, during renaming, your target name might be taken by another
3721  * driver, creating conflicts. Or the old name is taken directly after you
3722  * renamed it -- then you get events for the same DEVPATH, before you even see
3723  * the "move" event. It's just a mess, and nothing new should ever rely on
3724  * kernel device renaming. Besides that, it's not even implemented now for
3725  * other things than (driver-core wise very simple) network devices.
3726  *
3727  * We are currently about to change network renaming in udev to completely
3728  * disallow renaming of devices in the same namespace as the kernel uses,
3729  * because we can't solve the problems properly, that arise with swapping names
3730  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
3731  * be allowed to some other name than eth[0-9]*, for the aforementioned
3732  * reasons.
3733  *
3734  * Make up a "real" name in the driver before you register anything, or add
3735  * some other attributes for userspace to find the device, or use udev to add
3736  * symlinks -- but never rename kernel devices later, it's a complete mess. We
3737  * don't even want to get into that and try to implement the missing pieces in
3738  * the core. We really have other pieces to fix in the driver core mess. :)
3739  */
3740 int device_rename(struct device *dev, const char *new_name)
3741 {
3742 	struct kobject *kobj = &dev->kobj;
3743 	char *old_device_name = NULL;
3744 	int error;
3745 
3746 	dev = get_device(dev);
3747 	if (!dev)
3748 		return -EINVAL;
3749 
3750 	dev_dbg(dev, "renaming to %s\n", new_name);
3751 
3752 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
3753 	if (!old_device_name) {
3754 		error = -ENOMEM;
3755 		goto out;
3756 	}
3757 
3758 	if (dev->class) {
3759 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
3760 					     kobj, old_device_name,
3761 					     new_name, kobject_namespace(kobj));
3762 		if (error)
3763 			goto out;
3764 	}
3765 
3766 	error = kobject_rename(kobj, new_name);
3767 	if (error)
3768 		goto out;
3769 
3770 out:
3771 	put_device(dev);
3772 
3773 	kfree(old_device_name);
3774 
3775 	return error;
3776 }
3777 EXPORT_SYMBOL_GPL(device_rename);
3778 
3779 static int device_move_class_links(struct device *dev,
3780 				   struct device *old_parent,
3781 				   struct device *new_parent)
3782 {
3783 	int error = 0;
3784 
3785 	if (old_parent)
3786 		sysfs_remove_link(&dev->kobj, "device");
3787 	if (new_parent)
3788 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
3789 					  "device");
3790 	return error;
3791 }
3792 
3793 /**
3794  * device_move - moves a device to a new parent
3795  * @dev: the pointer to the struct device to be moved
3796  * @new_parent: the new parent of the device (can be NULL)
3797  * @dpm_order: how to reorder the dpm_list
3798  */
3799 int device_move(struct device *dev, struct device *new_parent,
3800 		enum dpm_order dpm_order)
3801 {
3802 	int error;
3803 	struct device *old_parent;
3804 	struct kobject *new_parent_kobj;
3805 
3806 	dev = get_device(dev);
3807 	if (!dev)
3808 		return -EINVAL;
3809 
3810 	device_pm_lock();
3811 	new_parent = get_device(new_parent);
3812 	new_parent_kobj = get_device_parent(dev, new_parent);
3813 	if (IS_ERR(new_parent_kobj)) {
3814 		error = PTR_ERR(new_parent_kobj);
3815 		put_device(new_parent);
3816 		goto out;
3817 	}
3818 
3819 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
3820 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
3821 	error = kobject_move(&dev->kobj, new_parent_kobj);
3822 	if (error) {
3823 		cleanup_glue_dir(dev, new_parent_kobj);
3824 		put_device(new_parent);
3825 		goto out;
3826 	}
3827 	old_parent = dev->parent;
3828 	dev->parent = new_parent;
3829 	if (old_parent)
3830 		klist_remove(&dev->p->knode_parent);
3831 	if (new_parent) {
3832 		klist_add_tail(&dev->p->knode_parent,
3833 			       &new_parent->p->klist_children);
3834 		set_dev_node(dev, dev_to_node(new_parent));
3835 	}
3836 
3837 	if (dev->class) {
3838 		error = device_move_class_links(dev, old_parent, new_parent);
3839 		if (error) {
3840 			/* We ignore errors on cleanup since we're hosed anyway... */
3841 			device_move_class_links(dev, new_parent, old_parent);
3842 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
3843 				if (new_parent)
3844 					klist_remove(&dev->p->knode_parent);
3845 				dev->parent = old_parent;
3846 				if (old_parent) {
3847 					klist_add_tail(&dev->p->knode_parent,
3848 						       &old_parent->p->klist_children);
3849 					set_dev_node(dev, dev_to_node(old_parent));
3850 				}
3851 			}
3852 			cleanup_glue_dir(dev, new_parent_kobj);
3853 			put_device(new_parent);
3854 			goto out;
3855 		}
3856 	}
3857 	switch (dpm_order) {
3858 	case DPM_ORDER_NONE:
3859 		break;
3860 	case DPM_ORDER_DEV_AFTER_PARENT:
3861 		device_pm_move_after(dev, new_parent);
3862 		devices_kset_move_after(dev, new_parent);
3863 		break;
3864 	case DPM_ORDER_PARENT_BEFORE_DEV:
3865 		device_pm_move_before(new_parent, dev);
3866 		devices_kset_move_before(new_parent, dev);
3867 		break;
3868 	case DPM_ORDER_DEV_LAST:
3869 		device_pm_move_last(dev);
3870 		devices_kset_move_last(dev);
3871 		break;
3872 	}
3873 
3874 	put_device(old_parent);
3875 out:
3876 	device_pm_unlock();
3877 	put_device(dev);
3878 	return error;
3879 }
3880 EXPORT_SYMBOL_GPL(device_move);
3881 
3882 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
3883 				     kgid_t kgid)
3884 {
3885 	struct kobject *kobj = &dev->kobj;
3886 	struct class *class = dev->class;
3887 	const struct device_type *type = dev->type;
3888 	int error;
3889 
3890 	if (class) {
3891 		/*
3892 		 * Change the device groups of the device class for @dev to
3893 		 * @kuid/@kgid.
3894 		 */
3895 		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
3896 						  kgid);
3897 		if (error)
3898 			return error;
3899 	}
3900 
3901 	if (type) {
3902 		/*
3903 		 * Change the device groups of the device type for @dev to
3904 		 * @kuid/@kgid.
3905 		 */
3906 		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
3907 						  kgid);
3908 		if (error)
3909 			return error;
3910 	}
3911 
3912 	/* Change the device groups of @dev to @kuid/@kgid. */
3913 	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
3914 	if (error)
3915 		return error;
3916 
3917 	if (device_supports_offline(dev) && !dev->offline_disabled) {
3918 		/* Change online device attributes of @dev to @kuid/@kgid. */
3919 		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
3920 						kuid, kgid);
3921 		if (error)
3922 			return error;
3923 	}
3924 
3925 	return 0;
3926 }
3927 
3928 /**
3929  * device_change_owner - change the owner of an existing device.
3930  * @dev: device.
3931  * @kuid: new owner's kuid
3932  * @kgid: new owner's kgid
3933  *
3934  * This changes the owner of @dev and its corresponding sysfs entries to
3935  * @kuid/@kgid. This function closely mirrors how @dev was added via driver
3936  * core.
3937  *
3938  * Returns 0 on success or error code on failure.
3939  */
3940 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
3941 {
3942 	int error;
3943 	struct kobject *kobj = &dev->kobj;
3944 
3945 	dev = get_device(dev);
3946 	if (!dev)
3947 		return -EINVAL;
3948 
3949 	/*
3950 	 * Change the kobject and the default attributes and groups of the
3951 	 * ktype associated with it to @kuid/@kgid.
3952 	 */
3953 	error = sysfs_change_owner(kobj, kuid, kgid);
3954 	if (error)
3955 		goto out;
3956 
3957 	/*
3958 	 * Change the uevent file for @dev to the new owner. The uevent file
3959 	 * was created in a separate step when @dev got added and we mirror
3960 	 * that step here.
3961 	 */
3962 	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
3963 					kgid);
3964 	if (error)
3965 		goto out;
3966 
3967 	/*
3968 	 * Change the device groups, the device groups associated with the
3969 	 * device class, and the groups associated with the device type of @dev
3970 	 * to @kuid/@kgid.
3971 	 */
3972 	error = device_attrs_change_owner(dev, kuid, kgid);
3973 	if (error)
3974 		goto out;
3975 
3976 	error = dpm_sysfs_change_owner(dev, kuid, kgid);
3977 	if (error)
3978 		goto out;
3979 
3980 #ifdef CONFIG_BLOCK
3981 	if (sysfs_deprecated && dev->class == &block_class)
3982 		goto out;
3983 #endif
3984 
3985 	/*
3986 	 * Change the owner of the symlink located in the class directory of
3987 	 * the device class associated with @dev which points to the actual
3988 	 * directory entry for @dev to @kuid/@kgid. This ensures that the
3989 	 * symlink shows the same permissions as its target.
3990 	 */
3991 	error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
3992 					dev_name(dev), kuid, kgid);
3993 	if (error)
3994 		goto out;
3995 
3996 out:
3997 	put_device(dev);
3998 	return error;
3999 }
4000 EXPORT_SYMBOL_GPL(device_change_owner);
4001 
4002 /**
4003  * device_shutdown - call ->shutdown() on each device to shutdown.
4004  */
4005 void device_shutdown(void)
4006 {
4007 	struct device *dev, *parent;
4008 
4009 	wait_for_device_probe();
4010 	device_block_probing();
4011 
4012 	cpufreq_suspend();
4013 
4014 	spin_lock(&devices_kset->list_lock);
4015 	/*
4016 	 * Walk the devices list backward, shutting down each in turn.
4017 	 * Beware that device unplug events may also start pulling
4018 	 * devices offline, even as the system is shutting down.
4019 	 */
4020 	while (!list_empty(&devices_kset->list)) {
4021 		dev = list_entry(devices_kset->list.prev, struct device,
4022 				kobj.entry);
4023 
4024 		/*
4025 		 * hold reference count of device's parent to
4026 		 * prevent it from being freed because parent's
4027 		 * lock is to be held
4028 		 */
4029 		parent = get_device(dev->parent);
4030 		get_device(dev);
4031 		/*
4032 		 * Make sure the device is off the kset list, in the
4033 		 * event that dev->*->shutdown() doesn't remove it.
4034 		 */
4035 		list_del_init(&dev->kobj.entry);
4036 		spin_unlock(&devices_kset->list_lock);
4037 
4038 		/* hold lock to avoid race with probe/release */
4039 		if (parent)
4040 			device_lock(parent);
4041 		device_lock(dev);
4042 
4043 		/* Don't allow any more runtime suspends */
4044 		pm_runtime_get_noresume(dev);
4045 		pm_runtime_barrier(dev);
4046 
4047 		if (dev->class && dev->class->shutdown_pre) {
4048 			if (initcall_debug)
4049 				dev_info(dev, "shutdown_pre\n");
4050 			dev->class->shutdown_pre(dev);
4051 		}
4052 		if (dev->bus && dev->bus->shutdown) {
4053 			if (initcall_debug)
4054 				dev_info(dev, "shutdown\n");
4055 			dev->bus->shutdown(dev);
4056 		} else if (dev->driver && dev->driver->shutdown) {
4057 			if (initcall_debug)
4058 				dev_info(dev, "shutdown\n");
4059 			dev->driver->shutdown(dev);
4060 		}
4061 
4062 		device_unlock(dev);
4063 		if (parent)
4064 			device_unlock(parent);
4065 
4066 		put_device(dev);
4067 		put_device(parent);
4068 
4069 		spin_lock(&devices_kset->list_lock);
4070 	}
4071 	spin_unlock(&devices_kset->list_lock);
4072 }
4073 
4074 /*
4075  * Device logging functions
4076  */
4077 
4078 #ifdef CONFIG_PRINTK
4079 static void
4080 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4081 {
4082 	const char *subsys;
4083 
4084 	memset(dev_info, 0, sizeof(*dev_info));
4085 
4086 	if (dev->class)
4087 		subsys = dev->class->name;
4088 	else if (dev->bus)
4089 		subsys = dev->bus->name;
4090 	else
4091 		return;
4092 
4093 	strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4094 
4095 	/*
4096 	 * Add device identifier DEVICE=:
4097 	 *   b12:8         block dev_t
4098 	 *   c127:3        char dev_t
4099 	 *   n8            netdev ifindex
4100 	 *   +sound:card0  subsystem:devname
4101 	 */
4102 	if (MAJOR(dev->devt)) {
4103 		char c;
4104 
4105 		if (strcmp(subsys, "block") == 0)
4106 			c = 'b';
4107 		else
4108 			c = 'c';
4109 
4110 		snprintf(dev_info->device, sizeof(dev_info->device),
4111 			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4112 	} else if (strcmp(subsys, "net") == 0) {
4113 		struct net_device *net = to_net_dev(dev);
4114 
4115 		snprintf(dev_info->device, sizeof(dev_info->device),
4116 			 "n%u", net->ifindex);
4117 	} else {
4118 		snprintf(dev_info->device, sizeof(dev_info->device),
4119 			 "+%s:%s", subsys, dev_name(dev));
4120 	}
4121 }
4122 
4123 int dev_vprintk_emit(int level, const struct device *dev,
4124 		     const char *fmt, va_list args)
4125 {
4126 	struct dev_printk_info dev_info;
4127 
4128 	set_dev_info(dev, &dev_info);
4129 
4130 	return vprintk_emit(0, level, &dev_info, fmt, args);
4131 }
4132 EXPORT_SYMBOL(dev_vprintk_emit);
4133 
4134 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4135 {
4136 	va_list args;
4137 	int r;
4138 
4139 	va_start(args, fmt);
4140 
4141 	r = dev_vprintk_emit(level, dev, fmt, args);
4142 
4143 	va_end(args);
4144 
4145 	return r;
4146 }
4147 EXPORT_SYMBOL(dev_printk_emit);
4148 
4149 static void __dev_printk(const char *level, const struct device *dev,
4150 			struct va_format *vaf)
4151 {
4152 	if (dev)
4153 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4154 				dev_driver_string(dev), dev_name(dev), vaf);
4155 	else
4156 		printk("%s(NULL device *): %pV", level, vaf);
4157 }
4158 
4159 void dev_printk(const char *level, const struct device *dev,
4160 		const char *fmt, ...)
4161 {
4162 	struct va_format vaf;
4163 	va_list args;
4164 
4165 	va_start(args, fmt);
4166 
4167 	vaf.fmt = fmt;
4168 	vaf.va = &args;
4169 
4170 	__dev_printk(level, dev, &vaf);
4171 
4172 	va_end(args);
4173 }
4174 EXPORT_SYMBOL(dev_printk);
4175 
4176 #define define_dev_printk_level(func, kern_level)		\
4177 void func(const struct device *dev, const char *fmt, ...)	\
4178 {								\
4179 	struct va_format vaf;					\
4180 	va_list args;						\
4181 								\
4182 	va_start(args, fmt);					\
4183 								\
4184 	vaf.fmt = fmt;						\
4185 	vaf.va = &args;						\
4186 								\
4187 	__dev_printk(kern_level, dev, &vaf);			\
4188 								\
4189 	va_end(args);						\
4190 }								\
4191 EXPORT_SYMBOL(func);
4192 
4193 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4194 define_dev_printk_level(_dev_alert, KERN_ALERT);
4195 define_dev_printk_level(_dev_crit, KERN_CRIT);
4196 define_dev_printk_level(_dev_err, KERN_ERR);
4197 define_dev_printk_level(_dev_warn, KERN_WARNING);
4198 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4199 define_dev_printk_level(_dev_info, KERN_INFO);
4200 
4201 #endif
4202 
4203 /**
4204  * dev_err_probe - probe error check and log helper
4205  * @dev: the pointer to the struct device
4206  * @err: error value to test
4207  * @fmt: printf-style format string
4208  * @...: arguments as specified in the format string
4209  *
4210  * This helper implements common pattern present in probe functions for error
4211  * checking: print debug or error message depending if the error value is
4212  * -EPROBE_DEFER and propagate error upwards.
4213  * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4214  * checked later by reading devices_deferred debugfs attribute.
4215  * It replaces code sequence::
4216  *
4217  * 	if (err != -EPROBE_DEFER)
4218  * 		dev_err(dev, ...);
4219  * 	else
4220  * 		dev_dbg(dev, ...);
4221  * 	return err;
4222  *
4223  * with::
4224  *
4225  * 	return dev_err_probe(dev, err, ...);
4226  *
4227  * Returns @err.
4228  *
4229  */
4230 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4231 {
4232 	struct va_format vaf;
4233 	va_list args;
4234 
4235 	va_start(args, fmt);
4236 	vaf.fmt = fmt;
4237 	vaf.va = &args;
4238 
4239 	if (err != -EPROBE_DEFER) {
4240 		dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4241 	} else {
4242 		device_set_deferred_probe_reason(dev, &vaf);
4243 		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4244 	}
4245 
4246 	va_end(args);
4247 
4248 	return err;
4249 }
4250 EXPORT_SYMBOL_GPL(dev_err_probe);
4251 
4252 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4253 {
4254 	return fwnode && !IS_ERR(fwnode->secondary);
4255 }
4256 
4257 /**
4258  * set_primary_fwnode - Change the primary firmware node of a given device.
4259  * @dev: Device to handle.
4260  * @fwnode: New primary firmware node of the device.
4261  *
4262  * Set the device's firmware node pointer to @fwnode, but if a secondary
4263  * firmware node of the device is present, preserve it.
4264  */
4265 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4266 {
4267 	struct device *parent = dev->parent;
4268 	struct fwnode_handle *fn = dev->fwnode;
4269 
4270 	if (fwnode) {
4271 		if (fwnode_is_primary(fn))
4272 			fn = fn->secondary;
4273 
4274 		if (fn) {
4275 			WARN_ON(fwnode->secondary);
4276 			fwnode->secondary = fn;
4277 		}
4278 		dev->fwnode = fwnode;
4279 	} else {
4280 		if (fwnode_is_primary(fn)) {
4281 			dev->fwnode = fn->secondary;
4282 			if (!(parent && fn == parent->fwnode))
4283 				fn->secondary = ERR_PTR(-ENODEV);
4284 		} else {
4285 			dev->fwnode = NULL;
4286 		}
4287 	}
4288 }
4289 EXPORT_SYMBOL_GPL(set_primary_fwnode);
4290 
4291 /**
4292  * set_secondary_fwnode - Change the secondary firmware node of a given device.
4293  * @dev: Device to handle.
4294  * @fwnode: New secondary firmware node of the device.
4295  *
4296  * If a primary firmware node of the device is present, set its secondary
4297  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
4298  * @fwnode.
4299  */
4300 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4301 {
4302 	if (fwnode)
4303 		fwnode->secondary = ERR_PTR(-ENODEV);
4304 
4305 	if (fwnode_is_primary(dev->fwnode))
4306 		dev->fwnode->secondary = fwnode;
4307 	else
4308 		dev->fwnode = fwnode;
4309 }
4310 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4311 
4312 /**
4313  * device_set_of_node_from_dev - reuse device-tree node of another device
4314  * @dev: device whose device-tree node is being set
4315  * @dev2: device whose device-tree node is being reused
4316  *
4317  * Takes another reference to the new device-tree node after first dropping
4318  * any reference held to the old node.
4319  */
4320 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4321 {
4322 	of_node_put(dev->of_node);
4323 	dev->of_node = of_node_get(dev2->of_node);
4324 	dev->of_node_reused = true;
4325 }
4326 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4327 
4328 int device_match_name(struct device *dev, const void *name)
4329 {
4330 	return sysfs_streq(dev_name(dev), name);
4331 }
4332 EXPORT_SYMBOL_GPL(device_match_name);
4333 
4334 int device_match_of_node(struct device *dev, const void *np)
4335 {
4336 	return dev->of_node == np;
4337 }
4338 EXPORT_SYMBOL_GPL(device_match_of_node);
4339 
4340 int device_match_fwnode(struct device *dev, const void *fwnode)
4341 {
4342 	return dev_fwnode(dev) == fwnode;
4343 }
4344 EXPORT_SYMBOL_GPL(device_match_fwnode);
4345 
4346 int device_match_devt(struct device *dev, const void *pdevt)
4347 {
4348 	return dev->devt == *(dev_t *)pdevt;
4349 }
4350 EXPORT_SYMBOL_GPL(device_match_devt);
4351 
4352 int device_match_acpi_dev(struct device *dev, const void *adev)
4353 {
4354 	return ACPI_COMPANION(dev) == adev;
4355 }
4356 EXPORT_SYMBOL(device_match_acpi_dev);
4357 
4358 int device_match_any(struct device *dev, const void *unused)
4359 {
4360 	return 1;
4361 }
4362 EXPORT_SYMBOL_GPL(device_match_any);
4363